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Abstract

In this thesis we propose two lattice-based robust distributed source coding systems,

one for two correlated sources and the other for three correlated sources. We provide

a detailed performance analysis under the high resolution assumption. It is shown

that, in a certain asymptotic regime, our scheme for two correlated sources achieves

the information-theoretic limit of quadratic multiple description coding (MDC) when

the lattice dimension goes to infinity, whereas a variant of the random coding scheme

by Chen and Berger with Gaussian codes is 0.5 bits away from this limit. Our anal-

ysis also shows that, under the same asymptotic regime, when the lattice dimension

goes to infinity, the proposed scheme for three correlated sources is very close to the

theoretical bound for the symmetric quadratic Gaussian MDC problem with single

description and all three descriptions decoders.
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Notation and abbreviations

CEO Chief Executive O�cer

RDSC Robust Distributed Source Coding

MDC Multiple Description Coding

MDLVQ Multiple Description Lattice Vector Quantizer

X Random variable X

X Alphabet of X

E[·] Expectation operator

RD Rate-distortion region

H(·) Entropy

h(·) Di↵erential entropy

I(·; ·) Mutual information

LMMSE Squared distortion induced by the Linear MinimumMean Squared

error Estimate

�2
X

Variance of X

xn Row vector

Rn n-dimensional Euclidean space

k · k Norm

h·, ·i Inner product
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⌫(·) Volume of a measurable set

⇤ n-dimensional lattice

G Generator matrix

Q⇤(·) Nearest-neighbor quantizer

� Lattice point

V⇤(·) Voronoi region

S Closure of set S

xn mod ⇤ Modulo-lattice operation

B
r

Open ball of radius r

r̄⇤ Covering radius of the lattice ⇤

r⇤ Inscribed radius of the lattice ⇤

G(·) Normalized second moment

N(⇤2 : ⇤1) Index of ⇤2 with respect to ⇤1

D(Q,Xn) Per sample expected distortion

⇤
c

Central lattice

⇤
s

Side lattice

⇤
in

Intermediate lattice

⇤
s/2,⇤s/3 Fractional lattice

K Index of ⇤
in

with respect to ⇤
c

M Index of ⇤
s

with respect to ⇤
in

P[·] Probability

T Set of coset representatives of ⇤
s

relative to fractional lattice

U Set of coset representatives of ⇤
s

relative to ⇤
in
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Chapter 1

Introduction

Distributed source coding is a crucial category of source coding problems, which has

received significant attention over the past few decades. In distributed source coding,

multiple correlated sources are encoded separately and sent to a central decoder

for joint decoding. For the case when the central decoder is required to recover

both sources losslessly, Slepian and Wolf (Slepian and Wolf, 1973) characterized the

achievable rate region. The case when one source is available as side information at

the decoder, while the other source may be recovered with some distortion, was solved

by Wyner and Ziv (Wyner and Ziv, 1976). A general formulation of the distributed

source coding problem in the lossy case was provided by Berger (Berger, 1978) and

Tung (Tung, 1978). However, the solution has been found only in certain special

cases (Berger and Yeung, 1989; Oohama, 1997; Wagner et al., 2008; Wang et al.,

2010; Wang and Chen, 2013, 2014).

A closely related problem is the CEO problem introduced in (Berger et al., 1996),

where the correlated sources are noisy observations of a single remote source, whose

reconstruction is required at the joint decoder. The rate-distortion region for this

1
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problem has been completely characterized in the quadratic Gausian case by Oohama

(Oohama, 2005) and Prabhakaran et al. (Prabhakaran et al., 2004).

Most of past work assume that the central decoder receives the information sent by

all separate encoders. However, in practice this may not be true. For instance, in the

case of wireless communications, the quality of the channels may be fluctuating. If the

quality of the channel connecting some encoder with the fusion centre becomes very

weak, the decoder is no longer able to recover the transmitted information. In such

cases a robust system is desired. The robust version of the distributed source coding

problem was considered in the CEO setting by Ishwar et al. (Ishwar et al., 2005)

and Chen and Berger (Chen and Berger, 2008). The design of practical schemes

was addressed in (Saxena et al., 2006; Saxena and Rose, 2010; Wu et al., 2016),

where iterative algorithms were employed for locally optimal designs. On the other

hand, the work of Heegard and Berger (Heegard and Berger, 1985) considers the

robust version of the Wyner-Ziv problem and provides a characterization of the rate-

distortion region.

The robust distributed source coding (RDSC) problem for the case of two and

three correlated sources is considered in this thesis. We propose a structured coding

schemes based on lattices and provide a detailed performance analysis under the high

resolution assumption. Note that when the sources are identical, the setting being

considered coincides with that of the classical multiple description coding (MDC)

problem (Ozarow, 1980; Wolf et al., 1980; Gamal and Cover, 1982; Ahlswede, 1985;

Zhang and Berger, 1987; Wang et al., 2011b; Wang and Viswanath, 2007, 2009; Chen,

2009; Song et al., 2014). Our analysis of the scheme for two sources indicates that, in

a certain asymptotic regime, the performance of the proposed lattice-based scheme

2
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approaches the information-theoretic limit of quadratic multiple description coding

when the lattice dimension goes to 1. For comparison we consider a variant of the

random coding scheme originally proposed by Chen and Berger (Chen and Berger,

2008) for the robust CEO problem and prove that the sum-rate of the latter system

with Gaussian codes is 0.5 bits away from the sum-rate of our proposed approach

in the same asymptotic regime. The asymptotic analysis of the scheme for three

sources shows that when the lattice dimension approaches infinity, its performance at

high resolution is close to the information theoretic limit of the symmetric Gaussian

quadratic MDC problem, when only single description decoders and all descriptions

decoder are of interest. Specifically, the gap in sum-rate is only 0.207 bits.

Our design is inspired by the prior work on multiple description lattice vector

quantizers (MDLVQ) of Vaishampayan et al. (Vaishampayan et al., 2001) and Huang

and Wu (Huang and Wu, 2006). It is worth pointing out that lattices have been used

in prior work in other distributed source coding problems (R. Zamir and Erez, 2002;

Servetto, 2007; Krithivasan and Pradhan, 2009; Reani and Merhav, 2015). Most of

the aforementioned papers use dithered lattice quantization, except for the work of

Servetto (Servetto, 2007), which performs the analysis under the assumption of very

high rate and very high correlation.

The thesis is structured as follows. In Chapter 2, we analyze the performance

of a random-coding-based RDSC scheme (similar to the one proposed in (Chen and

Berger, 2008)) with Gaussian codes and prove that it does not achieve the information-

theoretical limit of quadratic MDC in a certain asymptotic regime. We propose a

lattice-based robust distributed source coding system for two correlated sources. The

asymptotic performance analysis of this lattice-based scheme shows that it is able to

3
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achieve the fundamental limit of quadratic MDC in the aforementioned asymptotic

regime. We point out that the work in chapter 2 has been submitted for publication.

The paper containing the results in chapter 2 is currently under review for possible

publication in IEEE Transactions on Information Theory. The Chapter is structured

as follows. Section 2.2 intruduce the formulation of the RDSC problem. In Section

2.3 we analyze the performance of a random-coding-based RDSC scheme (similar

to the one proposed in (Chen and Berger, 2008)) with Gaussian codes. Section 2.4

presents definitions and notations related to lattices. In Section 2.5 we introduce

a lattice-based RDSC scheme. The asymptotic performance analysis of this lattice-

based scheme is presented in Section 2.6. Finally, Section 2.7 concludes the Chapter.

In Chapter 3 we present a coding scheme based on lattices for three correlated

sources and provide the performance analysis under the high resoluion assumption.

Our analysis shows that the performance at high resolution of the proposed scheme

is very close to the information theoretic limit of the symmetric Gaussian quadratic

MDC problem with single description and all descriptions decoders. Chapter 3 is

structured as follows. In Section 3.2 we present the problem formulation. Section

3.4 presents a structured coding scheme based on lattices for RDSC problem for the

case of three correlated sources. The asymptotic performance analysis of this lattice-

based scheme is carried out Section 3.5 . Finally, Section 3.6 contains the conclusion.

Finally, Chapter 4 concludes the thesis.

4



Chapter 2

Lattice-based Robust Distributed

Coding Scheme for Two Correlated

Sources

2.1 Introduction

In this chapter we propose a lattice-based robust distributed source coding system

for two correlated sources and provide a detailed performance analysis under the high

resolution assumption. It is shown that, in a certain asymptotic regime, our scheme

achieves the information-theoretic limit of quadratic multiple description coding when

the lattice dimension goes to infinity, whereas a variant of the random coding scheme

by Chen and Berger with Gaussian codes is 0.5 bits away from this limit.

The chapter is structured as follows. Section 2.2 presents the formulation of the

RDSC problem. In Section 2.3 we analyze the performance of a random-coding-based

RDSC scheme (similar to the one proposed in (Chen and Berger, 2008)) with Gaussian

5
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Figure 2.1: Block diagram of robust distributed source coding.

codes and prove that it does not achieve the information-theoretical limit of quadratic

MDC in a certain asymptotic regime. Section 2.4 presents definitions and notations

related to lattices, while Section 2.5 introduces a lattice-based RDSC scheme. The

asymptotic performance analysis of this lattice-based scheme is carried out in Section

2.6, which shows, among other things, that it is able to achieve the fundamental limit

of quadratic MDC in the aforementioned asymptotic regime. Finally, Section 2.7

concludes the Chapter.

2.2 Problem Formulation

Consider two sources X1 and X2 with joint probability distribution f
X1X2 . The two

sources generate a jointly i.i.d. random process (X1,k, X2,k)
k2N. We will consider

an RDSC system as illustrated in Figure 2.1. The system consists of two encoders

and three decoders. Encoder i, i = 1, 2, has access only to source X
i

, while the

side decoder i, i = 1, 2, receives only the information sent by encoder i and aims at

6
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reconstructing source X
i

. The central decoder receives the information from both

encoders and aims at reconstructing both sources X1 and X2.

For each i = 1, 2, let d
i

: X
i

⇥ X̂
i

! [0,1) be a distortion measure, where X
i

and

X̂
i

are the source alphabet and the reconstruction alphabet for source X
i

, respectively.

The distortion measures are extended to sequences of length n as follows

d
i

(xn

i

, x̂n

i

) =
1

n

nX

k=1

d
i

(x
i,k

, x̂
i,k

),

where xn

i

= (x
i,1, · · · , xi,n

), x̂n

i

= (x̂
i,1, · · · , x̂i,n

).

A six-tuple (R1, R2, ds,1, ds,2, dc,1, dc,2) is said achievable, if for any ✏ > 0 and all

su�ciently large n, there exist encoding functions

f (n)
i

: X n

i

! {1, 2, · · · , b2n(Ri

+✏)c}, i = 1, 2,

and decoding functions

g(n)
s,i

: {1, 2, · · · , b2n(Ri

+✏)c} ! X̂ n

i

, i = 1, 2,

g(n)
c,i

: {1, 2, · · · , b2n(R1+✏)c}⇥ {1, 2, · · · , b2n(R2+✏)c} ! X̂ n

i

, i = 1, 2,

such that

E
h
d
i

(Xn

i

, X̂n

t,i

)
i
 d

t,i

+ ✏, i = 1, 2, t = s, c,

7



Ph.D. Thesis - Dania Elzouki McMaster - Electrical and Computer Engineering

where E[·] denotes the expectation operator and

X̂n

t,i

= g(n)
t,i

(f (n)
i

(Xn

i

)), i = 1, 2, t = s, c.

The RDSC rate-distortion region, denoted by RD, is the set of all such achievable

six-tuples.

Furthermore, if Y is a random variable over some discrete alphabet Y , with

probability mass function p
Y

, and E[� log2 pY ] is finite, then the entropy of Y is

H(Y ) , E[� log2 pY ]. If X
n 2 Rn is a continuous random variable with pdf f

X

n , and

the quantity
R
Rn

f
X

n(xn) log2 fXn(xn)dxn is finite, then the di↵erential entropy of Xn

is h(Xn) , �
R
Rn

f
X

n(xn) log2 fXn(xn)dxn.

2.3 A Random-coding-based RDSC Scheme

In this section we adapt a random coding scheme originally proposed by Chen and

Berger (Chen and Berger, 2008) for the robust CEO problem to the current setting

and analyze the asymptotic performance of this scheme when specialized to the MDC

scenario.

Theorem 1 We have RD
in

✓ RD, where RD
in

denotes the set of rate-distortion tu-

ples (R1, R2, ds,1, ds,2, dc,1, dc,2) for which there exist auxiliary random variables U1, U2,W1,W2

(jointly distributed with the generic source variables X1 and X2) satisfying the follow-

ing Markov chain

W1 $ U1 $ X1 $ X2 $ U2 $ W2, (2.1)

8
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and deterministic mappings g
s,i

: W
i

! X̂
i

, g
c,i

: U1 ⇥ U2 ! X̂
i

, i = 1, 2, such that

R1 � I(X1;W1) + I(X1;U1|U2,W1,W2),

R2 � I(X2;W2) + I(X2;U2|U1,W1,W2),

R1 +R2 � I(X1;W1) + I(X2;W2) + I(X1, X2;U1, U2|W1,W2),

d
s,i

� E[d
i

(X
i

, g
s,i

(W
i

))], i = 1, 2, (2.2)

d
c,i

� E[d
i

(X
i

, g
c,i

(U1, U2))], i = 1, 2. (2.3)

The inner bound RD
in

in Theorem 1 is achievable by the following random coding

scheme. Roughly speaking, encoder i produces (W
i

, U
i

), where W
i

is a (lossy) descrip-

tion of X
i

, and U
i

is a refinement of W
i

, i = 1, 2. Moreover, W
i

is encoded using

the conventional lossy source code while U
i

is encoded using the Berger-Tung code

(Berger, 1978; Tung, 1978) with (W1,W2) as the decoder side information, i = 1, 2.

Side decoder i can recover W
i

and use g
s,i

(W
i

) as an estimate of X
i

, i = 1, 2. The

central decoder can recover (U1, U2) (as well as (W1,W2)) and use g
c,i

(U1, U2) as an

estimate of X
i

, i = 1, 2. The proof of Theorem 1 is similar to (Chen and Berger,

2008, Theorem 1) and is thus omitted.

In the rest of this paper, we assume X1 = X2 = X̂1 = X̂2 = R and adopt the

squared distance as the distortion measure unless specified otherwise. To facilitate

the evaluation of the achievable rate-distortion tuples in Theorem 1, we shall focus

on so-called Gaussian codes (in the sense of (Zamir, 1999)), which correspond to the

following construction. Let

U
i

= X
i

+ Z
i

,W
i

= U
i

+ Z
0

i

, i = 1, 2, (2.4)

9
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where Z1, Z2, Z
0
1, Z

0
2 are zero-mean mutually independent Gaussian random variables

and are independent of (X1, X2). It is clear that U1, U2,W1,W2 constructed according

to (2.4) satisfy the Markov chain condition (2.1). Moreover, we restrict g
s,i

and g
c,i

,

i = 1, 2, to be linear MMSE estimators; as such, (2.2) and (2.3) can be rewritten as

d
s,i

� LMMSE(X
i

|W
i

), i = 1, 2, (2.5)

d
c,i

� LMMSE(X
i

|U1, U2), i = 1, 2, (2.6)

where LMMSE denotes the squared distortion induced by the linear MMSE estimate.

Now consider the special case where X1 = X2 = X, d
s,1 = d

s,2 = d
s

, and d
c,1 =

d
c,2 = d

c

. This is exactly the setting of the symmetric MDC problem. We shall

assume that the source variable X is of mean zero, variance �2
X

, and finite di↵erential

entropy h(X). It is well-known (see, e.g., (Zamir, 1999; Chen et al., 2006)) that in

the asymptotic regime

d
s

! 0,
d
c

d
s

! 0, (2.7)

the minimum sum-rate of symmetric multiple description coding is given by

R
MD

(d
s

, d
c

) = 2h(X)� 1

2
log2(4(2⇡e)

2d
s

d
c

) + o(1). (2.8)

We shall show that in the same asymptotic regime the minimum sum-rate of the

random-coding-based RDSC scheme in Theorem 1 with Gaussian codes as defined by

10
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(2.4)–(2.6) is given by

R
RC

(d
s

, d
c

) = 2h(X)� 1

2
log2(2(2⇡e)

2d
s

d
c

) + o(1), (2.9)

therefore is 0.5 bits away from the fundamental limit.

First note that in the current setting (2.5) and (2.6) can be written equivalently

as

d
s

�
 

1

�2
X

+
1

�2
Z

i

+ �2
Z

0
i

!�1

, i = 1, 2, (2.10)

d
c

�
✓

1

�2
X

+
1

�2
Z1

+
1

�2
Z2

◆�1

, (2.11)

which implies

�2
Z

i

+ �2
Z

0
i

 (1 + o(1))d
s

, i = 1, 2, (2.12)

�2
Z1
�2
Z2

�2
Z1

+ �2
Z2

 (1 + o(1))d
c

, (2.13)

in the asymptotic regime (2.7). It can be verified that

I(X;W1) + I(X;W2) + I(X;U1, U2|W1,W2)

= I(X;W1) + I(X;W2) + I(X;U1, U2)� I(X;W1,W2)

= h(W1)� h(Z1 + Z 0
1) + h(W2)� h(Z2 + Z 0

2) + h(U1, U2)� h(Z1, Z2)

� h(W1,W2) + h(Z1 + Z 0
1, Z2 + Z 0

2)

= h(W1) + h(W2) + h(U1, U2)� h(Z1, Z2)� h(W1,W2). (2.14)

11
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We have

h(U1, U2)� h(W1,W2) = �I(Z 0
1, Z

0
2;X + Z1 + Z 0

1, X + Z2 + Z 0
2)

= �I(Z 0
1, Z

0
2;Z1 + Z 0

1 � Z2 � Z 0
2, X + Z2 + Z 0

2)

= �I(Z 0
1, Z

0
2;Z1 + Z 0

1 � Z2 � Z 0
2)

� I(Z 0
1, Z

0
2;X + Z2 + Z 0

2|Z1 + Z 0
1 � Z2 � Z 0

2) (2.15)

Substituting (2.15) into (2.14) gives

I(X;W1) + I(X;W2) + I(X;U1, U2|W1,W2)

= h(W1) + h(W2)� h(Z1, Z2)� I(Z 0
1, Z

0
2;Z1 + Z 0

1 � Z2 � Z 0
2)

� I(Z 0
1, Z

0
2;X + Z2 + Z 0

2|Z1 + Z 0
1 � Z2 � Z 0

2). (2.16)

Note that

h(Z1, Z2) + I(Z 0
1, Z

0
2;Z1 + Z 0

1 � Z2 � Z 0
2)

= h(Z1, Z2) + h(Z1 + Z 0
1 � Z2 � Z 0

2)� h(Z1 � Z2)

=
1

2
log2

 
(2⇡e)2�2

Z1
�2
Z2
(�2

Z1
+ �2

Z

0
1
+ �2

Z2
+ �2

Z

0
2
)

�2
Z1

+ �2
Z2

!

