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Abstract

Our understanding of brain function is still very limited. Much research is being

conducted to further our understanding and develop new treatments, diagnostics and

devices that not only could be more effective in helping us deal with neurological

and psychiatric disorders and rehabilitation, but also make cognitive enhancement

possible. However, none of this is possible without signal processing capabilities to

extract information from electroencephalography (EEG) signals and especially event

related potentials (ERPs) and evoked potentials (EPs).

This thesis presents new developments in EP artifact rejection, ERP brain source

localization and dynamic causal brain network estimation during an ERP.

Chapter 2 presents a new method for reducing contamination from compound

muscle action potentials (CMAPs) recorded along with EEG activity during repetitive

transcranial magnetic stimulation (rTMS). This development improves the visibility

of short latency cortical activity as a result of rTMS.

In the application of brain source localization methods, especially beamforming,

head modelling errors can cause significant performance degradation. The robust min-

imum variance beamformer (RMVB) developed in Chapter 3 improves beamformer

performance relative to the MVB and its regularized and eigenspace variations in

the face of these head modelling errors. The RMVB specifically optimizes for the
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worst-case estimate of the uncertainty.

Lastly, Chapter 4 describes the Adaptive Sparse ERP Tracking (ASET) algorithm

for estimating dynamic and causal networks that are involved in processing ERPs.

The ASET algorithm is applied to investigate the dynamics in auditory processing,

specifically resulting from the β-band and its envelope.
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Notation and abbreviations

AAL Automated Anatomical Labelling

AC Auditory Cortex

ADHD Attention Deficit Hyperactivity Disorder

AIC Akaike Information Criterion

AR Autoregressive

ASET Adaptive Sparse ERP Tracking

BCI Brain Computer Interfaces

BEM Boundary Element Method

BSL Brain Source Localization

CMAP Compound Muscle Action Potential

DLPFC Dorsolateral Prefrontal Cortex

DTF Directed Transfer Function

DWT Discrete Wavelet Transform

ECoG Electrocorticography

EEG Electroencephalography

EPs Evoked Potentials

ERPs Event-related Potentials

EWAIC Exponentially-Weighted Akaike Information Criterion

vii



fMRI Functional Magnetic Resonance Imaging

GMFA Global Mean Field Average

gPDC Generalized PDC

ICA Independent Component Analysis

IT Inferior Temporal

LCMV Linearly Constrained Minimum Variance

LSL Least–squares Lattice

MC Motor Cortex

MCMTQRDLSL Multi-channel Multi-trial QRDLSL

MDD Major Depressive Disorder

MEG Magnetoencephalography

MNI Montreal Neurological Institute

MQRDLSL Multi-channel QRDLSL

MRI Magnetic Resonance Imaging

MSE Mean Squared Error

MVB Minimum Variance Beamforming

NIBS Non-invasive Brain Stimulation

OC Occipital Cortex

OCCD Online Cyclic Coordinate Descent

OCD Online Coordinate Descent

PC Parietal Cortex

PCA Principal Component Analysis

PDC Partial Directed Coherence

PET Positron Emission Tomography
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PFC Prefrontal Cortex

PPC Posterior Parietal Cortex

RCs Reflection Coefficients

RLS Recursive Least Squares

RMS Root Mean Square

RMSE Root-mean-squared Error

RMVB Robust Minimum Variance Beamformer

SINR Signal-to-interference-plus-noise-ratio

SNR Signal-to-noise Ratio

ST Superior Temporal

TC Temporal Cortex

tDCS Transcranial Direct Current Stimulation

TMS Transcranial Magnetic Stimulation

tvVAR Time-varying VAR

VAR Vector Autoregressive

VLPFC Ventrolateral Prefrontal Cortex

WMN Weighted Minimum Norm
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Chapter 1

Introduction

A great deal of research is currently being conducted to better understand brain

function and to develop better treatments for various neurological and psychiatric

disorders, rehabilitation and even cognitive enhancement. Some interesting research

areas in this respect include neuro-feedback, computational psychiatry, brain com-

puter interfaces (BCI) and brain stimulation. Neuro-feedback aims to self-regulate

brain activity in order to alter cognition and behavior [1]. It can be used as a thera-

peutic tool in post-stroke recovery, normalize attention deficit hyperactivity disorder

(ADHD) or even enhance peak performance [1]. The fledgling field of computational

psychiatry concerns itself with using computational tools to decode the pathophysi-

ology of psychiatric disorders with the aim of better diagnostics as well as discovering

effective treatments [2], [3]. BCI is capable of detecting patterns of neural activity and

translating them into commands for specific devices [4]. It has the potential to aid

patients with significant motor disabilities, such as stroke patients [5], quadriplegics

[6], cerebral palsy [7] patients, etc., to interact with their environments and provide

them with more independence and better quality of life. BCI has also been used in
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biometrics to authenticate disabled individuals, in drowsiness and fatigue detection

for drivers as well as in neuro-gaming [8]. With all these applications it is no surprise

that quite a number of consumer-level wearable electroencephalography (EEG) de-

vices exist, such as the Muse from Interaxon1, the EMOTIV Epoc+2, and NeuroSky

MindWave3, that are easy to use, portable, have low energy consumption and wire-

less connectivity. Non-invasive brain stimulation (NIBS) is used to study and explore

large-scale network dynamics and the functional role of specific brain structures by

allowing experimenters to perturb them [9]. It can enhance motor skills and cognitive

function as well as provide therapeutic effects for patients with neurological and psy-

chiatric disorders [9]. The two most common forms of NIBS are transcranial direct

current stimulation (tDCS) and transcranial magnetic stimulation (TMS). All these

areas of research rely on EEG and especially the associated signal processing required

to extract useful information.

1.1 Electroencephalography (EEG)

EEG measures neural activity through scalp electrodes. The measured signal is a volt-

age that varies over time and is generally recorded at multiple standardized locations

on the head.

Neuronal activity can be generated through two mechanisms: action potentials

and postsynaptic potentials. An action potential is a depolarisation of the membrane

that travels along the axon of the neuron, from the cell body to the dendrites of the

next cell. Initially, the depolarisation causes the cell membrane voltage to change.

1http://www.choosemuse.com/
2https://www.emotiv.com/epoc/
3https://store.neurosky.com/pages/mindwave
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This begins a chain reaction along the axon where one segment depolarisation causes

the adjacent membrane to depolarise resulting in a travelling voltage spike or ac-

tion potential. Once the depolarisation reaches the axon terminals it triggers the

release of neurotransmitters into the synapses. The neurotransmitters bind to the

postsynaptic cell membrane receptors and cause local depolarization (excitatory) or

hyperpolarization (inhibitory) currents depending on the type of neurotransmitter. If

enough excitatory synapses have been activated compared to inhibitory and the cell

body reaches a specific threshold voltage, the receiving cell generates a new action

potential and repeats the process. A single cell’s activity cannot be measured at the

scalp because the voltages produced are miniscule and susceptible to cancellation in

certain conditions.

Neural activity measured on the scalp is the result of local field potentials, which

are generally the summation of postsynaptic or action potentials from large groups

of neurons [10]. Each action potential and postsynaptic potential creates a dipole

whose orientation is defined by current flows into and out of the cell. The summation

of a number of these dipoles results in a measurable voltage at the scalp. However,

if two nearby dipoles have the same orientation but opposite polarity, the dipoles

cancel. Further, if the dipoles appear at different instances in time their individual

contribution is too weak to be measured at the scalp. Therefore, local field potentials

are constrained by two conditions: the timing and the spatial orientation of the

dipoles [10]. In spontaneous brain activty, action potentials generally do not satisfy

these two conditions. Therefore, the most likely source of local field potentials are

dipoles generated by postsynaptic currents [10], [11]. More specifically, they are most

likely generated by cortical pyramidal cells since they are aligned perpendicular to

3
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the surface of the cortex [10].

In comparison to other neural measurement methods like positron emission tomog-

raphy (PET) and functional magnetic resonance imaging (fMRI), EEG offers much

greater temporal resolution. Since EEG is a measure of electrical neural activity it

has finer temporal resolution in comparison to fMRI and PET whose measurements

are governed by the hemodynamic response and concentrations of radioactive tracers,

respectively. In comparison to fMRI, the main disadvantage of EEG is the spatial

resolution. Magnetoencephalography (MEG) and electrocorticography (ECoG) mea-

sure magnetic and electrical neural activity, respectively, and offer similar temporal

resolution. However, they are both expensive and the latter is invasive.

1.2 Evoked and event-related potentials

Evoked potentials (EPs) and event-related potentials (ERPs) are defined as EEG that

has a consistent temporal relationship with a specific stimulus (i.e. EP) or reference

event (i.e. ERP) with EPs being a more direct response to the stimulus [10]. Their

usefulness lies in the fact that they are continuous measures of the neural processing

of a stimulus. With various experimental manipulations you can determine which

stages of processing are affected and how they are affected. They also provide a neural

response when there is no observable behavioral response. EPs and ERPs generally

require a large number of trials to measure the effect accurately since they usually

have smaller amplitudes than the background neural activity and instrumentation

and environmental noise.

4
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1.3 Averaging and artifacts

EEG recordings containing the ERPs and EPs require further signal processing since

these waveforms are always embedded in background neural activity. The classic

approach is averaging the EEG signal over multiple trials that are time locked to

the onset of the stimulus [10]. The assumption with this approach is that each trial

contains a ”deterministic” waveform response and the background EEG is random

and uncorrelated with the response. Ideally, averaging reduces the magnitude of the

random EEG noise while enhancing the ERP or EP waveform, thus improving the

signal-to-noise ratio (SNR). The amount of noise reduction is a function of the number

of trials used in the averaging procedure and the noise magnitude is generally reduced

by a factor of
√
N , where N is the number of trials and the background activity has

a Gaussian distribution. However, in practice there is latency jitter in the ERP and

EP waveforms. Averaging in the presence of jitter causes the waveform components

to “smear out”, thus effectively reducing SNR.

EEG recordings can also be exceptionally noisy due to the presence of various

biological artifacts like blinks, eye movements, muscle activity, skin potentials and

cardiac activity [10], [12]. These are typically much larger in amplitude than EEG,

EP and ERP signals and therefore need to be dealt with appropriately. There are

two approaches to dealing with artifacts. First, the trial can be inspected and simply

rejected if it does not meet certain criteria. This is called artifact rejection. Second,

it may be possible to estimate the artifact and subtract the influence of the arti-

fact. This is called artifact correction. Many methods exist in the literature that are

tailored to the peculiarities of each type of artifact and generally fall into these cat-

egories: regression, filtering, blind source separation and source decomposition [12].
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Linear regression was commonly used for removing EOG and ECG when these refer-

ence channel measurements were available [12]. To remove artifacts, simple filtering

is not usually very effective because of the overlapping spectra of the artifact and

EEG. Therefore, more advanced filtering methods are required like adaptive filter-

ing, which require a reference signal, spatial filtering [13], and Bayes filtering [12].

Blind source separation makes certain statistical assumptions about the correlation

or independence between the EEG and the source of the artifact and separates signal

components based on these assumptions. Ideally, this method produces components

where the artifacts and the EEG have been separated so that the artifacts can be

discarded. Principal component analysis (PCA) converts the observed EEG into lin-

early uncorrelated components [14], whereas independent component analysis (ICA)

converts the observed EEG into statistically independent components [15], [16]. The

independence assumption tends to be more appropriate for separating EEG and phys-

iological artifacts [12]. Source decomposition methods include wavelets and empirical

mode decomposition [12]. These artifact removal methods can also be combined in

any number of ways and some can be automated [17].

1.4 Brain source localization

When analyzing ERP or EP data, one is always curious how different neuronal pop-

ulations in the brain are processing the stimulus. Fortunately we can apply brain

source localization (BSL) algorithms to ERP data. By utilizing the scalp electrode

positions, a volume conduction model of the head and sophisticated signal processing

algorithms, we can infer the time course of neural activity in specific brain regions.

EEG is a summation of all the dipoles present at a particular instance in time.
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Since the tissues in the head are a conductive medium, the dipole currents create a

potential field throughout the head including the skin surface, which is termed vol-

ume conduction of the electrical activity [11]. Volume conduction has the effect of

low-pass spatial filtering neural brain sources [11]. The main conductive tissues in

the head include the brain, skull and the scalp, each of which have an associated

resistance. The skull has a higher resistance, by a factor of 20-80, than the other two

tissues [11]. When applying BSL algorithms, careful modelling of this volume con-

ductor are required for accurate solutions. The preferred method involves obtaining

an individual’s structural MRI as well as the digitized positions of the electrodes on

their scalp.

BSL algorithms can offer a considerable improvement in the SNR of EEG data

and they are effective in removing the effects of volume conduction. In the EEG

literature, BSL can be cast in the context of an inverse problem, which is stated in

the present context as follows:

Given an observed scalp voltage, determine the location and orientations

of the source dipoles.

This problem is ill-posed or underdetermined since there are an infinite number of

solutions for a given scalp voltage distribution. Making some assumptions, such as

spatial smoothness and source sparsity, regarding the distribution of the dipoles can

help alleviate this problem. There are many BSL algorithms which include sLORETA

[18], [19], minimum norm estimation [20], dipole fitting [21], and beamforming [22]–

[25].
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1.5 Brain connectivity estimation

A recent trend in neuroscience has begun to focus on the interactions between different

brain regions, known as brain connectivity [26]. Brain connectivity leads to complex

brain networks that provide the basis for the brain’s ability to not only process ex-

ternal stimuli but also develop mental representations of the world [27]. Comparing

structural and functional networks reveals that neurological and psychiatric disorders

can result from connectivity abnormalities [28].

One approach to resolve the connectivity of neural activity between brain regions

is to study the correlations or the frequency domain counterpart, spectral coherence.

This is known as functional connectivity. If the goal is to fully characterize the

interactions, then this approach provides limited information. Correlations do not

distinguish between direct or indirect links between two brain regions [26], since

a third region could drive the correlation between the first two regions. Another

difficulty is deducing the directionality of the links to determine feedforward and

feedback information and hence a measure of causality. This leads us to measures

like partial directed coherence (PDC) and the directed transfer function (DTF) that

are able to provide this information [26]. The PDC can distinguish direct links and

directionality between nodes in a network, whereas the DTF reveals both direct and

indirect links.

1.6 Organization of thesis

This thesis covers specific aspects of EP artifact rejection, ERP brain source local-

ization and dynamic brain network connectivity estimation during an ERP.
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• Chapter 2 presents a new method of reducing the noise in the EEG response

signal recorded during repetitive transcranial magnetic stimulation (rTMS).

This noise is principally composed of the residual stimulus artifact and milli-

volt amplitude compound muscle action potentials (CMAP) recorded from the

scalp muscles and precludes analysis of the cortical evoked potentials, especially

during the first 20 ms post stimulus. The proposed method uses the wavelet

transform with a fourth order Daubechies mother wavelet and a novel coeffi-

cient reduction algorithm based on cortical amplitude thresholds. Four other

mother wavelets as well as digital filtering have been tested and the Coiflets 2

and 3 also found to be effective with similar results. The approach has been

tested using data recorded from 16 normal subjects during a study of cortical

sensitivity to rTMS at different cortical locations using amplitudes, frequencies

and sites used in clinical practice to treat major depressive disorder.

• Recently, brain source localization and beamforming methods have played an

important role in enhancing the utility of the electroencephalograph (EEG)

and/or the magnetoencephalograph (MEG). Source localization methods are in

general very sensitive to parameter values used to describe the underlying lead–

field matrix, such as head shape, electrode positions, conductivity of various

tissues of the head, etc. Errors in these parameter values can cause significant

degradation in performance of these algorithms.

Chapter 3 describes the development of a robust minimum variance beam-

former (RMVB) specifically for EEG applications that can deal with an arbi-

trary mismatch between the assumed and true lead field matrix. The approach

optimizes the worst-case uncertainty performance, sacrificing a distortionless
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response in exchange for more robust performance. The performance of the

RMVB is compared with the classic minimum variance beamformer (MVB) as

well as its regularized and eigenspace-based variations. The simulation scenarios

highlight the superior ability of the RMVB to cope with arbitrary mismatches.

• Event-related potentials (ERPs) are a commonly–used and valuable tool for re-

search in neuroscience and related fields. Of particular interest is the estimation

of dynamic networks that the brain uses in the processing of ERPs. In Chap-

ter 4, we develop an Adaptive Sparse ERP Tracking (ASET) algorithm that

is based on a time–varying multi–channel autoregressive (AR) analysis. Gen-

eralized Partial Directed Coherences (gPDCs), which indicate causal (directed)

information flow in the brain, are extracted from the AR reflection coefficient

parameters. The time–varying gPDC estimates in turn yield a dynamic causal

model which is indicative of the brain’s processing of the ERP response.

We applied the ASET algorithm to study the dynamic relationship between

the auditory cortex and all other regions of the brain, specifically with respect

to networks formed from the amplitude modulation of beta-band oscillations

in response to an ERP stimulus. The resulting gPDC activity yielded many

similarities to a current model of human speech processing [29] and demonstrates

the utility of gPDC analysis, especially in terms of the temporal sequencing of

neural activity.
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Chapter 2

Wavelet-based Muscle Artifact

Noise Reduction for Short Latency

rTMS Evoked Potentials

2.1 Introduction

Although repetitive transcranial magnetic stimulation (rTMS) of the dorsolateral pre-

frontal cortex (DLPFC) has been used as a treatment for major depressive disorder

(MDD) for nearly two decades [30], the success rate has been relatively low. The

current clinical technique obtains an estimate of the stimulus amplitude as a frac-

tion (typically 110%) of the motor cortex threshold of the abductor pollicis brevis

upper motor neurons, and an estimate of the stimulus position as 5 cm anterior to

this motor stimulus site measured in a sagittal plane. The most clinically effective

stimulus parameters are not known and neither the stimulus amplitude nor site may

be optimal for that patient’s DLPFC stimulation. Researchers have found that the
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cortical responses are very dependent on the stimulus site with some sites even having

no or very limited responses [31], with prefrontal and motor cortices having different

reactivity to TMS [32]. Even the optimum stimulation current direction or coil angle

can also vary by at least 45◦ among subjects [33]. It is also not surprising that the

motor threshold varies considerably intra-subject [34] since the motor response is de-

termined not only by the pulse amplitude stimulating the upper motor neurons, but

also the other excitatory and inhibitory inputs to the muscle’s lower motor neurons.

