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Abstract

This thesis focuses on utilizing the persistent voltage vector injections by finite con-

trol set model predictive control (FCSMPC) to enable simultaneous estimations of

both position and parameters in order to realize robust sensorless interior permanent

magnet synchronous machine (IPMSM) drives valid at the entire operating region

including no-load standstill without any additional signal injection and switchover.

The system (here, IPMSM) needs to meet certain observability conditions to

identify the parameters and position. Moreover, each combination of the parame-

ters and/or position involves different observability requirements which cannot be

accomplished at every operating point. In particular, meeting the observability for

parameters and position at no-load standstill is more challenging. This is overcome

by generating persistent excitation in the system with high-frequency signal injection.

The FCSMPC scheme inherently features the persistent excitation with voltage vector

injection and hence no additional signal injection is required. Moreover, the persis-

tent excitation always exists for FCSMPC except at the standstill where the control

applies the null vectors when the reference currents are zero. However, introducing

a small negative d axis current at the standstill would be sufficient to overcome this

situation.

The parameter estimations are investigated at first in this thesis. The observability
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is analyzed for the combinations of two, three and four parameters and experimentally

validated by online identification based on recursive least square (RLS) based adaptive

observer. The worst case operating points concerning observability are identified and

experimentally proved that the online identification of all the parameter combinations

could be accomplished with persistent excitation by FCMPC. Moreover, the effect

of estimation error in one parameter on the other known as parameter coupling is

reduced with the proposed decoupling technique.

The persistent voltage vector injections by FCSMPC help to meet the observ-

ability conditions for estimating the position, especially at low speeds. However, the

arbitrary nature of the switching ripples and absence of PWM modulator void the

possibility of applying the standard demodulation based techniques for FCSMPC.

Consequently, a nonlinear optimization based observer is proposed to estimate both

the position and speed, and experimentally validated from standstill to maximum

speed. Furthermore, a compensator is also proposed that prevents converging to

saddle and symmetrical (π ambiguity) solutions.

The robustness analysis of the proposed nonlinear optimization based observer

shows that estimating the position without co-estimating the speed is more robust

and the main influencing parameters on the accuracy of the position estimation are d

and q inductances. Subsequently, the proposed nonlinear optimization based observer

is extended to simultaneously estimate the position, d and q inductances. The exper-

imental results show the substantial improvements in response time, and reduction

in both steady and transient state position errors.

In summary, this thesis presents the significance of persistent voltage vector in-

jections in estimating both parameter and position, and also shows that nonlinear

optimization based technique is an ideal candidate for robust sensorless FCSMPC.
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Notation

Symbols

abc stationary three phase reference frame

αβ stationary two axis reference frame

dq rotating two axis reference frame

δγ estimated two axis rotating reference frame

va, vb, vc three phase voltages

vabc three phase voltage vector

ia, ib, ic three phase currents

iabc three phase current vector

vd, vq voltages in dq frame

vdq voltage vector in dq frame

id, iq currents in dq frame

idq current vector in dq frame

vδ, vγ voltages in δγ frame

vδγ voltage vector in δγ frame

iδ, iγ currents in δγ frame

iδγ current vector in δγ frame
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θ measured (or actual) rotor position

θ̂ estimated rotor position

ϑ̂ estimated angle difference between dq and δγ frames

ω measured (or actual) rotor speed

ω̂ estimated rotor speed

ϑ̂o optimal solution of ϑ

Ld d-axis inductance

Lq q-axis inductance

R phase winding resistance

ψm PM flux linkage

ˆ indicates estimated variable

Abbreviations

AC alternating current

DC dc current

FCS finite control set

FCSMPC FCS model predictive control

IM induction machine

IPMSM interior permanent magnet synchronous machine

MPC model predictive control

PM permanent magnet

PE persistent excitation

SPMSM surface permanent magnet synchronous machine
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4.7 The measured currents at 50 rpm and i∗δγ = 0: (a) i

δ and (b) i

γ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xvi



4.8 The measured currents at (a) speed reversal at 50 rpm, and (b) rated

current (10 A) reversal. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 The block diagram of the proposed online parameter estimation scheme. 67

5.2 Experimental online estimation results at 100 rpm: (a) for {L̂d, L̂q},

(b) for {L̂d, ψ̂m}, and (c) and (d) the measured id and iq showing the

zero average. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Experimental online estimation results for {R̂, ψ̂m}: (a) for iq = 5A,

id = 0A and 100rpm, (b) for iq = 5 A, id = 0 A and 25rpm, (c) for

iq = 0 A, id = −5 A and 100rpm, (d) measured id and iq corresponding

to (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 The decoupling technique for estimating {R̂, ψ̂m}: (a) two RLSs based

decoupling scheme (b) online experimental estimation results at iq =

5 A and 100 rpm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5 Experimental online estimation results at iq = 5 A, id = 0 A, and

100 rpm : (a) for the combination {L̂d, L̂q, R̂} (b) for the combina-

tion {L̂d, L̂q, ψ̂m}, (c) for the combination {L̂d, R̂, ψ̂m}, and (d) for the

combination {L̂q, R̂, ψ̂m}. . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6 Experimental online estimation results: (a) for the combination {L̂d, L̂q, R̂, ψ̂m),

(b) the corresponding id, iq and rpm. . . . . . . . . . . . . . . . . . . 77

6.1 The complete block diagram of the sensorless FCSMPC. . . . . . . . 80

6.2 Nonlinear optimization based position and speed estimator. . . . . . . 82

6.3 The contour plot of the cost function (f), convex region, and the con-

vergence trajectories for the high speed case. . . . . . . . . . . . . . . 86

xvii



6.4 The contour plot of the cost function (f), convex region, and the con-

vergence trajectories for the low speed case. . . . . . . . . . . . . . . 89

6.5 (a) Compensation flow chart, and (b) compensation trajectory. . . . . 91

6.6 Position estimation at standstill with i∗δ = −1 A and i∗γ = 0 A: (a)

open loop till 0.4 s and then closed loop (b) the compensator in action

at 4 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.7 Experimental speed reversal performance of sensorless FCSMPC at 50

rpm: (a)-(d) at no load, and (e)-(h) at 50% rated load. . . . . . . . . 94

6.8 Experimental speed reversal performance at 50% rated load: (a)-(d)

for sensorless FCSMPC with transition from motoring to generation at

50 rpm, and (e)-(h) for sensorless vector control at 100 rpm. . . . . . 95

6.9 Experimental speed reversal performance of sensorless FCSMPC at

50% rated load: (a)-(d) at 100 rpm, and (e)-(h) at 200 rpm. . . . . . 96

6.10 Experimental speed reversal performance of sensorless FCSMPC at 100

rpm: (a)-(d) at the full rated load, and (e)-(h) at 150% of the rated load. 98

6.11 Experimental speed sweep performance from 0 rpm to half the rated

speed (350 rpm) and back at 25% rated load: (a)-(d) for sensorless

FCSMPC, and (e)-(h) for sensorless vector control. . . . . . . . . . . 99

6.12 Experimental torque reversal performance at the full rated torque and

100 rpm: (a)-(d) for sensorless FCSMPC, and (e)-(h) for sensorless

vector control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xviii



6.13 Position error with respect to parameter variations: (a) ±50% varia-

tion in resistance, (b) ±25% variation in d axis inductance, (c) ±25%

variation in permanent magnet flux linkage, and (d) ±25% variation

in q axis inductance. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.1 The block diagram of the robust sensorless FCSMPC scheme. . . . . 105

7.2 Nonlinear optimization based robust position and parameter estimation.106

7.3 The region D (i, ii, iii, iv, v, vi, vii, and viii for ∓0.25L̄d, ∓0.25L̄q, ∓

0.5R̄, and ∓0.25ψ̄ respectively), and the trajectories of x̄o moving into

xo: at rated speed, iδγ = [−10A, 10A]′, and i̇δγ = [104A/s, 104A/s]′ (a)

for x = [ϑ̂, ω̂]′ and (c) for x = ϑ̂ , and at zero speed, iδγ = [−10A, 10A]′

and i̇δγ = [104A/s, 104A/s]′ (b) for x = [ϑ̂, ω̂]′ and (d) for x = ϑ̂ (x̄o on

RHS and LHS of ϑ̂ = 0 axis corresponds to decrement and increment

in parameter variations respectively). . . . . . . . . . . . . . . . . . . 111

7.4 The cost function at rated speed, iδγ = [−10A, 10A]′, and i̇δγ = [104A/s, 104A/s]′

(a) with respect to ϑ̂ keeping L̂d = L̄d and L̂q = L̄q, and (c) with re-

spect to L̂d and L̂q keeping ϑ̂ = 0 rad, and similarly at zero speed,

iδγ = [−10A, 10A]′ and i̇δγ = [104A/s, 104A/s]′ in (b) and (d) respec-

tively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.5 The convex region within the boundaries of ∥m∥2= 0 for (a) the rated

speed, iδγ = [−10A, 10A]′ and i̇δγ = [104A/s, 104A/s]′, and (b) zero

speed, iδγ = [−10A, 10A]′ and i̇δγ = [104A/s, 104A/s]′. . . . . . . . . . 114

xix



7.6 Nonlinear optimization trajectories of x = [ϑ̂, L̂d, L̂q]
′ and error ∥J∥

for (a)-(b) the rated speed, iδγ = [−10A, 10A]′ and i̇δγ = [104A/s, 104A/s]′,

and for (c)-(d) zero speed, iδγ = [−10A, 10A]′ and i̇δγ = [104A/s, 104A/s]′

(The actual value xo = [π/6 rad, 11 mH, 14.3 mH]′). . . . . . . . . 115

7.7 Robust sensorless FCSMPC (x = [ϑ̂, L̂d, L̂q]
′) scheme- the experimental

speed reversal test results at 100rpm (a)-(d) at half the rated torque

and (e)-(f) at the rated torque. . . . . . . . . . . . . . . . . . . . . . 118

7.8 Non-robust sensorless FCSMPC (x = ϑ̂) scheme- the experimental

speed reversal test results at 100rpm (a)-(d) at half the rated torque

and (e)-(f) at the rated torque. . . . . . . . . . . . . . . . . . . . . . 119

7.9 Robust sensorless FCSMPC (x = [ϑ̂, L̂d, L̂q]
′) scheme- the experimental

speed sweep test results from 0 rpm to half the rated speed (350rpm)

and back at 25% rated torque. . . . . . . . . . . . . . . . . . . . . . . 120

7.10 Non-robust sensorless FCSMPC (x = ϑ̂) scheme- the experimental

speed sweep test results from 0 rpm to half the rated speed (350rpm)

and back at 25% rated torque. . . . . . . . . . . . . . . . . . . . . . . 121

7.11 Robust sensorless FCSMPC (x = [ϑ̂, L̂d, L̂q]
′) scheme- the experimental

torque transient tests at 100 rpm (a)-(e) torque reversal at the rated

load, and (f)-(j) torque step from no load to the rated load. . . . . . . 123

7.12 Non-robust sensorless FCSMPC (x = ϑ̂) scheme- the experimental

torque transient tests at 100 rpm (a)-(e) torque reversal at the rated

load, and (f)-(j) torque step from no load to the rated load. . . . . . . 124

B.1 Motor dyno setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

B.2 The measured apparent inductances (a) for d axis, and (b) for q axis. 136

xx



Chapter 1

Introduction

1.1 Background

The electric motor-driven systems have been the workforce for any modern industry,

and they account for about 54% of the total electricity consumption in the United

States (DOE/GO-102014-4356, 2014). The traditional industrial motor drive systems

are AC machines supplied with fixed frequency utility power and operate at constant

speed. The variable speed drives have been evolved to utilize electric energy efficiently

and to meet the dynamic load demands, however, restricted to DC machine drives at

the beginning (around 1930s (Bose, 2009)). As the DC machines are expensive and

less reliable as compared to AC machines, extensive research has been carried out in

development of variable AC drives in last three decades. Moreover, the invention of

power electronic converters greatly expedited the development of variable AC drive

systems.

The v/f control is the most straightforward and widely used variable speed drive

technique for industrial AC machines. However, it has a slow dynamic response, and
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low steady state accuracy as the torque and flux are not independently controlled.

The field-oriented control (FOC) which surpasses v/f control by independently con-

trolling torque and flux became popular after the commercialization of digital signal

processors in early 1980s (Gabriel et al., 1980). Since then FOC has been the best

control strategy for the high-performance variable speed AC machine drive systems.

The dynamic performance of the FOC is mainly dependent on tuning the cascaded

current and speed PI (proportional-integral) controllers. On other hand, the fast

torque response is achieved in direct torque control (DTC) strategy which directly

applies voltage vectors without any PI controller. However, DTC produces significant

torque ripples as it utilizes finite voltage vectors.

The model predictive control (MPC) which was initially developed for process

industries in the late 1970s is gaining more attention in power electronics and motor

drive applications with the support of fast modern processors (Geyer, 2009; Lee, 2011;

Camacho and Carlos, 2007). Unlike the cascaded control systems, many system

variables are controlled within a single control loop, and the constraints are easily

incorporated in MPC. The MPC with finite control set (FCSMPC) is often preferred

over the continuous MPC as the latter requires more computational resources to

solve the nonlinear optimization problem (Preindl et al., 2013; Preindl and Bolognani,

2013a). In one of the popular implementation of FCSMPC, the currents are controlled

in the rotational reference frame (dq) to perform field oriented control, in which the

voltage vectors producing the minimum error between the reference and predicted

currents are applied to electric machines (Wang et al., 2017).

The machine parameters are assumed to be constants in modeling and develop-

ment of the standard control schemes. However, these parameters vary significantly
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especially for the high performance applications like automotive traction (Emadi,

2015). In the advanced control schemes, e.g. position sensorless and optimal con-

trols, the actual parameters considering the variations are either updated from a

lookup table or by estimation. To accomplish the estimation, the voltage input to

the machines should achieve persistent excitation or in other words, meet the observ-

ability conditions. As the electric machines with parameter variations is inherently a

nonlinear system, the classical linear observability theory cannot be applied (Li, 2005;

Xu, 2004). The machine model is linearized in a particular state subspace to apply

the linear observability theorem in (Basic et al., 2010; Laroche et al., 2008) however

this approach is very localized and lacks the sense of observability in the entirety of

the state trajectories. The analysis of global observability of the nonlinear dynamic

system is complicated in practice (Guerra et al., 2015). The local observability is a

powerful concept, and the theory proposed by Hermann and Krener with the help

of Lie-theoretic characterization is a widely accepted approach for nonlinear system

observability (Hermann and Krener, 1977).

The nonlinear observability analysis for identification of the electric machine pa-

rameters in literature is also mainly based on the concept proposed by Hermann

Krener (Zaltni D.a Abdelkrim et al., 2009; Vaclavek et al., 2013; Boileau et al., 2011).

The determination of observability conditions for identifying a single parameter is

straightforward. At least an element in the column of Jacobian of the Lie-derivative

vector corresponding to that individual parameter should be nonzero. On the other

hand, the corresponding columns should be linearly independent for simultaneously

identifying two or more parameters. Consequently, there are parameters which are

identifiable individually cannot be identified simultaneously in a combination. It is
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shown that the estimation of stator resistance and inductance for a surface permanent

magnet synchronous machine (SPMSM) are always identifiable as long as speed and

q-axis current are non zero in (Boileau et al., 2011). The observability conditions

for estimating speed, position and resistance for induction machine (IM) and inte-

rior permanent magnet synchronous machine (IPMSM) are presented in (Vaclavek

et al., 2013) and that for estimating position for SPMSM and IPMSM are analyzed

in (Zaltni D.a Abdelkrim et al., 2009). The available literature examines the observ-

ability of only a few parameter combinations and a detailed analysis covering all the

possible combinations is still unexplored.

The steady state is the most challenging (worst case) operating condition regard-

ing the machine parameter identification (Boileau et al., 2011; Liu, 2015). Most of

the parameter combinations fail to be identifiable at this scenario. It is overcome

by injecting high frequency-signals to establish the persistent excitation. The full

parameter estimation by injecting both sinusoidal and square wave signals at d axis

are compared in (Liu, 2015) and shown that the sinusoidal injection results in faster

convergence. The robustness of the estimation of all the parameters with signal in-

jection is improved by decoupling the slow and fast parameters with two differently

sampled recursive least square (RLS) estimators in (Underwood, 2010). The coupling

between resistance and permanent magnet flux linkage is also briefly mentioned in

(Underwood, 2010) without any direction for compensation. The slow parameters

from a high-frequency model and the fast parameters by RLS are estimated in (Xu,

2014). A complete decoupling is achieved in this case by the fact that the two esti-

mators are based on different models (high frequency and fundamental). In (Dang,

2016), two affine projection estimators are used for slow and fast parameters. The
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full parameter estimation techniques are fairly established in literature. However, the

details on high discretization error for slow parameter estimation at the low sampling

rate and the parameter coupling are not well addressed.

The standstill and low-speed operation are the most challenging situation for

estimation of position. The position is not observable in this condition unless there is a

persistent excitation into the system (Vaclavek et al., 2013). The persistent excitation

is established by injecting high-frequency signals such as sinusoidal, square, arbitrary

and pulse vector into the system. The responses of these injected signals are utilized

in extracting the position information in the standard position estimation techniques.

For instance, the demodulation based techniques are applied to periodic continuous

injection like sinusoidal and square waves, and the current derivative model-based

methods are employed for pulse vector injection (Gong and Zhu, 2012; Corley and

Lorenz, 1998; Leidhold, 2011; Foo and Xinan, 2015). The techniques mentioned

above cannot be directly applied for the sensorless FCSMPC as it does not have

any modulator to superimpose the injected signal with the fundamental excitation.

There is an attempt to estimate the position from the high-frequency reactive power

with demodulation technique in (Nalakath et al., 2016); however, the wide varying

nature of the arbitrary injection frequency associated with FCSMPC causes difficulty

in locking the filter and phase locked loop (PLL) parameters. The cost function of

the FCSMPC is modified to superimpose the high-frequency sinusoidal signal along

with the control vectors in (Muzikova et al., 2015). However, differentiating the

responses between the superimposed signal and the inherent high-frequency vector is

challenging as this method relies on the standard demodulation.

The model-based methods are found to be discussed more in literature for the
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position sensorless FCSMPC especially at standstill and low-speeds. A model based

second order observer consisting of a PLL and a feed-forward loop is presented in

(Preindl and Schaltz, 2011) and showed that the position could be estimated for a

wide speed range except at speeds close to the standstill as there are oscillations

in the estimation. The results of specially simplified model equations introduced

to estimate the position for FCSMPC drives in (Rovere et al., 2016) are promising

except 12 electrical degree oscillations in the position estimation at nominal load.

The reduced order extended Kalman filter presented in (Fuentes and Kennel, 2011)

estimates the position at low and high speeds; however, the maximum position error

is 22 electrical degree even at steady state. The extended mean admittance based

sensorless scheme is presented in (Landsmann and Kennel, 2012) and this method

shows about 10 electrical degree oscillations in position estimation at the standstill.

Nonlinear optimization based method to estimate position and speed is presented in

(Nalakath et al., 2017). This technique has the error of 12 electrical degree at the

rated load. The parameter dependency on position estimation is not compensated in

these models based methods for FCSMPC, and perhaps that could be the source of

the significant errors in position estimation.

The online parameter identification methods to improve the position estimation

is mainly focused on the robust sensorless vector control for medium and high-speed

operations. The affine projection algorithms are employed for online identification

of stator resistance, and the observer based on electromotive force (emf) is corrected

for the parameter to estimate the position of IPMSM drives in (Rafaq et al., 2017).

These two estimation algorithms are realized in fast and slow time intervals. There
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are considerable improvements in steady-state performance of the position estima-

tion, however, the transient position error is 0.2 rad that attributes to the relatively

slow convergence of the parameter estimation. The identification of stator resistance

and inductances based on recursive least square (RLS) is found in (Ichikawa et al.,

2006) and the estimated parameters are supplied to emf based position observer. The

convergence of parameters with this method is slow due to the low pass filters, and

the position error with load change is within 6 electrical degree. In (Morimoto et al.,

2006), the similar technique is applied to estimate the voltage error and q axis induc-

tance to improve the emf based position observer and showed that the position error

is within 6 electrical degree.