 1

2
log2

�
2(2⇡e)2d

s

d
c

�
+ o(1) (2.17)

12
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in the asymptotic regime (2.7), where (2.17) is due to (2.12) and (2.13). Moreover,

I(Z 0
1, Z

0
2;X + Z2 + Z 0

2|Z1 + Z 0
1 � Z2 � Z 0

2)

= h(X + Z2 + Z 0
2|Z1 + Z 0

1 � Z2 � Z 0
2)� h(X + Z2 + Z 0

2|Z1 + Z 0
1 � Z2 � Z 0

2, Z
0
1, Z

0
2)

= h(X + Z2 + Z 0
2|Z1 + Z 0

1 � Z2 � Z 0
2)� h(X + Z2|Z1 � Z2)

= h(X + Z̃1)� h(X + Z̃2), (2.18)

where Z̃1 = Z2 +Z 0
2 �E[Z2 +Z 0

2|Z1 +Z 0
1 �Z2 �Z 0

2] and Z̃2 = Z2 �E[Z2|Z1 �Z2]. It

can be shown (Linder and Zamir, 1994) that in the asymptotic regime (2.7)

h(W
i

) = h(X) + o(1), i = 1, 2,

h(Z̃
i

) = h(X) + o(1), i = 1, 2,

which together with (2.16), (2.17), and (2.18) proves that

I(X;W1) + I(X;W2) + I(X;U1, U2|W1,W2) � 2h(X)� 1

2
log2

�
2(2⇡e)2d

s

d
c

�
+ o(1).

The tightness of this lower bound can be established by choosing �2
Z

i

, �2
Z

0
i

, i = 1, 2,

that satisfy (2.10) and (2.11) with equalities. This completes the proof of (2.9).

There are two possible reasons why the performance of this random-coding-based

RDSC scheme with Gaussian codes, when specialized to the symmetric MDC setting,

is bounded away from the fundamental limit. Firstly, the restriction to Gaussian

codes might be suboptimal. Secondly and more importantly, the random-coding-

based RDSC scheme itself might be suboptimal. It is well known (Ozarow, 1980;

Gamal and Cover, 1982) that the El Gamal-Cover (EGC) inner bound is tight for

13
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the quadratic Gaussian MDC problem. However, the inner bound RD
in

in Theorem

1, when specialized to the MDC setting, does not (at least expression-wise) coincide

or subsume the EGC inner bound, therefore is unlikely to be tight. For the EGC

inner bound, no Markov chain condition is imposed on the relevant auxiliary random

variables. On the other hand, it is very di�cult (if not impossible) to establish a

single-letter inner bound of RD without a Markov chain condition similar to (2.1).

In other words, the conventional random coding argument seems to fall short of

providing a RDSC scheme that does not have a performance gap when specialized to

the MDC setting. This motivates us to develop an alternative RDSC scheme based

on lattices that is able to close the gap in the MDC scenario.

2.4 Lattice-related Definitions and Notations

Before introducing the proposed scheme we need to clarify the lattice-related defini-

tions and notations to be used throughout this work, which is the purpose of this

section.

We will denote by xn row vectors in Rn. For xn = (x1, · · · , xn

) 2 R and yn =

(y1, · · · , yn) 2 Rn, let hxn, yni ,Pn

i=1 xi

y
i

, and kxnk ,
p

hxn, xni. We will use 0 for

the all-zero n-dimensional vector. For any set S ✓ Rn, any � 2 R, and any xn 2 Rn,

denote

xn + S , {xn + yn|yn 2 S},

�S , {�yn|yn 2 ⇤}.

14
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If S is a measurable set then ⌫(S) denotes its volume, i.e.,

⌫(S) ,
Z

S
dxn.

An n-dimensional lattice ⇤ is the set of all possible integer linear combinations of the

rows of G, for some n⇥ n non-singular matrix G. In other words, we have

⇤ , {� 2 Rn|� = i ·G, i 2 Zn}.

The nearest-neighbor quantizer associated with the lattice ⇤ is a function Q⇤(·) which

maps each xn 2 Rn to its nearest lattice point, i.e.,

Q⇤(x
n) , argmin

�2⇤
kxn � �k. (2.19)

For every � 2 ⇤ the set of all points mapped by Q⇤ to � is the Voronoi region V⇤(�)

of � in ⇤. Note that the ties in (2.19) are broken in a systematic manner such that

the following relation holds

V⇤(�) = �+ V⇤(0), 8� 2 ⇤.

For any set S ✓ Rn, let S denote the closure of the set S, i.e., the union of S with

its boundary. Then, the following holds

V⇤(�) = {xn 2 Rn|kxn � �k  kxn � �0k for any �0 2 ⇤}.

It is worth pointing out that, according to our definition of the Voronoi region, which

15
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follows (Zamir, 2014), not all the points on the boundary of V⇤(�) are included in

V⇤(�), therefore V⇤(�) 6= V⇤(�). We say that two Voronoi regions V⇤(�1) and V⇤(�2),

where �1,�2 2 ⇤, are adjacent, if their closures have points in common.

Further, for any xn 2 Rn define

xn mod ⇤ , xn �Q⇤(x
n).

A fundamental cell of the lattice ⇤ is a bounded set C0 which, when shifted by the

lattice points, generates a partition of Rn (Zamir, 2014). In other words, the sets

� + C0, for all � 2 ⇤, form a partition of Rn. All measurable fundamental cells of a

lattice have the same volume (Zamir, 2014). This value is denoted by ⌫⇤ and we have

⌫⇤ = ⌫(V⇤(0)). Further, for any set S ⇢ Rn, denote

r̄(S) , sup
x

n2S
kxnk.

The open ball of radius r, centered in the origin is denoted by B
r

, i.e.,

B
r

, {xn 2 Rn|kxnk < r}.

The covering radius of the lattice ⇤ is r̄⇤ , r̄(V⇤(0)). Additionally, we will denote by

r⇤ the inscribed radius of the lattice ⇤, which is defined as the radius of the largest

ball centered at the origin and included in V⇤(0).

The normalized second moment of a measurable set S ✓ Rn is defined as

G(S) ,
R
S kx

nk2dx
n⌫(S) 2

n

+1
.

16
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It is important to notice that the normalized second moment is invariant to scaling.

The normalized second moment of the lattice ⇤, denoted by G(⇤), is the normalized

second moment of the Voronoi region of 0, i.e.,

G(⇤) , G(V⇤(0)).

A pair of lattices (⇤1,⇤2) are said to be nested if ⇤2 ⇢ ⇤1, i.e., if ⇤2 is a sublattice

of ⇤1. The lattice ⇤1 is termed the fine lattice, while ⇤2 is termed the coarse lattice.

The index of ⇤2 with respect to ⇤1 is N(⇤2 : ⇤1) , ⌫⇤2
⌫⇤1

. For any �1 2 ⇤1, the set

�1 + ⇤2 is called a coset of ⇤2 relative to ⇤1. A set L ⇢ ⇤1 is called a set of coset

representatives of ⇤2 relative to ⇤1 if the following two conditions hold

⇤1 = [
�12L (�1 + ⇤2) ,

(�1 + ⇤2) \ (�0
1 + ⇤2) = ; for any �1 6= �0

1 2 L.

The above conditions imply that any point � 2 ⇤1 can be written in a unique way

as � = �1 + �2 where �1 2 L and �2 2 ⇤2. As shown in (Zamir, 2014), if C0 is

a fundamental cell of the coarse lattice ⇤2 then the set C0 \ ⇤1 is a set of coset

representatives of ⇤2 relative to ⇤1.

We use the squared error as a distortion criterion. For any quantizer Q defined

on Rn and any random variable Xn 2 Rn we denote by D(Q,Xn) the per sample

expected distortion, i.e.,

D(Q,Xn) , 1

n
E
⇥
k Q(Xn)�Xn k2

⇤
.

17
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2.5 Proposed Lattice-based RDSC Scheme

We will assume for the rest of the paper that the marginal probability density func-

tions (pdf) f
X1 and f

X2 are continuous with finite marginal di↵erential entropies

h(X1) and h(X2). We assume that X1 and X2 have mean zero, variance �2
X

and

correlation coe�cient ⇢.

The proposed coding scheme uses four nested lattices in Rn: ⇤
s

⇢ ⇤
s/2 ⇢ ⇤

in

⇢

⇤
c

. The finest lattice, ⇤
c

, is called the central lattice. The central lattice points will be

used for the reconstruction at the central decoder. The coarsest lattice, ⇤
s

, is called

side lattice since it is used for the reconstruction at the side decoders. The lattices ⇤
in

and ⇤
s/2 are auxiliary lattices used in the design. ⇤

in

is called the intermediate lattice

and it is chosen such that to satisfy a requirement which will be revealed shortly. The

lattice ⇤
s/2 is called the fractional lattice and it is defined as ⇤

s/2 , 1
2⇤s

. We point

out that ⇤
s

= c⇤
in

for some even positive integer c. Therefore, ⇤
s/2 defined as above

is also a sublattice of ⇤
in

. Let us denote K , N(⇤
in

: ⇤
c

) and M , N(⇤
s

: ⇤
in

). It

follows that M = cn.

In order to simplify the notation we will use in the sequel only the subscript c,

in, s/2, respectively s, instead of ⇤
c

, ⇤
in

, ⇤
s/2, respectively ⇤

s

. For instance, we will

use r̄
c

instead of r̄⇤
c

, for the covering radius of ⇤
c

.

Let �
s/2 denote the smallest distance between two points belonging, respectively,

to the closures of two non-adjacent Voronoi regions. We assume that the coe�cient

c is large enough so that the following condition holds

�
s/2 > 3r̄

in

. (2.20)

18
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The above condition is needed for proper operation at the central decoder, as it will

be seen in the proof of Proposition 1.

Another important parameter in our construction is r0 > 0. Our scheme is de-

signed such that when the input sequences xn

1 , x
n

2 are within the distance r0 from

one another, the central decoder is able to refine the reconstruction of each source

using the information received from the other encoder. On the other hand, when

the above condition is violated, the reconstruction at the central decoder has essen-

tially the same quality as the reconstruction at the side decoder. For this reason the

probability

P(r0) , P[Xn

2 �Xn

1 /2 B
r0 ] (2.21)

plays a crucial role in the performance of our scheme. As we will see in the next section

the choice of r0 governs the trade-o↵ between the quality of the reconstruction at the

central decoder and the encoder sum-rate.

The choice of the lattice ⇤
in

is related to the value r0. More specifically, ⇤
in

is

chosen as a sublattice of ⇤
c

satisfying the condition

r0 + 2r̄
c

 r
in

.

Recall that r
in

denotes the inscribed radius of the lattice ⇤
in

. The reason for the

above requirement is to ensure that the inequalities specified in the following result

hold, since they are essential in the operation of the proposed scheme.

19



Ph.D. Thesis - Dania Elzouki McMaster - Electrical and Computer Engineering

Lemma 1 If xn

2 � xn

1 2 B
r0, then

kQ
c

(xn

1 )�Q
c

(xn

2 )k < r
in

,

kQ
in

(Q
c

(xn

1 ))�Q
in

(Q
c

(xn

2 ))k < 3r̄
in

.

Let �
c,i

, Q
c

(xn

i

), and �
i

, Q
in

(�
c,i

), for i = 1, 2. Using the triangle inequality

repeatedly, one obtains that

k �
c,1 � �

c,2 kk �
c,1 � xn

1 k + k xn

1 � xn

2 k + k xn

2 � �
c,2 k< r0 + 2r̄

c

 r
in

.

Additionally,

k �1 � �2 kk �1 � �
c,1 k + k �

c,1 � �
c,2 k + k �

c,2 � �2 k< r
in

+ 2r̄
in

< 3r̄
in

,

which completes the proof.

Further, we will define two labeling functions �
i

: ⇤
in

! ⇤
s

, for i = 1, 2. For this,

we need to introduce some more notations as follows. Let T , V
s

(0)\⇤
s/2. Then T

is a set of coset representatives of ⇤
s

relative to ⇤
s/2. Thus, we have |T | = N(⇤

s

:

⇤
s/2) = 2n and

⇤
s/2 =

[

⌧2T

(⌧ + ⇤
s

) .

It can be easily seen that the set [
⌧2T Vs/2(⌧) is a fundamental cell of ⇤

s

. Denote

U , [
⌧2T Vs/2(⌧)\⇤

in

. Then U is a set of coset representatives of ⇤
s

relative to ⇤
in

,

which implies that |U| = N(⇤
s

: ⇤
in

) = M and

⇤
in

=
[

�2U

(�+ ⇤
s

) .
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We will first define �
i

for � 2 U as follows

�1(�) , c(�� ⌧), �2(�) , 2⌧ � c(�� ⌧), (2.22)

where ⌧ = Q
s/2(�). Further, the mappings �1 and �2 are extended to ⇤

in

using

shifting. For this, for arbitrary � 2 ⇤
in

, let �
s/2 = Q

s/2(�), i.e., � 2 V
s/2(�s/2). Then

there is a unique pair (⌧,�
s

) 2 T ⇥⇤
s

, such that �
s/2 = �

s

+ ⌧ . More specifically, we

have �
s

= Q
s

(�
s/2) and ⌧ = �

s/2 mod ⇤
s

. Then we define

�1(�) , �1(�� �
s

) + �
s

= c(�� �
s

� ⌧) + �
s

,

�2(�) , �2(�� �
s

) + �
s

= 2⌧ � c(�� �
s

� ⌧) + �
s

.

The above definition implies that the mappings �
i

satisfy the shift-invariance property,

i.e., that

�
i

(�+ �0
s

) = �
i

(�) + �0
s

, 8� 2 ⇤
in

, 8�0
s

2 ⇤
s

, i = 1, 2.

The shift-invariance property further leads to the following relations, for i = 1, 2,

��1
i

(�
s

) = ��1
i

(0) + �
s

, 8�
s

2 ⇤
s

, (2.23)

��1
i

(0) = {�� �
i

(�)|� 2 U}. (2.24)

Relation (2.23) is obvious. In order to prove (2.24) consider �0 2 ⇤
in

and let (�,�
s

) 2

U⇥⇤
s

, be the unique pair such that �0 = �+�
s

. The shift-invariance property implies

that �
i

(�0) = �
i

(�) + �
s

, which leads to �
s

= �
i

(�0)� �
i

(�). Further, we obtain that
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�0 = � + �
i

(�0) � �
i

(�). Consequently, the equality �
i

(�0) = 0 is equivalent to

�0 = �� �
i

(�), fact which proves the claim.

We point out that the construction of the mappings �1 and �2 was inspired by

the index assignment ↵ = (↵1,↵2) used in MDLVQ (Vaishampayan et al., 2001;

Huang and Wu, 2006), in two ways: 1) by defining the mappings on a set of coset

representatives first and then extending them by shifting; 2) by imposing the condition

that �1(�) + �2(�) = 2Q
s/2(�) for each � 2 ⇤

in

. On the other hand, it is important

to note that we cannot simply use the mappings ↵1,↵2 : ⇤
in

! ⇤
s

that define the

index assignment for MDLVQ1 in (Vaishampayan et al., 2001; Huang and Wu, 2006)

in place of our mappings �1, �2, since the requirement at the central decoder in our

case is stronger than for MDLVQ. In particular, based on a received pair of side

lattice points �
s,1, �s,2, the central decoder of the MDLVQ uniquely identifies a point

� 2 ⇤
in

such that (↵1(�),↵2(�)) = (�
s,1,�s,2). However, as we will see shortly, the

central decoder in our scheme needs to uniquely identify two points �1,�2 2 ⇤
in

such

that (�1(�1), �2(�2)) = (�
s,1,�s,2), using the additional knowledge of �1 � �2. Using

the pair of mappings (↵1,↵2) designed for the MDLVQ in place of (�1, �2) does not

guarantee that the latter requirement is satisfied.

2.5.1 Proposed Scheme

Before describing the details of the proposed scheme we need the following discussion.

Let us denote �
i

= Q
in

(Q
c

(xn

i

)), for i = 1, 2. Our scheme is designed such that side

decoder i will be able to recover �
i

(�
i

) always, while the central decoder recovers

�
c,i

= Q
c

(xn

i

), for i = 1, 2, when the input sequences are su�ciently close, i.e., when

1
The lattice ⇤in takes here the place of the central lattice on which the index assignment is

defined for MDLVQ.
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Figure 2.2: The set C(�
s/2) is the region between the two hexagons in the Figure.

xn

2 � xn

1 2 B
r0 . However, for the central decoder to achieve this goal some additional

information needs to be transmitted beside �1(�1) and �2(�2). The amount of this

additional information is smaller when �1 and �2 are both in the same Voronoi cell of

the lattice ⇤
s/2. Encoder i is not able to determine all the time if this is the case or

not, since it does not have knowledge of the other source sequence. However, based

on Lemma 1, if �
i

2 V
s/2(�s/2) and the distance from �

i

to the boundary of V
s/2(�s/2)

is not smaller than 3r̄
in

, then encoder i can infer that the other sequence is also in

V
s/2(�s/2) when xn

2 � xn

1 2 B
r0 . Thus, we define the set

C , [
�

s/22⇤s/2
C(�

s/2), where C(�
s/2) , V

s/2(�s/2) \
�
�
s/2 + �V

s/2(0)
�
, (2.25)
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for � , 1� 3r̄
in

r

s/2
, as shown in Figure 2.2. According to Lemma 1, if �

i

/2 C, then �3�i

is in the same Voronoi cell of ⇤
s/2 as �

i

, when xn

2 � xn

1 2 B
r0 . Now we are ready to

present the details of the encoder and decoder operation.

Encoder. Encoder i, for i = 1, 2, operates as follows. First the input sequence xn

i

is quantized to the closest central lattice point �
c,i

, Q
c

(xn

i

). Next, the point �
c,i

is

quantized to the closest point in the lattice ⇤
in

, �
i

, Q
in

(�
c,i

). Let u
i

, �
c,i

mod ⇤
in

and �
s,i

, �
i

(�
i

). Then encoder i outputs �
s,i

, u
i

and b
i

, where b
i

= 1 if �
i

2 C and

b
i

= 0 otherwise. Moreover, if b
i

= 1 encoder i also transmits ⌧
i

, Q
s/2(�i

) mod ⇤
s

.

