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Abstract

The deformation and failure properties of granular soils largely affect the stability of

upper structures built on or in such soils. Owing to its discrete nature as well as the

randomness of particle shape and inter-particle connectivity, the internal structure

of a granular material usually exhibits a certain level of anisotropy. In addition, the

microstructure of a granular material evolves following certain patterns, which are

influenced by the initial fabric, void ratio, stress level, as well as the stress or defor-

mation history. It has been a major challenge to properly describe the deformation

of anisotropic granular materials in constitutive models especially when the materials

are subjected to cyclic loading. The existing constitutive models usually have limited

capabilities in describing the behaviour of granular materials subjected to repeated

loading with principal stress rotation. How to quantify the microstructure change

and how to consider the changing microstructure in constitutive models have been

two missing links for building a comprehensive model framework.

This research aimed at developing a constitutive model that can properly describe

the deformation of granular soils under repeated multi-directional loading. To achieve

this goal, a systematic study was performed, including a comprehensive experimental

study and a theoretical development of a stress-strain model with proper consideration

of the influence of fabric. The developed model was verified with experimental results
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and then implemented into a finite element code to solve boundary-valued problems.

In the first part of this study, a comprehensive experimental study was carried

out to investigate the behaviours of granular materials under both monotonic and

cyclic loading to investigate the influence of the intermediate principal stress and the

major principal stress direction on soil responses. The results of monotonic loading

tests showed that both the strength and dilatancy of sand decreased notably with an

increase of either the intermediate principal stress or the inclination angle of the major

principal stress direction relative to the major principal fabric direction. The stress

states at failure from the tests suggested that the benchmarked Matsuoka-Nakai and

Lade-Duncan failure criteria are only valid under certain conditions. From the cyclic

loading tests, it was observed that, in addition to the increased intermediate principal

stress, varied cyclic loading direction caused a significant increase in accumulative

volumetric compaction.

To consider the microstructural dependencies of granular materials, a more general

mathematical formulation of stress-dilatancy was developed based on the assumption

of the existence of a critical state fabric surface that is expressed as a function of the

invariants of the fabric tensor. This assumption was also used to establish the fabric

evolution law. The implementation of the resulting stress-dilatancy formulation and

the fabric evolution law in elasto-plasticity theory produced interesting modelling

results consistent with experimental observations with respect to the microstructural

aspects of granular materials. The developed constitutive model was further extended

to cyclic loading within the framework of hypo-plasticity with kinematic hardening.

The model was capable of describing the behaviour of sand subjected cyclic loading

under various conditions including the variation of loading directions.
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Finally, the constitutive model was implemented into a commercial software pack-

age ABAQUS via the subroutine UMAT. The capacity of the proposed stress-strain

model in solving boundary value problems was examined. Six series of elements tests

were designed to examine the proposed model under different initial void ratios, de-

grees of anisotropy, loading directions, and stress paths. Furthermore, a series of

simulations were performed for the settlement of footing on sands with different bed-

ding plane orientations. Results from the simulations were found to be consistent

with experimental observations.
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Notation and abbreviations

a hardening parameter
b intermediate principal stress ratio, b = (σ2 − σ3)/(σ1 − σ3)
e, ecr void ratio and critical state void ratio, respectively
emax, emin maximum and minimum void ratio, respectively
eij deviatoric strain tensor
f yield function
g plastic potential function
nFij unit-norm tensor of deviatoric fabric tensor Fij
nsij unit-norm tensor of deviatoric stress tensor sij
nṡij unit-norm tensor of deviatoric incremental stress tensor ṡij
p mean stress, p = 1

3
I1

q deviatoric stress, q =
√

3J2

qtest deviator stress measure used in test control, qtest = 1
2
(σz − σθ)

q? deviator stress measure used in cyclic conditions, q? = ±
√

3J2

r a Haigh-Westergaard stress invariant of the deviatoric stress tensor,
r =
√

2J2

rF a Haigh-Westergaard stress invariant of the deviatoric fabric tensor,
rF =

√
2JF2

sij deviatoric stress tensor
A measure of the non-coaxility between the deviatoric fabric tensor

and the deviatoric stress tensor, A = nFijn
s
ij

A′ measure of the non-coaxility between the deviatoric fabric tensor
and the deviatoric incremental stress tensor, A′ = nFijn

ṡ
ij

B bulk modulus
D dilatancy equation
Dr relative density, Dr = (emax − e) / (emax − emin)
Fij deviatoric fabric tensor
G shear modulus
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I1, I2, I3 three invariants of stress tensor σij
Iε1 , Iε2 , Iε3 three invariants of strain tensor εij
J1, J2, J3 three invariants of deviatoric stress tensor sij
JF1 , JF2 , JF3 three invariants of deviatoric fabric tensor Fij
Jε1 , Jε2 , Jε3 three invariants of deviatoric strain tensor eij
KMN , λMN , ωMN material constants in the Matsuoka-Nakai’s failure criterion
KLD, λLD, ωLD material constants in the Lade-Duncan’s failure criterion
Kc first joint invariant of the deviatoric stress and fabric tensors
α angle between direction of the major principal stress and the normal

direction of the bedding plane
αdσ angle between direction of the major principal incremental stress and

the normal direction of the bedding plane
β softening parameter

γ? shear strain, γ? = ±
√

3Jε2
γoct octehedral shear strain, γoct = 2

3

√
6Jε2

γzθ torsional shear strain
δ angle between directions of the major principal stress and the major

principal fabric (for cross anisotropic material, α is used instead)
ε1, ε2, ε3 major, intermediate, and minor principal strains, respectively
εij strain tensor
εz, εr, εθ vertical, radial, and circumferential strains, respectively

εq deviatoric strain, εq = ±2
3

√
3Jε2

εv volumetric strain, εv = Iε1
η stress ratio, η = q/p
ηij deviatoric stress ratio tensor, ηij = sij/p
θ a Haigh-Westergaard stress invariant of the deviatoric stress tensor,

also known as the Lode angle, θ = 1
3

sin−1(3
√

3
2

J3

J
3
2
2

), θ ∈ [−π
6
, π

6
]

θσ̇ Lode angle corresponding to the incremental deviatoric stress tensor
ν Possion’s ratio
σ1, σ2, σ3 major, intermediate, and minor principal stresses, respectively
σij stress tensor
σz, σr, σθ vertical, radial, and circumferential stresses, respectively
τzθ torsional shear stress
ϕcv friction angle at critical state, sinϕcv = (σ1 − σ3)/(σ1 + σ3)
Φij fabric tensor
ξ a Haigh-Westergaard stress invariant, the distance from the origin

to the deviatoric plane, ξ = I1√
3

ψ dilatancy angle, sinψ = −dεv/dγoct
Ω measure of initial degree of anisotropy, Ω = 2

3

√
3JF2
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superscript e elastic component
superscript p plastic component
subscript 0 initial value
subscript ref reference value
subscript cv critical state value (same for superscript cv )
overhead dot(·) rate of quantities
overhead bar(-) average of quantities
prefix d infinitesimal increment of quantities
prefix ∆ finite change in quantities
DEM discrete element method
FEM finite element method
HCA hollow cylinder apparatus
LD Lade-Duncan
MC Mohr-Coulomb
MN Matsuoka-Nakai
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Chapter 1

Introduction

1.1 Background

Sand and other granular materials formed by natural sedimentation tend to have

cross-anisotropic structures and possess inherent anisotropy, which is mainly caused

by interparticle connectivity and preferred alignment of the major axes of particles

along the bedding plane perpendicular to gravity. It has long been recognized that

the inherent anisotropy has significant influence on the strength and deformation

properties of sand (Arthur and Menzies, 1972; Meyerhof, 1978; Tatsuoka, 2000; Sid-

diquee et al., 2001). Studies also suggest that even initially isotropic materials can

exhibit anisotropy associated with the applied load. This type of anisotropy is nor-

mally termed as induced anisotropy (Casagrande and Carillo, 1944; Arthur et al.,

1977; Wong and Arthur, 1985; Oda, 1993). It is well-recognized that the directional

dependency of granular material behaviour is induced by both types of anisotropy;

i.e., the inherent and induced anisotropy. During the past few decades, numerous

studies, both experimental and theoretical, have been carried out to investigate the
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anisotropic behaviour of granular materials.

1.2 Experimental study on anisotropy of granular

materials

To investigate the directional dependency of granular material behaviour, extensive

studies have been undertaken using various experimental techniques, including the

plane strain test (Alshibli and Sture, 2000; Oda et al., 1978; Tatsuoka et al., 1990;

Wanatowski and Chu, 2006), the directional shear test (Arthur and Menzies, 1972;

Oda and Konishi, 1974a,b; Wong and Arthur, 1985; Guo, 2008), the conventional

triaxial test (Oda, 1972a, 1981; Tatsuoka and Ishihara, 1974; Ishihara and Okada,

1978; Finge et al., 2006; Hareb and Doanh, 2012), the true triaxial test(Lade and

Duncan, 1975a; Yamada and Ishihara, 1979; Haruyama, 1981; Ochiai and Lade, 1983;

Miura and Toki, 1984a,b; Abelev and Lade, 2004), and hollow cylinder apparatus

tests (Hight et al., 1983; Tatsuoka et al., 1986; Shibuya and Hight, 1987; Symes et al.,

1988; Vaid et al., 1990; Sãyao and Vaid, 1996; Chaudhary et al., 2002; Toyota et al.,

2003; Georgiannou et al., 2008; Cai et al., 2012; Lade et al., 2014a; Kandasami and

Murthy, 2015; Yang et al., 2016).

When describing the effect of inherent anisotropy on soil strength, the inclination

angle α between the major principal stress direction and the normal direction of the

bedding plane is usually used. Guo (2008) developed a modified direct shear box to

investigate the directional dependency of the shear strength of sand. He observed

that with the increase of the inclination angle α, the friction angle decreases first

and reaches its minimum value when α is approximately 65◦. A further increase of
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α induces slight increases of the friction angle. The results by the modified direct

shear box, although interesting, are limited since the inclination angle α is the only

variable in these tests. The limitations of the direct shear box test are due to its lack of

capacity to characterize the stress-strain behaviour and investigate induced anisotropy

of granular materials. Plane strain tests and hollow cylinder apparatus tests have

been used extensively to study the inherent anisotropic deformation and strength

characteristics of granular materials (Tatsuoka et al., 1986; Lam and Tatsuoka, 1988;

Park and Tatsuoka, 1994).

The induced anisotropy originates from particle arrangements induced by applied

stresses or material deformation. It depends on the stress states together with the

loading path, which is usually quantified by the Lode angle θ or the intermediate

principal stress ratio b defined as b = (σ2 − σ3)/(σ1 − σ3). At a given deviator stress

level, these two quantities reflect the relative amplitude of the intermediate principal

stress σ2. The effect of σ2 was largely neglected in early studies, mainly because of

two reasons. Firstly, the widely used Mohr-Coulomb failure criterion is formulated

only regarding the major and the minor principal stresses, σ1 and σ3. Secondly,

most laboratory and in-situ testing methods do not permit independent control of

σ2 (Sayão 1996). However, with the emerging of advanced soil testing techniques,

extensive studies have shown that the influence of σ2 on the mechanical response of

sand can also be significant.

The hollow cylinder apparatus (HCA) can provide independent control of the

three principal stress components, including the b value and the inclination angle α

between the major principal stress direction and the normal direction of the bedding

plane. Therefore, it is widely chosen in studies on the behaviour of granular material
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under generalized stress conditions. Starting from the 1980’s, the hollow cylinder

apparatus has become increasingly popular in investigating the anisotropic behaviour

of soils, with many phenomenological observations on anisotropic material behaviour

being made. However, owing to the influence of stress non-uniformity, tests have

often been performed under the special condition b = sin2α with relatively limited

attention being given to the combined effects of α and b; i.e., the direction of the

major principal stress and the magnitude of the intermediate principal stress.

1.3 Theoretical and numerical modelling of anisotropy

of granular materials

Based on experimental investigation and theoretical studies, different constitutive

model frameworks have been developed for granular materials, including models based

on, for example, non-linear elasticity and hypo-elasticity, the classical theory of plas-

ticity, endochronic theory, and hypo-plasticity (Guo, 2000). State-dependent param-

eters were introduced in the models to quantify the internal structure or material

anisotropy (Wroth and Bassett, 1965; Been and Jefferies, 1985), with the evolution

of the state-dependent parameters being related to the internal structure, which was

characterized by either scalar or tensorial quantities or both (Wan and Guo, 1997;

Manzari and Dafalias, 1997).

It was assumed in early studies that the material anisotropy remains unchanged

during the loading process. Later studies made efforts to better quantify the current

and critical state void ratio by incorporating the effect of stress dilatancy (Wan and

Guo, 1997, 1998; Manzari and Dafalias, 1997; Gajo and Wood, 1999). However, the
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proper description and consideration of both inherent and induced anisotropy are still

missing.

Various methods were used to investigate the internal structure and anisotropy of

granular materials on the micromechanics level, including the use of advanced equip-

ment such as X-ray computer tomopraphy (Bésuelle et al., 2006; Takemura et al.,

2007), special laboratory tests such as photo-elastic tests dealing with granular as-

semblies (Oda and Konishi, 1974a,b; Allersma, 1982; Oda et al., 1985) and tests

on transparent soils (Iskander et al., 1994; Iskander, 1997; Allersma, 1998; Sadek

et al., 2002), as well as numerical simulations using the discrete element methods

(DEM) (Cundall and Strack, 1979). With the enormous progress of computer ca-

pacity, DEM simulation has become a powerful numerical approach to explore the

micromechanics feature of granular materials. Recent DEM studies simulated the spa-

tial arrangement of particles during loading and unloading processes (Antony et al.,

2004; Maeda et al., 2006; Suzuki and Kuhn, 2013; Sazzad, 2014). Given the results

of the experiments and numerical simulations, efforts have been made to develop

evolution laws for the fabric structure, which is usually expressed by a second-order

tensor.

With a sophisticated fabric evolution law that can properly describe fabric change

under generalized stress conditions, it is possible to develop a constitutive model

in which the material anisotropy is quantified by fabric tensor. However, a well-

acknowledged fabric evolution law is yet to be developed. Nevertheless, the existing

studies have provided methods of incorporating such a fabric tensor in a constitutive

model framework.

5



Ph.D. Thesis - Xing Li McMaster - Civil Engineering

1.4 Objectives of the research

The primary objective of this thesis was to develop a constitutive model that could

properly describe the deformation of granular soils under multi-directional loading.

The modelling results were expected to help understand the behaviour of granular

soils under generalized stress conditions, in particular for anisotropic materials in

which the microstructure plays a significant role in the mechanical behaviour of the

material.

(a) Backfill of integral abutment bridge

(b) Offshore wind power plant (c) Machine foundation

Figure 1.1: Examples of multi-directional loading problem
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On the practical side, this study is to provide an approach for the analysis of

engineering problems that involve cyclic or vibratory loading applied from multiple

directions, such as an approach embankment of integral abutment bridge (IAB) (Fig-

ure 1.1a) where the granular backfill is subject to cyclic loading from both vertical

(traffic loads) and horizontal directions (loading induced by cyclic thermal expansion

of the bridge structure). Similar circumstances can be found in coastal structures, the

foundation of offshore wind power plants (Figure 1.1b), machine foundations (Figure

1.1c), compaction, etc.

This study mainly focused on the following aspects:

(1) Experimental study of granular material behaviour under generalized stress con-

ditions.

A comprehensive experimental study was carried out to investigate the effects of

loading direction and intermediate principal stress ratio on the behaviour of sand

subjected to both monotonic and cyclic loading. Three series of monotonic loading

tests and one series of cyclic loading tests were performed. The test results provided

benchmark and calibration for the development of constitutive models.

(2) Mathematical description of material anisotropy and development of a constitutive

model.

It is not new to use second-order fabric tensors to describe the microstructure of

granular materials. However, how these tensorial measures evolve during deformation

processes and how they are considered in constitutive models had been two missing

links for incorporating the concept of fabric tensor into a stress-strain model. Based

on the concept of ultimate fabric state, a fabric evolution law was developed and

incorporated into the constitutive model framework through proper methods.
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(3) Numerical implementation of the developed stress-strain model in FEM for boundary-

valued problems.

The incorporation of a fabric tensor in a constitutive model has brought challenges

to the implementation of the model into FEM analysis, especially under generalized

stress conditions. An effort was made to develop a proper algorithm to incorporate

the constitutive framework in the FEM software package ABAQUS to solve boundary-

valued problems.

1.5 Outline

An outline of the rest of the thesis is as follows.

Chapter 2 presents a comprehensive literature review, which mainly focuses on

areas regarding experimental studies and constitutive models of granular soils. Based

on the literature review, the need and significance of the work in this thesis are

discussed.

Chapter 3 presents the details of the experimental study as well as the analyses of

the experimental results. The objective of the experimental study was to investigate

the influence of the intermediate principal stress and the major principal stress di-

rection relative to the principal direction of fabric on the behaviour of an inherently

anisotropic granular material.

Chapter 4 develops a constitutive model for monotonic loading, in which a fabric

tensor is used to describe the anisotropic behaviour of granular materials under gen-

eralized stress conditions. An evolution law of fabric tensor is proposed based on the

concept of the ultimate fabric surface, and a modified stress-dilatancy formulation is
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proposed based on the relation between the fabric and the stress states. Then a con-

stitutive model is developed by incorporating the proposed stress-dilatancy equation

into the theory of plasticity as a flow rule.

Chapter 5 extends the constitutive model to account for cyclic loading conditions

by adopting a kinematic hardening law. Seven loading modes are designed to verify

the extended stress-strain model, all starting from isotropic consolidation condition

with constant confining pressure. Four of the loading modes simulate one-way loading

conditions, and the other three represent two-way loading conditions.

The proposed constitutive model is implemented in Chapter 6 into the commercial

software ABAQUS via a user-defined subroutine (UMAT) to solve boundary-value

problems. Six series of element tests are designed to examine the proposed model

under different initial void ratios, degrees of anisotropy, loading directions, and stress

paths. Furthermore, a series of simulations are performed to determine the settle-

ment induced by uniformly applied stresses on sands with different bedding plane

orientations.

Finally, Chapter 7 gives the conclusions as well as suggestions for the future work.
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Chapter 2

Literature Review

This chapter briefly reviews the basic behaviour, continuum modelling as well as the

microstructure consideration of granular materials.

2.1 Basic behaviour of granular materials

The most important mechanical properties of a granular material are its shear strength

and deformation characteristics. These two properties are affected by many factors,

including void ratio, internal structure (or fabric), particle shape, stress state, stress

level, loading directions and loading paths, etc.. This section summarizes the basic

mechanical characteristics of cohesionless granular materials such as sand.

2.1.1 Void ratio and stress level

For granular materials, the basic contributions to strength are the frictional resis-

tance between particles in contact and the internal kinematic constraints of particles
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associated with particle rearrangement, interlocking and fabric change. The magni-

tude of these contributions depends on Terzaghi’s effective stress, the volume change

tendencies, and the internal structure. The tendency of volume change is usually

controlled by density or the void ratio of the material. For a loose sand with a high

void ratio, voids in a soil skeleton tend to reduce under shear, which is termed as the

shear-induced contraction. On the other hand, for a dense sand with a relatively small

void ratio, shear tends to cause an increase in volume or dilation. In addition to void

ratio, the applied confinement level also has a significant influence on shear-induced

volume change of granular materials.

(a) stress-strain curves (b) volumetric-shear strain curves

Figure 2.1: Typical responses of granular materials under drained triaxial compression
(Pietruszczak, 2010)

Figure 2.1 illustrates the ideal responses of granular materials (both dense and

loose) when sheared under drained conditions at the same confining stress level. For

a loose specimen with a high void ratio, the deviator stress increases monotonically

with shear strain, accompanied by continuous volume contraction. The specimen

eventually reaches the critical state at which no further change occurs in stresses or

volumetric strain as shearing continues. For a dense specimen of the same material at
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a low void ratio, shear-induced contraction initially takes place as the deviator stress

increases. With an increase of shear strain, dilation develops, and a distinct peak

deviator stress is observed on the stress-strain curve. Continued shearing induces a

reduction in the shear resistance, which is termed as strain-softening. A critical state

is assumed to be reached at large shear strains.

(a) stress-strain curves (b) volumetric-shear strain curves

Figure 2.2: Triaxial tests on Karlsruhe sand at p′0 = 100 kPa and different initial
densities (Kolymbas and Wu, 1990)

Figure 2.2 shows the experimental triaxial test results of Karlsruhe sand with

different initial void ratios under the same confining pressure (Kolymbas and Wu,

1990). Dr is the relative density, which is related to the void ratio e by Dr =

(emax − e)/(emax − emin). A specimen with a larger value of Dr means it is denser

and has a smaller void ratio.

In addition to density, the frictional resistance of granular materials is also af-

fected by the mean effective stress level. Figures 2.3 and 2.4 show the drained triaxial

compression test results of loose and dense specimens of Karlsruhe sand at different

12
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(a) stress-strain curves (b) normalized stress-strain curves

(c) volumetric-shear strain curves

Figure 2.3: Triaxial tests on loose Karlsruhe sand at different confining pressures
(Dr = 16%) (Kolymbas and Wu, 1990)

confining pressure levels (Kolymbas and Wu, 1990). With an increase of the con-

fining pressure, the maximum deviatoric stress increases, as shown in Figure 2.3a.

However, the peak stress ratio, or the mobilized friction angle, tends to decrease as

the confining pressure increases. In other words, specimens of the same density have
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higher friction angle under lower confining pressure. At the same time, shear-induced

volume contraction increases with the confining pressure as shown in Figures 2.3b

and 2.3c. On the other hand, for dense sand specimens, significant post-peak strain

softening may take place at low confining pressure, while monotonic hardening is ob-

served at high confining pressures; as shown in Figures 2.4a and 2.5a. The dilatancy

characteristics of dense sand are also affected by the confining pressure. The higher

the confining pressure, the lower the tendency of dilation. In other words, increased

confining pressure tends to suppress dilation of dense sand, as shown in Figures 2.4b

and 2.5b.

(a) normalized stress-strain curves (b) volumetric-shear strain curves

Figure 2.4: Triaxial tests on dense Karlsruhe sand at different confining pressures
(Dr = 98%) (Kolymbas and Wu, 1990)

The behaviour of sand under drained conditions provides implications on the

undrained behaviour of the same material when it is fully saturated. The tendency

to compact under drained conditions leads to a buildup of the excess pore pressure

for undrained conditions. The trend of dilation results in the generation of negative
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(a) normalized stress-strain curves (b) volumetric-shear strain curves

Figure 2.5: Triaxial tests on dense Sacramento river sand at different confining pres-
sures (Dr = 100%) (Lade, 1977)

excess pore pressure owing to the constraint of constant volume enforced by the

undrained condition. Figure 2.6 illustrates the idealized effective stress trajectories of

saturated sand with different densities under the undrained constraint. For a dense

specimen, at the very beginning of shearing, the tendency of compaction causes a

decrease in the effective stress due to a buildup of the excess pore pressure, so the

stress trajectory moves left slightly as the deviator stress increases. With an increase

of deviator stress (or shear strain), the tendency of dilation (as shown in Figure 2.1)

triggers a decrease in excess pore pressure and an increase of the mean effective stress.

As a result, the effective stress trajectory changes direction and gradually approaches

the ultimate state, as shown in Figure 2.6. For a very loose specimen, shearing

induces a significant generation of pore pressure with the effective stress decreasing

continuously, owing to the high tendency of shear-induced volume contraction. As the

mean effective stress decreases with shear strain, the mobilized deviator stress first
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increases to its peak, followed by a continuous decline. At a certain point, the stability

is lost with the deviator stress decreasing intensely with continuing deformation. In

the end, both the effective mean stress and the deviator stress reduce to near-zero,

accompanied by the continuous flow of the material, which is termed as steady state.

During this process, the mobilized effective friction angle monotonically increases.

The trajectories for loose/medium dense samples lie between the two extreme cases.

(a) q-p curves (b) stress-strain curves

Figure 2.6: Typical effective stress trajectories for saturated sand specimens under
undrained constraint (Pietruszczak, 2010)

2.1.2 Concept of the critical state

The critical state soil mechanics was originally developed by the Cambridge soil me-

chanics group in the late 1950’s and early 1960’s, beginning with Roscoe et al. (1958),

to emphasize the effect of volume change and effective stresses when characterizing

the soil behaviour. The critical state is defined as a state at which the material under-

goes continuous deformation without further change in stress and volume (Schofield

and Wroth, 1968). The basic concept is that, under sustained shearing at failure,

16



Ph.D. Thesis - Xing Li McMaster - Civil Engineering

there is a unique combination of void ratio e, effective mean pressure p′ and deviator

stress q. The friction angle at critical state is independent of stress history and the

original structure. The experimental studies of Desrues et al. (1985) confirmed that

the achievement of a critical state is associated with a unique critical void ratio, which

is a function of the mean effective stress only.

The critical state concept has been used in developing stress-strain models for

different types of soils. The first model based on this concept is the well-known

Cam-Clay model for clay. To consider the effect of void ratio, adopting the concept

of critical state void ratio, Wroth and Bassett (1965) used the ’distance’ between

the current state on the e − logσ space and the imaginary point at critical state as

the control variable of soil deformation. Been and Jefferies (1985) suggested a state

parameter ψ = e − ecr, with e and ecr being the current void ratio and imaginary

critical state void ratio, respectively.

While the critical state theory is well established in the geotechnical research

community, it ignores the possible influences of fabric and stress path. Hardin (1989)

found that, at very low confining pressures, the void ratio at large deformation is

not unique given different initial densities. Through undrained tests, Yoshimine and

Ishihara (1998) also found that the steady state is fabric dependent. Studies on the

microstructure of soil found without exception that an intense fabric formation is

present at critical state (Oda, 1972a,b; Masson and Martinez, 2001; Li and Li, 2009).

Such fabric may be described in different ways, but invariably involving the preferred

orientations of some tensor-valued quantities (Li and Dafalias, 2012). As such, a

missing link exists between the classical critical state theory and a generalized model

framework that includes the notion of fabric and its evolution. More discussion about
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fabric consideration is presented in the section on the microstructure of soil.

2.1.3 Loading direction and stress path dependency

Chapter 1 pointed out that the mechanical responses of a granular soil are strongly

influenced by its microstructure, the loading direction, and stress paths. Systematic

studies on the effect of inherent anisotropy on the behaviour of granular materials can

be dated back to Arthur (Arthur and Menzies, 1972; Arthur et al., 1977; Wong and

Arthur, 1985), Oda (Oda, 1972a,b; Oda et al., 1978; Oda and Koishikawa, 1979) and

Tatsuoka (Tatsuoka et al., 1986; Lam and Tatsuoka, 1988; Tatsuoka et al., 1990; Park

and Tatsuoka, 1994). Herein some important observations from the experimental

studies are reviewed.

Figure 2.7: Peak strength variation of different sands under different principal stress
directions from plane strain tests (Park and Tatsuoka, 1994)

The strength of cohesionless soil is traditionally quantified through the friction

angle ϕ, which is defined as sinϕ = (σ1−σ3)/(σ1 +σ3). The friction angle ϕ, however,

does not consider the influence of σ2 or the direction of σ1 by definition. Figure 2.7

illustrates the plane strain test results for three types of sand at different principal
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stress directions (Park and Tatsuoka, 1994). Being prepared by using air or water

pluviation method, the samples have a cross-anisotropic structure with the direction

perpendicular to the bedding plane being the axis of axisymmetry and the material

being isotropic within the bedding plane. The direction of major principal stress σ1

is characterized by angle δ, which is defined as the angle between the major principal

stress direction and the normal of the bedding plane, as shown in Figure 2.7. With

an increase of δ starting from zero, the peak friction angle tends to decrease. The

maximum peak strength is observed at δ = 0 when σ1 is applied perpendicular to the

bedding plane, while the minimum strength takes place in the range of δ = 60◦−90◦.

Similar observations are found from results of plane strain tests by Tatsuoka et al.

(1990), modified direct shear tests by Guo (2008) and HCA tests by Tatsuoka et al.

(1986), Lam and Tatsuoka (1988) among others.

