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Abstract

In this thesis we propose two lattice-based robust distributed source coding systems,
one for two correlated sources and the other for three correlated sources. We provide
a detailed performance analysis under the high resolution assumption. It is shown
that, in a certain asymptotic regime, our scheme for two correlated sources achieves
the information-theoretic limit of quadratic multiple description coding (MDC) when
the lattice dimension goes to infinity, whereas a variant of the random coding scheme
by Chen and Berger with Gaussian codes is 0.5 bits away from this limit. Our anal-
ysis also shows that, under the same asymptotic regime, when the lattice dimension
goes to infinity, the proposed scheme for three correlated sources is very close to the
theoretical bound for the symmetric quadratic Gaussian MDC problem with single

description and all three descriptions decoders.
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Notation and abbreviations

CEO Chief Executive Officer

RDSC Robust Distributed Source Coding

MDC Multiple Description Coding

MDLVQ Multiple Description Lattice Vector Quantizer
X Random variable X

X Alphabet of X

E[] Expectation operator

RD Rate-distortion region

H() Entropy

h(-) Differential entropy

I(+-) Mutual information

LMMSE Squared distortion induced by the Linear Minimum Mean Squared

error Estimate

0% Variance of X

" Row vector

R n-dimensional Euclidean space
-] Norm

(-, ) Inner product
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Volume of a measurable set

A n-dimensional lattice

Generator matrix
Qa(:) Nearest-neighbor quantizer
A Lattice point
Va(+) Voronoi region
S Closure of set &
™ mod A Modulo-lattice operation
B, Open ball of radius r
TA Covering radius of the lattice A
A Inscribed radius of the lattice A
G(+) Normalized second moment
N(Ay: Ay) Index of Ay with respect to Ay
D(Q, X™) Per sample expected distortion
A, Central lattice
Ay Side lattice
A Intermediate lattice
Agj2, Ng)3 Fractional lattice
K Index of A;, with respect to A,
M Index of A, with respect to A;,
P[] Probability
T Set of coset representatives of A, relative to fractional lattice
u Set of coset representatives of A, relative to A;,
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Chapter 1

Introduction

Distributed source coding is a crucial category of source coding problems, which has
received significant attention over the past few decades. In distributed source coding,
multiple correlated sources are encoded separately and sent to a central decoder
for joint decoding. For the case when the central decoder is required to recover
both sources losslessly, Slepian and Wolf (Slepian and Wolf, 1973) characterized the
achievable rate region. The case when one source is available as side information at
the decoder, while the other source may be recovered with some distortion, was solved
by Wyner and Ziv (Wyner and Ziv, 1976). A general formulation of the distributed
source coding problem in the lossy case was provided by Berger (Berger, 1978) and
Tung (Tung, 1978). However, the solution has been found only in certain special
cases (Berger and Yeung, 1989; Oohama, 1997; Wagner et al., 2008; Wang et al.,
2010; Wang and Chen, 2013, 2014).

A closely related problem is the CEO problem introduced in (Berger et al., 1996),
where the correlated sources are noisy observations of a single remote source, whose

reconstruction is required at the joint decoder. The rate-distortion region for this
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problem has been completely characterized in the quadratic Gausian case by Oohama
(Oohama, 2005) and Prabhakaran et al. (Prabhakaran et al., 2004).

Most of past work assume that the central decoder receives the information sent by
all separate encoders. However, in practice this may not be true. For instance, in the
case of wireless communications, the quality of the channels may be fluctuating. If the
quality of the channel connecting some encoder with the fusion centre becomes very
weak, the decoder is no longer able to recover the transmitted information. In such
cases a robust system is desired. The robust version of the distributed source coding
problem was considered in the CEO setting by Ishwar et al. (Ishwar et al., 2005)
and Chen and Berger (Chen and Berger, 2008). The design of practical schemes
was addressed in (Saxena et al., 2006; Saxena and Rose, 2010; Wu et al., 2016),
where iterative algorithms were employed for locally optimal designs. On the other
hand, the work of Heegard and Berger (Heegard and Berger, 1985) considers the
robust version of the Wyner-Ziv problem and provides a characterization of the rate-
distortion region.

The robust distributed source coding (RDSC) problem for the case of two and
three correlated sources is considered in this thesis. We propose a structured coding
schemes based on lattices and provide a detailed performance analysis under the high
resolution assumption. Note that when the sources are identical, the setting being
considered coincides with that of the classical multiple description coding (MDC)
problem (Ozarow, 1980; Wolf et al., 1980; Gamal and Cover, 1982; Ahlswede, 1985;
Zhang and Berger, 1987; Wang et al., 2011b; Wang and Viswanath, 2007, 2009; Chen,
2009; Song et al., 2014). Our analysis of the scheme for two sources indicates that, in

a certain asymptotic regime, the performance of the proposed lattice-based scheme
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approaches the information-theoretic limit of quadratic multiple description coding
when the lattice dimension goes to co. For comparison we consider a variant of the
random coding scheme originally proposed by Chen and Berger (Chen and Berger,
2008) for the robust CEO problem and prove that the sum-rate of the latter system
with Gaussian codes is 0.5 bits away from the sum-rate of our proposed approach
in the same asymptotic regime. The asymptotic analysis of the scheme for three
sources shows that when the lattice dimension approaches infinity, its performance at
high resolution is close to the information theoretic limit of the symmetric Gaussian
quadratic MDC problem, when only single description decoders and all descriptions
decoder are of interest. Specifically, the gap in sum-rate is only 0.207 bits.

Our design is inspired by the prior work on multiple description lattice vector
quantizers (MDLVQ) of Vaishampayan et al. (Vaishampayan et al., 2001) and Huang
and Wu (Huang and Wu, 2006). It is worth pointing out that lattices have been used
in prior work in other distributed source coding problems (R. Zamir and Erez, 2002;
Servetto, 2007; Krithivasan and Pradhan, 2009; Reani and Merhav, 2015). Most of
the aforementioned papers use dithered lattice quantization, except for the work of
Servetto (Servetto, 2007), which performs the analysis under the assumption of very
high rate and very high correlation.

The thesis is structured as follows. In Chapter 2, we analyze the performance
of a random-coding-based RDSC scheme (similar to the one proposed in (Chen and
Berger, 2008)) with Gaussian codes and prove that it does not achieve the information-
theoretical limit of quadratic MDC in a certain asymptotic regime. We propose a
lattice-based robust distributed source coding system for two correlated sources. The

asymptotic performance analysis of this lattice-based scheme shows that it is able to
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achieve the fundamental limit of quadratic MDC in the aforementioned asymptotic
regime. We point out that the work in chapter 2 has been submitted for publication.
The paper containing the results in chapter 2 is currently under review for possible
publication in IEEE Transactions on Information Theory. The Chapter is structured
as follows. Section 2.2 intruduce the formulation of the RDSC problem. In Section
2.3 we analyze the performance of a random-coding-based RDSC scheme (similar
to the one proposed in (Chen and Berger, 2008)) with Gaussian codes. Section 2.4
presents definitions and notations related to lattices. In Section 2.5 we introduce
a lattice-based RDSC scheme. The asymptotic performance analysis of this lattice-
based scheme is presented in Section 2.6. Finally, Section 2.7 concludes the Chapter.

In Chapter 3 we present a coding scheme based on lattices for three correlated
sources and provide the performance analysis under the high resoluion assumption.
Our analysis shows that the performance at high resolution of the proposed scheme
is very close to the information theoretic limit of the symmetric Gaussian quadratic
MDC problem with single description and all descriptions decoders. Chapter 3 is
structured as follows. In Section 3.2 we present the problem formulation. Section
3.4 presents a structured coding scheme based on lattices for RDSC problem for the
case of three correlated sources. The asymptotic performance analysis of this lattice-
based scheme is carried out Section 3.5 . Finally, Section 3.6 contains the conclusion.

Finally, Chapter 4 concludes the thesis.



Chapter 2

Lattice-based Robust Distributed
Coding Scheme for Two Correlated

Sources

2.1 Introduction

In this chapter we propose a lattice-based robust distributed source coding system
for two correlated sources and provide a detailed performance analysis under the high
resolution assumption. It is shown that, in a certain asymptotic regime, our scheme
achieves the information-theoretic limit of quadratic multiple description coding when
the lattice dimension goes to infinity, whereas a variant of the random coding scheme
by Chen and Berger with Gaussian codes is 0.5 bits away from this limit.

The chapter is structured as follows. Section 2.2 presents the formulation of the
RDSC problem. In Section 2.3 we analyze the performance of a random-coding-based

RDSC scheme (similar to the one proposed in (Chen and Berger, 2008)) with Gaussian

5
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Figure 2.1: Block diagram of robust distributed source coding.

codes and prove that it does not achieve the information-theoretical limit of quadratic
MDC in a certain asymptotic regime. Section 2.4 presents definitions and notations
related to lattices, while Section 2.5 introduces a lattice-based RDSC scheme. The
asymptotic performance analysis of this lattice-based scheme is carried out in Section
2.6, which shows, among other things, that it is able to achieve the fundamental limit
of quadratic MDC in the aforementioned asymptotic regime. Finally, Section 2.7

concludes the Chapter.

2.2 Problem Formulation

Consider two sources X; and X, with joint probability distribution fx,x,. The two

sources generate a jointly ii.d. random process (Xiy, Xox) We will consider

keN'
an RDSC system as illustrated in Figure 2.1. The system consists of two encoders
and three decoders. Encoder i, ¢+ = 1,2, has access only to source X;, while the

side decoder i, i = 1,2, receives only the information sent by encoder 7 and aims at
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reconstructing source X;. The central decoder receives the information from both
encoders and aims at reconstructing both sources X; and Xs.

For each i = 1,2, let d; : &; X /'\?Z — [0, 00) be a distortion measure, where &; and
X, are the source alphabet and the reconstruction alphabet for source X;, respectively.

The distortion measures are extended to sequences of length n as follows
1 n
di(x}, 2}) = - ; di(Ti ks Tik),

where .1'7 - (xi,la e 7xi,n)7 :i';l = (i'i,h e 7:2'1',71)'
A six-tuple (R, Ry, ds1,ds2,dc1,d.2) is said achievable, if for any € > 0 and all

sufficiently large n, there exist encoding functions
fz(n) . X‘Zn N {17 27 cee L2TL(R¢+E)J}’ i = 17 27
and decoding functions

gg;) : {1727 cee LQn(Ri—Fe)J} . ‘)E'inj i=1,2,

gg;) {1,2,---, LQn(R1+€)J} x {1,2,--, LQn(RQ—Fe)J} N /’%in, i=1.2,

such that
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where E[-] denotes the expectation operator and

sz = gt(z)(f-(n)(Xf)), 1=1,2, t=s,c.

(2

The RDSC rate-distortion region, denoted by RD, is the set of all such achievable
six-tuples.

Furthermore, if Y is a random variable over some discrete alphabet ), with
probability mass function py, and E[—log, py| is finite, then the entropy of Y is
H(Y) £ E[-log, py]. If X™ € R" is a continuous random variable with pdf fy», and
the quantity [, fxn»(z")log, fxn(2™)dz" is finite, then the differential entropy of X"

is h(X™) 2 — [ fxn(a™) logy fxn(a™)da.

2.3 A Random-coding-based RDSC Scheme

In this section we adapt a random coding scheme originally proposed by Chen and
Berger (Chen and Berger, 2008) for the robust CEO problem to the current setting
and analyze the asymptotic performance of this scheme when specialized to the MDC

scenario.

Theorem 1 We have RD;, C RD, where RD;,, denotes the set of rate-distortion tu-
ples (Ry, Ra,ds1,ds2,de1,d.2) for which there exist auziliary random variables Uy, Uy, Wy, Wy
(jointly distributed with the generic source variables X1 and Xs) satisfying the follow-

g Markov chain

W1HU1 HX1HX2<—>U2<—>W27 (21)
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and deterministic mappings gs; : Wi — 2&, Gei - UL X Uy — ?%i, 1= 1,2, such that

Ry = I(Xy; Wh) + 1(X0; U |Uz, Wi, Wa),

Ry > I(Xo; Wa) + 1(Xa; Us|Uy, Wi, Wa),

Ry + Ry > I(Xy; Wh) + I(Xo; Wa) + I( Xy, Xo; Uy, U |[Wh, Wa),

dsi > E[di(Xi, g5:(W3))], =12, (2.2)

dc,i Z E[di(Xiagc,i(Ula UQ))]? 1= 17 2. (23)

The inner bound RD;,, in Theorem 1 is achievable by the following random coding
scheme. Roughly speaking, encoder i produces (W;, U;), where W is a (lossy) descrip-
tion of X;, and U; is a refinement of W;, i« = 1,2. Moreover, W; is encoded using
the conventional lossy source code while U; is encoded using the Berger-Tung code
(Berger, 1978; Tung, 1978) with (W, W5) as the decoder side information, i = 1, 2.
Side decoder i can recover W; and use g,;(W;) as an estimate of X;, i = 1,2. The
central decoder can recover (U, Us) (as well as (Wy, Ws)) and use g.;(Uy, Us) as an
estimate of X;, ¢ = 1,2. The proof of Theorem 1 is similar to (Chen and Berger,
2008, Theorem 1) and is thus omitted.

In the rest of this paper, we assume X} = Xy = 221 = 2\?2 = R and adopt the
squared distance as the distortion measure unless specified otherwise. To facilitate
the evaluation of the achievable rate-distortion tuples in Theorem 1, we shall focus
on so-called Gaussian codes (in the sense of (Zamir, 1999)), which correspond to the

following construction. Let
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where Zy, Zy, Z,, Z, are zero-mean mutually independent Gaussian random variables
and are independent of (X7, X5). It is clear that Uy, Uy, Wi, Wy constructed according
to (2.4) satisfy the Markov chain condition (2.1). Moreover, we restrict gs; and g,

i =1,2, to be linear MMSE estimators; as such, (2.2) and (2.3) can be rewritten as

de; > LMMSE(X;|Uy, Us), i=1,2, (2.6)

where LMMSE denotes the squared distortion induced by the linear MMSE estimate.

Now consider the special case where X; = Xy = X, dy1 = ds2 = ds, and d.; =
dco = d.. This is exactly the setting of the symmetric MDC problem. We shall
assume that the source variable X is of mean zero, variance %, and finite differential
entropy h(X). It is well-known (see, e.g., (Zamir, 1999; Chen et al., 2006)) that in

the asymptotic regime

ds = 0,— — 0, (2.7)

S

the minimum sum-rate of symmetric multiple description coding is given by

Run(ds, d.) = 2h(X) — %log2(4(27re)2dsdc) +o(1). (2.8)

We shall show that in the same asymptotic regime the minimum sum-rate of the

random-coding-based RDSC scheme in Theorem 1 with Gaussian codes as defined by

10
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(2.4)-(2.6) is given by
Ric(de, d,) = 2h(X) — %10g2(2(27r6)2d5dc) o(1), (2.9)

therefore is 0.5 bits away from the fundamental limit.

First note that in the current setting (2.5) and (2.6) can be written equivalently

as
1 1 -
2| 5+5—=] ,» i=12 (2.10)
ox 0Oz + Oy
1 1 1\
de > <—2+T+T> ; (2.11)
Ox 09z 07,
which implies
03, + 0y < (L+o(1)d, i=1,2, (2.12)
2 2
92,92,
< (1+o(1))d., (2.13)
0% + 0%,

in the asymptotic regime (2.7). It can be verified that

T(X W) 4 T(X; Wa) + (X5 Uy, Ug| W, W)

= I(X;Wh) + [(X: W) + I(X; Uy, Up) — I(X; Wy, Ws)

=h(W1) — h(Z1 + Z7) + h(Wy) — h(Zy + Z5) + h(Uy, Us) — h(Z1, Z5)
— h(Wy, Wh) + h(Zy + Z1, Zy + Z3)

- h(Wl) —f‘ h(Wg) + h(Ul, U2> - h(Zl, ZQ) - h(Wl, Wg) (214)

11
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We have

WUy, Us) — h(Wy,Wa) = —1(Z], Zy; X + Z1 + 27, X + Zy + Z3)
=—1(Z,Zy; 2, + Z1 — Zy — Zy, X + Zs + Z))
=—I(Z1,2y, 7, + Zy — Zy — Z3)

Substituting (2.15) into (2.14) gives

— (2, Zy; X + Zo+ Z4| 21 + Z — Zo — Z3). (2.16)
Note that

W2y, Zo) + 1(Z], Zh: 2y + 7, — Zo — Zb)
= W21, Zs) + W(Z1 + Z}, — Zy — ZL) — (21 — Zs)

1 ((27T6)20%1 0%,(0%, + 0% + 0%, + a%))

~ 9 log,

2 2
0z, t07,

< L log, (2(27e)?dyd.) + o(1) (2.17)

2

12



Ph.D. Thesis - Dania Elzouki McMaster - Electrical and Computer Engineering

in the asymptotic regime (2.7), where (2.17) is due to (2.12) and (2.13). Moreover,

I(Zy, Zy; X + Zoy + Zo| 2y + 7y — Zy — Zy)
= WX+ Zy+ Z| 2y + 7} — Zy — ZY) — W(X + Zo + Z| 20 + Z} — Zy — Zb, Z}, Z3)
= WX + Zy+ Z3|Zy + Z1 — Zy — Z4) — WX + Zo|Zy — Z,)

= WX + Z)) — h(X + Z), (2.18)

where Zy = Zy + Zy — B[ Zy + Z4| 2y + Z} — Zy — Zb) and Zy = Zy — E[Z5|Z, — Z). Tt

can be shown (Linder and Zamir, 1994) that in the asymptotic regime (2.7)

MZi) = h(X) +o(1), i=1,2
which together with (2.16), (2.17), and (2.18) proves that

1
HXﬂ%)+HXﬂ%)+IQﬁMJAWMJ%)EZMX)—ib&(%%mf@%)+dU.

The tightness of this lower bound can be established by choosing O'%i, 02, 1 =1,2,
that satisfy (2.10) and (2.11) with equalities. This completes the proof of (2.9).
There are two possible reasons why the performance of this random-coding-based
RDSC scheme with Gaussian codes, when specialized to the symmetric MDC setting,
is bounded away from the fundamental limit. Firstly, the restriction to Gaussian
codes might be suboptimal. Secondly and more importantly, the random-coding-

based RDSC scheme itself might be suboptimal. It is well known (Ozarow, 1980;

Gamal and Cover, 1982) that the El Gamal-Cover (EGC) inner bound is tight for

13
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the quadratic Gaussian MDC problem. However, the inner bound RD;,, in Theorem
1, when specialized to the MDC setting, does not (at least expression-wise) coincide
or subsume the EGC inner bound, therefore is unlikely to be tight. For the EGC
inner bound, no Markov chain condition is imposed on the relevant auxiliary random
variables. On the other hand, it is very difficult (if not impossible) to establish a
single-letter inner bound of RD without a Markov chain condition similar to (2.1).
In other words, the conventional random coding argument seems to fall short of
providing a RDSC scheme that does not have a performance gap when specialized to
the MDC setting. This motivates us to develop an alternative RDSC scheme based

on lattices that is able to close the gap in the MDC scenario.