The first component, �
s,i

, will be used at the side decoder i, therefore, it is compressed

using entropy coding before transmission. On the other hand, u1 and u2 are used

only at the central decoder, therefore they will be compressed using Slepian-Wolf

coding. Finally, b
i

and ⌧
i

will also be used only at the central decoder, thus they may

be compressed using Slepian-Wolf coding. However, we will use entropy coding to

encode b
i

and fixed length codes for ⌧
i

for simplicity of analysis, since, as we will see

shortly, the rate overhead is negligible asymptotically.

Decoder. Side decoder i, for i = 1, 2, outputs the reconstruction x̂n

s,i

, �
s,i

. The

central decoder recovers both values �
s,1 and �

s,2, and additionally, u1, u2, b1, b2. First

the decoder checks if the following condition is satisfied

k�
s,1 � �

s,2k  (8 + c)r̄
s

+ 3r̄
in

. (2.26)

If the condition is violated then the decoder concludes that xn

2�xn

1 /2 B
r0 , and outputs

�
s,i

as the reconstruction for source i, i.e., x̂n

c,i

, �
s,i

, for i = 1, 2.

If condition (2.26) is satisfied the decoder assumes that xn

2 � xn

1 2 B
r0 , and it
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proceeds as follows. First the following is computed

�̃ , Q
in

(u1 � u2). (2.27)

Next the decoder proceeds based on the values of b1 and b2, and of ⌧1 and ⌧2 (if

applicable), according to the following cases.

1) If b1 = 0 or b2 = 0 the decoder evaluates

�̃
s/2 , 1/2(�

s,1 + �
s,2 + c�̃), ⌧̃ , �̃

s/2 mod ⇤
s

, (2.28)

�̃1 , �̃
s/2 +

1
c

(�
s,1 � �̃

s/2 + ⌧̃), �̃2 , �̃
s/2 +

1
c

(⌧̃ + �̃
s/2 � �

s,2), (2.29)

and outputs the reconstructions x̂n

c,i

, �̃
i

+ u
i

, for i = 1, 2.

2) If b1 = b2 = 1 and ⌧1 = ⌧2 the decoder proceeds as in case 1).

3) If b1 = b2 = 1 and ⌧1 6= ⌧2 then the decoder computes

ṽ , 1/2(�
s,1 + �

s,2 + c�̃� 2⌧2 � c(⌧2 � ⌧1)), ŵ , ṽ mod ⇤
s

, (2.30)

w̃ , ŵ �Q
s

(ŵ + 1
2(⌧2 � ⌧1)), (2.31)

�̃
s

, ṽ � (c+ 1)w̃, �̃0
s

, �̃
s

+ 2w̃, (2.32)

�̃1 , �̃
s

+ ⌧1 +
1
c

(�
s,1 � �̃

s

), �̃2 , �̃0
s

+ ⌧2 +
1
c

(2⌧2 + �̃0
s

� �
s,2). (2.33)

Finally, the reconstructions are computed as x̂n

c,i

, �̃
i

+ u
i

, for i = 1, 2.

Proposition 1 Let �
c,i

, Q
c

(xn

i

), �
i

, Q
in

(�
c,i

), u
i

, �
c,i

mod ⇤
in

, �
s,i

, �
i

(�
i

)

and ⌧
i

, Q
s/2(�i

) mod ⇤
s

, for i = 1, 2. Then when xn

2 � xn

1 2 B
r0 and the Slepian-

Wolf decoding of u1 and u2 is successful, we have x̂n

c,i

= �
c,i

, for i = 1, 2.
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Proof: Assume that xn

2 � xn

1 2 B
r0 and that the Slepian-Wolf decoder employed at

the central decoder is able to recover u1 and u2 correctly. First we need to prove

that condition (2.26) is satisfied. To this end we first show that the following relation

holds

r̄(��1(0))  (4 + c/2)r̄
s

. (2.34)

Note that relation (2.24) leads to

r̄(��1
i

(0))  r̄(U) + r̄(�
i

(U)). (2.35)

Further, since T ⇢ V
s

(0) and V
s/2(0) ⇢ V

s

(0) we obtain that U ⇢ [
⌧2T (⌧+V

s/2(0)) ⇢

2V
s

(0). Thus, r̄(U)  2r̄
s

. Moreover, from the definition of �
i

given in (2.22), we

obtain that r̄(�
i

(U))  2r̄(T ) + cr̄
s/2  2r̄

s

+ cr̄
s/2. The above discussion, together

with relation (2.35) and the fact that r̄
s/2 = 1/2r̄

s

, implies (2.34).

By applying the triangle inequality and the fact that k� � �
i

(�)k  r̄(��1(0)),

together with Lemma 1, we obtain

k�
s,1 � �

s,2k  k�
s,1 � �1k+ k�1 � �2k+ k�2 � �

s,2k  2r̄(��1(0)) + 3r̄
in

.

By combining the above with (2.34) relation (2.26) follows.

Using Lemma 1 and the fact that �
c,i

= �
i

+ u
i

, i = 1, 2, we obtain that

r
in

> k�
c,1 � �

c,2k = ku1 � u2 � (�2 � �1)k,

which, together with the fact that �2 � �1 2 ⇤
in

, implies that u1 � u2 2 V
in

(�2 � �1),

i.e., �2 � �1 = Q
in

(u1 � u2). This further implies that �̃ computed in (2.27) satisfies
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the equality

�̃ = �2 � �1. (2.36)

Let �
s

, Q
s

(Q
s/2(�1)) and �0

s

, Q
s

(Q
s/2(�2)). Using the fact that ⌧i , Q

s/2(�i

) mod ⇤
s

,

for i = 1, 2, it follows that �1 2 V
s/2(�s

+ ⌧1) and �2 2 V
s/2(�0

s

+ ⌧2). Moreover, since

�
s,i

= �
i

(�
i

) for i = 1, 2, we obtain that

�
s,1 = c(�1 � �

s

� ⌧1) + �
s

�
s,2 = �0

s

+ 2⌧2 � c(�2 � �0
s

� ⌧2). (2.37)

Assume now that case 1) holds. According to Lemma 1 we have �
s

+ ⌧1 = �0
s

+ ⌧2.

Since ⌧1, ⌧2 2 T it follows that �
s

= �0
s

and ⌧1 = ⌧2. Using further equations (2.28),

(2.36) and (2.37) we obtain that �̃
s/2 = �

s

+ ⌧1. This implies that ⌧1 = �̃
s/2 mod ⇤

s

,

i.e., ⌧̃ = ⌧1. Equations (2.29) imply that �̃
i

= �
i

and further that x̂n

c,i

= �
c,i

, for

i = 1, 2.

Assume now that b1 = b2 = 1. Recall that according to Lemma 1 we have

k�1 � �2k < 3r̄
in

. Condition (2.20) further ensures that k�1 � �2k < �
s/2, which

implies that V
s/2(�s

+ ⌧1) and V
s/2(�0

s

+ ⌧2) are either identical or adjacent. Further,

if ⌧1 = ⌧2 it follows that �0
s

+ ⌧2� (�
s

+ ⌧1) 2 ⇤
s

. Thus, V
s/2(�s

+ ⌧1) and V
s/2(�0

s

+ ⌧2)

cannot be adjacent. Consequently, the equality �0
s

+ ⌧2 = �
s

+ ⌧1 holds and the proof

proceeds as in case 1).

Assume now that ⌧1 6= ⌧2. Then �
s

+⌧1 6= �0
s

+⌧2. Denote��
s/2 , �0

s

+⌧2�(�
s

+⌧1).

Then 0 and ��
s/2 are adjacent points of the lattice ⇤

s/2 (i.e., their Voronoi regions

are adjacent). It follows that

��
s/2 2 V

s

(0). (2.38)
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Let w , 1
2(�

0
s

� �
s

). Using equations (2.30), (2.36) and (2.37) we obtain that

ṽ = �
s

+
c

2
(�0

s

� �
s

) + w. (2.39)

Since c is even, it follows that c

2(�
0
s

��
s

) 2 ⇤
s

. Thus, w mod ⇤
s

= ṽ mod ⇤
s

= ŵ. It

follows that w = �̄
s

+ ŵ for some �̄
s

2 ⇤
s

. Then ��
s/2 = 2w+ ⌧2 � ⌧1 = 2(�̄

s

+ ŵ) +

⌧2 � ⌧1. Using further (2.38) leads to 1
2��

s/2 = �̄
s

+ ŵ+ 1
2(⌧2 � ⌧1) 2 1

2Vs

(0) ⇢ V
s

(0),

which further implies that ��̄
s

= Q
s

(ŵ + 1
2(⌧2 � ⌧1)). It follows that w̃ = w, where

w̃ is defined in (2.31). Combining with (2.32) and (2.39) we obtain that �̃
s

= �
s

and

�̃0
s

= �0
s

. Finally, equations (2.33) imply that �̃
i

= �
i

and further that x̂n

c,i

= �
c,i

, for

i = 1, 2.

2.6 Performance Analysis

In this section we will evaluate the performance of the proposed lattice-based scheme,

in the high resolution regime. More specifically, we require that the following relations

hold simultaneously

M⌫
s

! 0, M ! 1, K is constant. (2.40)

Recall that M = ⌫

s

⌫

in

= cn and K = ⌫

in

⌫

c

. Note that this asymptotic regime is similar

in spirit with that considered in the prior work on MDLVQ (Vaishampayan et al.,

2001; Huang and Wu, 2006; Zhang et al., 2011). Clearly, the conditions specified in

(2.40) imply that ⌫
s

, ⌫
in

and ⌫
c

approach 0. Further, since ⇤
in

is a sublattice of ⇤
c
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such that r0 + 2r̄
c

 r
in

, we also have that

r0 = O(r
c

) = O(⌫
1
n

c

)

as (2.40) holds. Additionally, the fact that K is constant implies that ⇤
c

and ⇤
in

are

scaled by the same factor ✓, i.e., there are some fixed lattices ⇤
c,0 and ⇤

in,0 such that

⇤
c

= ✓⇤
c,0, ⇤

in

= ✓⇤
in,0, ⇤

s

= c✓⇤
in,0.

Then the asymptotic regime specified by (2.40) is equivalently stated in terms of the

parameters c and ✓ as follows

✓ ! 0, c ! 1, c2✓ ! 0.

In order to proceed we need to introduce a few more notations. For i = 1, 2, let d
s,i

denote the distortion of source i at side decoder i and let d
c,i

denote the distortion

of source i at the central decoder. For each �
s

2 ⇤
s

and i = 1, 2, let A
i

(�
s

) ,

{xn

i

|x̂n

s,i

= �
s

}. Further, for each � 2 ⇤
in

, denote M(�) , [
�

c

2V
in

(�)\⇤
c

V
c

(�
c

). Then

A
i

(�
s

) = [
�2��1

i

(�
s

)M(�). Clearly, we have M(�) = � +M(0) for all � 2 ⇤. This

fact together with relation (2.23) implies that

A
i

(�
s

) = A
i

(0) + �
s

, 8�
s

2 ⇤
s

. (2.41)

Obviously, we have d
s,i

= D(QA
i

, Xn

i

), where QA
i

denotes the quantizer which

maps each input sequence xn

i

2 A
i

(�
s

) to �
s

, for �
s

2 ⇤
s

.

Further, let us denote �
i,sup

, sup
x

n

i

2Rn

kxn

i

� x̂n

c,i

k, i = 1, 2. Additionally, Let
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P
e,SW

denote the probability that the Slepian-Wolf decoder fails. In view of definition

(2.21) of P(r0) and of Proposition 1 it follows that, for i = 1, 2,

D(Q
c

, Xn

i

)  d
c,i

 (P(r0) + P
e,SW

)�2
i,sup

+D(Q
c

, Xn

i

).

The following lemma, proved in Appendix B, gives an upper bound for �
i,sup

.

Lemma 2 There is some constant 0 such that for each i = 1, 2, and c su�ciently

large, the following holds

�
i,sup

 0 (M⌫
s

)
1
n .

It is known that the probability that the Slepian-Wolf decoder fails can be made

arbitrarily small by increasing the block length used for Slepian-Wolf encoding. Since

�
i,sup

is bounded, it follows that the impact on the distortion of the Slepian-Wolf

decoder failure can also be made arbitrarily small. Therefore, in the limit as the

block length of Slepian-Wolf encoder approaches infinity, the following holds

D(Q
c

, Xn

i

)  d
c,i

 2
0P(r0) (M⌫

s

)
2
n +D(Q

c

, Xn

i

). (2.42)

In order to evaluate the quantity D(Q
c

, Xn

i

) at high resolution we can directly use

Lemma 1 in (Linder and Zeger, 1994), and obtain that

D(Q
c

, Xn

i

) = G
c

⌫
2
n

c

(1 + o(1)) as ⌫
c

! 0. (2.43)

Furthermore, in order to evaluate the rate we need the following notation, for i = 1, 2,

P
i

, P[Q
in

(Q
c

(Xn

i

)) 2 C],
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where C is defined in (2.25). We will use the following lemma, which is proved in

Appendix B.

Lemma 3 For i = 1, 2, we have lim(2.40) Pi

= 0.

Now we are ready to present the main result of this section.

Theorem 2 For i = 1, 2, the following relations hold in the asymptotic regime spec-

ified by (2.40)

d
s,i

=
1

4
G

s/2(M⌫
s

)
2
n (1 + o(1)), (2.44)

G
c

⌫
2
n

c

(1 + o(1))  d
c,i

 2
0P(r0) (M⌫

s

)
2
n +G

c

⌫
2
n

c

(1 + o(1)), (2.45)

R1 +R2 = h(X1) + h(X2)�
2

n
log2

⌫
s

K1/2
+

1

n
H(U2|U1) + o(1). (2.46)

Additionally, we have

H(U2|U1)  log2 K, (2.47)

while if r0  r
c

, the following is true

H(U2|U1)  1 +

✓
1�

✓
1� r0

r
c

◆
n

+ P(r0)

◆
log2 K + o(1), (2.48)

in the limit of (2.40).

Proof: Relation (2.44) is proved in Appendix A.1. Relation (2.45) follows based on

(2.42) and (2.43). Let us prove now equality (2.46). For this notice that the rate used

to transmit �
i

(�
i

) is 1
n

H(QA
i

(Xn

i

)).

The rate needed for b
i

is 1
n

(�(1� P
i

) log2(1� P
i

)� P
i

log2 Pi

). The rate used for
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encoding ⌧
i

equals 1
n

P
i

log2 |T | = P
i

. Finally, the rate needed for encoding u1 and u2

using Slepian-Wolf coding equals 1
n

H(U1, U2). Summarizing we obtain

R1+R2 =
1

n

2X

i=1

[H(QA
i

(Xn

i

))�(1�P
i

) log2(1�P
i

)+P
i

(� log2 Pi

+n)]+
1

n
H(U1, U2).

(2.49)

Since lim(2.40) r̄(Ai

(0)) = 0, as shown in the proof of relation (2.44), we can apply

Lemma 2 from (Linder and Zeger, 1994)2 and, using the fact that ⌫(A
i

(0)) = ⌫
s

,

obtain that

lim
(2.40)

1

n
(H(QA

i

(Xn

i

)) + log2 (⌫s)) = h(X
i

). (2.50)

Equations (2.49), (2.50) and Lemma 3 imply that

lim
(2.40)

✓
R1 +R2 +

2

n
log2 (⌫s)�

1

n
H(U1, U2)

◆
= h(X1) + h(X2).

Finally, relation (2.46) follows using the following equality, which is proved in Ap-

pendix A.1,

lim
(2.40)

H(U
i

) = log2 K, for i = 1, 2. (2.51)

Further, inequality (2.47) is based on H(U2|U1)  H(U2) = log2 K, while inequality

(2.48) is proved in Appendix A.1.

The following corollary deals with the case when P(r0) is su�ciently small to

make the central distortion dominated by G
c

⌫
2
n

c

.

Corollary 1 Assume that the random variables X1 and X2 have the same pdf, de-

noted by f
X

, and that

P(r0) 
✏

M
4
n

, (2.52)

2
This result was proved by Csiszar in (Csiszár, 1973).
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where lim(2.40) ✏ = 0. Then the following relations hold in the limit of (2.40),

d
c,i

= G
c

⌫
2
n

c

(1 + o(1)), (2.53)

R1 +R2 = 2h(X) +
1

2
log2

G
c

G
s/2

4d
s,i

d
c,i

+
1

n
H(U2|U1) + o(1). (2.54)

If additionally we have lim(2.40)
r0
r

c

= 0 then the following is true

R1 +R2 = 2h(X) +
1

2
log2

G
c

G
s/2

4d
s,i

d
c,i

+ o(1). (2.55)

Proof: Notice that (M⌫
s

)
2
n = (M2K⌫

c

)
2
n . By plugging (2.52) in (2.45) and using the

fact thatK and 0 are constants, relation (2.53) follows. Further, equalities (2.44) and

(2.53) imply that d
s,i

d
c,i

= 1
4Gs/2Gc

(M⌫
s

⌫
c

)
2
n (1 + o(1)) = 1

4Gs/2Gc

⇣
⌫

2
s

K

⌘ 2
n

(1 + o(1)).

By substituting this in (2.46), relation (2.54) follows.

In order to prove (2.55) we first apply Fano’s inequality and obtain that

H(U2|U1)  H
b

(P[U1 6= U2]) + P[U1 6= U2] log2 K, (2.56)

where H
b

(·) denotes the binary entropy function. Next we assume that r0  r
c

and

use the following inequality proved in Appendix A.1 (in the proof of relation (2.48))

P[U1 6= U2]  1�
✓
1� r0

r
c

◆
n

+ P(r0) + o(1).

The fact that lim(2.40)
r0
r

c

= 0, together with lim(2.40) P(r0) = 0, further imply that

lim(2.40) P[U1 6= U2] = 0. Combining this with (2.56), leads to lim(2.40) H(U2|U1) = 0.

By applying this result in (2.54), relation (2.55) follows.
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Let us assume now that the marginal pdf’s of X1 and X2 are equal with the pdf of

some random variable X with variance �2
X

. We are interested in finding a su�cient

condition on ⇢ for which relation (2.52) holds. To this aim we can use Markov’s

inequality applied to the random variable kXn

2 �Xn

1 k2, which leads to

P(r0) = P[kXn

2 �Xn

1 k2 > r20] <
n�2

X2�X1

r20
=

2n(1� ⇢)�2
X

r20
.