Studies of Tatsuoka et al. (1986) and Lam and Tatsuoka (1988) find that the

friction angle of sand is influenced not only by the direction of the major principal

stress σ1 but also the intermediate principal stress σ2. Figure 2.8 shows the failure

envelope obtained from a series of true triaxial tests in Kirkgard and Lade (1993)

corresponding to different Lode angles. Herein the Lode angle, which is defined as

θ = 1
3

sin−1(3
√

3
2

J3

J
3
2
2

), reflects the magnitude of σ2 relative to the major and the minor

principal stresses. The same pattern in the variation of peak strength has been

consistently reported thereafter (Lam and Tatsuoka, 1988; Callisto and Calabresi,

1998; Leroueil and Hight, 2003), as shown in Figure 2.9.

In recent years, experimental studies using HCA have further proven that both

the loading direction relative to the bedding plane and stress path have a significant

influence on the peak strength of granular materials. In general, the loading direction
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Figure 2.8: Failure stresses of natural San Franciso Bay mud (Kirkgard and Lade,
1993)

(a) Trachyte rock (Mogi,
1971)

(b) grundite clay (Lade and
Musante, 1978)

(c) Monterey sand (Reddy
and Saxena, 1993)

Figure 2.9: Failure stresses compared with simulations (Liu and Indraratna, 2010)

is characterized by α that is the angle between σ1 and the normal of the bedding

plane with the stress path being characterized either by the Lode angle θ or the

intermediate principal stress ratio b, which is defined as b = σ2−σ3
σ1−σ3 .

Using HCA, Symes et al. (1984, 1988) conducted both undrained and drained tests

on Ham River sand to investigate the effect of the initial anisotropy and principal

stress rotation during shear. Miura et al. (1986) studied the anisotropic behaviour
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of dense Toyoura sand using HCA. These studies both found a strong dependence of

failure strength on the principal stress direction. Extensive studies using HCA were

carried out thereafter, focusing on both the effects of loading direction and stress

path (Hight et al., 1983; Tatsuoka et al., 1986; Shibuya and Hight, 1987; Vaid et al.,

1990; Sãyao and Vaid, 1996; Chaudhary et al., 2002; Toyota et al., 2003; Georgiannou

et al., 2008). In what follows, some recent HCA experimental studies are reviewed.

Figure 2.10: Stress-strain curves under different loading directions as well as stress
paths with b = sin2α (Cai et al., 2012)

Figure 2.10 shows the results from Cai et al. (2012). In this study, the two

parameters, α and b, are not independently controlled. Instead, all the tests are

conducted under the condition b = sin2α, which is a very common constraint in

experimental studies using the HCA. More discussion regarding this constraint is

presented in Chapter 3. The results show that the shear resistance decreases with an

increase of α and b under the coupled effects of α and b.

Kandasami and Murthy (2015) investigated the influence of loading direction and
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stress path with α and b being controlled independently. Their test results are sum-

marized in Figure 2.11. According to Figure 2.11a, for a given α, the deviator stress

at failure tends to decline when the value of b increases. On the other hand, when the

intermediate principal stress factor b is fixed, the variation of α alone has a signifi-

cant influence on the peak friction angle. As shown in Figure 2.11b, the peak friction

angle generally decreases as α increases, with the minimum friction angle appearing

at α = 60◦ − 75◦. The same observations were also made by Miura et al. (1986).

(a) Variation of failure stress obtained
along different loading directions and
loading paths

(b) Variation of peak friction angle with
loading direcition α

Figure 2.11: Failure stresses on π-plane and variation of peak friction angle (p′ =
300kPa) (Kandasami and Murthy, 2015)

Yang et al. (2016) investigated the influence of the major principal stress direction

and the intermediate stress, which is quantified by b, on the strength of sand. In Figure

2.12a, the strength of soil is characterized by the peak stress ratio, which is defined

as η = q
p

=
√

3J2
I1/3

. The peak stress ratio tends to decrease with an increase of α. For a

select value of α, the peak stress ratio decreases with an increase of b. These results

show that both inherent anisotropy and the intermediate principal stress influence the

shear strength of sand. The test results in Figure 2.12a are alternatively presented
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in Figure 2.12b by using the peak friction angle ϕp as the strength measure. The

peak friction angle decreases with an increase of α. However, with an increase of the

intermediate stress factor b, the peak friction angle increases first and decreases after

b = 0.5.

(a) Variation of failure stress ratio under
different loading directions

(b) Variation of peak friction angle under
different loading directions

Figure 2.12: Variation of stress state at failure with principal stress direction (Yang
et al., 2016)

Some advanced failure criteria have incorporated the effect of σ2, such as the

Lade-Duncan criterion (Lade and Duncan, 1975b; Lade, 1977) with I3
1/I3 = constant

and the Matsuoka-Nakai criterion (Matsuoka, 1974; Matsuoka and Nakai, 1974, 1977)

with I1I2/I3 = constant. While constitutive models based on these failure criteria

can account for the effect of σ2, the effects of material’s inherent anisotropy are not

considered.

Kandasami and Murthy (2015) and Yang et al. (2016) examined the effects of

major principal stress direction and intermediate principal stress on the deformation

properties of sand. As shown in Figure 2.13 and Figure 2.14, the tendency of dilation

decreases with an increase of either α or b. Based on these experimental results, it
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can be concluded that a comprehensive modelling framework needs to be capable of

considering the effects of both factors.

Figure 2.13: Stress-dilatancy relationship under different major principal stress di-
rections (Kandasami and Murthy, 2015)

2.2 Continuum modelling of cohesionless soils

A classical elastoplasticity model has the following basic components: a failure crite-

rion characterizing the strength of the materials; a yield function and the associated

hardening law defining the domain of elastic deformation; and a flow rule to char-

acterize the direction of plastic flow. These aspects of constitutive modelling are

discussed in this section.

24



Ph.D. Thesis - Xing Li McMaster - Civil Engineering

Figure 2.14: Stress-strain behaviour at α = 0◦ with different b (Yang et al., 2016)

2.2.1 Yield criteria and hardening rules

A yield surface defines the boundary of the current elastic region in stress space. A

stress state that lies inside the yield surface is an elastic state, while a stress state that

lies on the surface is referred to as a plastic state. For a strain-hardening material

at a plastic state, if the stress state tends to move out of the yield surface, loading

takes place. On the other hand, if the stress state tends to move into the yield sur-

face, it is an unloading progress. Another possibility is that the stress state moves

along the current yield surface, and this process is referred to as a neutral loading.

Both unloading and neutral loading are associated with elastic deformation, while the

loading progress at plastic state is associated with elastic-plastic deformation. For a

hardening material, when describing a yield surface by a yield function f , the loading

criteria, which are shown schematically in Figure 2.15, are expressed mathematically

as follows:

f < 0: elastic state
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f = 0 and ∂f
∂σij

dσij > 0 : loading

f = 0 and ∂f
∂σij

dσij = 0 : neutral loading

f = 0 and ∂f
∂σij

dσij < 0 : unloading

(a) elastic-perfectly plastic material (b) isotropic-hardening material

Figure 2.15: Loading criteria for elastic-perfectly plastic material and isotropic-
hardening material

The hardening rule is a major component in the hardening theory of plasticity. It

is referred to as the rule that governs the evolution of yield surface. Depending on the

mechanism of material deformation, different hardening rules have been developed,

including isotropic hardening rules, kinematic hardening rules, and mixed hardening

rules. Figure 2.15b shows the simplest, and the most frequently used isotropic hard-

ening rule in geomechanics. The loading function, which defines the current yield

surface, is written as

f(σij, κ) = f̄(σij)− g(κ) = 0 (2.1)

where κ is the hardening parameter that depends on the plastic deformation and
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g(κ) is a monotonically increasing function of κ. Depending on the type of plastic

deformation that is used to quantify κ, the isotropic hardening rules can further be

divided into the volumetric hardening rule, the deviatoric hardening rule, and the

combined volumetric-deviatoric hardening rule (Pietruszczak, 2010).

Depending on the material’s sensitivity to hydrostatic pressure, isotropic materials

can be divided into two categories, the hydrostatic-pressure-independent materials,

and the hydrostatic-pressure-dependent materials. In general, metallic materials fall

into the first category, referred to as frictionless materials, while geo-materials usually

fall into the second category and are called frictional materials. Consequently, two

types of yield functions are used for these materials owing to the different considera-

tions for hydrostatic pressure.

For hydrostatic-pressure-independent metallic materials, the most important yield

functions are the Tresca function (Tresca, 1864) and the von Mises function (Mises,

1913). The Tresca function defines the yield surface so that the maximum shear stress

is restrained by a certain value, see Equation (2.2). On the other hand, the von Mises

function defines the surface by using the second deviatoric stress invariant J2 instead

of the maximum shear stress, see Equation (2.3).

f = |τmax| − k = max(
|σ1 − σ2|

2
,
|σ1 − σ3|

2
,
|σ2 − σ3|

2
)− k = 0 (2.2)

f =
√
J2 − k = 0 (2.3)

Using stress invariants, the Tresca and von Mises formulations are both independent

of the first stress invariant I1 (or the mean stress, p = I1/3).

For frictional materials (particularly granular materials), however, the influence of
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the mean stress cannot be neglected. Therefore, yield functions for frictional materials

should contain term I1, such as the Mohr-Coulomb function (Mohr, 1900) and the

Drucker-Prager function (Drucker and Prager, 1952). The Drucker-Prager function is

simply a modification of von Mises function, with the influence of hydrostatic pressure

included. Mathematically, the Drucker-Prager function is expressed as

f(I1, J2) = αI1 +
√
J2 − k = 0 (2.4)

where α and k are material constants. When α = 0, Equation (2.4) is reduced to

Equation (2.3), thus the Drucker-Prager criterion is also called extended von Mises

criterion.

In 1900, Mohr presented a theory for rupture in materials that a material fails

through a critical combination of normal and shear stresses. The functional rela-

tionship between the shear stress and normal stress on the failure plane is expressed

as

τf = f(σ) (2.5)

For most soil, it is sufficient to approximate the relationship between the shear and

normal stresses on the failure plane by a linear function, which leads to the Coulomb

failure criterion (Coulomb, 1773):

τf = c+ σ tanϕ0 (2.6)

where c is cohesion, and ϕ0 is the internal friction angle of the material. For fric-

tionless materials, ϕ0 becomes zero and Equation (2.6) is reduced to Equation (2.2).
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Therefore, the Coulomb function can be regarded as a generalization of Tresca func-

tion considering the normal stress on the failure plane.

When the stress states at failure are concerned, by assuming shear failure takes

place when the stress Mohr circle is tangent to the line representing the Coulomb

failure criterion, one obtaines the Mohr-Coulomb function in the form of

1

2
(σ1 − σ3) cosϕ0 = c+

[
1

2
(σ1 + σ3)− 1

2
(σ1 − σ3) sinϕ0

]
tanϕ0 (2.7)

The Haigh-Westergaard invariants (ξ, r and θ) are normally used to standardize

the expression of yield functions in terms of stress invariants. These invariants are

defined as

ξ =
I1√

3

r =
√

2J2

θ =
1

3
sin−1(

3
√

3

2

J3

J
3
2
2

), θ ∈ [−π
6
,
π

6
]

(2.8)

where ξ is the distance from the origin to the current deviatoric plane, r is distance

from current stress state point to the hydrostatic axis on the deviatoric plane, and

θ is the Lode angle. (ξ, r and θ) can uniquely define the stress state and represent

the relative position of current stress point in the principal stress space. Note that

by the current definition, the Lode angle is π/6 for the classical triaxial compression

condition (σ1 > σ2 = σ3), and is −π/6 under triaxial extension condition (σ1 = σ2 >

σ3). The Lode angle is related to the intermediate principal stress coefficient b by

b = 1
2
−
√

3
2

tan θ.

One of the advantages of using the Haigh-Westergaard coordinates is that all the
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invariants have clear physical meanings. In the circular yield surfaces of von Mises

function or Drucker-Prager function, the yield function is independent of the Lode

angle and takes a simple form as

r = f(ξ)

The Mohr-Coulomb equation can be alternatively expressed in the form of

r(ξ, θ) =

√
2ξ sinϕ0√

3 cos θ − sin θ sinϕ0

(2.9)

or

f(ξ, r, θ) = ξsinϕ0 −
r√
2

(
√

3cosθ − sinθsinϕ0) = 0 (2.10)

Although the above equation includes the Lode angle θ, the Mohr-Coulomb equa-

tion isn’t designed for generalized stress conditions. The experimental basis of the

Mohr-Coulomb equation can only hold under triaxial compression (θ = 30◦) and tri-

axial extension (θ = −30◦) conditions. A linear segment is assumed for stress paths

that lie between θ = 30◦ and θ = −30◦ and results in a hexagonal yield surface.

Such a yield surface contains corners, which may cause numerical difficulty in its ap-

plication to plasticity theory (Chen et al., 2005). On the other hand, although the

circular yield surface of the Druck-Prager function on the π−plane is smooth, it fails

to properly address the effect of the intermediate principal stress σ2, which has been

shown to be significant (Tatsuoka et al., 1986; Lam and Tatsuoka, 1988; Kirkgard

and Lade, 1993; Lam and Tatsuoka, 1988; Callisto and Calabresi, 1998; Leroueil and

Hight, 2003; Kandasami and Murthy, 2015; Yang et al., 2016).
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Two well-established yield functions that satisfy the requirements of both smooth-

ness and consider the effect of the intermediate principal stress σ2 are the Matsuoka-

Nakai criterion (Matsuoka, 1974; Matsuoka and Nakai, 1974, 1977) and Lade-Duncan

criterion (Lade and Duncan, 1975b; Lade, 1977). Based on the concept of spatially

mobilized plane (SMP), the Matsuoka-Nakai criterion assumes that failure takes place

on the SMP plane with the relation between the shear stress τSMP and the normal

stress σSMP being described by the Coulomb relation. When using the stress invari-

ants (I1, I2, I3), the Matsuoka-Nakai criterion is normally expressed as

I1I2 −KMNI3 = 0 (2.11)

where KMN is a material constant, which can be related to the triaxial compression

friction angle ϕ0 as

KMN =
9− sin2ϕ0

1− sin2ϕ0

= 9 + 8tan2ϕ0 (2.12)

The Lade-Duncan criterion, which is purely based on laboratory test results, was

originally expressed as

I3
1 −KLDI3 = 0 (2.13)

in which the material constant KLD can be related to the triaxial compression friction

angle ϕ0 as

KLD =
(3− sinϕ0)3

(1 + sinϕ0)(1− sinϕ0)2
(2.14)
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Using the Haigh-Westergaard invariants, a unique expression for both Matsuoka-

Nakai and Lade-Duncan criteria can be writen as

r =
ξ

λ
[sin(

π − sin−1(ωsin3θ)

3
)]−1 (2.15)

The expressions of λ and ω are listed in Table 2.1.

Table 2.1: Equations for λ and ω

Yield criterion λ ω

Matsuoka-Nakai λMN =
√

2
√

KMN−3
KMN−9

ωMN = KMN

KMN−3

√
KMN−9
KMN−3

Lade-Duncan λLD =
√

2KLD

KLD−27
ωLD =

√
KLD−27
KLD

Figure 2.16 illustrates the Matsuoka-Nakai, Lade-Duncan and Mohr-Coulomb sur-

faces on the π−plane. The three criteria have the same yield stress under the triaxial

compression condition.

Figure 2.16: Comparison of yield surfaces on the π-plane
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2.2.2 Dilatancy and flow rule

Dilatancy is a specific feature of granular material deformation. Owing to the discrete

nature of granular materials, individual particles tend to ride over one another when

sheared, which in turn induces volume change of the material. In the framework of

classical plasticity theory, dilatancy can be described through a flow rule, which is

defined by a plastic potential function in such a way that the outward normal to

the plastic potential surface specifies the direction of plastic flow. When the plas-

tic potential function is identical with the yield function, the flow rule is called an

associated flow rule. Otherwise, it is referred to as a non-associate flow rule.

In the early work of Taylor (1948), the dilatancy in simple shear was quantified

as D = −dεn/dγ, with dεn and dγ being the normal and shear strain increments on

the shear plane respectively. Under triaxial stress conditions, Rowe (1962) quantified

dilatancy of granular materials by the ratio of plastic volumetric strain increment to

plastic deviatoric strain increment in the triaxial space D = −dεpv/dγ?p or the angle

of dilation ψm defined as sinψm = D. The second law of thermodynamics shows

that the stress ratio η and the angle of dilation ψm are interrelated at a fundamen-

tal level (Vardoulakis and Sulem, 1995). Based on the hypothesis that there is a

constant effective friction coefficient, Taylor (1948) proposed a over-simplified rela-

tionship η+D = const. for simple shear conditions. In a more rigious work based on

the hypothesis of minimum energy ratio, under triaxial stress conditions Rowe (1962)

correlated a dilatancy factor D0 and a stress ratio σ1/σ3 via the interparticle friction
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angle ϕµ as

σ1

σ3

= KD0

K = tan2(45◦ + ϕµ)

D0 = 1− dεp3
dεp1

(2.16)

where dεp1 is the increment of axial plastic strain, and σ1 and σ3 are the major and

minor principal stresses, respectively. It should be noted that D0 is different from

D = sinψm. Rowe’s dilatancy formulation can be alternatively expressed as

sinψm =
sinϕm − sinϕµ
1− sinϕmsinϕµ

(2.17)

in which ϕm and ϕµ are the mobilized friction angle and dilatancy angle, respectively.

Even though having different functional forms, the equations proposed by Taylor

(1948) and Rowe (1962) both make the dilatancy D = sinψm a function of stress

ratio and some intrinsic material properties, such that

D = D(η, C) (2.18)

where C is a set of intrinsic material constants. Dilatancy formulations of this type

can also be derived from the Cam-clay model as D = M − η and from the Modified

Cam-Clay model as D = (M2 − η2)/2η, where M is a material constant defined

as the stress ratio η at the critical state; i.e., M = ηcr. In the different dilatancy

formulations, D = 0 always holds true at the critical state.
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For granular soils, however, experimental evidences show that dilatancy is signif-

icantly affected by density (Li and Dafalias, 2000) and stress level (Kolymbas and

Wu, 1990), as shown in Figure 2.1b and Figure 2.2b. Based on experimental studies,

Manzari and Dafalias (1997) showed that D+η increases as the shear strain increases.

Wan and Guo (1998) assumed that the effect of density and stress level on dila-

tancy can be described by (e/ecr)
α, where α is a material constant and the critical

void ratio ecr is a function of the mean effective stress. They proposed a modifed

Rowe’s dilatancy formulation

sinψm =
sinϕm − sinϕf

1− sinϕf sinϕcv
(2.19)

in which ϕf is a characteristic friction angle expressed as

sinϕf = (e/ecr)
αsinϕcv

Equation (2.19) was modified by Wan and Guo (2004, 2014) to account for the effect

of microstructure by assuming

sinϕf =
αf + γp

α0 + γp
(
e

ecr
)nf sinϕcv (2.20)

in which α0 and nf are material constants, and the fabric dependency is provided

through αf that depends on the current stress and fabric states.

It is now believed that, the basic requirements for a dilatancy formulation include

the consideration of barotropy (stress level), pyknotropy (void ratio) and anisotropy

(micro-structure) (Guo, 2000), which are all considered in Equaiton (2.20). When
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considering the effect of fabric on dilatancy, a more general form of dilatancy formu-

lation could be written as

D = D(η, e,Ω) (2.21)

where Ω is a term to describe the internal state variables other than void ratio e,

such as the evolving tensor of anisotropy (Dafalias, 1986a). Li and Dafalias (2000)

proposed a dilatancy formulation

D = d0(η −Memψ) (2.22)

where d0 and m are material constants, M is the critical state stress ratio, and ψ is

a state parameter defined as ψ = e− ecr. More recently, Li and Dafalias (2012) and

Zhao and Guo (2013) proposed a modified state parameter ζ to replace ψ to allow

incorporating the evolving fabric. ζ is defined as

ζ = (e− ecr) + f(F, σ, ...) (2.23)

where F and σ are fabric and stress tensors respectively. However, the method to

incorporate the fabric tensor and the evolution law of fabric tensor must be investi-

gated.

2.3 Micromechanical understanding of soil behaviour

It is evident from the previous literature review that the microstructure strongly in-

fluences the mechanical response of granular soils. For some materials, which have

homogeneous, random structures, their macro-level responses may be considered as
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isotropic with path-dependency. However, for most geomaterials, their microstruc-

tures exhibit apparent inherent anisotropy, which is commonly caused by the pre-

ferred orientation of particles or direction-dependent distribution of pores. For this

type of materials, both the strength and deformation characteristics are orientation-

dependent, and the description of fabric requires tensorial, rather than scalar descrip-

tors. Extensive studies on the micromechanical level have revealed that the internal

structure of a granular material evolves during loading and unloading, which is termed

“induced anisotropy”. To properly incorporate the fabric effects in constitutive mod-

eling, it is important to develop a fabric evolution law.

Two different approaches for describing the evolution of fabric can be found in

literature, namely the strain approach and the stress approach (Pietruszczak and

Krucinski, 1989; Oda et al., 1985; Guo, 2000). The strain approach assumes that the

rate of fabric change Ḟij can be expressed as a tensor-valued function of the current

fabric tensor Fij, the void ratio e as well as the rate of plastic deviator strain ėpij, i.e.

Ḟij = f(Fij, e, ė
p
ij). However, as a granular material approaches critical state during a

loading process, the material continues to deform without further change in stresses

and volume, and the fabric may reach an ultimate state as well. This contrasts the

strain-approach formulation of fabric evolution, in which the fabric change continues

at the critical state.

In the stress-based approach, the fabric evolution is related to the current states

and the rate of deviator stress ratio as Ḟij = f(Fij, e, η̇ij). Herein the deviator stress

ratio is defined as ηij = sij/p. Biarez and Wiendieck (1963) studied the distribution of

contact normals through biaxial compression tests, and found that the contact normal

tends to concentrate towards the direction of compression. Similar observations were
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made by Oda (1972b) and Oda and Konishi (1974a) for natural sand in triaxial

tests. Oda et al. (1980) concluded based on these experiments that the distribution

of contact normal changes in such a manner as to produce a greater concentration of

contact normals in the direction of the major principal stress. Oda (1993) summarized

the previous knowledge about fabric evolution, which includes:

(a) Ḟij should be a deviator tensor with Ḟii = 0;

(b) Change of fabric tensor Ḟij occurs as a result of the stress anisotropy measured

by η̇ij;

(c) The rate of fabric change should depend on the current state of fabric, espe-

cially α and (
√
JF2 −

√
ĴF2 ), in which α is the inclination angle of the major principal

axis of Ḟij to the major principal axis of η̇ij, and

√
ĴF2 is a limiting value of

√
JF2 ,

representing a certain saturated state in concentrating the contact normals.

In a series of biaxial compression tests, Oda (1993) observed a linear relationship

between
√
JF2 /I

F
2 and

√
J2/I2. Herein IF2 and JF2 are fabric invariants, while I2 and

J2 are stress invariants.

DEM simulations have been used as a powerful means to explore fabric evolution.

By simulating granular assemblies under bi-axial compression tests, Antony et al.

(2004) observed a correlation between stress ratio and fabric ratio:

σ1 − σ2

σ1 + σ2

≈

√
φ22

φ11

which was confirmed by Maeda et al. (2006). Based on the results of a series of

DEM simulations for cyclic biaxial compression tests, Suzuki and Kuhn (2013) and

Sazzad (2014) found a correlation between the deviator stress ratio and the fabric
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components defined for the strong contact network as

σ1 − σ2

σ1 + σ2

=
HS

1 −HS
2

HS
1 +HS

2

in which HS
1 and HS

2 are the components of the fabric tensors defined in the strong

contact network.

Recent studies have revealed that a unique ultimate state of the fabric tensor

exists. Yimsiri and Soga (2010) observed that triaxial extension causes more signif-

icant fabric anisotropy at ultimate than triaxial compression. Similar observations

were made by Thornton (2000) and Zhao and Guo (2013). It has now become pos-

sible to define a limit surface which quantifies the fabric state when the granular

material approaches the critical state along various stress paths. By discrete ele-

ment simulations, Thornton (2000) proposed a function of fabric at critical state as

(IΦ
1 )3/(2IΦ

1 I
Φ
2 −3IΦ

3 ) = η?, in which IΦ
1 , IΦ

2 and IΦ
3 are the invariants of the fabric ten-

sor Φij, and η? is a material constant. The fabric surface has the shape of an inverted

Lade-Duncan failure criterion. Zhao and Guo (2013) proposed a relation at critical

state between the mean effective stress p′ and a fabric anisotropy parameter Kc, as

Kc = 0.41p
′0.894, in which Kc is the first joint invariant of the deviatoric stress tensor

and the deviator fabric tensor defined as Kc = s
(cv)
ij F

(cv)
ji , where sij is the deviatoric

stress tensor.

2.4 Conclusions

Based on the above literature review, the following conclusions are made:

Firstly, based on experimental studies, the influences of the major principal stress
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direction and the intermediate principal stress on the granular material behaviour are

significant. These influences are reflected not only in the peak strength properties

but also on the deformation properties. Few previous studies have focused on the

combined effects of the two factors.

Furthermore, a proper description of the evolution of fabric tensor during the

loading process was missing. However, computer simulation tools have made it pos-

sible for such an evolution law to be developed.For a given fabric evolution law, the

method of incorporating a fabric tensor in the framework of plasticity is required.

In the following chapters, attempts are made to explore the properties of a granular

material under generalized stress conditions. Thereafter a fabric evolution law is

developed based on observations from DEM studies, with the model framework being

developed and verified.
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Chapter 3

Experimental Study

This chapter presents an experimental study on soil behaviour under different loading

conditions using a hollow cylinder apparatus. The primary objective of the experi-

mental study was to investigate the influence of the intermediate principal stress and

the major principal stress direction relative to the principal direction of fabric on the

behaviour of an inherently anisotropic granular material subjected to monotonic load-

ing. The behaviour, particularly the accumulative deformation, of the same material

under cyclic loading along different stress paths, with or without change of princi-

pal stress direction, were also explored. A detailed description of the experimental

equipment, tested material, sample preparation method, sample installation process

and testing procedures are presented in this chapter. The test results are analyzed

focusing on the effect of loading direction and stress path on the behaviour of sand.
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(a) Apparatus (b) Stress components

Figure 3.1: Hollow Cylinder Apparatus (HCA)

3.1 Test equipment

3.1.1 Hollow Cylinder Apparatus

The Hollow Cylinder Apparatus (HCA) at McMaster University was used in this

study. The dimensions of the specimens adopted for the study were 100 mm for the

outer diameter (O.D.), 60 mm for the inner diameter (I.D.), and 200 mm for the

height. Schematic diagrams of the equipment and the stress state of the specimen are

shown in Figure 3.1. Four independent stress components, the axial stress σz, radial

stress σr, circumferential stress σθ, and shear stress τzθ, were applied to a specimen by

independently controlled axial load W , torque MT , inner cell pressure pi, and outer

cell pressure po. The axial and torsional movements were controlled by two servo

motors individually, and the outer and inner cell pressures were controlled through

air-driven pressure cells in which the applied air pressure was converted to water

pressure.
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3.1.2 Calculation of stresses and strains

The effective principal stresses σ′1, σ′2 and σ′3 were computed from σz, σr, σθ, τzθ and

the pore pressure, with the strains being calculated from the readings of two volume

change transducers and the vertical displacement transducer. The average stresses

and strains in the specimen were calculated using equations listed in Table 3.1. Two

parameters, b and α, are used herein to describe the stress states. The intermediate

principal stress parameter b, defined as b = (σ2 − σ3)/(σ1 − σ3), is a measure of

the relative magnitude of the intermediate principal stress σ2. The parameter α is

defined as the angle between the direction of the major principal stress σ1 and the

normal direction of the bedding plane. Since the bedding plane of the specimen was

horizontal in the test, α can be calculated by tan 2α = 2τzθ/(σz−σθ) when the radial

stress is a principal stress.