1.2 Motivation

The model predictive control with finite control set (FCSMPC) is an emerging control

strategy for electric motor drives and power electronic converters due to its simple im-

plementation, fast response, and capability to handle MIMO systems and constraints.

This control scheme generates significant switching ripples as it applies finite voltage

vectors to an electric machine. This thesis focuses on utilizing this switching ripples

to overcome the observability issues in parameter, position and speed estimations.

The observability has a direct relationship with persistent excitation (PE), and this

thesis explores PE requirements to meet the observability. Moreover, not all the com-

binations of the parameters, position, and speed are simultaneously observable, and

unfortunately, there is no detailed analysis found in the literature on this account.

This thesis analyzes all the possible combinations and identifies non-observable com-

binations and experimentally shows that the FCSMPC can overcome these limitations
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by its inherent voltage vector injection (PE).

The standard signal injection based position estimation techniques employed for

low-speed sensorless operation cannot be applied to FCMPC as it does not have any

modulator to superimpose the injected signal with fundamental excitation. For stan-

dard back emf (electromotive force) based high-speed sensorless techniques, the low

pass filters are required to eliminate the switching ripples components associated with

FCSMPC. However, it is challenging to tune the filter coefficients as the frequency of

the switching ripples widely varies with the operating speed. There have been model

based methods for FCSMPC reported in literature that estimate the position and

speed from standstill to maximum speed of the machine. However, the performances

are not up to the level to implement for high-performance sensorless applications.

This thesis proposes a nonlinear optimization based method that realizes the fast and

accurate position and speed estimations without any switchover and additional signal

injection.

The online parameter identification techniques to improve the position estimation

accuracy in the literature are focused on medium to high speed robust sensorless

vector control. These model-based methods essentially switch to inherently parameter

independent standard demodulation techniques at low speeds. If the model-based

methods are employed at low speeds, the parameter variations significantly influence

the accuracy of the position estimation similar to medium and high-speed operations.

Moreover, the estimation at low speed is more sensitive to the inductance variations

as the position information comes from the current derivative terms in the model. It

raises severe concern in the case of robust position estimation for FCSMPC which

has high current derivative terms due to the strong switching ripples. This thesis is
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the first attempt for low-speed robust model-based position estimation and also for

its application to FCSMPC. A single observer for parameter and position estimation

based on nonlinear optimization is also a novel approach proposed in this thesis.

1.3 Contributions

The author has contributed a number of original developments in the areas of ob-

servability analysis and simultaneous estimation of position, speed and parameters

to realize the robust position sensorless IPMSM drives with FCSMPC in this thesis,

which are listed as follows:

1. The detailed nonlinear observability analysis for simultaneously identifying the

different combinations of the machine parameters, position, and speed.

2. Experimental validations to prove that the voltage vector injection by FCSMPC

can accomplish persistent excitation to overcome the non-observability issues.

3. Nonlinear optimization based position estimation method is proposed and

experimentally validated at different dynamic and steady-state operating conditions

to prove that it is an ideal candidate for FCSMPC which has the arbitrary signal

injection.

4. The detailed convergence analysis for the proposed nonlinear optimization

based position estimation method is presented.

5. A compensator which eliminates the convergences of the nonlinear optimiza-

tion method to saddle and symmetrical solutions (π-ambiguity) at the standstill is

proposed and experimentally validated.

6. The robustness analysis of the nonlinear optimization based position estimation

method with respect to parameter variations is conducted and identified the most
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influencing parameters.

7. The proposed nonlinear optimization based position estimation method is ex-

tended to co-estimate the parameters to realize the robust sensorless FCSMPC.

8. The proposed robust sensorless FCSMPC is validated experimentally at the

different dynamic and steady state operating conditions.

1.4 Thesis Outline

This thesis focuses on investigating the significance of persistent voltage vector ex-

citations towards the simultaneous estimation of machine parameters, position and

speed for IPMSM drives, and also shows that nonlinear optimization based technique

is an ideal candidate for robust sensorless FCSMPC.

Chapter 2 starts by introducing different components in a typical interior per-

manent magnet synchronous motor (IPMSM) drive system and follows with a brief

review of the criteria for generating the references for the advanced control. The

derivation of mathematical models of IPMSM in different rotating reference frames

is presented. Finally, the parameter variations with respect to different operating

conditions are discussed.

Chapter 3 introduce general model predictive control (MPC) scheme and describes

the relevant constrained finite-horizon optimal control problem. The variants of MPC

classified based on the different approaches to solve the optimal control problem

are discussed. The literature review on the application of these variants on electric

motor drive applications is also presented with the emphasize on their computational

effectiveness.
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In chapter 4, the notion of persistent excitation and its relationship with observ-

ability are discussed. The concept of local observability is explained in detail, and it

is employed in this thesis as the standard observability techniques cannot be applied

to IPMSM which is nonlinear. The persistent excitation requirements to enable the

observability of the position, speed and the parameters for IPMSM are laid out. The

response of the voltage vector injections associated with FCSMPC is analyzed in the

context of persistent excitation requirements to achieve observability.

The proposed online estimation scheme to estimate the electrical machine parame-

ters is prsented in chapter 5. The estimation is realized with the help of recursive least

square (RLS) adaptation algorithm. The RLS formulations for different parameter

combinations are presented. The parameter combinations which are not identifiable

at steady state without persistent excitation are only considered for the experimen-

tation. The experimental results show that all these parameter combinations are

identifiable by online estimation as the voltage vector injection by FCSMPC estab-

lishes the persistent excitation. Moreover, the parameter coupling in estimation that

results in wrong convergence is analyzed and proposed a decoupling technique.

Chapter 6 presents the online estimation of position and speed for the reference

IPMSM with FCSMPC. The proposed online estimation scheme is based on nonlinear

optimization as the standard position estimation techniques are not suitable for FC-

SMPC. A strong, persistent excitation is always present with FCSMPC and therefore

the proposed method can estimate the position and speed over a full speed range

starting from standstill to the rated speed without a changeover and additional sig-

nal injection. This paper also presents detailed convergence analysis and proposes a
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compensator for standstill operation that prevents converging to saddle and symmet-

rical solutions. The performance of the proposed estimation scheme is experimentally

verified for a wide range of operating conditions.

In chapter 7, a single nonlinear optimization based observer which simultane-

ously estimates both position, and d and q inductances at every sampling interval

to realize the robust sensorless FCSMPC for the reference IPMSM is proposed. The

voltage vector injections by FCSMPC establish persistent excitation and enables si-

multaneous identification at wide operating region however it limits employing the

standard techniques for the position estimation. The proposed method is suitable

for any signal injection and hence an ideal candidate for FCSMPC. This chapter also

presents detailed robustness and convergence analyzes. Finally, the performance of

the proposed robust sensorless control scheme is verified experimentally at different

operating conditions.

The conclusion of this thesis is provided in Chapter 8 with suggested future work.
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Chapter 2

Interior Permanent Magnet

Synchronous Motor (IPMSM)

Drives and Model

2.1 Introduction

This chapter starts by introducing different components in a typical interior per-

manent magnet synchronous motor (IPMSM) drive system and follows with a brief

review of the criteria for generating the references for the advanced control. The

derivation of mathematical models of IPMSM in different rotating reference frames

is presented. Finally, the parameter variations with respect to different operating

conditions are discussed.
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2.2 IPMSM Drive System

An electric drive system converts electrical energy into mechanical or vice-versa. A

typical modern interior permanent magnet (IPMSM) drive system consists of IPMSM,

power converter, control system, and sensors as shown in Fig. 2.1. The sensors are

installed to measure current, DC-link voltage and position. The DC voltage mea-

surement is optional as it is assumed as constant in many control and estimation

schemes (Bose, 2002). The position or current sensors are also eliminated in sensor-

less control schemes (Chang and Yeh, 1996; Ohnishi et al., 1994). The control system

determines the control input required to supply to the machine. The power converter

transforms the control input to useful electrical power through different switching and

modulation schemes.

Sensor Sensor

IPMSM

Control
action

Converter

Control
system

Current Position,
speed

Figure 2.1: A typical IPMSM drive system.

An electric machine produces the torque required to supply to the load by the

interaction of the stator and the rotor magnetic fields. For an IPMSM, the three-

phase winding with three-phase excitation generates the stator field and permanent

magnet supplies the rotor field. The distributed winding has been the norm for

permanent magnet machines until recently the concentrated winding concept came

into the picture (Bianchi et al., 2006; EL-Refaie, 2010). The concentrated winding is

easy to manufacture and has high slot fill factor with shorted end connections as it is
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wound around each tooth. It has demonstrated considerable benefits for surface PM

machines in terms of high power density, less cogging torque, fault tolerance, and field

weakening capabilities (El-Refaie et al., 2006), and it also has been combined with

IPMSM to enhance the performance (Dutta et al., 2013). The conceptual diagram

of a distributed and concentrated winding is shown in Fig. 2.2. In the distributed

winding the coils are distributed and generally spanned over a pole pitch (τ) however

there are short pitch versions exist to mitigate specific harmonic contents in the

magnetomotive force (mmf) (Srinivasan et al., 2016). The concentrated winding is

essentially the fractional slot (coil span is less than a pole pitch, xτ) and the fraction

x is mainly depended on the pole-slot combinations (Goss et al., 2013).

(a) (b)

Figure 2.2: The conceptual diagram showing (a) distributed and (b) concentrated
winding schemes for coils belong to a phase (τ -pole pitch).

The rotor topology of IPMSM is chosen to leverage flux concentration and saliency.

There are three basic configurations viz., inset, spoke and barrier, which are com-

bined to create different morphed configurations (Soong et al., 2007). The spoke type

topology generally has a high flux concentration factor and saliency and is hence

suitable for applications where high permanent magnet induction is required or for

low cost application where weaker magnets may be chosen, for example ferrite over

sintered neodymium-iron-boron. The inset type topology features with moderate per-

manent magnet induction and saliency. The moderate permanent magnet induction
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and saliency are obtained with barrier type topology however the saliency can be

improved by adding more layers of permanent magnet barriers.

Figure 2.3: Three basic rotor configurations for IPMSM (a) inset, (b) spoke, and (c)
barrier.

A power converter transforms DC power into AC or vice-versa depending on mo-

toring or generating operations of an electric machine. The power conversion is per-

formed by actuating power electronic switches, e.g. MOSFETs, and IGBTs, which

are configured in different topologies. Some of the topologies are two-level voltage

source inverter (VSI), multilevel VSI, and modular multilevel inverters (Nordvall,

2011). The nonlinear effects of the power electronic switches such as dead time and

parasitic capacitance effects, unsymmetrical turn-on/off delays, and on-state voltage

drops deteriorate the output power. The effects of these nonlinearities are com-

pensated to improve the performance, especially for many estimation schemes (Salt

et al., 2011). The actuation signals generated by the control system are applied to

the switches either directly or indirectly. The sinusoidal and space vector pulse width

modulation schemes (SPWM and SVPWM) come under indirect method, employ

a carrier-based modulation scheme. The SVPWM utilizes 15% more available DC

link voltage than SPWM (De Doncker, 2002). The continuous voltage trajectory

of SPWM and SVPWM along with finite six step modulation scheme is shown in

Fig. 2.4 (a). In the direct method, the voltage vectors are applied directly based on
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the predefined switching tables e.g., in a direct torque control scheme as shown in

Fig. 2.4 (b).

v2: TI,FI

v6: TD,FI
v5: TD,FD

SPWM

SVPWM

Six Step

(a) (b)

v1

v2v3

v4

v5 v6

Figure 2.4: (a) Voltage trajectory of six step, SPWM, SVPWM modulation schemes
(b) Voltage vector injection scheme of DTC (vdc- dc link voltage, ψs stator flux vector,

V1,..,V6- voltage vectors, FD: flux decrease, FI: flux increase, TI: torque increase, and TD:

torque decrease).

Different control schemes generate the actuation signals. The most common

schemes are vector and direct torque control. In the vector control, the rotating

quadrature components of the current vector (d and q) are defined based on the ro-

tor position in such a way that d component aligns with rotor flux. The d and q

current components are controlled independently by linear controllers which generate

the required voltage signals. In the vector control, the voltage signals are modulated

employing SPWM or SVPWM to apply to an electric machine via a power converter.

In the direct torque control (DTC), the torque and flux are controlled separately.

The error between the reference and estimated torque and also flux are applied to

hysteresis controllers. The voltage vectors are selected from a predefined lookup table

(LuT) based on the output of the hysteresis controller and sector information. The

control is usually performed in the stationary reference frame and therefore the rotor

position information is not required as compared to the vector control. The block di-

agram of vector control and DTC are shown in Fig. 2.5 (a) and (b) respectively. The
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DTC has simple control structure, involve no tuning and faster dynamic responses as

compared to vector control however torque ripple is the downside.

Park

Park-1 Modulator

Feedback
current

PI

(a)

+

-

Torque
Flux

Estimator

Switching
table

Feedback
current

(b)

+

- +

-

Flux

Torque

Sector

Figure 2.5: The block diagram of (a) vector control and (b) direct torque control.

The reference control values for vector control and DTC are basically derived

from the torque or speed demands. An outer loop is added to Fig. 2.5 (a) and (b) to

control the speed. In the traditional IPMSM control methods, i∗d is kept as zero for

the vector control and ψ∗
s is kept as a constant for DTC. Since IPMSM has salient

rotor (Ld ̸= Lq), it can also produce considerable reluctance torque apart from the

magnetic torque by applying the appropriate i∗d and ψ∗
s respectively for the vector

control and DTC. This concept is applied in maximum torque per ampere (MTPA)

control in which the minimum value of the components ((i∗d, i
∗
q), (ψ∗

s , i
∗
τ )) are found

for a given torque. The variable i∗τ is the torque component of the current associated

with DTC (Shinohara et al., 2016). MTPA essentially minimizes the copper loss.

Typical torque trajectories and MTPA curves in d− q and ψ∗
s − i∗τ planes employed in

vector control and DTC are shown in Fig. 2.6 (a) and (b) respectively (Inoue et al.,

2016). The optimal reference values for MTPA is either applied from a LuT based on

precomputed MTPA curve or found online by optimization or by search algorithms

(Ge et al., 2017; Kim et al., 2013; Sun et al., 2016). The other criteria considered
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to generate reference (i∗d, i
∗
q) and (ψ∗

s , i
∗
τ ) are maximum torque per voltage, enhanced

field weakening, and total loss minimization (Jahns et al., 1986; Pan and Sue, 2005).

In the total loss minimization approach, both iron and copper losses are minimized

to achieve the optimal efficiency (Morimoto et al., 1994).

(a) (b)

MTPA

MTPA Torque
trajectory

Torque
trajectory

Figure 2.6: Typical MTPA curve and torque trajectories in (a) d − q (b) ψ∗
s − i∗τ

planes.

2.3 IPMSM Model

The IPMSM model and the concept of transformation into different reference planes

are explained with the help of a two pole machine as shown in Fig. 2.7. The two pole

machine consists of three-phase armature winding in the stator and a bar magnet in

the rotor. The phase coils are 120o electrical apart to form a balanced three-phase

winding.

The voltage equation by applying Kirchoff’s law on the stator abc coils is

vabc = Riabc + λ̇abc + ivn (2.1)

where R is the phase resistance which is assumed to be equal for all the phases,
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,

(a) (b) (c)

Figure 2.7: (a) 2 pole motor structure, (b) abc coils, and (c) reference frames.

vabc = [va, vb, vc]
′ ∈ R3 is the three phase sinusoidal voltage vector applied to the

stator windings, iabc = [ia, ib, ic]
′ ∈ R3 is the three phase sinusoidal phase current

vector, λabc = [λa, λb, λc]
′ ∈ R3 is the three phase flux linkage vector, i = [1, 1, 1]′ and

vn is the neutral voltage. A balanced three phase system is assumed for analyzing

and modeling of an electrical machine and hence vn = 0. The three phase flux linkage

λabc in (2.1) is expressed as

λabc = Labciabc +ψabc (2.2)

where Labc is the inductance matrix of abc phases defined as (Paul C. Krause, 2002),

Labc = llI+ La + Ls, (2.3)

ll is the leakage inductance which is assumed to be same for all the phases, I ∈ R3×3

is the identity matrix, and La ∈ R3×3 and Ls ∈ R3×3 are the matrices consist of the

average and the salient components of the three phase inductances respectively,
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La = la


1 −1

2
−1

2

−1
2

1 −1
2

−1
2

−1
2

1

 , Ls = ls


cos 2(θ) cos 2(θ − π

3
) cos 2(θ + π

3
)

cos 2(θ − π
3
) cos 2(θ − 2π

3
) cos 2(θ + π)

cos 2(θ + π
3
) cos 2(θ + π) cos 2(θ + 2π

3
)

 ,

la is the average inductance and ls is the peak of the salient inductance. The diag-

onal and off-diagonal elements in La and Ls represent self and mutual inductances

respectively. The salient component of the inductance varies with respect to the rotor

electrical position θ = ωt, where ω is the radial electrical speed and t is the time.

The permanent magnet flux linkage in (2.2) also varies with respect to θ as

ψabc = ψm


cos(θ)

cos(θ − 2π
3
)

cos(θ + 2π
3
)

 (2.4)

where ψm is peak permanent magnet flux linkage. By substituting (2.3) in (2.2) and

then into (2.1), it becomes,

vabc = Riabc + Labci̇abc + ωLabcθ iabc + ωψabcθ
(2.5)

where Labcθ =
d
dθ
(Labc) and ψabcθ

= d
dθ
(ψabc).

For simplicity in analysis and control (e.g., for direct torque control), the three-

phase model is often transformed into two-axis stationary reference frame (αβ). This

transformation also generates zero sequence term which is generally ignored in analysis

and design of control systems. The transformed (2.5) in (αβ) frame is

vαβ = Riαβ + Lαβ i̇αβ + ωLαβθ iαβ + ωψαβ (2.6)
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where vαβ = Tαβvabc ∈ R2, iαβ = Tαβiabc ∈ R2, Lαβ = TαβLabcT
−1
αβ ∈ R2×2, Lαβθ =

d
dθ
(Lαβ) ∈ R2×2, ψαβ = Tαβψabcθ

∈ R2, and Tαβ is Clarke’s transformation matrix as

detailed in Appendix A. The inductance matrix Lαβ is expanded as

Lαβ =

 3
2
(la − ls cos(2θ)) + ls −3

2
ls sin(2θ)

−3
2
ls sin(2θ)

3
2
(la + ls cos(2θ)) + ls

 (2.7)

The expression (2.7) is commonly known with its compact form, i.e.,

Lαβ = LΣI+ L∆P (2.8)

where LΣ = 3
2
la + ls, L∆ = −3

2
ls, and P = [[cos(2θ), sin(2θ)]′, [sin(2θ),− cos(2θ)]′].

By substituting (2.8) in (2.6), its common form is expressed as

vαβ = Riαβ + (LΣI+ L∆P)i̇αβ + 2ωL∆TrPiαβ + ωψαβ (2.9)

where Tr = [[0, 1]′, [−1, 0]′] is the rotational matrix.