In order to improve the efficacy of rTMS, it would be beneficial to determine the

optimum amplitude, position and coil orientation for each subject given the intra and

inter-subject variability of these stimulation parameters. This requires the ability to

record and analyze short to medium latency evoked potentials (EPs - within the first

30 ms post stimulus) to determine cortical responses rather than longer latency event

related potentials (ERPs) recorded by others, e.g. [32]. The latter are determined

by both cortical sensitivity, and primarily, cortical functional connections. However,

the very large magnetic field during rTMS at clinical amplitudes saturates the fixed

gain EEG input amplifiers unless these are decoupled during the stimulation using

techniques such as sample and hold circuitry [35]. More recently variable gain EEG

amplifiers with high bit number analog to digital converters have been employed

to avoid this problem e.g.[36]. Unfortunately the cortical EPs, occurring especially

during the first 20 ms, are difficult to analyze because they are obscured by the

residual magnetic artifact signal and the very large (mV) synchronous compound

muscle action potential (CMAP) recorded from the stimulated scalp muscles in the

DLPFC stimulation field. Many researchers, e.g. [37], ignore the first 20-30 ms and

concentrate on longer latency ERPs because of this noise. The challenge has been to

12



Ph.D. Thesis - Philip Chrapka McMaster - Electrical Engineering

develop techniques that remove all or most of these artifacts without severely affecting

the neural responses

The TMS artifact amplitude and duration are heavily dependent on the capac-

itances of the recording system used as well as electrode lead orientation and elec-

trode/skin impedance. Even for sample and hold recording systems [35] there is a

residual artifact when the amplifier is connected again. The TMS artifact has been

extensively studied using both biological phantoms and cortical stimulation [36]. It

was found that even under ideal conditions using variable gain amplifiers, the artifact

is still several volts at 5.8 ms after initiation of the stimulus, but could be extended

to 15-20 ms depending on skin/electrode impedance [36]. Independent and principal

component analyses (ICA and PCA, respectively) have been used to identify and

reduce TMS artifact for both sample and hold and continuously recording systems

[38]–[40]. For example, PCA of multiple EEG recordings has been used to create a

source model of the residual TMS artifact obtained and then employed to linearly

decompose the recorded signal into brain and TMS signals [38]. Another group used

ICA to remove the residual TMS artifact [40].

In rTMS treatment for MDD the stimulus site may be over the temporalis muscle

(Brodmann area 46) or occipitofrontalis (Brodmann area 10). The signals recorded

from electrodes located over these muscles therefore contain large muscle artifacts

(CMAPs). Such artifacts are dependent on stimulus amplitude and coil orientation

[41]. Cranial muscles underlying the wings of the figure-of-eight coil are often stim-

ulated at clinical amplitudes [41]. In our previous work we assumed much of the

muscle artifact signal power is in lower frequencies compared to the high frequency

short latency neural responses. However, severely digitally filtering the signal (150
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Hz to 2 kHz) could only reliably analyze EPs later than 13 ms and probably removed

significant cortical signal as well [42]. Although the CMAP and cortical responses in

TMS are triggered by the same impulse, “they are independent stochastic processes

with no mutual interaction” and modifications of the ICA technique have been used

to successfully identify CMAPs in the recorded signal resulting from TMS [43]. The

topographical distribution of the muscle artifact has also been considered together

with PCA to remove it [44]. However, in this approach the muscle artifacts are as-

sumed to have higher frequencies than the neural signals and are separated using high

pass filtering. This runs contrary to our assumption that short latency EPs contain

higher frequencies and our experimental evidence of higher frequency brain activity

resulting from rTMS. Several artifact suppression techniques, PCA, wavelet and pre-

whitening, have been considered and developed to reduce the artifact to the same

amplitude range as the cortical responses prior to removing them with ICA [45].

In this paper we present a novel artifact reduction technique also based on wavelet

analysis specifically tailored to extract short latency EPs. This technique performs

automatic noise reduction during data collection so that the nurse or technician can

change the coil position or stimulus parameters until a significant cortical response

is recorded. This technique may also be used as a preprocessing step to further

signal analysis such as ICA or PCA since any residual artifact noise will be the same

magnitude as the cortical responses. The technique was tested using the EEG data

recorded from a group of normal subjects and the revealed neuroelectric responses

are described and discussed.
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2.2 Materials and Methods

2.2.1 Subjects

Sixteen subjects, 11 male and 5 female, ranging in age from 19 to 59 years (mean

age 33.2 ± 14.6) , with no known neuro-psychological conditions volunteered for the

study and gave written consent. The study was approved by the Research Ethics

Board of St. Joseph’s Healthcare, Hamilton, Ontario, Canada.

2.2.2 Stimulation

rTMS was delivered with a Magstim Super Rapid stimulator (The Magstim Co. Ltd.,

Carmarthenshire, Wales, U.K.) using 400 µs biphasic pulses and a Magstim figure-

of-eight air-cooled coil P/N 1640 (0.93 tesla peak magnetic field) held tangentially

to the head at each site with the handle held at 45◦ angle to the mid-sagittal plane.

Stimulus amplitudes for left and right hemispheres were chosen to be 110% of the

motor thresholds for the abductor pollicis brevis. These thresholds were determined

as the minimum amplitudes required to elicit 4 CMAPs of at least 50 µV from these

muscles in 6 trials. Anatomical MRI images were obtained for each subject and loaded

into a Brainsight stereotactic system (Rogue Research, Inc., Montreal, Canada) to

reconstruct a 3 dimensional image of the brain. The three DLPFC areas suggested

for treatment of depression, Brodmann areas 9, 10 and 46, were identified and the

stimulus sites were chosen as the middle of each area. The Brainsight system also

references the center of the stimulating coil position and orientation to the selected

cortical site. The left hemisphere sites were stimulated with 80 pulses at 10 Hz,

while the right with 60 pulses at 1 Hz. These pulse frequencies were chosen as they
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are typically used during clinical practice. Sham stimuli were also delivered at these

frequencies with a coil at Brodmann area 46 and an active coil approximately 1m

away at 60% of maximum energy to give the acoustic clicks. Each stimulus train was

separated by a 1 min rest period.

2.2.3 EEG Recording

Sixteen channels of EEG in the 10-20 configuration (no central electrodes) with linked

ear reference were recorded for each stimulus using a custom built EEG system [46]

with sample and hold circuitry similar to [35]. The system locked out the amplifiers

for 3 ms during which the magnetic pulse was given at 1 ms. The signals were recorded

with bandwidth .16 Hz to 2 kHz at 5 kHz sampling rate using gold cup electrodes

notched to prevent heating. 70 ms of data were recorded for the left sided 10 Hz

stimulation and 100 ms for the right sided. For each train of pulses the signals were

averaged and stored for later analysis.

2.2.4 EEG Processing

The data were further processed using MATLAB (The Mathworks, Inc., Natick, Mas-

sachusetts, USA). The averaged EEG is composed of a CMAP, cortical evoked re-

sponses, some residual background stimulus artifact and hardware generated exponen-

tial baseline. Before any further analysis, we first removed the exponential baseline.

The baseline was modeled by y = A exp (−λx), where A describes the amplitude

and λ describes the rate of decay. MATLAB’s fminsearch was used to minimize the

squared error between the EEG in all channels and the exponential model over the

segment from 25 ms to the end of the recording. The estimated baseline was then
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subtracted from the original data.

The CMAP obstructs our ability to observe the cortical response immediately after

the stimulus during recording because of its very large magnitude in comparison to

the cortical evoked response. It exhibits a longer time course than short and medium

latency cortical EPs. Accordingly, we reason that much of the lower frequency content

can be attributed to the CMAP as well. It must be stressed again that the function

of the noise reduction technique is to allow the clinician to immediately observe

cortical sensitivity after e.g. 80 stimuli, not to study the observed signal in detail.

This observation justified two approaches: simple digital filtering and wavelet noise

reduction.

Digital Filtering

Neural activity in the higher frequency range was isolated using a 60th order zero

phase Chebyshev digital filter with a bandpass of 150 Hz to 2 kHz. The lower cutoff

frequency was chosen so as to remove as much of the CMAP as possible while having

a less effect on the remaining cortical signal.

Wavelet Noise Reduction

EP recordings are typically composed of transient events, which complicates Fourier

analysis and as a consequence digital filtering. Utilizing this denoising approach we

can overcome certain limitations of digital filtering when dealing with the overlapping

bandwidths of the CMAP, cortical evoked responses and residual stimulus artifact.

For example, bandpass digital filtering passes high frequency activity up to 2 kHz,

yet not all high frequency activity represents the cortical evoked response. Being
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highly nonstationary signals, EP recordings are ideally suited for wavelet analysis,

[47], which has the ability to localize transient events in time and frequency [48], [49].

Applying a wavelet transform produces a set of wavelet coefficients where each coeffi-

cient relates the contribution of a shifted and scaled wavelet to the original waveform.

Wavelets have been applied in denoising applications resulting in techniques like Vi-

suShrink, SureShrink and RiskShrink [50], [51]. These denoising methods generally

apply the wavelet transform and modify the resulting coefficients based on a thresh-

olding method referred to as a shrinkage function. The signal is then reconstructed

with the modified coefficients resulting in a signal with less contaminating noise. Co-

efficients related to the signal of interest have a large amplitude whereas noise is

predominantly represented by smaller amplitude coefficients. Thus, when applying a

shrinkage function to wavelet coefficients, those exceeding a threshold correspond to

the signal of interest and are left mostly untouched. Conversely, coefficients that fall

below the threshold are typically set to zero.

Each channel of the averaged EEG data was decomposed using the discrete wavelet

transform (DWT) (2.1).

[d1, . . . ,d5, a5] = D (X) (2.1)

where D is the DWT operator, X ∈ RN×T is the averaged EEG data matrix with

N channels and T samples, dj are the detail coefficients at each level j = 1, . . . , 5

and a5 are the approximation coefficients at level 5. We used the Daubechies with 4

vanishing moments (db4), Coiflets 2 (coif2) and 3 (coif3), Haar and Biorthogonal 1.3

(bior13) mother wavelets.

The shrinkage function, δ(c), used to modify the coefficients was soft thresholding.
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It subtracts the magnitude of the threshold, λ, from any coefficients exceeding that

threshold and sets the others to 0, (2.2).

δsoft(c) =


sgn(c) (|c| − λi) , |c| > λi

0, |c| ≤ λi

(2.2)

where c represents each coefficient from a set of coefficients (i.e. one of d1, . . . ,d5, a5).

Each set of coefficients has a threshold λi, i = 1, . . . , 6. It is very difficult to predict

the contribution of artifacts and cortical responses to each wavelet coefficient. Rather

than unequivocally associating large wavelet coefficients with the artifact, soft thresh-

olding allows us to associate a maximum contribution from the cortical response to

each coefficient.

Using these modified coefficients, the signal is then reconstructed using the inverse

DWT.

X̂ = ID
(
d̂1, . . . , d̂5, â5

)
(2.3)

where ID represents the inverse DWT operator, d̂1 . . . d̂5, â5 represent the thresholded

coefficients and X̂ ∈ RN×T is the reconstructed signal.

The CMAP is at least two orders of magnitude larger than the cortical response

and its representation in the wavelet coefficient domain will be characterized by large

amplitudes. Therefore, this procedure effectively results in removing the cortical

evoked responses and background cortical activity from the CMAP. The cortical

components are contained within the residual signal, R, which can be recovered by
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subtracting the denoised CMAP, X̂, from the original signal, X.

R = X− X̂ (2.4)

Preliminary work employing this method was presented in [52].

The residual was further processed using the mean channel (EEG were collected

using a linked ear reference) to remove any residual common noise such as 60 Hz and

non-zero signals at the ear reference electrodes. This step is performed after denoising

to avoid unnecessarily contaminating all the channels with artifactual data as some

channels are far less affected by muscle or stimulus artifact.

The wavelet-based methods of [45], [53] are similar to our approach. In general,

[45], [53] also assume that large artifacts are represented by large wavelet coefficients.

They differ from our approach mostly in the selection of the threshold which is an

essential element of the algorithm. [53] selects a threshold proportional to the square

root of the median of the wavelet coefficients derived from independent components.

[45] follows a suppression approach where a suppression matrix is applied to the orig-

inal data. The suppression matrix is derived from an estimate of the artifacts, which

are in turn determined by a particular number of the largest wavelet components.

The number of artifactual components is chosen so that they account for most of the

relative error in the mixing matrix from an ICA decomposition.

Our thresholds were based on “oscillatory” data sets. Six subjects in our study

exhibited continuous fast oscillatory patterns in the averaged recordings when stimu-

lated at 10 Hz. These patterns, although completely unexpected, and not previously

reported in the literature, did not affect the mood or cognitive ability of the subject

during stimulation.
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Figure 2.1: Average response for 80 stimuli at Broadmann area 10 for a 33 year old
male, with data bandpass filtered from 25 to 2000 Hz.

Figure 2.1 shows oscillations in the 150 to 500 Hz range . It must be noted that

this oscillatory pattern is phase locked to the stimulus since this figure is the average

of 80 stimuli. Fast and very fast oscillations in the cortex have been described in the

literature [54], [55] resulting from oscillatory neural networks responding to strong

stimuli. Since CMAPs do not last longer than 20 ms, this sustained activity after 30

ms is likely to be cortical and assumed to be a good estimate of any cortical activity

occurring earlier in the evoked response.

The DWT was applied to the unfiltered “oscillatory” data sets producing coeffi-

cients representing the cortical evoked response. The maximum of the absolute values

of inter-subject coefficients for each set of coefficients (d1, . . . ,d5, a5) were selected

as the thresholds. This choice of thresholds allows us to associate any coefficients

exceeding the threshold with the CMAP. In addition, the CMAP has a longer time

course than short and medium latency EPs, therefore much of the lower frequency

content can be attributed to the CMAP and residual stimulus artifact as well. There-

fore the thresholds for the coefficients representing the lowest frequency components
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(d5, a5) were set to zero. The thresholds can be interpreted as an upper bound on

the coefficients representing the cortical evoked response. The residual is effectively

the cortical response and a suppressed CMAP artifact whose coefficients are limited

to the threshold.

2.3 Results

The proposed methods along with digital filtering were applied to all rTMS responses

from 16 subjects. The stimulus was presented at 1 ms, however the first 5 ms are

not shown to account for the amplifier lockout and early settling. A typical response

while stimulating the left hemisphere at B46 and prior to denoising is presented in

Figure 2.2, with very large CMAP and the residual stimulus artifacts almost com-

pletely obscuring the cortical responses, e.g. in F3. CMAP artifacts were usually

greatest when B46 was stimulated since this area lies directly under the temporalis

muscle.

Generally the CMAP lasts for less than 30 ms and some researchers have avoided

its effects by not stimulating at clinically effective amplitudes, severely lowpass filter-

ing the responses or rejecting responses greater than 50 µV , e.g.[56].

2.3.1 Simulation

The proposed methods were evaluated on a hybrid data set consisting of simulated

EEG data and electrically stimulated CMAPs recorded using the same EEG config-

uration as described in Section 2.2.3. In order to evaluate the effectiveness of the

proposed method on this specific type of artifact, it was necessary to record the
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Figure 2.2: Response to 80 pulses at 10Hz to left B46 for a 21 year old female subject.

artifact on its own and without any evoked cortical activity. We recorded average

CMAPs from the left hemisphere temporalis and occipitofrontalis muscles by surface

stimulating cranial nerves V and VII in the temple area of a 29 year old male subject

with 40 100 µs, 20-40 mA pulses at 10 Hz using a DS7A Digitimer Constant Cur-

rent Stimulator (Digitimer Ltd, Welwyn Graden City, England). These CMAPs were

similar to the rTMS evoked responses with no significant frequency content above

300 Hz even in F3. The only difference was that the electrically evoked CMAPs were

more spatially localized, which affected the spatial distribution in channels further

away from the stimulation site. As mentioned earlier, in rTMS stimulation the pos-

terior temporalis muscle is also stimulated by the wing of the figure of eight coil.

This muscle was also stimulated electrically as shown by the large artifact in C3 in

Figure 2.3.

The EEG signal was simulated as a sinusoidal wave with a frequency of 200 Hz

and an amplitude of 20µV and was subsequently added to the recorded artifact.

Following the processing steps outlined in Section 2.2, Figure 2.3 compares the
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Figure 2.3: Residual from denoising simulated EEG contaminated by an electrically
stimulated CMAP using wavelet denoising and digital filtering.

residual from wavelet denoising and digital filtering. Figure 2.4 compares the root-

mean-squared error (RMSE) of both methods. Overall, wavelet noise reduction is

more effective in suppressing the CMAP than digital filtering especially in channels

and time samples that are more affected by the CMAP artifact (see F3, F7, and C3 in

Figure 2.4 and their corresponding time series between 0-15 ms in Figure 2.3). These

results emphasize the problem of filter transients at the beginning of a record when

very large artifacts are present.

2.3.2 Real Data

The results of the proposed method using the data in Figure 2.2 and the Daubechies

4 mother wavelet were compared with digital filtering in Figure 2.5. Although digital

filtering was effective in removing baseline fluctuations and limiting the CMAP to
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Figure 2.4: Comparison of root-mean-squared error (RMSE) in recovering the original
simulated EEG signal for digital filtering and the proposed method.

the first 15 ms, the magnitude of the CMAP was still significantly larger than the

rest of the signal making analysis of this region difficult. The left temporal channels

and C3 are most affected with the very large CMAP artifact in C3 resulting from

scalp muscle stimulation by the outer ring of the figure-of-eight coil [41]. After digital

filtering, the remnant of the CMAP in channel C3 is still 1 mV in amplitude.

Focusing on channel C3 from Figure 2.5, Figure 2.6 compares digital filtering

with wavelet denoising using different mother wavelets: Daubechies 4, Coiflet 2 and

3, and Biorthogonal 1.3. The Haar wavelet was also investigated but the the results

were physiologically unrealistic. Similarly, the Biorthogonal 1.3 wavelet introduced

repeated triangular components in the residual. This was most apparent in regions

where the residual is expected to contain very little of the CMAP artifact, for ex-

ample channel C3 between 20-30 ms. Since the Biorthogonal wavelet showed poor

performance, it was omitted from the remainder of the results. The other wavelets

produced similar results especially the Daubechies 4 and Coiflets 2 and 3. The ad-

vantage that wavelet noise reduction offers is clear in this figure. The amplitude of
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Figure 2.5: Residual after applying wavelet denoising and digital filtering to the data
shown in Figure 2.2.

the CMAP is greatly attenuated while much of the remaining signal is left intact.