3.1.3 Stress non-uniformity

In the experimental study of soil behaviour, it is important to ensure uniform dis-

tribution of stresses in the specimen. In this study, the main sources of stress non-

uniformity include the end restraint effect, application of the torque and the differ-

ence between the inner and outer cell pressures. To minimize stress non-uniformity

in HCA tests, it is important to choose proper specimen geometry. To reduce the

non-uniformity of stresses and strains in the radial direction, Hight et al. (1983) sug-

gested a specimen with 203 mm inner diameter, 254 mm outer diameter, and 254

mm height. Tatsuoka et al. (1986) used large height/radius ratio to reduce the in-

fluence of end restraint, with the dimension of 60 mm I.D., 100 mm O.D. and 200

mm height. Vaid et al. (1990) developed a hollow cylinder apparatus and examined
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the stress non-uniformity across the wall of the hollow cylinder specimen, using a

dimension of 102 mm I.D., 152 mm O.D. and 302 mm height. Sãyao and Vaid (1991)

made the following recommendations for the geometry of HCA specimens: (1) The

wall thickness (ro − ri) = 20− 60mm , (2) the ratio of the inner radius to the outer

radius 0.65 ≤ ri/ro ≤ 0.82, and (3) the height 1.8 ≤ H/(2ro) ≤ 2.2. The geometry of

specimens used in this study meets the recommendations (1) and (3), while the ri/ro

ratio (0.6) is only slightly smaller than that from Recommendation (2). Nevertheless,

the dimension of specimens used in this study is considered acceptable.

Another way of reducing the stress non-uniformity across the wall of the specimen

is to minimize the difference between the inner and outer cell pressures. When the

material is elastic and τzθ = 0, the radial stress σr and circumferential stress σθ in

the specimen are derived as

σr =
por

2
o − pir2

i

r2
o − r2

i

− (po − pi) r2
or

2
i

(r2
o − r2

i ) r
2

σθ =
por

2
o − pir2

i

r2
o − r2

i

+
(po − pi) r2

or
2
i

(r2
o − r2

i ) r
2

One observes that the stress non-uniformity across the wall of the specimen increases

with the (po − pi). σr and σθ are uniform only when pi = po. For cases with α 6= 0◦

and α 6= 90◦, pi − po can be expressed as

pi − po =
b− sin2 α

2 sinα cosα

r2
o − r2

i

rori
τzθ

If the parameters b and α satisfy b = sin2 α, the internal and external pressures will

remain identical during the loading process. Therefore, the stress non-uniformity

across the wall of the hollow cylindrical specimen vanishes.
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For cases with α = 0◦ or α = 90◦, the shear stress τzθ and hence the torque are

zero. pi − po can be expressed as

pi − po =
3b

2(2− b)
r2
o − r2

i

rori
(σz − p) for α = 0◦

pi − po =
3(1− b)
2(2− b)

r2
o − r2

i

rori
(σz − p) for α = 90◦

It can be shown that the condition of pi = po is satisfied when b = sin2 α for

these two cases as well. Consequently, it can be concluded that b = sin2 α is of

great importance in reducing stress non-uniformity. However, to fully understand the

effects of both the principal stress direction and the intermediate principal stress, the

two parameters of α and b need to be individually controlled. In this study, tests

with b = sin2 α and b 6= sin2 α were both carried out.

3.2 Test material and test programme

3.2.1 Test material

The test material used in this research was Ottawa sand C109. It is a uniform quartz

sand of rounded and subrounded particles. The particle size distribution curve is

shown in Figure 3.2a and the scanning electron micrograph of typical particles is

shown in Figure 3.2b. The maximum and minimum void ratios of the sand are

0.811 and 0.503, respectively. To obtain specimens with a constant initial fabric, the

water pluviation technique was used to fabricate the specimens (Vaid and Negussey,

1984; Cresswell et al., 1999; Saada et al., 2000). The void ratios of specimens after

consolidation fell into the range of 0.59±0.02, with the relative densities in the range
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of Dr = 72%± 5%.

(a) Grain size distribution (b) Scanning electron micrograph (Guo,
2008)

Figure 3.2: Test material: Ottawa Sand

3.2.2 Specimen preparation

Figure 3.3 shows the details of specimen preparation by the water-pluviation method.

Firstly, take approximately 2kg of oven-dried sand, measure the weight, and put into

a specially designed bottle. Fill the bottle with distilled water until the sand is

completely submerged. Seal the bottle and apply vacuum pressure of -80kPa for at

least 12 hours, during which the bottle should be pitched back and forth several times

to help the trapped air bubbles to escape. A water tank was also set up to produce

de-aired water for use in the tests, see Figure 3.3a. Before fabricating the specimen,

all tubes connected to the top or the bottom of the specimen should be flushed by

water. After setting up the base pedestal, assembling the inner and outer moulds

and membranes, the space between the inner and outer moulds was filled with de-

aired water (see Figure 3.3b). Then the bottle with de-aired water-sand mixture is
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(a) Step 1 (b) Step 2 (c) Step 3

(d) Step 4 (e) Step 5 (f) Step 6

Figure 3.3: Specimen preparation precedure

placed upside down on a shelf. The valve on the bottle is then opened while the lower

end of the pipe was put beneath the water between the inner and outer moulds. As

illustrated in Figure 3.3c, the sand settles while the water replaces the sand in the

bottle. In case the sand becomes jammed, the bottle is gently tapped.The mould is

filled until the surface of the sand is approximately 3mm beneath the top edge of the
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mould so that the top cap can be properly mounted; as shown in Figures 3.3d and

3.3e. When mounting the top cap, care must be taken so that no air is trapped in

the specimen.

Before removing the inner and outer moulds, a negative pressure of 15 kPa is

applied to the specimen so it can stand by itself. Figure 3.3e shows a completed

specimen with the top cap in place and all tubing connected. The next step is to

mount the cell of the apparatus in the loading frame, as shown in Figure 3.3f. By

properly adjusting the valves that control the flows as shown in Figure 3.4, de-aired

water is added into the inside and outside cells of the specimen at the same time.

3.2.3 Saturation and consolidation

Before saturating a specimen, the applied negative water pressure is firstly removed

by applying a pressure of 20kPa in both the inner and outer cells and releasing the

applied negative pressure. Water is flushed from the de-aired water tank through the

specimen using the back pressure lines shown in Figure 3.4. Flush continues for 30

minutes. The propose of this step is to drive out residual air bubbles trapped in the

specimen.

Afterward, the water supply and the drainage valves are closed. Simultaneously,

the inner and outer cell pressures are increased by 50kPa in 5 seconds. The change

on the pore pressure transducer is recorded. Then the back pressure is increased until

the pressure increment within the specimen is also 50kPa. Based on the change of

pore pressure ∆u and the increased cell pressure ∆σc, the Skempton’s pore pressure

B-coefficient is calculated as ∆u/∆σc. A value of 0.95 was considered acceptable for

the requirement of saturation. During the saturation stage, the cell pressures and the
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Figure 3.4: System flow chart of HCA

back pressure must be applied incrementally. All the tests of this study satisfied the

criterion of B ≥ 0.95 with the back pressure in the range of 250-300kPa.

All specimens were consolidated under a hydrostatic effective stress of 100kPa.

During consolidation and shearing, the volume changes of the specimen and the inner

cell of the hollow cylindrical specimen were measured by the volume change trans-

ducers. The vertical displacement and the rotation of the specimen were measured by
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an axial displacement transducer and a radial displacement transducer respectively.

The outer circumferential displacement of the specimen was measured by an LVDT

mounted on the specimen. The data gathered by these transducers were recorded

for the corrections of loading control as well as the calculation of strains using the

equations in Table 3.1.

3.2.4 Testing Programme

To investigate the influence of the intermediate principal stress and the major prin-

cipal stress direction relative to the principal direction of fabric on the behaviour

of inherently anisotropic granular material as well as the fabric evolution during

shearing, four series of tests were carried out. The major principal stress direc-

tion was characterized by α, the angle between the major principal stress direction

and the normal of the bedding plane (see Figure 3.1). The intermediate principal

stress was characterized by the intermediate principal stress parameter b, defined as

b = (σ2−σ3)/(σ1−σ3). On the π-plane (see Figure 3.5), b can be related to the Lode

angle via

θ = tan−1

(
1− 2b√

3

)
= tan−1

[
1√
3

(
1− 2

σ2 − σ3

σ1 − σ3

)]
For all the tests of the four series, the mean effective stress was kept constant

(p′=100kPa).

Test Series A: monotonic loading with b = sin2α

The objective of Series A tests was to determine the deformation and strength prop-

erties of the sand subjected to monotonic loading at select values of b and α. To
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Table 3.2: Test matrix for test Series A

Test No. α b = sin2α Lode angle θ(◦)
A1 0 0 30
A2 30 0.25 16.1
A3 45 0.5 0
A4 60 0.75 -16.1
A5 90 1 -30

Figure 3.5: Monotonic loading stress paths on π-plane (Series A)

minimize the non-uniformity of stresses in the hollow cylindrical specimens, the in-

ternal and external pressures were kept identical during monotonic shear; i.e., pi = po.

This requirement was satisfied by adjusting the applied stresses continuously to sat-

isfy b = sin2 α. The test matrix for this series of tests is given in Table 3.2, with the

stress paths on the π-plane being shown in Figure.3.5.

All specimens were saturated until B-value of 0.95 was attained. The back pres-

sures fell into the range of 250kPa-300kPa. Following saturation, the specimens were

isotropically consolidated to a mean effective stress of p′ = 100kPa. During the shear-

ing process, a deviator stress measure, defined as qtest = (σz − σθ)/2, was increased

monotonically at a rate of 2kPa/min until failure.
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Test Series B and C: monotonic loading with independent α and b

Table 3.3: Test matrix for test Series B

Test No. α b sin2α Lode angle θ(◦)
B1 0 0 0 30
B2 30 0 0.25 30
B3 60 0 0.75 30
B4 90 0 1 30

Table 3.4: Test matrix for test Series C

Test No. α b sin2α Lode angle θ(◦)
C1 0 1 0 -30
C2 30 1 0.25 -30
C3 60 1 0.75 -30
C4 90 1 1 -30

The objective of tests in Series B and C was to investigate the influence of loading

direction on soil behaviour at select values of intermediate principal stress coefficient

b. More specifically, tests in Series B were carried out at b = 0, which corresponds to

conventional triaxial compression. In Series C, all tests were performed at b = 1. In

each test of Series B and C, α was kept constant in the range of 0◦ to 90◦. Table 3.3

and Table 3.4 present the test matrixes of test Series B and C, respectively.

The stress paths in test Series A to C are shown graphically in Figure 3.6. The

three shaded surfaces represent the stress paths in these three test series, respectively.

By comparing results from tests B1 to B4, and from tests C1 to C4, the influence of

the loading direction α can be obtained. Also, the effect of stress paths corresponding

to different b values can be observed by comparing the results from tests B1 and C1

at α = 0◦ , A2, B2 and C2 at α = 30◦, A4, B3 and C3 at α = 60◦ and B4 and C4 at

α = 90◦, respectively.
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Figure 3.6: Loading paths for test series A, B and C in α− b− q space

Test Series D: cyclic loading

In addition to monotonic loading tests, a series of cyclic loading tests were performed

to investigate the effects of principal stress direction and the intermediate principal

stress on the mechanical behaviour of sand. The specimens were isotropically con-

solidated to a mean effective stress of p′ = 100kPa, which was the same as that

for the monotonic loading tests. Then cyclic stresses were applied while keeping p′

constant. Different sequences of cyclic loading with different values of intermediate

stress coefficient b were used in these tests, as summarized in Table 3.5. During the

cyclic loading, the inner and outer cell pressures were allowed to vary to maintain a

constant mean effective stress. To understand the effect of cyclic loading direction

and stress path on the accumulative deformation, the applied stresses were alternated

between two modes: mode 1 with b = 0, and mode 2 with b = 1. For each loading

mode, the cyclic stress was applied for a certain number of times.

The stress paths for cyclic loading are shown in Figures 3.7. Figures 3.7a and
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Table 3.5: Testing matrix for cyclic shear tests - series D

Test No.
Loading sequence qtest = (σz − σθ)/2

value of b number of cycles kPa
D1 0→ 1→ 0→ 1 50×8 (-40,40)
D2 0 200×2 (-40,40)
D3 0→ 1 100×4 (-40,40)
D4 1→ 0→ 1→ 0 50×8 (-40,40)
D5 1 200×2 (-40,40)
D6 1→ 0 100×4 (-40,40)

(a) mode 1 (b = 0) (b) mode 2 (b = 1) (c) Decomposed mode 2

Figure 3.7: Cyclic loading stress paths on π-plane in Series D tests

Figure 3.7b represent the cyclic loading stress paths at b = 0 (mode 1) and b = 1

(mode 2), respectivley. The circled numbers 1© 2© 3© 4© denote the order of the loading

paths in one cycle.

To better understand the role of the loading path during cyclic loading, the loading

Mode 2 with b = 1 can be decomposed into two parts as shown in Figure 3.7c. Part 1

is the same as that of loading Mode 1 with b = 0, and Part 2 can be interpreted as a

one-way repeated loading in the radial direction of the specimen within the bedding

plane. To simplify notation in the rest of this chapter, σij and p are used to represent
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the effective stresses instead of σ′ij and p′ in the rest of the thesis.

3.3 Accuracy of stress control and repeatability of

tests

3.3.1 Accuracy of stress control

Stress and strain components in monotonic loading tests (Series A)

We first examine the accuracy of stress control in monotonic tests. As outlined earlier,

in each monotonic loading test, the mean effective stress was kept constant at 100 kPa

with a selected combination of b and α that were both constant during the loading

process.

(a) q/p− p (b) q/p− σ (c) q/p− ε

Figure 3.8: Stress and strain components at b = 0

Figures 3.8 to 3.12 present typical stress and strain histories along different stress

paths. The vertical axis represents q/p, where q =
√

3J2 and p = I1/3. Figure 3.8a

shows the variation of the mean effective stress during a loading process with b = 0 and

α = 0◦. It is observed that the mean effective stress was kept constant for the majority

of the loading process. When the stress level was close to failure, the mean stress
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(a) q/p− p (b) q/p− σ (c) q/p− ε

Figure 3.9: Stress and strain components at b = 0.25

(a) q/p− p (b) q/p− σ (c) q/p− ε

Figure 3.10: Stress and strain components at b = 0.5

(a) q/p− p (b) q/p− σ (c) q/p− ε

Figure 3.11: Stress and strain components at b = 0.75

started to increase, which was related to the insufficient stress control capacity of the

system. Since the shearing process was controlled by increasing the deviator stress
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(a) q/p− p (b) q/p− σ (c) q/p− ε

Figure 3.12: Stress and strain components at b = 1

qtest monotonically at a rate of 2kPa/min, such a loading rate could not be maintained

when deformation was close to failure without increasing the mean effective stress.

Figure 3.8b shows the evolution of three principal stresses during loading. Starting

from the initial value of 100 kPa, during the loading process, σ1 increased while σ2

and σ3 both decreased at the same rate so that b = 0, dqtest/dt = 2kPa/min and

p = 100kPa were achieved. Figure 3.8c shows the measured three principal strain

components during loading. Because of the initial cross-anisotropy condition under

b = 0 and α = 0◦, ε2 and ε3 should increase at the same rate during the test. However,

a small divergence was observed between ε2 and ε3 at large strains (ε1 > 1%), which is

very likely caused by strain localization. The hollow cylindrial geometry renders the

specimen to be more deformable in the radial direction (ε2=εr according to Table 3.1)

than in the circumferential direction (ε3=εθ in this case). Therefore at large strains,

the specimen tends to bulge in the r−direction (Zdravkovic and Jardine, 1997) and

the shear plane tends to develop in the r − z plane (Lade et al., 2014b), resulting in

a larger rate of ε2(εr). By the same reason, a larger rate of ε2 was observed for b = 1

(α = 90◦). Figures 3.9 to 3.12 show the history of stress and strain components in

tests with b = 0.25 (α = 30◦) to b = 1 (α = 90◦), respectively.
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Figure 3.13 shows the variation of the major principal stress direction during the

monotonic loading tests. For tests where b = 0 and b = 1, the control of major

principal stress direction was stable for α = 0◦ and α = 90◦. Small perturbations

were observed in tests with α = 30◦, α = 45◦ and α = 60◦, especially at the very

beginning. However, the errors were in the range of ±3◦. It is concluded that the

stresses were properly controlled for the proposed monotonic loading tests.

Figure 3.13: Variation of major principal stress direction under tests with b = 0 and
b = 1

Stress control in cyclic loading tests

Figure 3.14 shows the variations of the stress components in the cyclic loading test

with b = 0. Three full cycles are presented in the figure, each containing four stages

of loading (as shown in Figure 3.7a). The starting points of the three stress com-

ponents were 100kPa. At stage 1©, σz increased while σr and σθ decreased. The

deviator stress qtest was increased to 40kPa. At stage 2©, σz decreased and σr and

σθ increased. By the end of stage 2©, the deviator stress was 0kPa. At stage 3©,

σz continued to decrease while σr and σθ continued to increase until the deviator
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stress reached -40kPa. Finally, at stage 4©, σz increased and σr and σθ decreased

until the deviator stress became zero again. It is observed that at stage 1© and 2©,

the axial direction was the major principal stress direction, while at stage 3© and 4©,

the circumferential direction became the major principal stress direction. While a

minor difference between σ2 and σ3, is observed, the value of b throughout the whole

procedure was kept at b = 0, and the variation in the mean effective stress was less

than 5%.

Figure 3.14: Cyclic stress compontents at b = 0

Figure 3.15: Cyclic stress compontents at b = 1

Figure 3.15 shows the variations of the stress components during cyclic loading

at b = 1. The radial stress σr was the intermediate principal stress during the test,

and the axial and circumferential stresses alternated between σ1 and σ3. Again, the

measured data confirmed b = 1. The mean effective stress was observed to have a
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variation of ±8% around the expected value of 100kPa. As discussed in Section 3.1.3,

the stress non-uniformity across the wall of the specimen when b 6= sin2 α tended to

increase, particularly at b = 1.

3.3.2 Repeatability of test results

(a) b = 0.25 (b) b = 0.5

(c) b = 0.75

Figure 3.16: Repeatability of tests in terms of stress-strain curves

Figure 3.16 shows the repeatability of tests in terms of the stress-strain relations

in monotonic loading tests. Tests at b = 0.25, b = 0.5 and b = 0.75 were repeated to

examine the repeatability of tests. As shown in the figure, for the same intermediate

principal stress coefficient and the same principal stress direction, the stress-strain

curves obtained from replicated tests were close to one another. For the tests at

b = 0.25, the difference between the obtained peak stress values was less than 2.5%,
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while for tests at b = 0.5 and b = 0.75, the difference was less than 1%.

3.3.3 Effect of membrane penetration

Membrane penetration effect is important on the measure of excess pore-water pres-

sure in undrained tests and its influence increases with the increase of grain size.

For drained tests, membrane penetration has a minor effect on the volume change.

Since the current experimental study was carried out under a drained condition using

a material with relatively small particles, the effect of membrane penetration was

neglected.

3.4 Results and discussion

3.4.1 Monotonic loading test results-Series A, B and C

(a) Combined effect of loading direction and stress path-Series A with

b = sin2α

The stress-strain curves from tests in Series A are shown in Figure 3.17. The mean

effective stress was kept p = 100kPa and b = sin2 α was maintained in all these tests.

The octahedral shear strain is defined as γoct = 2
3

√
6Jε2 . In general, the deviator

stress at failure gradually decreased when the value of α varied from α = 0◦ (Test

A1) to α = 90◦ (Test A5). Herein the deviator stress is defined as q =
√

3J2. The

highest deviator stress at failure, qpeak, was obtained in Test A1 (b = 0, α = 0◦). The

lowest deviator stress at failure was obtained from Test A5 (b = 1, α = 90◦), which is

only slightly smaller than that in Test A4 (b = 0.75, α = 60◦). A significant decrease
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of qpeak was observed between Test A2 (b = 0.25, α = 30◦) and Test A3 (b = 0.5,

α = 45◦).

Figure 3.17: Stress-strain curves from Series A with b = sin2α (p = 100kPa)

Figure 3.18: Failure states of Series A on π plane with b = sin2α (p = 100kPa)

Figure 3.18 shows the failure envelope on the octahedral plane (π-plane) based on

the stress states at failure in Tests A1 to A5. Repeated tests were performed under

the same conditions to confirm the reliability of the test results. The benchmarked
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Lade, Matsuoka-Nakai (M-N) and Mohr-Coulomb (M-C) failure criteria are also plot-

ted in the figure. The stress states at failure all fell into the range between curves

representing the Matsuoka-Nakai and Lade failure criteria.

Figure 3.19: Volumetric strain against octahedral shear strain plots from Series A
tests

Figure 3.20: Stress-dilatancy plots from Series A tests

Figure 3.19 presents the volumetric strain against the octahedral shear strain plot
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for each test. In this figure, a positive volumetric strain is referred as volumetric

compression. Since the mean effective stress was kept constant during shearing, the

volume change of the specimen was considered to be induced by shearing. In general,

regardless of the principal stress direction relative to the bedding plane, shearing

tended to induce volume contraction at the beginning of shearing prior to dilation.

With an increase of b and α, the dilatancy tended to decrease while shear-induced

volume contraction became more pronounced. More specifically, at the octahedral

shear strain of γoct = 5%, in Tests A1 (b = 0 and α = 0◦) and A5 (b = 1 and

α = 90◦), the dilatant volumetric strains were -2.3% and -0.5%, respectively. The

corresponding maximum shear-induced volume contraction was 0% and 0.1% in these

two tests. In addition, the octahedral shear strain at which the maximum volume

contraction occurred tended to be larger at higher b and α values.

Figure 3.20 shows the relations between the mobilized stress ratio q/p and the

strain increment ratio −dεv/dγoct for Tests A1 to A5. It is observed that the initial

dilatancy decreased significantly as the values of b and α increased. For each test, the

dilatancy increased during the loading process, and the rate of dilatancy increased for

Tests A1 to A5. The minimum peak dilatancy was observed in Test A4. In all five

tests, the dilatancy started to decrease after it reached the peak value and approached

zero as the loading approaching critical states.

In this series of tests, since b varies with α following b = sin2 α, no solid conclusions

can be made about the effect of each factor on the behaviour of sand. However, as

mentioned previously, the non-uniformity across the wall of the hollow cylindrical

specimen was minimized by keeping b = sin2 α. Results from this series of tests were

reliable and can provide a benchmark when comparing with results obtained from
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Series B (b = 0 with varying α) and C (b = 1 with varying α).

(b) Effect of major principal stress direction

Tests of Series B and C were carried out to explore the influence of the major princi-

pal stress direction on soil behaviour at select intermediate principal stress factor b.

Figures 3.21 and 3.22 present the stress-strain curves from tests in Series B (b = 0)

and C (b = 1) , respectively. For both series of tests, the deviator stress at failure,

qpeak, decreased as the value of α increased. For tests with b = 0, the value of qpeak

dropped from 148kPa at α = 0◦ to 127kPa at α = 90◦; for tests with b = 1, qpeak

decreased from 137kPa at α = 0◦ to 98kPa at α = 90◦.

Figure 3.21: Stress-strain curves from Series B tests with b = 0 (p = 100kPa)

Figure 3.23 summarizes the stress states at failure on the π-plane, based on re-

sults obtained from tests in Series B and C. For comparison purposes, the results

obtained from tests in Series A are also plotted, together with the failure envelopes

corresponding to the Lade, Matsuoka-Nakai (M-N) and Mohr-Coulomb (M-C) crite-

ria. The circular markers represent the results from tests B1 to B4, the square makers

represent the results of tests C1 to C4 and the triangle makers represent results from
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Figure 3.22: Stress-strain curves from Series C tests with b = 1 (p = 100kPa)

Figure 3.23: Failure states on π-plane from Series A , B and C (p = 100kPa)

tests of Series A. It should be noted that Tests A1 and A5 duplicate Tests B1 and

C4.

The test results of C1 to C4 presented in Figures 3.22 and 3.23 show that the

strength decreased with an increase of α. However the deviator stresses at failure

obtained from tests C1, C2 and C3 were notably larger than predictions of the bench-

marked failure envelopes. The main reason is that for tests C1, C2, and C3, b 6= sin2α

(po 6= pi), the non-uniformity across the wall of the hollow cylinder specimen tended
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to cause a large experimental error. According to Table 3.1, in Series C with b = 1

(σ2 = σ1), the radial stress σr became one of the two major principal stresses. The ra-

dial stress σr, which was calculated as σr =
por2o−pir2i
r2o−r2i

− (po−pi)r2or2i
(r2o−r2i )r2

, became non-uniform

under po 6= pi. With σr being a major principal stress, the influence of non-uniformity

became important. As a result, the deviator stresses at failure for tests C1-C3 were

larger than their actual values.

Figure 3.24: Volumetric strain against octahedral shear strain plots from Series B
tests

Figures 3.24 and 3.25 present plots of the volumetric strain against the octahedral

shear strain γoct and the stress-dilatancy plots for tests of Series B, respectively.

As shown in Figure 3.24, at the same shear strain, the magnitude of shear-induced

dilation was significantly affected by angle α. The maximum dilation took place at

α = 0◦ (both b=0 and b=1) when the major principal stress was applied perpendicular

to the bedding plane. The minimum dilation occurred at α = 60◦, which is different

from the results in Figure 3.19 for tests in Series A.

Physically, the minimum dilation in the test with α = 60◦ can be interpreted

as follows (see Figure 3.26). According to the Mohr-Coulomb criterion, the normal
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Figure 3.25: Stress-dilatancy plots from Series B tests

Figure 3.26: Geometry description of the direction of shear plane, principal stress
and the bedding plane

of the failure plane makes an angle of approximately θ = π/4 + ϕ/2 to the major

principal stress direction. When α = 60◦, the failure plane was nearly parallel to the

bedding plane for the friction angle ϕ ≈ 30◦, which implied relatively small overriding

of particles along the failure plane and hence small dilation. It should be noted that

in Series A tests the minimum dilation took place in the test of α = 90◦ rather than
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α = 60◦. This difference was related to the different stress paths in Series A.

Figure 3.27: Volumetric strain against octahedral shear strain plots from Series C
tests

Figure 3.28: Stress-dilatancy plots from Series C tests

Figures 3.27 and 3.28 show the volumetric strain against octahedral shear strain

and the stress-dilatancy plots in Series C tests. From Figure 3.27, the volumetric

strain curves from tests C1 with α = 0◦ and C2 with α = 30◦ are quite similar, and
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so are the volumetric strain curves from tests C3 with α = 60◦ and C4 with α = 90◦.

However, similar to Series B, the rate of dilatancy generally decreased with an increase

of α, with the minimum value being reached at α = 60◦. From Figure 3.28, the initial

rate of dilatancy did not show a clear pattern, but the rate of dilatancy at failure

was larger in tests C1 and C2 than in tests C3 and C4, which is consistent with the

observation from Series B tests.

(c) Effect of intermediate principal stress parameter b

The effect of b on the behaviour of Ottawa sand can be identified from tests in series

A, B and C having the same α but different values of b. Figure 3.29 compares the

experimental stress-strain curves at α = 0◦, α = 30◦, α = 60◦ and α = 90◦ with

different b values.

According to Figure 3.29, the deviatoric stress at failure generally decreased with

an increase of b, which was clear in Figures 3.29a, 3.29b and Figure 3.29d. The only

exception is Figure 3.29c at α = 60◦, in which the lowest deviator stress at failure

was found at b = 0.75 while the shear strength in test with b = 1 was slightly smaller

than that in test with b = 0. As discussed earlier, because of the non-uniformity of

stress when b 6= sin2α, the failure stresses obtained from tests C1, C2 and C3 were

believed to be larger than their real values.

Figure 3.30 presents the variation of volumetric strain against octahedral shear

strain in tests with α = 0◦, 30◦, 60◦ and 90◦ at different b. The four groups of

tests show that for a given direction of the major principal stress, with an increase

of b, the potential of shear-induced volume dilation decreased significantly. In other

words, increased intermediate principal stress tended to suppress dilation of a granular
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(a) α = 0◦ (b) α = 30◦

(c) α = 60◦ (d) α = 90◦

Figure 3.29: Stress-stain curves from Series A, B and C-cross comparison

material, even under the same mean effective stress. The dilatancy plots presented in

Figure 3.31 reveal that an increase of b value tended to induce low rate of dilatancy

−dεv/dγoct at the same q/p ratio. At the failure states corresponding to the peak

q/p ratios, the dilatancy in tests with the same α angle approached a similar value.