For the field oriented control (vector control), the IPMSM model (2.9) is trans-

formed into the rotor reference frame (dq), i.e.,

vdq = Ridq + Ldq i̇dq + ωTrLdqidq + ωψdq (2.10)

where vdq = Tdqvαβ ∈ R2, idq = Tdqiαβ ∈ R2, Ldq = TdqLdqT
−1
dq ∈ R2×2, ψdq =

Tdqψαβ ∈ R2, and Tdq is Parks’s transformation matrix as detailed in Appendix A.
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The permanent flux linkage term, ψdq = ψm[1, 0]
′. The inductance matrix,

Ldq =

 LΣ + L∆ 0

0 LΣ − L∆

 , (2.11)

and therefore d and q inductance are defined as

Ld = LΣ + L∆ and Lq = LΣ − L∆. (2.12)

The machine model is often transformed from dq to estimated rotor reference

frame (δγ) in many position sensorless techniques. The δγ frame rotates with esti-

mated angular velocity ω̂ and displaced from the dq frame with an estimated angular

difference ϑ̂ as shown in Fig.2.7 (c). The transformed voltage equation is

vδγ = Riδγ + Lδγ i̇δγ +TrLδγω̂iδγ + ω̂ψδγ. (2.13)

where vδγ = Tδγvdq ∈ R2, iδγ = Tδγidq ∈ R2, Lδγ = TδγLdqT
−1
δγ ∈ R2×2, ψδγ =

T−1
δγ ψαβ ∈ R2, and Tδγ is Parks’s transformation with respect to ϑ̂. The permanent

magnet flux linkage ψδγ = ψm[− sin ϑ̂, cos ϑ̂]′, and the inductance matrix Lδγ =

LΣI+ P̃L∆, where P̃ = [[cos(2ϑ̂), sin(2ϑ̂)]′, [sin(2ϑ̂),− cos(2ϑ̂)]′].

2.4 Parameter Variation

The machine parameters in (2.10) are generally assumed to be constants in standard

control schemes. However, the parameters vary with respect to the operating con-

dition of the machine. The actual parameters considering the variations are either

23



Ph.D. Thesis - Shamsuddeen Nalakath McMaster - Electrical Engineering

updated from a lookup table or by estimation in the advanced control techniques e.g.

position sensorless and optimal controls.

The phase resistance varies with respect to frequency and temperature. The re-

sistance variation due frequency is attributed to skin and proximity effects and the

additional resistive component by these effects collectively know as AC (alternating

current) resistance. Apart from the frequency, AC resistance slightly varies with

respect to phase current and field weakening angle as magnetic flux deforms by satu-

ration and armature reaction (Nalakath et al., 2015). The variation of AC resistance

with respect to frequency, current and field weakening angle for a rectangular con-

ductor winding is taken from (Nalakath et al., 2015) and depicted in Fig. 2.8 (a).

The remanent flux density decreases with rising in temperature for both ceramic

and rare-earth permanent magnets. It varies about 15 to 25% by 160o temperature

rise from room temperature (Hamidizadeh, 2016). The rare-earth magnet becomes

vulnerable to demagnetization at the higher temperature as the knee point shift

more towards the lower coercive force as shown in Fig. 2.8 (b). The irreversible

demagnetization occurs if the coercive force crosses the knee point and therefore

utmost care should be taken at the design and while operation of the rare-earth

magnet machines. On the other hand, for the ceramic magnets, the knee point shift

towards higher coercive force with temperature rise and hence less vulnerable to

demagnetization.

The stator winding inductance varies with respect to the saturation of the core.

The saturation of the core occurs at high excitation currents in accordance with

the B-H relationship of the core material. The inductance of the IPMSM machine

is generally defined for rotating quadrature axes dq. Apart from the saturation by
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Figure 2.8: (a) Variation of resistance with respect to frequency and peak phase
current for field weakening angle 0o and 30o (Nalakath et al., 2015), (b) characteristics
of TDI Neorec53B iron-based rare-earth magnet Yang et al. (2017).

self-excitation of a quadrature coil, there is also a considerable influence from the

excitation of other quadrature coil, known as cross-saturation. The cross-saturation

is closely related to the armature reaction of a direct current machine under saturation

which leads to different variations in the flux densities at tips of a pole resulting in

additional flux linkage in the coil . This additional flux linkage can be viewed as the

result of the cross-saturation (Vas et al., 1986). The cross saturation also results in

mutual inductance between the two quadrature coils. The cross-saturation effect in

the inductances is either expressed implicitly or explicitly and correspondingly they

are known as apparent and incremental inductances (Gong, 2012). The apparent

inductances are defined as 
Ld =

λd
id

Lq =
λq
iq

(2.14)

where λd and λq are the d and q flux linkages respectively, and these are either

measured or found from the finite element analysis (FEM) software. In the explicit
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form, the inductance matrix in (2.11) is redefined as

Ldq =

 Ldd Ldq

Lqd Lqq

 , (2.15)

where Ldd and Lqq are the self incremental d and q inductances respectively, and

Ldq and Lqd are the mutual incremental inductances. The mathematical definition of

these inductances are 
Ldd =

∂λd
∂id

Ldq =
∂λd
∂iq

Lqd =
∂λq
∂id

Lqq =
∂λq
∂iq

(2.16)

By the definition of the mutual inductances, Ldq = Lqd. The typical d and q flux

linkage profiles and the graphical interpretation of the incremental and the apparent

inductances are depicted in Fig. 2.9. The d axis flux linkage saturates with positive

id, and the flux in the core weakens with negative id and hence no saturation. The q

axis flux linkage saturates on both directions of iq and it is symmetrical with respect

to iq = 0 axis.

(a) (b)

0,0 0,0

Figure 2.9: Typical flux linkage profile of IPMSM (a) for d-axis, and (b) for q-axis
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2.5 Summary

In an electric machine drive system, the control references as per the load demand is

processed in a control system against the feedback and applies the control output to

an electric machine via a power converter either directly or with a modulator. This

chapter briefly introduces a typical IPMSM drives system and describes the different

components. The criteria for generating the references for the advanced control of

IPMSMs are mentioned. The mathematical models of IPMSM in different reference

frames are presented, and the variations of the machine parameters with respect to

operating conditions are discussed.
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Chapter 3

Model Predictive Control (MPC)

3.1 Introduction

In model predictive control, a quadratic cost function is optimized along with con-

straints over a finite prediction horizon at each sampling interval and applies the first

of the resulting control sequence to the plant. This chapter starts by describing a gen-

eral model predictive control (MPC) scheme and introduces the relevant constrained

finite-horizon optimal control problem. The variants of MPC classified based on the

different approaches to solve the optimal control problem are discussed. The litera-

ture review on the application of these variants on electric motor drive applications

is also presented emphasizing computational effectiveness.

3.2 The Concept of MPC

In model predictive control (MPC), a constrained finite-horizon optimal control prob-

lem (CFHOC) is solved at each sampling interval with current state feedback of the
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plant as the initial state. The solution of CFHOC yields an optimal open-loop con-

trol sequence and the first in the sequence is only applied to the plant according to

the receding horizon policy. The process is repeated for the next sampling interval

by receding the prediction horizon and updating the state feedback. This approach

evolves in a real closed loop feedback control over the sampling intervals (Linder and

Kennel, 2005a).

The structure of a typical MPC is depicted in Fig. 3.1. The plant model predicts

the future response xk,i+1 with respect to the previous predicted state xk,i and the

optimal control sequence uk,i. Where k is the sampling interval and i = 1, 2, ..N

is the index for the divisions of the prediction horizon (N). The initial state xk,0

is the state feedback xk at kth sample. The optimizer solves CFHOC problem at

each sampling interval. The CFHOC is formulated as a cost function along with

the given constraints. The optimal solution of CFHOC is the control sequence uk =

[uk,0, uk,1, ...uk,N ] computed for prediction horizon N . The MPC tracks the response

close to the reference value wk over the sampling intervals by applying only the first

of the control sequence uk,0 to the plant as shown in Fig. 3.2.

Figure 3.1: The structure of a typical model predictive control scheme.
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FuturePast

Reference value
Control input
Response

Figure 3.2: The receding horizon scheme of model predictive control.

In order to discuss the mathematical treatment of MPC, a discrete-time state

space model is defined at first, i.e.


xk+1 = Axk +Buk

yk = Cxk +Duk

(3.1)

where the system variables satisfy the constraints x ∈ X ⊂ Rn, y ∈ Y ⊂ Rp, u ∈

U ⊂ Rm. Moreover, a general cost function for MPC is defined as (Lee, 2011)

fN = x′
k+NP xk+N +

N∑
i=1

(
x′
k+i−1Q xk+i−1 + u′

k+i−1Ruk+i−1

)
(3.2)

where P ≽ 0 is the weighting matrix for the final value, Q ≽ 0 weights the state

vector, and R ≻ 0 penalize the control action. In order to find the optimal control
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input, the cost function (3.2) is minimized subject to the constraints


xk+i ∈ X

uk+i ∈ U

xk+i+1 = Axk+i +Buk+i

(3.3)

The state at step i as the superposition of free and driven responses is

xk+i = Aixk +
i−1∑
j=1

AjBuk+i−1−j (3.4)

The cost function is expressed as a function of only the initial state and the control

input by substituting (3.4) in (3.2) i.e.

fN(xk) =
1

2
x′
kY xk +

1

2
U′HU+ x′

kFU (3.5)

Similarly the constraints can also be expressed as a function of only the initial state

and the control input, i.e.

GU ≤ W + Exk (3.6)

where U = [u′
k, ...,u

′
k+N−1]

′ ∈ RmN is the input control sequences corresponding to

each time steps from k to k +N − 1. The matrices H ≻ 0, F, Y, G, W, and E are

found from (3.2) (Linder and Kennel, 2005b).

The transformed cost function (3.5) with the constraints (3.6) is the CFHOC

problem to be solved. This is essentially a quadratic programming (QP) problem

(Linder and Kennel, 2005b). The analytical solution of the CFHOC is not viable due

to the constraints (Maciejowski, 2002). There are numerical solvers for QP available
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in literature (Cooper and Steinberg, 1970; Hadley, 1964). These solvers take a long

time to solve the CFHOC and therefore the application of MPC was limited to the

systems with slow dynamics especially at the beginning era (1960-1970) of MPC

development (Lee, 2011).

The faster solvers were later developed for MPC that facilitated its application

to moderate dynamic systems. This line of research has been motivated by the de-

velopment of high performance computing resources (Lee, 2011; Qin and Badgwell,

2003a,b; Frison et al., 2014a). This approach by solving optimization problem online

is collectively known as implicit MPC. Apart from online optimization for MPC there

has been concurrent research on solving CFHOC offline and this approach is known

as explicit MPC (Bemporad et al., 2000, 2002). In explicit MPC, CFHOC problem is

decomposed into piecewise affine control laws valid over precomputed affine regions

and solved offline. The associated region is identified online based on the current state

and the corresponding stored control is applied to the plant, and therefore results in

shorter overall execution time.

3.3 Features of MPC

The MPC is a state space model based control and therefore it can handle multiple-

input and multiple-output (MIMO) systems. Unlike the cascaded control systems,

many system variables can be controlled with a single control loop for MPC as shown

in Fig. 3.3 (Camacho and Carlos, 2007). This feature is very important especially

for the complex systems with several control variables. The challenges in applying

the constraints have been almost limited the application of the conventional states

space controllers (Bolognani et al., 2009). On other hand, the system input and
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output constraints can be easily incorporated with MPC. Solving the closed-loop

control is not required for the case of MPC as it establishes implicitly the feedback

control. The constrained open-loop control problem is only required to be solved

unlike the traditional state space based controllers (Kouvaritakis and Cannon, 2016).

The resulting control law is linear and hence easy to implement.

Plant

PI

Plant

MPC

PI

(a) (b)

Figure 3.3: (a) A typical cascaded controller (PI-Proportional Integral), and (b) MPC
Controller.

The MPC is suitable for versatile applications as it allows modifying the cost func-

tion according to the requirements without any change in the control structure (Linder

and Kennel, 2005b). Any objective function can be simply added and the weighting

factors can be freely varied. These features are very important in multi-objective

control e.g. torque and speed tracking with optimal efficiency for the motor drives.

The MPC is able to manage the deterministic disturbances. If these disturbances

are known before they can be accustomed with the optimizer (Linder and Kennel,

2005b). Accordingly, the corrective measures can be taken in the future control ac-

tion. The MPC is also has some degree of robustness with the parameter variation as

there is a implicit feedback control (Camacho and Carlos, 2007). Moreover, the finite

control input can be incorporated as constraints in MPC that allows direct actuation

(without a modulator) for electric motor drives (Linder and Kennel, 2005a).
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3.4 MPC for Electric Motor Drives

The model predictive control has been applying into electric motor drive applications

since mid of the 2000s as the result of emerging fast MPC techniques and powerful

computational resources. The straightforward inclusion of the constraints and the

elimination of the cascaded control blocks are also the motivational factors influenced

the researchers to employ the MPC for electrical drives. The earlier research on the

application of MPC for electrical drives was mainly focused on the explicit MPC in

which the optimization is solved offline (Linder and Kennel, 2005a; Bolognani et al.,

2009; Mariethoz et al., 2012). The implicit MPC has been explored at the later stage

by incorporating the standard as well as the customized solvers (Besselmann et al.,

2016; Saeidi and Kennel, 2013; Preindl et al., 2013). There are two sub-variants for

implicit and explicit MPCs known as direct and indirect MPCs. The indirect MPC

applies the control law to the electric machine by means of a modulator whereas the

control law is applied without a modulator for the case of the direct MPC. In the

direct MPC, the control law is essentially the optimum finite switching state.

3.4.1 Explicit MPC

The explicit MPC is suitable for the system with fast dynamics as it applies the offline

optimized control law to the plant. This technique was first published in (Bemporad

et al., 2000). In order to mathematically explain the explicit MPC, first an auxiliary

variable is defined as

z = U+H−1F′xk z ∈ Rs (3.7)
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and by completing the squares, QP cost function (3.5) can be transformed into an

equivalent form as

fz(xk) =
1

2
z′Hz (3.8)

with constraints

Gz ≤ W + Sxk (3.9)

where S = E + GH−1F′. In the transformed problem, the state xk appears only

with the constraints. By considering xk as a parameter, the original QP problem

(3.5) is converted to multi-parametric QP problem (mp-QP). The mp-QP problem is

solved offline with the help of parametric nonlinear programming (Bemporad et al.,

2000). In order to solve mp-QP problem, the initial value x0 is found first which is

Chebychev center of X (Bemporad et al., 2002). The solution of mp-QP is piecewise

affine i.e. the optimal control law is an affine function of states which is divided into

several convex regions or polytopes . In other words, the optimal control law takes

the form

uk,l = Flxk +Gl (3.10)

where l is the index of the active convex region where the state xk is at k
th sampling

time, and Fl and Gl are from the mp-QP offline optimization. Therefore, the online

task in explicit MPC lies only in identifying the active region with respect to the

measured states and applies the predefined linear control law corresponding to the

region.

The explicit MPC has been applied to induction as wells as synchronous perma-

nent magnet machine drives to control current, torque and speed. The control law is

either applied through a modulator (Continuous Explicit MPC) (Linder and Kennel,
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2005b; Bolognani et al., 2009) or by directly applying the finite switching states of a

multi-level inverter (Direct Explicit MPC) (Linder and Kennel, 2005a; Geyer, 2011).

Continuous Explicit MPC

In continuous explicit MPC, the control input u has only upper and lower bound

constraints and within these bounds it is continuous. This enables to apply the

standard mp-QP solving techniques. The solution of mp-QP results in continuous u

which is essentially the control voltage for the electric drives, belongs to a continuous

space U with infinite possibilities. In order to apply the continuous control voltage

to an electric machine a modulator is necessary. Fig. 3.4 shows a typical scheme of a

continuous explicit MPC for electric motor drives.

Figure 3.4: A typical continuous explicit MPC scheme for electric motor drives.

The continuous explicit MPC scheme is applied to an induction machine to reg-

ulate the current in (Linder and Kennel, 2005b) and for speed and current control

in (Mariethoz et al., 2012). The applications of explicit MPC scheme for permanent

magnet synchronous machine to control current and speed are found in (Bolognani

et al., 2009) and with field weakening feature is presented in (Bolognani et al., 2008).
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Direct Explicit MPC

In direct explicit MPC, the control input is essentially the finite switching states of

a multilevel inverter. Fig. 3.5 (a) shows eight possible switching states of a two level

inverter which is adopted in this thesis. With finite switching variables, the system

under consideration is commonly referred as hybrid system as this also contains con-

tinuous variables (e.g. currents). The finite switching states is considered as control

input constraints to simplify the problem formulation. The solution of CFHOC for

hybrid system is performed by using mixed-integer linear (MILP) or mixed integer

quadratic programming (MIQP) (Linder and Kennel, 2005a). Fig. 3.5 (b) shows a

typical direct explicit MPC scheme for electric motor drives.

Figure 3.5: (a) Switching states of a two level inverter, and (b) a typical direct explicit
MPC scheme for electric motor drives.

A direct explicit MPC is implemented for current regulation of an induction ma-

chine with a two-level inverter in (Linder and Kennel, 2005a). In (Geyer, 2011), the

torque of an induction machine with a three level neutral point clamped inverter is

controlled along with reducing the switching loss and frequency.
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3.4.2 Implicit MPC

In implicit MPC, the CFHOC problem is solved online. As the analytical solutions to

CFHOC are not viable due to the constraints, the numerical solutions by optimiza-

tion are preferred. Moreover, the CFHOC problem is a QP problem with inequality

constraints, and therefore active set (AS) and interior point (IP) based optimization

techniques are generally employed (Frison et al., 2014a,c). These are the second order

solvers. The first order solver e.g. gradient method is also applied in some of the

MPC applications (Frison et al., 2014a). There are several variants of these solvers

to improve the computational performance related to application of MPC (Wang and

Boyd, 2010; Frison et al., 2014b; A. Domahidi and Jones, 2012; Frison et al., 2014c).

The warm start initialization and early termination are also found to be the effective

techniques to reduce the computational time (Wang and Boyd, 2010). With the help

of fast optimization solvers and advanced computational resources, the implicit MPC

technique is also started applying to electric motor drives. Similar to explicit MPC,

both continuous and direct variants exist also for implicit MPC applied to motor

drives.

Continuous Implicit MPC

In continuous implicit MPC, the control input which is the excitation voltage for

the case of electric motor drives, is continuous and bounded in the subspace vector

U. The CFHOC problem is solved online by applying the fast QP solvers, results in

control input which has infinite possibilities. Apart from employing fast MPC, the

length of prediction horizon is also chosen in such a way that the accurate control and

fast optimization are accomplished. A modulator is implemented to apply continuous
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control input uk to the electric machine as shown in Fig. 3.6.

Figure 3.6: A typical direct implicit MPC scheme for electric motor drives.

A parametric active-set algorithm for quadratic programming is employed to con-

trol the current and speed of a MW range synchronous machine in (Besselmann

et al., 2016). In (Cimini et al., 2015), an efficient QP solver is implement to realize

the torque control of permanent magnet synchronous machine. The torque control

of permanent magnet synchronous machine by optimizing CFHOC problem by fast

gradient method is presented in (Preindl et al., 2013).

Direct Implicit MPC

The finite nature of the switching states simplifies the optimization problem for the

direct implicit MPC and hence widely employed for electric motor drive applications.

The optimization of CFHOC problem consists of finding the control sequence corre-

sponding to the minimum cost among the costs for predefined control sequences. The

control sequences are defined based on the possible switching transitions of a multi-

lelvel inverter. The possible switching transitions of a two-level inverter is shown in

Fig. 3.7 (a). A typical scheme of direct implicit MPC is shown in Fig. 3.7 (b).