2.4 Lattice-related Definitions and Notations

Before introducing the proposed scheme we need to clarify the lattice-related defini-
tions and notations to be used throughout this work, which is the purpose of this
section.

We will denote by z™ row vectors in R™. For z" = (z1,---,2,) € R and y" =
(Y1, ,yn) € R™ let (z™ y™) £ 30" 25y, and [|2"]| £ \/W We will use 0 for
the all-zero n-dimensional vector. For any set S C R", any ¢ € R, and any x" € R",

denote

"+ S & {a"+ "yt € S,

oS = {oy"|y" € A}

14
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If S is a measurable set then v(S) denotes its volume, i.e.,

V(S) 2 /8 dz".

An n-dimensional lattice A is the set of all possible integer linear combinations of the

rows of G, for some n X n non-singular matrix G. In other words, we have
AE{NeER\N=i-G,i€Z"}.

The nearest-neighbor quantizer associated with the lattice A is a function Q4 (-) which

maps each 2" € R™ to its nearest lattice point, i.e.,
ny A . n
Qa(x™) —argr)@£||x All. (2.19)

For every A € A the set of all points mapped by Q to A is the Voronoi region Vy(\)
of X in A. Note that the ties in (2.19) are broken in a systematic manner such that

the following relation holds
VA(A) = A+ V4(0), VAeA.

For any set S C R”, let S denote the closure of the set S, i.e., the union of S with

its boundary. Then, the following holds
Va(A) = {z" € R"|||z" — A|| < ||l2™ = X|| for any X € A}.
It is worth pointing out that, according to our definition of the Voronoi region, which

15
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follows (Zamir, 2014), not all the points on the boundary of Vj(A) are included in

Va(A), therefore Vi (N) # Vi (N). We say that two Voronoi regions Vi (A1) and Vi (\2),
where A1, Ay € A, are adjacent, if their closures have points in common.

Further, for any x™ € R" define
2" mod A £ 2™ — Qu(2™).

A fundamental cell of the lattice A is a bounded set Cy which, when shifted by the
lattice points, generates a partition of R" (Zamir, 2014). In other words, the sets
A+ Cy, for all A € A, form a partition of R”. All measurable fundamental cells of a
lattice have the same volume (Zamir, 2014). This value is denoted by v, and we have
va = v(Va(0)). Further, for any set S C R”, denote

“I

7(S) £ sup ||
znes

The open ball of radius r, centered in the origin is denoted by B,, i.e.,
B, & {z" € R"|||2"|| < r}.

The covering radius of the lattice A is 7y = 7(V4(0)). Additionally, we will denote by
ra the inscribed radius of the lattice A, which is defined as the radius of the largest

ball centered at the origin and included in V4 (0).

The normalized second moment of a measurable set S C R” is defined as

A fs ||5En||2d$

nu(8)att

G(S)

16
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It is important to notice that the normalized second moment is invariant to scaling.
The normalized second moment of the lattice A, denoted by G(A), is the normalized

second moment of the Voronoi region of 0, i.e.,
G(A) = G(VA(0)).

A pair of lattices (A1, Ag) are said to be nested if Ay C Ay, i.e., if Ay is a sublattice

of A;. The lattice A is termed the fine lattice, while A5 is termed the coarse lattice.

The index of Ay with respect to Ay is N(Ay : A) = Zﬁ—Q For any \; € Ay, the set
1

A1+ As is called a coset of Ay relative to Ay. A set L C Ay is called a set of coset

representatives of Ay relative to A; if the following two conditions hold

A = Uy e (M +Ay),

(A 4+ A) N (A + Ag) =0 for any \; £ N\ € L.

The above conditions imply that any point A\ € A; can be written in a unique way
as A = A\ + Ay where \; € £ and Ay € As. As shown in (Zamir, 2014), if Cy is
a fundamental cell of the coarse lattice Ay then the set Cy N Ay is a set of coset
representatives of Ay relative to Aj.

We use the squared error as a distortion criterion. For any quantizer () defined
on R™ and any random variable X" € R™ we denote by D(Q, X™) the per sample

expected distortion, i.e.,

D(Q.X") 2 TE [ Qx™) — X" |[].

17



Ph.D. Thesis - Dania Elzouki McMaster - Electrical and Computer Engineering

2.5 Proposed Lattice-based RDSC Scheme

We will assume for the rest of the paper that the marginal probability density func-
tions (pdf) fx, and fy, are continuous with finite marginal differential entropies
h(X;) and h(X,). We assume that X; and X, have mean zero, variance o% and
correlation coefficient p.

The proposed coding scheme uses four nested lattices in R": A, C Agp C Ay, C
A.. The finest lattice, A., is called the centrallattice. The central lattice points will be
used for the reconstruction at the central decoder. The coarsest lattice, Ay, is called
side lattice since it is used for the reconstruction at the side decoders. The lattices A;,
and A,/ are auxiliary lattices used in the design. A;, is called the intermediate lattice
and it is chosen such that to satisfy a requirement which will be revealed shortly. The
lattice Ay is called the fractional lattice and it is defined as A, /o = %As. We point
out that Ay = cAy, for some even positive integer c. Therefore, A,/; defined as above
is also a sublattice of As,. Let us denote K = N(Ay, : A.) and M = N(A, : Ay). Tt
follows that M = c".

In order to simplify the notation we will use in the sequel only the subscript c,
in, s/2, respectively s, instead of A., Asn, Ag/2, respectively A,. For instance, we will
use 7. instead of 7, for the covering radius of A..

Let A,/» denote the smallest distance between two points belonging, respectively,
to the closures of two non-adjacent Voronoi regions. We assume that the coefficient

c is large enough so that the following condition holds

AS/Q > 3Tin- (220)
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The above condition is needed for proper operation at the central decoder, as it will
be seen in the proof of Proposition 1.

Another important parameter in our construction is rqg > 0. Our scheme is de-
signed such that when the input sequences =7, z§ are within the distance ry from
one another, the central decoder is able to refine the reconstruction of each source
using the information received from the other encoder. On the other hand, when
the above condition is violated, the reconstruction at the central decoder has essen-
tially the same quality as the reconstruction at the side decoder. For this reason the
probability

P(ro) = P[X3 — X7 ¢ By] (2.21)

plays a crucial role in the performance of our scheme. As we will see in the next section
the choice of ry governs the trade-off between the quality of the reconstruction at the
central decoder and the encoder sum-rate.

The choice of the lattice A;, is related to the value ro. More specifically, A;, is

chosen as a sublattice of A. satisfying the condition

To + 2770 S Tin-

Recall that r;, denotes the inscribed radius of the lattice A;,. The reason for the
above requirement is to ensure that the inequalities specified in the following result

hold, since they are essential in the operation of the proposed scheme.
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Lemma 1 If 2§ — 2} € B,,, then

1Qc(2}) — Qe(a3) || < Tim,

Let A.; 2 Q. (27), and \; = Qin(Aei), for i@ = 1,2. Using the triangle inequality

repeatedly, one obtains that
[ Aex = A2 I Aex =27 || + 12t — 25 | + | 25 — Az [[< 70+ 27 < 7in.
Additionally,
[ A =22 IS A = Aca |+ 11 Aep = Aea [ + ] Aez = A2 [|< mim + 2750 < 3T,

which completes the proof.

Further, we will define two labeling functions 3; : A;, — A, for i = 1,2. For this,
we need to introduce some more notations as follows. Let T £ Vi(0) N Ayjo. Then T
is a set of coset representatives of A, relative to Ay/s. Thus, we have [T = N(A, :
Ag2) = 2™ and

As/2 = U (T+A5)
TET

It can be easily seen that the set U,c7Vs/2(7) is a fundamental cell of A,. Denote
UE UV, /2(7) M Ay, Then U is a set of coset representatives of A, relative to Ayy,

which implies that [U| = N(As: Ayn) = M and

A= A+

AelU
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We will first define 3; for A € U as follows

Bi(A) Zc(A—7), Ba(N) 227 —c(A— 1), (2.22)

where 7 = Qg/2(\). Further, the mappings 3; and (3, are extended to A;, using
shifting. For this, for arbitrary A € Ay, let Ao = Qg/2(N), e, A € V;a(As/2). Then
there is a unique pair (7, A;) € T x A, such that A\;/» = A + 7. More specifically, we
have A\; = Qs(Xs/2) and 7 = ;2 mod A,. Then we define

BiA) = BN = A) + As =c(A— Ay —7) + A,

Bo(A) £ Bo(A = Ag) + A5 =27 — (A — s — 7) + As.

The above definition implies that the mappings 3; satisty the shift-invariance property,

i.e., that

BiA+A) =Bi(N)+ X, VA€M, VYN €A, i=12

The shift-invariance property further leads to the following relations, for i = 1, 2,

B7H(As) = B71H0) + Ay, VA, € Ay, (2.23)

B71(0) = {A— BVA e U (2.24)

Relation (2.23) is obvious. In order to prove (2.24) consider X € A;,, and let (A, ;) €
U x A, be the unique pair such that ' = A+ \,. The shift-invariance property implies
that B;(\) = 5;(A) + As, which leads to Ay = 3;(\) — 5;(\). Further, we obtain that
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N = XA+ B;(N) — Bi(\). Consequently, the equality 5;(\) = 0 is equivalent to
N =X = B;(N\), fact which proves the claim.

We point out that the construction of the mappings 5; and [y was inspired by
the index assignment o = (ay,as) used in MDLVQ (Vaishampayan et al., 2001;
Huang and Wu, 2006), in two ways: 1) by defining the mappings on a set of coset
representatives first and then extending them by shifting; 2) by imposing the condition
that 31 (A) + B2(N) = 2Qs/2()) for each A € A;,. On the other hand, it is important
to note that we cannot simply use the mappings ay,as : A;, — A, that define the
index assignment for MDLVQ! in (Vaishampayan et al., 2001; Huang and Wu, 2006)
in place of our mappings i, (2, since the requirement at the central decoder in our
case is stronger than for MDLVQ. In particular, based on a received pair of side
lattice points Ag 1, Ag2, the central decoder of the MDLVQ uniquely identifies a point
A € Ay, such that (ag(A), a2(A)) = (As1, As2). However, as we will see shortly, the
central decoder in our scheme needs to uniquely identify two points Ay, Ay € A;,, such
that (51(A1), B2(A2)) = (Asi1, As2), using the additional knowledge of A\; — Ag. Using
the pair of mappings (a1, as) designed for the MDLVQ in place of (3, 52) does not

guarantee that the latter requirement is satisfied.

2.5.1 Proposed Scheme

Before describing the details of the proposed scheme we need the following discussion.
Let us denote \; = Qin(Qc(z})), for i = 1,2. Our scheme is designed such that side
decoder ¢ will be able to recover (;();) always, while the central decoder recovers

Aei = Qc(2}), for © = 1,2, when the input sequences are sufficiently close, i.e., when

'The lattice A;, takes here the place of the central lattice on which the index assignment is
defined for MDLVQ.
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Figure 2.2: The set C(\y/2) is the region between the two hexagons in the Figure.

xy — a2t € B,,. However, for the central decoder to achieve this goal some additional
information needs to be transmitted beside 8;(A1) and fa(A2). The amount of this
additional information is smaller when \; and Ay are both in the same Voronoi cell of
the lattice A,/2. Encoder ¢ is not able to determine all the time if this is the case or
not, since it does not have knowledge of the other source sequence. However, based
on Lemma 1, if A; € V/2(As/2) and the distance from A; to the boundary of V;/5(As/2)
is not smaller than 37;,, then encoder i can infer that the other sequence is also in

Vij2(Asj2) when o8 — 27 € B,,. Thus, we define the set

C = Uy, en, ,.C(As ), where C(Ay2) = Vipa(Asja) \ (A2 +9V52(0)),  (2:25)
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3Fin
9
Ts/2

for v £ 1 — as shown in Figure 2.2. According to Lemma 1, if \; ¢ C, then A;_;
is in the same Voronoi cell of A,/ as A;, when 23 — 27 € B,,. Now we are ready to
present the details of the encoder and decoder operation.

Encoder. Encoder ¢, for 7 = 1,2, operates as follows. First the input sequence z7'
is quantized to the closest central lattice point A.; 2 Q.(27). Next, the point Aci 18
quantized to the closest point in the lattice A;,, \; = Qin(Aei). Let u; £ Aci mod Ay,
and A, £ B:()\;). Then encoder i outputs A, ;, u; and b;, where b; = 1 if \; € C and
b; = 0 otherwise. Moreover, if b; = 1 encoder i also transmits 7; = Q, /2(Ai) mod As.
The first component, A, ;, will be used at the side decoder 7, therefore, it is compressed
using entropy coding before transmission. On the other hand, w; and uy are used
only at the central decoder, therefore they will be compressed using Slepian-Wolf
coding. Finally, b; and 7; will also be used only at the central decoder, thus they may
be compressed using Slepian-Wolf coding. However, we will use entropy coding to
encode b; and fixed length codes for 7; for simplicity of analysis, since, as we will see
shortly, the rate overhead is negligible asymptotically.

Decoder. Side decoder i, for ¢ = 1,2, outputs the reconstruction 7, £ As,i- The

central decoder recovers both values A ; and A 2, and additionally, u, ug, by, by. First

the decoder checks if the following condition is satisfied
[Asi = As2ll < (84 )T + 374, (2.26)

If the condition is violated then the decoder concludes that 2§ —z7 ¢ B,,, and outputs
As;i as the reconstruction for source i, i.e., 7, = s, for ¢ =1, 2.

If condition (2.26) is satisfied the decoder assumes that x5 — 27 € B,,, and it
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proceeds as follows. First the following is computed

5\ £ Qm(ul - Uz)-

(2.27)

Next the decoder proceeds based on the values of b; and by, and of 7, and 7 (if

applicable), according to the following cases.

1) If by = 0 or by = 0 the decoder evaluates

5‘S/2 £ 1/2(As1 + A2 + 05\), & :\3/2 mod A,

5\1 = 5\5/2 + %()\s,l - :\5/2 + 7-)7 5‘2 < 5\5/2 + %(7: + 5\8/2 a )\8’2)7

and outputs the reconstructions 7, 2N\ +ug, fori=1,2.
2) If by = by = 1 and 7, = 75 the decoder proceeds as in case 1).

3) If by = by =1 and 71 # 75 then the decoder computes

/Dé1/2()\3’1+)\572+CS\_2T2_C(T2_7-1)), @Déf)mod As,
w — QS<UAJ + %(TQ — Tl)),
AN 20— (c+Dw, N 2N + 20,

)\1 é /N\s +T1 + %()\371 — 5\5), 5\2 é 5\/5 + T2 + %(27’2 + 5\; — )\3’2).

Finally, the reconstructions are computed as z; 2\ + u;, for i =1, 2.

Proposition 1 Let A\.; £ Q.(z7), Ni 2 Qin(Mci), i = Aoy mod Nipy, Ny =

(2.28)

(2.29)

(2.30)
(2.31)
(2.32)

(2.33)

Bi(Ai)

and 7, & Qs/9(N\;) mod A, for i = 1,2. Then when z% — 27 € B, and the Slepian-
/ 2 1 0

Wolf decoding of uy and uy is successful, we have Ty, = A4, for v =1,2.
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Proof: Assume that 2§ — 27 € B,, and that the Slepian-Wolf decoder employed at
the central decoder is able to recover u; and us correctly. First we need to prove
that condition (2.26) is satisfied. To this end we first show that the following relation
holds

F(B710)) < (4 + ¢/2)7,. (2.34)

Note that relation (2.24) leads to
(871(0)) < F(U) +7(B,U)). (2.35)

Further, since 7" C V;(0) and V;,2(0) C V,(0) we obtain that U C U.er(74V;/2(0)) C
2V4(0). Thus, 7(U) < 27,. Moreover, from the definition of §; given in (2.22), we
obtain that 7(5;(U)) < 27(T) + crsj2 < 275 + ¢Fyj2. The above discussion, together
with relation (2.35) and the fact that 7/, = 1/27,, implies (2.34).

By applying the triangle inequality and the fact that [|A — 8;(\)|| < 7(571(0)),

together with Lemma 1, we obtain

A1 = Asall < MAsr = Al + 120 = Aol + [IAe = As2ll < 27(671(0)) + 37in.

By combining the above with (2.34) relation (2.26) follows.