Figure 2.7 compares the residual from applying wavelet denoising to the data in

Figure 2.2 using different mother wavelets. There is general agreement between the

residual of the Daubechies 4, Coiflet 2 and Coiflet 3 wavelet denoising methods. The

differences between them are approximation errors mainly due to the differences be-

tween the shape of the mother wavelet. Although the data have been transformed

from linked ear to average reference, this has not been completely effective at remov-

ing the signal recorded by the reference electrodes. As can be seen in Figure 2.7,

the responses at the occipital and right hemisphere electrodes are highly correlated

and probably originate from the reference electrodes. The right hemisphere cortical

responses should be delayed from 10-20 ms to account for neural pathway transmis-

sion including the corpus callosum [31]. Using the average reference is a common
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Figure 2.6: Residual of wavelet denoising with various mother wavelets (from top:
Daubechies 4, Biorthogonal 1.3, Coiflet 2, Coiflet 3) and digital filtering at C3. Orig-
inal data is shown in Figure 2.2.

practice in ambient EEG recordings, but it may not always be appropriate for evoked

responses since some channels have very strong signals while others have near zero,

resulting in a fraction of these strong signals being added to the remaining channels.

For most of our subjects, however this was not a problem.

One measure of cortical response to stimulation used in the literature is the global

mean field average (GMFA) [57]. It is a measure of the average cortical activity at

each sample point and indicates the evoked electrical field strength across the scalp. It

is a more general index than peak amplitudes and latencies and is useful for comparing

cortical responses when these have complex shapes and differ among subjects. It is

calculated as follows:

GMFA =

√√√√ 1

N

N∑
i=1

(xi − xmean)2 (2.5)

where N represents the number of channels, xi is the potential at electrode i, and
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Figure 2.7: Residual of wavelet denoising with various mother wavelets. Original data
is shown in Figure 2.2.

xmean is the average of the N channels. The root mean square (RMS) of the GMFA

was calculated over the 5-30 ms segment of the recording to quantify the responses.

The interval of 5-30 ms includes the cortical response plus any residual CMAP and

stimulus artifact.

Figure 2.8 compares the RMS of GMFAs over 5-30 ms obtained using digital

filtering, db4 and two Coiflet noise reduction wavelets, for 10 Hz stimulation at left

Brodmann areas 46, 10 and 9 for the subject of Figure 2.2. For B46 and B10, digital

filtering results in much higher values due to the large residual muscle artifact (see also

Figure 2.5), while B09 underlies very little scalp muscle and therefore the response

contains little to no CMAP. As expected from Figure 2.7 the three wavelet noise

reduction methods result in similar GMFA values for all three areas stimulated. They

are all effective at reducing CMAP and residual stimulus artifact from the evoked
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Figure 2.8: Average GMFA over the 5-30 ms interval of residual responses to 10 Hz
stimulation at left B46, B09, B10 of the 21 year old female subject.

responses. The evoked responses for the entire subject group were processed using

db4 and Coiflet noise reduction and the GMFAs calculated for the 5-30 ms intervals.

The results for left hemisphere 10 Hz stimulation and db4 noise reduction, shown

in Figure 2.9 demonstrate that there is considerable variation among subjects but

also within subjects for the three areas stimulated. To save space, the right side 1

Hz stimulation and two Coiflet noise reduction wavelet results are not shown. Most

subjects show that B09 stimulation has smaller responses than B10 and B46 and

may be due to lower cortical sensitivity in this area. We cannot conclude this with

certainty, however, the simulation results of Figure 2.4 show that the residual error

for channels containing muscle artifact is at maximum twice that for channels having

no muscle artifact, while Figure 2.8 shows the GMFAs for B46 and B10 are 3 to 4

times the B09 values.
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Figure 2.9: Average GMFA over the 5-30 ms interval of residual responses to 10 Hz
stimulation at left B46, B09, B10 for all subjects and processed using wavelet noise
reduction with the db4 mother wavelet.

2.4 Discussion

Digital filtering has been shown by us and others to be inadequate at removing muscle

artifact, especially in the first 30 ms. Further, to achieve a stable baseline in the first

20 ms, the filter has to cut off lower frequency cortical activity. Even with a cutoff

of 150 Hz, the 20 ms baseline can be nonzero, e.g. Figure 2.1. In the case of short

latency evoked responses, high order digital filters can also introduce transients since

the high amplitude data (CMAPs) occur at the very beginning of the record. The ICA

approach offers an alternative to removing artifacts [43], but requires visual inspection

and selection of the independent components, not a straightforward task. As well, the

neural and artifactual activity may not be completely separable and too much neural

activity is removed as a result of removing independent components [45]. In denoising

techniques including the wavelet method presented here, the challenge is to remove

as much artifact as possible without materially affecting the cortical responses. How

much of the residual response is residual artifact, principally CMAP, and how much
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is truly cortical? Does a large CMAP result in a larger putative cortical response?

The simulation results of Figures 2.3 and 2.4, which used real scalp muscle CMAPs,

show that digital filtering resulted in large residual artifacts in F3, F7 and C3, while

the two best wavelet approaches removed them almost completely without affecting

the simulated cortical responses. Further, an examination of Figure 2.5 shows that

there is a large residual artifact at C3 and a much smaller response at F7 when using

digital filtering from 150 to 2000 Hz. Wavelet noise reduction however, shows a larger

response at F7 than at C3 indicating wavelet denoising is more effective at removing

CMAPs from the signal than ordinary filtering. As well a greater bandwidth of the

underlying cortical response is preserved in wavelet noise reduction as shown by the

broader response peaks and lower frequency amplitude. This is further demonstrated

in Figure 2.6 where the digital filtering result has much higher amplitude but much

shorter response peak. Digital filtering at 150 Hz highpass was necessary to achieve a

stable zero baseline in the response interval and obviously removes too much cortical

response while being ineffective at removing the CMAP. This is not surprising since

wavelets are much better at representing transient signals such as CMAPs and cortical

evoked responses.

A second important question is whether the mother wavelet chosen in large part

determines the residual response. In our work we examined 5 different mother

wavelets. In wavelet denoising applications, when the goal is to recover the resid-

ual signal, it is clearly important that the mother wavelet is reasonably matched to

the shape of the underlying nonstationary components of the signal. This is not the

case for the Haar and Biorthogonal wavelets. However, Figures 2.6 and 2.7 show that

the other three mother wavelets have quite similar results despite having different
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durations and time history. The peak durations and times are reasonably similar as

well as the amplitudes. Although there are small differences in minor peaks they

can be considered equally effective at reducing CMAP artifacts and preserving the

cortical responses. Although we have not presented peak amplitudes and times for

the entire subject set, these can be readily calculated from the residual responses.

We have calculated and presented GMFAs for the subject set, which is a popular

but relatively gross measure of cortical response. The GMFA is affected very little

by the fine detail differences for the three wavelets chosen as shown by Figure 2.8.

The simulations show that these wavelets had similar RMSEs with Coiflet 3 consis-

tently having the best results, followed by Daubechies 4. We chose the more common

Daubechies 4 wavelet for GMFA presentation as representative of all three wavelets.

Figures 2.5 and 2.6 show that rTMS produces a damped oscillatory response in

cortical neurons with frequencies greater than 100 Hz. These responses were observed

for almost all subjects for both 1 Hz and 10 Hz stimulus rates. The frequencies

are consistent with the continuing oscillatory patterns past 30 ms observed in some

subjects e.g Figure 2.1, which are not affected by residual stimulus or CMAP artifacts.

Further the oscillations and damping or exponential decay has been observed by

Buzsaki and Draguhn [54] from rat hippocampus recordings in response to stimuli.

They have further hypothesized that this could be observed from cortical responses

to strong stimuli.

The large GMFAs in Figure 2.8 for the filtered responses of B46 and B10 stimula-

tion are due to the large residual muscle artifact (or filter transient) since the CMAPs

were very large due to the overlying temporalis and occipitofrontalis muscles. There

is little to no muscle over B09 and the CMAPs from these muscles were much smaller
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since the muscle stimulation amplitude away from the figure-of-eight coil focal point

is much smaller. Figure 2.8 demonstrates the need for measuring short latency evoked

potentials during rTMS stimulation for depression, at least during the first session, to

determine the best site and stimulation amplitude for that patient. For there to be a

positive effect, the cortex must be sufficiently stimulated to send signals to the deeper

structures which determine mood. If the cortical response is very small, will there be

sufficient neural drive to excite and modify the connections of the deeper structures?

For this paper we used the accepted clinical stimulation levels and sites at or near

those used in most clinical reports. Figure 2.9 shows that the cortical responses for

B09 stimulation are much lower than for B46 and B10 for many subjects. Indeed, for

subjects 9 and 15 they are at the background noise level (as determined by the sham

results). If they were patients, stimulation at this site might have been ineffective.

Further studies will have to be conducted to see if the cortex of B09 is less sensitive

to stimulation than the other two sites.

It is interesting to note that for some subjects the clinical level of stimulation re-

sulted in continuous oscillations of the cortex when stimulated at B46 and B10 (e.g.

Figure 2.1). These oscillations were also synchronized to the stimulus pulse since

the responses are the average of 80 stimuli. As well, for these subjects stimulating

the right cortex at 1 Hz at the same stimulus amplitude did not cause continuous

oscillations but the commonly seen exponentially decaying oscillatory pattern of Fig-

ure 2.7. It seems that higher frequency stimulation rates are required to sustain the

oscillations. These patterns have not been reported in the literature (at least at these

high frequencies) because most studies have used stimulation rates in the fractions of

Hz.
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2.5 Conclusions

Wavelet noise reduction has been shown to be more effective than filtering in removing

much of the noise due to muscle activity from DLPFC rTMS short latency responses,

allowing further quantification and study of these residual responses. Three different

wavelets Daubechies 4 and Coiflets 2 and 3 were all effective and resulted in similar

responses being revealed in the 5-30 ms post stimulus window. A set of thresholds

were established for each mother wavelet from artifact-free and unfiltered segments

of cortical signals displaying oscillatory behaviour assumed to be representative of

typical rTMS-evoked evoked potentials and used to process all subject data. The

wavelet noise reduction method allows the further development of a measurement

and signal processing system that can be used by technologically inexperienced staff

to customize the optimum amplitude and site of rTMS stimulation for a patient. It

also allows the further study of cortical responses and the effects of changing the

stimulus amplitude, site and frequency.
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Chapter 3

Estimating Neural Sources Using a

Worst-case Robust Adaptive

Beamforming Approach

3.1 Introduction

Electroencephalography (EEG) is a tool that is widely used to study the electrical

activity of different regions in the brain. Its distinctive ability to record neural activity

with great temporal resolution is its greatest advantage over other medical imaging

technologies. Over the last two decades, there have been a number of developments

in signal processing tools for analyzing EEG recordings, many of which have been

inspired by work in radar and communications research.

One such problem that has been studied extensively is brain source localization.

The goal is to identify regions of spatial activity and isolate source waveforms from

any specified region. Other applications of brain source separation include neuro
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diagnostics, signal to noise (SNR) improvement, artifact rejection and brain mapping

[58]. Signal processing methods developed for this purpose allow researchers to relate

cognitive function to various processing centers in the brain. Many algorithms have

been designed for this purpose and generally fall into two categories: parametric and

non-parametric. Parametric methods include sLORETA [18], [19], weighted minimum

norm (WMN) [20], dipole fitting [21], subspace methods like MUSIC [59]. Non-

parametric (beamforming) methods like minimum variance beamforming (MVB) [22],

regularized MVB [23], [24], eigenspace-based MVB [25], and fast fully adaptive MVB

(FFA-MVB) [60].

Existing beamforming methods are very effective in many cases, but they are

based on assumptions that may not apply, or are expensive to apply in practice.

When beamforming methods are applied in practical settings, many of the assump-

tions made about the environment, brain sources and the electrode array may no

longer be accurate. Specifically, these may include inaccurate head geometries, mis-

aligned electrode positions, inaccurately assumed brain source positions as well as

other unknowns. All of these factors affect the computation of the forward head

model, which is used to determine the lead field matrices, which in turn define the

contribution of an equivalent current dipole to the signals received at the EEG elec-

trodes. Performance of source localization methods degrades rapidly with errors in

the lead field matrix that arise when these assumptions do not hold [25]. The result

is a mismatch between the lead field matrix generated by our assumed forward model

and the actual (true) lead field matrix [61]. The development of a more robust beam-

former for brain source localization would provide better performance in response to

all of these uncertainties.
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The linearly constrained minimum variance beamformer (MVB) is a popular spa-

tial filtering method for localizing brain sources that was introduced in [22]. It pro-

vides robust performance when uncertainties are present in the signal look direction

[61]. However, it does not provide sufficient robustness in the face of different lead

field matrix mismatches like electrode array or head modeling errors. Note that very

accurate estimates of the head model and corresponding lead field matrix can be

obtained from information provided by a magnetic resonance imaging (MRI) scan.

However, even electrode co–registration errors can lead to significant degradation in

output SNR [62]. Also from an economic perspective, the use of the MRI is very cost

ineffective compared to an exclusively EEG-based beamforming method.

A few techniques exist that attempt to account for arbitrary mismatches between

lead field matrices. They include diagonal loading-based [23], [24], [63], [64] and

eigenspace-based beamformers [25], [65]. Diagonal loading methods involve regular-

ization which involves a trade off between the SNR of the beamformer output and

its spatial resolution [23]. These methods rely on a regularization parameter and

the optimal value cannot easily be determined [61]. Eigenspace-based beamformers

have been applied to MEG data by [25]. However, they are ineffective when there

is a possibility of “subspace swaps”, which are encountered at low SNR when the

eigenvalues of the signal subspace are indistinguishable from the eigenvalues of the

noise subspace. This phenomenon may also occur in a high dimensional signal-plus-

interference subspace, since in this case it may be impossible to accurately determine

the number of sources [61].

In this paper, we propose the novel, robust minimum variance beamformer (RMVB)

method, which is an extension of the minimum variance beamformer method that is
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tolerant to a specified set of errors in the lead field matrix. The performance of the

RMVB method is optimized for the worst-case conditions over this set. The pro-

posed method achieves better localization performance than previous non-robust ap-

proaches, but trades off a relaxation in the constraint for improved signal extraction.

The RMVB method is formulated as a convex optimization problem over a second-

order cone, a fact which leads to a very efficient implementation of the method.

Previous work, [61], [66], has applied the same idea to the radar/sonar case. This

paper extends this approach to the EEG context.

Section 3.2 presents a brief background to the minimum variance beamformer.

The development of the robust minimum variance beamformer is given in Section 3.3.

Section 3.4 provides details of the simulations used to demonstrate performance of

the proposed RMVB method. Comparative results are presented in Section 3.5.

Discussion and Conclusions are given in Sections 3.6 and 3.7, respectively.

3.2 Background

A beamformer is a spatial filter that passes signals originating from a specified (nar-

row) region of interest ( i.e., the ”spatial passband”) and attenuates signals outside

this region. It is described as the inner product of a weight matrix W(q0) ∈ RN×3

for the location of interest, q0, and the EEG signal x ∈ RN×1 at time k

y (k) = W(q0)Tx (k) (3.1)

resulting in y ∈ R3×1 which represents the three components of the source dipole

moment at time k and location q0. The determination of W is described subsequently.
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The EEG signal x(k) ∈ RN is a vector of voltages that are recorded by N EEG

electrodes at time k. At each time instant the measured signal is a superposition

of L active brain sources. Each brain source is modeled as a dipole, m (k,qi) =

η (qi) a(k) ∈ R3×1, where η is a unit vector which describes the orientation of the

source dipole and a(k) is the source amplitude at time k. The contribution from a

source at location qi to x(k) is determined by the lead field matrix, H (qi) ∈ RN×3.

Thus, x is given by

x (k) =
L∑
i=0

H (qi) m (k,qi) + n (k) (3.2)

where n represents the background neural activity or noise.

The focus is to attenuate signals originating outside of our location of interest, q0.

Thus, (3.2) can be separated as follows

x (k) = H (q0) m (k,q0) + i (k) + n (k) (3.3)

or equivalently,

x (k) = s (k) + i (k) + n (k) (3.4)

where s represents the signal from the location of interest, i, represents the interfer-

ence, i.e. the neural signals that fall outside the location q0. We can find the weight

matrix, W by maximizing the signal-to-interference-plus-noise-ratio (SINR)

SINR =
tr
(
WTRsW

)
tr (WTRi+nW)

. (3.5)
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Since the covariance matrix Rs cannot be measured directly, we approximate the

maximization procedure by minimizing only the denominator, which represents the

power of the received interference + noise components. Thus, the minimum variance

beamformer (MVB) has the objective of minimizing the power of the i + n compo-

nents of the output of the beamformer. The trivial solution W = 0 is avoided by

maintaining a distortionless response at the location of interest. As a result the out-

put represents the time varying signal at the location of interest with all other signals

suppressed. The optimization problem of (3.5) may therefore be reformulated in the

following way:

min
W

tr
(
WTRi+nW

)
(3.6a)

subject to WTH = I. (3.6b)

Using Lagrange multipliers, an analytical solution follows [22]

W = R−1
i+nH

[
HTR−1

i+nH
]−1

. (3.7)

In practical situations the exact interference-plus-noise covariance matrix, Ri+n,

also cannot be measured directly. Instead it is estimated by the sample covariance

matrix R̂:

R̂ =
1

K

K∑
i=1

x (k) x (k)T =
1

K
XXT , (3.8)

where X ∈ RN×K is the EEG data matrix with zero mean.

40



Ph.D. Thesis - Philip Chrapka McMaster - Electrical Engineering

The MVB is very robust to interfering signals at different locations, however un-

certainties in the lead field matrix, H, cause the performance to degrade.

3.3 Robust Minimum Variance Beamformer

Note that throughout this paper, the notation ||·|| implies the 2-norm of the argument.

Our purpose is to develop a beamformer that is robust to the uncertainties in the lead

field matrices H, by optimizing the worst-case performance over a prescribed region of

uncertainty. We accommodate uncertainty by relaxing our constraint, which implies

we are willing to sacrifice a distortionless response for a potentially better solution in

terms of beamformer output SINR. In this case (3.6a) is reformulated as follows:

min
W

tr
(
WT R̂W

)
(3.9a)

subject to
(
WT H̃

)
ij
≥ (I)ij ∀ H̃ ∈M, (3.9b)

where (·)ij denotes the ijth element of the argument, and H̃ is the lead field matrix

which is subject to uncertainty. M is a set of lead field matrices describing our

knowledge of possible uncertainties, to be defined later. We refer to the solution to

this problem as the robust minimum variance beamformer (RMVB) [61], [66].