The direct implicit MPC is implemented to control the torque and flux of an

induction machine with a three level inverter in (Geyer et al., 2009). The same work is

continued in (Geyer, 2009) with extended horizon focusing on reducing the switching
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Figure 3.7: (a) Possible switching transitions for a two-level inverter, and (b) a typical
direct implicit MPC scheme for electric drives.

losses and total harmonic distortion. The direct implicit MPC for torque control

with long prediction horizon is generally known as model predictive direct torque

control (MPDTC). The execution time of MPDTC is improved by discarding the

suboptimal switching sequences while keeping the long prediction horizon in (Geyer,

2011). The MPDTC technique is applied to permanent magnet synchronous machine

in (Geyer et al., 2010). The direct implicit MPC is also referred as finite control

set model predictive control (FCSMPC), especially for the application where the

prediction horizon is too short. The FCMPC technique is applied to permanent

magnet synchronous machine with a two level inverter to control the torque along

with maximum torque per ampere tracking with a single sample prediction horizon

(N = 1) in (Preindl and Bolognani, 2013c). The similar technique is also applied

to control the speed of a permanent magnet synchronous machine in (Preindl and

Bolognani, 2013b). An detailed overview of FCSMPC for electric drive applications

is found in (Wang et al., 2017).
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3.5 Summary

The model predictive control (MPC) has been recently applied to electric motor drive

applications in order to effectively manage the constraints and to avoid cascaded

control loops. The main challenge in employing the model predictive control (MPC)

in any fast dynamic systems comes from solving the constrained finite horizon open-

loop control problem (CFHOC) online. Fortunately, the CFHOC problem is piece-

wise affine in a convex region and therefore the control law can be solved offline and

applied to the plant upon determining the active convex region online (Explicit MPC).

As the storage and handling is problematic for explicit MPC especially for the systems

with many variables, the researchers has started solving the CFHOC problem online

(Implicit MPC) with the help of emerging computational technologies and solvers. In

finite control set MPC, a variant of implicit MPC, the computation effort is greatly

reduced due to the finite nature of the cost function and hence widely employed to

electric motor drive applications.
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Chapter 4

Persistent Excitation by Finite

Control Set (FCS) MPC Enabling

Identification of Position, Speed

and Parameters

4.1 Introduction

This chapter starts by introducing the notion of persistent excitation and its relation-

ship with observability. The concept of local observability is employed in this thesis

and discussed in detail as the standard observability techniques cannot be applied

to IPMSM which is nonlinear. The persistent excitation requirements to enable the

observability of the position, speed and the parameters for IPMSM are laid out. The

response of the voltage vector injections associated with FCSMPC is analyzed on the

context of persistent excitation requirements to achieve observability.
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4.2 Notion of Persistent Excitation and Observ-

ability

An input that persistently excites all the modes of the system enabling the identifi-

cation of the system parameters is a persistent excitation (PE) (Pelckmans, 2010). If

a discrete time input signal uk ∈ Rn is a PE where k is the sampling index, then the

following exists for all τ (Jung, 1971)


rτ = lim

N→∞

∑N
k=0(uk − ū)′(uk+τ − ū)

ū = lim
N→∞

∑N
k=0 uk

RN = cov(rτ ) ≻ 0

(4.1)

where RN is the covariance matrix of rτ , and it needs to be positive definite for uk

to be a PE input (Jung, 1971).

The observability has close relation with PE as the system becomes observable

to the parameters if it is persistently excited (Rusnak et al., 1993). Therefore, PE

requirements to identify the parameters, is a problem of finding the observability

conditions. In this thesis, since IPMSM with parameter variations is a nonlinear

system, the observability is analyzed with the help of nonlinear observability technique

and arrived at PE conditions identifying the parameters.

4.2.1 Nonlinear Observability Concept

Analyzing the global observability for nonlinear dynamic systems is challenging in

practice (Guerra et al., 2015). One of the approach to overcome this challenge is by
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linearizing the system in a certain state subspace in order to apply the linear ob-

servability theorem (Laroche et al., 2008; Basic et al., 2010). This approach is very

localized and lacks the sense of observability in the entirety of the state trajectories.

Moreover, the construction of a global observer which converges every trajectory is

impossible as the nonlinear system attempts many singular cases on the go. The lo-

cal observability is a powerful concept which can be applied to any nonlinear systems

(Guerra et al., 2015). The concept distinguishes states only from their neighbors.

The theory proposed by Hermann and Krener with the help of Lie-theoretic charac-

terization is one of the most widely used methods for nonlinear local observability

(Hermann and Krener, 1977) which is employed in this thesis. The theory shows that

the rank criteria is sufficient to verify the local observability of a nonlinear system.

Local Nonlinear Observability

The local observability concept proposed by Hermann and Krener for nonlinear dy-

namic systems is briefly discussed (Hermann and Krener, 1977). If a system Σ is

locally observable at initial state x0, then in every open neighborhood U of x0 is

distinguishable,

IU(x0) = {x0} (4.2)

and therefore Σ is locally observable if IU(x) = {x} for all x ∈M (M is an universal

set). The function I(x0) represents the set of all the points which are indistinguishable

from x0 for any admissible input. By I(x0) = {x0}, it means x0 is distinguishable

from all other points in x. By definition of IU(x) = {x}, the observability of x

in U is guaranteed and therefore local observability is a stronger property than the

observability. On the other hand, a weaker version of the concept of observability is
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defined such that for any neighborhood W of x0

I(x0) ∩W = {x0} (4.3)

and therefore Σ is weakly observable at x0 and so for every x ∈ M . Sometimes, it

is necessary to travel far in U to obtain I(x0) ∩ W = {x0}, and consequently the

concept of weakly locally observability is introduced. For any neighborhood W of x0,

there exist a neighborhood contained in W where x0 is distinguishable i.e.

IV (x0) = {x0} V ⊂ W (4.4)

or in other words, weakly locally observable at x0 and therefore for every x ∈M . The

graphical interpretation of the global, local, weak and weakly locally observability

concepts are provided in Fig. 4.1.

The benefit of weakly locally observability is that it can be verified by a simple

algebraic test. The test is based on the rank of O, Jacobian of the Lie derivative

vectors.

O =
∂

∂x



L0
fh

L1
fh

..

L
(n−1)
f h


(4.5)

where L
(n−1)
f h is the Lie derivative of the output vector h with respect to the system

function f, and n is the dimension of state vector x. The size of O is n × n. If the

rank of O is n, then the system is fully observable (locally weakly). It is laborious to

analyze the rank of a large matrix like O at different condition of the states, and the
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(a) (b)

(c) (d)

Figure 4.1: (a) Global observability, (b) local observability, (c) weak observability,
and (d) weakly locally observability.

general practice is to choose a proper sub matrix.

4.3 IPMSM Nonlinear Observability

The parameters vary in different degrees in an electric machine. However, a slow

variation is assumed for all the parameters in this thesis for the sake of simplicity in

the mathematical formulation (Boileau et al., 2011). It should be noted that, if a slow

variation is observable, then it is most likely observable for the fast variation. The

electrical parameters of IMPSM consists of Ld, Lq, R, and ψm as defined in section 2.3.

The IPMSM model in dq frame does not contain position information, and therefore,

in order to analyze the observability of the position, the model has to be in either

αβ or δγ frames. The δγ is chosen in this thesis however it is worthwhile note that
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both the treatments are equivalent and results in similar observability conditions. In

δγ frame, the estimated speed ω̂ and angular difference ϑ̂ between dq and δγ are

the corresponding mechanical states. However, these states are considered as the

parameters with slow variations as similar to the machine parameters. The system

of equations of an IPMSM considering slowly varying parameters in δγ frame is

expressed as



i̇δγ = L−1
δγ

(
vδγ − R̂iδγ − ω̂TrLδγ îδγ − ω̂ψδγ

)
dLd
dt

∼= 0

dLq
dt

∼= 0

dR
dt

∼= 0

dψm
dt

∼= 0

dϑ̂
dt

∼= 0

dω̂
dt

∼= 0

(4.6)

In order to analyze the observability of the above nonlinear system, the local

observability concept as mentioned in section 4.2.1 is applied. The state including

parameters and output vectors are defined for the observability analysis (Vaclavek

et al., 2013) as 
x = [iδ, iγ, Ld, Lq, R, ψm, ϑ̂, ω̂]

′

h = [iδ, iγ]
′

(4.7)

The first step in observability analysis is to find the Jacobian matrix O given in

(4.5). A detailed formulation of the Lie derivatives and Jacobian matrix for estimation
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of electric machine parameters is given in (Zaltni D.a Abdelkrim et al., 2009; Vaclavek

et al., 2013). The resulting O for (4.6) is a 8× 8 matrix as the state vector has eight

elements. The rows from top to bottom correspond to the time derivatives of the

output vector from zero to third orders (iδ, iγ, i̇δ, i̇γ , ïδ, ïγ,
...
i δ,

...
i γ) respectively and

the columns from left to right represent the differentials of the output vector and its

derivatives with respect to state vector x. More precisely,

O =



diδ
diδ

diδ
diγ

diδ
dLd

diδ
dLq

diδ
dR

diδ
dψm

diδ
dϑ̂

diδ
dω̂

diγ
diδ

diγ
diγ

diγ
dLd

diγ
dLq

diγ
dR

diγ
dψm

diγ

dϑ̂

diγ
dω̂

di̇δ
diδ

di̇δ
diγ

di̇δ
dLd

di̇δ
dLq

di̇δ
dR

di̇δ
dψm

di̇δ
dϑ̂

di̇δ
dω̂

di̇γ
diδ

di̇γ
diγ

di̇γ
dLd

di̇γ
dLq

di̇γ
dR

di̇γ
dψm

di̇γ

dϑ̂

di̇γ
dω̂

d̈iδ
diδ

d̈iδ
diγ

d̈iδ
dLd

d̈iδ
dLq

d̈iδ
dR

d̈iδ
dψm

d̈iδ
dϑ̂

d̈iδ
dω̂

d̈iγ
diδ

d̈iγ
diγ

d̈iγ
dLd

d̈iγ
dLq

d̈iγ
dR

d̈iγ
dψm

d̈iγ

dϑ̂

d̈iγ
dω̂

d
...
i δ
diδ

d
...
i δ
diγ

d
...
i δ

dLd

d
...
i δ

dLq

d
...
i δ
dR

d
...
i δ

dψm

d
...
i δ
dϑ̂

d
...
i δ
dω̂

d
...
i γ
diδ

d
...
i γ
diγ

d
...
i γ

dLd

d
...
i γ
dLq

d
...
i γ
dR

d
...
i γ

dψm

d
...
i γ

dϑ̂

d
...
i γ
dω̂



(4.8)

The rank requirement forO is eight for the system to be fully observable. However,

as iδ and iγ are measurements and always observable, the first and second columns

corresponding iδ and iγ differentials can be ignored in O to conduct the parameter

observability analysis. Hence the rank requirement for the system to observe all the

parameters [Ld, Lq, R, ψm, ϑ̂, ω̂]
′ reduces to six (the number of estimating parameters).

The proper sub-matrix having rank six corresponding to [Ld, Lq, R, ψm, ϑ̂, ω̂]
′ located

at the bottom corner of O, and it is expressed after rigorous mathematical deductions
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as

O1=



−i̇δ, ω̂iγ, −iδ, 0, L∆(−2i̇γ + ω̂iδ) + ψmω̂, Lqiγ

−ω̂iδ, −i̇γ, −iγ, −ω̂, −L∆(2i̇δ + ω̂iγ), −Ldiδ − ψm

−ïδ + ξ1,1, ω̂i̇γ + ξ1,2, −i̇δ + ξ1,3, ξ1,4, L∆(−2̈iγ + ω̂i̇δ) + ξ1,5, Lq i̇γ + ξ1,6

−ω̂i̇δ + ξ2,1, −ïγ + ξ2,2, −i̇γ + ξ2,3 ξ2,4, L∆(−2̈iδ + ω̂i̇γ) + ξ2,5, −Ldi̇δ + ξ2,6

−
...
i δ + ξ3,1, ω̂ïγ + ξ3,2, −ïδ + ξ3,3, ξ3,4, L∆(−2

...
i γ + ω̂ïδ) + ξ3,5, Lq ïγ + ξ3,6

−ω̂ïδ + ξ4,1,−
...
i γ + ξ4,2,−ïγ + ξ4,3, ξ4,4, L∆(−2

...
i δ + ω̂ïγ) + ξ4,5,−Ldïδ + ξ4,6


(4.9)

where 
ξi,j = −Roi,j + Lqω̂oi+1,1 for i = {1, 3}, and j = {1, 2, 3, 4, 5, 6}

ξi,j = −Roi,j − Ldω̂oi−1,1 for i = {2, 4}, and j = {1, 2, 3, 4, 5, 6}

and oi,j is an element in O corresponding to ith row and jth column. In O1, it is

set that ϑ̂ ≈ 0. If ϑ̂ >> 0, sine and cosine terms appear in O1 and the equation

becomes too large to express. If the system is observable at ϑ̂ ≈ 0, then it is ob-

servable for ϑ̂ >> 0 as well. The sub-matrix O1 provides the necessary observability

conditions and persistent excitation requirements for identifying each parameter and

their combinations.

4.3.1 Single Parameter Identification

The observability condition for a single parameter identification is very straightfor-

ward and well known. A parameter is observable (or identifiable) if at least a non zero

element in the corresponding column of O1 exists. The first column corresponds to Ld,
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and the subsequent columns belong to Lq, R, ψm, ϑ̂, and ω̂ in the order. For iden-

tifying Ld, either |i̇δ|+|̈iδ|+|
...
i δ|≠ 0 or iδω̂ ̸= 0, and similarly either |i̇γ|+|̈iγ|+|

...
i γ|≠ 0

or iγω̂ ̸= 0 for identifying Lq. Either of the current (iδ or iγ) or any of their derivatives

must be nonzero for identifying R. Only a single condition exists for identifying ψm

i.e. ω̂ ̸= 0. For identifying ϑ̂ at ω̂ = 0, the machine must be salient (L∆ ̸= 0) and

also at least the first order derivatives of either iδ or iγ must be nonzero according

to column five in O1. To identify ω̂, either iδ or iγ or any of their derivative must be

non zero if ψm = 0 ( i.e. non permanent magnet machines). The summary of the

observability conditions for a single parameter identification is provided in Table 4.1.

The identifiable single parameters at different operating states is provided in Table

4.2.

Table 4.1: Summary of Observability Conditions for Single Parameter Identification

Parameters Conditions

Ld |i̇δ|+|̈iδ|+|
...
i δ|≠ 0 or iδω̂ ̸= 0

Lq |i̇γ|+|̈iγ|+|
...
i γ|≠ 0 or iγω̂ ̸= 0

R |iδγ|+|i̇δγ|+|̈iδγ|+|
...
i δγ|≠ 0

ψm ω̂ ̸= 0

ϑ̂ L∆ ̸= 0, and |iδγ|+|i̇δγ|+|̈iδγ|+|
...
i δγ|≠ 0 if ω̂ = 0, or ω̂ ̸= 0

ω̂ |iδγ|+|i̇δγ|+|̈iδγ|+|
...
i δγ|≠ 0 if ψm = 0, or ψm ̸= 0

The persistent excitation (PE) for an electric machine is the input voltage pro-

ducing the required current excitation which enables the identification of the different

parameters. The constant current excitation is sufficient to identify the parameters

at ω̂ ̸= 0. For ω̂ = 0 and/or ψm = 0, at least the first order derivatives of the currents

must be nonzero. This is true at the transient operation of the machine, however, at

steady state, a high frequency signal (persistent excitation) is generally injected to
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Table 4.2: Identifiable single parameters at different operating states

Operating conditions Possible parameters

SS, & ŵ ̸= 0 p = {{Ld}, {Lq}, {R}, {ψm}, {ϑ̂}, {ω̂}}
SS, ŵ ̸= 0, & iδ = 0 p− {Ld}
SS, ŵ = 0, &/ iδ = 0 {R}, {ω̂}

FTS, & ŵ ̸= 0, p

FTS, ŵ ̸= 0, & iδ = 0 p

FTS, ŵ = 0, &/ iδ = 0 p− {ψm}
STS, & ŵ ̸= 0, p

STS, ŵ ̸= 0, & iδ = 0 p

STS, ŵ = 0, &/ iδ = 0 p− {ψm}
SS- steady state (|i̇δγ |+|̈iδγ |+|

...
i δγ |= 0), FTS-first order transient state (|i̇δ|+|i̇γ |̸= 0)

STS-second order transient state (|i̇δ|+|i̇γ |+|̈iδ + ïγ |≠ 0), p = {{Ld}, {Lq}, {R}, {ψm}, {ϑ̂}, {ω̂}}

create a quasi transient state.

4.3.2 Multi-Parameter Identification

In multi-parameter identification, the different parameters are identified simultane-

ously. The observability of a combination of the parameters is tested against the rank

of the corresponding proper sub-matrix inO1. The rank of the proper sub-matrix must

be equal to the number of parameters in a combination in order to identify these pa-

rameters simultaneously. For example, a proper sub-matrix should be selected from

first and second columns of O1 and the rank must be two in order to simultaneously

identify Ld and Lq. Or in other words, the first and two columns must be linearly

independent.

The worst operating condition with respect to parameter identification is the

steady state (SS) defined as |i̇δγ|+|̈iδγ|+|
...
i δγ|= 0. At SS and ω̂ ̸= 0, the combinations

of two and three parameter sets are identifiable except {Ld, ψm} and {R, ϑ̂, ω̂}. The
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columns belong to these unidentifiable sets are linearly independent. The combina-

tions of more than three parameters are not possible as the rank of O1 is three at

this operating state. At SS and iδ = 0, the combination with sets {Ld}, {R,ψm},

and {R, ϑ̂, ω̂} are not identifiable. Moreover, the maximum number of parameters

simultaneously identifiable are three. The only simultaneously identifiable parameter

set at SS and ω̂ = 0 is {R, ω̂}.

The first order transient state (FTS) is defined as [|i̇δ|, |i̇γ|]′ ̸= 0 where 0 is a zero

vector with appropriate dimension. The identifiability of the parameters significantly

improves at this operating state. At FTS, ω̂ ̸= 0 and/or iδ = 0, all the combinations

of two to five parameters are identifiable except {Ld, R, ψm, ϑ̂, ω̂}. The six parameter

combination is identifiable only when there is a second order transient state (STS

, [|i̇δ|, |i̇γ|, |̈iδ|, |̈iγ|]′ ̸= 0) in the system. At ω̂ = 0 and/or iδ = 0, all the two to five

parameter combinations except the sets with {ψm} are identifiable for both FTS and

STS operating states. The identifiable combinations for two to six parameter sets are

summarized in Tables 4.3, 4.4, 4.5, 4.6, and 4.7 respectively.

The PE requirements for the simultaneous multi-parameter identification vary

with respect to operating states as presented in this section. The voltage input (a PE)

producing constant currents (case of SS) is not sufficient to identify the combination

sets with more than three parameters. The worst case scenario is when ω̂ = 0 where

only parameter set {R, ω̂} is identifiable. The PE should produce currents with at

least nonzero first order derivatives in order to identify higher number of parameters.