Using Lemma 1 and the fact that A\.; = A\; + u;, @ = 1,2, we obtain that

Tin > [[Aeq = Acall = [Jur —ug — (A2 — A1),

which, together with the fact that Ay — \; € Ay, implies that u; —ug € Vi, (A2 — Ay),

i.e., Ada — A1 = Qin(ug — ug). This further implies that A computed in (2.27) satisfies
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the equality
A= — AL (2.36)

Let \, £ Qs(Qs/2(A1)) and X, £ Qs(Qs/2(A2)). Using the fact that 7; £ Qs/2(A;) mod Ay,
for i = 1,2, it follows that Ay € V;o(As +71) and Ay € V;2(\, + 72). Moreover, since

Asi = Bi(\;) for ¢ = 1,2, we obtain that
A1 =cM =X —=71)+ A As2=A, 42 —c(ha— X, —m).  (2.37)

Assume now that case 1) holds. According to Lemma 1 we have A\; + 71 = X, + 7.
Since 11,75 € T it follows that Ay = X, and 77 = 7. Using further equations (2.28),
(2.36) and (2.37) we obtain that ;\5/2 = A\s + 71. This implies that 7, = ;\5/2 mod A,
i.e., 7 = 7. Equations (2.29) imply that X\; = )\; and further that T, = Ay, for
i=1,2.

Assume now that by = by = 1. Recall that according to Lemma 1 we have
A1 — A2]| < 373, Condition (2.20) further ensures that [[A\; — Xaf| < A,/, which
implies that V;/o(As 4+ 71) and V;/o(X] + 72) are either identical or adjacent. Further,
if 71 = 7 it follows that A, + 7 — (A;+71) € As. Thus, V;o(As+71) and Vjo(N, +7)
cannot be adjacent. Consequently, the equality A, + 7 = A\; + 7 holds and the proof
proceeds as in case 1).

Assume now that 71 # 7. Then \;+7; # X, +7. Denote A), /o 2N 4m—(N+71).
Then 0 and A),/, are adjacent points of the lattice Ay, (i.e., their Voronoi regions
are adjacent). It follows that

Ay € V,(0). (2.38)
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Let w = 1(\, — \,). Using equations (2.30), (2.36) and (2.37) we obtain that

—2

=X+ (N, = \y) +w. (2.39)

N O

Since c is even, it follows that §(\, — A;) € A;. Thus, w mod A, = 0 mod A, = w. It
follows that w = A\ + @ for some \; € A,. Then AXgjp =2w+ T — T = 2(\s + ) +
7o — 71. Using further (2.38) leads to %AAS/Q =\ + 0+ %(7'2 —7) € %m c Vi(0),
which further implies that —\, = Q(@ + (7 — 71)). It follows that @ = w, where
W is defined in (2.31). Combining with (2.32) and (2.39) we obtain that A, = A, and
X, = \.. Finally, equations (2.33) imply that \; = \; and further that Tg; = Aei, for

i=1,2.

2.6 Performance Analysis

In this section we will evaluate the performance of the proposed lattice-based scheme,
in the high resolution regime. More specifically, we require that the following relations

hold simultaneously
Mvy, — 0, M — oo, K is constant. (2.40)

Recall that M = 2= = ¢" and K = ’;—" Note that this asymptotic regime is similar
in spirit with that considered in the prior work on MDLVQ (Vaishampayan et al.,
2001; Huang and Wu, 2006; Zhang et al., 2011). Clearly, the conditions specified in

(2.40) imply that vy, v4, and v, approach 0. Further, since A;, is a sublattice of A.
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such that ro + 27, < r;,, we also have that

as (2.40) holds. Additionally, the fact that K is constant implies that A. and A;, are

scaled by the same factor 6, i.e., there are some fixed lattices A,y and A;;, o such that
Ac = 9Ac,07 Azn = eAin,Oa As = CQAin,O‘

Then the asymptotic regime specified by (2.40) is equivalently stated in terms of the

parameters ¢ and 6 as follows
=0, c—o0, c0—0.

In order to proceed we need to introduce a few more notations. Fori = 1,2, let dy;
denote the distortion of source ¢ at side decoder ¢ and let d.; denote the distortion
of source i at the central decoder. For each Ay € A and i = 1,2, let A;(\s) =
{a7]27; = A\;}. Further, for each A € Az, denote M(X) = Uy e, yna. Ve(Ae). Then
Ai(As) = Uyeg1a)M(A). Clearly, we have M(A) = A+ M(0) for all A € A. This

fact together with relation (2.23) implies that

Obviously, we have d,; = D(Q4,, X]"), where 4, denotes the quantizer which
maps each input sequence z' € A;(As) to Ag, for A\; € As.

Further, let us denote A; g, £ Supgnegn |27 — &7,]], @ = 1,2. Additionally, Let
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Pe..sw denote the probability that the Slepian-Wolf decoder fails. In view of definition

(2.21) of P(ry) and of Proposition 1 it follows that, for i = 1,2,

D(Qe, X') < dei < (P(ro) + Pesw) A7 + D(Qc, XT).

The following lemma, proved in Appendix B, gives an upper bound for A, 4.

Lemma 2 There is some constant kg such that for each v = 1,2, and ¢ sufficiently

large, the following holds

3=

Az'7sup S Ro (Ml/s)

It is known that the probability that the Slepian-Wolf decoder fails can be made
arbitrarily small by increasing the block length used for Slepian-Wolf encoding. Since
A sup 1s bounded, it follows that the impact on the distortion of the Slepian-Wolf
decoder failure can also be made arbitrarily small. Therefore, in the limit as the

block length of Slepian-Wolf encoder approaches infinity, the following holds
2 2
D(Q:, X]') <d.; < kgP(ro) (Mvs)» + D(Q., X}"). (2.42)

In order to evaluate the quantity D(Q., X]") at high resolution we can directly use

Lemma 1 in (Linder and Zeger, 1994), and obtain that
2
D(Q., X)) =G (1+0(1)) as v, — 0. (2.43)
Furthermore, in order to evaluate the rate we need the following notation, for ¢ = 1, 2,

Pz' £ P[an(QC(in)) S C]a
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where C is defined in (2.25). We will use the following lemma, which is proved in

Appendix B.
Lemma 3 Fori= 1,2, we have lim 40y P; = 0.
Now we are ready to present the main result of this section.

Theorem 2 For i = 1,2, the following relations hold in the asymptotic regime spec-

ified by (2.40)
1

dsi = 7 Gua (M) 7 (1+ 0(1)), (2.44)
Gove (14 0(1)) < dos < K2P(ro) (Muy)" + Gov (1 + o(1)), (2.45)
2 Vg 1
Additionally, we have
H(Us|Uy) < log, K, (2.47)
while if ro < 1., the following is true
H(Uy|Uy) <1+ (1 - (1 - ?) + P(ro)) log, K + o(1), (2.48)

in the limit of (2.40).

Proof: Relation (2.44) is proved in Appendix A.1. Relation (2.45) follows based on
(2.42) and (2.43). Let us prove now equality (2.46). For this notice that the rate used
to transmit £;(\;) is L H(Qa,(X1)).

The rate needed for b; is = (—(1 — P;)logy(1 — P;) — Pilog, P;). The rate used for
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encoding 7; equals %Pi log, |T| = P;. Finally, the rate needed for encoding u; and us
using Slepian-Wolf coding equals £ H(Uy, Us). Summarizing we obtain
1o 1
Ri+Ry =~ > [H(Qu, (X]) — (1= Pi)logy(1—P;) +Pi(—log, Pitn)]+—H(U, Us).
- (2.49)
Since lim s 40) 7(A;(0)) = 0, as shown in the proof of relation (2.44), we can apply
Lemma 2 from (Linder and Zeger, 1994)? and, using the fact that v(A4;(0)) = v,
obtain that
li ~ (H(Q.,(X7)) +log, (1)) = h(X,). (2.50)

(2.40) L

Equations (2.49), (2.50) and Lemma 3 imply that

2 1
lim <R1 + R2 + E 10g2 (7/5) - EH(Ul, UQ)) = h(Xl) + h(Xg)

(2.40)

Finally, relation (2.46) follows using the following equality, which is proved in Ap-
pendix A.1,

lim H(U;) = log, K, for i =1,2. 2.51
(21%) (U’L) 089 £A, 10T ? ) ( 5)

Further, inequality (2.47) is based on H(Us|U;) < H(Us) = log, K, while inequality
(2.48) is proved in Appendix A.1.
The following corollary deals with the case when P(rq) is sufficiently small to

2
make the central distortion dominated by G. v .

Corollary 1 Assume that the random variables X, and X have the same pdf, de-

noted by fx, and that

P(ro) < M€4, (2.52)

2This result was proved by Csiszar in (Csiszar, 1973).
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where lim; 49y € = 0. Then the following relations hold in the limit of (2.40),

do; = G (14 (1)), (2.53)

1 GGy 1
Ry + Ry = 2h(X) + 5 log, 4ds,idi,z- + —H(Us|Uh) + o(1). (2.54)

If additionally we have lim(z 40) 7* = 0 then the following is true

1 G .Gy
R1+R2:2h(X)—|——l /2

— 1). 2.
31082 17 o) (25)

2
n

Proof: Notice that (Mv,)= = (M2Kwv,)=. By plugging (2.52) in (2.45) and using the

fact that K and kg are constants, relation (2.53) follows. Further, equalities (2.44) and

2

(2.53) imply that dyde; = LG 0Ge(Mve)* (14 0(1)) = G, 5G, <?> " (1 4+ o(1)).
By substituting this in (2.46), relation (2.54) follows.

In order to prove (2.55) we first apply Fano’s inequality and obtain that
H(Uy|Uy) < Hy(P[U, # Us]) + P[U; # Us)log, K, (2.56)

where Hy(-) denotes the binary entropy function. Next we assume that ro < r. and

use the following inequality proved in Appendix A.1 (in the proof of relation (2.48))

PlU, £ U] <1— <1 - @)n +P(ro) + o(1).

C

The fact that lim(40) 2 = 0, together with lim s 49) P(rg) = 0, further imply that
lim(s.40y P[U; # Us] = 0. Combining this with (2.56), leads to lim.0) H(Uz|Uy) = 0.

By applying this result in (2.54), relation (2.55) follows.
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Let us assume now that the marginal pdf’s of X; and X, are equal with the pdf of
some random variable X with variance o%. We are interested in finding a sufficient
condition on p for which relation (2.52) holds. To this aim we can use Markov’s

inequality applied to the random variable || X5 — X7(|?, which leads to

2 2
. . nox,_x, 2n(l—p)o
Plro) = B{IXF - X{IP* > i < =50 = ===

2
By imposing further the condition mxf—{Xl < MZ , and using the fact that rq =
0 n

1
O(v¢') we obtain that

2 2
0§2_X1 =0 (%) , leadingto p=1—o0 (Z\V}l> . (2.57)

1
This implies that 79 can be chosen such that 7y = o(v) while (2.52) still holds.

According to Theorem 2 and Corollary 1, we have

4 .2 2
ds,i = %le/2MZKEVCn(1 + 0<1>>7

do; = Gove (1 + o(1)).

Then relation (2.57) is equivalent to (1 — p)% — 0, and further note that the limits

in (2.40) are equivalent to

IS8

(X dsi
= — 0, (1—p)d7’—>0.

dsﬂ' — O,

QU

q&.

S

Let us make the notations d, = % and d. = %. Then the above limits
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imply that
de

ds — 0, d——>0, (1—p)

3—2 — 0. (2.58)
Further, for ¢ = 1,2, let us denote by R;(n,d,,d,.,p)*> the rate at encoder i when
using the proposed scheme with the smallest sum rate R; + Ry, which achieves d,
as the average of side distortions and d. as the average of central distortions, for
lattice dimension n and correlation coefficient p. Assume that the lattices used in the

construction achieve the smallest second moment for the corresponding dimension,

denoted by Goptn. Applying this result in Corollary 1 we further obtain that

2

1 GO n
Ri(n,ds, de, p) + Ra(n, dy, de, p) = 2h(X) + - log, dpz +e(n, dy, de,p),  (2.59)

where lim, 55 €(n, d, de, p) = 0.

Now we will compare the proposed lattice-based RDSC scheme with MDLVQ. As
a byproduct we obtain the optimality of the proposed lattice-based coding system
when specialized to the MDC scenario in the asymptotic regime (2.7) and with the
additional assumption that n — oco. Thus, consider X; = X5 = X and an MDLV(Q as
in (Vaishampayan et al., 2001). Further, let Ryp(n, ds, d.) denote the sum-rate for an
MDLVQ with lattice dimension n, achieving side distortion d, and central distortion
d.. Let us denote by S, the n-dimensional sphere of radius 1. We point out that
the rate-distortion analysis in (Vaishampayan et al., 2001) was also performed for

the asymptotic regime (2.7). According to (Vaishampayan et al., 2001) the following

3This quantity is defined for those quadruples (n,ds, d., p) for which there exists a lattice-based
scheme of dimension n, achieving average side distortion ds and average central distortion d., when
the correlation coefficient is p.
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holds

1
Rurn(n, dy, d.) = 2h(X) + = log, GWZZ—C;(SH

; +((n,d,, do),

for some ((n,ds, d.) satisfying

lim ((n,ds,d.) = 0.
ds—0

de
s —0

Combining the above relations with (2.59) leads further to

. 1 Gopt,n
jlslgt(Rl(n,ds,de)lp:l + Ba(n,ds, de, p)l oy = Rasn(n, ds, de)) = 5 logy (5.
=£—=0

ds

The above equality shows that there is a small rate gap between the proposed scheme

and MDLVQ for fixed n. However, this gap disappears as n — oo, i.e.,

nh_)rgo }H_ri) (Ri(n,ds,de, p)| =y + Ra(n,ds, de, p)| .=y — Rup(n,ds,de)) = 0. (2.60)

de
a —0

Recall the definition of Ryp(ds, d.) in (2.8). Using the fact that lim, oo Goptn =

2me

(Zamir and Feder, 1996), leads to

lim lim (RMD(TL, ds, dc) - RMD(dsa dc)) = O?
n—00 ds—0

de
a —0

which together with (2.60) implies

nhﬁrgo }iino (Rl(na dsadcap)|p:1 + RZ(nads7dcap)|p:1 - RMD(dsadc)) =0.

de
ao —0
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Note that another RDSC scheme which achieves the fundamental limits of mul-
tiple descriptions is a scheme which uses the encoders and decoders of an MDLVQ.
Therefore It is interesting to find out whether there is any advantage in using the
proposed RSDC scheme rather than directly applying an MDLVQ.

More specifically, in an MDLVQ-based RDSC system as (Vaishampayan et al.,
2001), encoder i maps the input sequence z' to A\.; = Q.(«!), next applies the index
assignment o = (o, a9) 1 A. — Ay X A and outputs the side lattice point a;(A.;).
Side decoder ¢ uses the received side lattice point \s; as the source reconstruction,
while the central decoder looks for the central lattice point A, satisfying (As1, As2) =
(a1(Ae), a2(Ae)), and uses A, as the common reconstruction for both sources. The
problem with this scheme is when A\.; # A2 since in this case the central distortion
is essentially as high as the side distortion. To see this, note first that the mappings
a1, ap are constructed such that aq (A)) +as (X)) = 2Q,/2(A,) for each X, € A.. Assume
now that Qsa(Ac1) = Qs2(Ac2) = 7 and A1 # Aco. Then ay(Ae1) # ai(Ac2)
because otherwise we would also have as(A.1) = aa(A.2) contradicting the fact that
« is injective. Further, we obtain that oq(A.1) + aa(Ac2) # 27, which implies that
the point A, chosen by the central decoder is not in the same Voronoi region of the
fractional lattice Ayj2 as Acq1 and Aco. Then, if ||A.; — 7| < 1/2ry/2, the error in the

reconstruction is at least 1/2r, /2

2.7 Conclusion

We have proposed a constructive lattice-based scheme for robust distributed coding
of two correlated sources. The analysis shows, among other things, that, in a certain

asymptotic regime, our scheme is capable of approaching the information-theoretic
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limit of quadratic MDC whereas a variant of the random-coding-based RDSC scheme
by Chen and Berger with Gaussian codes is strictly sub-optimal. Note that in stan-
dard random coding arguments, to facilitate the joint typicality analysis, the block-
length is often sent to oco. However, in the infinite block-length limit, the condition
needed to ensure joint typicality in the distributed setting is much more restric-
tive than its counterpart in the centralized setting; as a consequence, the resulting
distributed coding schemes, when specialized to the centralized setting, may fail to
achieve the fundamental performance limit. In contrast, for lattice-based schemes,
the performance analysis can be carried out under fixed block-length (i.e., fixed lat-
tice dimension), which reveals a smooth transition from the distributed setting to the
centralized setting. In this sense, our result echoes the recent finding in (Shirani and
Pradhan, 2014) regarding the importance of finite block-length schemes in distributed

source coding.
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Chapter 3

Lattice-based Robust Distributed
Coding Scheme for Three

Correlated Sources

3.1 Introduction

In this chapter we consider the robust distributed source coding problem for the case
of three correlated sources. We propose a coding scheme based on lattices inspired
by prior work on multiple description lattice vector quantizer (MDLVQ) of Vaisham-
payan et at (Vaishampayan et al., 2001) and Huang and Wu (Huang and Wu, 2006).
We provide the analysis under the high resolution assumption. Our analysis shows
that the performance at high resolution of the proposed scheme is very close to the
information theoretic limit of the symmetric Gaussian quadratic MDC problem with

single description and all descriptions decoders when the lattice dimension goes to
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X.
X Decoder 1
1
- Encoderl ~
X..
X Decoder 2
—_— Encoder2 ,\
Decoder 0 \
X
X R. %
Encoder3 Decoder 3

Figure 3.3: Block diagram of robust distributed source coding for three corelated
sources.

oo. This chapter is structured as follows. Section 3.2 presents the problem formu-
lation. In Section 3.4 we present a structured coding scheme based on lattices for
RDSC problem for the case of three correlated sources. In Section 3.5 we derive the
distortion and the rate of the proposed scheme in a certain asymptotic regime, and
compare its performance with MDLVQ (Zhang et al., 2011) and with the theoretical
limt of the MDC when the lattice dimension goes to co. Finally, Section 3.6 contains

the conclusion.