By imposing further the condition
n�

2
X2�X1

r

2
0

 ✏

M

4
n

, and using the fact that r0 =

O(⌫
1
n

c

) we obtain that

�2
X2�X1

= o

 
⌫

2
n

c

M
4
n

!
, leading to ⇢ = 1� o

 
⌫

2
n

c

M
4
n

!
. (2.57)

This implies that r0 can be chosen such that r0 = o(⌫
1
n

c

) while (2.52) still holds.

According to Theorem 2 and Corollary 1, we have

d
s,i

= 1
4Gs/2M

4
nK

2
n⌫

2
n

c

(1 + o(1)),

d
c,i

= G
c

⌫
2
n

c

(1 + o(1)).

Then relation (2.57) is equivalent to (1� ⇢)ds,i
d

2
c,i

! 0, and further note that the limits

in (2.40) are equivalent to

d
s,i

! 0,
d
c,i

d
s,i

! 0, (1� ⇢)
d
s,i

d2
c,i

! 0.

Let us make the notations d
s

= d

s,1+d

s,2

2 and d
c

= d

c,1+d

c,2

2 . Then the above limits
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imply that

d
s

! 0,
d
c

d
s

! 0, (1� ⇢)
d
s

d2
c

! 0. (2.58)

Further, for i = 1, 2, let us denote by R
i

(n, d
s

, d
c

, ⇢)3 the rate at encoder i when

using the proposed scheme with the smallest sum rate R1 + R2, which achieves d
s

as the average of side distortions and d
c

as the average of central distortions, for

lattice dimension n and correlation coe�cient ⇢. Assume that the lattices used in the

construction achieve the smallest second moment for the corresponding dimension,

denoted by G
opt,n

. Applying this result in Corollary 1 we further obtain that

R1(n, ds, dc, ⇢) +R2(n, ds, dc, ⇢) = 2h(X) +
1

2
log2

G2
opt,n

4d
s

d
c

+ ✏(n, d
s

, d
c

, ⇢), (2.59)

where lim(2.58) ✏(n, ds, dc, ⇢) = 0.

Now we will compare the proposed lattice-based RDSC scheme with MDLVQ. As

a byproduct we obtain the optimality of the proposed lattice-based coding system

when specialized to the MDC scenario in the asymptotic regime (2.7) and with the

additional assumption that n ! 1. Thus, consider X1 = X2 = X and an MDLVQ as

in (Vaishampayan et al., 2001). Further, let R
MD

(n, d
s

, d
c

) denote the sum-rate for an

MDLVQ with lattice dimension n, achieving side distortion d
s

and central distortion

d
c

. Let us denote by S
n

the n-dimensional sphere of radius 1. We point out that

the rate-distortion analysis in (Vaishampayan et al., 2001) was also performed for

the asymptotic regime (2.7). According to (Vaishampayan et al., 2001) the following

3
This quantity is defined for those quadruples (n, ds, dc, ⇢) for which there exists a lattice-based

scheme of dimension n, achieving average side distortion ds and average central distortion dc, when
the correlation coe�cient is ⇢.
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holds

R
MD

(n, d
s

, d
c

) = 2h(X) +
1

2
log2

G
opt,n

G(S
n

)

4d
s

d
c

+ ⇣(n, d
s

, d
c

),

for some ⇣(n, d
s

, d
c

) satisfying

lim
d

s

!0
d

c

d

s

!0

⇣(n, d
s

, d
c

) = 0.

Combining the above relations with (2.59) leads further to

lim
d

s

!0
d

c

d

s

!0

(R1(n, ds, dc, ⇢)|
⇢=1 + R2(n, ds, dc, ⇢)|

⇢=1 �R
MD

(n, d
s

, d
c

)) =
1

2
log2

G
opt,n

G(S
n

)
.

The above equality shows that there is a small rate gap between the proposed scheme

and MDLVQ for fixed n. However, this gap disappears as n ! 1, i.e.,

lim
n!1

lim
d

s

!0
d

c

d

s

!0

(R1(n, ds, dc, ⇢)|
⇢=1 + R2(n, ds, dc, ⇢)|

⇢=1 �R
MD

(n, d
s

, d
c

)) = 0. (2.60)

Recall the definition of R
MD

(d
s

, d
c

) in (2.8). Using the fact that lim
n!1 G

opt,n

= 1
2⇡e

(Zamir and Feder, 1996), leads to

lim
n!1

lim
d

s

!0
d

c

d

s

!0

(R
MD

(n, d
s

, d
c

)�R
MD

(d
s

, d
c

)) = 0,

which together with (2.60) implies

lim
n!1

lim
d

s

!0
d

c

d

s

!0

(R1(n, ds, dc, ⇢)|
⇢=1 + R2(n, ds, dc, ⇢)|

⇢=1 �R
MD

(d
s

, d
c

)) = 0.
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Note that another RDSC scheme which achieves the fundamental limits of mul-

tiple descriptions is a scheme which uses the encoders and decoders of an MDLVQ.

Therefore It is interesting to find out whether there is any advantage in using the

proposed RSDC scheme rather than directly applying an MDLVQ.

More specifically, in an MDLVQ-based RDSC system as (Vaishampayan et al.,

2001), encoder i maps the input sequence xn

i

to �
c,i

= Q
c

(xn

i

), next applies the index

assignment ↵ = (↵1,↵2) : ⇤c

! ⇤
s

⇥ ⇤
s

and outputs the side lattice point ↵
i

(�
c,i

).

Side decoder i uses the received side lattice point �
s,i

as the source reconstruction,

while the central decoder looks for the central lattice point �
c

satisfying (�
s,1,�s,2) =

(↵1(�c

),↵2(�c

)), and uses �
c

as the common reconstruction for both sources. The

problem with this scheme is when �
c,1 6= �

c,2 since in this case the central distortion

is essentially as high as the side distortion. To see this, note first that the mappings

↵1,↵2 are constructed such that ↵1(�0
c

)+↵2(�0
c

) = 2Q
s/2(�0

c

) for each �0
c

2 ⇤
c

. Assume

now that Q
s/2(�c,1) = Q

s/2(�c,2) = ⌧ and �
c,1 6= �

c,2. Then ↵1(�c,1) 6= ↵1(�c,2)

because otherwise we would also have ↵2(�c,1) = ↵2(�c,2) contradicting the fact that

↵ is injective. Further, we obtain that ↵1(�c,1) + ↵2(�c,2) 6= 2⌧ , which implies that

the point �
c

chosen by the central decoder is not in the same Voronoi region of the

fractional lattice ⇤
s/2 as �

c,1 and �
c,2. Then, if k�c,i

� ⌧k < 1/2r
s/2, the error in the

reconstruction is at least 1/2r
s/2.

2.7 Conclusion

We have proposed a constructive lattice-based scheme for robust distributed coding

of two correlated sources. The analysis shows, among other things, that, in a certain

asymptotic regime, our scheme is capable of approaching the information-theoretic
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limit of quadratic MDC whereas a variant of the random-coding-based RDSC scheme

by Chen and Berger with Gaussian codes is strictly sub-optimal. Note that in stan-

dard random coding arguments, to facilitate the joint typicality analysis, the block-

length is often sent to 1. However, in the infinite block-length limit, the condition

needed to ensure joint typicality in the distributed setting is much more restric-

tive than its counterpart in the centralized setting; as a consequence, the resulting

distributed coding schemes, when specialized to the centralized setting, may fail to

achieve the fundamental performance limit. In contrast, for lattice-based schemes,

the performance analysis can be carried out under fixed block-length (i.e., fixed lat-

tice dimension), which reveals a smooth transition from the distributed setting to the

centralized setting. In this sense, our result echoes the recent finding in (Shirani and

Pradhan, 2014) regarding the importance of finite block-length schemes in distributed

source coding.
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Chapter 3

Lattice-based Robust Distributed

Coding Scheme for Three

Correlated Sources

3.1 Introduction

In this chapter we consider the robust distributed source coding problem for the case

of three correlated sources. We propose a coding scheme based on lattices inspired

by prior work on multiple description lattice vector quantizer (MDLVQ) of Vaisham-

payan et at (Vaishampayan et al., 2001) and Huang and Wu (Huang and Wu, 2006).

We provide the analysis under the high resolution assumption. Our analysis shows

that the performance at high resolution of the proposed scheme is very close to the

information theoretic limit of the symmetric Gaussian quadratic MDC problem with

single description and all descriptions decoders when the lattice dimension goes to
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Figure 3.3: Block diagram of robust distributed source coding for three corelated
sources.

1. This chapter is structured as follows. Section 3.2 presents the problem formu-

lation. In Section 3.4 we present a structured coding scheme based on lattices for

RDSC problem for the case of three correlated sources. In Section 3.5 we derive the

distortion and the rate of the proposed scheme in a certain asymptotic regime, and

compare its performance with MDLVQ (Zhang et al., 2011) and with the theoretical

limt of the MDC when the lattice dimension goes to 1. Finally, Section 3.6 contains

the conclusion.

3.2 System Model and Problem Statement

Consider a three-component continuous memoryless source (X1, X2, X3) with joint

pdf f
X1,X2,X3 . This memoryless source generates a jointly i.i.d. random process

(X1i, X2i, X3i)
i2N. The marginal density function of each X

j

will be denoted by f
X

j

,

j = 1, 2, 3. We will construct a coding scheme for the robust distributed source
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coding problem illustrated in Figure 3.3. The scheme consists of three encoders and

four decoders. Encoder i, i = 1, 2, 3 has access only to source X
i

, while the side

decoder i, i = 1, 2, 3, receives only the information sent by encoder i. The central

decoder receives the information from all encoders.

For each i = 1, 2, 3, let d
i

: X
i

⇥ X̂
i

! [0,1) be a distortion measure, where X
i

and X̂
i

are the source alphabet and the reconstruction alphabet for source X
i

, respectively.

The distortion measures are extended to sequences of length n as follows

d
i

(xn

i

, x̂n

i

) =
1

n

nX

k=1

d
i

(x
i,k

, x̂
i,k

),

where xn

i

= (x
i,1, · · · , xi,n

), x̂n

i

= (x̂
i,1, · · · , x̂i,n

).

A nine-tuple (R1, R2, R3, ds,1, ds,2, ds,3, dc,1, dc,2, dc,3) is said achievable, if for any

✏ > 0 and all su�ciently large n, there exist encoding functions

f (n)
i

: X n

i

! {1, 2, · · · , b2n(Ri

+✏)c}, i = 1, 2, 3,

and decoding functions

g(n)
s,i

: {1, 2, · · · , b2n(Ri

+✏)c} ! X̂ n

i

, i = 1, 2, 3,

g(n)
c,i

: {1, 2, · · · , b2n(R1+✏)c}⇥ {1, 2, · · · , b2n(R2+✏)c}⇥ {1, 2, · · · , b2n(R3+✏)c} ! X̂ n

i

, i = 1, 2, 3,

such that

E
h
d
i

(Xn

i

, X̂n

t,i

)
i
 d

t,i

+ ✏, i = 1, 2, 3, t = s, c,
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where

X̂n

t,i

= g(n)
t,i

(f (n)
i

(Xn

i

)), i = 1, 2, 3, t = s, c.

The RDSC rate-distortion region, denoted by RD, is the set of all such achievable

nine-tuples.

3.3 Lattice-based RDSC Scheme

The proposed coding scheme uses five nested lattices in Rn: ⇤
s

⇢ ⇤
s/3 ⇢ ⇤

f

⇢ ⇤
in

⇢

⇤
c

. The finest lattice, ⇤
c

, is called the central lattice. The central lattice points will be

used for the reconstruction at the central decoder. The coarsest lattice, ⇤
s

, is called

side lattice since it is used for the reconstruction at the side decoders. ⇤
in

is called

the intermediate lattice . The lattice ⇤
f

is defined as ⇤
f

= c
o

⇤
in

, while ⇤
s

= c1⇤f

,

where c1 = 3c
o

and c
o

is a positive integer. It follows that ⇤
s

= c
o

c1⇤in

. The lattice

⇤
s/3 is called the fractional lattice and is defined as ⇤

s/3 , 1
3⇤s

. ⇤
s/3 defined as above

is also a sublattice of ⇤
in

. Let us denote K , N(⇤
in

: ⇤
c

) and M , N(⇤
s

: ⇤
in

). It

follows that M = cn
o

cn1 .

As in the previous chapter in order to simplify the notation we will use in the sequel

only the subscript c,in,f ,s/3, respectively s, instead of ⇤
c

, ⇤
in

, ⇤
f

, ⇤
s/3, respectively

⇤
s

. For instance, we will use r̄
c

instead of r̄⇤
c

, for the covering radius of ⇤
c

.

Our construction hinges on the fact that the three sources are highly correlated

so that there is some small r0 > 0 such that the probability

P(r0) , P[Xn

1 �Xn

2 /2 B
r0 or Xn

2 �Xn

3 /2 B
r0 or Xn

1 �Xn

3 /2 B
r0 ] (3.61)
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is su�ciently small.

Denote now

r , r0 + 2r̄
c

. (3.62)

Then the lattice ⇤
in

is chosen as a sublattice of ⇤
c

such that

r  r
in

. (3.63)

Recall that r
in

denotes the inscribed radius of the lattice ⇤
in

. The following property

is a direct consequence of Lemma 1 from Chapter 2.

Lemma 4 For i, j 2 {1, 2, 3}, if xn

j

� xn

i

2 B
r0, then

kQ
c

(xn

i

)�Q
c

(xn

j

)k < r,

kQ
in

(Q
c

(xn

i

))�Q
in

(Q
c

(xn

j

))k < 3r̄
in

.

Further, we will define three labeling functions �
i

: ⇤
in

! ⇤
s

, for i = 1, 2, 3. For

this, we need to introduce some more notations as follows. Let T , V
s

(0) \ ⇤
s/3.

Then T is a set of coset representatives of ⇤
s

relative to ⇤
s/3 and we have |T | =

N(⇤
s

: ⇤
s/3) = 3n and

⇤
s/3 =

[

⌧2T

(⌧ + ⇤
s

) .

It can be easily seen that the set [
⌧2T Vs/3(⌧) is a fundamental cell of ⇤

s

.

Denote

U , {⌧ + �̃
f

+ ũ
f

|⌧ 2 T , ũ
f

2 V
f

(0) \ ⇤
in

, �̃
f

2 V
s/3(0) \ ⇤

f

}. (3.64)
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Then U is a set of coset representatives of ⇤
s

relative to ⇤
in

, which implies that

|U| = N(⇤
s

: ⇤
in

) = M and

⇤
in

=
[

�2U

(�+ ⇤
s

) .

For each � 2 ⇤
in

, let �
f

, Q
f

(�), ũ
f

, � mod ⇤
f

= ��Q
f

(�), �̃
f

, �
f

mod ⇤
s/3 =

�
f

�Q
s/3(�f

) and �
s/3 , Q

s/3(�f

). Moreover, let ⌧ , �
s/3 mod ⇤

s

= �
s/3�Q

s

(�
s/3),

and �
s

, Q
s

(�
s/3). Then

� = ũ
f

+ �̃
f

+ ⌧ + �
s

. (3.65)

Also note that ũ
f

2 V
f

(0)\⇤
in

, �̃
f

2 V
s/3(0)\⇤

f

and ⌧ 2 V
s

(0)\⇤
s/3. Additionally

for � 2 U we have �
s

= 0. We will first define �
i

for � 2 U as follows,

�1(�) , c1�̃f

, �2(�) , c
o

c1ũf

, �3(�) , 3⌧ � c1�̃f

� c
o

c1ũf

. (3.66)

Further, the mappings �1, �2 and �3 are extended to ⇤
in

using shifting. More specif-

ically,

�1(�) , c1�̃f

+ �
s

,

�2(�) , c
o

c1ũf

+ �
s

,

�3(�) = 3⌧ � c1�̃f

� c
o

c1ũf

+ �
s

.

The above definition implies that the mappings �
i

satisfy the shift-invariance property,

i.e., that

�
i

(�+ �0
s

) = �
i

(�) + �0
s

, 8� 2 ⇤
in

, 8�0
s

2 ⇤
s

, i = 1, 2, 3.
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The shift-invariance property further leads to the following relations, for i = 1, 2, 3,

��1
i

(�0
s

) = ��1
i

(0) + �0
s

, 8�0
s

2 ⇤
s

, (3.67)

��1
i

(0) = {�� �
i

(�)|� 2 U}. (3.68)

Note that the proof of (3.68) is similar to the proof (2.24) in Chapter 2.

3.4 Proposed Scheme

Before describing the details of the proposed scheme we need the following discussion.

Let us denote �
i

= Q
in

(Q
c

(xn

i

)), for i = 1, 2, 3. Our scheme is designed such that

side decoder i will be able to recover �
i

(�
i

), while the central decoder recovers �
c,i

=

Q
c

(xn

i

), for i = 1, 2, 3, when the input sequences are su�ciently close, i.e., xn

j

� xn

i

2

B
r0 for all i, j 2 {1, 2, 3}. However, for the central decoder to achieve this goal some

additional information needs to be transmitted beside �1(�1), �2(�2) and �3(�3). The

amount of this additional information is smaller when �1, �2 and �3 are all in the

same Voronoi cell of the lattice ⇤
f

. Encoder i is not able to determine all the time if

this is the case or not since it does not have knowledge of the other source sequence.

However, based on Lemma 4, if �
i

2 V
f

(�
f

) and the distance from �
i

to the boundary

of V
f

(�
f

) is not smaller than 3r̄
in

, then encoder i can infer that the other sequence

are also in V
f

(�
f

) when xn

j

� xn

i

2 B
r0 for all i, j 2 {1, 2, 3}. Thus, we define the set

W , [
�

f

2⇤
f

W(�
f

), where W(�
f

) , V
f

(�
f

) \ (�
f

+ ⌘V
f

(0)) , (3.69)

for ⌘ , 1� 3r̄
in

r

f

as shown in Figure 3.4.
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Figure 3.4: The set W(�
f

) is the region between the two hexagons in the figure.

For �
s/3 2 ⇤

s/3 define Ṽ
s/3(�s/3) = [

�

f

2V
s/3(�s/3)\⇤f

V
f

(�
f

). Note that if Q
f

(�
i

) 6=

Q
f

(�
j

), it is important to determine if Q
s/3(Qf

(�
i

)) and Q
s/3(Qf

(�
j

)) are equal or

not. If �
i

2 Ṽ
s/3(�s/3) and the distance from �

i

to the boundary of Ṽ
s/3(�s/3) is

not smaller than 3r̄
in

, then encoder i can infer that for any other j, �
j

is also in

Ṽ
s/3(�s/3). Thus, we define the set S(�s/3) as the set of points in Ṽ

s/3(�s/3) such that

the distance to the boundary of Ṽ
s/3(�s/3) is smaller than or equal to 3r̄

in

. Further,

let S , [
�

s/32⇤s/3
S(�

s/3). Note that S ✓ W .