In other words, the peak dilatancy was not largely influenced by the intermediate

principal stress coefficient.

Figure 3.32 shows the dependency of peak dilatancy angle ψmax on the major

principal stress direction α and the intermediate principal stress ratio b in Series A,

B and C. Herein the angle of dilation is defined as sinψ = −dεv/dγoct. According to

72



Ph.D. Thesis - Xing Li McMaster - Civil Engineering

(a) α = 0◦ (b) α = 30◦

(c) α = 60◦ (d) α = 90◦

Figure 3.30: Volumetric strain against octahedral shear strain plots from Series A, B
and C-cross comparison

Figure 3.32a, the maximum value of ψmax was at α = 0◦. With the increase of α, ψmax

decreased and reached its minimum at approximately α = 60◦. A further increase of

α resulted in a regain of ψmax. Comparing with the effect of loading direction, the

influence of the intermediate principal stress coefficient on the peak dilatancy angle

was less significant (see Figure 3.32b).

The different dilatancy properties of Ottawa sand observed in tests along different

loading directions and stress paths imply that, if the loading direction and/or the

stress path changes in a test involving cyclic loading, the accumulated deformation
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(a) α = 0◦ (b) α = 30◦ (c) α = 60◦ (d) α = 90◦

Figure 3.31: Stress-dilatancy plots from test series A, B and C- cross comparison

(a) Peak dilatancy angle against major
principal stress direction α

(b) Peak dilatancy angle against interme-
diate principal stress coefficient b

Figure 3.32: Variation of peak dilatancy angle
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may change accordingly. This was investigated in detail through a series of cyclic

loading tests, which are discussed in the following section.

3.4.2 Cyclic loading tests along different stress paths-Series

D

As observed from the results of the monotonic loading tests on the Ottawa sand,

both the loading direction and the stress path had significant influences on both the

strength and deformation characteristics of the material. This is attributed to inher-

ent and induced anisotropy as well as the different fabric evolutions under different

conditions. In the cyclic loading tests reported in this section, cyclic loads were ap-

plied to specimens with altered loading sequences along stress paths having different

values of b, with the major principal stress in different directions. For comparison

purposes, two tests with constant value of b, Test D2 (b = 0) and Test D5 (b = 1),

were carried out as references. For the other tests, D1 and D3, started with b = 0,

and altered between b = 0 and b = 1. Tests D4 and D6 started with b = 1, and

altered between b = 1 and b = 0. Referring to Table 3.5, cyclic loading was applied

with the amplitude being controlled as qcyc = 40kPa corresponding to a frequency of

0.2Hz. The amplitude of the cyclic stress ratio was qcyc/p = 0.4. In the following dis-

cussions, the focus is placed on the development of accumulative deformation during

cyclic loading.

Figure 3.33 presents the volumetric strains against the number of stress cycles

obtained from Tests D1 to D6. From the figure, the following observations are made:

(a) After 200 cycles, the accumulative volumetric strains in tests D2 (b = 0) and

D5 (b = 1) were 0.2% and 1.2%, respectively. The latter was five times larger, which
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Figure 3.33: Volumetric strain against number of loading cycles plot (p = 100kPa)

means even under the same cyclic stress amplitude, the specimen subjected to cyclic

loading with b = 1 had much larger contraction than that with b = 0. The reasons

follow.

According to the results of the monotonic loading tests presented in Figure 3.31,

at the beginning of the loading, the specimen at b = 1 had a higher rate of volumetric

compaction than that at b = 0. For cyclic loading where the amplitude of the stress

ratio was 0.4, it corresponded to the starting part of the dilatancy curve in Figure

3.31. Therefore, a larger contraction was expected in Test D5 with b = 1. Conse-

quently, cyclic loading in Test D5 with b = 1 resulted in larger accumulative volume

compaction.

As is shown in Figure 3.7c, the cyclic loading Mode 2 (b = 1) can be decomposed

into Mode 1 (b = 0) and an additional one-way cyclic load applied in the radial

direction within the bedding plane. With σr being a major principal stress, this part

of cyclic loading corresponded to α = 90◦. For the equivalent Mode loading 1 with

b = 0, the major principal stress direction rotated between α = 0◦ and 90◦. As

such, the difference between Tests D2 and D5 could also be attributed to a larger
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contraction at α = 90◦ than that at α = 0◦, as shown in Figures 3.24, 3.25, 3.27 and

3.28.

(b) For the first 50 cycles, Test D1 to D3 had the same loading condition (b = 0),

as did Tests D4 to D6 (b = 1). The results showed good agreement with one another.

By the end of the first 50 cycles, the accumulative volumetric strain was around 0.18%

for tests with b = 0 (D1 to D3) comparing with approximately 1.1% in tests with

b = 1 (D4 to D6).

(c) In Tests D1 and D3, for the first time when the value of b was changed from 0

to 1, a sudden increase in the volumetric strain was observed. For example, in Test

D3, the accumulated volumetric strain at b = 0 was 0.18% after 50 cycles and was

0.2% after 100 cycles. If the value of b was changed to 1 after the first 50 cycles of

loading with b = 0, as in Test D1, the volumetric strain reached 0.68% after another

50 cycles with b = 1. However, the strains were still apparently lower than those

obtained by firstly apply cyclic loading with b = 1 on an original sample (Tests D4 to

D6) at the same number of stress cycles. The reason is that the preceding sequences

of loading densified the sample, which reduced the potential of particle rearrangement

and the influence of fabric.

(d) A small decrease in the volumetric strain occurs when the value of b changed

from 1 to 0 (i.e. Test D1 after 100 cycles), indicating that dilation may have happened

when b decreased from 1 to 0. This was consistent with the results presented in Figure

3.31, which showed more pronounced dilation at b = 0.

(e) When comparing tests starting with b = 0 (Tests D1 to D3), the more often

the value of b changed, the larger the final accumulative volumetric strain became.

The accumulative volumetric strain after 200 cycle was 0.3% when the b value was
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kept at b = 0 (Test D2, N=200), 0.75% if b value changed once (Test D3, N=100×2,

100 at b=0, and 100 at b = 1), and was 0.80% if b value changed three times (Test

D1, N=50×4). For tests starting with b = 1 (Tests D4 to D6), the accumulative

volumetric strain after 200 cycle was 1.20% if b value was kept at b = 1 (Test D5),

1.22% if b value changed once (Test D6), and was 1.30% if b value changed three times

(Test D4). In order to verify this observation, tests D4 and D6 were performed at

N=50×8 and N=100×4, respectively by alternatively changing the b value, as shown

in Figure 3.34.

Figure 3.34: Volumetric strain of groups D4 and D6 with N=400 (p = 100kPa)

The deviation between tests D4 and D6 after the total number of 400 cycles

became more apparent than that after 200 cycles. The volumetric strain was 1.48%

for Test D4 (50×8) with the b value changing seven times, and was 1.32% for Test

D6 (100×4) with the b value changing three times. The former was 12% larger than

the latter.

Figure 3.35 shows the volumetric strain against shear strain curves for all cyclic

tests. Figure 3.36 presents the evolution of cyclic stress-strain curves from Tests D1

and D4. The stress-strain curves from tests starting with b = 0 (Tests D1 to D3)

were similar. Therefore only the curves from Test D1 are presented here, as shown
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(a) D1, D4 (b) D2, D5

(c) D3, D6

Figure 3.35: The volumetric strain against the shear strain for the cyclic tests-Series
D

in Figure 3.36a. Similarly, the stress-strain curves from Test D4 are presented as

representative results of tests starting with b = 1 (Tests D4 to D6), as shown in

Figure 3.36b.

Both test series contained four stages, each of which had 50 cycles (50×4). In Test

D1, the absolute value of the shear strain grew slowly in the first 50 cycles with b = 0

and increased rapidly during the next 50 cycles with b = 1. For the following 50 cycles
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(a) Test D1, 0→ 1→ 0→ 1 (b) Test D4, 1→ 0→ 1→ 0

Figure 3.36: Cyclic stress-strain relation from tests D1 and D4

with b = 0, the shear strain decreased slightly, and in the final 50 cycles with b = 1,

another slight increase occurred (see Figures 3.35a and 3.36a). In Test D4, as shown

in Figure 3.36b, the absolute value of the shear strain increased rapidly to 1.8% in the

first 50 cycles with b = 1 and slightly decreased during the next 50 cycles with b = 0.

In the following 100 cycles, the evolution of the volumetric strain was the same as
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in Test D1. For cyclic loading with b = 1, the shear strain amplitude increased with

the number of stress cycles, while in tests with b = 0, the strain amplitude decreased.

However, after the first 100 cycles, the shear strain was relatively stable, and the

influences of the b variation were not significant. The stress-strain curves approached

stable by the end of each loading stage.

Based on the last five cycles of each stage, the resilient shear modulus was cal-

culated and is listed in Table 3.6, as well as shown in Figure 3.37. Note that, when

calculating shear modulus, the data from tests D2-D6 were extended to a total num-

ber of 400 cycles with the test matrix shown in Table 3.6. One finds that (1) Resilient

shear modulus is 50% ∼ 60% larger for b = 0 than b = 1 (Gb=0
r > Gb=1

r ), meaning

that, during cyclic loading at the stabilized stage, a higher b value was associated

with lower stiffness. The reason is that under b = 1, one of the major principal stress

was applied parallel to the bedding plane with minimum resistance between particles.

(2) Both Gb=0
r and Gb=1

r increased with the increases of cycle numbers. This can be

explained by the densification effects of the cyclic loads. The tendency to increase

shall slow down and eventually stop if the loading cycles increased to larger values

since the material’s density has limits.

Table 3.6: Resilient shear modulus from cyclic loading tests

Test No.
Loading sequence Gr = q/εq (MPa)

value of b number of cycles Gb=0
r Gb=1

r Gb=0
r Gb=1

r

D1 0→ 1→ 0→ 1 50×4 75.0 54.6 85.7 60.0
D2 0 200×2 85.7 66.7
D3 0→ 1 100×4 80.0 52.2 92.3 57.1

Gb=1
r Gb=0

r Gb=1
r Gb=0

r

D4 1→ 0→ 1→ 0 50×8
50.0 80.0 57.1 85.7
57.1 92.3 57.1 100.0

D5 1 200×2 57.1 85.7
D6 1→ 0 100×4 48.0 75.0 52.2 85.7
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Figure 3.37: Resilient shear modulus from cyclic loading tests

3.5 Concluding remarks

The present study shows the importance of principal stress direction and intermediate

principal stress on both monotonic and cyclic behaviour of sand.

The monotonic strength of sand decreased with the principal stress direction α

increasing and reached a minimum when the major principal stress was parallel to

the bedding plane at α = 90◦ under both b = 0 and b = 1. However, when b = 0,

the variation of strength in tests with α larger than 60◦ was very small. For b = 1,

the decrease of strength remained notable even for α ≥ 60◦. With the increase of

intermediate principal stress coefficient b, the strength of sand decreased steadily. The

only exception was that for tests with b = 0.75 and α = 60◦. The non-uniformity had

a certain influence on the latter group, which results in an over-predicted strength.

The initial dilatancy decreased with an increase of both the principal stress direction

α and the intermediate principal stress coefficient b. Compared with b, the influence

of α was more significant on the peak dilatancy of sand.

From cyclic loading tests, larger accumulative volumetric deformation was found
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from tests with two-directional loading (b = 1) than tests with one directional load-

ing (b = 0). When the loading mode was changed from b = 0 to b = 1 for the first

time, which meant a second cyclic loading was applied in an orthogonal direction

without changing the total deviator stress, a significant increase in the accumula-

tive volumetric strain was observed. Furthermore, the resilient shear modulus was

50% ∼ 60% larger under one directional loading (b = 0) than under two-directional

loadings (b = 1).
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Chapter 4

A constitutive model for granular

materials with fabric consideration

Owing to its discrete nature, the behaviour of granular materials is significantly af-

fected by the geometrical arrangement of particles and the interaction forces between

particles. Shear-induced volume change, or dilatancy, can be viewed as the result of

internal constraints to particle movements imposed by discrete particles (Goddard

and Didwania, 1998). The anisotropic behaviour and the influence of loading di-

rection on soil behaviour as observed from the experimental study in Chapter 3 all

originate from fabric and its evolution induced by applied stresses.

Various stress-strain models based on different assumptions have been developed

for granular materials. However, models with proper consideration for fabric and

clear physical meanings are rare. In this chapter, an effort is made to describe the

anisotropic behaviour of granular material based on a number of simple physical

concepts. The model was built within the framework of elasto-plasticity, with the

assumption of the existence of a critical fabric surface characterizing the fabric state
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of sand at its critical state.

In this Chapter, the mean effective stress is represented by p instead of p′ for

convenience.

4.1 Fabric and its evolution: an introduction

To describe the fabric or internal structure of a granular assembly, various definitions

of fabric tensors have been proposed (Oda, 1982; Oda et al., 1985; Satake, 1982;

Ken-Ichi, 1984; Bagi, 1996; Zhao and Guo, 2013). For granular materials, tensorial

measures of fabric based on the contact normal distribution are considered to be

appropriate. The fabric tensor defined by Satake (1982) and Oda (1982) is adopted

in this study.

Consider two particles in contact, let n be the unit vector normal to the contact

surface. The fabic tensor of a granular assembly can be defined as

Φij =
1

NC

NC∑
k=1

n
(k)
i n

(k)
j , (i, j = 1, 2, 3) (4.1)

in which NC is the total number of contacts within a unit sphere that is considered

to be representative element volume, and n
(k)
i defines the direction cosines of the

k-th contact normal with respect to the i-th coordinate axis. Φij satisfies Φii = 1.

The directional distribtuion of the contact normals can be described by a probability

density function (PDF) E(n), which mathematically satisfies

∫
Ω

E(n)dΩ = 1 (4.2)
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in which Ω is the solid angle corresponding to the whole surface of a unit sphere. E(n)dΩ

gives the estimate of ∆NC(Ω)/Nc with ∆NC(Ω) being the number of contact normals

whose directions are within a small solid angle dΩ. The fabric tensor can then be

expressed as a continuous function

Φij =

∫
Ω

E(n)ninjdΩ (4.3)

In general, E(n) can be expressed as

E(n) =
1

4π
(1 + Fijninj +Gijklninjnknl + ....)

which can be simplified to a second-order approximation(Ouadfel and Rothenburg,

2001) in the form of

E(n) =
1

4π
(1 + Fijninj) (4.4)

By taking into account Equation (4.3), one has

Fij =
15

2
(Φij −

1

3
δij) (4.5)

The two tensors Φij and Fij can be interchangeably used to represent the internal

structure or fabric of a granular assembly. In this study, Φij is referred to as the

fabric tensor with Φii = 1. Fij is a deviatoric measure of Φij with Fii = 0. It should

be noted that Fij is different from the conventional deviatoric tensor of Φij, which

is Φij − Φkk

3
δij. However, for convenience, Fij is referred to as the deviatoric fabric

tensor in the rest of this thesis.
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4.2 Fabric evolution law based on a limit fabric

surface

4.2.1 Limit surface of fabric state

Within the framework of the critical state soil mechanics, when a granular material

reaches its critical state, the stress state can be characterized by a unique surface in

the stress space, while the void ratio and the internal structure all reach a steady

state as the shear strain continues increasing. Here we assume that the fabric of a

granular material at the critical state can be quantified by a unique function or a

limit surface in the principal fabric space. Evidence for the existence of such a limit

fabric surface is provided as follows.

Based on the test results of 2D granular materials, Satake (1982, 2007) suggested

that the fabric tensor defined by contact normals can be used to characterize the

induced anisotropy, satisfying

Φ1 : Φ2 : Φ3 = σα1 : σα2 : σα3 (4.6)

with α ' 0.5. This relation was further elucidated by Chowdhury and Nakai (1998)

using the concept of spatially mobilized plane (SMP) and the tij-concept. When

taking Nakai’s criterion as the function of stress states at the critical state, Equation

(4.6) yields in the deviatoric plane a critical state fabric surface, which has a shape

similar to that of Nakai’s or Lade’s curve for the critical stress states as shown in

Figure 2.16. It should be noted, for an initially isotropic specimen, the induced

anisotropy during the course of deformation is the same as the overall anisotropy.
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However, Yimsiri and Soga (2010) observed larger ultimate fabric anisotropy under

triaxial extension than that under triaxial compression. Moreover, the results of DEM

simulations for shearing along stress paths of constant Lode angles or equivalently

constant intermediate principal stress ratio b = (σ2 − σ3)/(σ1 − σ3) show that a

critical state fabric surface in the deviatoric plane can be described by an inverted

Lade’s curve in the form of (Thornton, 2000; Thornton and Zhang, 2010)

η∗ =
(IΦ

1 )3

2IΦ
1 I

Φ
2 − 3IΦ

3

(4.7)

in which IΦ
1 , IΦ

2 and IΦ
3 are the invariants of fabric tensor Φij, and η∗ is a material

constant. For a dense polydisperse system of elastic spheres with sizes ranging from

0.25 mm to 0.33 mm and interparticle friction coefficient µ =0.5, Thornton and Zhang

(2010) found η∗ = 1.810 ± 0.001 at a mean effective stress p = 100 kPa. It should

be noted that η∗ = 1.8 corresponds to an isotropic state. Using spherical particles,

Barreto and O’Sullivan (2012) showed that η∗ at the peak stress state tended to

increase with interparticle friction, η∗ = (5.488/3)µ0.0034.

In a series of DEM simulations with interparticle friction coefficient µ = 0.5 un-

der different mean effective stresses (from p = 80 kPa to 2000 kPa), Zhao and Guo

(2013) showed η∗F = 1.805 ± 0.0025. However, they argued that “although the use

of an invariant function in the form of Equation (4.7) considerably reduces the range

of variation for all data, it still cannot unify all cases uniquely”. Alternatively, they

defined a fabric anisotropy parameter Kc that is the first joint invariant of the devi-

atoric stress tensor and the deviator fabric tensor expressed as Kc = s
(cv)
ij F

(cv)
ji . They

further proposed a relation between Kc and the mean effective stress p at critical
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state as

Kc = s
(cv)
ij F

(cv)
ij = α (p)ζ (4.8)

in which α = 0.41 ± 0.01 and ζ = 0.894, which were determined for an assembly of

polydisperse spherical particles.

While both relations in Equations (4.7) and (4.8) can describe the fabric tensor

at the critical state by functions of fabric invariants, the latter relates the fabric and

stress surfaces more directly. Moreover, both studies suggest that the critical fabric

surface is represented by an inverted Lade’s failure surface. In the following section,

different fabric surfaces are represented using the equation by Zhao and Guo (2013).

The convexity of fabric surfaces is discussed.

4.2.2 Fabric surfaces based on different failure criteria

In this study, the relationship between the deviatoric fabric tensor Fij and the devi-

atoric stress tensor sij is assumed at the critical state to be

s
(cv)
ij F

(cv)
ji = Kc (4.9)

where Kc is a given by Equation (4.8).

As discussed in the literature review, using the Haigh-Westergaard invariants, the

expressions for Matsuoka-Nakai and Lade-Duncan criteria can be written as

rcv =
ξ

λ
[sin(

π − sin−1(ωsin3θ)

3
)]−1 (4.10)

where ξ = I1√
3

and r =
√

2J2. λ and ω are determined using the equations in Table
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4.1.

Table 4.1: Equations for λ and ω

Yield criterion λ ω

Matsuoka-Nakai λMN =
√

2
√

KMN−3
KMN−9

ωMN = KMN

KMN−3

√
KMN−9
KMN−3

Lade-Duncan λLD =
√

2KLD

KLD−27
ωLD =

√
KLD−27
KLD

where KMN = 9−sin2ϕ0

1−sin2ϕ0
= 9 + 8tan2ϕ0 and KLD = (3−sinϕ0)3

(1+sinϕ0)(1−sinϕ0)2
, in which ϕ0 is

the friction angle under triaxial compression stress conditions. The Mohr-Coulomb

equation can be expressed in the form of

rcv =

√
2ξ sinϕ0√

3 cos θ − sin θ sinϕ0

(4.11)

Referring to Oda (1993) and Zhao and Guo (2013), sij and Fij can be considered

as coaxial at critical state. As a result, s
(cv)
ij F

(cv)
ji can be related to the stress invariant

r and the fabric invariant rF at the crtical state via rcvr
F
cv = scvijF

cv
ji . It follows that

rFcv =
sijFij
rcv

=
Kc

rcv
(4.12)

which defines the critical fabric surface on the π−plane. Figure 4.1 shows the stress

and fabric surfaces on the π−plane at critical state when using Matsuoka-Nakai (MN),

Lade-Duncan (LD) and Mohr-Coulomb (MC) failure criteria, respectively, when the

triaxial compression friction angle ϕ0 varies from 10◦ to 55◦ and p = 100kPa.

As shown in Figure 4.1d, the fabric surfaces corresponding to the Mohr-Coulomb

failure criterion are not convex regardless of the value of ϕ0. The nonconvexity occurs

not only at b = 0 (axes σ1, σ2, and σ3) but also at b = 1, which is represented by

the middle lines between two axes; i.e. the dashed lines in the figure. In Figure 4.1e
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(a) Mohr-Coulomb stress
surfaces

(b) Matsuoka-Nakai stress
surfaces

(c) Lade-Duncan stress sur-
faces

(d) Mohr-Coulomb fabric
surfaces

(e) Matsuoka-Nakai fabric
surfaces

(f) Lade-Duncan fabric sur-
faces

Figure 4.1: Comparison of stress and fabric surfaces

and Figure 4.1f that correspond to the Matsuoka-Nakai and Lade-Duncan failure

criteria respectively, nonconvexity is observed when the friction angle is relatively

large. Figure 4.2 compares the nonconvexity of the critical fabric surfaces associated

with the three failure criteria at ϕ0 = 30◦. The nonconvexity of fabric surface is a

little more significant when using the MN criterion than the LD criterion.

Figures 4.3a and 4.3b compare the fabric surfaces associated with the MN and

LD criterion at ϕ0 = 30◦ with a circle for reference to demonstrate the level of

nonconvexity. Note that these surfaces are plotted with similar sizes for demonstration

purposes only. Figure 4.3c provides the DEM simulation results from the study of

Zhao and Guo (2013).
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(a) Stress surfaces (b) Fabric surfaces

Figure 4.2: Stress and fabric surfaces under ϕ0 = 30◦, p=100kPa

(a) MN equations (b) LD equations (c) DEM results (Zhao and
Guo, 2013)

Figure 4.3: Comparison of stress and fabric surfaces when ϕ0 = 30◦

The convexity for the stress surface (when used as a yield surface or loading func-

tion) is of fundamental importance in setting variational inequalities for plasticity

(Lions and Duvaut, 1976) and the basis of limit analysis of geomechanics problems

in geotechnical engineering. It has also been supported by results of numerous ex-

perimental work and DEM simulations. One may, therefore, conclude that, in the

absence of a clear and specific motivation, it is not sensible to employ a yield function

that violates convexity (Bigoni and Piccolroaz, 2004). As a special case of loading
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surfaces, the stress surface at the critical state should be convex as well.

While the convexity of yield surfaces and the critical state stress surface are gen-

erally accepted and approved, the convexity of the critical state fabric surface has

not been examined. However, the convexity of fabric surfaces at critical states has

been observed from DEM simulations (Thornton, 2000; Ng, 2004, 2005; Thornton

and Zhang, 2010; Barreto and O’Sullivan, 2012). Therefore, at this stage, the con-

vexity requirement should be considered when establishing a fabric surface. From

Figure 4.2b, the fabric surface obtained using the Lade-Duncan failure criterion best

satisfies the requirement of convexity. To use an inverted LD surface also agrees with

findings from DEM studies as discussed previously. Therefore, the LD criterion is

chosen in this study in the following sections.

4.3 Fabric evolution law and assessment

The evolution of fabric is an important component of a stress-strain model for granular

materials. Two different approaches have been used to describe the fabric evolution,

namely strain approach and stress approach, in the literature. In the strain approach,

the rate change of Fij is assumed to be an isotropic tensor-valued function of the rate

of plastic strain deviator epij, the current value of Fij and the void ratio e, i.e.

Ḟij = Ḟ (Fij, ė
p
ij, e) (4.13)

When further assuming that the principal axes of Ḟij may be considered to be coaxial

with the principal axes of plastic strain rate deviator ėpij, the evolution of fabric may
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then be expressed as (Pietruszczak and Krucinski, 1989)

Ḟij = [g1(e) + g2(e)I2F ] ėpij (4.14)

where I2F = FklFkl/2. The functions g1(e) and g2(e) should reflect some basic trends

in the evolution of soil fabric.

Experimental evidence shows that at very large deformation, the granular material

may reach an ultimate state at which the fabric reaches a “saturated” state (i.e.

Ḟij = 0), even though the plastic strain deviator is still accumulated beyond this

point. Unfortunately, Equation (4.14) cannot reflect this property. Hence, the stress

approach for the description of fabric evolution is introduced.

Extensive studies on the micromechanical analysis of granular materials have re-

vealed that, regardless of the inherent internal structure, the distribution of contact

normal changes in such a manner as to produce a greater concentration of contact

normals in the direction of major principal stress (Biarez and Wiendieck, 1963; Oda,

1972b; Oda and Konishi, 1974a; Oda et al., 1980). Oda (1993) suggests that there is a

linear relationship between the fabric ratio
√
JΦ

2 /I
Φ
1 and the stress ratio

√
J2/I1 with a

certain saturated state for the concentration of contact normals at large deformation.

Herein I1 and IΦ
1 are the first invariants of the stress and fabric tensors while J2 and

JΦ
2 are the second invariants of the deviatoric stress and fabric tensors respectively.

The results of discrete element simulations for granular materials under different con-

ditions also show certain correlations between the stress ratio and the fabric ratio.

For example, Antony et al. (2004) suggested (σ1− σ2)/(σ1 + σ2) ≈ (1/2)(Φ11/Φ22)1/2

for 2D granular materials, while Maeda et al. (2006) proposed a different relation

such that σ1/σ2 ≈ (Φ11/Φ22)1/2. Similar findings were reported by Suzuki and Kuhn
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(2013) and Sazzad (2014).

When shearing a granular material with inherent fabric, according to experimental

measurements and the results of DEM simulations, contact normals tend to re-orient

themselves in the direction of major principal stress so as to maintain the resistance to

external forces. As a result, the direction of the major principal fabric has a tendency

to follow that of the major principal stress.

In this study, the fabric evolution was established using the stress-based approach.

The rate of fabric change Ḟij was related to the rate of deviator stress ratio η̇ by

taking into account the current stress and fabric states; i.e., Ḟij = Ḟ (Fij, η, θσ̇, η̇).

The following assumptions were made when establishing the fabric evolution law:

(a) Regardless the initial fabric state, a granular material has an ultimate surface

of fabric tensor at the critical state. This ultimate fabric state satisfies Equation

(4.9);

(b) The change of fabric tensor Ḟij is proportional to the difference between the

critical state fabric tensor and the current fabric tensor F
(cv)
ij − Fij;

(c) The deviator stress tensor sij and the deviator fabric tensor Fij are coaxial at

the critical state.

Based on these assumptions, the following functional form of fabric evolution law

is assumed

Ḟij =
η̇

η(cv) − η
(F

(cv)
ij − Fij) (4.15)

where Fij and F
(cv)
ij are the current and critical state deviatoric fabric tensors, η and

η(cv) are the current and critical state deviatoric stress ratios. F
(cv)
ij and η(cv) are

determined using a linear projection rule with the same Lode angle θσ̇. η(cv) and
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F
(cv)
ij can be expressed in terms of rcv and rFcv as

η(cv) =

√
2rcv
ξ

(4.16)

F
(cv)
ij =

√
2

3
rFcv


sin(2

3
π − θσ̇) 0 0

0 −sinθσ̇ 0

0 0 sin(4
3
π − θσ̇)

 (4.17)

where rcv, r
F
cv are obtained from Equations (4.10) and (4.12), respectively.

While the deviatoric stress tensor sij and the deviatoric fabric tensor Fij are

considered coaxial at the critical state, during the deformation process, the stress

and fabric tensors are not necessarily coaxial, even though ṡij and Ḟij are coaxial as

described by Equation (4.15). During the loading process, the major principal fabric

component gradually rotates from its current direction towards the ultimate state

at which it becomes coaxial with the major principal stress direction. This rotation

process is generally stress-path dependent.