For identifying all the six parameters, either of the second order current derivatives (̈iδ

or ïγ) should be nonzero. The values of current derivatives should be sufficient enough

to enable good identification of the parameters. A typical PE input is high frequency
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Table 4.3: Identifiable two parameter combinations at different operating states

Operating condition Possible parameter sets

SS, & ŵ ̸= 0 6
2C(p)− {Ld, ψm}

SS, ŵ ̸= 0, & iδ = 0 6
2C(p− {Ld})− {R,ψm}

SS, ŵ = 0, &/ iδ = 0 {R, ω̂}
FTS, & ŵ ̸= 0 6

2C(p)

FTS, ŵ ̸= 0,& iδ = 0 6
2C(p)

FTS, ŵ = 0, &/ iδ = 0 6
2C(p− {ψm})

STS, & ŵ ̸= 0 6
2C(p)

STS, ŵ ̸= 0, & iδ = 0 6
2C(p)

STS, ŵ = 0, &/ iδ = 0 6
2C(p− {ψm})

SS- steady state (|i̇δγ |+|̈iδγ |+|̈iδγ |= 0), FTS-first order transient state ([|i̇δ|, |i̇γ |]′ ̸= 0)

STS-second order transient state ([|i̇δ|, |i̇γ |, |̈iδ, ïγ |]′ ̸= 0),p = {{Ld}, {Lq}, {R}, {ψm}, {ϑ̂}, {ω̂}}

Table 4.4: Identifiable three parameter combinations at different operating states

Operating condition Possible parameter sets

SS, & ŵ ̸= 0 6
3C(p)− 6

2C({{Ld, ψm}, Lq, R, ϑ̂, ω̂})− {R, ϑ̂, ω̂}
SS, ŵ ̸= 0, & iδ = 0 6

3C(p− {Ld})− 6
2C({{R,ψm}, Lq, ϑ̂, ω̂})− {R, ϑ̂, ω̂}

SS, ŵ = 0, &/ iδ = 0 Nil

FTS, & ŵ ̸= 0 6
3C(p)

FTS, ŵ ̸= 0,& iδ = 0 6
3C(p)

FTS, ŵ = 0, &/ iδ = 0 6
3C(p− {ψm})

STS, & ŵ ̸= 0 6
3C(p)

STS, ŵ ̸= 0, & iδ = 0 6
3C(p)

STS, ŵ = 0, &/ iδ = 0 6
3C(p− {ψm})

SS- steady state (|i̇δγ |+|̈iδγ |+|̈iδγ |= 0), FTS-first order transient state ([|i̇δ|, |i̇γ |]′ ̸= 0)

STS-second order transient state ([|i̇δ|, |i̇γ |, |̈iδ, ïγ |]′ ̸= 0),p = {{Ld}, {Lq}, {R}, {ψm}, {ϑ̂}, {ω̂}}

sinusoidal injection and its response is continuously differentiable at any order and

the magnitude multiplies with the order of the differentiation (d
n sin(ωht)
dtn

= ωnh sin(ωht),

where ωh is frequency of injection). The non-sinusoidal injections like square, pulse

or vector would also realize PE however the second derivative of the response current
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Table 4.5: Identifiable four parameter combinations at different operating states

Operating condition Possible parameter sets

SS, & ŵ ̸= 0 Nil

SS, ŵ ̸= 0, & iδ = 0 Nil

SS, ŵ = 0, &/ iδ = 0 Nil

FTS, & ŵ ̸= 0 6
4C(p)

FTS, ŵ ̸= 0,& iδ = 0 6
4C(p)

FTS, ŵ = 0, &/ iδ = 0 6
4C(p− {ψm})

STS, & ŵ ̸= 0 6
4C(p)

STS, ŵ ̸= 0, & iδ = 0 6
4C(p)

STS, ŵ = 0, &/ iδ = 0 6
4C(p− {ψm})

SS- steady state (|i̇δγ |+|̈iδγ |+|̈iδγ |= 0), FTS-first order transient state ([|i̇δ|, |i̇γ |]′ ̸= 0)

STS-second order transient state ([|i̇δ|, |i̇γ |, |̈iδ, ïγ |]′ ̸= 0),p = {{Ld}, {Lq}, {R}, {ψm}, {ϑ̂}, {ω̂}}

Table 4.6: Identifiable five parameter combinations at different operating states

Operating condition Possible parameter sets

SS, & ŵ ̸= 0 Nil

SS, ŵ ̸= 0, & iδ = 0 Nil

SS, ŵ = 0, &/ iδ = 0 Nil

FTS, & ŵ ̸= 0 6
5C(p)− {Ld, R, ψm, ϑ̂, ω̂}

FTS, ŵ ̸= 0,& iδ = 0 6
5C(p)− {Ld, R, ψm, ϑ̂, ω̂}

FTS, ŵ = 0, &/ iδ = 0 6
5C(p− {ψm})

STS, & ŵ ̸= 0 6
5C(p)

STS, ŵ ̸= 0, & iδ = 0 6
5C(p)

STS, ŵ = 0, &/ iδ = 0 6
5C(p− {ψm})

SS- steady state (|i̇δγ |+|̈iδγ |+|̈iδγ |= 0), FTS-first order transient state ([|i̇δ|, |i̇γ |]′ ̸= 0)

STS-second order transient state ([|i̇δ|, |i̇γ |, |̈iδ, ïγ |]′ ̸= 0),p = {{Ld}, {Lq}, {R}, {ψm}, {ϑ̂}, {ω̂}}

should have sufficient magnitude if intended to identify all the six parameters. The

next section of this chapter discuss more about the PE by FCSMPC enabling all the

six parameter identification.
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Table 4.7: Identifiable Six parameter combinations at different operating states

Operating condition Possible parameter sets

SS, & ŵ ̸= 0 Nil

SS, ŵ ̸= 0, & iδ = 0 Nil

SS, ŵ = 0, &/ iδ = 0 Nil

FTS, & ŵ ̸= 0 Nil

FTS, ŵ ̸= 0,& iδ = 0 Nil

STS, & ŵ ̸= 0 {Ld, Lq, R, ψm, ϑ̂, ω̂}
STS, ŵ ̸= 0, & iδ = 0 {Ld, Lq, R, ψm, ϑ̂, ω̂}
STS, ŵ = 0, &/ iδ = 0 Nil

SS- steady state (|i̇δγ |+|̈iδγ |+|̈iδγ |= 0), FTS-first order transient state ([|i̇δ|, |i̇γ |]′ ̸= 0)

STS-second order transient state ([|i̇δ|, |i̇γ |, |̈iδ, ïγ |]′ ̸= 0),p = {{Ld}, {Lq}, {R}, {ψm}, {ϑ̂}, {ω̂}}

4.4 Proposed FCSMPC

The proposed finite control set model predictive control (FCSMPC) is implemented

in the estimated rotor reference frame (δγ) in this thesis. The position information to

perform the field orientation is obtained from the estimation in this case. However,

the IPMSM model in δγ frame transforms to dq frame when the actual measured

position is used (position error ϑ̂ = 0). Therefore, the FCSMPC realization presented

in this section in δγ frame should be treated in dq frame for the case of estimating

only the machine parameters with the measured position by setting ϑ̂ = 0.

The proposed cost function to reduce the error between the reference and predicted

currents is defined as,

fN =
N∑
i=1

ĩ′δγ,k+i−1Q ĩδγ,k+i−1 (4.10)

where ĩδγ,k+i−1 is the error between the reference i∗δγ,k+i−1 and predicted îδγ,k+i−1

currents

ĩδγ,k+i−1 = i∗δγ,k − îδγ,k+i−1, (4.11)
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andQ = [[1, 0]′, [0, 1]′]. The cost function is kept simple in this thesis by not penalizing

the control action and also by keeping N = 1 as the main focus of this thesis is

estimation of parameters and position and not on the performance of the FCSMPC.

The cost (4.10) is optimized with respect vδγ subject to the following constraints


îδγ,k ∈ Iδγ ⊂ R2

îδγ,k+1 = L−1
δγ

(
vδγ − R̂iδγ,k − ωTrLδγ îδγ,k − ωψδγ

)
from (2.13)

vδγ = TδγTdqTαβvabc, vabc ∈ Vabc

(4.12)

where Vabc is a finite set consisting of the voltage vectors (v0,v1, ...v7) corresponding

to eight switching states s ∈ S = {0, 1}3 of a two level inverter


s0 = [0, 0, 0] s4 = [0, 1, 1]

s1 = [1, 0, 0] s5 = [0, 0, 1]

s2 = [1, 1, 0] s6 = [1, 0, 1]

s3 = [0, 1, 0] s7 = [1, 1, 1]

(4.13)

The first and last switching states (s0 and s7) produce the null (or zero) vectors and

other six states produce the active vectors. A null vector is applied when there is

no control action is required or when the control feedback meets the requirements.

By applying the active switching states to a two level inverter the different voltage

vectors are produced. For example, by applying state s1, the upper switch of a-phase

and bottom switches of b and c phases are closed as shown in Fig. 4.2 (a). The

corresponding voltage phasors are shown in Fig. 4.2 (b). The voltage vector v1 is

found by adding each phasors (va+ vb+ vc), and |v1|= vdc (vdc is the dc-link voltage)

and the angle is 0 rad. By applying subsequent switching states, the voltage vectors
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rotates in a discrete angle step π
3
rad with the constant magnitude vdc. Therefore,

the three phase voltage vector is expressed as

vabc = vdcsn; n = 0, 1, 2...7 (4.14)

where n is the index of a switching state s as given in (4.13). The corresponding

voltage in δγ frame is found as

vδγ = TδγTdqTαβvabc (4.15)

(a) (b)

Figure 4.2: (a) Inverter switching state s1 and (b) the production of the corresponding
voltage vector v1.

Since the optimization variable (here voltage vδγ) belongs to a finite set and also

as N = 1, the process of optimization of the cost function consists of only finding the

minimum cost from the costs corresponding to eight switching states.

min(fN) = fmN where fN = {f 0
N , f

1
N , ...f

7
N} (4.16)
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where m ∈ {0, 1, ..7} is the index of the voltage vector producing the minimum cost,

and fN is the set of the costs corresponding to eight switching states. As N = 1, the

cost function in (4.10) can also be expressed as

fN = ĩ′δγ,kQ ĩδγ,k (4.17)

and also the error between the reference and the predicted current becomes

ĩδγ,k = i∗δγ,k − îδγ,k (4.18)

As mentioned in the beginning of this section îδγ,k is the predicted current. More

precisely it is the current predicted at kth sample to establish at k + 1th sample.

Therefore, (4.18) is more precisely expressed as

ĩδγ,k = i∗δγ,k − îδγ,k+1 (4.19)

The predicted current îδγ,k+1 is found for the voltage vectors corresponding to all the

switching states s in order to obtain the set of the cost function fN .

îδγ,k+1 = L−1
δγ

(
vδγ − R̂iδγ,k − ωTrLδγ îδγ,k − ωψδγ

)
(4.20)

In (4.20), îδγ,k is found from the unit delay compensation to account for the time

difference between the measurement and the application of the control action (Rovere

et al., 2016).

îδγ,k = L−1
δγ (vδγ,k −Riδγ,k − ωTrLδγiδγ,k − ωψδγ) from (2.13) (4.21)
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In (4.20), vδγ is a variable, and in (4.21), vδγ,k is the optimal voltage computed at

k − 1th sample and applied at kth sample. The current iδγ,k is the measurement at kth

sample. The timing diagram of the proposed FCSMPC is provided in Fig. 4.3 and

the block diagram is depicted in Fig. 4.4.

Figure 4.3: The timing diagram of the proposed FCSMPC.

Figure 4.4: The block diagram of the proposed FCSMPC scheme.

4.5 Persistent Excitation by FCSMPC

The proposed FCSMPC applies a voltage vector corresponding to the minimum cost

at a sampling interval as explained in section 4.4. The modulation schemes (e.g.

SPWM, SVPWM) are not required for FCSMPC as the applied voltage vectors are
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chosen from the finite set corresponding to eight switching states of a two level voltage

source inverter. A voltage vector essentially applies the constant voltages as shown

in Fig. 4.2 (b) to the three phase armature coils at a particular sampling interval.

The level of the constant voltage remains the same for each phases until there is a

requirement for changing the switching states according to the cost minimization.

If there is a change in the switching state, the FCSMPC applies the corresponding

voltage vector. The subsequent applications of different voltage vectors create sub-

stantial switching ripples in the current. If the first and higher order derivatives of

these switching ripples are nonzero then it is true that the machine is persistently

excited by the voltage vectors (according to section 4.3.2).

The rate of switching state transitions defines the switching frequency and it

varies according to the operating conditions of the machine. The switching frequency

at steady state is mainly dependent on the speed of the machine. It increases propor-

tional to the speed and therefore the switching transitions do not occur at zero speed

if the reference currents i∗δγ = 0. In other words FCSMPC applies null vectors. More-

over, the subsequent application of only null vectors results in no switching ripples

and hence no PE. This situation is overcome by setting a small negative δ current

reference at standstill in thesis. If iδγ ̸= 0 at zero speed, the FCMPSC applies ac-

tive vectors to maintain the reference values of the currents and results in switching

ripples. The magnitude and frequency of this switching ripples are essentially depen-

dent on the electrical time constant of the machine and hence varies from machine

to machine. Therefore, it is required to verify the current responses of the machine,

especially at zero speed and iδγ ̸= 0 that the applied voltage vectors establish PE.

The measured current response at standstill when iδγ = 0 and i∗δ = −1 A (the
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worst case) are shown in Fig. 4.5 (a) and (b) respectively. There is no switching

ripples with zero reference currents and only small current measurement noise exists.

Significant switching ripples are found in iδ and iγ when i∗δ = −1 A. The first and

second order time derivatives of iδ and iγ are depicted in Fig. 4.6. The maximum

values of the first order derivatives for iδ and iγ are 18 kA/s and 9kA/s respectively

and for the second order derivatives are 36 kA/s2 and 18 kA/s2 respectively. The

zoomed views of these graphs show that an average of ±0.2 kA/s ±0.2 kA/s2 always

exist for the first and second order derivatives except at zero crossings. Momentary

non-observable situation would occur with zero crossings and potentially create ripples

in online estimation of the parameters. However, these singularity issues are managed

by implementing regulatory terms in the cost function as discussed in the upcoming

chapters.

0 0.5 1 1.5 2
−2

−1

0

1

0 0.5 1 1.5 2
−2

−1

0

1

Time, s Time, s(b)(a)

Figure 4.5: The measured δγ currents at standstill: (a) i∗δ = 0 A and i∗γ = 0 A, and
(b) i∗δ = −1 A and i∗γ = 0 A.

The zero reference current (no load) with nonzero speed is another worst case

operating scenario. However, as the voltage vectors needs to be rotated according

to the rotation of the machine, the switching states changes and thus generates the

persistent switching ripples. The measured iδ and iγ at no load and 50 rpm in Fig. 4.7
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Figure 4.6: The first and second order derivatives of the measured currents at stand-
still, i∗δ = −1 A and i∗γ = 0 A (a) i̇δ (b) i̇γ, (c) ïδ, and (d) ïγ.

shows the persistent switching ripples. The average values for the first order deriva-

tives of iδ and iγ for this case are ±0.8 kA/s and ±0.6 kA/s, and the corresponding

values for the second order derivatives are 0.2 kA/s2 and 0.05 kA/s2 respectively.
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Figure 4.7: The measured currents at 50 rpm and i∗δγ = 0: (a) iδ and (b) iγ.

The transient state followed by sudden change in the torque or speed is another

worst case scenario as there is a possibility of flat or linear current responses. Fig. 4.8
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(a) shows the measured current response for a speed reversal at 50 rpm. The current

iδ flattens out near the zero speed and results in the average i̇δ as low as 10 A/s

and ïδ = 5 A/s2 in this period (0.04 s - 0.055 s). For iγ, the values of the first and

second order current derivatives are better than iδ and the corresponding average

values are 50 A/s and 10 A/s2 respectively. For the current reversal (in a sense the

torque reversal) of iγ from −10 A to 10 A (the rated current of the reference IPSMS,

see Appendix B for details), the response is close to linear resulting in low average

second order derivative as 5 A/s in the period 0.012 s-0.014 s . The average value of

the first order derivative is 10 kA/s in this period.
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Figure 4.8: The measured currents at (a) speed reversal at 50 rpm, and (b) rated
current (10 A) reversal.

The voltage vector injection by FCSMPC falls under the category of arbitrary

signal injection as the response currents do not fit into that of any standard modu-

lation based periodic signal injection (e.g. sinusoidal and square). The frequency of
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Table 4.8: Summary of the voltage vector response1 at different operating conditions

Operating conditions i̇δγ (A/s) ïδγ (A/s2)

Standstill, i∗δγ = [0A, 0A]′ [0, 0]′ [0, 0]′

Standstill, i∗δγ = [0A, 0A]′ [0.2k, 0.2k]′ [0.2k, 0.2k]′

50 rpm, i∗δγ = [0A, 0A]′ [0.8k, 0.6k]′ [0.2k, 0.05k]′

Speed reversal2, i∗δγ = [0A, 0A]′ [10, 50]′ [5, 10]′

Current reversal3, i∗δγ = [0A,±10A]′ [−, 10k]′ [−, 5]′
1-the average values at a particular time period, 2- at 50 rpm, 3-at 100rpm, and k = 103

sinusoidal injection is limited by the switching frequency as it has to apply through

the pulse width modulation (Liu and Zhu, 2014). On the other hand, the injec-

tion frequency is same as the switching frequency for the vector injection and thus

high frequency injection is possible except at zero speed and i∗δγ = 0. Therefore,

the vector injection is also a good PE as it generates strong switching ripples with

high values of first and second order derivatives excluding the short periods of speed

and torque transients. There is no requirement for additional signal injection for

FCSMPC (unlike the vector control) to simultaneously identify the parameters as

it inherently applies the voltage vectors to perform the control action and produces

strong switching ripples.

4.6 Summary

This chapter introduces the concept of persistent excitation and nonlinear observabil-

ity and presents the relationship between them. The persistent excitation require-

ments to meet the observability of the machine parameters, position and speed for

IPMSM are analyzed. It is found that the first and second order derivatives of the

current should be nonzero to simultaneously estimate all the parameters. Moreover,
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it is proved based on the experimental results that voltage vector injection by FC-

SMPC fulfills the requirements of a PE input enabling the identifiability of all the

parameters, position and speed.
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Chapter 5

Online Estimation of Parameters

5.1 Introduction

This chapter presents the proposed online estimation scheme to estimate the electrical

machine parameters. The estimation is realized with the help of recursive least square

(RLS) adaptation algorithm. The RLS formulations for different parameter combina-

tions are presented. The parameter combinations which are not identifiable at steady

state without persistent excitation are only considered for the experimentation. The

experimental results show that all these parameter combinations are identifiable by

online estimation as the voltage vector injection by FCSMPC establishes the persis-

tent excitation. Moreover, the parameter coupling in estimation that results in wrong

convergence is analyzed and a decoupling technique is proposed.
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5.2 Online Parameter Estimation Scheme

The proposed online estimation scheme for estimating the electrical parameters of

the reference IPMSM (see Appendix B for details) which is controlled by FCSMPC

is based on recursive least square (RLS) adaptation algorithm. All the four electrical

parameters L̂d, L̂q, ψ̂m, and R̂ are considered for estimation. The parameter nota-

tion with accentˆ indicates the estimation and without ˆ corresponds to the actual

value. The RLS estimates the parameters at every sampling interval by minimizing

the weighted linear least square cost function with respect to filter coefficients (pa-

rameters) (Bhotto and Antoniou, 2013). The block diagram of the proposed scheme

is depicted in Fig. 5.1. The position and speed information are obtained from the

encoder attached with the IPMSMS and therefore FCSMPC and RLS are realized

on dq frame. The measured three phase currents and the reference voltage vectors

are transformed to dq frame and fed to RLS estimator and FCSMPC. The details of

the FCSMPC is provided in section 4.4, however, it should be noted that the corre-

sponding cost function should be transformed from δγ to dq frame by setting ϑ̂ = 0.

VSIFCSMPC

Park

Park

RLS

Estimator

Figure 5.1: The block diagram of the proposed online parameter estimation scheme.
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5.2.1 Recursive Least Square (RLS)

The RLS adaptation algorithm is derived by analytically solving the minimization

problem with respect to filter parameters (p ∈ Rn) over the iteration i = 0 → k

where k is the sampling instant (Bhotto and Antoniou, 2013). The associated cost

function is the weighted squared error between the desired output (yk ∈ Rm) and

the estimated output (ŷk ∈ Rm).

minimize
pk

k∑
i=1

λk−i∥[yi − u′
ipk]∥2 (5.1)

where λ is the forgetting factor with power of k− i, uipk = ŷk, and ui ∈ Rm×n is a

matrix if m > 1 or else a row vector ∈ R1×n consisting inputs.