3.2 System Model and Problem Statement

Consider a three-component continuous memoryless source (Xi, X3, X3) with joint

pdf fx, x,x,. This memoryless source generates a jointly i.i.d. random process

(X1i, X2i, X3i),cn- The marginal density function of each X; will be denoted by fx,

7 = 1,2,3. We will construct a coding scheme for the robust distributed source
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coding problem illustrated in Figure 3.3. The scheme consists of three encoders and
four decoders. Encoder 7, © = 1,2,3 has access only to source X;, while the side
decoder i, 1 = 1,2, 3, receives only the information sent by encoder ¢. The central
decoder receives the information from all encoders.

Foreachi:=1,2,3, let d; : X; x X, — [0,00) be a distortion measure, where X; and X,
are the source alphabet and the reconstruction alphabet for source X;, respectively.

The distortion measures are extended to sequences of length n as follows
1 n
di(x}, 2}) = - kz_; di(Tik, i),

where 'T;n - ($i,17 te 7xi,n)7 x? = (‘ri,lv o 7xi,n)'
A nine-tuple (Ry, Ry, R3,ds1,ds2,ds3,de1,de2,de3) is sald achievable, if for any

e > 0 and all sufficiently large n, there exist encoding functions
F s 1,2, (209 i =1,2,3,
and decoding functions

g {12, |20} X i =1,2,3,

ggz) : {1’ 27 Ty LQn(R1+6)J} X {L 2a Ty LQn(R2+6)J} X {17 2a ) LG(R3+5)J} — )2;17 L= 17 27 3a
such that

E [d"(in’XtZ)] Sdyi+e =123, t=sc,
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where

Xp =g (X)), i=1,2,3, t=sc

7

The RDSC rate-distortion region, denoted by RD, is the set of all such achievable

nine-tuples.

3.3 Lattice-based RDSC Scheme

The proposed coding scheme uses five nested lattices in R": A, C Ay;3 C Ay C Ay, C
A.. The finest lattice, A., is called the centrallattice. The central lattice points will be
used for the reconstruction at the central decoder. The coarsest lattice, Ay, is called
side lattice since it is used for the reconstruction at the side decoders. A;, is called
the intermediate lattice . The lattice Ay is defined as Ay = ¢, A4y, while Ay = ¢ Ay,
where ¢; = 3¢, and ¢, is a positive integer. It follows that A, = c,c1A;,. The lattice
A3 is called the fractional lattice and is defined as A3 = %As. A, /3 defined as above
is also a sublattice of A;,. Let us denote K £ N(Ayp o A) and M £ N(As : Aip). Tt
follows that M = cl'c}.

As in the previous chapter in order to simplify the notation we will use in the sequel
only the subscript c,in, f,s/3, respectively s, instead of A, Ay, Ay, A3, respectively
Ag. For instance, we will use 7. instead of 7, for the covering radius of A..

Our construction hinges on the fact that the three sources are highly correlated

so that there is some small 7y > 0 such that the probability
P(ro) 2 PX] — X5 ¢ B, or Xy — X3 & B,, or X' — X ¢ B, (3.61)
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is sufficiently small.
Denote now

r&ry+ 2F,. (3.62)

Then the lattice A;, is chosen as a sublattice of A, such that
7 < Tip. (3.63)

Recall that r;, denotes the inscribed radius of the lattice A;,. The following property

is a direct consequence of Lemma 1 from Chapter 2.

Lemma 4 Fori,j € {1,2,3}, if o} — x} € B,,, then

1Qe(27) — QeI <,

Further, we will define three labeling functions 3; : A;,, — Ay, for i = 1,2,3. For
this, we need to introduce some more notations as follows. Let 7 £ Vi(0) N Agys.
Then 7T is a set of coset representatives of A, relative to A,/3 and we have 7| =
N(As:Agy3) = 3" and

Ags=J (T+A).
TET

It can be easily seen that the set U.c7V;/3(7) is a fundamental cell of A.

Denote

UE T+ N +iylr €T, iy € Vi(0) N Ay \p € Viys(0) N A} (3.64)
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Then U is a set of coset representatives of A, relative to A;,, which implies that
|U| = N(As : Ay)) = M and

Aim=J (A +Ay).
el

For each A € Ay, let Ap 2 Qp(N), i 2 A mod Ay = A —Qs(\), Ay £ Xy mod Ayj3 =
Ar—Qs3(Af) and Ays3 = Qs/3(Af). Moreover, let 7 £ Mgz mod Ay = Ag/3 — Qs(As/3),
and Ay £ Q5(\s/3). Then

A=y + X +7+ A\ (3.65)

Also note that @iy € V3(0) N Aip, Ap € Viy3(0) N A and 7 € V(0) N A,y3. Additionally
for A € U we have A\, = 0. We will first define 3; for A € U as follows,

ﬁl(/\) £ Cl):f, 52()\) £ coclsz, /33()\) £ 3T — Cl/\~f - cocldf. (366)

Further, the mappings (1, 52 and (3 are extended to A;, using shifting. More specif-

ically,
Bl()\) é Cl):f -+ )\5,
ﬁg()\) é coclu} + )\s;

B3(A) = 3T — c1 A — cocrtiy + As.

The above definition implies that the mappings ; satisfy the shift-invariance property,
i.e., that

61()\ + )\/s) == Bl(A) + )\;,V)\ S Aln,VAIS < As,i = 1,2,3.
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The shift-invariance property further leads to the following relations, for i = 1,2, 3,
BN = B7H(0) + X, VAL € A, (3.67)

B71(0) = A - BV €Uy, (3.68)

Note that the proof of (3.68) is similar to the proof (2.24) in Chapter 2.

3.4 Proposed Scheme

Before describing the details of the proposed scheme we need the following discussion.
Let us denote \; = Qin(Qc(z})), for ¢ = 1,2,3. Our scheme is designed such that
side decoder ¢ will be able to recover (3;();), while the central decoder recovers \.; =
Qc(x}), for i = 1,2, 3, when the input sequences are sufficiently close, i.e., 27 — 7 €
B,, for all i,j € {1,2,3}. However, for the central decoder to achieve this goal some
additional information needs to be transmitted beside 51(\1), S2(A2) and B3(A3). The
amount of this additional information is smaller when \;, Ay and A3 are all in the
same Voronoi cell of the lattice Ay. Encoder 7 is not able to determine all the time if
this is the case or not since it does not have knowledge of the other source sequence.
However, based on Lemma 4, if \; € V;(\s) and the distance from ); to the boundary
of V¢(A) is not smaller than 37;,, then encoder ¢ can infer that the other sequence

are also in Vy(\y) when 2% — a7 € B,, for all 4,5 € {1,2,3}. Thus, we define the set
W £ Unpea, W(As), where W(Ar) £ Vi(Ap) \ (As +0V3(0)) (3.69)

forn 21— Sf—f” as shown in Figure 3.4.
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Figure 3.4: The set W(\y) is the region between the two hexagons in the figure.

For A3 € Ay define Vis(Ay/s) = Usjev, n o0, Vi(Ap). Note that if Qp(\;) #
Q(A;), it is important to determine if Q,/5(Qf(N\;)) and Q4/3(Q(A;)) are equal or
not. If \; € ‘73/3()\5/3) and the distance from \; to the boundary of ‘73/3(/\3/3) is
not smaller than 37;,, then encoder ¢ can infer that for any other j, A; is also in
f/s/g()\s/g). Thus, we define the set S(A;/3) as the set of points in 175/3()\5/3) such that
the distance to the boundary of V, /3(As/3) is smaller than or equal to 37,. Further,
let 8 2 Uy, 4en,,,S(As/3). Note that S CW.

According to Lemma 4, if \; ¢ W, then \;, j € {1,2,3}\{¢} is in the same Voronoi
cell of Ay as \;, when 27 — 27 € B,,. Similarly, according to Lemma 4, if \; ¢ S, then
for any A;,j € {1,2,3}\ {i} then Q4 /3(Qr(N:)) = Qs/3(Qf(A;)). Now we are ready to

present the details of the encoder and decoder operation.
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Encoder. Encoder i, for ¢ = 1,2, 3, operates as follows. First the input sequence

ke

" is quantized to the closest central lattice point A.; = Q.(z7). Next, the point

Aei is quantized to the closest point in the lattice Ay, A\; = Qin(Aei). Let u; £
Aci mod Ay, and Ay, £ Bi()\;). Then the encoder outputs As,is Wi, a;, where a; =1
if \; € W and a; = 0 otherwise. Moreover, if a; = 1 the encoder also transmits
S\f,- =S Q¢(A;) mod A5 and b;, where b; = 1if \; € S and b; = 0 otherwise. Moreover,
if b; = 1 the encoder also transmits 7; £ Qs/3(Qf(X;)) mod A,. The first component,
Asi, Will be used at the side decoder 7, therefore, it is compressed using entropy coding
before transmission. On the other hand, u;, us and ug are used only at the central
decoder, therefore they will be compressed using Slepian-Wolf coding. Finally, a;,
bi,S\ 7i and 7; will also be used only at the central decoder, thus they may be com-
pressed using Slepian-Wolf coding. However, we will use entropy coding to encode a;,

b; and fixed length codes for 7; and A i for simplicity of analysis, since, as we will see

shortly, the rate overhead is negligible asymptotically.

Decoder. Side decoder i, for ¢ = 1,2, 3, outputs the reconstruction Z7, = As,i- The
central decoder recovers both values As 1, A\s2 and A, 3, and additionally, ui, ug, us,
a1, as, az and by, by, b3, if applicable. First the decoder checks if the following condition

is satisfied
Asi = Asjll < (10 + 4e,)Ts + 37, (3.70)

for all 4,5 € {1,2,3}.
If the condition is violated for at least pair (7,j) then the decoder concludes that

. . . A~ A
] —xy ¢ B,,, and outputs A, as the reconstruction for source i, i.e., Te; = Agy, for
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i=1,2,3.
If condition (3.70) is satisfied for all pairs (4, j) the decoder assumes that 27 — 2} €

B,,, for all pairs (7, j) and it proceeds as follows. First the following are computed

)\a é an(ul — UQ), (371)
S\b é an(ul — Ug), (372)

Next the decoder proceeds based on the values of a1, as and a3, and of S\fl, :\fg, 5\f3, b1, by, bs,

71, 72 and 73 (if applicable), according to the following cases.

1) If ag =0 or as = 0 or az = 0 the decoder evaluates

Nojs 2 1/3(Aat 4 Az + Aas + 32%,), 72 X3 mod A, (3.74)
o £ Qu(Aesa), (3.75)

N2 L - A, (3.76)

ip 2 gz — M), (3.77)

g 2 g — A, (3.78)

Upy 2 g, + Ao, (3.79)

N2 X+ F A A i, (3.80)

and outputs the reconstructions 7, 2\ 4w, fori=1,2,3.
2) If ay = a3 = a3 =1 and /N\fl = 5\f2 = /N\fg the decoder proceeds as in case 1).

3) If ag = as = a3 = 1 and S\fl, 5\f2, S\fg are not all three equal and b; = 0 for at
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least one i € {1,2,3} then the decoder computes

Aoz 2 E(Net + A2+ Asz +3¢0(1 — co)Ap, +32(Ap, + M) — 3cohy,, (3.81)

Ao £ Qs(Aosa), (3.82)
72 Ny3 mod Ay, (3.83)

= A ]- Y N
Ufpy = @(}\3 + 37 — 300)\f3 — )\373), (384)
afl 2 5‘fs - 5‘f1 + g, — S‘bv (3'85>
Ugy 2 Xpy — Ny + gy — Ay (3.86)
):iéj\s—i-%—F;\fi—l-l:Lfi, (3.87)

and outputs the reconstructions iy, 2N\ +u, fori=1,23.

4) If a3 = ay = ay = 1 and by = by = b3 = 1, then the decoder computes

Aay 2 Aa1 — 3¢oA sy, (3.88)

vy 2 Qy(my — 1), (3.89)

Ay 2 Aot — 10, (3.90)

g = 5 (A2 = As), (3.91)
o2 N, + 704 Ap + gy, (3.92)
A2 X — A, (3.93)

A3 2 g+ A (3.94)

Finally, the reconstructions are computed as z; 2N 4w, fori=1,2,3.
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Proposition 2 Let \.; = Q.(27), Ni 2 Qin(Aei), wi = Aoy mod Nin, Asi = Bi(N),
g = N mod Ay, App = Qp(\) mod Agz, 7 2 Qyy3(Qr(N)) mod A, and A, £
Qs(Qs3(Qf(Ni)) fori = 1,2,3. Then when 1% — 1} € B,,, fori,j € {1,2,3}, the
Slepian-Wolf decoding of uy, us and us s successful, and c, is sufficiently large we

have &7, = e, fori=1,2,3.

Proof: Assume that z7 —a7' € B,, for all i, j € {1,2,3} and that the Slepian-Wolf
decoder employed at the central decoder is able to recover u;, us and us correctly.
First we need to prove that condition (3.70) is satisfied. For this we first show that

the following relation holds

7(B;71(0)) < (54 2¢,)Fs. (3.95)

F(B71(0)) < F(U) + F(Bi(U)). (3.96)

Further, since 7" C V;(0) and V;,3(0) C V,(0) we obtain that U C U.c7(74V;/3(0)) C
2V4(0). Thus, #(U) < 27,. Moreover, from the definition of §; given by (3.66), we
obtain that 7(3;(U)) < 37(T) + c1Tsj3 + c1coTy < 375 + 1753 + 16,7 . The above
discussion, together with relation (3.96) and the fact that 7,5 = 1/37,, 7y = éfs,
and using the fact that ¢, = < implies that 7(5;'(0)) < (54 2¢,)T, proves (3.95).

By applying the triangle inequality and the fact that [|A — ;(\)|| < 7(57(0)),

together with Lemma 4, we obtain

IXsi = Asll < i = Al + 112 = Al + 1127 = Asyll < 27(871(0)) + 37
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By combining the above with (3.95) relation (3.70) follows.

Using Lemma 4 and the fact that A.; = \; + u;, @ = 1,2, 3, we obtain that
Tin > [[Aci = Acgll = [lui — uj = (A5 = M),

which, together with the fact that \; — A\; € A;,, implies that u; —u; € Vi,,(A; — \i),
i.e., \j = A = Qin(u; — u;). This further implies that Aas Mo, Ao computed in (3.71),

(3.72), (3.73) satisty the equalities

Ao = Ag — Ay, (3.97)
Xo = A3 — Ay, (3.98)
Ae = Az — Ao (3.99)
Recall that
A=A+ 71 g+ A, (3.100)
Ao = A + 7o + Giga2 + Apa, (3.101)
A3 = A3 + 75 + Ggs + A, (3.102)

Moreover, since Ag; = B;(\;), for i = 1,2, 3, we obtain that

Aet = A + Ay (3.103)
)\3’2 = clcoﬂh + )\52, (3104)
)\5,3 = )\53 + 37—3 - Clj\fg - ClcoﬂfS‘ (3105)
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Assume now that case 1) holds. Based on Lemma 4, it follows that Q¢(\1) =
Qs(X2) = Qf(X3), which implies that A, = Ap, = Ay, 71 = 7 = 73 and A, = Ay, =
Ass- Using further equations (3.74), (3.99) and (3.103), (3.104), (3.105), (3.101) and
(3.102) we obtain that 5\3/3 = As; + 71. This implies that 3 = 5\5/3 mod A, i.e.,
7 =7, and A\, = \,,. Using (3.103) and (3.76) we obtain if = )j,. Using further
equations (3.77), (3.104) and the fact ¢, = ¢ we obtain that s, = ty,. Using further
equations (3.78),(3.97),(3.100) and (3.101) we obtain that @y = @y,. Moreover, using
equations (3.79), (3.99), (3.101) and (3.102) we obtain that @y, = . These imply

that 5\1 = \; and further that 7, = A.;, for i =1,2,3.

Assume now that a; = as = a3 = 1. Since for ¢, sufficiently large the distane
between \; and ); is very small in comparison with the size of a Voronoi cell of Ay,
it follows that Vy(As1 + 5\f1 +11), Vi(As2 + ;\f2 +72) and Vy(As3 + S\fg + 73) are either
identical or adjacent. Further, if Aj; = Ajy = Asg it follows that Vi(Ae + 71 + Af1),
Vi(As2 + T2 4 As2) and Vy(Ags + 75 4+ As3) are identical. Thus, the proof of case 2)
proceeds as in case 1).

Assume now that case 3) holds. The fact that b; = 0 and Lemma 4 imply that
As1+71 = A2 +72 = A3+ 73. Using equations (3.81), (3.103), (3.104), (3.105), (3.99),
(3.101) and (3.102) we obtain that 5\3/3 = Ag1+71. This implies that 7 = 5\3/3 mod Aq,
i.e., 7 =7 and that A, = ;. Using further equations (3.84), (3.105) and using the
fact ¢, = & we obtain that @y, = @y,. Using further equations (3.85), (3.98), (3.100)
and (3.102) we obtain that @y = . Moreover, using equations (3.86), (3.99),
(3.101) and (3.102) we obtain that @y, = iy,. Equations (3.87) imply that \; = \;

and further that 7, = A, for 1 = 1,2,3.
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Assume now that case 4) holds. Here we will use the following result.
Assertion: If \;/3 € A;/3 and V/3(\s/3) is adjacent to Vi/3(0), then A3 € Vi(0).
Proof: Let \g/3 € Ag/3, then 3)\;/3 € A,. Since V;/3(\s/3) and Vi/3(0) are adjacent it

3Xy/3

follows that Vi(3As/3) and V,(0) are adjacent. Then 5= is on the boundary of V,(0).