4.3.1 Fabric evolution in monotonic loading

In this study, the Lade’s surface for critical stress states is used to generate the

critical fabric surface and hence the fabric evolution law. In the following illustrations,

without loss of generality, an initial deviator fabric tensor of the material is assumed

as

Fij =


0.05 0 0

0 −0.025 0

0 0 −0.025


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Figure 4.4 demonstrates the fabric evolution as described by Equation (4.15) when

using Lade’s expression as the ultimate stress surface. The major principal stress is

applied from different directions, initially making an angle δ0 with the major princi-

pal fabric direction. The angle δ is introduced here to represent the angle between

the major incremental principal stress (σ̇1) direction and major principal fabric (F1)

direction. For monotonic loading under isotropic consolidation, direction of σ̇1 is iden-

tical with that of σ1. For cross-anisotropy materials, δ is the same as α in Figure 3.1,

since the major principal fabric direction is identical with the normal of the bedding

plane.

The specimen was sheared by keeping the mean effective stress p as a constant

along a stress path with b = 0 (i.e., σ2 = σ3). Figure 4.4a and Figure 4.4b show the

variation of angle δ and the magnitude of rF for different cases.

(a) Evolution of δ (b) Anisotropic fabric measure rF

Figure 4.4: Fabric evolution at different initial fabric inclination angles

Regardless of the value of δ0 at the initial state, with the increase of q/p, δ decreases

gradually and approaches a small value, indicating the fabric tensor and the stress

tensor are becoming coaxial. The variation rate of δ with respect to q/p is significantly

affected by δ0. In general, with the increase of δ0, δ decreases more dramatically when
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q/p increases at the beginning of loading, which implies a dramatic rotation of the

major principal fabric component direction. With the increase of q/p level, the rate

of fabric rotation decreases gradually while δ approaches zero, as shown in Figure

4.4a. The evolution of the fabric deviator measured by rF with the stress ratio q/p is

affected by δ0 as well. In the case of insignificant initial non-coaxiality (i.e. a small

δ0), rF tends to increase monotonically with q/p, which implies that the applied

stress increases the degree of anisotropy. On the other hand, for large values of δ0,

90◦ for the maximum, the increased stress ratio tends to reduce the degree of fabric

anisotropy initially, as shown in Figure 4.4b. However, at a higher q/p level, the

induced anisotropy becomes significant in all cases.

(a) 3D Representation (b) 2D orthographic projection

Figure 4.5: Demostration of fabric tensor by ellipsoid

A more intuitive way to demonstrate the variation of fabric is to use a fabric

ellipsoid to represent the fabric tensor. The fabric ellipsoid is plotted by using the

three principal fabric components as radii, with the rotation angle being determined
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by the direction of the major principal fabric component. In Figure 4.5a, the ellipsoid

with the solid surface represents a fabric tensor with strong anisotropy, whose major

principal fabric component makes an angle of 45◦ with respect to the z-axis direction.

For comparison purposes, Figure 4.5a shows another fabric ellipsoid with the meshed

surface that has the same principal fabric components but the major principal fabric

is in the direction of the z-axis. The three views of the fabric ellipsoid are shown in

Figure 4.5b.

Figure 4.6: Evolution of fabric during loading

Now we examine the rotation of fabric tensor during a loading process when the

major principal stress direction initially makes an angle of δ0 = 60◦ with the major

principal fabric direction. During the loading process, the major principal incremen-

tal stress direction is fixed, but the fabric tensor rotates owing to the evolution of

fabric. For simplicity, the major principal stress direction is selected as the z-axis

to illustrate the rotation of fabric ellipsoid. Figure 4.6 shows the evolution of fabric

tensor corresponding to the curve in Figure 4.4 via the rotation and the change of

geometry of the fabric ellipsoid.
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4.3.2 Fabric evolution induced by cyclic loading

Equation (4.15) can also be used to describe fabric evolution induced by cyclic loading.

For the case with δ0 = 60◦, discussed previously in Figure 4.6, when cyclic loading is

applied in the direction of the z-axis, the evolution of fabric is conceptually illustrated

in Figure 4.7 (from the view of x-z plane). Obviously, the evolution of fabric during

the loading stage is the same as that in the monotonic loading case shown in Figure

4.6. During unloading, the major incremental principal stress direction changes from

vertical to horizontal. It should be noted that the values of F
(cv)
ij and η(cv) are different

during the loading and unloading processes because of the change on θσ̇. More details

about the stress-strain model including fabric evolution will be discussed in Chapter

5.

Figure 4.7: Evolution of fabric during loading and unloading

Figure 4.8 shows the rotation of the major principal fabric direction during a

complete one-way loading-unloading process with the stress path being illustrated in

Figure 4.8c on the π-plane. The loading stage and the unloading stage both contain

100 increments, and the maximum stress ratio is q/p = 0.72. The rotation of the

major principal fabric direction relative to σ̇1 is illustrated in Figure 4.8a. It starts

at δ0 = 60◦ and decreases dramatically as soon as the loading begins. At N = 100

with q/p = 0.72, the angle δ is close to 0◦. When the unloading begins, the major
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(a) Major principal fabric direction δ (b) Anisotropic fabric measure rF

(c) One-way loading path on π-plane

Figure 4.8: Demostration of fabric rotation during one cycle of loading and unloading

principal incremental stress changes direction and a sudden change of δ is observed.

It should be noted that, during unloading, the directions of the major principal stress

and the major principal incremental stress are not identical. It is more convenient

to compare the directions of the major principal fabric component and the major

principal incremental stress. As we can see from the unloading stage of Figure 4.8a,

δ decreases again, implying that the non-coaxiality between the stress and fabric

tensors is decreasing. The evolution of the fabric anisotropic measure rF is shown in

Figure 4.8b. It increases during loading and decreases during unloading. However,
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after a cycle of loading and unloading, the final fabric measure rF is slightly different

from its initial value. This implies that continuous fabric evolution is possible during

cyclic loading.

(a) Change of δ under a two-way
cyclic loading (b) Two-way stress path on π-plane

Figure 4.9: Variation of δ during a two-way cyclic loading

Figure 4.9a shows the continuous rotation of the fabric direction during a two-

way cyclic loading test. Figure 4.9b shows the stress path on the π-plane. Different

from the one-way cyclic loading, the cyclic stress is applied in different directions

alternatively that corresponds to a 90◦ jump in the major principal stress direction.

As a result, one expects different ways of principal fabric rotation during the cyclic

loading process.

4.3.3 Modified dilatancy formulation with the effect of fabric

A proper dilatancy formulation for granular materials should consider the effect of

barotropy (stress level), pyknotropy (void ratio) and anisotropy (microstructure). In

general, a denser granular material tends to dilate more when sheared and the dila-

tion tends to be suppressed under increased mean effective stress level. For granular

materials with inherent anisotropy, shear tends to induce higher dilation when the
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major principal stress is the direction of the major principal fabric component (i.e.,

σ1 is perpendicular to the bedding plane). Some of the existing dilatancy formula-

tions can reasonably capture the stress level and void ratio dependency (Vermeer and

De Borst, 1984; Wan and Guo, 1998; Li and Dafalias, 2012). However, the proper

consideration of anisotropy is usually missed.

To address the effect of barotropy (stress level), pyknotropy (void ratio) and

anisotropy (micro-structure) on dilatancy, in this study, the following formulation

for dilatancy D is proposed:

D = −
ε̇pv(s)

ε̇pq(s)
= d[η − ηcv(θ)emζ ] (4.18)

ζ = (e− ecr) + k[1− (
sijFij
Kc

)A] (4.19)

where d, m, k are material constants, ηcv is the stress ratio at the projection of the

current stress state onto the critical stress surface. ε̇pq(s) is the equivalent shear strain

increment defined as ε̇pq(s) = 2
3

√
3J

(ε̇p)
2 , with J

(ε̇p)
2 being the second deviator invariant

of the incremental plastic strain tensor ε̇pij. For a convential triaxial compression test

on a isotropic material, ε̇pq(s) = 2
3
(ε̇p1 − ε̇

p
3). A is a measure of the non-coaxiality angle

δFij ,sij between Fij and sij and is expressed as

A = cos δFij ,sij = nFijn
s
ij (4.20)

with

nFij =
Fij√
FklFkl

, nsij =
sij√
sklskl

Alternatively, δFij ,sij can be related to the Lode angles of Fij and sij via δFij ,sij =
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θF − θσ. The value of A varies between −1 and 1, with A = 1 representing a coaxial

condition with δFij ,sij = 0 between deviatoric fabric and stress tensors. It should be

noted that D > 0 stands for dilatancy, while D < 0 reflects contraction (or shear

induced volumetric compaction).

The effect of fabric on dilatancy reflected in the proposed formulation, Equation

(4.18), is twofold. Firstly, based on the assumption used to build the fabric evolution

law, the term sijFij/Kc increases from 0 to 1 during a loading process. Under a

condition where the fabric and stress tensors are coaxial, the term k[1− (
sijFij

Kc
)A] in

Equation (4.19) decreases from k to 0, meaning that dilatancy is a function of stress

states and fabric evolution during the deformation process. Secondly, the term A

describes the influence of the degree of non-coaxiality between the fabric and stress

tensors. When Fij and sij are coaxial, A = 1. With an increase of the non-coaxiality

between Fij and sij, the value of A tends to decrease with Amin = −1. As a result,

variation of A from 1 to −1 may result in significant increase of k[1− (
sijFij

Kc
)A] and

ζ may increase significantly in Equation (4.19) and hence reduced dilation according

to equation (4.18). More specifically, the value of A changes between 1 and -1 under

different combination of α and b, as shown in Figure 4.10. Based on Equation (4.19),

a larger value of A means a larger dilatancy. As we can see, the largest value of A is

found at α = 0◦ and b = 0, and value of A decreases with both α and b.

During a loading process with the shear strain increasing monotonically, if the

applied stresses and the fabric tensor are initially non-coaxial, the fabric tensor would

rotate in such a way that the deviator fabric becomes coaxial with the stress tensor

at the critical state. In other words, the value of A should approach 1 at the critical

state. Figure 4.11 illustrates the variation of A, according to the proposed fabric
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Figure 4.10: Value of A under different loading conditions

evolution law, during the loading process under different conditions with various

initial non-coaxiality.

The performance of the dilatancy formulation is illustrated in Figure 4.12. The

initial angle of α has a large impact on the initial dilatancy, which is consistent with

laboratory observations. An increase of b is associated with a decrease of dilatancy. As

the stress ratio increases, the influence of initial anisotropy on the dilatancy decreases.

For the same stress path (described by b), the final dilatancy from different initial

fabric conditions becomes unique. The dilatancy at critical stress approaches zero for

all loading conditions.
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(a) (b)

(c) (d)

(e)

Figure 4.11: Variation of A during the loading process under different conditions

4.4 Framework of a constitutive model for granu-

lar materials

In this section, a constitutive model is developed based on the proposed stress-

dilatancy equation. Since the current study focuses on the effect of fabric on shear
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Figure 4.12: Stress-dilatancy curves under different loading conditions

strength and dilatancy characteristics, the following assumptions are made when de-

veloping the constitutive model:

(1) Plastic strain dominates the sand deformation, so the influence of elastic anisotropy,

if any, is considered negligible. As a result, the effect of fabric on the elastic behaviour

is neglected.

(2) Lade’s criterion is used in the yield function to determine the stress and fabric

surfaces at the critical state.

The framework of the stress-strain model proposed here is primarily based on the

model by Guo (2000). The novel features of the proposed stress-strain model include:

(1) the development of a tensor-based fabric evolution law and (2) the dilatancy

equation which is incorporated with the evolving fabric tensor. The details of this

model are summarized as follows.

107



Ph.D. Thesis - Xing Li McMaster - Civil Engineering

4.4.1 Elastic strains

The total strain increment ε̇ is composed of elastic strain increment ε̇e and plastic

strain increment ε̇p . Among them, the elastic strain increment ε̇e can be determined

by the generalized Hooke’s law, and the plastic strain increment ε̇p can be decomposed

into the volumetric strain increment ε̇p(c) and the deviatoric strain increment ε̇p(s).

Using the empirical equations proposed by Iwasaki et al. (1978), the elastic shear

modulus is expressed as a function of void ratio e and the mean effective stress p:

G = G0
(2.17− e)2

1 + e

√
p

pref

in which pref = 1kPa and G0 is a constant. The elastic shear strain increment and

the elastic volumetric strain increment can, therefore, be expressed as

ε̇eq =
q̇

3G
, ε̇ev =

ṗ

B

in which the bulk modulus B can be determined from the shear modlus G and the

Poisson’s ratio v as B = 2(1+v)
3(1−2v)

G.

4.4.2 Strains caused by compaction mechanism

The material’s deformation induced by change in the mean effective stress is controlled

by the compaction mechanism. An associated flow rule is assumed with the yield and

the plastic potential functions being

gc = fc = p− pc (4.21)
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in which pc is the consolidation pressure as obtained from the virgin compression line

at a given void ratio.

When the mean effective stress p varies in a relatively small range, the consolida-

tion curve of sand is assumed to be straight line in the e− ln p plane,

e = e0 − λ ln(
p

p0

) (4.22)

The total plastic strain increments, ε̇(c), caused by the compaction mechanism is

therefore obtained as

ε̇v(c) = ε̇ev + ε̇pv(c) =
λ

1 + e0

ṗ

p
(4.23)

However, if the mean effective stress p varies in a large range, the following expression

for consolidation curve is more accurate (Guo, 2000):

e = e0 exp[−(
p

hl
)nl ] (4.24)

in which hl and nl are two material constants. The instantaneous slope λ of the

e− ln p curve can be expressed as

λ = −p ė
ṗ

= nle(
p

hl
)nl (4.25)
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4.4.3 Plastic strains caused by shearing mechanism

Assuming a combined volumetric-deviatoric strain hardening mechanism, the yield

function associated with the plastic shearing mechanism is expressed as

fs(p, q, θ, ε
p?
q , e) = q − ηm(θ, εp?q , e)p = q −

εp?q
a+ εp?q

(
e

ecr
)−βηcv(θ)p = 0 (4.26)

in which εp?q is the equivalent plastic shear strain of the strain tensor factored with the

fabric tensor such that εp?ij = εpikΦkj. The void ratio ecr at the critical state depends

on the mean effective stress at the critical state by following

ecr = ecr0exp[−(
p

hcr
)ncr ] (4.27)

where ecr0, hcr and ncr are constants.

Using the failure criteria in Equation (4.10), the critical state stress ratio ηcv can

be determined as

ηcv(θ) =

√
3/2rcv√
3ξ/3

=
3√

2λLD
[sin(

π − sin−1(ωLDsin3θ)

3
)]−1 (4.28)

in which λLD and ωLD are calculated using the equations in Table 4.1.

The plastic strains caused by shearing mechanism is determined using a non-

associated flow rule. Based on the modified dilatancy fomulation that considering

the effect of fabric, the plastic potential function is written as

gs = q −D(θ)p (4.29)
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in which D(θ) is given in Equation (4.18).

4.4.4 Incremental stress-strain relations: q-p space

The total strain increments are expressed as

ε̇v = ε̇ev + ε̇pv = ε̇ev(c) + ε̇pv(c) + ε̇pv(s) =
λ

1 + e0

ṗ

p
+ Λ̇

∂gs
∂p

(4.30)

ε̇q = ε̇eq + ε̇pq =
1

3G
q̇ + Λ̇

∂gs
∂q

(4.31)

where the value of the plastic multiplier Λ̇ can be obtained from the consistency

condition fs(p, q, θ, ε
p
q , e) = 0. Finally, the incremental stress-strain relation is given

as ε̇q
ε̇v

 =

C11 C12

C21 C22

(q̇
ṗ

)
(4.32)

with the matrix C being the compliance operator, and its components’ values are

C11 = 1
3G

+ 1
H
∂gs
∂q

∂fs
∂q

C12 = 1
H
∂gs
∂q

∂fs
∂p

C21 = 1
H
∂gs
∂p

∂fs
∂q

C22 = λ
(1+e0)p

+ 1
H
∂gs
∂p

∂fs
∂p

in which

H = −∂fs
∂εpq

∂gs
∂q

+ (1 + e0)
∂fs
∂e

∂gs
∂p

∂fs
∂q

= 1
∂gs
∂q

= 1

∂fs
∂p

= −ηm = −ηcv
εpq

a+ εpq
(
e

ecr
)−β
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∂gs
∂p

= −D = d(ηcve
mζ − η)

∂fs
∂εpq

=
∂fs
∂ηm

∂ηm
∂εpq

= −p[ a

(a+ εpq)2
](
e

ecr
)−βηcv

∂fs
∂e

=
∂fs
∂ηm

∂ηm
∂e

= βp(
εpq

a+ εpq
)(
e−β−1

e−βcr
)ηcv

So the final expression of the stress-strain relation is written as

ε̇q
ε̇v

 =

 1
3G

+ 1
H

−ηm
H

−D
H

Dηm
H

+ λ
(1+e0)p

(q̇
ṗ

)
(4.33)

By finding the inverse of the compliance matrix in Equation (4.33), the stress-

strain relationship can be alternatively expressed as

(
q̇

ṗ

)
=

D11 D12

D21 D22


ε̇q
ε̇v

 (4.34)

with D11 D12

D21 D22

 =

C11 C12

C21 C22


−1

=
1

Π

 C22 −C12

−C21 C11

 (4.35)

where

Π = C11C22 − C12C21 = (
1

3G
+

1

H
)(
Dηm
H

+
λ

(1 + e0)p
)− Dηm

H2
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4.4.5 Incremental stress-strain relations: generalized stress

space

From the consistency condition of the yield surface associated with the plastic shearing

mechanism,

ḟs =
∂fs
∂σij

σ̇ij +
∂fs
∂εpq

ε̇pq +
∂fs
∂εpv

ε̇pv = 0

∂fs
∂σij

De
ijkl(ε̇kl − ε̇

p
kl) +

∂fs
∂εpq

Λ̇
∂gs
∂q

+
∂fs
∂εpv

Λ̇
∂gs
∂p

= 0

the plastic multiplier is determined as

Λ̇ =
1

H

∂fs
∂σij

De
ijklε̇kl

with

H =
∂fs
∂σpq

De
pqrs

∂gs
∂σrs

− ∂fs
∂εpq

∂gs
∂q

+ (1 + e0)
∂fs
∂e

∂gs
∂p

The elastic constituent tensor De
ijkl is given as

De
ijkl =

vE

(1− 2v)(1 + v)
δijδkl +

E

2(1 + v)
(δikδjl + δilδjk)

where E is related to G as E = 2(1 + v)G. The incremental plastic strain tensor is

written as

ε̇pij = Λ̇
∂gs
∂σij

=
1

H

∂fs
∂σrs

De
rsklε̇kl

∂gs
∂σij

(4.36)

The incremental stress-strain relation can be written as

σ̇ij = Dep
ijklε̇kl = De

ijkl(ε̇kl − ε̇
p
kl) (4.37)
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From Equations (4.36) and (4.37), Dep
ijkl can be obtained as

Dep
ijkl = De

ijkl −
1

H
(De

ijpq

∂gs
∂σpq

∂fs
∂σrs

De
rskl) (4.38)

with

∂fs
∂σij

=
∂q

∂σij
−

εpq
a+ εpq

(
e

ecr
)−βηcv(θ)

∂p

∂σij
−

εpq
a+ εpq

(
e

ecr
)−βp

∂ηcv(θ)

∂θ

∂θ

∂σij
∂gs
∂σij

=
∂q

∂σij
−D(θ)

∂p

∂σij
− p∂D(θ)

∂θ

∂θ

∂σij
− p∂D(θ)

∂ζ

∂ζ

∂σij

where

∂q

∂σij
=

3sij
2q

∂p

∂σij
=

1

3
δij

∂θ

∂σij
=

√
3

2J
3/2
2 cos3θ

(
3J3

2J2

sij +
2

3
δijJ2 − sikskj)

∂ηcv(θ)

∂θ
=

3ωcos3θcos(π−sin
−1(ωsin3θ)

3
)

√
2λ
√

1− (ωsin3θ)2sin2(π−sin
−1(ωsin3θ)

3
)

∂D(θ)

∂θ
= (−demζ)∂ηcv(θ)

∂θ
=

−3dωemζcos3θcos(π−sin
−1(ωsin3θ)

3
)

√
2λ
√

1− (ωsin3θ)2sin2(π−sin
−1(ωsin3θ)

3
)

∂D(θ)

∂ζ
= −dmηcv(θ)emζ

∂ζ

∂σij
= −kA

Kc

Fij
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4.5 Model assessments

4.5.1 Material constants used in the constitutive model

In this section, the stress-strain responses of Ottawa sand under different stress condi-

tions were simulated using the proposed constitutive model. The proposed constitu-

tive model is subsequently accessed by comparing the model results with test results

presented in Chapter 3. The mean effective stress was kept constant at p = 100kPa

in all the laboratory tests and constitutive simulations.

Table 4.2: Material parameters of Ottawa sand

G0 = 2750kPa v = 0.29 ecr0 = 0.74 ϕcv = 30◦

hl = 426.8MPa nl = 0.43 a = 0.004 β = 2.3
hcr = 2867MPa ncr = 0.232 m = 5.3 k = 0.065
d = 1 Ω = 0.25 e0 = 0.59

As shown in Table 4.2, the proposed stress-strain model involve a total number of

15 model parameter. The first ten parameters for Ottawa sand, (G0, v, ecr0, ϕcv, hl,

nl, a, β, hcr, ncr), are the same as those determined by Guo (2000) based on laboratory

results. The following three parameters (m, k, d), which mainly control the dilatancy

properties of the sand, are determined using test results from test Series A (Table 3.2)

in this study. The initial degree of anisotropy Ω, which is defined as Ω = 2
3

√
3JF2 , is

determined by fitting measured data from test Series A. The initial void ratio e0 is

taken as the average measured values for different specimens via standard laboratory

tests.
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4.5.2 Comparison of calculated and measured results

Series A tests with b = sin2 α

Figure 4.13 compares the experimental stress-strain curves from Series A tests in

Chapter 3 and the corresponding simulation results using the proposed stress-strain

model. In general, the proposed stress-strain model reasonably reproduces the stress-

strain responses obtained from Tests A1 to A5, in which the intermediate principal

stress coefficient b and the major principal stress directions are different. In particular,

the deviator stress at the peak of the stress-strain curves decreases from A1 to A5.

The highest deviator stress value is obtained in test A1 with b = 0 and α = 0◦. The

lowest peak deviator stress is obtained in test A5 with b = 1 and α = 90◦. For test

A3 with b = 0.5 and α = 15◦, however, the simulation shows higher peak deviatoric

stress than laboratory measurement. In all cases, the critical states at large shear

strain are correctly captured.

Figure 4.13: Stress-strain curves from series A (tests and simulations)

Figure 4.14 compares the theoretical and experimental volumetric strain responses
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Figure 4.14: Volumetric strain against octahedral strain curves from series A (tests
and simulations)

under different loading conditions. The test results clearly show that dilatancy of the

specimens tends to decrease with the increase of b and α (from test A1 to A5).

This deformation trend is correctly reproduced by the proposed stress-strain model,

even though some differences are observed between the experimental and simulation

results for each individual test. While the critical deformation state is obtained at

large shear strains, the volumetric strains are slightly different from the experimental

results. This deviation is attributed to the function given in Equation (4.27) defining

the void ratios at the critical state. In addition, potential measurement error in the

laboratory tests also attributes to the differences between modelling and experimental

results.

Series B tests with b = 0 and Series C tests with b = 1

In these two series of tests, since the intermediate principal stress coefficient b is kept

constant, the effect of α (i.e., the principal stress direction) can be obtained directly.
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Figure 4.15: Stress-strain curves from series B (tests and simulations)

Figure 4.16: Stress-strain curves from series C (tests and simulations)

The stress-strain curves obtained from Series B and C tests are shown in Figures

4.15 and 4.16, respectively. In both series B (b = 0) and C (b = 1) tests, the peak

deviator stress decreases as the principal stress direction makes a larger angle with the

direction of the initial major principal direction of the material fabric. In particular,

for tests with b = 0 in series B, the peak deviatoric stress drops from 148kPa at
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α = 0◦ to 127kPa at α = 90◦; for tests with b = 1 in series C, the peak deviatoric

stress decreases from 137kPa at α = 0◦ to 98kPa at α = 90◦. Figures 4.17 and 4.18

present the volumetric strain against the octahedral shear strain plots for tests in

series B and C. Regardless of the b−value, there is a clear tendency that dilation is

suppressed when α is increased. In other words, the specimen tends to dilate more

when the major principal stress is perpendicular to the bedding plane.

Figure 4.17: Volumetric strain against octahedral strain curves from series B (tests
and simulations)

The comparisons between results from constitutive modelling and laboratory tests

reveal that the proposed stress-strain model can reasonably reproduce the stress-

strain responses in Series B tests (as can be observed in Figs. 4.15 and 4.17) with the

influence of major principal stress direction on the peak stress states and dilatancy

of the material. The critical states on both the stress-strain curves and the volume

change curves are also captured. The model can satisfactorily describe the effect of

principal stress direction on the stress-strain behaviour of granular soils, particularly

when the intermediate principal stress coefficient is low (e.g., at b = 0). However,
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Figure 4.18: Volumetric strain against octahedral strain curves from series C (tests
and simulations)

the model predictions for the stress-strain responses in series C tests (b = 1) have

much lower peak deviatoric stresses than laboratory test results (Figure 4.16) while

the volumetric strain responses are satisfactory (Figure 4.18). The inconsistency

between the experimental and simulated stress-strain curves in Figure 4.16 could be

attributed the non-uniformity of stress distribution in specimens during laboratory

tests; as discussed in Section 3.1.3.

Figure 4.19b compares the peak failure surfaces on the octahedral plane predicted

by the proposed model with the test results. The solid circulars represent the sim-

ulated failure stress states, and the four red lines represent the failure envelopes

corresponding to α = 0◦, α = 30◦, α = 60◦ and α = 90◦, respectively, from the

outside inwards. The proposed model successfully describes the influence of principal

stress direction on the failure criterion as observed from laboratory tests. Similar

experimental observations can be found in, for example, Pradhan et al. (1988) and

Lade et al. (2013).
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(a) failure states obtained from tests (b) simulated failure stresses

Figure 4.19: Failure states on the π-plane from series A, B and C (tests and simula-
tions)

Figure 4.19a presents the peak stress states in test series A, B, and C on the octa-

hedral plane. For comparison purposes, the benchmarked Lade-Duncan, Matsuoka-

Nakai (M-N) and Mohr-Coulomb (M-C) failure surfaces are also plotted in the figure.

Both the experimental data and the proposed model show that the Matsuoka-Nakai

model is suitable for stress conditions in series A tests with b = sin2 α. On the other

hand, the Lade-Duncan model better matches the data of peak stress states in tests

when α is relatively small; i.e., when the major principal stress direction marginally

deviates from the direction of the major principal direction of fabric in Tests A1, B1

and C1 (α = 0◦), Test A2 (α = 30◦), Tests C2 and C3 (α = 30◦ and 45◦).

4.6 Conclusions

This chapter proposed a constitutive model for granular materials with the influence

of fabric being properly considered. The fabric evolution law was developed based
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on the assumption that, during the loading process, the fabric state develops towards

an ultimate state that is related to the critical state of deformation. A modified

dilatancy formulation was proposed to address the effect of microstructure on shear-

induced volume change characteristics in addition to the effect of density and stress

level. A constitutive model was then developed based on the fabric evolution law and

the fabric-dependent dilatancy formulation within the framework of elasto-plasticity.

After the parameters in the model were calibrated using experimental results of hollow

cylinder apparatus tests with b = sin2α, the model performance was verified with

laboratory test results. By comparing the simulation results with the test results,

the model was found to be capable of reflecting both directional and stress path

dependency of granular material behaviours. Furthermore, the model’s capacity of

describing the peak deviator stresses was demonstrated by comparing with test results

on the π-plane.
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Chapter 5

Constitutive modelling of granular

material behaviour under cyclic

loading

5.1 Introduction

The constitutive models for cyclic behaviour of granular soils have been developed

in two distinct directions, namely (a) phenomenological models based on continuum

mechanics and the theory of plasticity, and (b) micromechanics-based models.