The solution of (5.1) is obtained by setting its partial derivatives with respect to

pk, equal to zero, and expressing it in the matrix form as

pk = R−1
k rk (5.2)

where, Rk and rk are the weighted sample covariance of uk and the cross-covariance

between yk and uk respectively, and expressed as

{
Rk = λRk−1 + uku

′
k

rk = λrk−1 + u′
kyk

(5.3)

By letting Pk = R−1
k and with the help of Woodbury matrix identity (Hayes, 1996),

it can expressed in a compact form as

Pk = λ−1(Pk−1 − gku
′
kPk−1) (5.4)
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where gk is the gain matrix

gk = Pk−1uk(λ+ u′
kPk−1uk)

−1 (5.5)

By substitution second equation of 5.3 and letting Pk = R−1
k in 5.2, it becomes

pk = Pk(λrk−1 + u′
kyk) (5.6)

By applying the recursive definitions of rk, Pk, and pk, 5.6 can be simplified and

expressed in the form of a final solution as

pk = pk−1 + gk(yk − u′
kpk−1) (5.7)

According to 5.7, the RLS updates the error between the actual (yk) and the estimated

outputs (u′
kpk−1) to the next estimated parameters (pk) by the factor of gain gk. The

size of gk and Pk are n×m and n× n which are essentially depended on the size of

uk, yk, and pk. The solution 5.7 is found at every sampling interval by updating gk

and Pk, and the RLS algorithm is summarized as



Set : λ

Initialize : pk−1,& Pk−1

Read : uk,& yk

Compute : gk = Pk−1uk(λ+ u′
kPk−1uk)

−1

: Pk = λ−1(Pk−1 − gku
′
kPk−1)

: pk = pk−1 + gk(yk − u′
kpk−1)

(5.8)
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The convergence accuracy and time of the parameter estimation are sensitive to

the values of λ. The small value of λ results in less contribution of the previous

samples to the covariance matrix, which means more fluctuations in the estimation

but achieves faster convergence. In practice, λ is usually chosen between 0.98 and 1

(Hayes, 1996). Optimal value of λ is chosen in this thesis for estimating the different

machine parameter combinations to achieve faster convergence without compromising

on the accuracy.

5.2.2 RLS Formulations for Different Parameter Combina-

tions

The RLS formulation varies for different parameter combinations. The mathematical

model of IPMSM (2.10) is rearranged in such a way that it becomes compatible with

RLS formulation

yk = u′
kpk (5.9)

In order to realize this, the terms which are not the coefficients of the estimating

parameters in (2.10) are moved to LHS and the remaining terms modified into the

form of ukpk where pk is the estimating parameter vector.

Only the parameter combinations which are not identifiable without persistent

excitation (PE) are estimated in this thesis in order to show that these observability

issues can be overcome by FCSMPC with vector injection. Moreover, the combina-

tions are grouped into two, three and four parameter sets. The RLS formulations for

different parameter sets are provided in Table 5.1.
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Table 5.1: RLS formulations for different parameter combinations

pk u′
k yk

[L̂d, L̂q]
′

[
i̇d,k, ωkiq,k

−ωkid,k i̇q,k

] [
vd,k − id,kR

vq,k − iq,kR− ωψm

]

[Ld, ψm]
′

[
i̇d,k, 0

−ωkid,k ωk

] [
vd,k − id,kR− ωkLqiq,k

vq,k − iq,kR− i̇q,kLq

]

[R,ψm]
′

[
id,k, 0

iq,k ωk

] [
vd,k − ωkLdi̇d,k − ωkLqiq,k

vq,k − i̇q,kLq + ωLdid,k

]

[Ld, Lq, ψm]
′

[
i̇d,k, ωkid,k 0

−ωkid,k i̇q,k ωk

] [
vd,k − id,kR

vq,k − iq,kR

]

[Ld, Lq, R]
′

[
i̇d,k, ωkid,k id,k

−ωkid,k i̇q,k iq,k

] [
vd,k

vq,k − ωkψm

]

[Ld,R, ψm]
′

[
i̇d,k, id,k 0

−ωkid,k iq,k ωk

] [
vd,k − ωkiq,kLq

vq,k − i̇q,kLq

]

[Lq,R, ψm]
′

[
ωkid,k, id,k 0

i̇d,k iq,k ωk

] [
vd,k − i̇d,kLd

vq,k + ωiq,kLq

]

[Ld, Lq, R, ψm]
′

[
i̇d,k, ωkid,k id,k 0

−ωkid,k i̇q,k iq,k ωk

] [
vd,k

vq,k − ωkψm

]
i̇d,k = (i̇d,k − i̇d,k−1)/Ts, i̇q,k = (i̇q,k − i̇q,k−1)/Ts where Ts is sampling time.

5.3 Experimental Results

The online estimations for the combinations with two, three and four parameter sets

are conducted experimentally for the reference IPMSM. The tests are carried out

with the help of the experimental setup presented in Appendix B. The estimation

is carried within the sampling cycle corresponding to 10 kHz switching frequency.

The parameter combinations which are not identifiable at steady state without PE
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are considered for the estimation in this thesis to show that the vector injection by

FCSMPC is able to overcome the observability issues.

5.3.1 Estimation of Two Parameter Combinations

The combination with parameter set {L̂d, L̂q} is considered first for online estimation.

The parameters in this combination are not simultaneously identifiable at steady

state when [id, iq]
′ = [0, 0]′ as given in Table 4.3. However, these parameters can

be identified with FCSMPC control even when the average values of the currents

are zero as shown in Fig. 5.2 (a). The vector injection by FCSMPC creates small

current ripples with [i̇d, i̇q]
′ ̸= [0, 0]′ enables the simultaneous identification of these

parameters. The estimated values closely correlate with the actual values from offline

measurement provided in Appendix B. The nominal values (see Appendix B) are

assumed for R and ψm in this case. The d and q axis current ripples are shown in

Fig. 5.2 (c) and (d) respectively.

The combination {L̂d, ψ̂m} is not observable at steady state without PE as given

in Table 4.3. The experimental results in Fig. 5.2 (b) shows that the switching

ripples (PE) associated with FCSMPC helps to overcome this limitation and provide

accurate estimation. The test is conducted at 100 rpm with average value of id = 0.

The estimated parameters closely match with the actual parameters.

The estimation of the combination {R̂, ψ̂m} is not identifiable at steady state when

id = 0 without PE. The experimental results with FCSMPC in Fig. 5.3 (a) shows

that these parameters are identifiable for this case as there is PE due to the switching

ripples. However, the parameters converge to wrong values with large oscillations

especially for R̂. The current measurement noise, delays, and inverter nonlinearities
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Figure 5.2: Experimental online estimation results at 100 rpm: (a) for {L̂d, L̂q}, (b)
for {L̂d, ψ̂m}, and (c) and (d) the measured id and iq showing the zero average.

associated with the experiments are attributed to this behavior. A small error in the

estimation of ψ̂m results in large error in R̂ as they are coupled with each other in

IPMSM model corresponding to q axis. This phenomenon would not appear if the

value of ψ̂m is much lower than R̂.

The coupling can be broken by keeping either iq = 0 or ω = 0. Fig. 5.3 (b) shows

the experimental results of estimating R̂ and ψ̂m with a very low speed (ω =25 rpm).

The estimation is more accurate compared to Fig. 5.3 (a), however, there are still

oscillations. This is due to the fact that, the complete decoupling is not achieved

as ω is not exactly zero, which is not possible as ω should be greater than zero to

estimate ψ̂m. The complete decoupling can be achieved by keeping iq = 0. The

experimental results for the case with iq = 0 is shown Fig. 5.3 (c). The parameters

are converged to the actual values. The decoupling by keeping iq = 0 or ω = 0 is not
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practically possible in the case of motor operation. Therefore, a decoupling technique

is proposed in this thesis.

Figure 5.3: Experimental online estimation results for {R̂, ψ̂m}: (a) for iq = 5A,
id = 0A and 100rpm, (b) for iq = 5 A, id = 0 A and 25rpm, (c) for iq = 0 A,
id = −5 A and 100rpm, (d) measured id and iq corresponding to (c).

5.3.2 Decoupling Technique

A small variation in ψ̂m creates a large variation in R̂ as they are coupled. One way to

overcome this coupling is to make the estimation of ψ̂m insensitive to small variations

by slowing down the convergence. It can be done by tuning the corresponding RLS

forgetting factor. However, tuning for a reasonable estimation results in significantly

longer convergence time.

The proposed decoupling technique in this thesis separates the estimation of R̂ and

ψ̂m by two moderately fast RLSs (RLS1 and 2 respectively) as shown in Fig. 5.4 (a).

The sampling rates of the two RLSs are kept high to avoid discretization error due to
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low sampling rate (same as the main control algorithm, 10 kHz). The estimated value

of R̂ from RLS1 is fed to RLS2 at each sampling interval and hence establishes a direct

link. On the other hand, the estimation of ψ̂m by RLS2 is updated to RLS1 only when

there is a considerable change in ψ̂m (weak link). Consequently, the small error in ψ̂m

estimation does not pass to estimation of R̂. Online experimental estimation results

of {R̂, ψ̂m} is shown in Fig. 5.4 (b) with the proposed decoupling. The convergence

of ψ̂m is steady and accurate. There are still small oscillations in R̂ however it can

be further improved by tuning the RLS and by changing the band of ψ̂m deciding

whether to update the RLS1 or not.

Figure 5.4: The decoupling technique for estimating {R̂, ψ̂m}: (a) two RLSs based
decoupling scheme (b) online experimental estimation results at iq = 5 A and 100 rpm.

5.3.3 Estimation of Three Parameter Combinations

All the combinations belong three parameter sets ({L̂d, L̂q, ψ̂m}, {L̂d, L̂q, R̂}, {L̂d, R̂, ψ̂m},

and {L̂q, R̂, ψ̂m}) are considered for online estimation. The parameter coupling be-

tween R̂ and ψ̂m is also a concern for estimating {L̂d, R̂, ψ̂m}, and {L̂q, R̂, ψ̂m}. The

decoupling scheme with two RLSs is also implemented for these combinations similar

to {R̂, ψ̂m} in section 5.3.2. The parameter ψ̂m is estimated by one RLS and other
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two parameters are estimated by a second RLS.

The parameters in all the three set combinations are not simultaneously identi-

fiable at stead state without PE according to Table 4.4. The experimental results

in Fig. 5.5 shows that all the three parameter combinations converge to the actual

values with the help of PE by FCSMPC. The average value of id is zero for all the

four test cases. There are small oscillations in R̂ however this can be improved by

tuning the RLS and the band of ψ̂m deciding whether to update the RLS1 or not.

Figure 5.5: Experimental online estimation results at iq = 5 A, id = 0 A, and 100

rpm : (a) for the combination {L̂d, L̂q, R̂} (b) for the combination {L̂d, L̂q, ψ̂m}, (c)
for the combination {L̂d, R̂, ψ̂m}, and (d) for the combination {L̂q, R̂, ψ̂m}.

5.3.4 Estimation of Four Parameter Combination

The estimation of the combination with four parameters is realized by two RLSs.

The first RLS estimates ψ̂m and the second one estimates L̂d, L̂q and R̂ in order

to establish the decoupling between R̂ and ψ̂m. The experiments are carried out
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at 50 rpm, 100 rpm, and 150 rpm. The iq is varied from 5 A with a step of 2 A

until 11 A while keeping id = 0 A. The estimation results are shown in Fig. 5.6.

The estimation of parameter ψ̂m is steady and does not change with the current and

speed as expected. The parameter L̂q decreases with increase in iq due to saturation.

The slight decrease in L̂d is due to the cross-saturation.. Both L̂d and L̂q estimations

follow the actual values. The parameter R̂ is slightly over and under estimated at 50

rpm and 150 rpm respectively and becomes closer to the actual value at 100 rpm.

Figure 5.6: Experimental online estimation results: (a) for the combination
{L̂d, L̂q, R̂, ψ̂m), (b) the corresponding id, iq and rpm.

77



Ph.D. Thesis - Shamsuddeen Nalakath McMaster - Electrical Engineering

5.4 Summary

This chapter presents a RLS based online adaptation scheme for estimating all the

electrical parameters of the reference IPMSM. The parameter combinations which are

not identifiable at steady state without persistent excitation are considered for the

experimentation. The results show that the vector injection by FCSMPC establishes

the persistent excitation which makes the system identifiable to all the parameters.

Moreover, the results also show that the estimated parameters closely match with

the actual parameters. The wrong estimations due to parameter coupling are also

analyzed and showed that the proposed technique effectively decouples the parameters

and improves the estimation.
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Chapter 6

Online Estimation of Position and

Speed

6.1 Introduction

This chapter presents online estimation of position and speed for the reference IPMSM

with FCSMPC. The proposed online estimation scheme is based on nonlinear opti-

mization as the standard position estimation techniques are not suitable for FCSMPC.

A strong persistent excitation is always present with FCSMPC, and therefore the pro-

posed method can estimate the position and speed over a wide speed range starting

from standstill to the rated speed without a changeover or additional signal injection.

This chapter also presents detailed convergence analysis and proposes a compensator

for the standstill operation that prevents converging to saddle and symmetrical solu-

tions. The performance of the proposed estimation scheme is experimentally verified

for a wide range of operating conditions.
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6.2 Position and Speed Estimations Scheme

The complete block diagram of the proposed position and speed estimations scheme

for the reference IPMSM with FCSMPC is depicted in Fig. 6.1. The estimated po-

sition θ̂ and speed ω̂ are fed to FCSMPC. Therefore, the control is realized in δγ

frame and the cost function given in section 4.4 is adopted for FCSMPC. Moreover,

the proposed scheme is essentially a position sensorless FCSMPC as the estimated

position and speed are used in the control.

Figure 6.1: The complete block diagram of the sensorless FCSMPC.

The standard signal injection based position estimation techniques employed for

low speed sensorless operation cannot be applied to FCMPC as it does not have

any modulator to superimpose the injected signal with fundamental excitation. For

conventional back emf (electromotive force) based high speed sensorless techniques,

the low pass filters are required to eliminate the switching ripples components asso-

ciated with FCSMPC. However, it is challenging to tune the filter coefficients as the

frequency of the switching ripples widely varies with respect to the operating speed.

Consequently, this thesis proposes a nonlinear optimization based scheme which si-

multaneously estimates the position and speed at every sampling interval.
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6.3 Nonlinear Optimization Based Estimator

In nonlinear optimization methods, a nonlinear cost function is minimized with re-

spect to the decision variables. For IPMSM in this thesis, the cost function is for-

mulated in the estimated reference frame (δγ) which rotates with estimated velocity

(ω̂) and displaced from the dq frame with an estimated angle difference ϑ̂. The

mathematical model of IPMSM in δγ (

This thesis employs Newton minimization along with golden-section line search as

the optimization solver. Newton method guarantees quadratic convergence as long

as the convergence trajectory is confined within the convex region, which can be

achieved with a warm-start initialization and by incorporating a line search to ensure

a descent direction for each iteration (Epelman, 2007). The iterative optimization

algorithm is carried out within a sampling interval as



∆xnk = − J(xn−1
k )

H(xn−1
k )

minimize
ξ

f(xn−1
k + ξ∆xnk)

xnk = xn−1
k + ξ∆xnk

(6.1)

where xk = [ϑ̂k, ω̂k]
′, ∆xnk is Newton direction of the kth sample and nth Newton

iteration, H is Hessian, and J is Jacobian. The line search step length (ξ) is found

by the intermediate optimization (golden-section (Shefali, 2011)), which essentially

finds ξ resulting from

f(xn−1
k + ξ∆xnk) < f(xn−1

k ).

The steps in (6.1) are repeated until J(xk) ≤ η (an acceptable minimum). The
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value of η is chosen to reduce the number of iterations without compromising on

the accuracy of the solution. The number of iterations is further reduced in this

application as there is always a warm initialization except for the initial sample. This

is true from the fact that, the initialization for the kth sample is the solution from

k − 1th sample, and the variations between these adjacent samples are marginal. It

is also worthwhile to note that a compensator is proposed in this thesis for the initial

sample at the start-up to avoid wrong convergence.

The nonlinear optimization of the cost function (??) finds the optimal position

difference ϑ̂o. The estimated position θ̂ is found by feeding ϑ̂o into a phase locked

loop (PLL) as shown in Fig. 6.2. The compensator is executed only at the start-up

from standstill and it is disconnected for the remaining operation. The estimated

speed ω̂ is the output of the discrete filter.

Figure 6.2: Nonlinear optimization based position and speed estimator.

6.4 Convergence Analysis

There is a global minimum if the cost function is convex, and the solution converges

to this minimum as long as the convergence trajectory is confined within the convex
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region. Therefore, analyzing the convex region is the fundamental part of the conver-

gence analysis. One of the approaches to find the convex region of the cost function

is with the help of the leading principal minors of its Hessian matrix (Erikson, 2010).

This approach is convenient in developing analytical conditions for the convexity. The

Hessian of the cost function (??) is

H =

2h′hϑ̂ϑ̂ + 2h′
ϑ̂
hϑ̂ + 2κ1, 2h

′hϑ̂ω̂ + 2h′
ϑ̂
hω̂

2h′hϑ̂ω̂ + 2h′
ϑ̂
hω̂, 2h′

ω̂hω̂ + 2κ2

 (6.2)

where hϑ̂, hϑ̂ϑ̂, hω̂, and hϑ̂ω̂ are the first and second order derivatives of h with respect

to ϑ̂ and ω̂, and their expressions are

hϑ̂ = 2L∆T(P̃i̇δγ +TP̃ω̂iδγ) + ψω̂Tq̃

hϑ̂ϑ̂ = 2Thϑ̂

hω̂ = TLδγiδγ + q̃ψ

hϑ̂ω̂ = 2L∆TTP̃iδγ + ψTq̃

and the Jacobian is

J = [2h′hϑ̂ + 2κ2(ϑ̂− ϑ̂i), 2h
′hω̂ + 2κ2(ω̂ − ω̂i)]

′ (6.3)

where ϑ̂i and ω̂i are the initial values (from the preceding sample).

Hessian (6.2) has two leading principal minors

m1 = h11

m2 = |H|
(6.4)
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where h11 is the first element and |H| is the determinant of H.

The required conditions for the convexity are (Erikson, 2010)

m1 > 0 and m2 > 0 (6.5)

The values of ϑ̂ and ω̂ at the boundary of the convexity region can be numerically

found by solving m1 = 0 and m2 = 0. In addition to those actual values, this thesis

presents the simplified analytical expressions for the leading principal minors in order

to arrive the conditions for the convexity. The simplification is carried out only for

the sake of convergence analysis, and the actual Hessian (6.2) and the cost function

(??) are used for the optimization. The simplification is carried out by neglecting

the less significant terms from the original expressions for low speed and high speed

cases.

6.4.1 High Speed Convergence Analysis

The back emf is the major component in the original leading principal minors (6.4) at

high speed and therefore the current terms (i̇δγ , iδγ) are neglected to find the simplified

expressions for analyzing the convex region. Thus, the first simplified principle minor

is derived as

mh
1 = 2ψω̂|vδγ|cos(ϑ̂+ tan−1 vδ

vγ
), (6.6)
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where superscript h indicates high speed, and the first convexity condition by applying

mh
1 > 0 is

tan−1 vδ
vγ

− π

2
< tan−1 vδ

vγ
− π

2
> ϑ̂


< tan−1 vδ

vγ
+ π

2
for ω̂ > 0

> tan−1 vδ
vγ

+ π
2

for ω̂ < 0

(6.7)

Similarly the second principle minor is derived as

mh
2 = 4ψ2

[
m1

2
− |vδγ|2sin(ϑ̂+ tan−1 vδ

vγ
)2
]

(6.8)

and the second convexity condition by applying mh
2 > 0 is

ω


>

|vδγ |sin(ϑ̂+tan−1 vδ
vγ

)2

2ψ cos(ϑ̂+tan−1 vδ
vγ

)
, for dh > 0

<
|vδγ |sin(ϑ̂+tan−1 vδ

vγ
)2

2ψ cos(ϑ̂+tan−1 vδ
vγ

)
, for dh < 0,

(6.9)

where dh is the denominator 2ψ cos(ϑ̂+ tan−1 vδ
vγ
) in (6.9).