3.3.1 Reformulation

The constraint in (3.9b) describes an infinite number of matrices H̃ in M implying

that there are an infinite number of constraints. This renders the problem semi-

infinite and unsolvable using standard convex optimization techniques. We now show

that the problem can be reformulated into a second-order cone program that is readily
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solvable. In this vein, we define the uncertainty set M as the set of N × 3 matrices

satisfying

M = {[m1 m2 m3] |mi = Aiu + h0i, ‖u‖ ≤ 1} (3.10)

where each of the columns, mi ∈ RN×1, represents an uncertainty ellipsoid with center

hi ∈ RN×1. The matrix Ai ∈ RN×N defines the physical aspects of the ellipsoid. Its

axes are described by the left singular values of Ai, which are of unit-norm, and are

scaled by the respective singular values. The center of the ellipsoid, h0i, represents

the corresponding column from our estimate of the lead field matrix, H0.

Defining M in terms of Ai allows flexibility in describing the uncertainty. This

version of M in (3.10) defines an anisotropic uncertainty model, since the extent of

the ellipsoid can vary in different dimensions.

We simplify the reformulation by describing the component-wise inequality con-

straint in vector form

min
W

tr
(
WT R̂W

)
(3.11)

subject to wT
j h̃i ≥ δij ∀ h̃i ∈mi

i, j ∈ 1, 2, 3

where δij represents the Kronecker delta and wj represents the jth column of W.

From (3.11) and using the definition in (3.10), the constraint

wT
j h̃i ≥ δij ∀ h̃i ∈mi, i, j ∈ 1, 2, 3 (3.12)
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is equivalent to

uTAT
i wj ≤ hT0iwj − δij ∀ u s.t. ‖u‖ ≤ 1. (3.13)

To further simplify the constraint in (3.13), we realize that the inequality will hold for

all ‖u‖ ≤ 1 if and only if it holds for the u that maximizes uTAT
i wj. The maximum

of an inner product is achieved if u is a vector in the same direction as AT
i wj and has

the largest magnitude possible, which is limited by the constraint ‖u‖ ≤ 1. Therefore,

u = AT
i wj/

∥∥AT
i wj

∥∥. Substituting this solution into (3.13), we can rewrite it as

∥∥AT
i wj

∥∥ ≤ hT0iwj − δij. (3.14)

Finally the robust beamforming problem can be written as follows

min
W

tr
(
WT R̂W

)
(3.15)

subject to
∥∥AT

i wj

∥∥ ≤ hT0iwj − δij

i, j ∈ 1, 2, 3.

Since the constraint does not include the trivial minimizer of the objective, the

optimal solution will be achieved when the constraint reaches equality [66], and allows

us to rewrite (3.15) as follows

min
W

tr
(
WT R̂W

)
(3.16)

subject to hT0iwj −
∥∥AT

i wj

∥∥ = δij

i, j ∈ 1, 2, 3.
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In addition to an anisotropic description of the uncertainty, we can also consider

isotropic uncertainty which is described by Ai = εiI. The problem in (3.15) then

simplifies to

min
W

tr
(
WT R̂W

)
(3.17)

subject to hT0iwj − εi ‖wj‖ = δij

i, j ∈ 1, 2, 3.

In effect, the RMVB beammformer sacrifices the distortionless response available

in the MVB for a potential improvement in the output SINR.

3.3.2 Bound on the Error Matrix

Alternatively, we can also describe the set of matrices M as the sum of the original

lead field matrix, H, with some error, E,

M = {H + E | E = [A1u A2u A3u] , ‖u‖ ≤ 1} . (3.18)

For practicality, it is useful to know how the region of uncertainty is defined and

develop bounds on the error matrix, E. We can easily look at the Frobenius norm of

E along with the fact that ‖u‖ ≤ 1 as follows:

‖E‖F =

∥∥∥∥∥∥∥∥∥∥
‖A1u‖

‖A2u‖

‖A3u‖

∥∥∥∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥∥∥∥
‖A1‖ ‖u‖

‖A2‖ ‖u‖

‖A3‖ ‖u‖

∥∥∥∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥∥∥∥
‖A1‖

‖A2‖

‖A3‖

∥∥∥∥∥∥∥∥∥∥
. (3.19)
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The 2-norm of a matrix is equal to the square root of the largest eigenvalue of that

matrix; therefore

‖E‖F ≤ (λmax (A1) + λmax (A2) + λmax (A3))1/2 (3.20a)

∆
= ε. (3.20b)

In the case of isotropic uncertainty where Ai = εiI, this simplifies to

‖E‖F ≤
(
ε21 + ε22 + ε23

)1/2

∆
= ε. (3.21)

These bounds are useful for describing the extent of error used in the H matrices in

Section 3.5.

3.3.3 Standard Convex Reformulation

The problem in (3.17) is convex and in order to solve the problem we need to refor-

mulate it into a standard convex problem [67]. A similar problem has been dealt with

in [61]; here we modify that approach to develop a second order cone formulation

suitable for the problem at hand.

To write the problem in standard convex form we let the Cholesky factorization

of R̂ be

R̂ = UTU (3.22)
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This allows us to rewrite the objective as

tr
(
WT R̂W

)
= ‖UW‖2

F (3.23a)

= ‖vec (UW)‖2 (3.23b)

where vec (A) vectorizes the matrix A.

Now realizing the following problems are equivalent

min ‖vec (UW)‖2 ⇔ min ‖vec (UW)‖ (3.24)

and if we let ‖vec (UW)‖ ≤ t, we can formulate the equivalent problem

min
W,t

t (3.25a)

subject to ‖vec (UW)‖ ≤ t (3.25b)∥∥AT
i wj

∥∥ ≤ (wT
j h0i − δij

)
(3.25c)

i, j ∈ (1, 2, 3) . (3.25d)

All the constraints can be expressed as second order cone constraints. The second

order cone, or the Lorentz cone, is defined as

Qm = {(x, y) ∈ Rm ×R | ‖x‖ ≤ y} . (3.26)
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So, the problem now becomes

min
W,t

t (3.27a)

subject to (vec (UW) , t) ∈ Q3N (3.27b)(
AT
i wj,

(
wT
j h0i − δij

))
∈ QN (3.27c)

i, j ∈ (1, 2, 3) . (3.27d)

This is the final form of the RMVB optimization problem. It is to be noted

the formulation is convex, a property which permits a straightforward and efficient

implementation using a standard convex solver. In our case we used the yalmip

package [68].

3.3.4 Uncertainty Models

Isotropic Uncertainty Model

Isotropic uncertainty was modeled by choosing a uniform worst case uncertainty

bound, ε for all semi-axes of the uncertainty ellipsoid. This essentially imposes a

spherical bound on the uncertainty. Thus,

Ai = εiI, (3.28)

where εi is to be determined. The isotropic model is appropriate in cases where there

is no a priori information available about the uncertainties.
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Anisotropic Uncertainty Model

Anisotropic uncertainty allows for more degrees of freedom and more accurate mod-

eling of the uncertainties between lead field matrices. If additional information is

available, namely the differences between the actual and estimated lead field matri-

ces, we can develop a more accurate model. In our case, the two lead field matrices

are Hest and Htrue for the estimated and true models, respectively. Each component

of the lead field matrices requires a corresponding Ai which describes the extent and

orientation of the ellipsoid. For simplicity, the index i is omitted in the following

development.

The ellipsoid can be constructed as follows. The difference between the corre-

sponding columns of the lead field matrices, b,

b = hest − htrue (3.29)

indicates the actual uncertainty between both models. The main axis of the ellipsoid

can be set along the vector b with the length of the semi-axis being set to ||b||. On

an empirical basis, we set the remaining N − 1 semi-axes to have orthonormal axes

and magnitudes α, as follows:

α = min (0.1 ‖b‖ , c) (3.30)

where c is an upper bound on the uncertainty.

With the above information, we can construct the matrix A using it’s singular
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value decomposition

A = UΣVT (3.31)

where U is an orthonormal basis in RN with the first column being u1 = b
‖b‖ . The

lengths of the semi-axes are described by

Σ = diag (‖b‖ , α, . . . , α) (3.32)

and V = I.

In this paper, results for the anisotropic case were obtained using the method

outlined above, where Htrue was calculated using the boundary element method from

a head with known anatomy. A consideration with regard to the anisotropic model is

that the true head anatomy, from which the true lead field matrix is calculated, must

be known. Unfortunately this information is not readily available in practice, unless

an accurate head anatomy is determined beforehand using MRI images. However this

process is expensive and should be avoided if possible. A more convenient means of

circumventing this difficulty is to use the lead field matrices derived from a template

MRI as the lead field matrix estimate, H0. A template MRI is generally produced

from a number K of individual MRI images, so we would compute the uncertainty

ellipsoid from those individual MRI images with respect to the template MRI. This

may be done by first computing the individual forward head models by applying

the boundary element method to each MRI. Next, we would compute the covariance

matrix for each lead field matrix component hi, by averaging outer products of the
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hi over all K available head models. The result can then be used for the matrix Ai.

Ai =
1

K

K∑
k=1

(hk,i − h0,i) (hk,i − h0,i)
T (3.33)

Overall this would produce a model over an approximately uniform sampling of the

range of possible human heads.

This method has the advantage that it improves the uncertainty model at the

expense of the memory and computational requirements associated with increasing

the cardinality of the head model set.

3.4 Simulations

In this paper we base our simulations solely on event related potentials (ERPs).

One ERP trial corresponds to an EEG recording that is time-locked to an applied

stimulus, which is typically auditory, visual or somatosensory. Our ERP waveforms

are simulated in a similar manner as described in [60], [69], where it is assumed that

the ERP waveform is a result of phasic bursts of activity in response to the stimulus.

Correspondingly, the simulated ERP waveform is modeled as the first half of the

period of a sinusoid at 10 Hz, where the peak of the waveform has a temporal jitter

to model inter-trial variability.

We restrict our simulations to the ERP case only, since many neuroscience ap-

plications require isolating the sources involved in the processing of stimuli, and fur-

thermore the ERP case presents additional challenges for beamforming beyond what

is typically encountered for the resting case, since sources may be highly correlated

and observation record lengths may be short.
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We simulate two dipoles with equal power, one representing the signal of interest

and the other an interfering source. The signal dipole, ds, is placed on the cortex

of the left hemisphere near the medial aspect of Brodmann area 6 with coordinates,

[3.22 3.96 10.54] cm. The moment of the dipole was oriented along a vector from the

center of the brain to the location of the dipole [70]. The temporal location of the

peak is normally distributed among the trials, with a mean location of 476.5ms and

standard deviation of 20ms. The interfering dipole, di, is placed on the cortex of

the right hemisphere near the medial aspect of Brodmann area 8 with coordinates,

[5.26 − 2.36 10.31] cm. The signal waveform of the second dipole is identical to the

first except for the occurrence of its peak, which is shifted to 636.6ms. This source

configuration introduces correlation between the signal and interferer waveforms, a

fact which can reduce the performance of certain types of beamformer, yet commonly

occurs in practical situations. The orientation of the dipole is ηi =
[
1/
√

2; 1/
√

2; 0
]
.

The scalp EEG signals x(k) ∈ RN are generated from the forward head model

x(k) = Hs(k), where s(k) are the dipole source waveforms and H is the lead field

matrix, which for these simulations is generated using the Brainstorm package [71],

using a GSN HydroCel EEG cap with N = 256 electrodes. The lead field matrix is

generated from the default anatomical data provided in Brainstorm using the bound-

ary element method (BEM); specifically, the OpenMEEG toolbox [72]. The brain

tissue, the skull and the scalp were modeled with conductivities of 0.33, 0.004 and

0.33, respectively. The head model consists of 15,028 vertices and provides the lead

field matrix, H, at each vertex.

The background neural activity model, which is used to simulate the noise, is

added to each channel independently. It is based on the power spectrum of human
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Figure 3.1: Simulated EEG with a SNR of -15dB, shown as the superposition of all
256 channels.

EEG and the methods employed in [69]. The uncorrelated noise is composed of 50 si-

nusoids with random frequency and phase and generated separately at each electrode.

The frequencies of each sinusoid span the range 0-125 Hz with corresponding phases

randomly spanning the interval [0 − 2π] radians. The amplitude of each sinusoid is

adjusted based on the power spectrum of empirical EEG data (at rest) [69]. Further

details can also be found in [60].

Each of our simulated data sets consists of a waveform which is an ensemble

average of M = 100 simulated individual ERP trials. The trials are sampled at

fs = 250Hz, each containing 250 samples. Figure 3.1 shows the ensemble average

of the simulated data as the superposition of all 256 channels, where the two peaks

correspond to the signal and interfering sources, respectively.

Since the signal portion of the simulated data is approximately stationary over an

ERP trial, we can compute the sample covariance matrix by averaging over samples

within a specified interval I within a trial, and over all trials, as follows

R̂ =
1

|I|M

M∑
m=1

∑
k∈I

xm (k) xm (k)T (3.34)
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where M is the number of trials, | · | denotes cardinality, and I denotes a time

interval, which typically corresponds to the region where the desired signal component

is strongest. In our experiments we use all 250 samples for the interval I. This

formulation of the covariance matrix is in agreement with the rule of thumb provided

by [73], [74], where the total number of averaged snapshots should be in the interval

[3, 4]×N to ensure a sufficiently stable estimate of the covariance matrix.

The signal to noise ratio (SNR) is adjusted by scaling the ERP signal matrix of

each trial. The SNR is calculated according to [25] as follows

SNR =
tr (Rs)

tr (Rn)
(3.35)

where Rs ∈ RN×N is the ERP signal covariance matrix and Rn ∈ RN×N is the EEG

noise covariance matrix.

3.4.1 Comparative Algorithms

We evaluate the performance of the RMVB in comparison to the original MVB. We

also compare the RMVB with two other algorithms that are considered robust to

mismatches in the lead field matrix, namely the regularized MVB [23], [24] and the

eigenspace MVB [25], [65].

The regularized MVB simply replaces the sample covariance matrix R̂ with a

regularized covariance matrix

R̂reg = R̂ + γI (3.36)

where γ represents the regularization parameter. Throughout all our simulations, γ
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was specified as a fraction of the largest eigenvalue of the sample covariance matrix,

i.e. γ = 0.005λmax

(
R̂
)

.

The eigenspace-based filter weight matrix Weig is formulated by projecting the

MVB weight matrix W onto the signal-plus-interference subspace of the sample co-

variance matrix. It is readily verified [25] that Weig is given as

Weig = EsE
T
s W (3.37)

where Es is the matrix whose columns are the eigenvectors corresponding to the

signal-plus-interference subspace eigenvalues.

In our experiments, the eigenspace MVB assumes that there is one interfering

source, this implies using the two largest eigenvectors (Q = 2) to describe the signal-

plus-interference subspace. However, in practice Q = 3 yields better results since in

the finite sample case, the signal subspace spreads out over more dimensions.

3.5 Experiments

In this section we present results demonstrating the performance of the proposed

RMVB algorithm relative to our comparison methods, for two separate cases – matched

and mismatched. In both cases, the measured signals from the electrodes are simu-

lated using the true forward head model obtained using the boundary element method.

In the matched head model case, the weight matrix is calculated assuming knowledge

of the true lead field matrix, whereas in the mismatched case, the weight matrix is

obtained using a spherical (less accurate) head model.
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3.5.1 Results for the Matched Head Model

In the matched model scenario the uncertainly in H is negligible. This justifies a

low value for ε. In this case we choose the value ε = 20, which corresponds on the

basis of (3.21) to be approximately 3% of the average Frobenius norm of the lead

field matrices. From (3.21), the uncertainty along each lead field axis is then given

as εi =
√
ε2/3.

Results: The performance of the beamformers as measured by beamformer out-

put SNR and SINR vs. the input SNR when the beamformers are computed at the

location of ds is displayed in Figure 3.2. These results were generated by first calculat-

ing the covariance matrix from the combined simulated signal, interference and noise

components. This covariance matrix was used to calculate the beamformer weight

matrix W for each of the beamformer methods considered. Then the signal, interferer

and noise components were activated individually in turn and the corresponding elec-

trode components were calculated using the respective forward head model. These

electrode components were then fed through the respective beamformer and the re-

spective output powers evaluated, to yield the various ratios shown in Figure 3.2.

We can further examine the performance of the beamformers by examining their

beampatterns. The beampattern is defined as a function of the spatial filter centered

at the location q0 and can be expressed as follows

Gi =
∥∥WT (q0) H (qi)

∥∥
F

(3.38)

where i = 1, . . . , V represents the vertices of the head model. The beampattern

represents the gain of the spatial filter centered at q0 applied to the sources at each
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(a) Beamformer output SNR vs input SNR for the matched case.
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(b) Beamformer output SINR vs input SNR for the matched case.

Figure 3.2: Performance of various types of beamformer for the matched head model
experiment at the location of ds.
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(a) MVB (b) Regularized MVB

(c) Eigenspace MVB (d) RMVB with isotropic uncertainty ε =
20

Figure 3.3: Beampatterns for the matched model scenario with an input SNR of -5dB,
with respect to dipole ds. • and � mark the locations of dipoles ds and di, respectively.
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vertex of the head model. In the case of the MVB, at the center of the spatial

filter, W (q0)T H (q0) = I. Therefore, the gain is
√

3 and represents a distortionless

response. With this representation we can further examine the tradeoffs between the

various beamformers in our experiments.

The beampatterns for the matched head model experiment are shown in Fig-

ure 3.3. Each beampattern is represented by an individual colormap where blue and

red represent the lowest gain and highest gain, respectively. In this scenario the beam-

patterns are very similar, although the eigenspace MVB displays a slightly different

beampattern (Figure 3.3c). Generally, a region of high gain exists around the location

of dipole ds and low gain elsewhere especially around the location of dipole di. The

main difference between the beampatterns is the ratio of the gain at the locations ds

and di which is directly related the output SINR of the beamformer.

The results of Figure 3.2 and Figure 3.3 show comparative results for the various

beamformers under the ideal case where the head model is known accurately. These

figures therefore serve as a reference to compare behaviour in the case of a 3-sphere

(mismatched) model. Note that the eigenspace beamformer’s performance drops off

at low input SNR, because the signal subspace becomes indistinguishable from the

noise subspace in these conditions; i.e., subspace swapping. At high input SNR, the

performance of the MVB drops off, due to poor conditioning of the covariance matrix

and resulting instability in the matrix inversion process.

The regularized beamformer has been designed to avoid this deficit, and these

results show it is successful in this respect. Similarly, performance of the eigenspace

beamformer levels off at high values of SNR and low values of Q, since in this case there

are not enough degrees of freedom to adequately cancel the interference. Note that
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in the low/medium range of input SNR, the proposed RMVB beamformer behaves

virtually identically to MVB, but its performance does not fall off either at high or

low values of SNR.