Among the plasticity based models, along with the kinematic hardening rules,

the bounding surface (Dafalias and Popov, 1977; Dafalias, 1986b; McDowell, 1985;

Ohno and Kachi, 1986; Bardet, 1986; Ellyin, 1989; Moosbrugger and McDowell, 1990)

is probably the most popular concept adopted. But sometimes a bounding surface

plasticity model may require numerous material parameters often lacking explicit

physical meanings. The hypoplasticity models (Kolymbas, 1991; Wu et al., 1996;
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von Wolffersdorff, 1996; Wichtmann et al., 2004; Niemunis et al., 2005) are another

class of models that conveniently describe geomaterial behaviour. Hypoplasticity

is attractive for the development of stress-strain models in the cyclic regime, since

it does not need to introduce a yield surface, which is often difficult to define for

geomaterials. However, the lack of physical meaning of material parameters in the

models and their determination greatly limit the application of this class of models.

The stress-strain model for granular material can also be developed based on

micromechanical analysis. In this approach, the interaction of soil grains at the

particle level is described by some simple contact laws, either linear or nonlinear. With

the help of the principle of homogenization, the interaction forces and the relative

displacements at particle contacts can be related to the average stresses and strain

of a representative element volume (REV) (Chang and Hicher, 2005; Nicot et al.,

2005; Andrade and Tu, 2009). The spatial arrangement of particles and hence the

internal structure (or fabric), as well as the effect of particle interaction can be taken

into account, by introducing the distribution of contact normal and contact forces.

Dilatancy is the natural consequence of internal constraints when particles rearrange

themselves during deformation. The advantages of the micromechanics based stress-

strain model include the relatively easy characterization of fabric and its evolution.

In addition, there is no need for yield surfaces or plastic potentials. However, it is

difficult for this type of models to describe an engineering soil or boundary-valued

problems.

Even though there are reasonably good models for granular materials subjected

to monotonic loading, when these models are used for cyclic loading, second-order

inaccuracy tends to accumulate which may no longer be acceptable, particularly when
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the change of principal stress directions are involved. This is mainly because of the

complexity of dilatancy and fabric evolution under cyclic loading.

This chapter develops a constitutive model for the cyclic behaviour of granu-

lar materials by considering critical state, stress-dilatancy, and fabric changes. In

particular, plastic flow during loading and unloading is governed by a modification

of the hardening rule developed in Chapter 4 with state parameters describing py-

knotropy, barotropy and anisotropy. The dilatancy formulation with embedded fab-

ric and the concept of critical fabric surface are extended to compute shear-induced

volume changes during unloading. The proposed model used the concept of hypo-

plasticity, where the strain rate was associated to the stress rate. Finally, simulations

of drained sand behaviour in cyclic loading regime are presented to demonstrate the

capabilities of the model.

5.2 A kinematic hardening plasticity model with

fabric effect

5.2.1 Loading surface and hardening law

For granular materials, there is a small purely elastic regime enclosed by a yield surface

during a loading process as shown in Figures 5.1 and 5.2. This elastic core moves

together with the current stress state in the stress space. During cyclic loading,

the yield surface experiences both expansion (isotropic hardening) and translation

(kinematic hardening). The loading surface of the shear mechanism takes the same

form as that proposed in Equation (4.26) for monotonic loading:
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Figure 5.1: Evolution of loading and yield surfaces in cyclic loading (Guo 2000)

Figure 5.2: Mobilization of friction angle during initial loading and unloading (Guo
2000)

fs = q − η̄m(θ)p = q −
ε̄pq

a+ ε̄pq
(
e

ecr
)−β η̄cv(θ)p = 0 (5.1)

in which η̄m is the modified mobilized stress ratio and η̄cv is its counterpart at the

critical state which are defined as

η̄m = ηm(θ)− Cη? (5.2)

η̄cv = ηcv(θ)− Cη? (5.3)
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where ηm is the current mobilized stress ratio, η? is the stress ratio at the onset of

loading (including initial loading and reloading) or unloading, and ηcv is the critical

stress ratio corresponding to the current Lode angle. C is the loading index with

C = 1 at loading/reloading and C = −1 at unloading. The stress surface and the

fabric surface at the critical state are the same as those defined for monotonic loading

in Chapter 4. To reflect the effect of deformation history as well as the differences

between loading and unloading processes, the equivalent plastic shear strain ε̄pq in

equation (5.1) is defined as

ε̄pq = εpq − Cε
p
q(m) (5.4)

with εpq(m) being the plastic shear strain at the onset of unloading or reloading.

As for the deformation due to consolidation mechanism, a vertical cut-off surface

similar to Equation (4.21) is used:

fc = p− pc

where pc refers to the consolidation pressure as obtained from the virgin compression

line at a given void ratio which reflects both hydrostatic and shear-induced volume

changes. In this sense, it is clear that both the evolutions of the cap and shear yield

surfaces are coupled.

5.2.2 Dilatancy formulation and plastic potential under cyclic

loading

Similar to monotonic loading, a plastic potential function is needed to determine the

plastic flow direction. The plastic potential function gs is driven by the modified
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Rowe’s stress dilatancy formulation. In the p − q space, the plastic potential gs has

the same functional form as Equation (4.29):

gs = q −D(θ)p

in which D(θ) is the dilatacy factor.

For the dilatancy formulation in cyclic loading regime, the parameter A in Equa-

tion (4.19) is modified to A′ to reflect the change in the direction of stress increment.

A′ is defined as

A′ = nFijn
ṡ
ij (5.5)

where nFij and nṡij are unit-norm tensor-valued directions of the deviatoric fabric tensor

and deviatoric incremental stress tensor defined as

nFij =
Fij√
FklFkl

, nsij =
ṡij√
ṡklṡkl

respectively. The dilatancy formulation in cyclic loading is then expressed as

D = −
ε̇pv(s)

ε̇pq(s)
= d[η − η̄cv(θ)emζ

′
] (5.6)

ζ ′ = (e− ecr) + k[1− (
sijFij
Kc

)A′] (5.7)

where d, m, k are all positive material constants. η̄cv is a function of the Lode angle,

and is calculated from Equation (5.3). ε̇pq(s) is defined as ε̇pq(s) = 2
3

√
3J

(ε̇p)
2 , where J

(ε̇p)
2

is the second deviator invariant of the incremental plastic strain ε̇p. Since A′ reflects

the non-coaxility angle between Fij and ṡij, change from loading to unloading will
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result in different rate of dilatancy, as shown in Equation 5.7.

5.2.3 Evolution of fabric during cyclic loading

Similar to monotonic loading, the evolution of fabric under cyclic loading depends

on both the current stress and fabric states as well as the projections on the critical

stress and fabric surfaces. More specifically, the fabric evolution law in cyclic loading

is written as

Ḟij =
χη̇∥∥∥η(cv)

kl − ηkl
∥∥∥(F

(cv)
ij − Fij) (5.8)

where Fij and F
(cv)
ij are the current and critical state deviatoric fabric tensors, ηkl

and η
(cv)
kl are the current and critical state deviatoric stress ratio tensors. F

(cv)
ij and

η
(cv)
kl are determined using a linear projection rule with the same Lode angle θσ̇. χ

is a constant that controls the rate of fabric change with variation of stresses during

unloading. χ = 0.5 is chosen in this study.

Let µFij = F
(cv)
ij − Fij with µF =

∥∥µFij∥∥, and µσ =
∥∥∥η(cv)

kl − ηkl
∥∥∥. Then the ratio

µF/µσ reflects the rate of fabric change in Equation (5.8). µF and µσ are graphically

expressed in Figure 5.3 during loading, unloading, reloading, as well as arbitrary

loading conditions. “Stress state∗” and “fabric state∗” in the figures represent the

stress and fabric state at the onset of unloading or reloading respectively. During

unloading, the ratio µF/µσ is evidently larger than that in initial loading, thus the

changing rate of fabric increases significantly upon unloading. Figure 5.3c shows

µF and µσ during reloading, where the incremental stress is applied with the major

principal incremental stress perpendicular to the direction of the major principal

fabric component. Figure 5.3d shows µF and µσ during an arbitrary loading, where
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the initial fabric states can be anywhere within the fabric surface. The ultimate stress

and fabric states are both determined using the Lode angle of the incremental stress

tensor. A linear projection rule is used here together with the concept of ultimate

fabric surface.

(a) loading (b) unloading

(c) reloading (d) arbitrary loading

Figure 5.3: Variation of µF and µσ for loading, unloading, reloading, and arbitrary
stress paths

130



Ph.D. Thesis - Xing Li McMaster - Civil Engineering

5.2.4 Incremental stress-strain relation

The explicit form of the incremental stress-strain relation for cyclic loading uses the

general form as was given in Equation (4.37).

σ̇ij = Dep
ijklε̇kl

with

Dep
ijkl = De

ijkl −
1

H
(De

ijpq

∂gs
∂σpq

∂fs
∂σrs

De
rskl)

in which H, ∂gs
∂σpq

, and ∂fs
∂σrs

were calculated as follows:

H =
∂fs
∂σpq

De
pqrs

∂gs
∂σrs

− ∂fs
∂ε̄pq

∂gs
∂q

+ (1 + e0)
∂fs
∂e

∂gs
∂p

∂fs
∂σij

=
∂q

∂σij
−

ε̄pq
a+ ε̄pq

(
e

ecr
)−β η̄cv(θ)

∂p

∂σij
−

ε̄pq
a+ ε̄pq

(
e

ecr
)−βp

∂η̄cv(θ)

∂θ

∂θ

∂σij
∂gs
∂σij

=
∂q

∂σij
−D(θ)

∂p

∂σij
− p∂D(θ)

∂θ

∂θ

∂σij
− p∂D(θ)

∂ζ ′
∂ζ ′

∂σij

with

De
ijkl =

vE

(1− 2v)(1 + v)
δijδkl +

E

2(1 + v)
(δikδjl + δilδjk)

∂q

∂σij
=

3sij
2q

∂p

∂σij
=

1

3
δij

∂θ

∂σij
=

√
3

2J
3/2
2 cos3θ

(
3J3

2J2

sij +
2

3
δijJ2 − sikskj)

∂η̄cv(θ)

∂θ
=
∂ηcv(θ)

∂θ
=

3ωcos3θcos(π−sin
−1(ωsin3θ)

3
)

√
2λ
√

1− (ωsin3θ)2sin2(π−sin
−1(ωsin3θ)

3
)

∂D(θ)

∂θ
=

−3dωemζ
′
cos3θcos(π−sin

−1(ωsin3θ)
3

)
√

2λ
√

1− (ωsin3θ)2sin2(π−sin
−1(ωsin3θ)

3
)

∂D(θ)

∂ζ ′
= −dmηcv(θ)emζ

′ ∂ζ ′

∂σij
= −kA

′

Kc

Fij
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5.3 Constitutive modelling of granular soil behaviour

under different cyclic loading conditions

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Figure 5.4: Stress paths and soil elements demonstration

The performance of the proposed stress-strain model is demonstrated via simu-

lating the behaviours of granular material in seven cyclic loading modes shown in

Figure 5.4. The specimens were all consolidated initially under a hydrostatic confin-

ing pressure of 100kPa. The confining pressure was kept constant throughout the
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(e) Mode 5 (f) Mode 6

(g) Mode 7

(h) Mode 7 decomposed

Figure 5.4: Stress paths and soil elements demonstration (Cont.)

subsequent shearing tests. The first four loading modes were one-way cyclic loading

and the other three represented different two-way cyclic loading conditions. Results

from loadings of the seven loading modes can demonstrate the capability of the pro-

posed constitutive model in describing the effect of stress states and fabric on soil

behaviour under cyclic loading.

Figures 5.4a to 5.4g present the stress paths and the corresponding stress states
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on soil elements for the seven select modes. For convenience, we hereby define αdσ

as the angle between the directions of the major principal incremental stress and

the major principal fabric component, and θdσ is the Lode angle of the incremental

deviatoric stress tensor. As shown in previous chapters, the Lode angle of the stress

tensor can be related to the intermediate principal stress coefficient b that is defined

as b = (σ2− σ3)/(σ1− σ3). The specific loading conditions in different loading modes

are as follows:

Modes 1 and 2 represent conventional one-way cyclic triaxial compression test

with b = 0. In Mode 1, the cyclic stress was applied on the bedding plane. During

the loading process, the major principal incremental stress was perpendicular to the

bedding plane, with αdσ = 0◦ and θdσ = 30◦. During the unloading process, however,

a jump in the direction of the major principal incremental stress occurred (from the

vertical to the horizontal) with αdσ = 90◦ and θdσ = −30◦; as demonstrated in Figures

5.4a. However, there was no change in the principal stress directions. For example,

the direction of major principal stress σ1 was always perpendicular to the bedding

plane, in both the loading and unloading processes. In Mode 2 loading, the cyclic

stress was applied in the direction parallel to the bedding plane. Similar to Mode 1,

the principal incremental stress direction jumped by 90◦ (from the horizontal to the

vertical) and the principal stress directions did not change. Herein the bedding plane

is considered to be horizontal, as in a cyclic triaxial compression test.

Modes 3 and 4 represent conventional one-way cyclic triaxial extension test with

b = 1 corresponding to σ2 = σ1. As shown in Figure 5.4c, in Mode 3 loading, cyclic

loading was applied in two orthogonal directions in the bedding plane. During a

loading process, αdσ = 90◦ and θdσ = −30◦. During the unloading process, however,
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αdσ = 0◦ and θdσ = 30◦ instead. The difference between Mode 4 and Mode 3 is

that the cyclic loading was applied in two directions perpendicular and parallel to

the bedding plane respectively, as shown in Figure 5.4d. In Mode 4 loading, we have

αdσ1 = 90◦, αdσ2 = 0◦, and θ = −30◦ during loading while αdσ1 = 0◦, αdσ2 = 90◦ and

θ = 30◦ during unloading. Similar to Modes 1 and 2 loading, a jump of principal

incremental stress directions also occured in Modes 3 and 4 while the principal stress

directions were fixed during the loading and unloading processes.

Mode 5 simulates the conventional cyclic triaxial compression test, which was a

combination of Modes 1 and 3. In terms of the loading direction relative to the

direction of the major principal fabric component, Mode 5 loading can be divided

into four stages: Stage (1) corresponded to loading with αdσ = 0◦ and θdσ = 30◦,

followed by unloading in stage (2) in which αdσ = 90◦ and θdσ = −30◦. In these two

stages, the major principal stress direction was perpendicular to the bedding plane.

In stage (3), loading continued with αdσ = 90◦ and θdσ = −30◦. In this stage, the

major principal directions of the stress and the incremental stress tensors were both

parallel to the bedding plane; as demonstrated in Figure 5.4e. Finally, stage (4) took

place under αdσ = 0◦ and θdσ = 30◦ until the deviator stress reached zero. Different

from Modes 1 to 4, Mode 5 cyclic loading involved a jump in both the major principal

directions of the stress and the incremental stress tensors.

Mode 6 simulates a modified conventional one-way cyclic triaxial test in which b =

0 using the cyclic hollow cylinder apparatus. This mode of loading was a combination

of Modes 1 and 2. In particular, the cyclic stress was applied to the specimen in the

directions perpendicular and parallel to the bedding plane alternatively, as illustrated

in Figure 5.4f. The cyclic loading process can be divided into four stages: stage (1)
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with αdσ = 0◦ and θdσ = 30◦, followed by stage (2) with αdσ = 90◦ and θdσ = −30◦. In

these two stages, the major principal stress was perpendicular to the bedding plane.

In stages 3 and 4, the major principal stress direction rotated 90◦ to the horizontal,

with αdσ = 90◦, θdσ = 30◦ in stage 3 and αdσ = 0◦, θdσ = −30◦ in stage (4).

Mode 7 is a modified conventional one-way cyclic triaxial extension test in which

b = 1 (i.e., σ2 = σ1). It can be considered as a combination of Modes 3 and 4. The

four stages of Mode 7 are: stage (1) in which αdσ = 90◦ and θdσ = −30◦; stage (2)

with αdσ = 0◦ and θdσ = 30◦; stage (3) with αdσ1 = 90◦, αdσ2 = 0◦, and θdσ = −30◦

and stage (4) in which αdσ1 = 0◦, αdσ2 = 90◦, and θdσ = 30◦. It is noted that Mode

7 is to Modes 3 and 4 as Mode 6 is to Modes 1 and 2. Similar to Mode 6, in Mode

7, the major principal stress direction rotated from the vertical to the horizonal, as

shown in Figure 5.4g.

5.4 Results and discussions

Simulations for the responses of a granular material in the seven loading modes were

carried out at select cyclic shear strain amplitudes, by mimicking the stress conditions

in cyclic tests using hollow cylinder apparatus. The material constants were the same

as those used in simulations for monotonic loading in Chapter 4 (see Table 4.2).

Two series of simulations were performed. The first series of simulations intended to

investigate the influence of cyclic strain amplitudes on the responses of the granular

material with the initial void ratio and the initial degree of anisotropy being e0 = 0.59
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and Ω = (2/3)
√

3JF2 = 0.2, respectively. The material was assumed to be cross-

anisotropy with an initial deviatoric fabric tensor

Fij =


0.02 0 0

0 −0.01 0

0 0 −0.01


The second series was a parametric study for the effect of the initial void ratio, the

initial degree of anisotropy and the variation of loading modes on the cyclic behaviour

of granular materials.

In the figures of this section, the deviator stress is defined as q? = ±
√

3J2. Since

all tests were performed at b = 0 or b = 1, q? can be alternatively expressed as

q? = σz−σr. As a result, q? is referred as positive when σa = σ1 (the major principal

stress) and negative otherwise. A similar sign convention is adopted for the measure

of shear strain γ?, which is defined as γ? = ±
√

3Jε2 with γ? being positive when

|εz| = max(|εz|, |εr|, |εθ|) and negetive otherwise. It should be noted, however, the

strains may not be axisymmetric even for axisymmetric stress state owing to the

inherent anisotropy of the material.

5.4.1 Effect of shear strain amplitude

(1) Stress-strain responses and volume change characteristics

Figure 5.5b presents the stress-strain responses in Mode 1 one-way cyclic loading

tests at b = 0, θdσ = 30◦ and αdσ = 0◦. For low strain amplitude (e.g., ∆γ? = 0.1%),

the cyclic stress-strain curve was mostly linear. With the increase of shear strain
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amplitude, the hysteresis loops were generated. In each strain cycle, net volume com-

paction took place, as shown in the volumetric strain curves in Figures 5.5c and 5.5d.

With an increasing number of strain cycles, the specimen became denser so that dila-

tancy built up progressively, which resulted in an escalation in the deviatoric stress.

With increasing strain cycles, an ultimate stable deformation state was reached, cor-

responding to a shakedown condition with no further change in volume as well as the

stress-strain response.

Figures 5.6b presents the stress-strain responses in Mode 2 one-way cyclic loading

test at b = 0, θdσ = 30◦ and αdσ = 90◦. In this case, the cyclic stress σd was applied

in a direction parallel to the bedding plane. In general, the stress-strain responses

and the volumetric strain curves in Mode 2 loading had the same trend of variation

as those in Mode 1 test. Owing to the inherent anisotropy and the different loading

directions (as reflected by αdσ), for the same strain amplitude, the specimen in Mode

2 cyclic loading showed lower shear resistance. For example, at the strain amplitude

∆γ? = 1%, the values of |q?|max were 95.4kPa and 90.8kPa in Mode 1 and Mode 2

tests, respectively. The loading direction also affected the volume change responses.

For the same cyclic strain amplitude, cyclic shearing induced more densification of the

specimen in Mode 2 test than in Mode 1 test. For example, at the strain amplitude

∆γ? = 1%, the accumulative volumetric strain εv after 50 cycles of loading in Mode 1

was 0.44%, which was lower than εv = 0.49% in the Mode 2 test. It should be noted

that a larger densification did not necessarily yield a higher shear resistance when

the cyclic loading direction was different owing to the effect of internal structure.

Similarly, for cyclic loading with the strain amplitude ∆γ? = 5%, the accumulative

volumetric strains were 0.05% and 0.18% in modes 1 and 2 tests at N=50, respectively.
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(a) Cyclic stress path of Mode 1 (b) Stress-strain curves

(c) Strain amplitudes: 0.1%, 0.5%, 1% (d) Strain amplitudes: 1%, 5%

(e) Accumulative volumetric strains at
different strain amplitudes (f) Fabric evolution (∆γ? = 0.1%)

Figure 5.5: Simulation results at strain amplitudes of 0.1%, 0.5%, 1% and 5% (Mode
1)

139



Ph.D. Thesis - Xing Li McMaster - Civil Engineering

(a) Cyclic stress path of Mode 2 (b) Stress-strain curves

(c) Strain amplitudes: 0.1%, 0.5%, 1% (d) Strain amplitudes: 1%, 5%

(e) Accumulative volumetric strains at
different strain amplitudes (f) Fabric evolution (∆γ? = 0.1%)

Figure 5.6: Simulation results at strain amplitudes of 0.1%, 0.5%, 1% and 5% (Mode
2)
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It should be noted that the deformation of the specimen in Mode 2 loading may not

be axisymmetric when considering the evolution of induced fabric.

We next compare the material responses in Modes 2 and 3 tests. The difference

between these two tests is whether cyclic loading was applied in one or two directions

within the bedding plane while the axial stress was kept as the minimum principal

stress (see Figure 5.4). Compared with Mode 2 loading, the specimen subjected to

Mode 3 cyclic loading had noticeably larger volumetric compaction at the same strain

amplitudes, as shown in Figures 5.6c-5.6d and Figures 5.7c-5.7d. For example, for

the strain amplitude ∆γ? = 1%, the value of εv was 0.49% after 50 cycles of loading

in Mode 2 and was εv = 1.59% after 50 strain cycles in Mode 3. The mobilized shear

resistance in Mode 3 cyclic loading for a given strain amplitude was much lower than

that in Mode 2 loading under the same conditions. For example, at ∆γ? = 1%, the

value of |q?|max was 90.8kPa in Mode 2, comparing with |q?|max = 69.2kPa in Mode

3 at the same strain amplitude. The different behaviours in Modes 2 and 3 loading

were related to the fabric change induced by different cyclic loading modes, either in

one direction or two directions parallel to the bedding plane in Mode 2 and Mode 3,

respectively. Regarding to the deformation pattern, different from Mode 2 loading,

the deformation of the specimen in Mode 3 loading was axisymmetric.

Different from Mode 3 cyclic loading, in Mode 4 the specimen was subjected to

cyclic loading in two directions that were parallel and perpendicular to the bedding

plane, respectively. For the same cyclic strain amplitude, the specimen in Mode

4 had a little higher resistance to shearing than that in Mode 3 (see Figure 5.7b

and Figure 5.8b). For example, the values of |q?|max were 69.2kPa and 73.1kPa

at ∆γ? = 1% in Mode 3 and Mode 4, respectively. However, the corresponding
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(a) Cyclic stress path of Mode 3 (b) Stress-strain curves

(c) Strain amplitudes: 0.1%, 0.5%, 1% (d) Strain amplitudes: 1%, 5%

(e) Accumulative volumetric strains at
different strain amplitudes (f) Fabric evolution (∆γ? = 0.1%)

Figure 5.7: Simulation results at strain amplitudes of 0.1%, 0.5%, 1% and 5% (Mode
3)
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(a) Cyclic stress path of Mode 4 (b) Stress-strain curves

(c) Strain amplitudes: 0.1%, 0.5%, 1% (d) Strain amplitudes: 1%, 5%

(e) Accumulative volumetric strains at
different strain amplitudes (f) Fabric evolution (∆γ? = 0.1%)

Figure 5.8: Simulation results at strain amplitudes of 0.1%, 0.5%, 1% and 5% (Mode
4)
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accumulative volumetric compactions in these two modes of cyclic loading were almost

identical (see Figure 5.7c-5.7d and Figure 5.8c-5.8d). When compared with shear-

induced volume changes in the cyclic loading of Modes 1 and 2, the difference of

volumetric compaction between Mode 3 and Mode 4 loading was much smaller than

that between Mode 1 and Mode 2 cyclic loadings. It is noted that in Modes 3

and 4 loadings in which σ2 = σ1, one of the major principal incremental stress was

always parallel to the bedding plane, while the other major principal incremental

stress directions were αdσ = 0◦ and αdσ = 90◦, respectively. Recalling that the shear-

induced volumetric compaction was more pronounced in Mode 2 than that in Model

1 in which the major principal incremental stress was perpendicular to the bedding

plane. Therefore, it is likely that in Modes 3 and 4, the volume change characteristics

were dominated by the principal incremental stress that was applied parallel to the

bedding plane.

Figure 5.9: Accumulative volumetric strains from four one-way loading modes at
∆γ? = 5%

Figure 5.9 compares the evolution of accumulative volumetric strain with the

number of cyclic strain cycles in different loading modes at the strain amplitude of
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∆γ? = 5%. In the first several strain cycles, dilation was observed in Mode 1 and

Mode 4 loadings that both had cyclic stress applied perpendicular to the bedding

plane. On the other hand, no accumulative dilation was observed in Modes 2 and 3

in which the cyclic loadings were all applied in the direction parallel to the bedding

plane. The rates of accumulative volume compaction with respect to the number

cyclic strain cycles in Mode 2 was higher than that in Mode 1. The results shown in

Figure 5.9 confirmed that cyclic stresses in the bedding plane tended to induce more

volumetric compaction and less dilation.

For the two-way cyclic loading modes, let us first examine the responses of speci-

men subjected to the cyclic loading of Mode 6. As illustrated in Figure 5.4f, in one

strain cycle, the direction of αdσ jumped from 0◦ to 90◦ when the direction of cyclic

stress changed from the direction perpendicular to parallel to the bedding plane.

The stress-strain responses in Mode 6 cyclic loading are presented in Figure 5.11b.

When the shear strain amplitude was less than 5%, the mobilized shear stress |q?|max

in each strain cycle tended to increase with the number of strain cycles, which implies

that cyclic shearing induced hardening of the materials. At the shear strain amplitude

∆γ? = 5%, however, |q?|max in each cycle decreased with the number of strain cycles.

In particular, |q?|max = 140.7kPa in the first cycle and it decreased to 130.0kPa in

the second strain cycle. After that, continuous cyclic loading caused small reduction

of |q?|max continuously. The different variations of |q?|max with the number of strain

cycles at various shear strain amplitudes can be related to the accumulative volumetric

strain and the evolution of fabric.

Figures 5.11c and 5.11d present the volume change curve of the specimen in Mode

6 cyclic loading. When the shear strain amplitudes ∆γ? were not larger than 1%,
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(a) Cyclic stress path of Mode 5

(b) Stress-strain curves

(c) Strain amplitudes: 0.1%, 0.5%, 1% (d) Strain amplitudes: 1%, 5%

(e) Accumulative volumetric strains at
different strain amplitudes (f) Fabric evolution (∆γ? = 0.1%)

Figure 5.10: Simulation results at strain amplitudes of 0.1%, 0.5%, 1% and 5% (Mode
5)
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(a) Cyclic stress path of Mode 6

(b) Stress-strain curves

(c) Strain amplitudes: 0.1%, 0.5%, 1% (d) Strain amplitudes: 1%, 5%

(e) Accumulative volumetric strains at
different strain amplitudes (f) Fabric evolution (∆γ? = 0.1%)

Figure 5.11: Simulation results at strain amplitudes of 0.1%, 0.5%, 1% and 5% (Mode
6)
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(a) Cyclic stress path of Mode 7

(b) Stress-strain curves

(c) Strain amplitudes: 0.1%, 0.5%, 1% (d) Strain amplitudes: 1%, 5%

(e) Accumulative volumetric strains at
different strain amplitudes (f) Fabric evolution (∆γ? = 0.1%)

Figure 5.12: Simulation results at strain amplitudes of 0.1%, 0.5%, 1% and 5% (Mode
7)
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with an increase of strain cycles, accumulative volume compaction developed and

tended to increase with an increase of the number of strain cycles. The volume

tended to become stabilized and the accumulative volumetric strain after 50 cycles

was affected by the shear strain amplitude. When the strain amplitude was increased

to ∆γ? = 5%, net shear-induced dilation took place in each strain cycle. However,

the amount of dilation in each strain cycle tended to decrease with the number of

strain cycles and the accumulative volume change of the specimen eventually became

stabilized. The significant dilation at ∆γ? = 5% contributed to the decrease of |q?|max

with an increase of the number of strain cycles shown in Figure 5.11b.