3)\5/3

The point A,/3 is on the interior of the segment connecting 0 and , Therefore,

As/3 is in the interior of V;(0). This conclude the proof of Assertion.

Now consider that case 4) holds. Since for c,¢; sufficiently large the distance between
Ai and ); is very small in comparison with the size of a Voronoi cell of A3, it
follows that V,/3(As1 +71), Vi/3(As2+72) are either identical or adjacent. According to
Assertion it follows that As, + 75— (A5, +71) € V5(0), which leads to 0 = Qs(As, — s, +
To—T1) = As, — As; + Qs(m2 —71). Using (3.89) it follows that vy = As, — As,. Further,
(3.88) and (3.103) imply that A,, = ),,, and further that \,, = ),,. Combining
with (3.91) and (3.104) we obtain that s, = ty,. Further equation (3.92) imply that

5\2 = X9. Then A = A\ and 5\3 = Az and the conclusion follows.

3.5 Performance analysis

In this section we will evaluate the performance of the proposed lattice-based RDSC
scheme. We will perform the analysis as v,, v;, and v, approach 0, while M approaches
0o. As in Chapter 2, we assume that K is constant and we will consider some fixed

lattices Ao and A;;, ¢ and scale factor 6 such that

Ac = 9Ac,07 Ain = eAin,Oa (3106)

AS = clcOQAmo, Af = CoeAimo. (3107)
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We require that the following relations hold
-0, c,—00, ¢ —o00, cicd—0. (3.108)

We will evaluate the distortions and rates corresponding to the proposed scheme,
in the limit of (3.108). For ¢ = 1,2, 3, let d,; denote the distortion of source i at side

decoder i and let d.; denote the distortion of source ¢ at the central decoder.

3.5.1 Central Distortion

In this subsection we will evaluate the central distortion. Denote A; 4, = SUPnepn || 27—

22,]l, for i = 1,2,3 and let P, sw denote the probability that the Slepian-Wolf de-
coder fails. In view of definition (3.61) of P(r¢) and of Proposition 2 it follows that,

fori=1,2,3,

D(Qe, X}') < dey < (P(ro) + Pesw) Al + D(Qc, XT').

The following lemma, proved in Appendix D, gives an upper bound for A, .

Lemma 5 There is some constant ky such that for eachi = 1,2,3, and ¢, sufficiently
large, the following holds

1
Ai,su;o S K1CoVs"

It is known that the probability that the Slepian-Wolf decoder fails can be made
arbitrarily small by increasing the block length used for Slepian-Wolf encoding. Since
A sup 1s bounded, it follows that the impact on the distortion of the Slepian-Wolf

decoder failure can also be made arbitrarily small. Therefore, in the limit as the
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block length of Slepian-Wolf encoder approaches infinity, the following holds
D(Qe, X7') < dei < P(ro)ricivs + D(Qe, XT1). (3.109)

In order to evaluate the quantity D(Q., X]") at high resolution we can directly use

Lemma 1 in (Linder and Zeger, 1994), and obtain that
2
D(Q., X]') = Gevé (14 0o(1)) (3.110)

in the limit of (3.108). The following corollary deals with the case when P(rg) is

2
sufficiently small to make the central distortion dominated by G v .

Corollary 2 Assume that
€

2
2Mn

P(’l”o) S

(3.111)

where lims 108y € = 0. Then the following relations hold in the limit of (3.108),
2
de; = Govi (1 +0(1)), (3.112)

Proof: By plugging (3.111) in (3.109), using the fact that x; is constant and using
(3.110) relation (3.112) follows.

3.5.2 Side Distortion

In this subsection, we will evaluate the side distortion of the proposed scheme in the
asymptotic regime specifed by (3.108). The expression of the side distortion is given

in the following theorem, which is proved in Appendix C.
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Theorem 3 The following relation holds in the asymptotic regime specifed by (3.108).

d, d, ds 4 2
1+ 3,2 +ds3 _ gch(As>Vsn(1 +0(1)). (3.113)

3.5.3 Rate Computation

Let us evaluate now the rate R;, in bits per source sample, at encoder 7,7 = 1,2, 3.

Let us first denote

751‘ £ P[QW(QC(X?)) € W]?
,ﬁi = P[QW(QC(XZL)) € S]?

where W is defined in (3.69). Further, notice that the rate used to transmit 5;(\;)
is H(Qa,(X"). The rate needed for a; is L (—(1— P;)logy(1 — P;) — P;log, P;).
The rate used for encoding \y; equals LP;log, [Viy3(0) N Ay = P;logy(c,). Since b; is
transmited only when a; = 1, the rate needed for b; is %751- (—(1 — 75,) log, (1 — 752) — P;log, 752> )
The rate used for encoding 7; equals %751751 log, |T| = P;P; log, 3. Finally, the rate
needed for encoding uq,us and uz using Slepian-Wolf coding, i.e., %H(Ul, Us, Us), is

equally divided between the three encoders. Summarizing we obtain

1 1 _ _
Ri = ﬁ |:H(QAZ(XZL>) + §H<U1, UQ, U3) — (1 — ’Pz) 1Og2<1 — Pz) - Pl 10g2 P1]

_ 1. . 3 3 .
+ Pilogy(c,) + " [Pi <—(1 — P;)logy (1 — P;) — P;logy, P; + Pilog, 3n>]

Since lim(z.10s) 7(A;(0)) = 0, as shown in the proof of Theorem 3.113, we can apply

Lemma 2 from (Linder and Zeger, 1994)! and, using v(A4;(0)) = vy = Mv,,, obtain

IThis result was proved by Csiszar in (Csiszar, 1973).
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that

lim © (H(Qu, (X)) + log, () = h(X,).

(3.108) 1

Additionally, we will use the following lemma, which is proved in Appendix D.

Lemma 6 Fori=1,2,3, the following holds

lim P; =0 and lim P; log, ¢, = 0.
(3.108) (3.108)

Based on the above discussion we conclude that

1 1
li + —1 - —H = h(X;). 114
(3.111&) (Rl + - log, (vs) ™ (Uy, Uy, U3)) h(X;) (3.114)

Thus, the following approximation holds in the limit of (3.108)

1 1
Ri ~ h(Xz) — ElogQ (VS) + g—nH(Ul, UQ, Ug)

3.5.4 Comparison with MDLVQ

In this section we will compare the proposed coding scheme with MDLV(Q as in (Zhang
et al., 2011). Consider X; = X, this implies that U; = U; for i,j = 1,2, 3. Note that

limits (3.108) are equivalent to d; — 0, and g—z — 0, where d. = d.; = d.2 = d.3 and

ds,1+ds,2+ds,3
ds = 3 -

Then relation (3.114) becomes

lim (Ri — h(X;) + %log2 (vs) — iH(U,)) = 0. (3.115)

ds—0,% 0 3n

Notice that as (3.108) holds, U; approaches a uniform distribution, for i = 1,2, 3.
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Then

Jim H(U;) = log, K. (3.116)

The proof is similar to the proof of (2.51).
Plugging (3.116) in (3.115), we obtain that

1 1
lim <R2~ — h(X;) + - log, (vs) — I logQ(K)) =0. (3.117)

dsao,jfeo

Consider now X; = X for ¢, 5 € {1, 2,3} and an MDLVQ as in (Zhang et al., 2011)
for lattice dimension n. Further, let R);p denote the rate of each description and let
ds.vp, denote the side distortion. For comparison we will assume that the central
lattice used in the MDLVQ is the same lattice A. as in our scheme. Additionally,
we also assume that ds yyp = ds and d.yp = d. . Recall that S, denotes for the
n-dimensional sphere of radius 1. Then according to (Zhang et al., 2011) when d; —

0,% — 0 we have

2 - 2
dynip = 3—3K3G<Sgn)u5<1 +o(1)), (3.118)
2
and
. 1 -
lim (RMD — h(X7) + —log, (1/8)> =0, (3.119)
dsao,j—gao n

where vy is the volume of the Voronoi region of the side lattice used in the MDLVQ),
and K = Z_c
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Using the fact that 7, = Kv,, (3.117) and (3.122) we obtain

1 N\ [ ve
lim (Ryp—R)=  lim — log, (”-) (”-) (3.120)
ds—0, 92 50 de—0,ds—0,%2 0 \ 312 Vg Vin

Using ds prp = ds, we obtain that

2G5 [ 20 ) = 2.0 [ £, (3.121)
52 ve ! Vi

which leads to
Ve V3G(Sa)\ (7
o = - . 122
Vin ( 2G(Ay) ) (1/5) (3 )

From (3.120) and (3.122) we see that for fixed n, there is a gap between R; and Ryp,

namely

lim R —R)=-1Io — .
ds—>07j—z—>0( MD ) 3 82 ( ZG(As)

Now we will discuss the situation when n — co. It was shown in (Zamir and Feder,

1996) that there is a sequence of lattices A,, such that lim,_,., G(A,) = ﬁle It follows

that the gap is very small as n — oo, i.e.,

w

1

n—oo ds—>07§—§—>0

It follows that the gap in the sum-rate is 0.207 bits . It was shown in (Zhang et al.,
2011) that the MDLVQ scheme with d; — 0, g—: — 0 and n — oo approaches the
theoretical bound of the symmetric Gaussian quadratic MDC problem, when only

single description and all descriptions decoder are of interest.
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3.6 Conclusion

In this chapter we have proposed a lattice-based coding scheme for robust distributed
source coding for three correlated sources. We derive the distortion and the rate
for the proposed scheme under the high resolution assumption. It is shown that,
in a certain asymptotic regime, the performance of our scheme is very close to the
theoretical bound of the symmetric Gaussian quadratic MDC problem with single
description and all descriptions decoders, with a gap of 0.0692 bits for single rate and

0.207 bits in sum rate.
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Chapter 4

Conclusion

We have proposed two constructive lattice-based scheme for robust distributed cod-
ing one for two correlated sources and the other for three correlated sources. We
have perform the rate and the distortion analysis under high resolution assumption.
The analysis of the proposed lattice coding scheme for two correlated sources shows,
among other things, that, in a certain asymptotic regime, our scheme is capable of
approaching the information-theoretic limit of quadratic MDC whereas a variant of
the random-coding-based RDSC scheme by Chen and Berger with Gaussian codes
is strictly sub-optimal. Note that in standard random coding arguments, to facili-
tate the joint typicality analysis, the block-length is often sent to oco. However, in
the infinite block-length limit, the condition needed to ensure joint typicality in the
distributed setting is much more restrictive than its counterpart in the centralized
setting; as a consequence, the resulting distributed coding schemes, when specialized
to the centralized setting, may fail to achieve the fundamental performance limit. In
contrast, for lattice-based schemes, the performance analysis can be carried out un-

der fixed block-length (i.e., fixed lattice dimension), which reveals a smooth transition
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from the distributed setting to the centralized setting. In this sense, our result echoes
the recent finding in (Shirani and Pradhan, 2014) regarding the importance of finite
block-length schemes in distributed source coding. For the case of three sources the
analysis shows, that performance of the proposed scheme under a certain asymptotic
regime is very close to the bound of MDC in case of symmetric Gaussian quadratic
source when only the single description and all descriptions receivers are of intrest

with a gap of 0.0692 for sigle rate and 0.207 in term of the sum- rate.
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Appendix A

Appendix

A.1 Proof of Relations (2.44), (2.51) and (2.48)

Proof of Relation (2.44)

First let us fix . We will split the proof into two parts. In Part 1 we show that if the

limit lim g 40) G(;‘;éo)) exists then we have

lim D(QA—’)Q(%) — lim G(A—Z(QO)) (A.1)
(240)  (Muy,)n (2.40) M=
In Part 2 we prove that
. G(A(0)) 1

Part 1." The proof is based on the idea that in the limit of (2.40) the pdf fx» can
be approximated by a uniform density function over each set A;(\s). This density

function is fp. : R™ — [0, 00) defined as follows. For each Ay € A; and z" € A;()s),

IThis proof uses ideas from the proof of (Linder and Zeger, 1994, Lemma 1).
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let

P € AO)] 1 o
) = ST TAG fagey B0

Let Xg'. denote the random variable with pdf fp.. Note that

2 ID(QA”XZZC) = D(Qua;, X7)| <

(Mys)n
W(Mvs ), ZA €A fAl - >‘S||2|f970(xn) - fX?(anNdxn <
Mz/)* ZA €Ay fA ,\)\fec )_fXZ-”(xn”dxn:

A Joo | fola™) = fop (e da”, (A.3)

where the second inequality is based on the fact that A;(\s) = As + A;(0), which
implies that max,ne 4,01, |2 — As||? = 7(A;(0)). Let us analyze now the quantity
7(Ai(0)). Recall that A;(0) = Uyc3-1(g) (A+M(0)), where M(0) £ Un.evin0)na. Ve(Ae)
Then it follows that

7(A:(0)) < 7(5;7(0)) + 7(M(0)). (A.4)

Further,

F(M(0)) < Tip + Te < 274, = 2074, 0. (A.5)

Since we are interested in computing the limits in (A.1) as (2.40) holds, we may
assume that c is conveniently large. In particular, in the sequel we will assume that

¢ > 8 so that relation (2.34) leads to the following

7(8;1(0)) < OFin. (A.6)

)
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Finally, relations (A.4)-(A.6) together with the fact that M = ¢ and v, = 0"V, 0,

lead to
r(Ai(0 207, 207 i Tin
T(A()jﬁ Tp-i-f r,0_>7’£0’ (A7)
(Mwy)n c20v; 2v8 o

in the limit of (2.40). The above result also implies that 7(A4;(0)) — 0 as (2.40) holds.
This enables us to apply Lemma 7, which is stated and proved in Appendix B, and
we obtain that fy.(2") — f% (2") for each 2" € R", as (2.40) holds. Using further
Scheffe’s theorem (Scheffé, 1947), it follows that [, |fo.c(z") — fxp(2z")|dz" — 0 as
(2.40) holds. Combining further with (A.3) and (A.7) we obtain that

Using now the fact that fp . is uniform over each quantizer cell A;(\;) we obtain that

|27 = [ fo.c(a™)da" =

2" — A2dan @

D(Q.Ai? Xgic) = % Z)\SGAS fAi(,\S)
1 PIXTEA;(As)]

n Z)\SGAS v(A;(Xs)) fAi(AS)

m fAi(O) =" |[*dz™ ZASEAS PIX] € Ai(As)] =

o Lao 27 [2de"BIXE € BY] = G(A(0)(1(A(0))F 2 G(A,(0))r (A.9)

—~

where (a) uses the fact that A;(\s) = As + A;(0), while (b) is based on the fact that
v(A;(0)) = v, since A;(0) is a fundamental cell of the lattice A;. Relations (A.8) and
(A.9) prove the claim of Part 1.

Part 2. In order to prove (A.2) we will first evaluate [, o [[2"[|*dz". Using the fact
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that A;(0) = Uycg-1(g) (A + M(0)) and relation (2.24) we obtain that
Ai(0) = Uyery (A — Bi(N) + M(0)). (A.10)

Using further Lemma 8, which is stated and proved in Appendix B, we obtain that

/ ol = [ ariPdenn( [ et A= 00 HIA- SOV M)
A=Bi(A)+M(0) M(0) M(0)

(A.11)
It is easy to see that M (0) is a fundamental cell of the lattice A;;,, therefore, v(M(0)) =

Vin. Further, relations (A.10) and (A.11) lead to

/( 2|2 da™ |u|/ 2" *da" +2Z/ a"daz", X — Bi(\ +VWZH)\ B2

AU AU .
Then
G(A;(0 T, 15, T,
( g)): B S 4% ~. (A12)
M~ nM»(Muvy)' o nMa(Mvg) ™ nM»(Muy,) s

We will prove first that the first two terms in the right hand side of the above equality,
approach 0 in the limit of (2.40). Consider the first term. Note that [, [[2"]*dz" <
(7(M(0)))? Vin. Combining further with (A.5) and with the fact that [U| = M it
follows that

7 < 3 > = —~— — 0 as (2.40) holds. A.13
2
nMu(Mvp) = nMa(Mvi)' ™= prayr
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It is easy to see that the closure of a lattice Voronoi cell of the origin is symmetric
about the origin. Therefore, if A;, is a clean sublattice of A,, i.e., there are no points
of A. on the boundary of V;,(0), then the set A. N V;,(0) is symmetric about the
origin. The above considerations further imply that the closure of the set M(0) is
symmetric about the origin, thus [ M(0) x™dx™ = 0. Then the second term in (A.12) is
0. When A;, is not a clean sublattice of A., the aforementioned term still approaches

0 in the limit of (2.40), as we prove next.

Tl = 2| [ - Ao
rey / M(0)
<2y [ - a0
;, M(0)
(a)
<oy / le™l[ A = BV da”
xeuy 7 M(0)
=2 e Y - )
M(0) %{
(b)
< 97 . .
< 2r(M(0) M (ama ] + max 5,0 )
(C) 2
S 4(9Fm,01/mMC29fin’0 @ 462VinM1+E7:i2n70; <A14)

where (a) follows from the Cauchy-Schwarz inequality and (b) is based on the fact
that [\, ll2"[[dz" < 7(M(0))vi, and |U| = M. Additionally, (c) follows from (A.5)
and the discussion in the paragraph below equation (2.35). Finally, (d) is based on

the fact that ¢ = M=. Further, relation (A.14) implies that

T: 4 462VmM1+%77i2n 4F12n
. | To.i| — : 20— ™0 5 0as (240) holds.  (A.15)
nMn (M) = TLMHEVmWVﬁL,o nMnvg
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% We need to treat separately the cases © = 1 and i = 2.