According to Lemma 4, if �
i

/2 W , then �
j

, j 2 {1, 2, 3}\{i} is in the same Voronoi

cell of ⇤
f

as �
i

, when xn

i

�xn

j

2 B
r0 . Similarly, according to Lemma 4, if �

i

/2 S, then

for any �
j

, j 2 {1, 2, 3} \ {i} then Q
s/3(Qf

(�
i

)) = Q
s/3(Qf

(�
j

)). Now we are ready to

present the details of the encoder and decoder operation.

46



Ph.D. Thesis - Dania Elzouki McMaster - Electrical and Computer Engineering

Encoder. Encoder i, for i = 1, 2, 3, operates as follows. First the input sequence

xn

i

is quantized to the closest central lattice point �
c,i

, Q
c

(xn

i

). Next, the point

�
c,i

is quantized to the closest point in the lattice ⇤
in

, �
i

, Q
in

(�
c,i

). Let u
i

,

�
c,i

mod ⇤
in

and �
s,i

, �
i

(�
i

). Then the encoder outputs �
s,i

, u
i

, a
i

, where a
i

= 1

if �
i

2 W and a
i

= 0 otherwise. Moreover, if a
i

= 1 the encoder also transmits

�̃
fi

, Q
f

(�
i

) mod ⇤
s/3 and b

i

, where b
i

= 1 if �
i

2 S and b
i

= 0 otherwise. Moreover,

if b
i

= 1 the encoder also transmits ⌧
i

, Q
s/3(Qf

(�
i

)) mod ⇤
s

. The first component,

�
s,i

, will be used at the side decoder i, therefore, it is compressed using entropy coding

before transmission. On the other hand, u1, u2 and u3 are used only at the central

decoder, therefore they will be compressed using Slepian-Wolf coding. Finally, a
i

,

b
i

,�̃
fi

and ⌧
i

will also be used only at the central decoder, thus they may be com-

pressed using Slepian-Wolf coding. However, we will use entropy coding to encode a
i

,

b
i

and fixed length codes for ⌧
i

and �̃
fi

for simplicity of analysis, since, as we will see

shortly, the rate overhead is negligible asymptotically.

Decoder. Side decoder i, for i = 1, 2, 3, outputs the reconstruction x̂n

s,i

, �
s,i

. The

central decoder recovers both values �
s,1, �s,2 and �

s,3, and additionally, u1, u2, u3,

a1, a2, a3 and b1, b2, b3, if applicable. First the decoder checks if the following condition

is satisfied

k�
s,i

� �
s,j

k  (10 + 4c
o

)r̄
s

+ 3r̄
in

, (3.70)

for all i, j 2 {1, 2, 3}.

If the condition is violated for at least pair (i, j) then the decoder concludes that

xn

j

� xn

i

/2 B
r0 , and outputs �

s,i

as the reconstruction for source i, i.e., x̂n

c,i

, �
s,i

, for
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i = 1, 2, 3.

If condition (3.70) is satisfied for all pairs (i, j) the decoder assumes that xn

j

�xn

i

2

B
r0 , for all pairs (i, j) and it proceeds as follows. First the following are computed

�̃
a

, Q
in

(u1 � u2), (3.71)

�̃
b

, Q
in

(u1 � u3), (3.72)

�̃
c

, Q
in

(u2 � u3). (3.73)

Next the decoder proceeds based on the values of a1, a2 and a3, and of �̃
f1, �̃f2, �̃f3, b1, b2, b3,

⌧1, ⌧2 and ⌧3 (if applicable), according to the following cases.

1) If a1 = 0 or a2 = 0 or a3 = 0 the decoder evaluates

�̃
s/3 , 1/3(�

s,1 + �
s,2 + �

s,3 + 3c2
o

�̃
c

), ⌧̃ , �̃
s/3 mod ⇤

s

, (3.74)

�̃
s

, Q
s

(�̃
s/3), (3.75)

¯̃�
f

, 1
c1
(�

s,1 � �̃
s

), (3.76)

¯̃u
f2 , 1

3c2
o

(�
s,2 � �̃

s

), (3.77)

¯̃u
f1 , ¯̃u

f2 � �̃
a

, (3.78)

¯̃u
f3 , ¯̃u

f2 + �̃
c

, (3.79)

�̃
i

, �̃
s

+ ⌧̃ + ¯̃�
f

+ ¯̃u
f i

, (3.80)

and outputs the reconstructions x̂n

c,i

, �̃
i

+ u
i

, for i = 1, 2, 3.

2) If a1 = a2 = a3 = 1 and �̃
f 1 = �̃

f 2 = �̃
f 3 the decoder proceeds as in case 1).

3) If a1 = a2 = a3 = 1 and �̃
f 1, �̃f 2, �̃f 3 are not all three equal and b

i

= 0 for at
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least one i 2 {1, 2, 3} then the decoder computes

�̃
s/3 , 1

3(�s,1 + �
s,2 + �

s,3 + 3c
o

(1� c
o

)�̃
f3 + 3c2

o

(�̃
f2 + �̃

c

)� 3c
o

�̃
f1 , (3.81)

�̃
s

, Q
s

(�
s/3), (3.82)

⌧̃ , �̃
s/3 mod ⇤

s

, (3.83)

¯̃u
f3 ,

1

3c2
o

(�̃
s

+ 3⌧ � 3c
o

�̃
f3 � �

s,3), (3.84)

¯̃u
f1 , �̃

f3 � �̃
f1 + ũ

f3 � �̃
b

, (3.85)

¯̃u
f2 , �̃

f3 � �̃
f2 + ũ

f3 � �̃
c

, (3.86)

�̃
i

, �̃
s

+ ⌧̃ + �̃
f

i

+ ¯̃u
f

i

, (3.87)

and outputs the reconstructions x̂n

c,i

, �̃
i

+ u
i

, for i = 1, 2, 3.

4) If a1 = a2 = a2 = 1 and b1 = b2 = b3 = 1, then the decoder computes

�̃
s1 , �

s,1 � 3c
o

�̃
f1 , (3.88)

⌫2 , Q
s

(⌧2 � ⌧1), (3.89)

�̃
s2 , �̃

s1 � ⌫2, (3.90)

¯̃u
f2 , 1

3c2
o

(�
s,2 � �̃

s2), (3.91)

�̃2 , �̃
s2 + ⌧2 + �̃

f2 + ¯̃u
f2 , (3.92)

�̃1 , �̃2 � �̃
a

, (3.93)

�̃3 , �̃2 + �̃
c

. (3.94)

Finally, the reconstructions are computed as x̂n

c,i

, �̃
i

+ u
i

, for i = 1, 2, 3.
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Proposition 2 Let �
c,i

, Q
c

(xn

i

), �
i

, Q
in

(�
c,i

), u
i

, �
c,i

mod ⇤
in

, �
s,i

, �
i

(�
i

),

ũ
f i

= �
i

mod ⇤
f

, �̃
f i

= Q
f

(�
i

) mod ⇤
s/3, ⌧

i

, Q
s/3(Qf

(�
i

)) mod ⇤
s

, and �
s

i

,

Q
s

(Q
s/3(Qf

(�
i

)) for i = 1, 2, 3. Then when xn

j

� xn

i

2 B
r0, for i, j 2 {1, 2, 3}, the

Slepian-Wolf decoding of u1, u2 and u3 is successful, and c
o

is su�ciently large we

have x̂n

c,i

= �
c,i

, for i = 1, 2, 3.

Proof: Assume that xn

j

�xn

i

2 B
r0 , for all i, j 2 {1, 2, 3} and that the Slepian-Wolf

decoder employed at the central decoder is able to recover u1, u2 and u3 correctly.

First we need to prove that condition (3.70) is satisfied. For this we first show that

the following relation holds

r̄(��1
i

(0))  (5 + 2c
o

)r̄
s

. (3.95)

Note that relation (3.68) leads to

r̄(��1
i

(0))  r̄(U) + r̄(�
i

(U)). (3.96)

Further, since T ⇢ V
s

(0) and V
s/3(0) ⇢ V

s

(0) we obtain that U ⇢ [
⌧2T (⌧+V

s/3(0)) ⇢

2V
s

(0). Thus, r̄(U)  2r̄
s

. Moreover, from the definition of �
i

given by (3.66), we

obtain that r̄(�
i

(U))  3r̄(T ) + c1r̄s/3 + c1cor̄f  3r̄
s

+ c1r̄s/3 + c1cor̄f . The above

discussion, together with relation (3.96) and the fact that r̄
s/3 = 1/3r̄

s

, r̄
f

= 1
c1
r̄
s

,

and using the fact that c
o

= c1
3 implies that r̄(��1

i

(0))  (5 + 2c
o

)r̄
s

proves (3.95).

By applying the triangle inequality and the fact that k� � �
i

(�)k  r̄(��1(0)),

together with Lemma 4, we obtain

k�
s,i

� �
s,j

k  k�
s,i

� �
i

k+ k�
i

� �
j

k+ k�
j

� �
s,j

k  2r̄(��1(0)) + 3r̄
in

.
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By combining the above with (3.95) relation (3.70) follows.

Using Lemma 4 and the fact that �
c,i

= �
i

+ u
i

, i = 1, 2, 3, we obtain that

r
in

> k�
c,i

� �
c,j

k = ku
i

� u
j

� (�
j

� �
i

)k,

which, together with the fact that �
j

� �
i

2 ⇤
in

, implies that u
i

� u
j

2 V
in

(�
j

� �
i

),

i.e., �
j

� �
i

= Q
in

(u
i

� u
j

). This further implies that �̃
a

, �̃
b

, �̃
c

computed in (3.71),

(3.72), (3.73) satisfy the equalities

�̃
a

= �2 � �1, (3.97)

�̃
b

= �3 � �1, (3.98)

�̃
c

= �3 � �2. (3.99)

Recall that

�1 = �
s1 + ⌧1 + ũ

f1 + �̃
f1 , (3.100)

�2 = �
s2 + ⌧2 + ũ

f2 + �̃
f2, (3.101)

�3 = �
s3 + ⌧3 + ũ

f3 + �̃
f3 . (3.102)

Moreover, since �
s,i

= �
i

(�
i

), for i = 1, 2, 3, we obtain that

�
s,1 = c1�̃f1 + �

s1 (3.103)

�
s,2 = c1coũf2 + �

s2 , (3.104)

�
s,3 = �

s3 + 3⌧3 � c1�̃f3 � c1coũf3. (3.105)
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Assume now that case 1) holds. Based on Lemma 4, it follows that Q
f

(�1) =

Q
f

(�2) = Q
f

(�3), which implies that �̃
f1 = �̃

f2 = �̃
f3 , ⌧1 = ⌧2 = ⌧3 and �

s1 = �
s2 =

�
s3 . Using further equations (3.74), (3.99) and (3.103), (3.104), (3.105), (3.101) and

(3.102) we obtain that �̃
s/3 = �

s1 + ⌧1. This implies that ⌧1 = �̃
s/3 mod ⇤

s

, i.e.,

⌧̃ = ⌧1, and �̃
s

= �
s1 . Using (3.103) and (3.76) we obtain ¯̃�

f

= �̃
f1 . Using further

equations (3.77), (3.104) and the fact c
o

= c1
3 we obtain that ¯̃u

f2 = ũ
f2 . Using further

equations (3.78),(3.97),(3.100) and (3.101) we obtain that ¯̃u
f1 = ũ

f1 . Moreover, using

equations (3.79), (3.99), (3.101) and (3.102) we obtain that ¯̃u
f3 = ũ

f3 . These imply

that �̃
i

= �
i

and further that x̂n

c,i

= �
c,i

, for i = 1, 2, 3.

Assume now that a1 = a2 = a3 = 1. Since for c
o

su�ciently large the distane

between �
i

and �
j

is very small in comparison with the size of a Voronoi cell of ⇤
f

,

it follows that V
f

(�
s1 + �̃

f 1 + ⌧1), Vf

(�
s2 + �̃

f 2 + ⌧2) and V
f

(�
s3 + �̃

f 3 + ⌧3) are either

identical or adjacent. Further, if �̃
f 1 = �̃

f 2 = �̃
f 3 it follows that V

f

(�
s1 + ⌧1 + �̃

f 1),

V
f

(�
s2 + ⌧2 + �̃

f 2) and V
f

(�
s3 + ⌧3 + �̃

f 3) are identical. Thus, the proof of case 2)

proceeds as in case 1).

Assume now that case 3) holds. The fact that b
i

= 0 and Lemma 4 imply that

�
s1+⌧1 = �

s2+⌧2 = �
s3+⌧3. Using equations (3.81), (3.103), (3.104), (3.105), (3.99),

(3.101) and (3.102) we obtain that �̃
s/3 = �

s1+⌧1. This implies that ⌧1 = �̃
s/3 mod ⇤

s

,

i.e., ⌧̃ = ⌧1 and that �̃
s

= �
s1. Using further equations (3.84), (3.105) and using the

fact c
o

= c1
3 we obtain that ¯̃u

f3 = ũ
f3 . Using further equations (3.85), (3.98), (3.100)

and (3.102) we obtain that ¯̃u
f1 = ũ

f1 . Moreover, using equations (3.86), (3.99),

(3.101) and (3.102) we obtain that ¯̃u
f2 = ũ

f2 . Equations (3.87) imply that �̃
i

= �
i

and further that x̂n

c,i

= �
c,i

, for i = 1, 2, 3.
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Assume now that case 4) holds. Here we will use the following result.

Assertion: If �
s/3 2 ⇤

s/3 and V
s/3(�s/3) is adjacent to V

s/3(0), then �
s/3 2 V

s

(0).

Proof: Let �
s/3 2 ⇤

s/3, then 3�
s/3 2 ⇤

s

. Since V
s/3(�s/3) and V

s/3(0) are adjacent it

follows that V
s

(3�
s/3) and V

s

(0) are adjacent. Then
3�

s/3

2 is on the boundary of V
s

(0).

The point �
s/3 is on the interior of the segment connecting 0 and

3�
s/3

2 , Therefore,

�
s/3 is in the interior of V

s

(0). This conclude the proof of Assertion.

Now consider that case 4) holds. Since for c
o

c1 su�ciently large the distance between

�
i

and �
j

is very small in comparison with the size of a Voronoi cell of ⇤
s/3, it

follows that V
s/3(�s1+⌧1), Vs/3(�s2+⌧2) are either identical or adjacent. According to

Assertion it follows that �
s2+⌧2�(�

s1+⌧1) 2 V
s

(0), which leads to 0 = Q
s

(�
s2��

s1+

⌧2� ⌧1) = �
s2 ��

s1 +Q
s

(⌧2� ⌧1). Using (3.89) it follows that ⌫2 = �
s1 ��

s2 . Further,

(3.88) and (3.103) imply that �̃
s1 = �

s1 , and further that �̃
s2 = �

s2 . Combining

with (3.91) and (3.104) we obtain that ¯̃u
f2 = ũ

f2 . Further equation (3.92) imply that

�̃2 = �2. Then �̃1 = �1 and �̃3 = �3 and the conclusion follows.

3.5 Performance analysis

In this section we will evaluate the performance of the proposed lattice-based RDSC

scheme. We will perform the analysis as ⌫
c

, ⌫
in

and ⌫
s

approach 0, whileM approaches

1. As in Chapter 2, we assume that K is constant and we will consider some fixed

lattices ⇤
c,0 and ⇤

in,0 and scale factor ✓ such that

⇤
c

= ✓⇤
c,0, ⇤

in

= ✓⇤
in,0, (3.106)

⇤
s

= c1co✓⇤in,0, ⇤
f

= c
o

✓⇤
in,0. (3.107)
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We require that the following relations hold

✓ ! 0, c
o

! 1, c1 ! 1, c1c
2
o

✓ ! 0. (3.108)

We will evaluate the distortions and rates corresponding to the proposed scheme,

in the limit of (3.108). For i = 1, 2, 3, let d
s,i

denote the distortion of source i at side

decoder i and let d
c,i

denote the distortion of source i at the central decoder.

3.5.1 Central Distortion

In this subsection we will evaluate the central distortion. Denote�
i,sup

, sup
x

n

i

2Rn

kxn

i

�

x̂n

c,i

k, for i = 1, 2, 3 and let P
e,SW

denote the probability that the Slepian-Wolf de-

coder fails. In view of definition (3.61) of P(r0) and of Proposition 2 it follows that,

for i = 1, 2, 3,

D(Q
c

, Xn

i

)  d
c,i

 (P(r0) + P
e,SW

)�2
i,sup

+D(Q
c

, Xn

i

).

The following lemma, proved in Appendix D, gives an upper bound for �
i,sup

.

Lemma 5 There is some constant 1 such that for each i = 1, 2, 3, and c
o

su�ciently

large, the following holds

�
i,sup

 1co⌫
1
n

s

.

It is known that the probability that the Slepian-Wolf decoder fails can be made

arbitrarily small by increasing the block length used for Slepian-Wolf encoding. Since

�
i,sup

is bounded, it follows that the impact on the distortion of the Slepian-Wolf

decoder failure can also be made arbitrarily small. Therefore, in the limit as the
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block length of Slepian-Wolf encoder approaches infinity, the following holds

D(Q
c

, Xn

i

)  d
c,i

 P(r0)
2
1c

2
o

⌫
2
n

s

+D(Q
c

, Xn

i

). (3.109)

In order to evaluate the quantity D(Q
c

, Xn

i

) at high resolution we can directly use

Lemma 1 in (Linder and Zeger, 1994), and obtain that

D(Q
c

, Xn

i

) = G
c

⌫
2
n

c

(1 + o(1)) (3.110)

in the limit of (3.108). The following corollary deals with the case when P(r0) is

su�ciently small to make the central distortion dominated by G
c

⌫
2
n

c

.

Corollary 2 Assume that

P(r0) 
✏

c2
o

M
2
n

, (3.111)

where lim(3.108) ✏ = 0. Then the following relations hold in the limit of (3.108),

d
c,i

= G
c

⌫
2
n

c

(1 + o(1)), (3.112)

Proof: By plugging (3.111) in (3.109), using the fact that 1 is constant and using

(3.110) relation (3.112) follows.

3.5.2 Side Distortion

In this subsection, we will evaluate the side distortion of the proposed scheme in the

asymptotic regime specifed by (3.108). The expression of the side distortion is given

in the following theorem, which is proved in Appendix C.
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Theorem 3 The following relation holds in the asymptotic regime specifed by (3.108).

d
s,1 + d

s,2 + d
s,3

3
=

4

3
c2
o

G(⇤
s

)⌫
2
n

s

(1 + o(1)). (3.113)

3.5.3 Rate Computation

Let us evaluate now the rate R
i

, in bits per source sample, at encoder i, i = 1, 2, 3.