3.5.2 Mismatched Head Model

To showcase the particular strengths of the RMVB, we evaluate the beamforming

methods in a scenario where the ERP data is processed using an approximate head

model (“Mismatched Model” scenario). The mismatch in head models allows us to

test the effects of errors in the lead field matrix.

The approximate head model is generated from the same anatomical data as the

true head model. This ensures that the lead field matrices from both models could

be easily compared since they make use of the same 3-dimensional mesh vertices

describing the physical shape of the head. The mismatched or approximate head

model is created using the 3-sphere [75] model which uses 3 spheres to model brain

tissue, the skull and the scalp with conductivities identical to those of the true BEM

model.

Isotropic RMVB Parameters: The uncertainty in the mismatched case is ac-

commodated in the isotropic RMVB model by setting ε = 100, 125, 150, 175 and 200.

From (3.21), the value of ε = 150 is roughly equivalent to 20% of the average Frobe-

nius norm of lead field matrices, H, in the head model.

Anisotropic RMVB Parameters: The anisotropic model is created using the

method described in Section 3.3.4, namely Hest = H3-sphere and Htrue = HBEM.

Results: The performance of the beamformers as measured by their output SNR

and SINR vs. the input SNR when the beamformers are computed at the location of

59



Ph.D. Thesis - Philip Chrapka McMaster - Electrical Engineering

−30 −25 −20 −15 −10 −5 0 5 10 15
−30

−20

−10

0

10

20

30

40

Input SNR (dB)

O
u

tp
u

t 
S

N
R

 (
d

B
)

 

 

RMVB, ε = 100

RMVB, ε = 150

RMVB, ε = 200

RMVB anisotropic

MVB

MVB eig filter, Q=3

MVB regularized

(a) Beamformer output SNR vs input SNR

−30 −25 −20 −15 −10 −5 0 5 10 15
−30

−20

−10

0

10

20

30

Input SNR (dB)

O
u

tp
u

t 
S

IN
R

 (
d

B
)

 

 

RMVB, ε = 100

RMVB, ε = 150

RMVB, ε = 200

RMVB anisotropic

MVB

MVB eig filter, Q=3

MVB regularized

(b) Beamformer output SINR vs input SNR

Figure 3.4: Beamformer performance for the mismatched head models experiment at
the location of ds.
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Beamformers Matched model Mismatched model

MVB

(a) (b)

Regularized
MVB

(c) (d)

Eigenspace
MVB

(e) (f)

RMVB,
isotropic

uncertainty

(g) ε = 20 (h) ε = 150

RMVB,
anisotropic
uncertainty

(i)

Figure 3.5: Localization plots over the time interval of 436.4-676.7ms for the mis-
matched model scenario. The input SNR is -5dB.
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(a) MVB (b) RMVB with isotropic uncertainty ε =
100

(c) RMVB with isotropic uncertainty ε =
150

(d) RMVB with isotropic uncertainty ε =
200

(e) RMVB with anisotropic uncertainty

Figure 3.6: Average beamformer output power over the time interval of 436.4-676.7ms
for varying degrees of isotropic uncertainty, ε = 100, 150 and 200. The input SNR is
-5dB.
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ds is displayed in Figure 3.4. Comparison between this figure and Figure 3.2 shows

that the degradation in performance of the MVB and regularized MVB caused by a

realistic mismatched head model is indeed significant. It may be observed that the

performance of the MVB decays significantly as the input SNR increases above about

-15dB. The reason is due to the same phenomenon that caused the dropoff in per-

formance in the matched case; i.e., the instability of the covariance matrix inversion

process at high input SNR. However, in the mismatched case, the degradation begins

at lower SNR due to the additional error introduced by the inaccurate head model.

In contrast, except for the case ε = 100, where RMVB is “close” to MVB, it may be

observed that the RMVB variations are the only beamformer methods which do not

suffer performance degradation in the mismatched case over the entire SNR range

considered.

Another means of viewing the degradation in beamformer performance due to a

mismatched head model, and the comparative robustness of the RMVB method to

this mismatch, is through the localization plots shown in Figure 3.5. These figures

represent the beamformer output power at each vertex where each beamformer is com-

puted for that specific vertex. These plots cover the time interval of 436.4-676.7ms.

The end points of this interval represent the nominal peak positions of the signal and

interferer sources, respectively. It is seen that all beamformers are able to localize

both sources, but they differ in the extent of the spatial source power distribution.

We see that the effect of the mismatch is to widen the distribution relative to the

matched case for all comparison beamformer types considered. Also weak, spurious

responses are evident in the regions between the sources. In the mismatched case

both the MVB and regularized MVB (Figures 3.5b and 3.5d) slightly underestimate
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the power of the dipole ds, which is represented by •. In the isotropic uncertainty

case for ε = 150, RMVB also localizes the source power to larger spatial regions as

shown in Figure 3.5h in a manner comparable to the other beamformers. However,

we see that RMVB with anisotropic uncertainty (Figure 3.5i) has very similar perfor-

mance to the MVB in the matched head model scenario (Figure 3.5a) and thus does

not experience significant degradation in this mismatched case.

In Figure 3.6 we show how the localization performance varies with ε. As ε becomes

too large, the source localization performance decreases. When ε = 200 (Figure 3.6d),

the RMVB beamformer has a much wider beam and consequently blurs the true lo-

cation of a cortical source. We see that the localization performance for ε = 100

compares favourably with the other beamformers in the presence of mismatch; how-

ever again we see that the performance of the anisotropic RMVB case in the presence

of a mismatched head model is virtually equivalent to that of the matched case where

the head model is known without uncertainty.

The beampatterns for the various beamformers for the mismatched case are shown

in Figure 3.7. In these cases the regions of high gain for the MVB, regularized MVB

and eigenspace MVB (Figures 3.7a to 3.7c) are not centered over ds, a fact that

can lead to diminished output SINR performance. On the other hand, we see that

the eigenspace MVB and the RMVB beampatterns (Figures 3.7c to 3.7e) maintain a

region of high gain around ds, and low gain in the region of the interferer, in spite of

the mismatched head model.

Figure 3.8 shows the beampatterns of the RVMB method for varying ε in the

isotropic case. As ε is increased, the RMVB method is able to tolerate larger errors

in the lead field matrix and as a result, the region of high gain concentrates more
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(a) MVB (b) Regularized MVB

(c) Eigenspace MVB (d) RMVB with isotropic uncertainty ε =
150

(e) RMVB with anisotropic uncertainty

Figure 3.7: Beampatterns for the mismatched model scenario, with respect to dipole
ds. The input SNR is -5dB.
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(a) MVB (b) RMVB with isotropic uncertainty ε =
50

(c) RMVB with isotropic uncertainty ε =
100

(d) RMVB with isotropic uncertainty ε =
150

(e) RMVB with isotropic uncertainty ε =
200

Figure 3.8: Beampatterns for the mismatched model scenario, with respect to dipole
ds with varying degrees of isotropic uncertainty, ε = 50, 100, 150 and 200. The input
SNR is -5dB.
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over the actual location of the dipole ds.

In this section we have examined the relative performance of the RMVB beam-

former in the mismatched case from several perspectives: a) input SNR vs. output

SNR and SINR , b) localization characteristics and c) beampatterns. With regard to

a), we see that the RMVB has consistent performance across a wide range of input

SNR values, whereas the performance of the other methods falls off either at high

or low values of SNR, or both. With respect to b), we see that in the anisotropic

case, the localization behaviour of the RMVB beamformer in the mismatched case

is equivalent to that of the MVB-based beamformers in the matched case. For ap-

propriate values of ε, the degradation of the isotropic beamformer in the mismatched

case is better than that of the MVB-based methods. Also, it is seen the RMVB

beampatterns, unlike those of the MVB methods, consistently maintain regions of

highest gain over the source and lowest gain over the the interferer.

3.6 Discussion

In the face of errors in the lead field matrix, the RMVB method has shown improved

performance in many cases when compared with the MVB-based methods. RMVB

is optimal in the sense that for all the possible lead field matrices that fall within our

region of uncertainty, no other spatial filter produces less output power while main-

taining an output response at the location of interest that is greater than the identity

[66]. In other words, by acknowledging the uncertainty in the analysis, it identifies a

region containing the most likely sources that produce the observed measurements.

We examine the situation when the uncertainty in RMVB goes to zero. From

(3.10) we see that A becomes zero in this case. Then from the definition of the
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second–order cone from (3.26) and from (3.27c) we see that wTh0i ≥ δij in this

situation. However (3.27b) implies that ‖W‖ should be as small as possible, which

implies that wTh0i = δij, which is identical to the MVB constraint. Thus we see that

the RMVB has the desirable property of becoming equivalent to the MVB as ε→ 0.

The major difference between RMVB and MVB and its variants is in the formu-

lation of the constraints. From (3.15) and (3.16) we see that the MVB constraint

WTH = I is replaced with the form WTH = I + Γ where Γ is a matrix with positive

elements which are dependent on ‖H‖ and the characteristic of the uncertainty. This

has the effect of forcing ‖W‖ to be larger in the RMVB case, so that for any H within

the uncertainty region M, wT
i hj is guaranteed to be equal to or greater than δij.

In the following, we distinguish between two forms of H and W. The subscript

“true” when applied to H implies the actual lead field matrix corresponding to the

head under consideration. Here we assume it may be calculated using the boundary

element method, with negligible error. The subscript “est” in the present context

implies H is calculated using the 3-sphere head model. When these subscripts are

applied to W, they refer to the weight matrix calculated using Htrue and Hest respec-

tively.

Note that for MVB and its variants, the presence of error in H results in the

quantity West
THtrue to no longer be equal to I, where unlike the RMVB case, there

is no guarantee of a lower bound on the value of each of the constraints. Thus,

provided Htrue lies within the uncertainty region, RMVB maintains its performance

in the presence of error in H in the sense that the power along each component

axis is preserved, whereas with MVB and its variants, the power along each axis can

diminish. Thus we see in each case the beamformer outputs become uncalibrated.
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In the RMVB case, the lack of calibration always increases or maintains the output

power to the calibrated level, whereas in the MVB cases, the output power can either

increase or decrease. A decrease in output power in the direction of the desired source

can result in a decrease in the SINR and in the resolution of the beamformer. The

RMVB formulation establishes a theoretically derived link between the uncertainty

and the modified constraint.

We now investigate the effect of a loss of calibration at the beamformer output.

For simplicity we assume a single source in the following analysis, since extension to

the multi–source case is straightforward. From (3.2) in this case and ignoring noise,

we have x(k) = Htrue(q)m(k,q) = Htrue(q)η(q)a(k), where η and α(k) are defined

in Section 3.2. Since W is calculated using Hest, the beamformer output is then

y(k) = WT
estx = WT

estHtrue(q)η(q)a(k) = Gtrue(q)η(q)a(k) where Gtrue = WT
estHtrue.

Thus we can see that the beamformer gain in this case is Gtrue. However, we must

distinguish between Gtrue and the estimated gain, Gest = WT
estHest. The loss of

calibration can be seen in Table 3.1, which shows the true gain, Gtrue. The true MVB

gain, (upper right in Table 3.1), diverges significantly from the identity matrix with

some main diagonal values being considerably less than 1, whereas the true RMVB

gains are closer to the identity, thus recovering the true sources more accurately.

Now we can compare the true gain to the estimated gain, Gest, in Table 3.2. In the

RMVB case, due to the constraints, all elements of Gest are greater than or equal to

the respective identity matrix element. Thus, the RMVB beamformer compensates

for the loss of calibration by increasing the gain beyond the nominal value of unity, for

H within the region of uncertainty. For the MVB-based beamformers, the constraint

forces the gain to the identity. This is visualized in Table 3.2.
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Table 3.1: Values for the quantity WestHtrue for various beamformer configurations
at dipole location ds and input SNR of -5dB.1 0 0

0 1 0
0 0 1

  0.8552 −0.1397 −0.2387
0.0146 0.5167 −0.3193
−0.0209 −0.1999 0.3861


WT

trueHtrue (MVB) WT
estHtrue (MVB)

1.0466 0.1200 0.0536
0.1647 0.8089 0.0429
0.1139 0.1265 0.8158

 1.0066 0.0183 0.0108
0.0163 1.0029 0.0125
0.0066 0.0177 1.0042


WT

estHtrue (RMVB ε = 150) WT
estHtrue (RMVB anisotropic)

It is important to note that the uncertainty model plays a significant role in

determining the performance of the RMVB method. If the assumed uncertainty is

much lower or much higher than the actual uncertainty in the data, the performance

can degrade. This effect can be seen by looking at the RMVB traces with ε = 100 and

200 vs. ε = 150 in Figure 3.4b where we see a relative degradation in performance.

Thus, choosing the uncertainty level for the isotropic model requires some care. As ε

increases, the “beam” of the beamformer widens, thus introducing the potential for

spurious sources (as seen in Figure 3.6d) or a loss of discrimination of nearby sources.

According to our analysis, an ε between 20 and 30% of the average magnitude of

the lead field matrices is appropriate when the sources are sparse (about 5cm apart).

If the sources are more dense a more conservative uncertainty level is advisable. The

anisotropic uncertainty model is amenable to further improvements depending on the

availability of data describing the diversity of realistic head models.

The eigenspace MVB generally gives good performance, although on the lower

end of the input SNR range, it underperforms due to the subspace swap phenomenon
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Table 3.2: Values for the quantity WT
estHest for various beamformer configurations,

at dipole location ds and input SNR of -5dB.1 0 0
0 1 0
0 0 1

 1 0 0
0 1 0
0 0 1


WT

trueHtrue (MVB) WT
estHest (MVB)

1.2818 0.2818 0.2818
0.2419 1.2419 0.2419
0.2340 0.2340 1.2340

 1.1677 0.1031 0.1301
0.0774 1.3694 0.1102
0.1448 0.0915 1.2271


WT

estHest (RMVB ε = 150) WT
estHest (RMVB anisotropic)

[61] discussed earlier. Also its performance degrades if the dimension of the signal-

plus-interference subspace is high or if the dimension is unknown [61]. In contrast,

the performance of the RMVB approach is seen to maintain high relative levels over

a wider range of input SNR values.

The average runtime to compute the beamformer weights, W, for the beamformers

MVB, RMVB ε = 150 and RMVB anisotropic at a single vertex are 0.30s, 2.82s, and

15.33s, respectively on a single core of an Intel Xeon E5-2640 2.5 GHz processor.

3.7 Conclusion

We have proposed a robust minimum variance beamformer tailored for EEG appli-

cations. It is robust to uncertainties in the lead field matrix, which include head

model and electrode array inaccuracies. Uncertainty in the lead field matrices is in-

troduced into the RMVB formulation using either an anisotropic or isotropic model.

These introduce respectively, an ellipsoidal or circular region of uncertainty, centered
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around the columns of the estimated lead field matrix. The RMVB beamformer is

implemented as a second order cone optimization problem, which is convex, efficient

and straightforward to implement.

When a mismatch exists between the head model used for analysis and the true

head model, the RMVB shows performance advantages in comparison to the MVB,

regularized MVB and eigenspace MVB methods. These performance gains are with

respect to input SNR vs. output SNR and SINR characteristics, localization perfor-

mance and robustness of the beampattern.
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Chapter 4

Sparse Dynamic Causal Network

Estimation for Event-Related

Potentials

4.1 Introduction

Estimating dynamic functional connectivity of the brain is a topic that has received

significant attention in recent years. The electroencephalogram (EEG) has played an

important role in this respect, and has been applied in many fields such as neuro-

science, neurology, psychiatry and others [26].

The event–related potential (ERP) is the EEG response to some form of repetitive

stimulus, often in the form of an auditory pulse or an alternating visual pattern. The

time interval over which the ERP response is active is referred to as a trial. In

this study we concentrate on EEG rather than fMRI data, since the EEG is much

easier to dispatch in a practical setting and offers higher temporal resolution than the
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fMRI. The ERP is a rich source of information regarding the dynamic connectivity

that evolves in the brain while processing external stimuli. Dynamic connectivity

in the present context has to do with the estimation of the time–varying, directed

brain network structure that is involved in the processing of an ERP. The concept of

directed connectivity is important, since it gives direction of information flow in the

brain and thus provides us with increased insight about its behaviour and network

architecture.

A concept closely related to directed connectivity is causality, which implies that

one node (source) of the network influences another. Specifically, Granger causality

refers to the case where the past of one time series xj improves the prediction of

another xi more than xi itself [26].

A core concept in determining causal connectivity is the vector autoregressive

(VAR) model of a network of nodes. In the most general case, the VAR represents

a vector of node measurements, x(k), as a linear combination of the P past node

measurements:

x(k) =
P∑
p=1

Ap(k)x(k − p) + w(k) (4.1)

where x(k) ∈ RN×1 represents measurements across N nodes at sample k, P is the

order of the AR process, Ap(k) ∈ RN×N represents the pth order VAR coefficients at

sample k, p = 1, . . . , P and w(k) represents the driving white noise with covariance

Σw. A number of measures which are useful for network estimation can be computed

from the VAR model. These include the directed transfer function (DTF) and the

partial directed coherence (PDC) [26]. PDC infers direct causal influences between

nodes in a network whereas the DTF describes the cascade of flows through a node
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[26]. The PDC assesses causality in the Granger sense and was chosen for this paper

since we are interested in direct influences of one source on another.

Much of the literature focuses on functional connectivity under the assumption

of stationarity. Suitable VAR estimation methods in this case are presented in [76],

[77] and [78]. However in this study we wish to allow for the possibility that the

brain sources active in processing the ERP evolve over the epoch. Therefore we

cannot assume that stationarity holds, i.e. the VAR estimation process becomes

time–varying. We therefore consider adaptive implementations for time-varying VAR

(tvVAR) estimation; specifically we choose a variation of the multi-channel adaptive

lattice algorithm [79], [80], which is explained in further detail in Section 4.2.

The estimation of the ERP-processing network of the brain is made difficult since

the desired EEG components are buried in noise caused by other neural processing

activity in the brain. This situation can be improved by assuming that every ERP

trial is a realization of the same stochastic process, and therefore the underlying

covariance structure associated with the ERP pulse does not vary between trials

[26]. In AR analaysis, the autoregressive coefficients Ap in (4.1) are formed using the

received signal covariance matrix. Therefore this assumption allows us to improve

the stability of the covariance matrix and hence the AR estimates by averaging over

multiple epochs [81] and thus improve SNR.

Since the processing of the ERP stimulus does not require all of the brain’s re-

sources, we may assume the associated ERP–processing network of the brain is sparse.