Let us evaluate now
Recall that U = UrerVi/2(7) N Ay, We will denote V;/g( T) 2 Vi2(T) N Ay Using

further (2.22) we obtain that

D S DI P

TET )V, /2(T)

=X X g0
TETAeVg/Q()

= 3 2 (=0 =P+l + 21~ (A = 7).7))

TET NeV. 2(T)

=5 Y a-r-PY Y )P

TET eV, a(7) TET XV, /(7)

+ 2> > (A=A =7),7)

TGT)\eV /2(7)

[ J/
-~

Ty
(a)
S (=Tl Y] NP+ 7 Z 7[> +Tx, (A.16)
)‘6‘73/2(0) €T

T5

where (a) is based on the fact that V(1) = 7+ V;2(0) and |V, /5(0)] = % Relation

(A.16) leads to

T T T; T;
) 3.1 5 — 1 2 + > + 0 2 <A17)
nMn(Mvip)'* e M iyr o pMMiyr MRy

Z’VL

We will show first that the first and last term on the right hand side of (A.17) approach
0 in the limit of (2.40). For this we need to introduce the following notation. For

any two nested lattices Ay C A; in R denote Cp,.p, = Unieva, ©)nA, Va, (A1). Using
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Lemma 9, which is stated and proved in Appendix B, we obtain

T M pon 2 2
64 2 : L 2 (G(CAszAs/g)’/sn - G(AS/2)V:/2>
nM"wyn nM“uyn

1
= Mz (G(CAS:AS/Q) -

n

160),

where the last equality is based on vy = Mwv;, and vy = Mv,,/2". As the parameters
c and 6 vary, both lattices A, and A/, are scaled by the same factor, therefore the set

Ch,A, P is scaled by that factor. Since the second moment is invariant under scaling it

follows that G(CAS:AS/Q) -

iG(AS /2) remains constant as ¢ and ¢ vary. Consequently,

we have that

lim — 20— (A.18)

L 2
(2.40) My

Consider now the first term on the right hand side of (A.17). The following holds

Tl < 20e=1) > [A-77)

TET AV, /o(T)

(a)

< 2e=1) > A=l
TET XV, o (7)

< 2le— 1M max||7]] max ||\l

TET EVS/QO
S 2CM775775/2,
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where (a) is based on the Cauchy-Schwartz inequality. Using further the fact that

c= M%, while 7y /9 = 75/2 = M%FM/Q, leads to

|T4| < M1+%’Fz‘2n - fiQn,O

— < = — 0 as (2.40) holds. (A.19)
nM"wyr MYyl nM%ui’;L’O

2

In order to evaluate the second term in (A.17) we use again Lemma 9 and obtain that

T c—1)>nM 2 2
B = U (G v - G
n n g n nyl
(M= —1)? M=

n

= —4<G(CAS/2:AW) 1 —G(Am)>v

where the last equality relies on the fact that ¢ = M %, while vy, = Mv;,/2". Further,

we obtain that

lim 5 = lim G(CAS/2:AM) = G(As2) (A.20)
(240) ) ppiHE n (240) 4 4 7 '

where the last equality follows from Lemma 10, which is stated and proved in Ap-

pendix B.
Relations (A.17)-(A.20) imply that

lim —5 1G(As/z). (A.21)

a4 241
(2.40) nMits vl 4

Combining the above with (A.12), (A.13) and (A.15), we obtain that (A.2) holds for
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1 = 1. In order to prove the claim for : = 2 we need to evaluate now ?

T3,2 o N N 2
= YD IA=2r4c(A-7)

TeT}\EV/Q( )

= > > Na+ogr-7) -7

TET NV, 5 2(T)

=2 2 0+ =P +|I7* +2((1 + (= 7), 7))

TET)\GV/Z( )

= > > (a+a9Xr =P+ +2>" > (A+9A=7),7).

TET NV, 5 /2(7) TET NeV, o 2(T)

Next the conclusion follows using similar arguments as for ¢ = 1. This observation

concludes the proof.

Proof of Relation (2.51)

In order to prove the claim we will show that U; approaches a uniform distribution.
To prove this let u € V;,(0) N A..

The general idea of the proof is that, as the limits of (2.40) are approached, the
pdf fx» can be approximated by a pdf which is uniform on each set M(A). Then the

following relations hold, in the limit of (2.40),

P|U; = = n n
vi=d = 3 / o Jaaat &3

A€Ain

zn b 1
= fon ?% Z/ fX” :g-

AEAn AEAy,

Next we provide a rigorous treatment of relations (a) and (b).

Define a density function fy.: R” — [0, 00), which is uniform on each set M(\),

71



Ph.D. Thesis - Dania Elzouki McMaster - Electrical and Computer Engineering

as follows

ny\ __ 1 ™ n
f@,c(x )_ V(M(/\)) //\/l()\) in (y )dy )

if 2" € M(X). Then in view of Lemma 7 (stated and proved in Appendix B), we have

that fy.(2") = fxn(2") for every 2™ € R", as (2.40) holds. Further, we have

PUi = ] = / (Fxr(2™) = foolz™) + foola™) dz”
Uxea,, Ve(Atu)

Z / fo(z™)dz".
AN, Y Ve(Atu)
(A.22)

IN

/ e (@) — foola™)lda +
Uxen;, Ve(Atu)

Note that

/ |fxn(2") = foe(a™)|dz™ < |fxn(2") = foe(2")|dz™ — 0, as (2.40) holds,
Unxen,, Ve(A4u) R

wm

(A.23)
where the last relation is valid in view of Scheffe’s theorem Scheffé (1947).
Further, since fp . is constant on each M(\), we have
n n Vin
S [ et =Y fa)2
AEA, ¥ Ve(Atu) AEAn
1 1
K AEA@ Y M(/\) K

Relations (A.22)-(A.24) together with the fact that the size of the alphabet of U; is

K and K is constant, prove the claim. With this observation the proof is complete.

72



Ph.D. Thesis - Dania Elzouki McMaster - Electrical and Computer Engineering

Proof of Relation (2.48)

Using a variant of Fano’s inequality we obtain that

where we used the fact that H(Uy) = log, K. Let A.; = Q.(z7). Notice that
if o — 2} € B(ro) and the distance from z} to the boundary of the Voronoi cell
Ve(Ae1) is larger than or equal to rp, then it is guaranteed that =3 € V.(A.1), thus
uy = uy. Then let us denote £(N.) = Vo(Ae) \ (1 - :—2) Ve(Ae), for each A. € A, and

E 2 Uy en.E(A). Tt follows that
Further, we obtain

PIXT € &] < / e (@) = foola™)|de” + / foola™)da™, (A.27)

where fy. was defined in the proof of relation (2.51). According to that proof the
first integral in (A.27) approaches 0 in the limit of (2.40). Since fy . is uniform over

each Voronoi region of the central lattice, we have

/g foela™dz = 3 /g L e = o 0MER)

Ac€Ac Ac€AC

(o)) B2

Ac€EAC

73



Ph.D. Thesis - Dania Elzouki McMaster - Electrical and Computer Engineering

Relations (A.27)-(A.28), together with the fact that the first integral in (A.27) ap-

proaches 0 in the limit of (2.40), imply that
]P)[Ul 7& UQ] S 1-— <1 — @) +P(’I“0) + O(l)

Te

Finally, by applying the above inequality in (A.25), the conclusion follows.
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Appendix

B.1 Proofs of Lemmas in Chapter 2

Proof of Lemma 2

According to equation (A.6) at the beginning of the proof of relation (2.44), for

1 =1,2 and ¢ > 8, we have
7(B;1(0)) < ¢y = POTing. (B.29)
Using the fact that A\.; = A\; + u; and the triangle inequality we obtain that

i = 22l = [l = A +ui + A — 2]
< Nl = Acall 4 [luall + 1A = 225]]

X3

< To At Tin + || A — 22| < 276 + || A — 22| (B.30)

I6)
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If condition (2.26) is violated then #7; = A, ;. Thus, we have
I — 22l = X = Al < 7(571(0)) < er, (B.31)
for ¢ > 8. Relations (B.30) and (B.31) imply that
|27 — 22| < (c+ 2)Fs < 2cF = 26707, (B.32)

for ¢ > 8.
Let us assume now that condition (2.26) is satisfied and that Case 3) holds at the
decoder, i.e., by = by = 1 and 7y # 7. Thus, 27, = X +u;, where \; is given in (2.33).

Then
I =&l < I = Nall A+ sl < QA6 = Nill + T (B.33)
Let us consider now ¢ = 1. Using (2.33) and the triangle inequality we obtain that

~ - 1 -
A=Al < A = Al llmll + s = Al
- 1 -
< H)‘l - )‘S,IH + H/\S,l - /\SH + s+ EH)‘S,I - )‘SH

1 ~
< CFg+ T+ (1 + —) [ As1 — sl (B.34)
C

where the last inequality is based on ||[A; — As1|| < 7(3;1(0)) < cF. Using now (2.32)
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in conjunction with the triangle inequality leads to

Do = Al < Aen =8l + (e + D)

IN

A s1 — Ol +2(c + 1)7s, (B.35)
where the last inequality follows based on (2.31) and on

- N 1 R 1 1 B
||| < [l + 5(72 —71) — Qs(w + 5(72 — 7))l + H§(72 —7)| <27

Finally, based on (2.30) we obtain that

N 1 1 - c c
H)\SJ — 'UH = HQ()\SJ — )\s,2> — §C)\ —+ (1 + 5) Ty — 57’1

< 10w = A+ el A+ (14 5) Il + Sl (B.36)
Notice that relation (2.26) implies that
|(As1 — As2)|| < 2cFs. (B.37)
Additionally, from (2.27) we obtain that
A < Jluy — g 4 || (ug — u2) — Qi (g — ws)|| < 27y + Fin, = 3T (B.38)
Plugging (B.37) and (B.38) in (B.36) leads to

3 5
Pox =0l < ers + Semin+ (L4 07 < (5 + 2007,

7
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The above relations and (B.35) imply that

< 9
Poa =Xl < (de+ D

Combining now the above inequality with (B.30), (B.33) and (B.34) we obtain that

R i _ _ 1 9 _
|27 — 20| < 27 4 Tin + (e + 1)7s + (1 + E) (4e + 5)7”3

< 6cFy = 62070, (B.39)

for ¢ sufficiently large. The proof for i = 2 and for the remaining cases follows along

the same lines.

Proof of Lemma 3

Let us fix . Denote C~()\s/2) £ {27 € R" : Qin(Qc(z?)) € C(Asj2)} and C &
U,\S/QGAS/Qé()\S/Q). A moment of thought reveals that C(\2) C (Asj2 + 71 Vs2(0)) \
(Asj2 +72Vs/2(0)), where 31 = 1 + % and 7 = v — % The above relation

implies that

V(CN()\S/2)) < (1 = 12)v(Vaa(Ass2))- (B.40)

Let V(Asj2) 2 {27 € R"Qin(Qc(2})) € Vija(Nsj2)}. Clearly, v(V(Ay/2)) = vs2. The
proof of the lemma hinges on the fact that, as (2.40) holds, the pdf of X! can be
approximated by a pdf which is uniform over V, /2(As/2). The general idea of the proof

is the following.

PlQin(Qc(X]")) € C(As/2)] © FxrNs2)v(C(Asp2)) < Fxxn(Agp2)v(V(As2)) (= 73,
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where the last inequality follows from (B.40). The above relations lead to

n (®)
PlQin(Q:(X]")) € UAS/geAs/g s/2 = E fX" s/2 V(A 3/2))(7 —Y5) RV,
s/2€As/2

where (b) follows from the assumption that the pdf is uniform over V;,»(\s/2), thus
ZA5/26A5/2 fxr(Ass2)v(V(Asy2)) = 1. Finally, it is easy to see that v — 1 and v — 1
as (2.40) holds, thus lim10s)(77 —735) = 0.

Next we provide a detailed proof including a rigorous treatment of relations (a)
and (b). Note that the sets V(\y/2) with \;» € Ay/e, form a partition of R”. Define

a density function fy.: R™ — [0, 00), which is uniform on each set V(A /2), as follows

1
") = o (y™)dy", B.
R rwd IRALAL (B.41)

if 2™ € f)()\s /2). Then in view of Lemma 7, which is stated and proved after the proof
of this lemma, we have that fy .(2") — fxn(z") for every 2" € R", as (2.40) holds.

Further, we have

PX" € (] — / (Fxr (27) = foola™) + foc(a™)) da”

< /|fX" — foela"de" + ) /8/2 Joo(z

S/ZEAS/Q

Note that

/|fxn — foc(z")|da"™ < |fxr(2") = foe(z")|dz™ — 0, as (2.40) holds,
Rn
where the last relation is valid in view of Scheffe’s theorem (Scheffé, 1947). Further,
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since the density fy . is uniform over each f)()\s /2) and C (As/2) C f/()\s /2), we obtain

that

focadz® =Y foc(A2)V(C(Asp2))

AS/QGAS/Q C(AS/Q) )‘5/2EA5/2
(c)
< Z Jo.c(Asp2)v(Vs2(Asy2)) (01 —7%)
)\S/2€AS/2
= (=) D foe2)V(Vapp(As2))
)‘3/261\5/2
@ n n n n
= (- > Fxp(y™")dy

Aej2€As/2 V(As/2)

= (=) [ fxr(y")dy" =7 =5,
Rn

where (c) follows from (B.40) and (d) is based on relation (B.41) and on the fact that

v(Vij2(Asp2)) = V(]}()\S/g)). This observation concludes the proof.

Lemma 7 Let A be a lattice and o > 0 a scale factor. Let C, be a measurable
fundamental cell of the scaled lattice oA such that lim,_,o7(C,) = 0. Let f : R" —
[0,00) be a continuous density function. For each o define the function f, : R* —

[0,00) as follows. For each \, € oA and x™ € A\, + C,, let

ny 4 1 n n
fmﬁ—mgxﬁﬁwﬂw (B.42)

Then for every x™ € R™ the following holds

lim f,(2") = f(a"). (B.43)

o—0
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Let us fix 2" € R"™ and let A\, € oA such that 2™ € A\, + C,. Then

Fala™) = F@)] € 5is S, 1P ") = Flam)dy" <

max,. 5 1¢, |f(y") — f(2")] (B.44)

it further follows that

lim max  |[f(y") — f(z")| =0. (B.45)

o—0 ynexn+32i(cg>

Relations (B.44) and (B.45) imply that (B.43) holds.

Lemma 8 For any set A CR"™ and any u € R™, the following holds,

/ "2 = / " [2da” + 2 / e ) + Jul2(A).
ut+A A A

Applying the change of variable 2" = u + y™ we obtain that

/+A le" 2 dz" = [, lly" +ullPdy™ = [ lly"lPdy" + [, 2" wydy" + [, |u]*dy"

= Ll IPdy™ +2( [ 2" da™, u) + [Jul*v(A).

Lemma 9 Let Ay C Ay be two nested lattices in R™. Let Ny = N(Ay : A1) and

Chgir, = Unievi, 00ty Vay (A1), Then

S Il = n (G vk, — GO, ).

A1E€EVA, (0)NA1L
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It can be easily seen that Cy,.x, is a fundamental region of the lattice Ay, thus
V(Cryn,) = v(Ag) = Nov(A1). Using further the definition of G(Ca,.x,) one obtains
that

2 1
WNoG(Chun i, = o [ P,
1 A21A1

Using the fact that Vy, (A1) = A + V},(0), we obtain that

1 n n 1 n n
A D DR (N
VAr Jeayn, v A1+Vy, (0)

M A1 €VA2 (0)ﬂA1

1
& Z / |lz"™(|Pda™ + 2 / o"dx™ Ay )+ [ M ]]Pva,
Va, (0) Va, (0)

14
M Al 6VA2 (0)ﬁA1

No |29 m
e P D DI M
VA1 Jvy, (0)

A1 EVA2 (0)01\1

—
S]
N

—
=
=

c 2
9 nNoG(A)v, + Sl

A1EVA, (0)NA;

where (a) is based on Lemma 8. Moreover, (b) uses the fact that fVA (o) Z"dz" =0
and |Va,(0) N Ay = Ny, while (c) is based on the definition of G(A1). Now the claim

follows.

Lemma 10 Consider two nested lattices Aoy C A1 and scale coefficients wy, ws such
that lattices Ny = wolgy and Ay = wiAy o are still nested. Let Ny = N(Ay : Ay) and

Cayin, = Unievi, 0)na; Vay (A1) Then the following holds:

lim G(CAQ:A1) = G(Ag)

w2
=2 500
w1

Note that since the lattices A and A; are scaled by different scale factors, the value

G(Cp,:a,) is not constant. On the other hand, G(Asz) is constant. Notice further that
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the set Cp,.a, is a fundamental region of the lattice Ay, thus its volume equals vy,.