Let us first denote

P̄
i

, P[Q
in

(Q
c

(Xn

i

)) 2 W ],

P̃
i

, P[Q
in

(Q
c

(Xn

i

)) 2 S],

where W is defined in (3.69). Further, notice that the rate used to transmit �
i

(�
i

)

is 1
n

H(QA
i

(Xn

i

)). The rate needed for a
i

is 1
n

�
�(1� P̄

i

) log2(1� P̄
i

)� P̄
i

log2 P̄i

�
.

The rate used for encoding �̃
f i

equals 1
n

P̄
i

log2 |Vs/3(0) \ ⇤
f

| = P̄
i

log2(co). Since bi is

transmited only when a
i

= 1, the rate needed for b
i

is 1
n

P̄
i

⇣
�(1� P̃

i

) log2(1� P̃
i

)� P̃
i

log2 P̃i

⌘
.

The rate used for encoding ⌧
i

equals 1
n

P̄
i

P̃
i

log2 |T | = P̄
i

P̃
i

log2 3. Finally, the rate

needed for encoding u1,u2 and u3 using Slepian-Wolf coding, i.e., 1
n

H(U1, U2, U3), is

equally divided between the three encoders. Summarizing we obtain

R
i

=
1

n


H(QA

i

(Xn

i

)) +
1

3
H(U1, U2, U3)� (1� P̄

i

) log2(1� P̄
i

)� P̄
i

log2 P̄i

�

+ P̄
i

log2(co) +
1

n

h
P̄

i

⇣
�(1� P̃

i

) log2(1� P̃
i

)� P̃
i

log2 P̃i

+ P̃
i

log2 3
n

⌘i

Since lim(3.108) r̄(Ai

(0)) = 0, as shown in the proof of Theorem 3.113, we can apply

Lemma 2 from (Linder and Zeger, 1994)1 and, using ⌫(A
i

(0)) = ⌫
s

= M⌫
in

, obtain

1
This result was proved by Csiszar in (Csiszár, 1973).
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that

lim
(3.108)

1

n
(H(QA

i

(Xn

i

)) + log2 (⌫s)) = h(X
i

).

Additionally, we will use the following lemma, which is proved in Appendix D.

Lemma 6 For i = 1, 2, 3, the following holds

lim
(3.108)

P̄
i

= 0 and lim
(3.108)

P̄
i

log2 co = 0.

Based on the above discussion we conclude that

lim
(3.108)

✓
R

i

+
1

n
log2 (⌫s)�

1

3n
H(U1, U2, U3)

◆
= h(X

i

). (3.114)

Thus, the following approximation holds in the limit of (3.108)

R
i

⇡ h(X
i

)� 1

n
log2 (⌫s) +

1

3n
H(U1, U2, U3).

3.5.4 Comparison with MDLVQ

In this section we will compare the proposed coding scheme with MDLVQ as in (Zhang

et al., 2011). Consider X
i

= X
j

, this implies that U
i

= U
j

for i, j = 1, 2, 3. Note that

limits (3.108) are equivalent to d
s

! 0, and d

c

d

s

! 0, where d
c

= d
c,1 = d

c,2 = d
c,3 and

d
s

= d

s,1+d

s,2+d

s,3

3 .

Then relation (3.114) becomes

lim
d

s

!0, dc
d

s

!0

✓
R

i

� h(X
i

) +
1

n
log2 (⌫s)�

1

3n
H(U

i

)

◆
= 0. (3.115)

Notice that as (3.108) holds, U
i

approaches a uniform distribution, for i = 1, 2, 3.

57



Ph.D. Thesis - Dania Elzouki McMaster - Electrical and Computer Engineering

Then

lim
(3.108)

H(U
i

) = log2 K. (3.116)

The proof is similar to the proof of (2.51).

Plugging (3.116) in (3.115), we obtain that

lim
d

s

!0, dc
d

s

!0

✓
R

i

� h(X
i

) +
1

n
log2 (⌫s)�

1

3n
log2(K)

◆
= 0. (3.117)

Consider now X
i

= X
j

for i, j 2 {1, 2, 3} and an MDLVQ as in (Zhang et al., 2011)

for lattice dimension n. Further, let R
MD

denote the rate of each description and let

d
s,MD

, denote the side distortion. For comparison we will assume that the central

lattice used in the MDLVQ is the same lattice ⇤
c

as in our scheme. Additionally,

we also assume that d
s,MD

= d
s

and d
c,MD

= d
c

. Recall that S
n

denotes for the

n-dimensional sphere of radius 1. Then according to (Zhang et al., 2011) when d
s

!

0, d

c

d

s

! 0 we have

d
s,MD

=
2

3
3
2

K̄
3
nG(S2n)⌫

2
n

c

(1 + o(1)), (3.118)

and

lim
d

s

!0, dc
d

s

!0

✓
R

MD

� h(X1) +
1

n
log2 (⌫̃s)

◆
= 0, (3.119)

where ⌫̃
s

is the volume of the Voronoi region of the side lattice used in the MDLVQ,

and K̄ = ⌫̃

s

⌫

c

.
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Using the fact that ⌫̃
s

= K̄⌫
c

, (3.117) and (3.122) we obtain

lim
d

s

!0, dc
d

s

!0
(R

MD

�R
i

) = lim
d

c

!0,d
s

!0, dc
d

s

!0

 
1

3n
log2

 ✓
⌫
s

⌫̃
s

◆3✓ ⌫
c

⌫
in

◆!
.(3.120)

Using d
s,MD

= d
s

, we obtain that

2

3
3
2

G(S2n)

 
⌫̃
s

3
n

⌫
1
n

c

!
=

4

9
G

s

(⇤
s

)

 
⌫

3
n

s

⌫
1
n

in

!
, (3.121)

which leads to

⌫
c

⌫
in

⇡
 p

3G(S2n)

2G(⇤
s

)

!
n✓

⌫̃
s

⌫
s

◆3

. (3.122)

From (3.120) and (3.122) we see that for fixed n, there is a gap between R
i

and R
MD

,

namely

lim
d

s

!0, dc
d

s

!0
(R

MD

�R
i

) =
1

3
log2

 p
3G(S2n)

2G(⇤
s

)

!
.

Now we will discuss the situation when n ! 1. It was shown in (Zamir and Feder,

1996) that there is a sequence of lattices ⇤
n

such that lim
n!1 G(⇤

n

) = 1
2⇡e . It follows

that the gap is very small as n ! 1, i.e.,

lim
n!1

lim
d

s

!0, dc
d

s

!0
(R

MD

�R
i

) =
1

3
log2

p
3

2
= �0.0692.

It follows that the gap in the sum-rate is 0.207 bits . It was shown in (Zhang et al.,

2011) that the MDLVQ scheme with d
s

! 0, d

c

d

s

! 0 and n ! 1 approaches the

theoretical bound of the symmetric Gaussian quadratic MDC problem, when only

single description and all descriptions decoder are of interest.
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3.6 Conclusion

In this chapter we have proposed a lattice-based coding scheme for robust distributed

source coding for three correlated sources. We derive the distortion and the rate

for the proposed scheme under the high resolution assumption. It is shown that,

in a certain asymptotic regime, the performance of our scheme is very close to the

theoretical bound of the symmetric Gaussian quadratic MDC problem with single

description and all descriptions decoders, with a gap of 0.0692 bits for single rate and

0.207 bits in sum rate.
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Chapter 4

Conclusion

We have proposed two constructive lattice-based scheme for robust distributed cod-

ing one for two correlated sources and the other for three correlated sources. We

have perform the rate and the distortion analysis under high resolution assumption.

The analysis of the proposed lattice coding scheme for two correlated sources shows,

among other things, that, in a certain asymptotic regime, our scheme is capable of

approaching the information-theoretic limit of quadratic MDC whereas a variant of

the random-coding-based RDSC scheme by Chen and Berger with Gaussian codes

is strictly sub-optimal. Note that in standard random coding arguments, to facili-

tate the joint typicality analysis, the block-length is often sent to 1. However, in

the infinite block-length limit, the condition needed to ensure joint typicality in the

distributed setting is much more restrictive than its counterpart in the centralized

setting; as a consequence, the resulting distributed coding schemes, when specialized

to the centralized setting, may fail to achieve the fundamental performance limit. In

contrast, for lattice-based schemes, the performance analysis can be carried out un-

der fixed block-length (i.e., fixed lattice dimension), which reveals a smooth transition
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from the distributed setting to the centralized setting. In this sense, our result echoes

the recent finding in (Shirani and Pradhan, 2014) regarding the importance of finite

block-length schemes in distributed source coding. For the case of three sources the

analysis shows, that performance of the proposed scheme under a certain asymptotic

regime is very close to the bound of MDC in case of symmetric Gaussian quadratic

source when only the single description and all descriptions receivers are of intrest

with a gap of 0.0692 for sigle rate and 0.207 in term of the sum- rate.
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Appendix A

Appendix

A.1 Proof of Relations (2.44), (2.51) and (2.48)

Proof of Relation (2.44)

First let us fix i. We will split the proof into two parts. In Part 1 we show that if the

limit lim(2.40)
G(A

i

(0))

M

2
n

exists then we have

lim
(2.40)

D(QA
i

, Xn

i

)

(M⌫
s

)
2
n

= lim
(2.40)

G(A
i

(0))

M
2
n

. (A.1)

In Part 2 we prove that

lim
(2.40)

G(A
i

(0))

M
2
n

=
1

4
G(⇤

s/2). (A.2)

Part 1.

1 The proof is based on the idea that in the limit of (2.40) the pdf f
X

n

i

can

be approximated by a uniform density function over each set A
i

(�
s

). This density

function is f
✓,c

: Rn ! [0,1) defined as follows. For each �
s

2 ⇤
s

and xn 2 A
i

(�
s

),

1
This proof uses ideas from the proof of (Linder and Zeger, 1994, Lemma 1).
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let

f
✓,c

(xn) =
P[Xn

i

2 A
i

(�
s

)]

⌫(A
i

(�
s

))
=

1

⌫(A
i

(�
s

))

Z

A
i

(�
s

)

f
X

n

i

(yn)dyn.

Let Xn

✓,c

denote the random variable with pdf f
✓,c

. Note that

1

(M⌫

s

)
2
n

|D(QA
i

, Xn

✓,c

)�D(QA
i

, Xn

i

)| 

1

n(M⌫

s

)
2
n

P
�

s

2⇤
s

R
A

i

(�
s

) kx
n � �

s

k2|f
✓,c

(xn)� f
X

n

i

(xn)|dxn 

1

n(M⌫

s

)
2
n

P
�

s

2⇤
s

r̄(A
i

(0))2
R
A

i

(�
s

) |f✓,c(x
n)� f

X

n

i

(xn)|dxn =

r̄(A
i

(0))2

n(M⌫

s

)
2
n

R
Rn

|f
✓,c

(xn)� f
X

n

i

(xn)|dxn, (A.3)

where the second inequality is based on the fact that A
i

(�
s

) = �
s

+ A
i

(0), which

implies that max
x

n2A
i

(�
s

) kxn � �
s

k2 = r̄(A
i

(0)). Let us analyze now the quantity

r̄(A
i

(0)). Recall thatA
i

(0) = [
�2��1

i

(0)(�+M(0)), whereM(0) , [
�

c

2V
in

(0)\⇤
c

V
c

(�
c

).

Then it follows that

r̄(A
i

(0))  r̄(��1
i

(0)) + r̄(M(0)). (A.4)

Further,

r̄(M(0))  r̄
in

+ r̄
c

 2r̄
in

= 2✓r̄
in,0. (A.5)

Since we are interested in computing the limits in (A.1) as (2.40) holds, we may

assume that c is conveniently large. In particular, in the sequel we will assume that

c � 8 so that relation (2.34) leads to the following

r̄(��1
i

(0))  c2✓r̄
in,0. (A.6)
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Finally, relations (A.4)-(A.6) together with the fact that M = cn and ⌫
s

= cn✓n⌫
in,0,

lead to
r̄(A

i

(0))

(M⌫
s

)
1
n

 2✓r̄
in,0 + c2✓r̄

in,0

c2✓⌫
1
n

in,0

! r̄
in,0

2⌫
1
n

in,0

, (A.7)

in the limit of (2.40). The above result also implies that r̄(A
i

(0)) ! 0 as (2.40) holds.

This enables us to apply Lemma 7, which is stated and proved in Appendix B, and

we obtain that f
✓,c

(xn) ! fn

X1
(xn) for each xn 2 Rn, as (2.40) holds. Using further

Sche↵e’s theorem (Sche↵é, 1947), it follows that
R
Rn

|f
✓,c

(xn) � f
X

n

1
(xn)|dxn ! 0 as

(2.40) holds. Combining further with (A.3) and (A.7) we obtain that

lim(2.40)
1

(M⌫

s

)
2
n

|D(QA
i

, Xn

✓,c

)�D(QA
i

, Xn

i

)| = 0. (A.8)

Using now the fact that f
✓,c

is uniform over each quantizer cell A
i

(�
s

) we obtain that

D(QA
i

, Xn

✓,c

) = 1
n

P
�

s

2⇤
s

R
A

i

(�
s

) kx
n � �

s

k2f
✓,c

(xn)dxn =

1
n

P
�

s

2⇤
s

P[Xn

i

2A
i

(�
s

)]
⌫(A

i

(�
s

))

R
A

i

(�
s

) kx
n � �

s

k2dxn

(a)
=

1
n⌫(A

i

(0))

R
A

i

(0) kx
nk2dxn

P
�

s

2⇤
s

P[Xn

i

2 A
i

(�
s

)] =

1
n⌫(A

i

(0))

R
A

i

(0) kx
nk2dxnP[Xn

i

2 Rn] = G(A
i

(0))(⌫(A
i

(0)))
2
n

(b)
= G(A

i

(0))⌫
2
n

s

,(A.9)

where (a) uses the fact that A
i

(�
s

) = �
s

+A
i

(0), while (b) is based on the fact that

⌫(A
i

(0)) = ⌫
s

since A
i

(0) is a fundamental cell of the lattice ⇤
s

. Relations (A.8) and

(A.9) prove the claim of Part 1.

Part 2. In order to prove (A.2) we will first evaluate
R
A

i

(0) kx
nk2dxn. Using the fact
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that A
i

(0) = [
�2��1

i

(0)(�+M(0)) and relation (2.24) we obtain that

A
i

(0) = [
�2U (�� �

i

(�) +M(0)) . (A.10)

Using further Lemma 8, which is stated and proved in Appendix B, we obtain that

Z

���

i

(�)+M(0)

kxnk2dxn =

Z

M(0)

kxnk2dxn+2h
Z

M(0)

xndxn,���
i

(�)i+k���
i

(�)k2⌫(M(0)).

(A.11)

It is easy to see thatM(0) is a fundamental cell of the lattice ⇤
in

, therefore, ⌫(M(0)) =

⌫
in

. Further, relations (A.10) and (A.11) lead to

Z

A
i

(0)

kxnk2dxn = |U|
Z

M(0)

kxnk2dxn

| {z }
T1

+2
X

�2U

h
Z

M(0)

xndxn,�� �
i

(�)i
| {z }

T2,i

+ ⌫
in

X

�2U

k�� �
i

(�)k2

| {z }
T3,i

.

Then

G(A
i

(0))

M
2
n

=
T1

nM
2
n (M⌫

in

)1+
2
n

+
T2,i

nM
2
n (M⌫

in

)1+
2
n

+
T3,i

nM
2
n (M⌫

in

)1+
2
n

. (A.12)

We will prove first that the first two terms in the right hand side of the above equality,

approach 0 in the limit of (2.40). Consider the first term. Note that
R
M(0) kx

nk2dxn 

(r̄(M(0)))2 ⌫
in

. Combining further with (A.5) and with the fact that |U| = M it

follows that

T1

nM
2
n (M⌫

in

)1+
2
n


4M✓2r̄2

in,0⌫in

nM
2
n (M⌫

in

)1+
2
n

=
4r̄2

in,0

nM
4
n⌫

2
n

in,0

! 0 as (2.40) holds. (A.13)
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It is easy to see that the closure of a lattice Voronoi cell of the origin is symmetric

about the origin. Therefore, if ⇤
in

is a clean sublattice of ⇤
c

, i.e., there are no points

of ⇤
c

on the boundary of V
in

(0), then the set ⇤
c

\ V
in

(0) is symmetric about the

origin. The above considerations further imply that the closure of the set M(0) is

symmetric about the origin, thus
R
M(0) x

ndxn = 0. Then the second term in (A.12) is

0. When ⇤
in

is not a clean sublattice of ⇤
c

, the aforementioned term still approaches

0 in the limit of (2.40), as we prove next.

|T2,i| = 2

�����
X

�2U

Z
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hxn,�� �
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(�)idxn

�����

 2
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(a)

 2
X

�2U

Z

M(0)

kxnk k�� �
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(�)k dxn

= 2
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kxnk dxn

X

�2U

k�� �
i

(�)k

(b)

 2r̄(M(0))⌫
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M(max
�2U

k�k+max
�2U

k�
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in,0
(d)
= 4✓2⌫
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M1+ 2
n r̄2

in,0, (A.14)

where (a) follows from the Cauchy-Schwarz inequality and (b) is based on the fact

that
R
M(0) kx

nkdxn  r̄(M(0))⌫
in

and |U| = M . Additionally, (c) follows from (A.5)

and the discussion in the paragraph below equation (2.35). Finally, (d) is based on

the fact that c = M
1
n . Further, relation (A.14) implies that

|T2,i|
nM

2
n (M⌫

in

)1+
2
n


4✓2⌫

in

M1+ 2
n r̄2
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! 0 as (2.40) holds. (A.15)
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Let us evaluate now T3,i

⌫

in

. We need to treat separately the cases i = 1 and i = 2.