However, existing methods for estimating tvVAR models [82]–[85] do not incorporate

sparsity and perform poorly when the underlying causal network is sparse [86]. In
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addition, the dense VAR model requires the estimation of a large number of parame-

ters which in turn requires a large number of measurements for a good estimate. This

problem is further exacerbated when a large number of nodes is being considered.

Estimation of sparse brain networks has been studied in previous work, but this work

has not considered adaptive algorithms that can track sparse signals over time [87].

Since the PDC estimates are sensitive to volume conduction, the ERP data was

processed using the regularized Linearly Constrained Minimum Variance (LCMV)

Beamformer to isolate sources of activity in the brain and hence suppress the effect

of volume conduction. The beamformer outputs replace the raw electrode signals in

subsequent analysis. Here the LCMV beamformer algorithm was modified so that the

output represents aggregate activity over a finite cortical patch, instead of at a single

voxel, in order to reduce the dimensionality of the problem. A further advantage of

beamforming in this context is that since the desired source waveforms are isolated

at the beamformer output, background noise activity is suppressed, thus improving

SNR. Further details of the beamforming procedure are given in Sect. 4.3.6.

In this paper we present a method for estimating the time-varying brain network

structures that evolve during the processing of an ERP. The network is derived from

the PDC coefficients which are in turn derived from a time-varying, multi–channel

least–squares lattice (LSL) autoregressive estimation process that has been modified

to encourage sparsity (thereby suppressing spurious connections). Background EEG

activity is partially suppressed by modifying the LSL algorithm to exploit averaging

over multiple trials and by using a beamforming algorithm to preprocess the raw

EEG signals before autoregressive analysis. The proposed method is validated by

simulation results and by experiments on real ERP data. These latter results are
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compared with those of the recent literature and found to agree well.

4.2 Background

4.2.1 Partial Directed Coherence

Partial directed coherence (PDC) is a frequency dependent measure of directed func-

tional connectivity between multiple time series [26]. It describes the interaction

between two time series and discounts the influence of all other (N − 2) time series

[88]. The PDC can also be interpreted as a measure of causality in the Granger sense

where the past of one time series xj improves the prediction of another xi [26].

The PDC of a multivariate time series is defined as a function of the vector au-

toregressive (VAR) model parameters that adequately describe the multivariate time

series. To obtain a dynamic estimate, this paper focuses on estimating a time-varying

VAR (tvVAR) model described in (4.1). The VAR model is then transformed into

the frequency domain

A(t, ω) =
P∑
p=1

Ap(t)e
−jωp (4.2)

The PDC from channel j to channel i, πi←j(t, ω), is defined as the (i, j)th element

of Ā(t, ω) normalized by the total outflow variance from channel j to all channels.

πi←j(t, ω) =
Āij(t, ω)√∑N
n=1

∣∣Ānj(t, ω)
∣∣2 (4.3)
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where Āij(t, ω) is the (i, j)th element of Ā(t, ω) which is defined as follows

Ā(t, ω) = I−A(t, ω) (4.4)

or more specifically

Āij(t, ω) =

 1− Aij(t, ω) i = j,

−Aij(t, ω) i 6= j
. (4.5)

PDC is not scale invariant and can produce misleading estimates when the time

series are not normalized. The generalized PDC (gPDC) [89] solves this problem by

normalizing the signals by their innovation variances and is defined as follows,

gπi←j(t, ω) =

1
σii(t)

Āij(t, ω)√∑N
n=1

∣∣∣ 1
σ2
nn(t)

Ānj(t, ω)
∣∣∣2 (4.6)

where σ2
ii(t) represents (i, i)th element of Σw(t). gPDC is equivalent to PDC when

all σ2
ii are identical.

4.2.2 Reflection Coefficients and Lattice Filters

Estimating AR coefficients directly can be difficult because they are more sensitive

to noise and can result in numerically unstable algorithms [79], [80]. Reflection co-

efficients (RCs) on the other hand are an alternative nonlinear, isomorphic parame-

terization of AR coefficients which are yielded by the Levinson-Durbin recursion [90],

[91]. In the 1-dimensional case, RCs yielded by the Burg algorithm [92] are bounded

by the interval [−1, 1], which allows RCs to always produce stable AR filters. RCs
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permit an efficient lattice filter implementation [91] that is readily extended into an

adaptive framework. RCs are also order recursive, meaning that the next order p+ 1

of RCs can be computed from those at the pth order, whereas all AR coefficients need

to be recomputed if the model order is changed.

The lattice filter at order p is represented by the following equations

fp(t) = fp−1(t)−Kb
p(t)bp−1(t− 1) (4.7)

bp(t) = bp−1(t− 1)−Kf
p(t)fp−1(t) (4.8)

where fp(t) is the forward estimation error of order p at sample t, bp(t) is the backward

estimation error, bp−1(t− 1) is the delayed backward estimation error and Kf
p(t) and

Kb
p(t) are the forward and backward reflection coefficient matrices, respectively.

The lattice filter can be made adaptive using a recursive least squares (RLS)

algorithm, with its desirable properties such as fast convergence and tracking ca-

pability [79], [80]. In the following section we present two different versions of the

RLS algorithm for adaptively tracking the forward and backward reflection coeffi-

cients throughout an epoch of the ERP signal. Then given the RCs, we can calculate

the time–varying AR coefficients, which then can be used to determine the desired

PDC coefficients. These in turn describe the time–evolving functional connectivities

involved in the brain’s processing of the ERP stimulus.

It is worthy of note that some existing versions of the RLS algorithm are based

on updates of the QR decomposition via Givens rotations [93], [94] and have a com-

plexity of O(PN2) computations per time step. Our two proposed algorithms have

complexities of O(PHN2) and O(PN3) computations per time step (H represents the

number of trials), the latter exhibiting faster convergence at the expense of increased
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computational demand.

4.3 Adaptive Sparse ERP Tracking (ASET) Algo-

rithm

To develop an algorithm that is more robust to higher dimensionality and EEG back-

ground noise, the lattice filter was augmented with an exponentially decaying window,

incorporating multiple ERP trials and a penalty term that enforces sparsity of the

RCs. The sparsity constraint constrains the effective number of parameters to esti-

mate.

Here we solve for all reflection coefficients by minimizing the following objective

functions

J
(
Kb
p(t)
)

=
t∑

j=1

λj−1 1

H

H∑
h=1

‖fp(h, j)‖2
2 + γ

∥∥Kb
p(t)
∥∥

1
(4.9)

J
(
Kf
p(t)
)

=
t∑

j=1

λj−1 1

H

H∑
h=1

‖bp(h, j − 1)‖2
2 + γ

∥∥Kf
p(t)
∥∥

1
(4.10)

where p = 1, . . . , P represents the model order, h = 1, . . . , H represents the epoch

index and j = 1, . . . , t represents the sample index up until the current sample t,

λ represents the exponential decay parameter and γ represents the regularization

parameter.

To minimize (4.9) and (4.10), we use a series of reformulations to yield a closed–

form solution for the reflection coeficient estimates K̂b
p(t) and K̂f

p(t). The following

algorithmic development focuses on the backward coefficients, Kb
p(t), for brevity. The

development for the forward coefficients, Kf
p(t), is very similar.
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Beginning with the objective function (4.9), we use the relation tr
(
xxT

)
= ‖x‖2

2,

K̂b
p(t) = arg min

Kb
p

J
(
Kb
p(t)
)

(4.11)

= arg min
Kb

p

t∑
j=1

λj−1 1

H

H∑
h=1

tr
(
fp(h, j)f

T
p (h, j)

)
(4.12)

+ γ
∥∥Kb

p(t)
∥∥

1
(4.13)

Next, we expand the terms inside the trace using (4.7) and discard the terms that

do not depend on Kb
p

K̂b
p(t) = arg min

Kb
p

tr
([

Kb
p(t)
]T

Rbb
p−1(t)Kb

p(t) (4.14)

−
[
Kb
p(t)
]T

Rbf
p−1(t)−

[
Rbf
p−1(t)

]T
Kb
p(t)

)
(4.15)

+ γ
∥∥Kbb

p (t)
∥∥

1
(4.16)

where we make the following simplifying substitutions

Rbf
p−1(t) =

t∑
j=1

λj−1 1

H

H∑
h=1

bp−1(h, j − 1)fTp−1(h, j) (4.17)

Rbb
p−1(t) =

t∑
j=1

λj−1 1

H

H∑
h=1

bp−1(h, j − 1)bTp−1(h, j − 1) (4.18)
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Finally, we evaluate the trace

K̂b
p(t) = arg min

Kb
p

N∑
n=1

[
kbp,n(t)

]T
Rbb
p−1(t)kbp,n(t)

− 2
N∑
n=1

[
kbp,n(t)

]T
rbfp−1,n(t) + γ

∥∥Kb
p(t)
∥∥

1
(4.19)

where

rbfp−1,n(t) is the nth column of Rbf
p−1(t) (4.20)

kbp,n(t) is the nth column of Kb
p(t) (4.21)

4.3.1 Update equations

The expressions for (4.17) and (4.18) can be rewritten in a recursive form as follows

Rbf
p−1(t) = λRbf

p−1(t− 1)

+
1

H

H∑
h=1

bp−1(h, t− 1)fTp−1(h, t)

= λRbf
p−1(t− 1) +

1

H
Bp−1(t− 1)FT

p−1(t) (4.22)

Rbb
p−1(t) = λRbb

p−1(t− 1)

+
1

H

H∑
h=1

bp−1(h, t− 1)bTp−1(h, t− 1)

= λRbb
p−1(t− 1) +

1

H
Bp−1(t− 1)BT

p−1(t− 1) (4.23)

where Fp−1(t) = [fp−1(1, t), . . . , fp−1(H, t)]N×H represents the concatenated forward

errors of each trial, and similarly with Bp−1(t− 1)
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4.3.2 Online coordinate descent

Next we develop an adaptive sparse algorithm to recursively compute the solution to

(4.19). We follow the online coordinate descent (OCD) approach taken in [95] which

updates the solution as the signal changes with time and in its regions of nonzero

support. In the development below, we temporarily use the variable kn in place of

kbp,n.

Coordinate descent iteratively minimizes the objective function with respect to a

single coordinate at each iteration. At iteration i, we optimize with respect to the qth

element of kn at sample t,

k(i)
n,q(t) = arg min

k
J
(
k

(i)
n,1(t), . . . , k

(i)
n,q−1(t), k(i−1)

n,q (t),

k
(i−1)
n,q+1(t), . . . , k

(i−1)
n,Q (t)

)
(4.24)

where q = 1, . . . , Q, and Q = N is the number of elements in kn.

Now we can reformulate the objective function, (4.19), with only the terms de-

pending on the qth element of kn. This effectively decouples the solution of K̂b
p into

N2 sub-problems.

k̂OCD
n,q (t) = arg min

kn,q(t)

1

2
Rbb
p−1,q,q(t)k

2
n,q(t)

− rt,n,qkn,q(t) + γ |kn,q(t)| (4.25)

where

rt,n,q = rbfp−1,n,q(t)−
∑
s 6=q

Rbb
p−1,q,s(t)k̂

OCD
s (t− 1) (4.26)
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Solving (4.25) and (4.26),

k̂OCD
n,q (t) =

sgn (rt,n,q)

Rbb
p−1,q,q

max (|rt,n,q| − γ, 0) . (4.27)

(4.28)

Notice that we have substituted values of k(·) from the previous time step for values

that that have not yet been computed in the current time step.

Given Rbb
p−1(t) and rbfp−1(t) the complexity is O (PN2). However, since the co-

variance update dominates, the complexity of the full algorithm is O (PHN2). The

complete algorithm is shown in Algorithm 1.

Algorithm 1 Online coordinate descent

q = 1
for t = 1, . . . , T do

for p = 1, . . . , P do
Update Rbf

p−1(t),Rbf
p−1(t) using (4.22) and (4.23)

for n = 1, . . . , N do
k̂n = k̂bp,n(t− 1)

rt,n,q = rbfp−1,n,q(t)−∑
s 6=q R

bb
p−1,q,s(t)k̂n,s(t− 1)

k̂n,q = sgn(rt,n,q)

Rbb
p−1,q,q

max (|rt,n,q| − γ, 0)

k̂bp,n(t) = k̂n
end for

end for
q = q + 1
if q > N then

q = 1 . reset q
end if

end for
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4.3.3 Online cyclic coordinate descent

It is also possible to update each coordinate at every sample index, which leads to the

online cyclic coordinate descent (OCCD) form, (see Algorithm 2). This will increase

the rate of convergence at the expense of increasing the computational complexity

to O (PN3). Since the relatively short duration of the ERP epoch requires fast

convergence, and since this application affords off-line analysis, we choose the OCCD

algorithm as the method of choice in this study. Notice that the equations for updating

the k–values in the OCCD case are the same as for the OCD case.

Algorithm 2 Online cyclic coordinate descent

for t = 1, . . . , T do
for p = 1, . . . , P do

Update Rbf
p−1(t),Rbf

p−1(t) using (4.22) and (4.23)
for n = 1, . . . , N do

k̂n = k̂bp,n(t− 1)
for q = 1, . . . , N do

rt,n,q = rbfp−1,n,q(t)−∑
s 6=q R

bb
p−1,q,s(t)k̂n,s(t− 1)

k̂n,q = sgn(rt,n,q)

Rbb
p−1,q,q

max (|rt,n,q| − γ, 0)

end for
k̂bp,n(t) = k̂n

end for
end for

end for

4.3.4 Time-Varying gPDC

Finally, to compute the time-varying gPDC, we use the Levinson-Durbin recursion to

convert the forward and backward RCs up to a P -th order AR model, at each time

step. Then we use expressions (4.2) and (4.6) along with the innovation covariance to
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compute the gPDC. The innovation covariance, Σw(t), required for gPDC is estimated

by the normalized forward error covariance,

Σ̂w(t) = R̄ff
P (t)

=
λt−1Rff

P (1) + . . .+ λRff
P (t− 1) + Rff

P (t)

λt−1 + . . .+ λ+ 1

=
1− λ
1− λt

Rff
P (t) (4.29)

4.3.5 Parameter Selection

The proposed method depends on proper selection of the model order, P , the expo-

nential decay, λ, and the regularization parameter, γ.

Model order was selected based on the Exponentially-Weighted Akaike Informa-

tion Criterion (EWAIC) [96], which is an adaptive version of the classic Akaike In-

formation Criterion (AIC). The AIC considers a trade off in model fit quality and

model complexity, which are represented by the first and second terms, respectively.

The expression used to compute the EWAIC is defined below

EWAICf (t) = ln

(
1− λ
1− λt

∣∣∣Rff
P (t)

∣∣∣)+ 2
PN2

tH
(4.30)

EWAICb(t) = ln

(
1− λ
1− λt

∣∣Rbb
P (t)

∣∣)+ 2
PN2

tH
(4.31)

where t represents the current sample and Rff
P and Rbb

P ∈ RN×N represent the forward

and backward error covariances at model order P .

There are no straightforward methods for choosing λ and γ. The exponential

decay, λ, controls the tracking capability of the filter where a lower value produces

quicker adaptability. However, a lower value also produces a larger variance in the
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estimates. Large values of the regularization parameter, γ, increase the sparsity

of the solution and decrease the variance of the parameter estimates. However, as

sparsity increases, the model may underfit the data. Therefore, λ and γ should be

chosen depending on the requirements of the application. Further details are given

in subsequent sections.

4.3.6 Beamforming

Beamforming is used in this study to reduce the effects of volume conduction, which

can give rise to spurious PDC estimates. Also, because a beamformer has the ability to

“focus in” on a desired brain source thereby suppressing unwanted EEG activity from

other sources, it improves the effective SNR of the respective signal. In this study,

the regularized Linearly Constrained Minimum Variance (LCMV) [97] beamformer

was used, where the regularization parameter was set to 1% of the average eigenvalue

of the covariance matrix.

The forward head model required by the beamformer was computed from the

ICBM152 Montreal Neurological Institute (MNI) template [98] to yield an anatomi-

cally correct head model. The ICBM152 template is an average of 152 normal MRI

scans. This also permits use of an atlas in the MNI coordinate space to selectively

partition the brain into anatomical regions which is detailed in Section 4.6.3. We

also utilized the fiducials reported in [99] for the ICBM152 template. The volume

conduction model was constructed using the dipoli method in FieldTrip [100], with

conductivities of the scalp, skull and brain set to 0.33, 0.33/80 and 0.33, respectively.

The source model consisted of a discrete 3-dimensional grid of points with a spac-

ing of 1cm which produced a lead field matrix at each grid point. This yielded
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approximately 1800 potential sources, each corresponding to a potential input chan-

nel for our filter. The large dimensionality of this data would be unmanageable in

further analysis. We therefore reduce the dimensionality of the source space using

the cortical patch basis model [101], which integrates the signal over a pre–defined

region (the “cortical patch”) into a single source. The patches are defined according

to established anatomical regions as discussed further in Section 4.6.3. The composite

measured signal sj(k) over the jth patch Pj is given by the expression

sj(k) =

∫
θ∈Pj

H (θ) m (θ) a (θ, k) dθ

where H (θ) is the lead field matrix at a position on the cortex specified by an angular

vector θ, m (θ) is the source dipole moment, and a (θ, k) represents the time–variation

of the source specified by angle θ. Because we have spatially discretized the problem,

we can approximate the above model as

sj(k) ≈
∑
θj∈Pj

H (θj) m (θj) a (θj, k)

= Hjaj(k)

where the θj are the angular coordinates that correspond to the set of grid points

within patch Pj. The matrix Hj =
[
H (θ1) m (θ1) , . . .H

(
θNj

)
m
(
θNj

)]
where Nj is

the number of sources in the jth patch, and aj(k) =
[
a (θ1, k) , . . . , a

(
θNj

, k
)]T

.

We can reduce the dimensionality of the problem by modeling Hj with a low rank
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approximation in the following way

Hj ≈ UjB
T
j

where Uj is a full column-rank matrix with nj columns, and Bj is a matrix of coeffi-

cients to be determined. Typically nj � n, where n is the number of columns of Hj.

The received signal sj(k) may then be approximated by ŝj(k) as

sj(k) ≈ ŝj(k)

= UjB
T
j aj(k).

The normalized mean–squared error between sj(k) and ŝj(k) with respect to Uj is

minimized by choosing the columns of Uj to be the nj principal left singular vectors

of Hj. To apply the patch basis model as part of the LCMV beamformer refer to eqs.

(17-19) in [101].