Then the following holds

1 n n n n
Gmw@—mm>=—7p(/ o e [ |mww).
nvy, " Caqg:nq Vi, (0)

For simplicity let us denote A = Ca,p,, B = Vj,(0) and Av = v(A) — v(AN B).
Since v(A) = v(B) it follows that Av = v(B) — v(AN B). Then we obtain that

GA-6B) = — | [ P [P
n,, n A\ANB B\ANB
1
nvy, "
Av _ _
S T ((TA2 -+ TAl)Q + 7”/2\2)
nvy, "
- 5@2\2Ay B 5&)%’/7/2&270AV B 577%2’0 Av
N =R
nvy, nWyVR, VA, Anvg, TR

According to the above relations in order to prove the claim of the lemma it is sufficient

to show that limws _, I/ATV = 0, which is equivalent to
w1 2

=1. (B.46)

It is easy to see that for any point 2" € Vj,(0) which is at a distance larger than
7a, from the boundary of Vj,(0), we have Qu,(z") € V,,(0), thus 2" € A. This
observation implies that the interior of the set vVi,(0) is included in A N B, where
y=1-— ST :—;% Then we have 4" < ”(fTr;B) < 1, which implies that (B.46)

holds. With this the proof is completed.
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Appendix

C.1 Proof of Theorem 3

Proof of Theorem 3
For each A, € A, and i = 1,2,3, let A;(A,) £ {aP[27; = A\;}. Further, for cach X €
Ain, denote M(A) £ Us.evi, oona. Ve(Ae). Then Ai(A) = Uygg-1(,)M(A). Clearly, we
have M(A\) = A+ M(0) for all A € A. This fact together with relation (3.67) implies
that

Ai(As) = Ai(0) + X5, VA €A, (C.A4T)

Obviously, we have ds; = D(Q4,, X]"), where @4, denotes the quantizer which
maps each input sequence z € A;(As) to Ag, for A\s € As.
First let us fix 7. We will split the proof into two parts. In Part 1 we show that if

lim 3 108) G(“i%(o)) exists then we have

i DQaLX) L G(A0)

2 2
(3.108) Cg(ys) n (3.108) c;

(C.48)
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In Part 2 we will evaluate that

(C.49)

Part 1.!
The proof is based on the idea that in the limit of (3.108) the pdf Jxr can be approx-

imated by a uniform density function over each set A;(As). This density function is

foc:R™ — [0, 00) defined as follows. For each Ay € A; and 2™ € A;();), let

P € A1 o
Ble") =S ™ O o, SO (€0

Let Xg'. denote the random variable with pdf fp.. Note that

1D (Qu, Xj) ~ DlQas X7 <
— 2 e L 57 = MlPloela™) = fp (") da <
L z FA0))2 [y o) Woelae™) — Fp (2| da™ =

HAO o foe(a™) = fxp ()| da, (C.51)

nc2(vs)

n02

where the second inequality is based on the fact that A;(As) = As + A4;(0), which

implies that max,ne 4,01, [|2" — As||? = 7(A;(0)). Let us analyze now the quantity
7(A;(0)). Recall that A;(0) = U, g-1(g)(A+M(0)), where M(0) £ Upevin0)nne Ve(Ae).
Then it follows that

7(A:(0)) < 7(577(0)) + 7(M(0)). (C.52)

IThis proof is similar to the proof of part 1 of theorem (2.44) from Chapter 2.
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Further,

F(M(0)) < Ty + Te < 275 = 207350 (C.53)

Using (3.95) and the fact that 7y, = 3c207;,0, it follows that 7(8;'(0)) < (5 +
2¢,)3c20T;n 0. Since we are interested in computing the limit in (C.49) as (3.108)

holds, we may assume that ¢, is conveniently large. Then the following holds

7(8;1(0)) < 9307 0. (C.54)

)

Finally, relations (C.52)-(C.54) together with the fact that ¢; = 3¢, and vy, =

n_ .nan _ 2\nOn
A" Vino = (3¢2)"0Vino, lead to

F(AKO)) < 29Fin,0 + 3016(2)9771'”70 N 37_1in,0

)) < ! =, (C.55)
Co(Vs)™ C1 039%%,0 Vino

in the limit of (3.108). The above result also implies that 7(.4;(0)) — 0 as (3.108)
holds. This enables us to apply Lemma 7, which is stated and proved in Appendix
B, and we obtain that fy.(2") — f%, (z") for each 2™ € R", as (3.108) holds. Using
further Scheffe’s theorem (Scheffé, 1947), it follows that [o, |fo.c(x") = fxp(z")|dz" —
0 as (3.108) holds. Combining further with (C.51) and (C.55) we obtain that

hm(S.lOB) ! )% |D(QA”X(?,C) - D(QAM in)| =0. (C-56)

(v
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Using now the fact that fp . is uniform over each quantizer cell A;(\;) we obtain that

D(QAian,c) =1 Z)\ €A, fA. , (2")da" =
1 PIXTeAi(As)] 9 7 n (@)
n ZASEA TU(AiOw) fAZ(/\ — As|[*dz

i L 2712427 o,y PIXT € Ai(A)] =

Az ) fA (0) |z"||?dz"P[ X € R"| =

—
=

G(*Ai(()))(l/(-Ai(O)))% 9 G, (C.57)

where (a) uses the fact that A;(As) = A\s + A;(0), and (b) is based on the fact that
v(A;(0)) = v, since A;(0) is a fundamental cell of the lattice A;. Relations (C.56)
and (C.57) prove the claim of Part 1.

Part 2.

We will first evaluate fAi(O) |z"™||*dx™. Using the fact that A;(0) = Uses—1(0)(A +

M(0)) and relation (3.68) we obtain that
Ai(0) = Ureu (A = Bi(A) + M(0)). (C.58)

Using further Lemma 8, which is stated and proved in Appendix B, we obtain that

/ "2 = / "2 42 / e A B0+ IA— BN [P (M(0)).
A=Bi(A)+M(0) M(0) M(0)
(C.59)

It is easy to see that M(0) is a fundamental cell of the lattice A;,, therefore, v(M(0)) =
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Vin. Further, relations (C.58) and (C.59) lead to

/ " 22" - / lon|2dzm +2 3 /M LA B0 +VmZ||/\ Bi(A

)|

J/

i(0) B el AeU
Then
G(A;(0)) T T3, Ty
( 2( = — + — + —. (C.60)
o n2(Mvy)'Tn n2(Myy,)' e ne2(Muy,)'

We will prove first that the first two terms in the right hand side of the above
equality approach 0 in the limit of (3.108). Consider the first term. Note that
S 2" [[Pdz™ < (7(M(0)))? 4. Combining further with (C.53) and with the fact
that [U| = M it follows that
22
e (Mj;lm)Hi < ;f&;z;ff = nc;;;“y — 0 as (3.108) holds.

in,0

It is easy to see that the closure of a lattice Voronoi cell of the origin is symmetric
about the origin. Therefore, if A;, is a clean sublattice of A,, i.e., there are no points
of A. on the boundary of V;,(0), then the set A. N V;,(0) is symmetric about the
origin. The above considerations further imply that the closure of the set M(0) is
symmetric about the origin, thus [ M(0) x™dx™ = 0. Then the second term in (C.60) is

0. When A;, is not a clean sublattice of A., the aforementioned term still approaches
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0 in the limit of (3.108), as we prove next.

T, = 2 / (2 — Bi(\))dz”
%{ M(0)
<2y [ - s
Aey / M(0)
(a)
<2y [ ania- s dst
reu Y M(0)
=2 e Y A= A0
M(0) )\EZL{
® o
< 2(M(0))vin M7(5;(0))
(¢) L
S 40fin,OVinM(9ciefin,0> @ 120002VinM1+zf@'2n707 (C61)

where (a) follows from the Cauchy-Schwarz inequality and (b) follows from (3.68)
and based on the fact that fM(O) ||z™]|dx™ < F(M(0))vy, and [U| = M . Additionally,
(¢) follows from (C.53) and (C.54). Finally, (d) is based on the fact that 3¢2 = M.

Further, relation (C.61) implies that

Ty, 12,0 M5 0272, 473,
: | To.i| < 0 = — 0 5 0as (3.108) holds.  (C.62)
ne2(Mvg,) n nc M 0% nedvy o

Let us evaluate now % We need to treat separately the cases ¢ = 1,7 =2 and i = 3.

Recall that U £ {7 + \; + s € T,ity € V;(0) N Ay, s € Viy3(0) N Ay} Using
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further (3.66) we obtain that

I3,

+

—
S
N

+

Do IIA = ey

AeU
> (10 = e) DI + gl + 711
AeU
> (200 =)o) + 200 = ) i) + (7 )
AeU
> Yoo =B INIPEYS Y > llag P
T€T S\fEVS/g,(O)mAf ﬁfevf(o)mAin TeT S\fEVS/S(O)ﬁAf 'afevf (O)OAin

pis T:
> X > IrIPr21-38c), . > )
TETS\feVS/g,(O)mAf U eVy(0)NAin TeTj\fevs/3(0 NA; Uy eVy(0)NAin

T, T
20=38c0) ), X > 2y ) > fapm)
TE€T Xp€V,/3(0)NA; Tr€VF(0)NAin TET Xy€V,3(0)NAy Tr €V (0)NAin

T Tr

To+Ts+Ty+Ts+ Ts + T, (C.63)

where (a) is based on the fact that ¢, = .

Relation (C.63) leads to

T3, 15 13 T
2 C\1+2 2 2 2 2 2 2
neg(Mvi,) n2Mwyr n2MYayr nEMYeyl
e 15 17
+ + - (C.64)

2 2
20 f1+2 0 2\ f1+2 0 2\ f1+2,,n
nc:M "wv necM Tyl ncEM TRyl
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Consider now the first term on the right

o= (-3}, >, SR
TET XyeVi/5(0)nA; T EVy(0)NAin
= Q-3 3, M
A€V, /3(0)NA
(C.65)

Using Lemma 9, which is stated and proved in Appendix B, we obtain

Ty _n3"e(1 - 3¢,)?

nchH%l/ii - nchH%Vi
1 —6c, + 9¢2
- ! L (6(Cr, ) - 26(A)

6
9cb

(G(CAs/giAf)VjB - G(Af>yfﬁ>

where the last equality relies on the fact that M = (3¢2)", while v; = v, and

Vs/3 = 2"V, . Further, we obtain that

. T2 . (1 — 6Co -+ 963)
lim — =z lim 5
(3.108) nchHH v (3.108) 9cd

(cAG(Ch ) = G

—
S
=

= G(As/fi) = G(As) (C66>

where (a) follows from Lemma 10, which is stated and proved in Appendix B and the
last equality follows from the fact that the normalized second moment is invariant to
scaling.

We will show now that the last five terms on the right hand side of (C.64) approach

0 in the limit of (3.108). Consider now the second term on the right hand side of
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(C.64). The following holds

=3 S Y

TET S\fEVs/is(O)mAf ﬁfEVf(O)ﬂAin

=3 Y Jal” (C.67)

ayeVy(0)NAin

In order to evaluate (C.67) we use Lemma 9 and obtain that

T3 n3"cAn 2 2
_ [0}
o2 m oLl & (G(CAf:Ai")V}L_G(Am)V’%)
ne:M "nyl nc:M "ryl
1

= o (G )~ GlA))
where the last equality relies on the fact that M = (3¢2)", while vy = v;,. Further,

we obtain that

. T3 .
lim — 7 = lim 5
(3.108) nchHﬁuﬁl (3.108) M = cg

(G(Chynin)ca — G(Ain)) =0, (C.68)
where the last equality follows from Lemma 10.

We will show that the third term on the right hand side of (C.64) approaches 0 in

the limt of (3.108). Note that

T, = "y |l (C.69)
TET
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Using Lemma 9, we obtain

T Mn 2 2
- = 2 (G(CAS:AS/:),)VSH — G(As/g)l/;‘/3>

2 2 2 £
nc2M nc2M"

1 (9G(CAS:AS/3) - G(As/i”)) !

2
9cz

where the last equality is based on v, = My, and vy/3 = My, /3™. As the parameters
c and ¢ vary, both lattices A, and A,/3 are scaled by the same factor, therefore the set
ChsA, /3 is scaled by that factor. Since the second moment is invariant under scaling it
follows that 9G(Cy,.a,,,) — G(A,/3) remains constant as the parameters 6 and c vary.

Consequently, we have that

lim — (C.70)

2
2 2
(3.108) 2 i+ 3y

n

Consider now the fourth term in (C.64).

5| < 21-3c|> . > > g A

TET X€V,/3(0)NAf G EVE(0)NAin

a

< 2AL=3c|> ) > llaslliAgl

TeT S\fEVS/3(0)ﬁAf uf€Vy (0)NAin

—
N

< 201 —3c,|M  max iy max ||Af]|
afevf(o)ﬁAin )\fEVS/g(O)ﬂAf
< 2|1 = 3eo|MTy7y)3,

where (a) is based on the Cauchy-Schwartz inequality. Using further the fact that

Tt = CoblFin,o and Tgj5 = 2074, 0, leads to
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Tl 2|1 — 3c,|cHM6°7
—5 < o n,o
5 < 2
anMH—% VZ'T;‘L anMl_‘-%V{’rLL
2|c, — 3ck|72
_ AT Bolhe g g a0 holds. (.7)
n9cSvy o

Consider now the fifth term on the right hand side of (C.64). The following holds

|T6| < 2|1_3CO|Z Z Z |<T>5‘f>|

TE€T Xy€V,/3(0)NA s UrEVF(0)NAin

—

a)

2oy Y S il

TET S\fEVg/g(O)ﬁAf Uy eVy(0)NAin

< 211 —3co|Mmax||7||  max ||\
TeT Af€Vs/3(0)NAf
< 2|1 = 3eo| M7y 3,

where (a) is based on the Cauchy-Schwartz inequality. Using further the fact that

Te/3 = ci@ﬁmo and 74 = 303972”70, leads to

T3 6]1 — 3co|cy M7
—6 < 0 in,0
P < 2
ne2M“ oy, negM' O
2|2 — 3c3|72
_ ‘ 5 Z’ in,0 0 as (3108) holds. <C72>
3ncyv o
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We will evaluate the last term in (C.64).

Tl < 2y ) > )

TET X4€V,/3(0)NAy G €V (0)NAin

—
S
=

< 2), ) S il
TET XfeV. 5(0)nAf Gr€VF(0)NAin
< 2Mmax|7|| max |ag]]
TeT A€V (0)NAin
< 2MF.ry,

where (a) is based on the Cauchy-Schwartz inequality. Using further the fact that

Tt = CobTino and 7y = 3¢207, ,, leads to

T. 6 MO*72, 2¢,72,
| 7|2 5 < e = 2 5 0as (3.108) holds.  (C.73)
n2M*uvp nEMTR05, 3nckug g
Relations (C.64)-(C.73) imply that
T
lim 51 = G(A,). (C.74)

2
(3.108) . 2 142 5+l
nezM-"ny
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i
Let us evaluate now —>2.
K3

n

T -
2= 3 = iy

Vin reu
= 3 (10 = coenigl? + A1 + I17)?)
AeU
+ Y (2<xf,7> +2(1 — eoe) gy ig) + (1 — eoer) (T, af>)
AeU
(a) N -
=0 Yoo @=3PlallP Y. Y > P
TeT S\fEVS/g,(O)mAf ﬁfevf(o)mAin TeTS\fEVS/g,(O)ﬂAf afevf(o)mAin
Ty Ty
DD > IrPr2=30), > > i)
TET S\fEVS/;’,(O)ﬂAf Gy eVy(0)NAin TeT 5\f€Vs/3(0)ﬂAf ar€Vy(0)NAin
Tho T
+ > Yoo GnpmH20-33)) . (iiy,7)
TET S\,fEVS/S(O)mAf UreVr(0)NAiyn TET :\fe{/'s/3(0)ﬂAf UreVi(0)NAin
Tis Tis
= T+ Ty +Tho + 111 + 112 + Tis, (C.75)

where (a) is based on the fact that ¢, = . Relation (C.75) leads to

T3 _ 13 Ty Tio
2 1+2 _ 2 2 + 2 2 + 2 2
neg(Mvip) nMuyr  nZMYwyl o nMYeyp
T} T T
n 11 n 12 n B (C76)
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Consider now the first term on the right hand side of (C.76)

o = (1-32?2Y Y > llagl?

TET S\fGVS/g(O)mAf ﬁfGVf(O)ﬁAin

LU D DR 2

ur€Vy (0)NA;p

(C.77)

In order to evaluate (C.77), we use again Lemma 9, and obtain that

13 n3"c2"(1 — 3c?)? 2 2
2 /142 z 2 f1+2 2 (G(CAJ“AM)VJ? o G(Am)yﬁz)
ne; v ne; nyt
(1 —6¢2 4 9c?)
- 06 (3G (Capen) — G(Ain))

where the last equality relies on the fact that M = (3¢2)", while vy = cv;,. Further,

we obtain that

T 1 —6c2 4
fm —— = g L2090 (e, - dan,)
(3.108) ”CgMH%ViZ (3.108) 9cd
< G(ag) =G, (C.78)

where (a) follows from Lemma 10 and the last equality follows from the fact that the
normalized second moment is invariant to scaling. We will show that the last five

terms on the right hand side of (C.76) approach 0 in the limit of (3.108). Consider

97



Ph.D. Thesis - Dania Elzouki McMaster - Electrical and Computer Engineering

now the second term on the right hand side of (C.76). The following holds

Ty = >, > > AP

TET S\fe\/'s/3(0)mAf ur€Vy (0)NA;n

S D S VI (C.79)

A€V, 3(0)NAf

In order to evaluate (C.79) we use Lemma 9 and obtain that

Ty n3ncin 2 2
— = — (G(Cr a5 — G(API} )
nc2M" nc2M"
1
= o (AAG(Ch, ) = EG(AY) )

where the last equality relies on the fact that M = (3¢2)", while vy = vy, and

Vs/3 = 2", Further, we obtain that

Ty 1
(3.108) 2 M (3.108) 9¢8 (Capaing)Co — 3G (Ay) (C.80)
where the last equality follows from Lemma 10.

We will show that the third term on the right hand side of (C.76) approaches 0

in the limt of (3.108). Using Lemma 9, we obtain

T Mn 2 2
- 2 2 2 2 (G(CASZASB)VSH - G(AS/3)Vsn/3)
nc2M" ne2M*ayr
1
= 55 (9G(Chn) — GA))

where the last equality is based on v, = My, and vy/3 = My, /3™. As the parameters
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co and 0 vary, both lattices A, and A3 are scaled by the same factor, therefore the set
Ch,n, P is scaled by that factor. Since the second moment is invariant under scaling it
follows that 9G(Cha,.a, /3) — G(Ay/3) remains constant as the parameters 6 and c vary.

Consequently, we have that

T
lim ——2—— = 0. (C.81)

2
(3.108) . 2nas1+2 &
nczM-"ny

We will consider the fourth term in (C.76).