Recall that U = [
⌧2T Vs/2(⌧) \ ⇤

in

. We will denote V̂
s/2(⌧) , V

s/2(⌧) \ ⇤
in

. Using

further (2.22) we obtain that
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| {z }
T5

+
M

|T |
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| {z }
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+T4, (A.16)

where (a) is based on the fact that V̂
s/2(⌧) = ⌧ + V̂

s/2(0) and |V̂
s/2(0)| = M

|T | . Relation

(A.16) leads to

T3,1

nM
2
n (M⌫

in

)1+
2
n

=
T4

nM1+ 4
n⌫

2
n

in

+
T5

nM1+ 4
n⌫

2
n

in

+
T6

nM1+ 4
n⌫

2
n

in

. (A.17)

We will show first that the first and last term on the right hand side of (A.17) approach

0 in the limit of (2.40). For this we need to introduce the following notation. For

any two nested lattices ⇤2 ⇢ ⇤1 in Rn denote C⇤2:⇤1 , [
�12V⇤2 (0)\⇤1V⇤1(�1). Using
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Lemma 9, which is stated and proved in Appendix B, we obtain

T6

nM1+ 4
n⌫

2
n

in

=
M

2nn2
n
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2
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in
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)� 1

4
G(⇤
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◆
,

where the last equality is based on ⌫
s

= M⌫
in

and ⌫
s/2 = M⌫

in

/2n. As the parameters

c and ✓ vary, both lattices ⇤
s

and ⇤
s/2 are scaled by the same factor, therefore the set

C⇤
s

:⇤
s/2

is scaled by that factor. Since the second moment is invariant under scaling it

follows that G(C⇤
s

:⇤
s/2

)� 1
4G(⇤

s/2) remains constant as ✓ and c vary. Consequently,

we have that

lim
(2.40)

T6

nM1+ 4
n⌫

2
n

in

= 0. (A.18)

Consider now the first term on the right hand side of (A.17). The following holds

|T4|  2|c� 1|
X

⌧2T

X

�2V̂
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|h�� ⌧, ⌧i|
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 2cMr̄
s

r̄
s/2,
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where (a) is based on the Cauchy-Schwartz inequality. Using further the fact that

c = M
1
n , while r̄

s/2 = r̄
s

/2 = M
1
n r̄

in

/2, leads to
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In order to evaluate the second term in (A.17) we use again Lemma 9 and obtain that
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where the last equality relies on the fact that c = M
1
n , while ⌫

s/2 = M⌫
in

/2n. Further,

we obtain that

lim
(2.40)

T5

nM1+ 4
n⌫

2
n

in

= lim
(2.40)

G(C⇤
s/2:⇤in

)

4
=

G(⇤
s/2)

4
, (A.20)

where the last equality follows from Lemma 10, which is stated and proved in Ap-

pendix B.

Relations (A.17)-(A.20) imply that

lim
(2.40)

T3,1

nM1+ 4
n⌫

2
n

+1
in

=
1

4
G(⇤

s/2). (A.21)

Combining the above with (A.12), (A.13) and (A.15), we obtain that (A.2) holds for

70



Ph.D. Thesis - Dania Elzouki McMaster - Electrical and Computer Engineering

i = 1. In order to prove the claim for i = 2 we need to evaluate now T3,2

⌫

in

.
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⌫
in
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X

⌧2T

X
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Next the conclusion follows using similar arguments as for i = 1. This observation

concludes the proof.

Proof of Relation (2.51)

In order to prove the claim we will show that U
i

approaches a uniform distribution.

To prove this let u 2 V
in

(0) \ ⇤
c

.

The general idea of the proof is that, as the limits of (2.40) are approached, the

pdf f
X

n

i

can be approximated by a pdf which is uniform on each set M(�). Then the

following relations hold, in the limit of (2.40),

P[U
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= u] =
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�2⇤
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Z

V
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f
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(xn)dxn
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f
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(�)⌫
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�2⇤
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f
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K

(b)
⇡ 1

K

X

�2⇤
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Z

M(�)

f
X

n

i

(xn)dxn =
1

K
.

Next we provide a rigorous treatment of relations (a) and (b).

Define a density function f
✓,c

: Rn ! [0,1), which is uniform on each set M(�),
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as follows

f
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(xn) =
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f
X
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i

(yn)dyn,

if xn 2 M(�). Then in view of Lemma 7 (stated and proved in Appendix B), we have

that f
✓,c

(xn) ! f
X

n

i

(xn) for every xn 2 Rn, as (2.40) holds. Further, we have
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(A.22)

Note that

Z
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(xn)|dxn ! 0, as (2.40) holds,

(A.23)

where the last relation is valid in view of Sche↵e’s theorem Sche↵é (1947).

Further, since f
✓,c

is constant on each M(�), we have

X

�2⇤
in

Z

V

c

(�+u)

f
✓,c

(xn)dxn =
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(xn)dxn =
1

K
. (A.24)

Relations (A.22)-(A.24) together with the fact that the size of the alphabet of U
i

is

K and K is constant, prove the claim. With this observation the proof is complete.
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Proof of Relation (2.48)

Using a variant of Fano’s inequality we obtain that

H(U2|U1)  1 + P[U1 6= U2] log2 K, (A.25)

where we used the fact that H(U2) = log2 K. Let �
c,1 = Q

c

(xn

1 ). Notice that

if xn
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1 2 B(r0) and the distance from xn
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c,1) is larger than or equal to r0, then it is guaranteed that xn

2 2 V
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c,1), thus
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). It follows that
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Further, we obtain
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E
f
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where f
✓,c

was defined in the proof of relation (2.51). According to that proof the

first integral in (A.27) approaches 0 in the limit of (2.40). Since f
✓,c

is uniform over

each Voronoi region of the central lattice, we have

Z

E
f
✓,c

(xn)dxn =
X

�

c

2⇤
c

Z

E(�
c

)

f
✓,c

(xn)dxn =
X

�

c

2⇤
c

f
✓,c

(�
c

)⌫(E(�
c

))

=

✓
1�

✓
1� r0

r
c

◆
n

◆ X

�

c

2⇤
c

f
✓,c

(�
c

)⌫
c

= 1�
✓
1� r0

r
c

◆
n

.(A.28)
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Relations (A.27)-(A.28), together with the fact that the first integral in (A.27) ap-

proaches 0 in the limit of (2.40), imply that

P[U1 6= U2]  1�
✓
1� r0

r
c

◆
n

+ P(r0) + o(1).

Finally, by applying the above inequality in (A.25), the conclusion follows.

74



Appendix B

Appendix

B.1 Proofs of Lemmas in Chapter 2

Proof of Lemma 2

According to equation (A.6) at the beginning of the proof of relation (2.44), for

i = 1, 2 and c � 8, we have

r̄(��1
i

(0))  cr̄
s

= c2✓r̄
in,0. (B.29)

Using the fact that �
c,i

= �
i

+ u
i

and the triangle inequality we obtain that

kxn

i

� x̂n

c,i

k = kxn

i

� �
c,i

+ u
i

+ �
i

� x̂n

c,i

k

 kxn

c,i

� �
c,i

k+ ku
i

k+ k�
i

� x̂n

c,i

k

 r̄
c

+ r̄
in

+ k�
i

� x̂n

c,i

k  2r̄
s

+ k�
i

� x̂n

c,i

k. (B.30)
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If condition (2.26) is violated then x̂n

c,i

= �
s,i

. Thus, we have

k�
i

� x̂n

c,i

k = k�
i

� �
s,i

k  r̄(��1
i

(0))  cr̄
s

, (B.31)

for c � 8. Relations (B.30) and (B.31) imply that

kxn

i

� x̂n

c,i

k  (c+ 2)r̄
s

 2cr̄
s

= 2c2✓r̄
in,0, (B.32)

for c � 8.

Let us assume now that condition (2.26) is satisfied and that Case 3) holds at the

decoder, i.e., b1 = b2 = 1 and ⌧1 6= ⌧2. Thus, x̂n

c,i

= �̃
i

+u
i

, where �̃
i

is given in (2.33).

Then

k�
i

� x̂n

c,i

k  k�
i

� �̃
i

k+ ku
i

k  k�
i

� �̃
i

k+ r̄
in

. (B.33)

Let us consider now i = 1. Using (2.33) and the triangle inequality we obtain that

k�1 � �̃1k  k�1 � �̃
s

k+ k⌧1k+
1

c
k�

s,1 � �̃
s

k

 k�1 � �
s,1k+ k�

s,1 � �̃
s

k+ r̄
s

+
1

c
k�

s,1 � �̃
s

k

 cr̄
s

+ r̄
s

+

✓
1 +

1

c

◆
k�

s,1 � �̃
s

k, (B.34)

where the last inequality is based on k�1��
s,1k  r̄(��1

i

(0))  cr̄
s

. Using now (2.32)
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in conjunction with the triangle inequality leads to

k�
s,1 � �̃

s

k  k�
s,1 � ṽk+ (c+ 1)kw̃k

 k�
,s1 � ṽk+ 2(c+ 1)r̄

s

, (B.35)

where the last inequality follows based on (2.31) and on

kw̃k  kŵ +
1

2
(⌧2 � ⌧1)�Q

s

(ŵ +
1

2
(⌧2 � ⌧1))k+ k1

2
(⌧2 � ⌧1)k  2r̄

s

.

Finally, based on (2.30) we obtain that

k�
s,1 � ṽk =

����
1

2
(�

s,1 � �
s,2)�

1

2
c�̃+

⇣
1 +

c

2

⌘
⌧2 �

c

2
⌧1

����

 1

2
k(�

s,1 � �
s,2)k+

1

2
ck�̃k+

⇣
1 +

c

2

⌘
k⌧2k+

c

2
k⌧1k. (B.36)

Notice that relation (2.26) implies that

k(�
s,1 � �

s,2)k  2cr̄
s

. (B.37)

Additionally, from (2.27) we obtain that

k�̃k  ku1 � u2k+ k(u1 � u2)�Q
in

(u1 � u2)k  2r̄
in

+ r̄
in

= 3r̄
in

. (B.38)

Plugging (B.37) and (B.38) in (B.36) leads to

k�
s,1 � ṽk  cr̄

s

+
3

2
cr̄

in

+ (1 + c)r̄
s

 (
5

2
+ 2c)r̄

s

,

77



Ph.D. Thesis - Dania Elzouki McMaster - Electrical and Computer Engineering

The above relations and (B.35) imply that

k�
s,1 � �̃

s

k  (4c+
9

2
)r̄

s

.

Combining now the above inequality with (B.30), (B.33) and (B.34) we obtain that

kxn

1 � x̂n

c,1k  2r̄
s

+ r̄
in

+ (c+ 1)r̄
s

+

✓
1 +

1

c

◆
(4c+

9

2
)r̄

s

 6cr̄
s

= 6c2✓r̄
in,0, (B.39)

for c su�ciently large. The proof for i = 2 and for the remaining cases follows along

the same lines.

Proof of Lemma 3

Let us fix i. Denote C̃(�
s/2) , {xn

i

2 Rn : Q
in

(Q
c

(xn

i

)) 2 C(�
s/2)} and C̃ ,

[
�

s/22⇤s/2
C̃(�

s/2). A moment of thought reveals that C̃(�
s/2) ⇢

�
�
s/2 + �1Vs/2(0)

�
\

�
�
s/2 + �2Vs/2(0)

�
, where �1 = 1 + r̄

in

+r̄

c

r

s/2
and �2 = � � r̄

in

+r̄

c

r

s/2
. The above relation

implies that

⌫(C̃(�
s/2))  (�n

1 � �n

2 )⌫(Vs/2(�s/2)). (B.40)

Let Ṽ(�
s/2) , {xn

i

2 Rn|Q
in

(Q
c

(xn

1 )) 2 V
s/2(�s/2)}. Clearly, ⌫(Ṽ(�

s/2)) = ⌫
s/2. The

proof of the lemma hinges on the fact that, as (2.40) holds, the pdf of Xn

i

can be

approximated by a pdf which is uniform over Ṽ
s/2(�s/2). The general idea of the proof

is the following.

P[Q
in

(Q
c

(Xn

i

)) 2 C(�
s/2)]

(a)
⇡ f

X

n

i

(�
s/2)⌫(C̃(�s/2))  f

X

n

i

(�
s/2)⌫(V (�

s/2))(�
n

1 � �n

2 ),
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where the last inequality follows from (B.40). The above relations lead to

P[Q
in

(Q
c

(Xn

i

)) 2 [
�

s/22⇤s/2
C(�

s/2)] 
X

�

s/22⇤s/2

f
X

n

i

(�
s/2)⌫(V (�

s/2))(�
n

1��n

2 )
(b)
⇡ �n

1��n

2 ,

where (b) follows from the assumption that the pdf is uniform over V
s/2(�s/2), thus

P
�

s/22⇤s/2
f
X

n

i

(�
s/2)⌫(V (�

s/2)) = 1. Finally, it is easy to see that �1 ! 1 and �2 ! 1

as (2.40) holds, thus lim(3.108)(�n

1 � �n

2 ) = 0.

Next we provide a detailed proof including a rigorous treatment of relations (a)

and (b). Note that the sets Ṽ(�
s/2) with �

s/2 2 ⇤
s/2, form a partition of Rn. Define

a density function f
✓,c

: Rn ! [0,1), which is uniform on each set Ṽ(�
s/2), as follows

f
✓,c

(xn) =
1

⌫(Ṽ(�
s/2))

Z

Ṽ(�
s/2)

f
X

n

i

(yn)dyn, (B.41)

if xn 2 Ṽ(�
s/2). Then in view of Lemma 7, which is stated and proved after the proof

of this lemma, we have that f
✓,c

(xn) ! f
X

n

i

(xn) for every xn 2 Rn, as (2.40) holds.

Further, we have

P[Xn

i

2 C̃] =

Z

C̃

�
f
X

n

i

(xn)� f
✓,c

(xn) + f
✓,c

(xn)
�
dxn


Z

C̃
|f

X

n

i

(xn)� f
✓,c

(xn)|dxn +
X

�

s/22⇤s/2

Z

C̃(�
s/2)

f
✓,c

(xn)dxn.

Note that

Z

C̃
|f

X

n

i

(xn)� f
✓,c

(xn)|dxn 
Z

Rn

|f
X

n

i

(xn)� f
✓,c

(xn)|dxn ! 0, as (2.40) holds,

where the last relation is valid in view of Sche↵e’s theorem (Sche↵é, 1947). Further,
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since the density f
✓,c

is uniform over each Ṽ(�
s/2) and C̃(�

s/2) ⇢ Ṽ(�
s/2), we obtain

that

X

�

s/22⇤s/2

Z

C̃(�
s/2)

f
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f
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(d)
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2 )
X
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s/22⇤s/2

Z

Ṽ(�
s/2)

f
X

n

1
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= (�n

1 � �n

2 )

Z

Rn

f
X

n

i

(yn)dyn = �n

1 � �n

2 ,

where (c) follows from (B.40) and (d) is based on relation (B.41) and on the fact that

⌫(V
s/2(�s/2)) = ⌫(Ṽ(�

s/2)). This observation concludes the proof.

Lemma 7 Let ⇤ be a lattice and � > 0 a scale factor. Let C
�

be a measurable

fundamental cell of the scaled lattice �⇤ such that lim
�!0 r̄(C�) = 0. Let f : Rn !

[0,1) be a continuous density function. For each � define the function f
�

: Rn !

[0,1) as follows. For each �
�

2 �⇤ and xn 2 �
�

+ C
�

, let

f
�

(xn) , 1

⌫(C
�

)

Z

�

�

+C
�

f(yn)dyn. (B.42)

Then for every xn 2 Rn

the following holds

lim
�!0

f
�

(xn) = f(xn). (B.43)
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Let us fix xn 2 Rn and let �
�

2 �⇤ such that xn 2 �
�

+ C
�

. Then

|f
�

(xn)� f(xn)|  1
⌫(C

�

)

R
�

�

+C
�

|f(yn)� f(xn)|dyn 

max
y

n2�
�

+C
�

|f(yn)� f(xn)| (B.44)

it further follows that

lim
�!0

max
y

n2xn+B2r̄(C
�

)

|f(yn)� f(xn)| = 0. (B.45)

Relations (B.44) and (B.45) imply that (B.43) holds.

Lemma 8 For any set A ✓ Rn

and any u 2 Rn

, the following holds,

Z

u+A
kxnk2dxn =

Z

A
kxnk2dxn + 2h

Z

A
xndxn, ui+ kuk2⌫(A).

Applying the change of variable xn = u+ yn we obtain that

Z

u+A
kxnk2dxn =

R
A kyn + uk2dyn =

R
A kynk2dyn +

R
A 2hyn, uidyn +

R
A kuk2dyn

=
R
A kynk2dyn + 2h

R
A xndxn, ui+ kuk2⌫(A).

Lemma 9 Let ⇤2 ⇢ ⇤1 be two nested lattices in Rn

. Let N0 , N(⇤2 : ⇤1) and

C⇤2:⇤1 , [
�12V⇤2 (0)\⇤1V⇤1(�1). Then

X

�12V⇤2 (0)\⇤1

k�1k2 = nN0

⇣
G(C⇤2:⇤1)⌫

2
n

⇤2
�G(⇤1)⌫

2
n

⇤1

⌘
.
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It can be easily seen that C⇤2:⇤1 is a fundamental region of the lattice ⇤2, thus

⌫(C⇤2:⇤1) = ⌫(⇤2) = N0⌫(⇤1). Using further the definition of G(C⇤2:⇤1) one obtains

that

nN0G(C⇤2:⇤1)⌫
2
n

⇤2
=

1

⌫⇤1

Z

C⇤2:⇤1

kxnk2dxn.

Using the fact that V⇤1(�1) = �1 + V⇤1(0), we obtain that

1

⌫⇤1

Z

C⇤2:⇤1

kxnk2dxn =
1

⌫⇤1

X

�12V⇤2 (0)\⇤1

Z

�1+V⇤1 (0)

kxnk2dxn

(a)
=

1

⌫⇤1

X

�12V⇤2 (0)\⇤1

 Z

V⇤1 (0)

kxnk2dxn + 2

*Z

V⇤1 (0)

xndxn,�1

+
+ k�1k2⌫⇤1

!

(b)
=

N0

⌫⇤1

Z

V⇤1 (0)

kxnk2dxn +
X

�12V⇤2 (0)\⇤1

k�1k2

(c)
= nN0G(⇤1)⌫

2
n

⇤1
+

X

�12V⇤2 (0)\⇤1

k�1k2,

where (a) is based on Lemma 8. Moreover, (b) uses the fact that
R
V⇤1 (0)

xndxn = 0

and |V⇤2(0)\⇤1| = N0, while (c) is based on the definition of G(⇤1). Now the claim

follows.

Lemma 10 Consider two nested lattices ⇤2,0 ⇢ ⇤1,0 and scale coe�cients !1,!2 such

that lattices ⇤2 = !2⇤2,0 and ⇤1 = !1⇤1,0 are still nested. Let N0 , N(⇤2 : ⇤1) and

C⇤2:⇤1 , [
�12V⇤2 (0)\⇤1V⇤1(�1). Then the following holds:

lim
!2
!1

!1
G(C⇤2:⇤1) = G(⇤2).