The stress-strain responses in Mode 5 cyclic loading are presented in Figure 5.10b.

The mobilized shear resistance in each strain cycle decreased as the number of strain

cycles increased in all cases simulated. For the same cyclic shear strain amplitude,

the specimen in Mode 5 loading had higher shear resistance than that in Mode 6. For

example, at ∆γ? = 1%, |q?|max = 130.77kPa and 101.7kPa in Mode 5 and Mode 6,

respectively. In addition, when examining the volume change characteristics in Mode

6 loading (see Figure 5.11c), one observes that for small strain amplitude cyclic loading

with ∆γ? ≤ 1%, each cycle of Mode 5 loading caused larger net compaction of the

specimen than that in Model 6 loading. However, in cyclic loading with ∆γ? = 5%,

Mode 5 tended to induce higher dilation than Mode 6 loading.

The different deformation characteristics in Modes 5 and 6 loading can be at-

tributed to the influence of fabric in the bedding plane. More specifically, in Mode 6,

the cyclic loading in the bedding plane was in one direction, compared with two di-

rections in Mode 5 loading. In other words, loading/unloading in multiple directions

within the bedding plane tended to induce more volume change of the specimen,
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either compaction or dilation depending on the cyclic strain amplitude, and hence

the different shear resistance. The conclusion is qualitatively in agreement with the

laboratory test results by Tong et al. (2010).

Mode 7 of cyclic loading is different from Mode 6 in that when the periodic

variation of σ1 changed direction between αdσ1 = 0◦ and 90◦, σr was kept to be a

minor principal stress (b = 0) in Mode 6 loading but was kept to be a major principal

stress in Mode 7 loading with b = 1, as illustrated in Figure 5.4. This explains

why volume changes in Mode 7 loading were larger than those in Mode 6 loading, see

Figures 5.11c, 5.11d, 5.12c and 5.12d. Mode 5 loading is different from Mode 7 in that

the intermediate principal stress coefficient b jumped between b = 0 and b = 1 during

each strain cycle. In general, both the stress-strain responses and the volume change

characteristics of soil in Mode 7 were similar to those in Mode 5 loading, with even

more shear-induced compaction by small amplitude (∆γ? ≤ 1%) strain cycles and

higher dilation by large amplitude (∆γ? = 5%) strain cycles. At the strain amplitude

of ∆γ? = 0.5%, the value of εv was 0.93% after 50 cycles of loading in Mode 5 loading

and was 1.20% in Mode 7 loading. When the strain amplitude became ∆γ? = 5%,

the value of εv was −1.47% after 50 cycles of loading in Mode 5 loading and was

−1.88% in Mode 7 loading. The results further confirmed that multiple direction

cyclic loading tended to induce more significant volume change of the specimen for

strain cycles of the same amplitude.

(2) Volume change in different loading modes

For comparison purposes, the accumulative volumetric strains after 50 cycles in the

seven modes of cyclic loading are summarized for various strain amplitudes, as shown
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in Figure 5.13. The influence of different modes can be clearly seen from these figures.

Comparison between Modes 1 and 2 shows the influence of initial fabric anisotropy

for b = 0. The tendency of compaction was always larger in Mode 2 with αdσ =

90◦ than in Mode 1 with αdσ = 0◦. This is consistent with observations from the

monotonic loading tests. Different from Modes 1 and 2 in which b = 0, Modes 3 and

4 were simulated under b = 1. The volume compaction from these two modes was

significantly higher than that from Modes 1 and 2.

Mode 5 can be seen as a medium mode of Modes 6 and 7 since half of this mode

was under b=0 and the other half was under b=1. As a result, the material behaviour

under Mode 5 fell into the range between those for Modes 6 and 7. By comparing

Modes 6 and 7, the effect of b was identified. More specifically, a larger b value

tended to induce a larger tendency of compaction at a small strain amplitude and

a smaller tendency of dilation at a large strain amplitude. The cyclic experimental

test results discussed in Chapter 3 were consistent with this observation under small

strain amplitude. The results presented in Figure 3.33 were obtained from stress-

controlled cyclic tests, with a stress amplitude of ∆q? = 80kPa, which was close to

the simulation at ∆γ? = 0.5%. Figures 5.13b and 3.33 show good agreement for which

the accumulative strains were significantly higher in tests/simulations with b = 1 than

those with b = 0.

Figure 5.14 shows the accumulative volumetric strain for each loading mode after

50 cycles. For Modes 1 to 4, the accumulative volumetric strains increased with an

increase of shear strain amplitude and reached the maximum when ∆γ? was around

2%. This critical value of ∆γ? was about 1% for Modes 5 to 7, and was slightly larger

for Mode 6 with b=0 than for Mode 7 with b = 1.
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(a) ∆γ? = 0.1% (b) ∆γ? = 0.5%

(c) ∆γ? = 1% (d) ∆γ? = 2%

(e) ∆γ? = 5%

Figure 5.13: Accumulative volumetric strains in different loading modes at different
strain amplitudes
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(a) Modes 1, 2, 3 and 4 (b) Modes 5, 6 and 7

Figure 5.14: Accumulative volumetric strains under different loading modes after 50
cycles

(3) Fabric evolution induced by cyclic loading

To demonstrate the capability of the proposed stress-strain model in simulating fabric

evolution of a granular material subjected to cyclic loading, the fabric evolutions in the

seven cyclic loading modes at the cyclic strain amplitude ∆γ? = 0.1% are presented

in Figure 5.15. For other strain amplitudes, similar patterns of fabric evolution were

observed with more significant variation of fabric components within the strain cycles.

We first examine the fabric evolution in loading Modes 1, 3, and 5, in which

the stress states were axisymmetric and the specimens were cross-anisotropic with

Fr = Fθ during the whole process of cyclic loading. It should be noted that the

original cross-anisotropic fabric had the major principal component in the direction

of the z-axis and the material was isotropic in the r − θ plane.

Figures 5.15a, 5.15c, and 5.15e show the variation of the three fabric components at

∆γ? = 0.1% in Modes 1, 3, and 5, respectively. In all three loading modes, Fz started

to increase as soon as the loading process started, and decreased upon unloading. On

the contrary, Fr and Fθ decreased during loading and increased during unloading. The

variations of all three fabric components Fz, Fr and Fθ were more significant during
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Figure 5.15: Fabric evolution during cyclic loading at strain amplitude of 0.1%

unloading than that during loading. This can be explained according to Figure 5.3

and the fabric evolution law in Equation (5.8). During unloading, the ratio µF/µσ

was evidently larger than that in the preceding loading process. Thus the rate of

fabric variation increased significantly upon unloading. As a result, the anisotropy of

the structure decreased with the number of stress cycles. This is consistent with the

results of DEM simulation; see, e.g., Sazzad and Suzuki (2010).

When comparing the fabric evolutions in Modes 1 and 3 loading, owing to the

different cyclic loading directions with respect to the major principal direction of
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the fabric tensor, Fz decreased dramatically accompanied by increasing of Fr and Fθ

with the number of stress/strain cycles in Mode 3. With an increase of the stress

cycles, strong fabric built up within the bedding plane in which the cyclic stresses

were applied. The initially strong fabric in the z−direction, however, was weakened

and Fz evolved into the minor principal fabric component, with the average fabric

components at N = 50 being F̄z = −0.198 and F̄r = F̄θ = 0.099, respectively.

On the other hand, in Mode 1 loading, the cyclic stress in the z−direction caused

a decrease of Fz as well as increases of Fr and Fθ. However, the decrease of Fz

was relatively small so that Fz stayed as the major principal fabric component. The

degree of anisotropy of the specimen decreased with the number of cyclic stress in

Mode 1 loading, and eventually approached a steady fabric state. The general pattern

of fabric evolution in Mode 5 loading, which can be considered as a combined Modes

1 and 3 loading, was the same as that in Mode 3 loading. At N = 50, the average

fabric components were F̄z = −0.078 and F̄r = F̄θ = 0.039, respectively.

For Modes 2 and 4 loading presented in Figures 5.15b and 5.15d, it is interesting

to note that Fz and Fr became synchronous after around 45 cycles in both cases.

Based on the loading paths presented in Figure 5.4, the incremental deviatoric stress

components in directions of the z-axis and the r-axis were always identical in these two

modes. According to the fabric evolution law, the induced fabric primarily depended

on the stress increments. Even though the initial fabric components were different in

the z− and the r−directions, the same cyclic stress in these two directions resulted

in a gradual decrease of the structural difference in these two directions, causing the

convergence of Fz and Fr to the same ultimate value; as shown in the figures.

Figures 5.15f and 5.15g show the variation of fabric in Modes 6 and 7. These
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(e) Mode 5 (f) Mode 6

(g) Mode 7

Figure 5.15: Fabric evolution during cyclic loading at strain amplitude of 0.1% (cont.)

two modes both represented two-way cyclic loading. As discussed previously, loading

Mode 6 can be decomposed into Modes 1 and 2, therefore the fabric evolution in

loading at Mode 6 was qualitatively in agreement with the combination of fabric

evolution in Modes 1 and 2, as shown in Figures 5.15a and 5.15b.

In the Mode 6 loading, the specimen was subjected to the same cyclic stress

condition (one-way cyclic loading) in the z− and θ−axes alternately. Therefore the

fabric components Fz and Fθ tended to evolve to the same average value during cyclic

loading. After 50 cycles, F̄r = −0.018 and F̄z = F̄θ = 0.009. Different from Modes 2
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and 4 where Fz and Fr became synchronous, at the stabilized stage in Mode 6 loading,

Fz and Fθ were asynchronous but with same average value as well as amplitude.

The difference between Figure 5.15f and Figure 5.15g was mainly in that the

stabilized average value of Fr increases from 0.009 in Mode 6 to 0.075 in Mode 7,

while Fz and Fθ increased from −0.025 to −0.011. This can be explained according

to the decomposed Mode 7, as shown in Figure 5.4h. By this decomposition, Mode

7 loading can be considered as a Mode 6 loading with an additional Mode 1 loading

applied in the r-direction. Referring to Figure 5.15a, the additional cyclic loading in

the r−direction caused an increase of Fr as well as a decrease of Fz and Fθ.

5.4.2 Effect of initial void ratio

The stress-strain curves of sand specimens with different initial void ratios in Modes 1

and 4 loading are shown in Figures 5.16 and 5.17, respectively. Similar to simulations

in the previous section, the specimens were assumed to have the same initial fabric

and the applied cyclic shear strain amplitude was ∆γ? = 0.5%. With the increase of

void ratio, the mobilized shear stresses, both the initial and the stabilized, decreased.

For example, for specimens in Mode 1 cyclic loading (see Figure 5.16), the value of

|q?|max was 87.81 kPa at e0 = 0.55 , comparing to |q?|max = 68.04 kPa at e0 = 0.68.

For the stabilized strain cycles, the values of |q?|max were 72.32 kPa and 54.86 kPa

at e0 = 0.55 and 0.68, respectively. The same pattern can also be found from Figure

5.17 in Mode 4 loading.

Figures 5.18 and 5.19 present the accumulative volumetric change of specimens

with different initial void ratios in Modes 1 and 4 loading, respectively. In all cases,

the accumulative volume compaction induced by cyclic shearing increased with the
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Figure 5.16: Stress-strain curves at different initial void ratios (Mode 1 with ∆γ? =
0.5%)

Figure 5.17: Stress-strain curves at different initial void ratios (Mode 4 with ∆γ? =
0.5%)

number of strain cycles. For an initially loose specimen, at a given number of strain

cycles, the accumulative volumetric compaction was greater than that of a dense

specimen. It should be noted that the accumulative volume change was also affected

by the cyclic shear strain amplitude.

We next examine the effect of initial void ratio on the change of fabric in Modes
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Figure 5.18: Accumulative volumetric strains at different initial void ratios (Mode 1)

Figure 5.19: Accumulative volumetric strains at different initial void ratios (Mode 4)

1 and 4 loadings for specimens with e0 = 0.55 and e0 = 0.68. As shown in Figures

5.20a and 5.20b, regardless of the initial void ratio, cyclic loading reduced the inherent

anisotropy of the specimens, similar to that shown in Figure 5.15a. The residual

fabric anisotropy was marginally affected by the initial void ratio, even though the

oscillation of fabric components or the instantaneous anisotropy was higher for the

loose specimen, as shown in Figure 5.20b. Similar observations can be found in

Figures 5.20c and 5.20d for Mode 4 loading. This is because that the fabric evolution

was dominated by the change in stresses and the current stress state.
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(a) Mode 1, e0 = 0.55 (b) Mode 1, e0 = 0.68

(c) Mode 4, e0 = 0.55 (d) Mode 4, e0 = 0.68

Figure 5.20: Fabric evolution during cyclic loading at different initial void ratios
(Mode 1 and Mode 4 with ∆γ? = 0.5%)

5.4.3 Effect of initial degree of anisotropy

The effects of initial degree of anisotropy on the cyclic behaviours were investigated

using Mode 1 (αdσ = 0◦) and Mode 2 (αdσ = 90◦), in which b = 0. Two groups

of simulations were carried out with the initial void ratio being e0 = 0.59 and 0.65,

respectively. The initial value of the measure of anisotropy Ω, which is defined as

Ω = 2
3

√
3JF2 , varied between 0 and 0.4. The strain amplitude of ∆γ? = 0.5% was

used in these simulations. When Ω = 0, the specimen was initially isotropic and
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Mode 2 loading was the same as Mode 1 loading.

Figure 5.21: Accumulative volumetric strains at different initial degree of anisotropy
(e0 = 0.59)

Figure 5.22: Accumulative volumetric strains at different initial degree of anisotropy
(e0 = 0.65)

Figure 5.21 presents the evolution of accumulative volumetric strains of specimens

with e0 = 0.59 in Modes 1 and 2 loadings at different initial values of Ω. Using the

curve at Ω = 0 as a reference, the curves at Ω = 0.2 and 0.4 were located below

and above the reference curve for Mode 1 and Mode 2 loading, respectively. In other

words, the cyclic stress applied perpendicular to the bedding plane (i.e., αdσ = 0◦)
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generally caused less volumetric compaction than that applied in the bedding plane

(i.e., αdσ = 90◦). Moreover, for tests with αdσ = 0◦, increased initial anisotropy tended

to reduce the volumetric compaction during cyclic loading. On the contrary, in Mode

2 loading with αdσ = 90◦, specimens with stronger inherent anisotropy tended to have

higher volumetric compaction under cyclic loading. In particular, after 50 cycles of

cyclic loading, the accumulative volumetric strains of the specimen with Ω = 0.2 were

εv = 0.275% and 0.303% in Mode 1 and Mode 2 loading respectively, comparing with

εv = 0.265% in Mode 1 and εv = 0.316% in Mode 2 when Ω = 0.4. For anisotropic

granular materials, the direction of the cyclic stress tended to affect the development

of accumulative volume change of a granular material. Cyclic loading in the direction

of weak fabric component tended to cause higher volumetric compaction.

Simular patterns were found from the results of specimens with e0 = 0.65 presented

in Figure 5.22. Owing to the relative large initial void ratio, the differences in the

volumetric compaction at different initial Ω values were more significant, with εv =

0.404% in Mode 1 and εv = 0.444% in Mode 2 at Ω = 0.2, εv = 0.390% in Mode 1

and εv = 0.464% in Mode 2 at Ω = 0.4, respectively.

The influence of the inherent anisotropy on the fabric change during cyclic loading

is shown in Figure 5.23. Similar to the findings from Figures 5.20a to 5.20d, the

evolution of fabric can be considered as independent of the initial void ratio. However,

the direction of the cyclic stress with respect to the major principal fabric component,

which was measured by αdσ, affected the evolution of the fabric. In all cases, the fabric

component in the direction of the cyclic stress became stronger and the residual degree

of anisotropy at N = 50 was independent of αdσ and the initial value of Ω. The initial

degree of anisotropy and αdσ only affected the fabric states in the initial few cycles
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(a) Mode 1, Ω = 0 (b) Mode 1, Ω = 0.2 (c) Mode 1, Ω = 0.4

(d) Mode 2, Ω = 0 (e) Mode 2, Ω = 0.2 (f) Mode 2, Ω = 0.4

Figure 5.23: Fabric evolution during cyclic loading at different initial degree of
anisotropy (e0 = 0.59 and ∆γ? = 0.5%)

(N < 10) upon cyclic loading; see Figures 5.21 and 5.22. Similarly, Figures 5.23e and

5.23f were different from Figure 5.23d mainly in the first 5-10 cycles.

5.5 Conclusions

This chapter presented a constitutive model for the cyclic behaviour of granular ma-

terials based on the framework proposed in chapter 4. In this model, a kinematic

hardening law was adopted to consider the effects of plastic deformation. The con-

cept of the critical state fabric surface was used to describe the evolution of fabric

during cyclic loading, and the newly developed stress-dilatancy formulation was fur-

ther extended to cyclic loading regime as well. As a result, the proposed model can
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take into account the influence of void ratio, stress level and fabric on cyclic soil

behaviour in a consistent manner.

Seven different loading modes were designed to thoroughly investigate the perfor-

mance of the proposed model under different conditions. By comparing the results

obtained from various loading modes, it is demonstrated that the model can cor-

rectly describe the behaviours of inherently anisotropic granular materials subjected

to cyclic loading in different directions with respect to the principal frame of the ma-

terials. More specifically, the model was able to describe the effects of the 3D general

stress states, the major principal incremental stress direction and the fabric of the

material.

A parametric study was carried out to examine the influence of initial void ratio

as well as the degree of initial anisotropy on the behaviour of granular materials under

cyclic loading. The accumulative volume compaction of a specimen was affected by

both the initial density and the direction of the applied cyclic stress. A loose specimen

with cyclic stress parallel to the bedding plane tended to have larger volumetric

compaction. However, the evolution of fabric was marginally affected by the density

of the material. The direction of cyclic stress had a significant influence on the

evolution of fabric at the beginning of cyclic loading. However, the residual fabric

anisotropy at a larger number of strain cycles was independent of the initial fabric.
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Chapter 6

Numerical implementation of the

proposed constitutive model

This chapter examines the performance of the stress-strain model developed in Chap-

ter 4 in solving boundary-valued problems. The model was implemented into the

commercial software package ABAQUS via the user-defined subroutine UMAT. The

proposed stress-strain model and the developed algorithm are examined via FEM sim-

ulations for the following boundary value problems: (1) HCA test Series B on cubic

specimens (constant b with different loading directions); (2) tests on cubic specimens

with different initial void ratios; (3) tests on cubic specimens with different loading

directions; (4) tests on cubic specimens along different stress paths; and (5) ground

settlement on structured granular medium.
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6.1 FEM simulations of element tests under dif-

ferent loading conditions

Six series of element tests on cubical specimens subjected to different loading condi-

tions were simulated as boundary-valued problems using ABAQUS. A 10cm×10cm×

10cm cubical specimen was modelled with 10× 10× 10 eight-noded isoparametric el-

ements (C3D8). The FEM mesh and boundary constraints are shown in Figure 6.1.

The vertical displacement uz of the bottom surface (z = 0) was constrained. ux = 0

and uy = 0 were reinforced on the central lines x = 0 and y = 0 of the bottom surface,

respectively.

Figure 6.1: Mesh and boundary conditions of the initial step

For the initial step, in addition to the constraints, a confining pressure of 100kPa

was applied by adding the following command line to the ABAQUS job file (*.inp).

For the element tests, the gravity loads on the specimens were neglected.

*initial conditions, type=stress, input=***.dat
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where the data file ***.dat is written in the format of

Part-1-1.1,-100.00000,-100.00000,-100.00000,0.00000,0.00000,0.00000

Part-1-1.2,-100.00000,-100.00000,-100.00000,0.00000,0.00000,0.00000

Part-1-1.3,-100.00000,-100.00000,-100.00000,0.00000,0.00000,0.00000

...

In the loading step, different control methods may be used to control the loading

process. For example, by using a stress-controlled loading method, the stress-strain

behaviour of the specimen can only be modelled up to the peak deviatoric stress

point. In other words, the softening part of the stress-strain curves would not be

obtained. On the other hand, when using a displacement-controlled loading method,

it would be possible to capture the post-peak behaviour of the material. However, to

simulate certain stress conditions, e.g. tests under constant mean effective stress, the

stress-controlled procedure is more convenient.

6.1.1 Model design and simulation matrix

Simulation of HCA tests Series B

To verify the proposed stress-strain model and the numerical algorithm, a series of

simulations were carried out for the HCA tests (Series B as in Chapter 3) with b = 0

and α varying from 0◦ to 90◦. During the loading process, the mean effective stress

was kept at 100kPa. The simulation matrix is shown in Table 6.1, which is the same

as that used in Chapter 3. The initial void ratio of the specimens was e0 = 0.59

(Dr = 72%), and the initial degree of anisotropy was Ω = 0.25, with Ω = 2
3

√
3JF2 .

For the initial step, a mean effective stress of 100kPa was applied to the specimen.

During the loading step, the stress on the top surface (i.e., the vertical stress) of the
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Table 6.1: Simulation matrix for HCA test Series B

Test No. α(◦) b sin2α Lode angle θ(◦)
B1 0 0 0 30
B2 30 0 0.25 30
B3 60 0 0.75 30
B4 90 0 1 30

model was increased while the stresses on all the four side surfaces (i.e., the horizontal

stresses) were decreased at the same rate (b = 0). The stress rate on the top surface

was two times of that on the side surfaces to keep p = 100kPa. By this load control

method, the simulation was terminated when the deviatoric stress reached its peak

point.

Series SE: influence of initial void ratio e0

In this simulation series (SE), the inclination angle α between the major principal

stress direction and the normal direction of the bedding plane was maintained at

α = 0◦, and the intermediate principal stress coefficient b was kept at b = 0. Different

from Series B tests, the horizontal stress in Series SE tests was kept constant, as in

conventional triaxial compression tests. The initial confining pressure was 100kPa,

and the initial degree of anisotropy was Ω = 0.4. The initial void ratio e0 varied from

0.55 to 0.65, corresponding to tests SE1 to SE6, as presented in Table 6.2.

For the initial step, a mean effective stress of 100kPa was applied to the specimen.

During the loading step, the horizontal confining pressure was kept at 100kPa, while

the displacement of the top surface was increased. Displacement control was chosen

to capture the softening part of stress-strain curves.
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Table 6.2: Simulation matrix for SE

Series No. e (void ratio) Dr(%) α b
SE-1 0.55 85 0◦ 0
SE-2 0.57 78 0◦ 0
SE-3 0.59 72 0◦ 0
SE-4 0.61 65 0◦ 0
SE-5 0.63 59 0◦ 0
SE-6 0.65 52 0◦ 0

Figure 6.2: Boundary conditions for the simulations of SE, SA1, and SA2 at the
loading step

Series SA1 and SA2: influence of loading direction α

For the next two series (SA1 and SA2) of simulations, the intermediate principal

stress coefficient was kept at b = 0, while the inclination angle α varied from 0◦ to

90◦. The initial confining pressure was 100kPa, and the initial void ratio e0 = 0.59.

The initial degree of anisotropy measures were Ω = 0.4 (SA1) and Ω = 0.2 (SA2),

respectively. The stress path for these two series of tests was the same as that of the

conventional triaxial compression test. The simulation matrix is shown in Table 6.3.

The boundary conditions for Series SA1 and SA2 are shown in Figure 6.2.
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Table 6.3: Simulation matrix for SA1 and SA2

Series SA1 Ω α b Series SA2 Ω
SA1-1 0.4 0◦ 0 SA2-1 0.2
SA1-2 0.4 30◦ 0 SA2-2 0.2
SA1-3 0.4 45◦ 0 SA2-3 0.2
SA1-4 0.4 60◦ 0 SA2-4 0.2
SA1-5 0.4 90◦ 0 SA2-5 0.2

Series SB1 and SB2: influence of multi-direction loading ratio b?

For this two series of tests (SB1 and SB2), the behaviour of cubical specimens sub-

jected to mixed boundary conditions was simulated. Two control parameters, α and

b? = ε2/ε1 were used to define different loading conditions.

The inclination angle α was kept at α = 0◦, while b? varied from b? = 0 to b? = 1.

The initial confining pressure was 100kPa, and the initial void ratio e0 = 0.59. The

measures of the initial anisotropy were Ω = 0.4 (SB1) and Ω = 0.2 (SB2), respectively.

During the loading process, a vertical displacement δu was applied on the top surface,

while the left and right surfaces (x-z planes) were simutaneously moved by δub
?/2.

During this procedure, the pressures on the front and back surfaces (y-z planes) were

kept at 100kPa. As a result, the mean effective stress increased at different rates

during the loading procedure for different b?. The simulation matrices are shown in

Table 6.4. The boundary constraints of SB1 and SB2 are shown in Figure 6.3.

Table 6.4: Simulation matrix for SB1 and SB2

Series SB1 Ω α b? Series SB2 Ω
SB1-1 0.4 0◦ 0 SB2-1 0.2
SB1-2 0.4 0◦ 0.25 SB2-2 0.2
SB1-3 0.4 0◦ 0.5 SB2-3 0.2
SB1-4 0.4 0◦ 0.75 SB2-4 0.2
SB1-5 0.4 0◦ 1 SB2-5 0.2
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Figure 6.3: Mesh and boundary conditions for the simulations of SB1 and SB2

6.1.2 Simulation results

Simulation of HCA test Series B

The stress-strain curves from the FEM simulations are presented together with the

test results as well as with the results from single-node simulations (as in Chapter

4) in Figures 6.4a and 6.4b, respectively. The results of FEM simulations agree well

with single-node simulations, which were from the study in Chapter 4 using a Matlab

code for the stress-strain relation of a single node.

As shown in Figure 6.4b, the FEM simulations stopped as soon as the peak value

of deviatoric stress was attained. The peak deviatoric stress arrived earlier in the

FEM simulations than in the single node simulations, while the values of the peak

stresses were very close. For example, for Test B2 with α = 30◦ and b = 0, the FEM

simulation stopped at an octahedral shear strain value of 2.28% with a maximum

deviatoric stress of 151.83kPa, while in the single node simulation, the maximum

deviatoric stress was 152.66kPa at the octahedral shear strain of 3.59%.
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(a) Stress-strain curves from tests and
FEM simulations

(b) Stress-strain curves from single node
simulations and FEM simulations

Figure 6.4: Comparison of stress-strain curves for HCA test Series B

(a) Volumetric-shear strain curves from
tests and FEM simulations

(b) Volumetric-shear strain curves from
single node simulations and FEM simu-
lations

Figure 6.5: Comparison of the volumetric deformation for HCA test Series B

Figures 6.5a and 6.5b compare the volumetric-shear strain curves from the FEM

simulations, tests as well as single node simulations. Relatively large errors are ob-

served in Figure 6.5a. However, as can be seen from Figure 4.17, better agreement

between tests and simulations was obtained at larger shear strains. A good agreement

was found between the FEM simulations and single node simulations, see Figure 6.5b.
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In general, the dilatancy from FEM simulations was smaller than that from the single

node simulations. The boundary condition of FEM simulations may have influenced

the dilatancy properties. For example, in the FEM simulations, the displacement of

two central lines on the bottom of the specimen was constrained to eliminate rigid

body movement, which may decrease the potential of dilation. Moreover, the size

and shape of the specimens used for FEM simulations may also have an influence on

the dilatancy of the specimen.

Influence of initial void ratio e0

Figures 6.6a and 6.6b present the stress-strain curves and volume change responses

for specimens of different initial void ratios, respectively. The peak deviator stress

decreased with an increase of the initial void ratio e0. For e0 ≤ 0.59, a peak deviator

stress was observed at approximately 3.5% octahedral strain. When e0 ≥ 0.61, no

apparent peak stress was observed on the stress-strain curves.

The volumetric-shear strain curves showed that the dilatancy decreased signifi-

cantly with an increase of the initial void ratio. For loose specimens with e0 = 0.65,

almost no dilation was observed during the whole shearing process. On the other

hand, for dense sand with e0 = 0.55, dilation occurred soon after the loading started.