Tu| < 21-321> . > > g, Ayl

TET Xy€V,/3(0)NA; @€V (0)NAin,
(a) o
< -3¢, Y S laglial
TET XpeVi/5(0)NAy T EVE(0)NAin

< 21 -3¢ M  max iy max [N
areVE(0)N A, Ar€Vy3(0)NAf

< 2|1 — 32| M7y s,

where (a) is based on the Cauchy-Schwartz inequality. Using further the fact that

Tr = CoblTin,o and T3 = 20T, . leads to

T 211 — 30(2, C3M92Fi2no
#‘22 < | | . ; (C.82)
nc(g)MlJr; l/iT;L anM1+EVi7;L
2|c, — 33|72
_ ’ (;l in,0 — 0 as (3108) holds. (083)

4,,n
nQCOVmO
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Consider now the fifth term on the right hand side of (C.76). The following holds

Tol < Y > > A

TET ;\f€VS/3(0)mAf ﬁfEVf(O)ﬂAin

<> D, ) 1PV

TET S\fGVS/S((])QAf UpeVy(0)NAin

< Mmax]|7]| max HS\fH
TeT AFEV,/3(0)NAf
< Mfsfs/i’n

where (a) is based on the Cauchy-Schwartz inequality. Using further the fact that

Tss3 = CoO0Tin o Ts = 3¢20Tin 0, leads to

T 3cEMO* 72,
| 12|2 _ < Al (C.84)
ne2M*ayn ne2M'"™=602v;
=2
rs
= — ™0 50 as (3.108) holds. (C.85)

2, n
n3coym70

We will evaluate the last term in (C.76).

Tl < 21-3¢1) > Y. Ky

TET :\fe{/'s/3(0)ﬂ1\f ﬂfEVf(O)ﬂAm

-3 Y S el

TET S\fe{/s/3(0)ﬂAf UreVi(0)NAin

< 21 -3 Mmax|7|| max |||
Te€T U eVy(0)NAin
< 211 — 32| M7y,
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where (a) is based on the Cauchy-Schwartz inequality. Using further the fact that

Tt = ColTino T's = 3¢20Ti o, leads to

2|3 N[22

‘T13| 6‘1 - 300’00M9 ’I"in,o

2 2 < 2 2 0
2\ fLH2 2 )\ 1+ 2020
nczM-"ny] neg M= 0%y,

2|1 — 3c|c,r?
2

4,0
3ncoum70

Relations (C.76)-(C.86) imply that

= G(Ay).

. Ts0
lim A
(3.108) ne2M+ayn
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13,3

3
Vin

Let us evaluate now

T -
2= YN =37+ s + iy
Vin AeU
(a) ~ ~
23 (I + )OI + 1+ cocr)iig 2 + 127
el
+ 30 (A0 )R 7)) 201+ )L+ cer) g i) — A1+ o) (7))
el

(b) -
= > > S 43 A
TET eV, 3(0)NAy Br€VF(0)NAin

-~

T4

DD Y (3 |

TeT S\feVS/S(O)mAf areVy(0)NAin

J/

-~

T1s

+ o4y >l IP

TET X4€V,/3(0)NAy G €V (0)NAin

(. J
v~

Tie

+ o 2(143c)(1+32)) 0 Y S i A
TeT S‘,fEVS/S(O)mAf 'afEVf (O)HAin

-~

T17

- A1+3c)) Y > )

TeT :\fGVg/g(O)lﬁlAf g €Vy(0)NAin

J/

(.

~~

Tis

HEUEE DS S (ap)
TET XpeV,/3(0)NAf Tr€V(0)NAir,

-

T1g
= T+ Tis+ T+ Ti7 + Tig + Tho, (C.89)

J/

where (a) is using the fact that A = 7 + A; + @y and (b) is based on the fact that
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co = 5. Relation (C.89) leads to

133 B T4 " T1s n T1e
ne2(Mug,)' = - nEMYEun  p@MYEun p@p e
o wm o wm o m
T T T
+ 17 5 2 18 5 2 + 19 5 2 - (C.90>
n2M" oy nEMYaur n2Maun
Consider now the first term on the right hand side of (C.90)
T = (1+ 300)22 Z Z ”S‘f I
TET ;\fe{/s/3(0)ﬂAf ﬂfEVf(O)ﬁAin
= 3"P(1+3c)” > A
AFEV;/3(0)NAy
(C.91)

In order to evaluate (C.91), we use Lemma 9, and we obtain

T 372 (1 4 3¢,)? 2 2
(3 (G(Caya s — G} )
nc2M" nez2Mwy
(14 6¢, + 9¢2)
= T (GO ) — G (AY))

where the last equality relies on the fact that M = (3¢2)", while vy = vy, and

Vs/3 = C2"Vsp,. Further, we obtain that

T14 (]_ + 660 + 963)

lim —4  — ; ) — EG(A
(3}%) e M2 n (3.11%%3) 9cb (COG(CAs/sJ\f) ¢;G( f))
Y GAys) = G(A), (C.92)
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where (a) follows from Lemma 10 and the last equality based on the fact that the

normalized second moment is invariant to scaling.

Consider now the first term on the right hand sie of (C.90)

T = (14322 Y S g I?

TeT S\fevs/s(())m/\f Uy eV(0)NAin

= 31 +3c) > g |- (C.93)

UpeVy(0)NAin

In order to evaluate (C.93), we use again Lemma 9, and obtain that

T 3n 2n 1 3 2\2 2 2
= s 2 e +2 CEO) (G(CAffAin)VJp - G(Ain)’/ﬁJ
ne2Mtuyl nczM'uy
(14 6¢2+9c)

where the last equality relies on the fact that M = (3¢2)", while v; = ¢v;,. Further,

we obtain that

T 1 2 4
fm 0 g LS (e, - e,
(3.108) nchH%lﬁ (3.108) 9cb
W GAy) = G(A). (C.94)

where (a) follows from Lemma 10, which is proved in Appendix B, and the last equal-

ity follows from the fact that the normalized second moment is invariant to scaling.

We will show that the last four terms on the right hand side of (C.90) approach
0 in the limit of (3.108).
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Consider the third term on the right hand side of (C.90). Using Lemma 9, we

obtain that

T 4Mn 2 2
e O (GG -Gl
ne2M" ne2M*ayr
4
- % (9G(Ch.n, ) = G(Ays) )

where the last equality is based on v, = Mv;, and vy); = Mv,,/3". As the parameters
¢, and 0 vary, both lattices A, and A,/3 are scaled by the same factor, therefore the set
ChsA, P is scaled by that factor. Since the second moment is invariant under scaling it
follows that 9G(Ca,.a,,,) — G(As/3) remains constant as the parameters ¢ and c vary.

Consequently, we have that

T
lim ——°—— = 0. (C.95)

2
2 2
(3108) 2 pf sy

mn

We will evaluate the fourth term in (C.90).

Tl = 2L +e)(1+3)) Y (@A)

TeT S\fEVS/3(0)ﬂAf ﬁfGVf(O)ﬂAin

= 20+e)@+3D)D> (Y an Y. Al

TET S\fevs/S(O)mAf afer(O)ﬁAm

In order to proced we need to intruduce more notation. Let (V;(0) N A;,), denote the
set of points which are in V;(0) N A;, and on the boundary of V;(0) and let (V;/5(0) N

Ay), denote the set of points which are in V;/3(0) VA and on the boundary of V3(0).
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Moreover, let M, = |(V;(0) N Asp)s| and N, = |(Vs/3(0) N Af)s|. Note that V(0) N Az, \

(V¥(0) N Ayp)p is symmetric about the origin. Thus Zafevf(o)mAm\(Vf(o)mAm)b =0

Tl = 20+3¢)(1+3)) ) Yo (@A)

€T S\fG(VQ/3(O)ﬂAf)b ﬁfG(Vf(O)ﬁAin)b

< 2143c)(1+32)Y . > > Kag Ayl

TET Xp€(Vy/3(0)NAy)y G E(VE(0)NAin)b

< 2(1432)(143¢)d . Y > lagligl

TET 3 ye(Vay3(0)NAs)p B EVF(O)NAin)y

< 204321 +3¢,)3"N.M,  max |lag]  max |
ape(V(0)NAin)p AFE(Vy/3(0)NAf),
< 2(1+32)(1 + 3¢0)3" N M,T T3,

where (a) is based on the Cauchy-Schwartz inequality. Using further the fact that

Tt = CobFin,o and T3 = 2074, , leads to

Tul 214 3e)(1 + 3R NG,
anM1+ v n02M1+
@ 2(1+3CO)(1+3C ) Co znO (Ncyf> (Mcyin)
- 2 3ncny n,.
n9cly 0 3n ! CoVin

—~
o
=

2(1 + 3c% + 3¢, + 9¢2) 37 mo (Ncyf> <Mcym

z
vy

) (C.96)

ngcg in,0 I/s/g

where (a) based on the fact that M = (3¢2)", and (b) is based on the fact 3 =
3"chvy /3" and vy = 4.

Now we will show that ( °”f) — 0 as (3.108) holds. Note that Ny < (6% — ¢2)vy/s.
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where ¢; = 1 + ng and ¢y =1 — % Then,

(Ao} ¢ (k)
Vs/3 N Vs/3

= ¢} —d. (C.97)

Now let us show that lims 108)(¢] — ¢5) = 0. Note that

(¢ — ¢5) = (1 — @) (D7 + 1 2Py + 1 05 + oo +¢57") < (1 — da)ngi

Since ¢! — 1 as (3.108) holds, it is sufficient to show that (¢ — ¢2) — 0 as (3.108)
holds. We have

(c/n—qzég)z(1+f—f—1+F—f):<M):(3)—>0 (C.98)

Ts/3 773/3 Cgefin,o Co

as (3.108) holds. Similarly, it can be shown that

Mc n
lim —<™ — (C.99)
(3.108) Vg
From relations (C.96)-(C.99), we obtain that
T
lim Tl (C.100)

(3.108) anM”% 1/%
o mn
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Consider now the fifth term on the right hand side of (C.90). The following holds

Tis| < 4(1+3c)) Y. > Unan

TET X4€V,/3(0)NAy G €V (0)NAin

—

a)

< A+3e> > o Tl

TET S\fGVg/S(O)mAf U eVy(0)NAin

IN

4|1 + 3¢, | M max |
TET

Tl max [lAf]|
/\fGVS/g(O)ﬂAf

<A1+ 3, | M7y 5T,

where (a) is based on the Cauchy-Schwartz inequality. Using further the fact that

Ts/3 = cié’m,o and 7, = 3039771«”70, leads to

|T18| < 12|1 + 3CO|63M92771'271,0
n2M“avr nchH%Q?yﬁw
Ale; + 3c,|T7, 0
= 7 — 0 as (3.108) holds. (C.101)
3ncf;yi7%0

We will evaluate the last term in (C.90).

Tl < 41+3¢)) Y Y. lmag)

TeT S\fEVS/;;(O)ﬂAf ﬁfEVf(O)ﬂAin
) ~
< 40+ D S Iirlllayl
TET X;eV,/5(0)NAy G EVF(0)NA;n
< A1 +3)Mmax|r|  max ligl] < 4(1+3¢)Mryr,
TE

ur€Vy (0)NA;n
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(C.103)

where (a) is based on the Cauchy-Schwartz inequality. Using further the fact that

Tp = ColTino, Ts = 3C20Tin o leads to

T _ 12(1 4 3c2)cIM6*7, ,
ne2M“ayn nchH%@QVﬁw
1+ 3c2)c 2,
_ ! 0)2 2 0 as (3.108) holds. (C.104)
3ncgvi, o

Relations (C.90)-(C.104) imply that

lim S —2G(A). (C.105)

lim > G(A(0) = -G(A,). (C.106)

Corroborating further with (C.48), relation (3.113) follows.
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Appendix

D.1 Proofs of Lemmas in Chapter 3

Proof of Lemma 5

According to equation (3.95) for i = 1,2,3, and ¢, > 5 we have

7(6;71(0)) < 3eoTs. (D.107)

2

Using the fact that A\.; = A\; + u; and the triangle inequality we obtain that
i =22l = o] = Aci +us + A — 204

< s = Acll A luall + 1A = 2241

c,i

< Tet T+ A = 23] < 7+ [|N = 224 (D.108)
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If condition (3.70) is violated then #7; = A, ;. Thus, we have
N =220l = [IA = Asall < 7(8,71(0)) < 3o, (D.109)
for ¢, > 5 relations (D.108) and (D.109) imply that
a7 — 20| < (Beo + )7 < ey (D.110)

Let us assume now that condition (3.70) is satisfied and that Case 1) holds at the

decoder, i.e., a; =0 or ap =0 or a3 = 0. Then
I = 2201 < 1A = Nall + sl < (1% = Xl + 7 (D.111)

Let us consider now ¢ = 1. Using (3.80) and the triangle inequality we obtain that

=Ml < 1= A+ 17+ I+ lagal

3 1 < 1 - -
< = Al s = Asll 475+ - fAsr = Al + ||3—03(As,2 —As) = Ad

1 ~ 1 - -
< e rit (1450 ) P = A+ glha = Al + Il (©112)

3¢,

where (a) is based on using (3.76), (3.77) and (3.78). The last inequality is based on
A1 — Al < 7(B;71(0)) < 3¢,7s and on Lemma 4.
s

Using the fact that A, = \y/3 — 7 from (3.74), (3.75) and using the triangle inequality
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leads to

”>‘s71 - 5‘5“ < ”/\8,1 - 5‘S/BH + Hﬂ|

< e = Aygsll + 7 (D.113)

Using (3.74) in conjunction with the triangle inequality leads to

5 1 s
Asq = Asssll < [ Asy — g()\s,l + As2+ Ag 3+ 3N ||
1 1 ~
< 5”/\871 - /\5,2” + gH)‘SJ - /\S,SH + C?;H)‘CH
2 -
< 5((10+4c0)n+3fm) + A, (D.114)

Where the last inequality follows from (3.70). Now we will derive an upper bound

for || A.|| and ||X.||. Note that Ay = Qin(uy — ug) — (u1 — uz)modQy,. Then
INall < ] + uz ]l + (w1 — u2) mod Qi (ur — us)|| < 37 (D.115)

Similarly, we obtain

el < 37in (D.116)

Plugging (D.114) and (D.116) in (D.113) and using the fact that 7, = 3¢2r;, leads to

< 2
Ao = Asll < 27 + S (10 + o) + 27in. (D.117)
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Now we will evaluate the following term

sz = Al < sz = Aggall + |17

< ez = Aygsll + 7 (D.118)

Using (3.74) in conjunction with the triangle inequality leads to

3 1 3
As2 = Asssll < [[As2 — g()\s,l + As2+ Ag 3+ 3N ||

1 1 -
3”/\372 - /\s,l” + gH)‘&? - /\S,SH + CgH)‘CH

IN

IN

2
3 (10 + 4cy)rg + 375 + 32 Tin, (D.119)

where the last equality follows from (3.70) and (D.116). Plugging (D.119) in (D.118)

and using the fact that 7, = 3¢27;, leads to
- 9 B )
| As2 — As|| < 275 + 5(10 + 4¢,)Ts + 2T, (D.120)

Plugging (D.117), (D.115) and (D.120) in (D.112) leads to

< 34 26
— <1 6¢co + — + — | 7s + 7. D.121
| A1 AlH_(?mL c+960+9cg)r+ T ( )

Combining now the above inequality with (D.111), (D.108) we obtain that

34 26
[} — 22, = (13 +0co + o=+ @) T+ Ty 4 8 < TCoTs, (D.122)

for ¢, sufficiently large. The proof for ¢ = 2,3 and for the remaining cases follows

along the same lines.
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Proof of Lemma 6

Let us fix i. Denote W(\;) £ {27 € R" : Qin(Q.(x7)) € W(\,)} and W £
U,\fEAfW()\f). A moment of thought reveals that W(\;) C (As +m Vi (0))\(As 4+ 172V;(0)),

where 9, = 1 + % and 7o =1 — % The above relation implies that
v(W(Ap) < (nf =3y (D.123)

Let V(A;) 2 {27 € R Qin(Q.(x7)) € Vi(\f)}. Clearly, v(V(\s)) = v4. The proof of
the lemma hinges on the fact that, as (3.108) holds, the pdf of X" can be approximated
by a pdf which is uniform over V(\s).

Note that the sets V() with A; € Aj, form a partition of R”. Define a density

function fy,. : R™ — [0, 00), which is uniform on each set V()\;), as follows

1
Joo(a") = ~—/ Fxn(y™)dy", (D.124)
v(V(As) Joo)
if 2 € V(\). Then according to Lemma 7, we have that fy.(z") — fxn(x™) for

every 2" € R" as (3.108) holds. Further, we have

(fxn(z™) = foo(z™) + foc(a")) da"
/ foc(a™)dx™.

W(Ar)

Mmemzz/

w

< [ o) = e+ 3

)\fEAf

Note that

/~ |[fxn(2") = foc(a")|dz™ < |[fxn(2") = foo(x")|dz™ — 0, as (3.108) holds,
% Rr
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where the last relation is valid in view of Scheffe’s theorem Scheffé (1947). Further,

since the density f.. is uniform over each V(\;) and W(\;) € V(\s), we obtain that

3 / foelads" = 37 foe A OV())

Ar€Af Ar€Af

W(Af)
(¢) " "
< D foeApvelnt —n)
)\fGAf

= =) D focAp)vy

)\fEAf

where (c) follows from (D.123) and (d) is based on relation (D.124) and on the fact
that v; = v(V()\;)). Finally, it is easy to see that 7, — 1 and 7, — 1 as (3.108) holds,
thus lims 108) (77 —n5) = 0. Further, we need to show that lims 108) (7} — 75 ) logy ¢o =
0. Note that

(0 =n3) = (m = m2) (™" + 0y 7 e+ 7 e 05T < O — )y

Since n?~! — 1 as (3.108) holds, it is sufficient to show that(n; — 1) log, c, — 0 as
(3.108) holds. For this notice that

BFin + 27,

56—ino 26—00
) log, ¢, = ( Tino 1 20Te, ) log, ¢, — 0 as (3.108) holds.
Ty

This observation concludes the proof.
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