The convex region at high speed is plotted based on the approximated (6.13, 6.9)

and the original conditions (6.4) for the reference IPMSM machine (see Appendix B

for the machine details) along with its cost function at 314 rad/s (600 rpm), iq = 2 A,

id = 0 A, and i̇d = i̇q = 0 A in Fig. 6.3. It is shown that the difference between

the original and the approximated convex regions is negligible. Moreover, the cost

function is odd symmetric and has four equilibrium solutions

∣∣∣∣∣∣∣
s1 : (ϑ̂o, ω̂o) s3 : (ϑ̂o +

π

2
, 0)

s2 : (ϑ̂o − π,−ω̂o) s4 : (ϑ̂o −
π

2
, 0).
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The solution s1 is the optimal solution and ϑ̂o and ω̂o are the optimal values of ϑ̂ and

ω̂ . The solutions s3 and s4 at ω̂ = 0 are saddle solutions. The symmetrical solution

s2 is shifted by π rad from the optimal solution. The non-convex region in Fig. 6.3

is not concave (m1 < 0, and m2 > 0) [24] and therefore it is a saddle region where

neither minimum nor maximum exists.
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Figure 6.3: The contour plot of the cost function (f), convex region, and the conver-
gence trajectories for the high speed case.

Fig. 6.3 also shows the convergence trajectories of Newton iterations starting from

different initial conditions. The intermediate trajectories by line search is omitted in

the plot. The trajectories with their starting points in the convex region are converged

to the optimal solution. The iterations with initial ω̂ having the opposite sign as

compared to ω̂o also converge to the optimal solution as long as the initial ϑ̂ is close

to ϑ̂o. Otherwise, the iterations converge to either symmetrical or a saddle solution

(s3/s4) depending on the location of the initial condition. All the trajectories in

Fig. 6.3 are converged within three Newton and six line search iterations.
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6.4.2 Low Speed Convergence Analysis

The current derivative term is the major component in the original leading principle

minors (6.4) at low speed because its value is kept high (by signal injection or by

voltage vectors) to provide persistent excitation to meet the well known observability

condition for IPMSMs (see section 4.1). Thus, it enables to neglect the terms with

iδγ from the original leading principal minors to find the simplified expressions for

analyzing the convex region. The first simplified leading principle minor for the low

speed case is

ml
1 = 2ψω̂(a+ b)− 8L2(c− LΣd), (6.10)

where,

a = |vδγ|cos(ϑ̂+ tan−1 vδ
vγ

)

b = |i̇δγ|cos(ϑ̂+ tan−1 i̇δ

i̇γ
)(L∆ − LΣ)

c = |i̇δγ||vδγ|cos(ϑ̂+ tan−1 vδ
vγ

+ tan−1 i̇δ

i̇γ
)

d = |i̇δγ|cos(2ϑ̂+ 2 tan−1 i̇δ

i̇γ
)

where superscript l indicates low speed, and the first convexity condition by applying

ml
1 > 0 is

ω


> 8L∆(c−LΣd)

2ψ(a+b)
, for dl > 0

< 8L∆(c−LΣd)
2ψ(a+b)

, for dl < 0,

(6.11)
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where dl is the denominator 2ψ(a + b) in (6.11). Similarly the simplified expression

for the second leading principle minor for the low speed case is

ml
2 = 2ψ2

[
m1 − 2(a+ b)2

]
, (6.12)

and the second convexity condition by applying ml
2 > 0 is

ω


> 8L∆(c−LΣd)+2(a+b)2

2ψ(a+b)
, for dl > 0

< 8L∆(c−LΣd)2+(a+b)2

2ψ(a+b)
, for dl < 0

(6.13)

According to the conditions (6.11) and (6.13), the cost function for the surface

permanent magnet machines is not convex at ω̂ = 0 as L∆ = 0. For IPMSMs, at

least one current derivative must be nonzero to maintain the convexity.

The convex region at low speed with the help of approximated (6.11, 6.13) and

the original (6.4) conditions along with the cost function for the reference IPMSM at

0 rad/s, i̇γ = 10000A/s, i̇γ = 1000 A/s, iδ = 0 A, and iγ = 2 A are plotted in Fig. 6.4.

The difference between the approximated and the original convex regions is negligible.

Moreover, the convex boundaries by two approximated conditions (6.11) and (6.13)

are overlapped. The cost function is odd symmetric and has four equilibrium solutions

∣∣∣∣∣∣∣
s1 : (ϑ̂o, ω̂o) s3 : (ϑ̂o +

π

2
, ω̂s)

s2 : (ϑ̂o − π,−ω̂o) s4 : (ϑ̂o −
π

2
,−ω̂s),

where ω̂s is the angular speed at the saddle solutions s3 and s4. The solution s1 is

the optimal solution and s2 is the symmterical solution shifted by π rad from ϑ̂o.

Fig. 6.4 also shows Newton trajectories without intermediate solutions by line
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Figure 6.4: The contour plot of the cost function (f), convex region, and the conver-
gence trajectories for the low speed case.

search. All the trajectories started within the convex region are converged to the

optimal solution except those near the saddle or symmetrical points as shown in

Fig. 6.4. Similar to the high speed case all the trajectories are converged within three

Newton and six line search iterations, and the non-convex region is not concave but

the saddle region.

6.5 Compensator Design

The position error solution by nonlinear optimization is more susceptible to saddle

and symmetrical convergence at the start-up of the operation as the initial conditions

are unknown. If the initial speed is kept as zero, which is true at the start-up, the

narrow convex region at ω̂ = 0 also increases the possibility of wrong convergence

as in Fig. 6.4. Therefore, this thesis focuses on designing a compensator only for
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the start-up from standstill. Once the correct standstill position is known, then the

compensator is removed for the further operation. The compensation for the sym-

metrical solution is essentially the compensation for the opposite magnetic polarity

and therefore the proposed compensator is also an integrated polarity detector.

If the solution has converged to saddle points at standstill, then the speed solution

is nonzero according to Fig. 6.4. If the speed solution is zero then the solution is

either optimal or symmetrical. The angular distances from the symmetrical and the

saddle solutions to the optimal solution are π and π
2
respectively. The compensator

is designed based on these convergence characteristics. The proposed compensator,

as illustrated in Fig. 6.5 (a) detects whether the speed solution is zero, positive or

negative. If the speed is positive/negative then the algorithm chooses path-2/path-3

and subtracts/adds π
2
to correct the saddle solution to the optimal solution. The

algorithm chooses path-1 if the speed is zero then adds π
2
to force the solution to a

saddle point and runs the algorithm once again to move the saddle solution to the

optimal solution.

6.6 Experimental Validation

The proposed position estimation technique was experimentally validated for the

reference IPMSM with the details given Appendix B. The tests were conducted in

the motor dyno (see Appendix B for details) which consists of an induction motor

with the Yaskawa drive. The motor control and position estimator algorithms for the

reference IPMSM are implemented in MicroAutobox II. The controllers are configured

to run the IM in speed control and the IPMSM in current control. The sampling

frequency is kept at 10kHz.
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Figure 6.5: (a) Compensation flow chart, and (b) compensation trajectory.

6.6.1 Standstill Performance

The FCSMPC injects null voltage vector at standstill when the reference currents (i∗δ

and i∗γ) are zero and essentially stops persistent excitation as mentioned in section

4.5. In this situation the position becomes not observable according to section 4.1.

In order to overcome this situation, a negative reference current (−1 A) is applied in

δ axis. The position estimation at standstill with i∗δ = −1 A and i∗γ = 0 A is shown

in Fig. 6.6. The position error (ϑ̂o) is 1.5 rad at the open loop and the estimated

position (θ̂) is zero as the PLL is not in action. At the closed loop, the PLL takes the

position error to zero irrespective of whether it is an optimal, saddle or symmetrical

solutions however the wrong convergence can be reflected in the estimated position

θ̂. In Fig. 6.6 (a), the solution is a symmetrical solution as there is a π shift from

the actual position (θact). At 4 s, the compensator comes into action as shown in
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Fig. 6.6 (b) and the estimated position converges to the actual position. The time 4 s

to start the compensation is chosen only for the demonstration however in the actual

sensorless operation, the compensation begins at the start-up.
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Figure 6.6: Position estimation at standstill with i∗δ = −1 A and i∗γ = 0 A: (a) open
loop till 0.4 s and then closed loop (b) the compensator in action at 4 s.

6.6.2 Speed Transient Performance

The speed transient performance of the proposed nonlinear optimization based sen-

sorless FCSMPC is validated by conducting the speed reversal and sweep tests. The

performance of the speed reversal tests at 50 rpm with no load and 50% rated load are

shown in Fig. 6.7. The steady state position error for the case of no load is 0.03 rad

and that for the half rated load is 0.14 rad. The increased error with loading attributes

to the deviation from the nominal inductances by saturation. The steady state po-

sition error values from both the tests are close to the nonlinear optimization based

sensorless vector control presented in (Sun et al., 2017). The transient performance

at no load case is also comparable with (Sun et al., 2017) however the position error

at half the rated load decreases at the transition period. This is due to the fact that

the estimated position while generating in Fig. 6.7(e-h) is below the actual position,

and when the machine transitions to motoring, the estimated position moves close to
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the actual as the estimation response is slower than the system. The same test at 50

rpm and half the rated load is repeated for the transition from motoring to generating

with a positive load current as shown in Fig. 6.8(a-b). For this case, the magnitude

of the steady state position error is as same as in Fig. 6.7(e) however the estimated

position is higher than the actual. Therefore, when the machine slows down at the

transition to generation the actual position falls further below the estimated position

causing higher position error at the transient. In both the cases the nonlinear op-

timizer estimates the position error promptly and PLL takes the estimated position

back to its steady state value.

The steady state position error at higher loads for the nonlinear optimization

based sensorless vector control reduces considerably with increase in the speed as

the back emf component becomes dominant (Sun et al., 2017). The steady state

position error at 100 rpm and half the rated load for the nonlinear optimization

based sensorless vector control is 0.08 rad (see Fig. 6.8(f)) which is 0.05 rad smaller

as compared to the sensorless FCSMPC at the same operating condition (Fig. 6.9(b)).

The current dynamic component is prominent as compared to the back emf term for

the case of FCSMPC at 100 rpm due to the presence of high frequency switching

ripples, and therefore the steady state error due to the core saturation appears. On

the other hand, the switching ripples with FCSMPC helps to improve the transient

performance at the speed reversals by maintaining the observability at lower speed as

compared to the sensorless vector control as shown in Fig. 6.8(f) and Fig. 6.9(b). The

back emf term becomes dominant over the current dynamic component at 200 rpm

for the FCSMPC and therefore the position error decreases by 0.06 rad as shown in

Fig. 6.9(f) as compared to 100 rpm in Fig. 6.9(b). The position error is smooth at
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Figure 6.7: Experimental speed reversal performance of sensorless FCSMPC at 50
rpm: (a)-(d) at no load, and (e)-(h) at 50% rated load.

200 rpm as compared to the lower speeds as the effects of current measurement noise

reduces with increase in the back emf. Moreover, the current is steady at the speed

transition for the case of FCSMPS as it has inherently fast response as compared to
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Figure 6.8: Experimental speed reversal performance at 50% rated load: (a)-(d) for
sensorless FCSMPC with transition from motoring to generation at 50 rpm, and
(e)-(h) for sensorless vector control at 100 rpm.

the vector control.

The steady state position error at the full rated load is increased by 0.105 rad as

shown in Fig. 6.10 (a-b) as compared to the half rated load. However, that for the full
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Figure 6.9: Experimental speed reversal performance of sensorless FCSMPC at 50%
rated load: (a)-(d) at 100 rpm, and (e)-(h) at 200 rpm.

load to 150% rated load, it is increased by only 0.05 rad as shown in Fig. 6.10(e-f).

This shows that at 150% rated load the core is close to the complete saturation and

the sensorless FCSMPC is stable with a large variations in the inductance.
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The speed sweep from standstill to half the rated speed (350 rpm) and back within

150 ms are conducted to validate the performance of the nonlinear optimization based

sensorless FCSMPC subjected to large speed transients. The results with 25% rated

load are presented in Fig. 6.11 (a-d) for the FCSMPS and in (e-f) for the vector

control. The reference δ axis current to produce the persistent excitation at standstill

as mentioned in section VI A is not required for this case as the γ axis reference

current is set at −2.5 A to produce the torque. On the other hand, a 500 Hz and

70 V sinusoidal injection is applied for the vector control till 50 rpm. The position

error at the standstill for FCSMPC is 0.03 rad which is same as the no load case and

that means that the core is not saturated at 25% rated load. The standstill position

error for the vector control is 0.075 rad which is close to the value presented in (Sun

et al., 2017). The low standstill position error for the FCSMPC attributes to the

large switching ripples. The position errors at the transient state for both the control

methods are close except 0.05 rad reduction in the peak value when the speed rises

for the FCSMPC as compared to the vector control.

The experimental validation of proposed sensorless scheme at very high speed

(say >10000 rpm) is limited by the speed rating (700 rpm) of the reference machine.

However, the proposed scheme can also be applied to high speed machine by retuning

the parameters. High value of the regularization constants (κ1 and κ2) deteriorates the

estimation at very high speed and therefore the values need to be retuned. The speed

dependent machine parameters viz., winding resistance and core loss also influence the

estimation performance at very high speed. The variation of the winding resistance

has less significance on the estimation accuracy as discussed in section VI D, and the

influence of the core loss is kept out of the scope from the present thesis as it requires
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an elaborate treatment of the IPMSM model.
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Figure 6.10: Experimental speed reversal performance of sensorless FCSMPC at 100
rpm: (a)-(d) at the full rated load, and (e)-(h) at 150% of the rated load.
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Figure 6.11: Experimental speed sweep performance from 0 rpm to half the rated
speed (350 rpm) and back at 25% rated load: (a)-(d) for sensorless FCSMPC, and
(e)-(h) for sensorless vector control.
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6.6.3 Torque Transient Performance

The torque reversal tests are conducted to validate the transient performance of the

nonlinear optimization based sensorless FCSMPC for the large torque variations. The

tests results at 100 rpm and the full rated load for the FCSMPC are compared with

the vector control in Fig. 6.12. The steady state position error for the FCSMPC is

close to the vector control. The reduction in position error due to high back emf for

the vector control at the half rated load as shown in Fig. 6.8 (f) is not observed for the

full load. The high current associated with the full rated load surpasses the influence

of high back emf. The position errors at the transient state for the FCSMPC and

the vector control are also very close except 0.05 rad reduction in peak value for the

FCSMPC.

The summary of the important experimental results are provided in Table II for

both nonlinear optimization based FCSMPC and vector control.

Table 6.1: Summary of Experimental Results

Operating con-
ditions

Steady state po-
sition error (rad)

Maximum tran-
sient state posi-
tion error (rad)

Response time (s)

FCSMPC Vector FCSMPC Vector FCSMPC Vector

No load1 0.03 0.075 - - - -

Speed reversal2 0.125 0.08 0.25 0.32 0.18 0.18

Speed sweep3 0.03 0.075 0.32 0.38 0.24 0.27

Torque reversal4 0.23 0.23 0.25 0.25 0.36 0.45

1: 50 rpm, 2: 100 rpm and 50% rated load, 3: 0 rpm to 350 rpm at 25% rated load, 4: 100 rpm with rated load.
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Figure 6.12: Experimental torque reversal performance at the full rated torque and
100 rpm: (a)-(d) for sensorless FCSMPC, and (e)-(h) for sensorless vector control.

6.6.4 Parameter Sensitivity Analysis

The nominal motor parameter values (see Table I) are supplied to this nonlinear opti-

mization based sensorless scheme. Therefore, the variation of the physical parameters
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from the nominal values can affect the accuracy of the estimated position and speed.

Only the sign of the optimal speed (ω̂o) is required in this sensorless scheme (to

perform the compensation at standstill) and hence its accuracy with respect to the

parameter variations is not presented here. The position error with respect to the

variations in the parameters is presented in Fig. 6.13 for 100 rpm with torque reversal

at half the rated load. These variations are made on the nominal values supplied to

the cost function to mimic the difference between the model and physical values with

the actual parameter variations. The variations from the nominal values in resistance

and permanent magnet flux linkage by ± 50% and ± 25% respectively do not have

any significant effects on the position error as shown in Fig. 6.13 (a) and (c) respec-

tively. The effect of a decrease in d axis inductance by 25% is negligible whereas an

increase by 25% rises the position error by 0.025 rad with respect to the nominal case

as shown in Fig. 6.13 (b). The decrease by 25% in q axis inductance increases the

position error by 0.05 rad from the nominal case while the increase by 25% results

in large oscillations apart from 0.025 rad decrease from the nominal case as shown in

Fig. 6.13 (d). The variation in q axis inductance has the most considerable impacts on

the position error as compared to other parameters. However, the position estimation

by nonlinear optimization shows robustness with these large parameter variations.

6.7 Summary

This chapter presents the nonlinear optimization based position and speed estimation

scheme for IPMSM drive with FCSMPC. It shows that the proposed method is an

ideal solution for the drives with arbitrary signal injection- a case for FCMPC. The

compensator is proposed based on the characteristics of the cost function to correct
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Figure 6.13: Position error with respect to parameter variations: (a) ±50% varia-
tion in resistance, (b) ±25% variation in d axis inductance, (c) ±25% variation in
permanent magnet flux linkage, and (d) ±25% variation in q axis inductance.

the wrong convergences to the saddle and symmetrical solutions. The experimental

results are promising and those are in par with the vector control with the same sen-

sorless scheme. There is an improvement in steady state position error (by 0.045 rad)

at standstill as compared to the vector control attributed to the strong switching

ripples associated with FCSMPC. However, the performance of the sensorless FC-

SMPC deteriorates at medium speed with load (0.06 rad rise in position error) as

the high switching ripples intensify the effect of inductance variation by saturation.

Moreover, the proposed sensorless scheme for FCSMP performs superior as compared

to other model based techniques in literature for model predictive controls. The pro-

posed scheme has very low steady state position oscillations about ±0.025 rad and

the position error is 0.03 rad at no load and 0.225 rad at the full rated load.
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Chapter 7

Co-estimation of Position and

Parameters for Robust Sensorless

Control

7.1 Introduction

This chapter presents a single nonlinear optimization based observer which simulta-

neously estimates both position, and d and q inductances at every sampling interval

to realize robust sensorless FCSMPC for the reference IPMSM. The voltage vector

injections by FCSMPC establish persistent excitation and enable simultaneous iden-

tification at wide operating region, however, it limits employing standard techniques

for position estimation. The proposed method is suitable for any type of signal injec-

tion and hence an ideal candidate for FCSMPC. This chapter also presents detailed

robustness and convergence analyzes. Finally, the performance of the proposed robust

sensorless control scheme is verified experimentally at different operating conditions.
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7.2 Robust Sensorless FCSMPC Scheme

In robust sensorless FSCMPC scheme, position and machine parameters are simul-

taneously estimated so that the effect of the corresponding parameter variations can

be effectively eliminated in the estimation of the position. Moreover, the vector in-

jection by FCSMPC establishes PE that helps in simultaneous identification of both

position and parameters at wide operating region. The complete block diagram of

the robust sensorless FCSMPC scheme is depicted in Fig. 7.1. The scheme consists of

the nonlinear optimization based estimator which provides estimated position (θ̂) and

the estimated inductances L̂d and L̂q to FCSMPC. The inductances L̂d and L̂q are

the most influencing parameters on the accuracy of the position estimation according

to the experimental results in section 6.6.4 and the robustness analysis in section 7.3.

The estimated position is the output of the standard PLL which has the input ϑ̂

(angle difference between δγ and dq frames) from the nonlinear optimizer as shown in

Fig. 7.2. The estimated speed ω̂ is the output of the filter. The FCSMPC in section

4.4 is employed for robust sensorless FSCMPC scheme presented in this section.

VSIFCSMPC

Park

Park

Estimator

Figure 7.1: The block diagram of the robust sensorless FCSMPC scheme.
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PLL

Filter1/Z

1/Z

Nonlinear

optimizer

Figure 7.2: Nonlinear optimization based robust position and parameter estimation.