Figure 6.7 presents the results from experimental studies under the same con-

ditions as simulation Series SE by Kolymbas and Wu (1990). However, a different

material, Karlsruhe sand, was used in their tests while the simulations were performed

using the parameters of Ottawa sand. A qualitative agreement is found between Fig-

ure 6.6a and Figure 6.7a, as well as between Figure 6.6b and Figure 6.7b. Referring to

Figure 6.6a, the failure deviatoric stress increased from 205.7kPa to 274.9kPa as the
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(a) Stress-strain curves (b) Volumetric-shear strain curves

Figure 6.6: Results from simulations at different intial void ratios: Series SE

(a) Stress-strain curves (b) Volumetric-shear strain curves

Figure 6.7: Results from triaxial compression tests on Karlsruhe sand at p0 = 100
kPa (Kolymbas and Wu, 1990)

relative density increased from 52% (e0 = 0.65) to 85% (e0 = 0.55). With the same

range of relative density (52%-85%), the maximum and minimum failure deviatoric

stresses were 296.4kPa and 256.95kPa, respectively, by interpolation of the results

in Figure 6.7a.
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Influence of loading direction α

(a) Stress-strain curves: SA1 (Ω=0.4) (b) Volumetric-shear strain curves: SA1

(c) Stress-strain curves: SA2 (Ω=0.2) (d) Volumetric-shear strain curves: SA2

(e) Stress-strain curves: SA1 and SA2
(f) Volumetric-shear strain curves: SA1
and SA2

Figure 6.8: Results from Series SA1 and SA2: influence of loading directions
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Figure 6.8a presents the stress-strain curves from simulation Series SA1, in which

α varied from α = 0◦ to α = 90◦. The volumetric-shear strain curves are shown

in Figure 6.8b. The peak deviator stress tended to decrease with an increase of the

inclination angle. As the strain level increased to approximately 10%, the difference

between deviator stresses at different initial inclination angle tended to vanish. The

volumetric-shear strain curves revealed that dilatancy decreased with an increase

of the inclination angle. These observations were qualitatively in agreement with

experimental results as well as with simulation results from the single-node model.

It should be noted that the FEM simulations were carried out under conventional

triaxial compression conditions, while the HCA experimental tests were performed

under constant mean effective stress.

Figures 6.8c and 6.8d present the stress-strain curves and the volumetric-shear

strain curves of Series SA2 simulations, respectively. By comparing the stress-strain

curves with different initial anisotropy, as shown in Figures 6.8a and 6.8c, the peak

deviator stress decreased with an increase of the inclination angle, particularly for

simulations with higher initial anisotropy. By comparing the volumetric-shear strain

curves with different initial anisotropy (6.8b and 6.8d), the dilatancy decreased with

an increase of the inclination angle, which was similar to the experimental results.

Again, the influence of the loading direction was more significant in simulations with

higher initial anisotropy.

Figures 6.8e and 6.8f show the results at α = 0◦ and α = 90◦ only. With increased

initial anisotropy, both the stress-strain curves and the volumetric-shear strain curves

were more dispersed between α = 0◦ and α = 90◦ in Series SA1 than in Series SA2,

which implies that the influence of loading direction was more significant for specimens
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with a higher degree of initial anisotropy.

Influence of multi-direction loading ratio b?

Figures 6.9a and 6.9b present the stress-strain curves and volumetric-shear strain

curves for Series SB1 simulations with b? varying from 0 to 1 and Ω = 0.4. Both the

peak deviator stress and the dilatancy decreased while the value of b? increased. These

observations were in agreement with the experimental results as well as simulation

results from the single-node model.

The stress-strain curves of Series SB2 are shown in Figure 6.9c and the volumetric-

shear strain curves are shown in Figure 6.9d. By comparing the stress-strain curves

corresponding to different initial anisotropy presented in Figures 6.9a and 6.9c, it

is observed that the peak deviator stress decreased with an increase of b? in both

series. By comparing the volumetric-shear strain curves at different initial anisotropy,

presented in Figures 6.9b and 6.9d, one observes that the dilatancy decreased with

an increase of b?, which agreed with the observations from the experimental study.

However, unlike the influence of α, the influence of the loading path b? was not

significantly affected by increased initial anisotropy.

Figures 6.9e and 6.9f show the results with b? = 0 and b? = 1. The peak deviator

stresses for both b? = 0 and b? = 1 increased slightly at higher initial anisotropy. The

dilatancy in Series SB1 was larger than that in Series SB2 for each value of b?.

The results of simulations in Series SA1, SB1, SA2, and SB2 show that the pro-

posed stress-strain model properly reflected the influence of initial anisotropy on gran-

ular soil behaviour. The effect of loading direction depended highly on the inherent

anisotropy. The higher the initial degree of anisotropy, the more significant effect
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(a) Stress-strain curves: SB1 (Ω=0.4) (b) Volumetric-shear strain curves: SB1

(c) Stress-strain curves: SB2 (Ω=0.2) (d) Volumetric-shear strain curves: SB2

(e) Stress-strain curves: SB1 and SB2
(f) Volumetric-shear strain curves: SB1
and SB2

Figure 6.9: Results from Series SB1 and SB2: influence of the multi-direction loading
ratio b?
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of the loading direction on the material’s behaviour. The effect of loading path was

mainly caused by the induced anisotropy, with the influence of initial anisotropy being

limited.

Effect of loading direction on deformation in Series SA1 simulations

(a) x-displacement (b) y-displacement (c) z-displacement

Figure 6.10: Displacement components of SA1-2 (α = 30◦, e0 = 0.59, γ = 20%)

(a) x-displacement (b) y-displacement (c) z-displacement

Figure 6.11: Displacement components of SA1-3 (α = 45◦, e0 = 0.59, γ = 20%)

Figures 6.10 to 6.12 illustrate the distributions of ux, uy, and uz at the shear

strain level of 20% in Series SA1 simulations. In these simulations, b=0 with σ2

parallel to the bedding plane and σ1 making an inclination angle α with the normal

of the bedding plane. As a result, the distribution of uy was symmetric. The small

non-uniformity in the distribution of uy was related to the boundary constraint on
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(a) x-displacement (b) y-displacement (c) z-displacement

Figure 6.12: Displacement components of SA1-4 (α = 60◦, e0 = 0.59, γ = 20%)

the bottom of the specimen. The distribution of ux was significantly affected by the

inclination angle α, with shear strain developing along the bedding plane. The results

were consistent with laboratory observations.

(a) SA1-2 (α = 30◦) (b) SA1-3 (α = 45◦) (c) SA1-4 (α = 60◦)

Figure 6.13: Distribution of void ratio e (e0 = 0.59): influence of principal stress
direction

Figure 6.13 presents the distribution of void ratio in specimens with different α

at γ = 20%. High void ratio zones induced by high local dilation were observed

near the left upper corner and the lower right corner (the red areas), while a relative

low-dilation zone was in the central domain of the specimens. If we connect these

two red zones with locally high void ratios, an approximate shape of the original

bedding plane can be observed. The local high-dilation zones were caused by local
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shear deformation parallel to the bedding plane. It is expected the shear band would

initiate from these areas and would propagate nearly parallel to the bedding plane.

6.2 Numerical analysis of ground settlement on

structured granular medium

This section presents FEM simulation results to investigate the capability of the

proposed stress-strain model to determine the settlement of a cohesionless subgrade

considering different bedding plane orientations induced by a uniformly distributed

pressure on the ground surface.

6.2.1 FEM models

The discretizations and boundary conditions of the FE models are shown in Figure

6.14. The model was 3.2m in both length and width and 2m in depth. The surface

load imprint was 0.4m× 0.4m. The bottom of the model (x-y plane) was constrained

by the vertical displacement (U3 = 0), the left and right sides of the model (y-z

planes) were constrained by the displacement in the x-direction (U1 = 0), and the

front and back of the model (x-z planes) were constrained by the displacement in the

y-direction (U2 = 0). The loading was applied at the center of the top surface (x-y

plane), as shown in Figure 6.14b.

The unit weight of the material was 25kN/m3. It was assumed that the material’s

properties did not vary with depth. Other material properties are listed in Table 6.5,

which were the same as those used in Chapter 4. The same material subroutine

(UMAT) as that in the element study was used. The element type was C3D8 with
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full integration.

(a) (b)

Figure 6.14: Mesh and boundary conditions for the FEM model

Table 6.5: Material parameters of Ottawa sand

G0 = 2750kPa v = 0.29 ecr0 = 0.74 ϕcv = 30◦

hl = 426.8MPa nl = 0.43 a = 0.004 β = 2.3
hcr = 2867MPa ncr = 0.232 m = 5.3 k = 0.065
d = 1 Ω = 0.25 e0 = 0.59

Three series of simulations were performed with different pressures (200kPa and

300kPa) and different initial void ratios (e0 = 0.59 and e0 = 0.61), see Table 6.6.

The bedding plane inclination angle α, as shown in Figure 6.14b, varied from 0◦ to

90◦, with α = 0◦ corresponding to a horizontal bedding plane.

Different meshes were used to assess the sensitivity of the solution to element

sizes, as shown in Figure 6.15. The element size and number of elements from the

different meshes are shown in Table 6.7.
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Table 6.6: FEM simulation matrix for ground settlement

Pressure: 200kPa Pressure: 300kPa
Series No. α e0 Series No. α e0 Series No. α e0

BP1-1 0◦ 0.59 BP2-1 0◦ 0.61 BP3-1 0◦ 0.59
BP1-2 15◦ 0.59 - BP3-2 15◦ 0.59
BP1-3 30◦ 0.59 BP2-2 30◦ 0.61 BP3-3 30◦ 0.59
BP1-4 45◦ 0.59 - BP3-4 45◦ 0.59
BP1-5 60◦ 0.59 BP2-3 60◦ 0.61 BP3-5 60◦ 0.59
BP1-6 75◦ 0.59 - BP3-6 75◦ 0.59
BP1-7 90◦ 0.59 BP2-4 90◦ 0.61 BP3-7 90◦ 0.59

(a) Coarse (b) Partial densified (c) Fine (d) Very-fine

Figure 6.15: Finite element discretization with different mesh densities

6.2.2 Mesh sensitivity

Figure 6.16 presents the load-settlement curves obtained using different meshes when

the pressure was gradually increased to 25kPa for α = 0◦. Except for the coarse mesh

with 20cm × 20cm × 20cm elements, the results obtained using other three meshes

were close to each other. In other words, even though increased element sizes caused

numerical integration errors, owing to the nonlinearity of the model, the results were

not very sensitive to mesh density. When assuming the results using the very-fine

Table 6.7: Element size and number of different meshes

Mesh type Coarse Partial densified Fine Very-fine
Element size (cm) 20×20×20 8×8×8∼25×25×25 10×10×10 8×8×8
Number of elements 2560 6877 20480 42025
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mesh were the most reliable, relative errors of the results from the other three meshes

(averaged from data at 5kPa, 10kPa, 15kPa, 20kPa, and 25kPa) were given in

Table 6.8. However, the CPU time of the very-fine mesh was almost 4 hours for one

simulation (CPU: Intel Core i5-7400T, RAM: 12GB), compared with approximately

one hour when using the fine mesh. It should be noted that the mesh with partial

densification on the loading area was the most efficient. Using the result from the

very-fine mesh for the comparison, the relative error from the partial densified mesh

was only 0.5% larger than that from the fine mesh, but the CPU time of the former

was seven times less.

Figure 6.16: Comparison of the results from different meshes (25kPa)

Table 6.8: Sensitivity to mesh densities

Mesh Number of elements Relative error CPU time (sec)
Coarse 2560 7.82% 177

Partial densified 6877 2.41% 402
Fine 20480 1.98% 3911

Very-fine 42025 - 13293

To further study the model’s sensitivity to the mesh density, the coarse, fine, and

very-fine meshes were all used to simulate case BP1-1. The load-settlement curves
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are shown in Figure 6.17. The maximum settlements at 200kPa from the simulations

using the coarse, fine, and very-fine meshes were 10.26mm, 10.95mm, and 11.17mm,

respectively. The relative errors of the results when using the fine and coarse meshes

were 1.96% and 8.14%, respectively. These results are similar to the errors shown in

Table 6.8. It is concluded that the fine mesh in Figure 6.15 can provide reasonable

accuracy (< 2%) with relatively high efficiency.

Figure 6.17: Comparison of the results from different meshes (200kPa)

6.2.3 Simulation results

For the FEM simulations, before applying the surface pressure, a geostatic step was

used to generate the geostatic stress field in the ground. At the end of this step, the

maximum displacement was in the order of 10−18m (see Figure 6.18a), which was

negligible. Figures 6.18b presents the displacement distributions after the loading

step under loading of 200kPa at α = 30◦.

Figures 6.19a shows the variation of the maximum settlement from simulations

BP1 at e0 = 0.59 under the pressure level of 200kPa. With an increase of α, the

maximum settlement increased and reached the peak value at α = 90◦. In simulation
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(a) after the geostatic step (b) after the loading step

Figure 6.18: Displacement distribution (U3) from the simulation BP1-3

with α = 90◦, the maximum settlement was 11.99mm, 10.81% larger than the maxi-

mum settlement of 10.82mm at α = 0◦. More detailed results of the settlement can

be found in Appendix (see Figure 6.25).

(a) Maximum settlement (b) Horizontal displacement

Figure 6.19: Variation of displacement with α from simulation Series BP1

Figures 6.19b shows the variations of the horizontal displacements U1 and U2

with different α from Series BP1 simulations. Since the bedding plane was inclined

in the x − z plane as shown in Figure 6.14b, the displacement in the y−dirction

(U2) should be symmetrical about the x − z plane. This is confirmed from Figures

6.24b, 6.24d, 6.24f, and 6.24h. However, U2 decreased from BP1-1 to BP1-7 with the
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increase of α as U3 increased. At α = 0◦, since the ground was cross-anisotropic, the

displacement in the x−dirction (U1) was symmetrical, and the displacements U1 and

U2 were idential, as shown in Figures 6.24a and 6.24b. When 0◦ < α < 90◦, U1 was

non-symmetrical about the y−z plane. As α increased, U1 became larger in the right

side than in the left side. Herein, the ”left” and ”right” sides were defined in Figure

6.14b. For α = 30◦, the difference was approximately 0.4%. This difference increased

to 2.0% at α = 45◦, 4.3% at α = 60◦, and 5.0% at α = 75◦, respectively. At α = 90◦,

the distribution of U1 became symmetrical again. However, a 7.8% difference was

found between U1 and U2. These results revealed the influence of the bedding plane

orientation on the horizontal displacement field. The detailed results of the horizontal

displacement can be found in the Appendix (Figure 6.24). Results from Series BP2

simulations revealed similar responses at a higher initial void ratio of e0 = 0.61, see

Figures 6.20.

(a) Maximum settlement (BP1 and BP2) (b) Horizontal displacement (BP2)

Figure 6.20: Variation of displacement with α from simulation Series BP2

When the applied pressure was increased to 300kPa, as shown in Figure 6.21 for

simulation Series BP3, the maximum settlement increased with α first and reached
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the peak at approximately α = 30◦, and decreased slightly afterward. The maximum

settlement was 23.38mm at α = 30◦, 7.1% larger than that at α = 0◦, which was

21.83mm. At α = 90◦, the maximum settlement was 22.7mm, 4.0% larger than that

at α = 0◦. At this pressure level, the range around the loading area has reached large

strain levels (>5%). Therefore the displacement field was not entirely in agreement

with the material response from the element tests. The formation of failure surfaces

under the high pressure level may have attributed to the larger settlements in simula-

tions with α = 30◦ to α = 60◦. This can also explain the large difference between the

left and right sides of the U1 displacement. As shown in Figure 6.22a, the maximum

displacement U1 on the right side was 20.5% larger than that on the left side when

α = 45◦. From Figure 6.22b, heave was observed on the ground surface around the

loading area, especially on the right side.

(a) Maximum settlement (BP1 and BP3) (b) Horizontal displacement (BP3)

Figure 6.21: Variation of displacement with α from simulation Series BP3

The influence of α on the stress distribution can be observed from Figures 6.26,

6.27 and 6.28 in the Appendix (for Series BP1). For α = 0◦ and α = 90◦, the fabric

components in the ground were symmetric along each direction (x, y, and z) during
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(a) Horizontal displacement (U1) (b) Vertical displacement (U3)

Figure 6.22: Displacement fields from simulation BP3-4 (300kPa, α = 45◦)

loading. Thus the stress distributions were symmetric in each direction. For all other

simulations from α = 15◦ to α = 75◦, unsymmetrical distributions of stress were

observed in the x−direction (S1) as well as z−direction (S3). Similar to U2, the

distribution of S2 was also symmetric about the x − z plane. From the distribution

of S1 and S3, it is also noted that the higher stresses were found on the right sides,

where there were larger displacements (U1 and U3). It can be concluded that the

model has properly reflected the general trends of stress and displacement responses

of a sandy ground with different bedding plane orientations. However, verification

for the accuracy of results from the numerical simulation is still necessary.

6.3 Conclusions

This chapter presents simulation results of boundary value problems based on the

model developed in Chapter 4. A user-defined subroutine UMAT was developed for

incorporating the stress-strain model into ABAQUS. In closing, the following remarks

are made:
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1. The comparison between the FEM simulation results and the laboratory test

results (HCA test, Series B) in Chapter 4 confirm the appropriateness of the algorithm

for implementation of the stress-strain model into ABAQUS.

2. The proposed model and the algorithm can properly simulate the density

dependency of structured granular materials. In general with an increase of the void

ratio, the peak deviator stress and the tendency of dilation both decreased. The

results were consistent with experimental data.

3. The proposed stress-strain model and the developed numerical algorithm can

simulate the directional dependency and stress path dependency of anisotropy granu-

lar materials. It was proven that the model could account for the anisotropy behaviour

under generalized stress conditions. Different initial degrees of anisotropy were used.

It was observed that an increase of initial anisotropy largely increases the directional

dependency of material, which is dominated by inherent anisotropy, while the in-

fluence of higher initial anisotropy on the stress path dependency of material was

limited. These results agreed with observations from laboratory tests.

4. FEM simulations were performed for the boundary value problem to determine

pressure-induced ground settlement of sand with different bedding plane orientations.

It was found that the settlements had a clear dependency on the inclination angle of

the bedding plane in addition to the initial void ratio.
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6.4 Appendix 1: Numerical integration of consti-

tutive relations

When implementing a stress-strain model in ABAQUS through UMAT, the key is

to determine the constitutive matrix at the current stress state. Starting from an

equilibrium state at time t0, ABAQUS performs an incremental loading and provides

the subroutine UMAT with the initial 6-component stress vector σ(t0) [σ11, σ22, σ33,

σ12, σ23, σ13]T , 6-component strain vector ε(t0) [ε11, ε22, ε33, ε12, ε23, ε13]T , void ratio

e(t0), 9-component fabric vector F (t0) [F11, F22, F33, F12, F21, F23, F32, F13, F31]T ,

and the strain increment vector ∆ε(t0) for time increment ∆t. The strain increment

vector is calculated by ABAQUS using the current Jobabian matrix. Based on the

current stress state and the relevant state variables, the subroutine UMAT supplies

ABAQUS with the updated stress vector σ(t0 + ∆t), which is updated according to

the constitutive law as well as the derivative of σ with respect to the strain increment,

known as the Jacobian (CJac). Following the determination of σ(t0 + ∆t), the fab-

ric components are updated. Since the stress-strain relation depended on the fabric

state, this process must be iterated according to the following steps for an initial state

of σ(t0), ε(t0), e(t0), F (t0) at time t0 in step n:

1. Given the strain increment vector ∆ε(t0);

2. Based on the current Jacabian, an estimated (∆σ)0 is obtained using

(∆σ)0 = (
∂∆σ

∂∆ε
)n∆ε(t0) (6.1)

3. Based on current stress increment (∆σ)0, the fabric vector F and dilatancy factor

D are updated.
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4. The stress increment vector (∆σ)1 is calculated using Equation (4.38),

(∆σ)1 = [Dep]∆ε (6.2)

with

[Dep] = [De]− 1

H
([De]

∂gs
∂σ

(
∂fs
∂σ

)T [De])

5. Steps 3 and 4 are repeated, using (∆σ)k instead of (∆σ)0 with k being the iteration

counter until the following convergence requirement is satisfied:

|(∆σ)k+1 − (∆σ)k
(∆σ)k

|≤ 10−5

The updated stress increment vector ∆σ and [Dep] are saved.

6. The stress vector, void ratio and the fabric vector are all updated as σ(t0 + ∆t) =

σ(t0) + ∆σ, e(t0 + ∆t) = e(t0) + ε̇v(1 + e0), and F (t0 + ∆t) = F (t0) + ∆F . It should

be noted that ∆F is calculated based on ∆σ according to the fabric evolution law.

Figure 6.23 presents the flowchart of the UMAT subroutine. While the stress and

strain components of an integration point are saved automatically by ABAQUS, the

fabric components and void ratio must be saved as state variables. To achieve a higher

rate of convergence, the Jacobian components are also stored as state variables, see

Table 6.9.

Table 6.9: Quantities saved as state variables in UMAT

Fabric components Void ratio Jacobian components
State variables 1-9 10 11-46

To call the UMAT subroutine, the following command lines must be added to the
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Figure 6.23: Flowchart for the UMAT procedure

ABAQUS job file (*.inp) to define the material. The material, denoted as ‘Material-

1’, has 46 solution-dependent state variables and 10 input parameters.

** MATERIALS

*Material, name=Material-1

*Depvar

46,

*User Material, constants=10, unsymm

2750., 0.29, 0.74, 30., 4268., 0.43, 2867., 0.232

0.59, 0.25

The UMAT subroutine shares 37 quantities with the ABAQUS main routine.
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Using the following header, the information of stresses, strains and Jacobian are

passed to UMAT from ABAQUS solver.

1 subroutine umat(stress ,statev ,ddsdde ,sse ,spd ,scd ,rpl ,

2 & ddsddt ,drplde ,drpldt ,stran ,dstran ,time ,dtime ,temp ,

3 & dtemp ,predef ,dpred ,cmname ,ndi ,nshr ,ntens ,nstatv ,

4 & props ,nprops ,coords ,drot ,pnewdt ,celent ,dfgrd0 ,dfgrd1 ,

5 & noel ,npt ,layer ,kspt ,kstep ,kinc)

6 implicit none

7 character *8 cmname
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6.5 Appendix 2: Simulation results from BP1

(a) α = 0◦, U1 (b) α = 0◦, U2

(c) α = 30◦, U1 (d) α = 30◦, U2

(e) α = 60◦, U1 (f) α = 60◦, U2

(g) α = 90◦, U1 (h) α = 90◦, U2

Figure 6.24: Displacement distributions (U1 and U2) from simulations BP1 (200kPa)
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(a) α = 0◦, U3 (b) α = 15◦, U3

(c) α = 30◦, U3 (d) α = 45◦, U3

(e) α = 60◦, U3 (f) α = 75◦, U3

(g) α = 90◦, U3

Figure 6.25: Displacement distributions (U3) from simulations BP1 (200kPa)
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(a) α = 0◦, S1 (b) α = 0◦, S2

(c) α = 30◦, S1 (d) α = 30◦, S2

(e) α = 60◦, S1 (f) α = 60◦, S2

(g) α = 90◦, S1 (h) α = 90◦, S2

Figure 6.26: Stress distributions (S1 and S2) from simulations BP1 (200kPa)
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(a) α = 0◦, S3 (b) α = 15◦, S3

(c) α = 30◦, S3 (d) α = 45◦, S3

(e) α = 60◦, S3 (f) α = 75◦, S3

(g) α = 90◦, S3

Figure 6.27: Stress distributions (S3) from simulations BP1 (200kPa)
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(a) α = 0◦ (b) α = 15◦

(c) α = 30◦ (d) α = 45◦

(e) α = 60◦ (f) α = 75◦

(g) α = 90◦

Figure 6.28: Mises stress distributions from simulations BP1 (200kPa)
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Chapter 7

Summary and conclusions

This study focused on the development of a comprehensive constitutive model to

describe the behaviour of structured granular soils under generalized stress conditions.

The main contributions accomplished in this thesis are summarized as follows:

1. A comprehensive experimental study using a hollow cylinder apparatus was

carried out to investigate the behaviour of Ottawa sand subjected to both monotonic

and cyclic loading under general stress conditions. In the monotonic loading test, both

the strength and dilatancy of sand was shown to decrease notably with an increase of

the intermediate principal stress coefficient or the angle between the major principal

directions of the stress and fabric tensors. At a select mean effective stress level, the

highest shear resistance was found to be achieved when the major principal stress

direction is perpendicular to the bedding plane.

2. The experimental data for the stress states at failure indicated that the bench-

marked Matsuoka-Nakai and Lade failure criteria are only valid when the intermediate

principal stress coefficient b and the angle α between the major principal directions

of the stress and fabric tensors satisfy b = sin2α.
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3. When subjected cyclic loading, in addition to the stress level and applied strain

amplitudes, the accumulative volume change was observed to depend on the direction

of cyclic loading relative to the direction of the bedding plane. For the same cyclic

deviatoric stress amplitude, cyclic stresses perpendicular to the bedding plane tended

to induce less accumulative volumetric compaction.

4. Under the same conditions, for a given cyclic deviatoric stress amplitude,

multi-directional cyclic loading was found to cause larger accumulative volumetric

compaction. Changes of the cyclic loading direction during cyclic loading induced

immediate increases of volumetric compaction of a specimen.

5. The concept of the critical state fabric surface was proposed. On the π-

plane, the critical fabric surface was assumed to take the shape of the inverted Lade’s

failure surface. A fabric evolution law was established based on this concept and

the additional assumption that the incremental fabric change is proportional to the

incremental stress tensor.

6. Based on the critical state fabric surface, a modified stress-dilatancy formu-

lation was proposed to describe the effect of fabric and loading direction on shear-

induced volume change of granular materials. A complete constitutive model was thus

built within the framework of the theory of elasto-plasticity, in which the modified

stress-dilatancy formulation was used as a flow rule.

7. The developed stress-strain model was verified using the laboratory test re-

sults. The capability of the model was further examined by simulating the behaviour

of granular materials of different initial fabric and void ratio states along different

stress paths. It was confirmed that the proposed model can reasonably reproduce the

observed deformation feature of sand with the effect of inherent fabric, intermediate
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principal stresses and the loading direction measured by the angle between the major

principal directions of the stress and fabric tensors.

8. By implementing the concept of hypo-plasticity and adopting a kinematic

hardening law, the constitutive model developed for monotonic loading was extended

to describe the behaviour of granular material subjected to repeated loading with

the influence of fabric being considered. The model was then used to simulate the

behaviours of sand subjected to various modes of cyclic stress conditions, including

one-way cyclic loading, multi-directional cyclic loading, cyclic loading with jump of

cyclic loading directions.

9. After being verified using laboratory test results, the proposed constitutive

model was implemented into the FEM software package ABAQUS to solve boundary-

valued problems. In particular, the numerical implementation of the model was

achieved by implementing the constitutive model into ABAQUS through a user-

defined subroutine UMAT to determine pressure-induced ground settlement of sand

with different bedding plane orientations. The FEM modelling results revealed the

dependency of settlements on the inclination angle of the bedding plane in addition

to the initial void ratio of the soil.

In addition to the theoretical aspects, the outcomes and findings of this research

can be used to solve the practical engineering problems involving cyclic loading. For

example, the developed stress-strain model can be used to simulate the performance of

bridge approach embankment of integral abutment bridge (IAB), where the granular

backfill is subject to cyclic loads from both vertical (traffic loads) and horizontal

directions (induced by the movement of the abutment owing to thermal expansion

of the structure). Similar circumstances can be found for coastal structures, the
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foundation of offshore wind power plants, machine foundations, etc. The compaction

of granular soil under moving vibratory equipment can also be simulated by the

developed approach since it is essentially a problem involving cyclic loading with

continuous principal stress rotation.

It is recommended that the following work should be considered in the future.

1. Further DEM investigations on the fabric evolution of granular materials should

be carried out to verify the assumption regarding the critical fabric state and to verify

the fabric evolution law. The effects of particle shape, particle size as well as gradation

on the ultimate fabric state surface should also be studied.

2. The proposed model should be used to solve additional boundary-valued prob-

lems involving cyclic loading. Proper measurement in reduced scale model tests or

in-situ tests should be obtained to verify the performance of the model, particularly

regarding its capability to model cyclic loading histories.
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