In summary, the proposed algorithm adaptively tracks gPDC parameters within

the time frame of an ERP epoch and thus allows us to track the brain network in-

volved in the processing of the ERP stimulus. First, the raw electrode signals are

processed through a network of multiple beamformers that isolate brain source signals

emitting from a contiguous set of regions of the cortex. These beamformer outputs

are then modelled as a time-varying multi-channel AR process, realized in a least-

squares lattice configuration. The respective time-varying reflection coefficients are

transformed into AR coefficients, from which the time-varying gPDC coefficients are

obtained. The gPDC coefficients represent the directed information flow between

brain sources and thus indicate functional connectivity. The method incorporates
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averaging over multiple epochs so that the ERP signal components are added coher-

ently, whereas the background EEG components add incoherently. This, in addition

to the beamforming operation, increases the SNR of the ERP signal to acceptable

levels. Sparsity regularization is also incorporated to improve stability of the gPDC

estimates. Time adaptation is performed in an OCCD framework which updates all

elements of the forward and backward reflection coefficient matrices in each time step

over the ERP epoch. We refer to the proposed method as the adaptive sparse ERP

tracking (ASET) algorithm.

4.4 Simulations

We compare the performance of the ASET algorithm to the multi-channel QRDLSL

(MQRDLSL) [93], [94] and the multi-channel multi-trial QRDLSL (MCMTQRDLSL)

lattice filter algorithms. Adaptation in time of the MQRDLSL method is based on the

QR decomposition of the forward and backward error matrices. The MCMTQRDLSL

method is a multi-trial extension of the MQRDLSL algorithm where the covariance

matrix updates include information from multiple ERP trials.

The data used for the comparison was a simulated stationary 10 channel VAR(8)

process. The VAR process was specified by sampling RC values from a uniform

distribution, U (−1, 1), and according to specific coefficient sparsity parameters. Each

co–channel VAR process was created such that 40% of the RCs were non-zero. The

cross–channel RC coefficients were selected such that 5% of the RCs were non-zero.

The VAR data was generated by reconfiguring the lattice filter to become an VAR

synthesizer utilizing the RC coefficients generated in the previous step, as described

in [102, pg. 179]. The configuration is represented by the following equations, which
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are nearly identical to (4.7)

fp−1(t) = fp(t) + Kb
p(t)bp−1(t− 1) (4.32)

bp(t) = bp−1(t− 1)−Kf
p(t)fp−1(t) (4.33)

The filter input, fP (t), is fed white noise and the output, f0(t), produces the VAR

process.

The white noise was sampled from a w ∼ N (0, 0.1I) normal distribution.

4.4.1 Reflection Coefficient MSE

We compare the performance of the ASET algorithm as described by the mean

squared error (MSE) of the estimated RC values in Figure 4.1. We also compared

the performance to the Nuttall-Strand algorithm, which produces a single estimate of

the RCs with all 1000 samples. The MSE in Figure 4.1 is an average of 5 simulation

runs. The filter parameters were identical for all filters. The model order was set to

8 and γ was tuned to 4.55 in order to minimize the MSE of the estimated RC values.

The parameter H, the number of averaged trials, is 5. We also compared the steady

state performance of the ASET algorithm for 2 values of λ = 0.9, 0.99.

4.4.2 Reflection Coefficient Sparsity

We further compare the MSE performance when the reflection coefficient sparsity level

changes in the underlying VAR process in Figure 4.2. VAR processes were generated

as described earlier, except with a change in the percentage of non-zero cross–channel

RC coefficients. The following percentages were used: 1, 5, 10, 20, 50 and 80. The
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Figure 4.1: Average MSE performance of the ASET algorithm vs. QRD–based meth-
ods

MSE in Figure 4.2 is an average of 5 simulation runs. Again, H is set to 5 and λ is

set to 0.99.

We can see from Figure 4.1 and Figure 4.2 that the ASET algorithm performs

significantly better than its QRD counterparts, both from the speed of convergence

and MSE perspectives. From Figure 4.1, we can see that the performance of ASET

is roughly 1/3 of an order of magnitude improved over that of the MCMTQRDLSL

method. The ASET algorithm is capable of providing good RC estimates with very

few samples, especially when compared with the Nuttall-Strand algorithm. This

improvement is due in part because ASET can exploit the sparsity inherent in the

problem. Also apparent from the QRD curves is the performance improvement due

to averaging over multiple trials. Also we see from Figure 4.2 that the performance of

ASET exceeds the QRD methods by roughly half an order of magnitude, particularly

for high sparsity levels (i.e. a low number of non-zero coefficients).
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Figure 4.2: Average steady–state MSE performance of filters as a function of reflection
coefficient sparsity.

4.5 Surrogate Data Analysis

The noisy nature of the ERP data can give rise to false positives in the gPDC es-

timates. It is therefore necessary to devise a statistical test to determine whether

the estimated gPDC coefficients values are significant. In this vein we use numerical

methods based on surrogate data [103] to determine a 95% threshold value on the dis-

tribution of the gPDC coefficients under the null hypothesis. It therefore follows that

any estimated gPDC value produced by the ASET algorithm above this threshold is

statistically significant.

Although the theoretical distribution of the gPDC has been derived previously

when no coupling is present [104], these results may be unreliable in our scenario due

to the non–stationarity of ERP data. When generating surrogate data, it is important

to only modify the property of the signal that forms the basis of the null hypothesis

and maintain all other properties of the signal being investigated.
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We evaluate the significance of the results under the “no-coupling” null hypothesis

which is explained below.

4.5.1 Null hypothesis: No coupling

Many methods that generate surrogate data assume stationarity and are thus in-

appropriate in this scenario [103], [105], [106]. An implicit assumption in dynamic

connectivity estimation is the non-stationarity of the ERP data over time. Accord-

ingly, the null hypothesis is modelled by a tvVAR process to fully preserve the spectral

properties of the ERP data, following a similar approach to [107]. We take the “no

coupling” null hypothesis to correspond to the case where VAR cross–channel coeffi-

cients are zero. In this case the true cross-channel gPDC coefficient values are also

zero.

The surrogate data is generated on the basis of the real experimental data de-

scribed in Section 4.6.2. We used the ASET algorithm to estimate the multichannel

tvVAR coefficients from this data, where in the surrogate case, each channel is pro-

cessed individually as a single–channel AR process. Thus we estimate multiple single–

channel AR processes instead of a single multi–channel process, where cross–couplings

are ignored. To generate data for the null hypothesis, we assign the estimated RCs

into each respective channel. This produces a tvVAR process where all the cross–

channel coefficients, and hence the corresponding gPDCs, are zero. The surrogate

data itself was then generated from this tvVAR model according to (4.32) and (4.33)

as described in Section 4.4.

The driving white noise was sampled from a normal distribution with zero mean

and a diagonal covariance scaled by the power of the forward estimation errors of the
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originally filtered data, as shown in (4.34).

wj(k) ∼ N (0,Cw) (4.34)

Cw = diag
(
σ2

1, . . . , σ
2
n, . . . , σ

2
N

)
(4.35)

σ2
n = var (fP,n(k)) (4.36)

k = 1, . . . , K, n = 1, . . . , N

where j is the index for the surrogate sample and k is the time index. Surrogate

data analysis was conducted with 100 surrogate data series and a significance level of

α = 0.05.

This surrogate data was then analyzed by the standard ASET algorithm where

the cross–channel couplings were not constrained to zero. An approximation to the

underlying gPDC distribution under the null hypothesis can be obtained from the

estimated gPDC values in the form of a histogram. From this, the threshold for a

significance level of α = 0.05 was computed for each data point at all frequency bins,

time samples and channels. Thus by selecting only gPDC values above the threshold,

we are 95% confident the estimates are significant.

An example of the distribution of gPDC between regions is shown in Figure 4.3.

The specific anatomical pair and time sample was selected based on the largest thresh-

old produced by the steps described above to show the distribution underlying the

most conservative threshold level. The null hypothesis is readily shown by the high

concentration of small gPDC values.
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Figure 4.3: Histogram of cross–channel gPDC values under the null hypothesis for
100 realizations of surrogate data when t = 367ms and for frequencies between 0-
10Hz. The number of elements is represented by a color map, where the hotter color
represents a higher number. The resulting thresholds for each frequency are marked
by ×. The anatomical region pairs and time sample were selected based on the largest
threshold.
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4.6 Application

4.6.1 Background

Cognitive prediction of upcoming events hinges on the ability to extract temporal

regularities from external stimuli [108], [109]. This predictive timing is essential for

many human behaviors including understanding speech and music. Predictive timing

is achieved through the process of entrainment, where neural oscillations synchronize

with temporally regular external stimuli. It is common knowledge that auditory

rhythm and rythmic movement go hand in hand; however, the underlying neural

mechanisms of auditory-motor communication are poorly understood. It has been

observed that the modulation of β amplitude follows the tempo of sound stimulation

[108]. β–band oscillations also reflect change in the status of sensorimotor functions

and do not require movement to be present [108]. In the following sections we use

the ASET algorithm to further study the dynamic relationship between the auditory

cortex and all other regions of the brain, specifically with respect to networks formed

from the amplitude modulation of β–band oscillations.

4.6.2 Methods

We applied the ASET algorithm to ERP data collected during an auditory oddball

sequence which consisted of an isochronous stream of standard and deviant tones.

Piano tones C4 (262Hz) and B4 (494Hz) were used as the standard and deviant tones,

respectively. The inter-onset interval was set to 500ms and 3600 tones were presented

in each session where the deviant tone had an occurrance rate of 10%. The EEG was

sampled at 2048Hz (filtered DC to 417Hz) using a 128-channel Biosemi Active Two
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amplifier (Biosemi B.V., Amsterdam). The electrode array positions were digitized

using an electromagnetic position tracking system (Polhemus Fastrak) prior to EEG

collection and the data was referenced to the vertex electrode. Further details are

given in [109].

The ERP data was preprocessed in a similar fashion as in [109]. In order to

remove data with artifacts, the raw continuous ERP data was filtered using a 3rd

order Butterworth band pass filter (1-60Hz). The filtered data was segmented into

long epochs of -500 to 1000ms, where 0ms represents the stimulus onset, resulting in

a segment containing 3 contiguous ERP trials. According to this filtered data, any

epochs where the signal exceeded a threshold of 60µV , with respect to the baseline

signal between -100-0ms for more than 10% of the epoch, were rejected from the β–

band filtered data. To extract the β–band data, the raw continuous data was band

pass filtered with a 4th order Butterworth filter (15-25Hz) and epoched. We only

considered sequences that contained 3 consecutive standard tones.

Next, the data was preprocessed prior to application of the ASET algorithm. Since

in this study we consider networks formed from the envelope of the β–band signal,

the envelope was extracted by computing the magnitude of the analytic signal using

the Hilbert transform and the mean was removed. Extracting the envelope in this

manner avoids producing edge artifacts at the first sample of the actual data. Each

channel was then normalized to unit variance.

4.6.3 Anatomical Segmentation

The Automated Anatomical Labelling (AAL) atlas was utilized to produce anatom-

ically labelled patches [110]. By using standardized anatomical regions, the atlas
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provides a means to reduce anatomical variability between subjects. The atlas con-

tains 116 anatomical regions and is specified in the MNI coordinate space. These

regions of the atlas were grouped into gross anatomical regions for both left and right

hemispheres. The gross regions considered are: prefrontal cortex (PFC), motor cor-

tex (MC), basal ganglia, insula, parietal cortex (PC), temporal cortex (TC), occipital

cortex (OC), limbic, cerebellum as well as an additional medial cerebellum region.

Since in general a beamformer’s ability to isolate deep sources decreases with depth,

certain regions were excluded from the remaining analysis. The excluded regions

include: basal ganglia, insula, limbic and cerebellum. Furthermore, to enhance the

interpretation of the connectivity analysis in relation to the auditory cortex (AC),

both left and right AC were included as independent regions and mutually exclusive

to all other regions. The AC region was specified as a sphere with a radius of 2cm

with the center determined by source localization of the subject specific P1 response

as described in [109].

The subsequent connectivity analysis treats each hemisphere separately since the

literature suggests only low levels of cross-hemispheric communication in auditory

processing [29]. This procedure significantly reduces the number of cross-channel

coefficients that require estimation.

4.6.4 Dynamic Connectivity Estimation

The ASET algorithm explained in Section 4.3 was used to estimate the reflection co-

efficients. In order to minimize the filter initialization effects, the source space signals

were prefixed with a temporally reversed copy of itself. In this way the initial value

of covariance estimate for the RC estimation process would approach the covariance
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matrix at the first sample of the actual data. After the application of the ASET

algorithm, this prefixed data is discarded and only the second half of the data is

considered when computing the gPDC.

As an additional topic of interest, we also applied the ASET algorithm to the β

signal itself, rather than only to the envelope of the β–band signal.

The exponential decay parameter, λ, was chosen as 0.99 in order to reduce the

variance of the filter output. Since the signal was oversampled relative to the β–band

and its envelope, there was little concern with a reduction of tracking capability with

a relatively high λ. Further, values of H = 20, H = 100 and H = 195 epochs (as

in (4.22) and (4.23)) were used in the analysis. Analysis for the β band signal itself

use values H = 20, 100, whereas since the β-band envelope is a noisier signal, values

H = 100, 195 were used in this case. The filter was evaluated over a few values of the

regularization parameter, γ = 1e−3, 1e−4, 1e−5 and 1e−6. The final choice of γ was

based on the percentage of results surviving the surrogate analysis step since a high

percentage indicates more stable results. For H = 20, we considered the additional

criteria of similarity to the gPDC results when H = 100. The final choice for γ for

all of the analyses utilized γ = 1e− 5.

An AR model order of 6 was selected for both right and left hemispheres for the

β–band signal and order 5 was selected for the β–band envelope according to the

procedure described in Section 4.3.5.

The estimated reflection coefficients were then used to compute the gPDC. The

reflection coefficients were first downsampled by a factor of 4 in the temporal domain

and the gPDC was computed for 2048 frequency bins.

100



Ph.D. Thesis - Philip Chrapka McMaster - Electrical Engineering

4.6.5 Results

The auditory experimental protocol is designed for the study of the flows into and

out of the AC and its associated regions. We also observed stronger gPDC flows in

the left hemisphere. In this respect, we focus on the dynamic gPDC from various

channels to the left AC and the left TC.

The time-frequency plots of Figures 4.4, 4.5, 4.7 and 4.8 give a partial depiction

of the evolution of the dynamic neural networks that are active in the processing

of auditory stimuli. Figures 4.4 and 4.5 show gPDC flows for the β–band signal

itself, whereas Figures 4.7 and 4.8 show gPDC flows corresponding to the β–band

envelope signal. A complete representation of flows would require a plot “to” each

of the seven brain regions – in this study we show only the most significant gPDC

flows for the sake of brevity. Nevertheless, from the selected figures it is possible to

discern the dynamic behaviour of the various connections at play. Each horizontal

band represents the dynamic gPDC estimate in a specific frequency range oriented

with the smallest frequency at the top of the band. The frequency range of 15-25Hz

and 0-10Hz are used in Figures 4.4 and 4.5 and Figures 4.7 and 4.8, respectively.

They show the gPDC flowing from the anatomical region indicated on the left axis

to the anatomical region indicated on the bottom axis. Of the three consecutive

standard trials, the figures show only the second half of the first trial (-250-0ms) and

the full second (0-500ms) and third trials (500-1000ms). This is due to lack of filter

convergence as well as the effects of the trial preceding the first trial under study

which can take the form of a standard or deviant trial. The dashed lines represent

the onset of the auditory stimulus.

Figures 4.4 and 4.5 show the gPDC flows resulting from β–band activity itself.
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(b) Thresholded gPDC flows to Left Auditory Cortex according to the “no-coupling”
null hypothesis

Figure 4.4: Comparison of gPDC (4.4a) and thresholded gPDC (α = 0.05) (4.4b)
flows to the left auditory cortex corresponding to the β-band activity itself, with
parameters H = 20, model order 6, γ = 1e − 5 and λ = 0.99. Each horizontal band
represents the gPDC between 15-25Hz (oriented from top to bottom) and across time
-250ms to 1000ms. The magnitude of the gPDC is defined by the intensity of the
color. The dashed lines mark the stimulus onset.
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(b) Thresholded gPDC flows to Left Auditory Cortex according to the “no-coupling”
null hypothesis

Figure 4.5: Same as Figure 4.4 except H = 100.
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Figure 4.4 shows the overall gPDC flows to the left AC when considering 20 epochs,

(H = 20), and compares the effects of the surrogate data analysis. Overall, there

are minimal differences between the original gPDC estimate (Figure 4.4a) and the

thresholded gPDC estimate (Figure 4.4b). Figure 4.5 further compares the same

activity and analysis when considering 100 epochs (H = 100). Despite the lower

number of epochs used in the analysis, Figure 4.4 shows very similar gPDC activity

as Figure 4.5. When H = 100, there is generally higher resolution in both the time

and frequency dimensions.

These figures show the periodic bands of coherent activity on a number of scales.

E.g., Figure 4.4 shows about 40 local gPDC peaks within a 1-second interval, corre-

sponding to the 20 Hz centre frequency of the β–band signal, since there are both a

positive and a negative peak per cycle. These peaks are also surprisingly synchronous

with the stimulus. Figure 4.5 shows a clear picture of temporal variation in the gPDC

of a single band over the evolution of an ERP. The temporal variation is also very

similar between trials resulting from the same stimulus. The gPDC flow of β–band

activity to the AC is significant from all anatomical regions. The TC produces the

strongest gPDC flow and the PC produces the weakest.

Figure 4.6 shows the mean and standard deviation of the gPDC from the left TC

to the left AC at a single time sample, t = 781ms, over 100 different permutations

of epochs compared with the thresholds produced by surrogate analysis with the “no

coupling” null hypothesis. When H = 20, the standard deviation is approximately

3 times as large as when H = 100. Furthermore, for the H = 100 case, the gPDC

values are more concentrated around their centre frequency of 20 Hz, indicating higher

resolution in frequency in this situation. The standard deviation in Figure 4.11 is
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Figure 4.6: Mean and +/- 1 standard deviation of gPDC flows from the left Temporal
Cortex to the left Auditory Cortex at t = 781ms, corresponding to Figure 4.4 and
Figure 4.5, in comparison with the thresholds produced by surrogate analysis with
the “no coupling” null hypothesis.

comparable to the results in [105]. More importantly, the H = 100 case shows that

the ±1σ band is well separated from the surrogate threshold, indicating that the

gPDC estimates in this case are indeed stable.