Note that since the lattices ⇤2 and ⇤1 are scaled by di↵erent scale factors, the value

G(C⇤2:⇤1) is not constant. On the other hand, G(⇤2) is constant. Notice further that
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the set C⇤2:⇤1 is a fundamental region of the lattice ⇤2, thus its volume equals ⌫⇤2 .

Then the following holds

G(C⇤2:⇤1)�G(⇤2) =
1

n⌫
1+ 2

n

⇤2

 Z

C⇤2:⇤1

kxnk2dxn �
Z

V⇤2 (0)

kxnk2dxn

!
.

For simplicity let us denote A = C⇤2:⇤1 , B = V⇤2(0) and �⌫ = ⌫(A) � ⌫(A \ B).

Since ⌫(A) = ⌫(B) it follows that �⌫ = ⌫(B)� ⌫(A \ B). Then we obtain that

|G(A)�G(B)| =
1

n⌫
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����
Z
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Z
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����
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�


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�⌫

n⌫
1+ 2

n

⇤2

=
5!2

2 r̄
2
⇤2,0

�⌫

n!2
2⌫

2
n

⇤2,0
⌫⇤2

=
5r̄2⇤2,0

4n⌫
2
n

⇤2,0

�⌫

⌫⇤2

.

According to the above relations in order to prove the claim of the lemma it is su�cient

to show that lim!2
!1

!1
�⌫

⌫⇤2
= 0, which is equivalent to

lim
!2
!1

!1

⌫(A \ B)
⌫⇤2

= 1. (B.46)

It is easy to see that for any point xn 2 V⇤2(0) which is at a distance larger than

r̄⇤1 from the boundary of V⇤2(0), we have Q⇤1(x
n) 2 V⇤2(0), thus xn 2 A. This

observation implies that the interior of the set �V⇤2(0) is included in A \ B, where

� = 1� r̄⇤1
r⇤2

= 1� !1
!2

r̄⇤1,0

r⇤2,0
. Then we have �n  ⌫(A\B)

⌫⇤2
 1, which implies that (B.46)

holds. With this the proof is completed.
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Appendix

C.1 Proof of Theorem 3

Proof of Theorem 3

For each �
s

2 ⇤
s

and i = 1, 2, 3, let A
i

(�
s

) , {xn

i

|x̂n

s,i

= �
s

}. Further, for each � 2

⇤
in

, denote M(�) , [
�

c

2V
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(�)\⇤
c

V
c

(�
c

). Then A
i

(�
s

) = [
�2��1

i

(�
s

)M(�). Clearly, we

have M(�) = �+M(0) for all � 2 ⇤. This fact together with relation (3.67) implies

that

A
i

(�
s

) = A
i

(0) + �
s

, 8�
s

2 ⇤
s

. (C.47)

Obviously, we have d
s,i

= D(QA
i

, Xn

i

), where QA
i

denotes the quantizer which

maps each input sequence xn

i

2 A
i

(�
s

) to �
s

, for �
s

2 ⇤
s

.

First let us fix i. We will split the proof into two parts. In Part 1 we show that if

lim(3.108)
G(A

i

(0))
c

2
o

exists then we have

lim
(3.108)

D(QA
i

, Xn

i

)

c2
o

(⌫
s

)
2
n

= lim
(3.108)

G(A
i

(0))
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o

. (C.48)

84



Ph.D. Thesis - Dania Elzouki McMaster - Electrical and Computer Engineering

In Part 2 we will evaluate that

lim
(3.108)

G(A
i

(0))

c2
o

. (C.49)

Part 1.

1

The proof is based on the idea that in the limit of (3.108) the pdf f
X

n

i

can be approx-

imated by a uniform density function over each set A
i

(�
s

). This density function is

f
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2 ⇤
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), let
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Let Xn

✓,c

denote the random variable with pdf f
✓,c

. Note that

1

c

2
o

⌫

2
n

s

|D(QA
i

, Xn

✓,c

)�D(QA
i

, Xn

i

)| 

1

nc

2
o

(⌫
s

)
2
n

P
�

s

2⇤
s

R
A

i

(�
s

) kx
n � �

s

k2|f
✓,c

(xn)� f
X

n

i

(xn)|dxn 

1

nc

2
o

(⌫
s

)
2
n

P
�

s

2⇤
s

r̄(A
i

(0))2
R
A

i

(�
s

) |f✓,c(x
n)� f

X

n

i

(xn)|dxn =

r̄(A
i

(0))2

nc

2
o

(⌫
s

)
2
n

R
Rn

|f
✓,c

(xn)� f
X

n

i

(xn)|dxn, (C.51)

where the second inequality is based on the fact that A
i

(�
s

) = �
s

+ A
i

(0), which

implies that max
x

n2A
i

(�
s

) kxn � �
s

k2 = r̄(A
i

(0)). Let us analyze now the quantity

r̄(A
i

(0)). Recall thatA
i

(0) = [
�2��1
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(0)(�+M(0)), whereM(0) , [
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V
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Then it follows that
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(0))  r̄(��1
i

(0)) + r̄(M(0)). (C.52)

1
This proof is similar to the proof of part 1 of theorem (2.44) from Chapter 2.
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Further,

r̄(M(0))  r̄
in
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c

 2r̄
in

= 2✓r̄
in,0. (C.53)

Using (3.95) and the fact that r̄
s

= 3c2
o

✓r̄
in,0, it follows that r̄(��1

i

(0))  (5 +

2c
o

)3c2
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in,0. Since we are interested in computing the limit in (C.49) as (3.108)

holds, we may assume that c
o

is conveniently large. Then the following holds
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in,0. (C.54)

Finally, relations (C.52)-(C.54) together with the fact that c1 = 3c
o

and ⌫
s

=
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n

o

✓n⌫
in,0 = (3c2
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in,0, lead to
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, (C.55)

in the limit of (3.108). The above result also implies that r̄(A
i

(0)) ! 0 as (3.108)

holds. This enables us to apply Lemma 7, which is stated and proved in Appendix

B, and we obtain that f
✓,c

(xn) ! fn

X1
(xn) for each xn 2 Rn, as (3.108) holds. Using

further Sche↵e’s theorem (Sche↵é, 1947), it follows that
R
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|f
✓,c

(xn)�f
X

n

1
(xn)|dxn !

0 as (3.108) holds. Combining further with (C.51) and (C.55) we obtain that

lim(3.108)
1

c

2
o

(⌫
s

)
2
n

|D(QA
i

, Xn

✓,c

)�D(QA
i

, Xn

i

)| = 0. (C.56)
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Using now the fact that f
✓,c

is uniform over each quantizer cell A
i
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) we obtain that
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, (C.57)

where (a) uses the fact that A
i

(�
s

) = �
s

+ A
i

(0), and (b) is based on the fact that

⌫(A
i

(0)) = ⌫
s

since A
i

(0) is a fundamental cell of the lattice ⇤
s

. Relations (C.56)

and (C.57) prove the claim of Part 1.

Part 2.

We will first evaluate
R
A

i

(0) kx
nk2dxn. Using the fact that A

i

(0) = [
�2��1

i

(0)(� +

M(0)) and relation (3.68) we obtain that

A
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(0) = [
�2U (�� �

i

(�) +M(0)) . (C.58)

Using further Lemma 8, which is stated and proved in Appendix B, we obtain that

Z
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i

(�)i+k���
i

(�)k2⌫(M(0)).

(C.59)

It is easy to see thatM(0) is a fundamental cell of the lattice ⇤
in

, therefore, ⌫(M(0)) =
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⌫
in

. Further, relations (C.58) and (C.59) lead to
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. (C.60)

We will prove first that the first two terms in the right hand side of the above

equality approach 0 in the limit of (3.108). Consider the first term. Note that
R
M(0) kx

nk2dxn  (r̄(M(0)))2 ⌫
in

. Combining further with (C.53) and with the fact

that |U| = M it follows that
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2
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! 0 as (3.108) holds.

It is easy to see that the closure of a lattice Voronoi cell of the origin is symmetric

about the origin. Therefore, if ⇤
in

is a clean sublattice of ⇤
c

, i.e., there are no points

of ⇤
c

on the boundary of V
in

(0), then the set ⇤
c

\ V
in

(0) is symmetric about the

origin. The above considerations further imply that the closure of the set M(0) is

symmetric about the origin, thus
R
M(0) x

ndxn = 0. Then the second term in (C.60) is

0. When ⇤
in

is not a clean sublattice of ⇤
c

, the aforementioned term still approaches
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0 in the limit of (3.108), as we prove next.
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where (a) follows from the Cauchy-Schwarz inequality and (b) follows from (3.68)

and based on the fact that
R
M(0) kx

nkdxn  r̄(M(0))⌫
in

and |U| = M . Additionally,

(c) follows from (C.53) and (C.54). Finally, (d) is based on the fact that 3c2
o

= M
1
n .

Further, relation (C.61) implies that
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Let us evaluate now T3,i

⌫

in

. We need to treat separately the cases i = 1, i = 2 and i = 3.

Recall that U , {⌧ + �̃
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+ ũ
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|⌧ 2 T , ũ
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2 V
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2 V
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further (3.66) we obtain that

T3,1

⌫
in

=
X

�2U

k�� c1�̃f

k2

=
X

�2U

⇣
k(1� c1)(�̃f

)k2 + kũ
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where (a) is based on the fact that c
o

= c1
3 .

Relation (C.63) leads to
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Consider now the first term on the right
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Using Lemma 9, which is stated and proved in Appendix B, we obtain
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where (a) follows from Lemma 10, which is stated and proved in Appendix B and the

last equality follows from the fact that the normalized second moment is invariant to

scaling.

We will show now that the last five terms on the right hand side of (C.64) approach

0 in the limit of (3.108). Consider now the second term on the right hand side of

91



Ph.D. Thesis - Dania Elzouki McMaster - Electrical and Computer Engineering

(C.64). The following holds
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In order to evaluate (C.67) we use Lemma 9 and obtain that
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. Further,
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where the last equality follows from Lemma 10.

We will show that the third term on the right hand side of (C.64) approaches 0 in

the limt of (3.108). Note that

T4 = c2n
o

X

⌧2T

k⌧k2. (C.69)
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Using Lemma 9, we obtain
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Consider now the fourth term in (C.64).
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Consider now the fifth term on the right hand side of (C.64). The following holds
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We will evaluate the last term in (C.64).
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Relations (C.64)-(C.73) imply that
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Let us evaluate now T3,2
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k2 + k�̃
f

k2 + k⌧k2
⌘

+
X

�2U

⇣
2h�̃

f

, ⌧i+ 2(1� c
o

c1)h�̃f

, ũ
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where (a) is based on the fact that c
o

= c1
3 . Relation (C.75) leads to
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Consider now the first term on the right hand side of (C.76)
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In order to evaluate (C.77), we use again Lemma 9, and obtain that
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where the last equality relies on the fact that M = (3c2
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. Further,

we obtain that
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), (C.78)

where (a) follows from Lemma 10 and the last equality follows from the fact that the

normalized second moment is invariant to scaling. We will show that the last five

terms on the right hand side of (C.76) approach 0 in the limit of (3.108). Consider
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now the second term on the right hand side of (C.76). The following holds
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In order to evaluate (C.79) we use Lemma 9 and obtain that
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where the last equality relies on the fact that M = (3c2
o
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where the last equality follows from Lemma 10.

We will show that the third term on the right hand side of (C.76) approaches 0

in the limt of (3.108). Using Lemma 9, we obtain
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where the last equality is based on ⌫
s

= M⌫
in

and ⌫
s/3 = M⌫

in

/3n. As the parameters
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c
o

and ✓ vary, both lattices ⇤
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is scaled by that factor. Since the second moment is invariant under scaling it

follows that 9G(C⇤
s

:⇤
s/3

)�G(⇤
s/3) remains constant as the parameters ✓ and c vary.

Consequently, we have that
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We will consider the fourth term in (C.76).
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Consider now the fifth term on the right hand side of (C.76). The following holds
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We will evaluate the last term in (C.76).
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where (a) is based on the Cauchy-Schwartz inequality. Using further the fact that
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Relations (C.76)-(C.86) imply that
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Let us evaluate now T3,3
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ũ

f

2V
f

(0)\⇤
in

hũ
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where (a) is using the fact that � = ⌧ + �̃
f

+ ũ
f

and (b) is based on the fact that
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c
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= c1
3 . Relation (C.89) leads to
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Consider now the first term on the right hand side of (C.90)
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In order to evaluate (C.91), we use Lemma 9, and we obtain
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where (a) follows from Lemma 10 and the last equality based on the fact that the

normalized second moment is invariant to scaling.

Consider now the first term on the right hand sie of (C.90)
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In order to evaluate (C.93), we use again Lemma 9, and obtain that
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where (a) follows from Lemma 10, which is proved in Appendix B, and the last equal-

ity follows from the fact that the normalized second moment is invariant to scaling.

We will show that the last four terms on the right hand side of (C.90) approach

0 in the limit of (3.108).
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Consider the third term on the right hand side of (C.90). Using Lemma 9, we

obtain that
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We will evaluate the fourth term in (C.90).
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In order to proced we need to intruduce more notation. Let (V
f

(0)\⇤
in

)
b

denote the

set of points which are in V
f

(0)\⇤
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and on the boundary of V
f

(0) and let (V
s/3(0)\

⇤
f

)
b

denote the set of points which are in V
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f

and on the boundary of V
s/3(0).
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Moreover, let M
c

= |(V
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kũ
f

kk�̃
f

k

 2(1 + 3c2
o

)(1 + 3c
o

)3nN
c

M
c

max
ũ
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where (a) is based on the Cauchy-Schwartz inequality. Using further the fact that
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f

= c
o
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in,o
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in,o
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(C.96)

where (a) based on the fact that M = (3c2
o

)n, and (b) is based on the fact ⌫
s/3 =

3ncn
o

⌫
f

/3n and ⌫
f

= cn
o

⌫
in

.

Now we will show that
⇣

N

c

⌫

f

⌫

s/3

⌘
! 0 as (3.108) holds. Note that N

c

⌫
f

 (�n

1 ��n

2 )⌫s/3,
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where �1 = 1 + r̄

f

r̄

s/3
and �2 = 1� r̄

f
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Now let us show that lim(3.108)(�n

1 � �n

2 ) = 0. Note that

(�n
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2 ) = (�1 � �2)(�
n�1
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Since �n�1
1 ! 1 as (3.108) holds, it is su�cient to show that (�1 ��2) ! 0 as (3.108)

holds. We have
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as (3.108) holds. Similarly, it can be shown that

lim
(3.108)

M
c

⌫
in

⌫
f

= 0. (C.99)

From relations (C.96)-(C.99), we obtain that

lim
(3.108)
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o
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Consider now the fifth term on the right hand side of (C.90). The following holds
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We will evaluate the last term in (C.90).
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ũ

f

2V
f

(0)\⇤
in

kũ
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(C.103)

where (a) is based on the Cauchy-Schwartz inequality. Using further the fact that

r̄
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= c
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in,o

, r̄
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Relations (C.90)-(C.104) imply that

lim
(3.108)

T3,3

nc2
o

M1+ 2
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= 2G(⇤
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). (C.105)

Using (C.60), (C.61), (C.1), (C.74), (C.105), and (C.74), we obtain that

lim
(3.108)

1

3c2
o

3X

i=1

G(A
i

(0)) =
4

3
G(⇤

s

). (C.106)

Corroborating further with (C.48), relation (3.113) follows.
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Appendix

D.1 Proofs of Lemmas in Chapter 3

Proof of Lemma 5

According to equation (3.95) for i = 1, 2, 3, and c
o

� 5 we have

r̄(��1
i

(0))  3c
o

r̄
s

. (D.107)

Using the fact that �
c,i

= �
i

+ u
i

and the triangle inequality we obtain that
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� x̂n

c,i
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i

� �
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+ u
i

+ �
i

� x̂n

c,i
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c,i
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i
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� x̂n
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k. (D.108)
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If condition (3.70) is violated then x̂n

c,i

= �
s,i

. Thus, we have

k�
i

� x̂n

c,i

k = k�
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, (D.109)

for c
o

� 5 relations (D.108) and (D.109) imply that
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 4c
o

r̄
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(D.110)

Let us assume now that condition (3.70) is satisfied and that Case 1) holds at the

decoder, i.e., a1 = 0 or a2 = 0 or a3 = 0. Then
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. (D.111)

Let us consider now i = 1. Using (3.80) and the triangle inequality we obtain that
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a

k, (D.112)

where (a) is based on using (3.76), (3.77) and (3.78). The last inequality is based on

k�1 � �
s,1k  r̄(��1

i

(0))  3c
o

r̄
s

and on Lemma 4.

Using the fact that �̃
s

= �̃
s/3� ⌧̃ from (3.74), (3.75) and using the triangle inequality
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leads to
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s
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Using (3.74) in conjunction with the triangle inequality leads to
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Where the last inequality follows from (3.70). Now we will derive an upper bound

for k�̃
a

k and k�̃
c

k. Note that �̃
a

= Q
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(u1 � u2)� (u1 � u2)modQ
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Similarly, we obtain

k�̃
c

k  3r̄
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. (D.116)

Plugging (D.114) and (D.116) in (D.113) and using the fact that r̄
s

= 3c2
o

r̄
in

leads to
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3
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Now we will evaluate the following term
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Using (3.74) in conjunction with the triangle inequality leads to
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where the last equality follows from (3.70) and (D.116). Plugging (D.119) in (D.118)

and using the fact that r̄
s

= 3c2
o
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in

leads to
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Plugging (D.117), (D.115) and (D.120) in (D.112) leads to
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Combining now the above inequality with (D.111), (D.108) we obtain that
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, (D.122)

for c
o

su�ciently large. The proof for i = 2, 3 and for the remaining cases follows

along the same lines.
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Proof of Lemma 6

Let us fix i. Denote W̃(�
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f

) , {xn

i

2 Rn|Q
in

(Q
c

(xn

1 )) 2 V
f

(�
f

)}. Clearly, ⌫(Ṽ(�
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if xn 2 Ṽ(�
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). Then according to Lemma 7, we have that f
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where the last relation is valid in view of Sche↵e’s theorem Sche↵é (1947). Further,

since the density f
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), we obtain that
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where (c) follows from (D.123) and (d) is based on relation (D.124) and on the fact

that ⌫
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)). Finally, it is easy to see that ⌘1 ! 1 and ⌘2 ! 1 as (3.108) holds,
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+ 2r̄
c

r̄
f

◆
log2 co =

✓
5✓r̄

in,o

+ 2✓r̄
c,o

c
o

✓r̄
in,o

◆
log2 co ! 0 as (3.108) holds.

This observation concludes the proof.
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