From this point onwards in this presentation, we shift our focus to the analysis

of the β-band envelope using H = 100 and H = 195, rather than the analysis of the

β-band signal itself, which used H = 20 and H = 100. In this case, the frequency

band of interest of the envelope signal is from 0 - 10 Hz. In this vein, Figure 4.7 shows

the effect of the thresholding resulting from the surrogate data analysis, for gPDC

flows to the left TC for H = 100 epochs.

The effect of thresholding can be seen by comparing Figure 4.7a to Figure 4.7b.

It can be seen that practically all of the gPDC activity does exceed the threshold

value, again indicating the statistical significance of these estimated gPDC values.

The fact we have presented evidence that the results are significant suggests that
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(a) Unthresholded gPDC flows to Left Temporal Cortex
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(b) Thresholded gPDC flows to Left Temporal Cortex according to the “no-
coupling” null hypothesis

Figure 4.7: Comparison of gPDC (4.7a) and thresholded gPDC (α = 0.05) (4.7b)
flows to the left temporal cortex for the β-band envelope, with parameters H = 100,
model order 5, γ = 1e− 5 and λ = 0.99. Each horizontal band represents the gPDC
between 0-10Hz (oriented from top to bottom) and across time -250ms to 1000ms.
The magnitude of the gPDC is defined by the intensity of the color. The dashed lines
mark the stimulus onset.
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(a) Unthresholded gPDC flows to Left Temporal Cortex
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(b) Thresholded gPDC flows to Left Temporal Cortex according to the “no-coupling”
null hypothesis

Figure 4.8: Comparison of gPDC (4.8a) and thresholded gPDC (α = 0.05) (4.8b)
flows to the left temporal cortex for the β-band envelope, with parameters H = 195,
model order 5, γ = 1e− 5 and λ = 0.99. Each horizontal band represents the gPDC
between 0-10Hz (oriented from top to bottom) and across time -250ms to 1000ms.
The magnitude of the gPDC is defined by the intensity of the color. The dashed lines
mark the stimulus onset.
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Figure 4.9: Threshold for gPDC flows to the left temporal cortex (TC) for H = 100
with respect to the “no coupling” null hypothesis. Each horizontal band represents
the gPDC between 0-10Hz (oriented from top to bottom) and across time -250ms to
1000ms. The magnitude of the gPDC is defined by the intensity of the color. The
dashed lines mark the stimulus onset.

the proposed methodology warrants further investigation of the β-band connectivity

behaviour from a neuroscience perspective.

Figure 4.8 presents the same comparison of the dynamic gPDC flows as Figure 4.7

except in this case, H = 195 epochs. gPDC flow to the left TC mainly originates

from the AC and PFC with minor contributions from the MC, PC, OC and V1. The

contributions from the AC and PFC are also very similar between trials. On the other

hand, the gPDC flow from the MC is different between trial 2 and trial 3. This issue

is further investigated in Figures 4.10 and 4.11. The main similarity with Figure 4.7

is the pronounced gPDC flow to the AC and PFC.

Overall, the results for H = 100 resemble those for H = 195, and consequently

we may infer that the selected values for the filter parameters, λ and γ, are suitable

for this application.

Figure 4.9 shows the threshold values used in Figure 4.7 as a function of time and
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Figure 4.10: Standard deviation of gPDC flows to the left temporal cortex (TC) for
H = 100. The standard deviation is computed from 100 runs of the ASET algorithm
using a different permutation of ERP trials for each run. Each horizontal band
represents the gPDC between 0-10Hz (oriented from top to bottom) and across time
-250ms to 1000ms. The magnitude of the gPDC is defined by the intensity of the
color. The dashed lines mark the stimulus onset.

frequency. The “no coupling” threshold (Figure 4.9) tends to be non-zero only around

the most dominant frequency and very small elsewhere. Since the null hypothesis

produces small thresholds, we see again that the ASET algorithm, with the specific

choice of parameters used, tends to produce statistically significant estimates.

To further evaluate the stability of the gPDC estimates, Figure 4.10 shows the

standard deviation of the dynamic gPDC flow to the left AC over 100 different per-

mutations of epochs. Each permutation is a random selection of H epochs from the

preprocessed ERP data. In the case of H = 100 (Figure 4.10), the standard devia-

tion does not exceed 0.15 with an average value of 0.0547 and is mostly concentrated

around the 5Hz band. The average σ–value of 0.0547 suggests that the results of e.g.

Figure 4.7 are an accurate depiction of the gPDC flow in this case. The average stan-

dard deviation over all samples and all anatomical pairs is 0.0331. Similar or better
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Figure 4.11: Mean and +/- 1 standard deviation of gPDC flows for H = 100 from the
left Auditory Cortex to the left Temporal Cortex at t = 781ms in comparison with
the threshold produced by surrogate analysis with the “no coupling” null hypothesis.

results were observed for other seed locations. There were not enough epochs to pro-

duce the same analysis with H = 195 since only 195 epochs survived the preprocessing

steps for this specific subject.

To further place the thresholds and standard deviation into perspective, Fig-

ure 4.11 shows the mean and standard deviation of the gPDC from the left AC

to the left TC at a single time sample, t = 781ms, over 100 different permutations

of trials compared with the thresholds produced by surrogate analysis with the “no

coupling” null hypothesis. There are similarities to Figure 4.6, (which shows β-band

activity itself, rather than β-band envelope activity) namely, the dispersion of the

gPDC centered around a peak at approximately 5Hz. The dispersion about the mean

is larger for the β-envelope case; this shows that the gPDC coefficients from the β-

envelope signal are noisier than those from the β signal itself. There were not enough

epochs to produce the same analysis with H = 195.

Since the subjects were not engaged in any active tasks during the data collection
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process, the attention of the subjects may not be uniform over the entire experiment.

This lack of attention could be a factor leading to the significant levels of inter-trial

variability as demonstrated in e.g., Figure 4.7. Nevertheless, Figure 4.10 indicates that

the variance over different permutations of epochs is reasonable. Figure 4.11 further

demonstrates that the distribution of gPDC is well separated from the surrogate

analysis threshold. The inter-trial variability diminishes as more epochs are utilized

in the analysis, e.g., Figure 4.8.

Figure 4.12 summarizes the gPDC connectivity between all anatomical regions in

the left (Figures 4.12a and 4.12c) and right hemispheres (Figures 4.12b and 4.12d)

utilizing H = 100 and 195 epochs. A gross connectivity model from Figures 1 and

5 of [29] is replicated in Figure 4.12e for ease of comparison. The dynamic gPDC is

summarized by taking the mean of the gPDC over the frequency range of 0-10Hz and

over time between -127ms to 1000ms.

In the left hemisphere (Figures 4.12a and 4.12c), gPDC flows mostly to the TC and

some to the AC and OC. gPDC flows to the TC are mainly from the AC with minor

contributions from the PFC, PC and OC. In the right hemisphere (Figures 4.12b

and 4.12d), gPDC flows mostly to the AC originating from the PFC, MC, PC and

TC. There are reciprocal gPDC flows between the OC and V1 and from the AC to

the PFC.

Figure 4.13 compares the overall gPDC connectivity patterns for 2 of the subjects

of the subjects studied, fo H = 195. Comparing the gPDC flows in the left hemisphere

(Figures 4.13a and 4.13c), there are strong similarities in the gPDC flows to the TC

from the AC, PFC, PC and OC. Subject 5 shows a few more strong flows from the

TC to the AC as well as from the MC to the AC and TC. Similarly, comparing the
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(c) Left Hemisphere, H = 195
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(e) Rauschecker and Scott, 2009 [29]

Figure 4.12: Summary of connectivity between anatomical regions in each hemisphere.
The summary is computed by taking the mean of the gPDC over the frequency range
of 0-5Hz and over time between -127ms to 1000ms.
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(b) Right Hemisphere, Subject 3
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(c) Left Hemisphere, Subject 5
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(d) Right Hemisphere, Subject 5

Figure 4.13: Summary of connectivity between anatomical regions in each hemisphere
for 2 subjects for H = 195. The summary is computed by taking the mean of the
gPDC over the frequency range of 0-10Hz and over time between -127ms to 1000ms.
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gPDC flows in the right hemisphere (Figures 4.13b and 4.13d), both subjects show

strong flow to the AC from the MC, PC and TC, from AC to TC, and reciprocal

flows between OC and V1. Subject 5 shows additional gPDC flow from the TC to

OC, and AC to MC.

4.6.6 Discussion

It is difficult to directly validate the observed gPDC flows with a model of human

processing of auditory stimuli in the literature since the activity may differ based on

the experimental protocol, the chosen frequency range under study and whether the

envelope of the signal is of greater interest. Nevertheless, [29] has proposed a model

based on nonhuman primates that describes human speech processing which can serve

as a reasonable comparison. The model describes a dual processing scheme that is

divided into “what” and “where” pathways (see Figure 1 in [29]). The simplified

“what” pathway travels from AC through the superior temporal (ST) region and the

ventrolateral prefrontal cortex (VLPFC). The ST region also provides input to the

VLPFC. The simplified “where” pathway travels from AC to the posterior parietal

cortex (PPC) and the dorsolateral prefrontal cortex (DLPFC). The PPC also provides

input to the DLPFC. The visual pathway has a similar organization as well. The

primary visual cortex (V1) provides input to the inferior temporal (IT) region and

the PPC for the “what” and “where” pathways, respectively. The results shown in

Figure 4.12 show similarities in the active regions, namely AC, PFC, PC and TC.

Our results show involvement of the MC as well which is also mentioned in [29] (see

Figure 5 in [29]).

Our results show some agreement with the more expanded connectivity scheme of
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Figure 5 in [29], which is summarized in Figure 4.12e. Comparing the connectivity

for H = 195 in the left hemisphere (Figure 4.12c), gPDC flows mainly to the TC and

shows some agreement with the expected activity from the proposed model. There

is some gPDC flow from the PFC to the TC that is not indicated by the model.

Comparison of the right hemisphere (Figure 4.12b) shows a significant contrast to

the proposed model. Most of the gPDC flows to the AC, which is not suggested by

the model. There is also considerable gPDC flow to the AC from the MC. On the

other hand, there is agreement in gPDC flow from MC to PC and PFC, as well from

AC to TC and PFC. There is not much evidence in our results, utilizing H = 195

trials, of flows to the MC or the PC. Flows from the TC to PFC, MC and PC are

also not present in our results. The flows that are not evidenced by our results may

simply not be observable with the signal under study, namely the β power envelope.

Figure 4.13 offers a guess at 2 potential configurations for auditory-motor com-

munication. The results in the right hemisphere of Subject 3 (Figure 4.13b) indicate

that the AC receives input from the MC directly as well as indirectly via the PFC.

The AC also provides feedback to the PFC. On the other hand, the right hemisphere

of Subject 5 (Figure 4.13d) indicates that the AC and MC have a direct bi-directional

flow of information and the AC receives input from the PFC.

4.7 Conclusion

We have proposed a sparse dynamic causal network estimation algorithm tailored to

the analysis of ERPs. The algorithm computes the dynamic generalized PDC based on

the reflection coefficients estimated by an adaptive multi-trial multi-channel sparse

online lattice filter (ASET). The use of multiple ERP trials, a sparsity constraint
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and a beamforming capability increase the effective SNR of the problem and endows

the algorithm with an improvement in the reflection coefficient MSE of at least one

quarter of an order of magnitude over the classic MQRDLSL algorithm. The accuracy

of the ASET algorithm is evidenced by surrogate data analysis and evaluation of the

standard deviations of the gPDC estimates.

We evaluated the dynamic gPDC activity from ERPs elicited by a standard tone

during an auditory oddball experimental protocol, focusing mainly on the β–band

and its envelope. We compared this dynamic gPDC activity to a current model of

human speech processing [29]. Although the model is not limited to the β–band and

its envelope, the comparison yielded similarities in regions of gPDC activity as well

as some of the directions of gPDC flow. There were also a few differences in the flow

of gPDC that were not postulated by the model, namely the right–sided gPDC flows

to the AC as well as direct gPDC flows from the left PFC to the left TC. The results

also provided a much richer and dynamic view of gPDC activity than exists in the

literature and provides enhanced information as to the temporal sequencing of neural

activity.
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Chapter 5

Future Work

5.1 rTMS Muscle Artifact Reduction

A major limitation of the work presented in Chapter 2 is that the noise reduction al-

gorithm is developed based on data that is already ensemble averaged. The process of

ensemble averaging losses information that could be useful in distinguishing between

a neural EP and the CMAP. More specifically, reducing noise in the EEG produced

by rTMS stimulation could be further improved by utilizing single trial measurements

to develop a method based on second order statistics. In my experience, I observed

that beamforming produces much lower quality results when the covariance matrix is

computed from EEG data that is ensemble averaged versus single trial data.

If the above mentioned improvement could eliminate the CMAP artifact, it would

be interesting to explore how the rTMS stimulus propagates through the brain. The

trace of stimulated neural activity could be compared with neural fiber tracks derived

from diffusion tensor imaging (DTI) data to further investigate which parts of the

brain are being affected leading to more effective treatment parameters.
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5.2 Robust Beamforming

There are many avenues yet to be explored in robust beamforming for ERP applica-

tions. First, a different relaxation method can be applied to the objective function to

achieve a more specific definition of robustness. Second, the anisotropic uncertainty

model could be improved in any number of ways. One idea is to specify the anisotropic

error as the variance of a large number of MRIs with respect to the average ICBM152

template. This would produce a richer and more realistic error model and it could

also be further expanded to make the model age specific.

Third, the forward head model could be specified in a probabilistic fashion. This

is an extension of the idea in the previous paragraph, which models the distribution

of head models only with the mean and variance. The idea can be extended to

better model the distribution of head models. To make use of this model, the RMVB

constraints would have also to be specified using a probabilistic approach. This

formulation would optimize for the average head model error instead of the worst-

case error, producing a less conservative solution. This would be a great improvement

on the template MRI method of analysis.

Building on this idea, it would be interesting to see if it’s feasible to build a gen-

erative model that takes a 3D scan of an individual’s head shape and produces an

equivalent probabilistic forward head model. With recent machine learning advances,

it seems it would be quite possible [111]. These developments would make the analysis

process much simpler since there would be no need for co-registration of the electrode

positions to a template MRI, which can be a significant source of error. In general,

improving the accuracy of the forward head model has the potential of drastically im-

proving the accuracy of brain source localization analysis without increasing the cost.
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Furthermore, without the need of an MRI in most scenarios this would significantly

reduce the cost and complexity of EEG data collection and analysis.

5.3 Dynamic Connectivity Estimation

The ASET algorithm can be further extended by utilizing a group LASSO approach

[86]. Group lasso assumes that a specific set of the variables being estimated are cor-

related, so they should be considered as a group. One option to incorporate this idea

is to assume that interactions between anatomical regions are sparse. Therefore you

would consider all the reflection coefficients from channel i to channel j as a group.

Alternatively, a larger number of finer anatomical regions can be considered where

groups can be selected by the group LASSO approach based on their correlation.

Along this line of thought, sparsity constraints allow for good estimates on high di-

mensional data. The performance of the ASET algorithm has not been benchmarked

against the size of the problem. This could yield an upper bound on the number of

anatomical regions that can be considered accurately and perhaps yield some new

insights on how to further improve the ASET algorithm.

Along these lines it would be ideal to not partition brain regions by anatomical

regions a priori. Instead, brain sources produced through beamforming should be

clustered based on similarities in their neural activity as well as proximity. This

would define a dynamic functional map. The difficulty lies in the number of resulting

clusters and the ability of the ASET algorithm to still achieve good estimates.

The accuracy of the ASET algorithm depends heavily on a good estimate of

forward and backward error covariances. Improving the covariance estimation method

would yield better error covariance estimates and in turn better reflection coefficient
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estimates [112]–[114].

Reflection coefficients or partial directed coherence could be utilized as features

in machine learning applications in neuroscience, especially to differentiate various

neurological conditions, like depression and schizophrenia, or predict improvement in

coma patients. Some approaches include tensor classification [115], tensor compres-

sion and then classification [116] or a kernalized support tensor machine for classifi-

cation [117].

The algorithm presented in Chapter 4 is limited by its linearity — it assumes

that the system under study is linear. A nonlinear approach would be able to model

nonlinear interactions which are very likely to be present in the brain like cross fre-

quency interactions [118] which are likely to have serious effects on neural processing.

This could be achieved using kernel adaptive filtering [119] or Gaussian processes

(GPs) [120]. Gaussian processes specifically allow for estimating a distribution over

continuously-valued functions from discrete data. This is an intriguing idea not only

for improving the ASET algorithm but also for brain source localization and connec-

tivity analysis as the resulting GP model would be a continuously-valued distribution

of activity. Another logical step would be to utilize probabilistic head models, de-

scribed in Section 5.2, in conjunction with GPs describing the neural activity. Finally,

GPs provide a probabilistic framework eliminating the need for parameter tuning as

well ass post-hoc verification of the results (i.e. surrogate analysis) which is very

time-consuming in the case of the ASET algorithm.
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Chapter 6

Conclusion

With the right advanced signal processing algorithms, much information can be ex-

tracted from EP and ERP data. This thesis details developments in three significant

stages of EP and ERP signal processing which are typically sequentially dependent.

Chapter 2 presented a new method for reducing contamination from CMAPs

recorded along with EEG activity during rTMS. The wavelet denoising approach

offers a better alternative to digital filtering according to the RMSE. This develop-

ment improves the visibility of short latency cortical activity as a result of rTMS

which can be further investigated to improve stimulation parameters in rTMS and in

turn improve its effectiveness as a neural stimulation modality.

In the application of brain source localization methods, especially beamforming,

head modelling errors can cause significant performance degradation. The RMVB

developed in Chapter 3 improves beamformer performance relative to the MVB and

its regularized and eigenspace variations in the face of these head modelling errors.

The RMVB specifically optimizes for the worst-case estimate of the uncertainty and

sacrifices a distortionless response for robustness.
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Lastly, Chapter 4 describes the Adaptive Sparse ERP Tracking (ASET) algorithm

for estimating dynamic and causal networks that are involved in processing ERPs.

The algorithm assumes that the brain network utilized in processing ERPs is sparse

and augments its accuracy by utilizing information from multiple trials in its estimate.

It also incorporates a beamformer that extracts the average brain activity over cortical

patches which helps to reduce the dimensionality of the problem and improve the SNR

of the signal. We further applied the ASET algorithm to investigate the dynamics

in auditory processing, specifically resulting from the β-band and its envelope. The

results showed many similarities to a current model of human auditory processing.

It also showed causal connectivity between regions that were not identified by the

model. These can serve as subjects of further investigation.

It is my hope that these contributions will help in further understanding the

human brain.
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