7.3 Robustness Analysis

The equation (2.13) is expressed as the function of unknown vector x ∈ Rn where n

is the length of x, and x consists of states (ϑ̂ and/or ω̂)

h(x) = ṽδγ − Lδγ i̇δγ −TrLδγω̂iδγ − ω̂ψmq̃. (7.1)

The cost function for the nonlinear optimization is defined as the square of the two

norm of (7.1).

f(x) = ∥h(x)∥2 (7.2)

In the optimization process, the function (7.2) is minimized with respect to the un-

known vector x.

minimize
x

f(x).

The parameters in (7.1) are expressed as the nominal and ∆ variations from the

nominal as 
Ld = L̄d +∆L̄d Lq = L̄q +∆L̄q

R = R̄ +∆R̄ ψm = ψ̄m +∆ψ̄m

(7.3)
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where¯ stands for the nominal. By substituting (7.3) into (7.1), the function corre-

sponding to the nominal parameters and for their variations can be separated as

h(x) = h̄(x) + ∆h̄(x) (7.4)

where h̄(x) and ∆h̄(x) are the functions of the nominal parameters and ∆ variations

from the nominal parameters respectively, and


h̄(x) = v̄δγ − L̄δγ i̇δγ −TL̄δγω̂iδγ − ω̂ψ̄mq̃

∆h̄(x) = ∆v̄δγ −∆Lδγ i̇δγ −T∆Lδγ ω̂iδγ − ω̂∆ψ̄mq̃

where v̄δγ = vδγ−R̄iδγ, ∆v̄δγ = −∆R̄iδγ, Lδγ = P̃L̄∆+L̄ΣI, L̄∆ = L̄d−L̄q
2

, L̄Σ = L̄d+L̄q
2

,

∆Lδγ = P̃∆L̄∆
+ ∆L̄Σ

I, ∆L̄∆
=

∆L̄d
−∆L̄q
2

, and ∆L̄Σ
=

∆L̄d
+∆L̄q
2

. Similarly, the cost

function (7.2) is also decomposed for the nominal parameters and their variations as

f(x) = ∥h̄(x)∥2+2∆′
h̄(x)h̄(x) + ∥∆h̄(x)∥2 (7.5)

The optimization of the cost function (7.5) results in the correct optimal solution xo

as it considers the parameter variations. If only nominal parameters are considered,

then the cost function (7.5) becomes

f̄(x) = ∥h̄(x)∥2 (7.6)

and therefore the optimization of (7.6) produces error in the solution

∆xo = xo − x̄o (7.7)
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where x̄o is the solution of (7.6). At x = x̄o,

f(x̄o) = ∥∆h̄(x̄o)∥
2 as h̄(x̄o) = 0

Therefore, the region of confidence D is defined as

D = {x ∈ Rn | f(x) ≤ ∥∆h̄(x̄o)∥
2} (7.8)

where the correct optimal solution xo exists with an assumption that D is convex.

The solution without considering the parameter variations x̄o lies in the border of

D. Therefore, it can be inferred that if D is bounded then the position error is also

bounded.

The region D is analyzed graphically for the two cases x = [ϑ̂, ω̂]′ and x = ϑ̂

in Fig. 7.3 for the extreme parameter variations: ∆L̄d = ±0.25L̄d, ∆L̄q = ±0.25L̄q,

∆R̄ = ±0.5R̄, and ∆ψ̄ = ±0.25ψ̄ for the reference machine. The details of the

reference machine, the nominal parameters and the inductance profile are provided

in Appendix B. For x = [ϑ̂, ω̂]′, D is an ellipse, and for x = ϑ̂, it is a straight line.

Fig. 7.3 also shows the trajectories of the solution moving from x̄o to xo by adding

the parameter variations to the cost function (7.5) in the steps of 2.5%. It should be

noted that trajectories are bounded inside the region D.

For x = [ϑ̂, ω̂]′, ±25% variations in ψ show significant error in the solution for

both ω̂ and ϑ̂ at the rated speed (366 rad/s), the rated current (iδγ = [−10A, 10A]′),

and with rate of change of current i̇δγ = [104A/s, 104A/s]′ as shown in Fig. 7.3 (a). It

should be noted that for FCSMPC, it is always true that i̇δγ ̸= 0 due to the voltage

vector injection. The error is {134 rad/s, −116 rad/s} and {−0.9 rad, 0.22 rad}
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respectively for ω̂ and ϑ̂. For x = ϑ̂, the error in solution of ϑ̂ is substantially reduced

to {−0.024 rad, 0.019 rad} at the same condition as shown in Fig. 7.3 (c). This is due

to the fact that, ϑ̂ is affected by both estimation error in ω̂ and parameter variation

in ψ for x = [ϑ̂, ω̂]′ case whereas only the latter influences x = ϑ̂. The variations in

Ld by ±25% result in the solution error of {49 rad/s, −41 rad/s} and {−0.06 rad,

0.05 rad} for x = [ϑ̂, ω̂]′ as shown in Fig. 7.3 (a) whereas the error in ϑ̂ is within 0.01

rad for x = ϑ̂ (not shown in the Fig. 7.3 (c) as the value is small). The variations in

Lq by ±25% result in similar errors in ϑ̂ for both x = [ϑ̂, ω̂]′ and x = ϑ̂ cases ({−0.09

rad, 0.08 rad}). The variations in resistance by ±50% is least significant for both

x = [ϑ̂, ω̂] and x = ϑ̂, and the error in ϑ̂ is within 0.01 rad (not shown in Fig. 7.3

(c)). The strong back emf at 366 rad/s and i̇δγ = [104A/s, 104A/s]′ reduce the effects

by variations in resistance.

At zero speed, iδγ = [−10A, 10A]′, and i̇δγ = [104A/s, 104A/s]′, the error in

solution by ±25% variations in Ld for x = [ϑ̂, ω̂]′ is {−10 rad/s, 90 rad/s} and

{−0.69 rad, 0.48 rad} as shown in Fig. 7.3 (b). On the other hand, the error in ϑ̂ is

reduced (0.2 rad) for x = ϑ̂ for −25% variation as shown in Fig. 7.3 (d) whereas, for

+25%, the error is as same as the case of x = [ϑ̂, ω̂]′. Similarly, for the variation in

Lq by ±25%, the error in ϑ̂ is reduced from 1 rad to 0.8 rad for the case of x = ϑ̂

as compared to x = [ϑ̂, ω̂]′. The variation in ψ does not have effects in the solution

as speed is zero for both x = [ϑ̂, ω̂]′ and x = ϑ̂ cases. The variations in resistance

by ±50% result error in ϑ̂ as low as 0.005 rad (not shown in Fig. 7.3(b) and (d)) as

there is a strong current derivative term i̇δγ = [104A/s, 104A/s]′.

From the robustness analysis presented in this section, it is found that the case

x = ϑ̂ is more robust towards the parameter variations as compared to x = [ϑ̂, ω̂]′.
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Moreover, the main influencing parameters are only Ld and Lq for x = ϑ̂. The inverter

voltage drop by dead-time varies with switching frequency and it is not considered in

this thesis as the switching frequency of FCSMPC is much lower as compared to the

fixed switching frequency (about 10 kHz) of a typical vector control. The switching

frequency of the FCSMPC implemented in this thesis varies from 15Hz to 500Hz

respectively from standstill to the rated speed operations. The explicit treatment

of the cross-saturation by mutual inductances in position estimation showed some

benefits in literature (Zhu et al., 2007), however implicit treatment considering only

self inductances is preferred in this thesis as the reference machine has low saliency

(Lq/Ld = 1.3), and also to reduce the complexity in the structure of the observer.

Consequently, this thesis proposes nonlinear optimization based scheme for estimating

ϑ̂ along with Ld and Lq to realize robust sensorless FCSMPC.

7.4 Convergence Analysis

This thesis proposes the estimation of unknown vector x = [ϑ̂, L̂d, L̂q] whereˆrepre-

sents the estimated value, and the corresponding updated cost function is

f(x) = ∥h(x)∥2+[x− xi]
′Iκ[x− xi]. (7.9)

where Iκ = [[κ1, 0, 0]
′, [0, κ2, 0]

′, [0, 0, κ3]
′], κ1, κ2 and κ3 are the regularization con-

stants, and xi = [ϑ̂i, L̂di, L̂qi]
′, is the initial value or the solutions from (k − 1)th

sample. In (7.9), h(x) is given by (7.1) where iδγ is from current sensor measurement,

vδγ is the reference value, i̇δγ = (iδγk − iδγk−1)/Ts, where k is sampling index and Ts

is the sampling interval, R and ψm are the nominal values, ω̂ is from PLL output,

110



Ph.D. Thesis - Shamsuddeen Nalakath McMaster - Electrical Engineering

−1 −0.7 −0.4 −0.1 0.2 0.5 0.8 1
−200

−150

−100

−50

0

50

100

150

iv

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
225

275

325

375

425

475

525

vii

i,ii

iii,iv

v,vi

viii

i

ii

iii

−0.1 −0.06 −0.02 0.02 0.06 0.1
0

40

80

120

160

200
iii

iv

vii,viii

−1 −0.7 −0.4 −0.1 0.2 0.5 0.8 1
0

100

200

300

400

500

600

(a)

(b)

(c)

(d)

iii

iv

i

ii

Figure 7.3: The region D (i, ii, iii, iv, v, vi, vii, and viii for ∓0.25L̄d, ∓ 0.25L̄q, ∓
0.5R̄, and ∓ 0.25ψ̄ respectively), and the trajectories of x̄o moving into xo: at rated
speed, iδγ = [−10A, 10A]′, and i̇δγ = [104A/s, 104A/s]′ (a) for x = [ϑ̂, ω̂]′ and (c) for

x = ϑ̂ , and at zero speed, iδγ = [−10A, 10A]′ and i̇δγ = [104A/s, 104A/s]′ (b) for

x = [ϑ̂, ω̂]′ and (d) for x = ϑ̂ (x̄o on RHS and LHS of ϑ̂ = 0 axis corresponds to
decrement and increment in parameter variations respectively).

and ϑ̂, L̂d, L̂q are the estimation.

The regularization terms are added to reduce the ripples in the estimation due to

noise and delays in the current measurement, and also to stabilize the cost function

from near singularity. Without regularization terms especially for L̂d and L̂q, the

Hessian of ∥h(x)∥2 becomes close to singular as the second order derivatives with

respect to Ld and Lq are 103 times more than that of ϑ̂. Moreover, the cost function

also becomes singular due to nonobservability for a short time period at the transient

operation as mentioned in section 4.5. The large values of κ2 and κ3 can result in
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wrong ϑ̂ as it decouples with L̂d and L̂q estimation, and therefore their values are

tuned between stable and robust position estimation.

The cost function f at rated speed, iδγ = [−10A, 10A]′ and i̇δγ = [104A/s, 104A/s]′,

and at zero speed, iδγ = [−10A, 10A]′ and i̇δγ = [104A/s, 104A/s]′ are shown in Fig. 7.4

(a)-(c) and (b)-(d) respectively. In (a) and (b), x = ϑ̂ is varied by keeping L̂d and L̂q

as constants (nominal values), and in (c) and (d), x = [L̂d, L̂q]
′ is varied by keeping

the actual value of ϑ̂ (0 rad). It is shown that value of the cost is zero at the actual

value xo (optimal solution). In (b), there are two minimums as compared to (a) as

the effect of rotor saliency dominates at zero (and at low) speed.
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Figure 7.4: The cost function at rated speed, iδγ = [−10A, 10A]′, and i̇δγ =

[104A/s, 104A/s]′ (a) with respect to ϑ̂ keeping L̂d = L̄d and L̂q = L̄q, and (c) with re-

spect to L̂d and L̂q keeping ϑ̂ = 0 rad, and similarly at zero speed, iδγ = [−10A, 10A]′

and i̇δγ = [104A/s, 104A/s]′ in (b) and (d) respectively.
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There exists a global minimum if the cost function is convex and the solution

converges to this minimum as long as the convergence trajectory is confined within

the convex region (Epelman, 2007). Therefore, analyzing the convex region is the

fundamental part of the convergence analysis. One of the approaches to find the

convex region of the cost function is with the help of the leading principal minors of

its Hessian matrix (Erikson, 2010). The Hessian of the cost function (7.9) is

H =2


h′hϑ̂ϑ̂+∥hϑ̂∥2+κ1, h′hϑ̂L̂d+h

′
ϑ̂
hL̂d , h

′hϑ̂L̂q+h
′
ϑ̂
hL̂q

h′hϑ̂L̂d+h
′
ϑ̂
hL̂d , ∥hL̂d∥

2+κ2, h′
L̂d
h′
L̂q

h′hϑ̂L̂q+h
′
ϑ̂
hL̂q , ,h′

L̂d
h′
L̂q
, ∥hL̂q∥

2+κ3

 (7.10)

where single and double subscripts of h indicates the first and second order derivatives

respectively and their expressions are

hϑ̂ = 2L∆T(P̃i̇δγ +TP̃ω̂iδγ) + ψmω̂Tq̃

hϑ̂ϑ̂ = 2Thϑ̂

hL̂d = 1/2((I+ P̃)i̇δγ +T(I+ P̃)ω̂iδγ)

hL̂q = 1/2((I− P̃)i̇δγ +T(I− P̃)ω̂iδγ)

hϑ̂L̂d = TP̃i̇δγ +TTP̃ω̂iδγ

hϑ̂L̂q = −TP̃i̇δγ −TTP̃ω̂iδγ

and the Jacobian is

J = 2h′[hϑ̂,hL̂d ,hL̂q ] + 2[x− xi]
′Iκ (7.11)
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The Hessian (7.10) has three leading principle minors

m = [H(1, 1), |H([1, 2], [1, 2])|, |H|]′ (7.12)

and the conditions for the convexity are (Erikson, 2010)

m > [0, 0, 0]′ (7.13)

It is challenging to derive analytical expressions for these conditions. Therefore, the

convex boundaries are found by solving the function ∥m∥2= 0 with the help of Mat-

lab’s numerical solver ‘fsolve’. The results for the rated speed, iδγ = [−10A, 10A]′

and i̇δγ = [104A/s, 104A/s]′, and for zero speed, iδγ = [−10A, 10A]′ and i̇δγ =

[104A/s, 104A/s]′ are shown in Fig. ?? (a) and (b) respectively. The region satis-

fying m > [0, 0, 0]′ within the boundary is essentially the convex region.
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Figure 7.5: The convex region within the boundaries of ∥m∥2= 0 for (a) the rated
speed, iδγ = [−10A, 10A]′ and i̇δγ = [104A/s, 104A/s]′, and (b) zero speed, iδγ =

[−10A, 10A]′ and i̇δγ = [104A/s, 104A/s]′.

This thesis employs Newton minimization along with golden-section line search
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to optimize the cost function (7.9) with respect to x = [ϑ̂, L̂d, L̂q]
′. The details of the

Newton method is provided in section 6.2. The trajectories of x = [ϑ̂, L̂d, L̂q]
′ and ∥J∥

with respect to Newton iterations for the rated speed, iδγ = [−10A, 10A]′ and i̇δγ =

[104A/s, 104A/s]′, and for zero speed, iδγ = [−10A, 10A]′ and i̇δγ = [104A/s, 104A/s]′

are shown in Fig. 7.6 (a)-(b) and (c)-(d) respectively. The intermediate iterations by

line search is omitted from showing in the figure. The iterations converge within 6

iterations for both the cases.
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Figure 7.6: Nonlinear optimization trajectories of x = [ϑ̂, L̂d, L̂q]
′ and error ∥J∥

for (a)-(b) the rated speed, iδγ = [−10A, 10A]′ and i̇δγ = [104A/s, 104A/s]′, and for

(c)-(d) zero speed, iδγ = [−10A, 10A]′ and i̇δγ = [104A/s, 104A/s]′ (The actual value
xo = [π/6 rad, 11 mH, 14.3 mH]′).
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7.5 Experimental Validation

The proposed robust position estimation technique was experimentally validated for

the reference IPMSM (see Table I for the details). The experiments were conducted in

the motor dyno (see Appendix B for details). The dyno consists of an induction motor

(IM) with the Yaskawa drive. FCSMPC and estimation algorithms for the reference

IPMSM are implemented in MicroAutobox II. The controllers are configured to run

the IM in speed control and the IPMSM in current control. The sampling frequency

is kept at 10 kHz.

7.5.1 Speed Transient Performance

The speed reversal and speed sweep tests are carried out to validate the speed

transient performance of the robust sensorless FCSMPC with parameter estimation

(x = [ϑ̂, L̂d, L̂q]
′). The similar tests are also conducted for sensorless FCSMPC with-

out parameter estimation (x = ϑ̂) to compare the performance. The settings and

control parameters are kept same for both sensorless scheme implementations.

Fig. 7.7 (a)-(e) and Fig. 7.8 (a)-(d) show the experimental results of the speed

reversal tests at 100 rpm and at half the rated torque for the cases of x = [ϑ̂, L̂d, L̂q]
′

and x = ϑ̂ respectively. The steady state position error for the former case is improved

substantially and it is close to zero whereas for the latter case it is close to 0.125 rad.

For the former case, as the inductances (L̂d and L̂q) are estimated together with ϑ̂,

the position estimation becomes independent of the variations in Ld and Lq. The

nominal inductances are used for the latter case and therefore causes significant error

in the position estimation. Similarly, for the speed reversal test at 100 rpm and at

the full rated torque, the position estimation for the case of x = [ϑ̂, L̂d, L̂q]
′ is much
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lower (0.04 rad) than the case of x = ϑ̂ (0.225 rad) as shown in Fig. 7.7 (f)-(j) and

Fig. 7.8 (e)-(h) respectively. The transient position error at the speed reversal is also

improved for the case of x = [ϑ̂, L̂d, L̂q]
′ (Fig. 7.7 (a)-(j)) as the correct information

of the inductances is available in optimization. Moreover, the estimated values of the

inductances are close to the offline measurement given in Appendix B.

The results of the experimental speed sweep tests from standstill to half the rated

speed (350 rpm) and back within 150 ms at 25% rated torque for the case of x =

[ϑ̂, L̂d, L̂q]
′ and x = ϑ̂ are shown in Fig. 7.9 (a)-(f) and Fig. 7.10 (a)-(d) respectively.

The speed sweep test at higher loads is unable to conduct in the experimental setup

as the dyno motor current reaches its limit. The estimated inductances are close to

the nominal values as there is no core saturation at this torque. There is no significant

difference in position error between the case of x = [ϑ̂, L̂d, L̂q]
′ and x = ϑ̂ as the values

of the inductances are not varied at this test. The maximum transient state position

error is within +0.3 rad and −0.35 rad for both the cases.

The proposed robust sensorless scheme is able to estimate the position at stand-

still (as shown in Fig. 7.9) provided there is enough persistent excitation from the

switching ripples. The persistent excitation stops for FCSMPC at no load stand-

still as it applies null vector however a small negative δ axis current would overcome

this limitation as mentioned in section 4.5. Moreover, the proposed scheme does not

compensate for magnetic polarity and saddle solutions at standstill. However, the

nonlinear optimization based compensation techniques presented in section 6.5 can

be integrated to the proposed technique at the start-up.
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Figure 7.7: Robust sensorless FCSMPC (x = [ϑ̂, L̂d, L̂q]
′) scheme- the experimental

speed reversal test results at 100rpm (a)-(d) at half the rated torque and (e)-(f) at
the rated torque.
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Figure 7.8: Non-robust sensorless FCSMPC (x = ϑ̂) scheme- the experimental speed
reversal test results at 100rpm (a)-(d) at half the rated torque and (e)-(f) at the rated
torque.

7.5.2 Torque Transient Performance

The torque transient performance of the proposed robust sensorless FCSMPC (x =

[ϑ̂, L̂d, L̂q]
′) is experimentally verified by conducting the torque reversal and the torque

step tests. The similar tests are also conducted for the sensorless FCMPC without
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Figure 7.9: Robust sensorless FCSMPC (x = [ϑ̂, L̂d, L̂q]
′) scheme- the experimental

speed sweep test results from 0 rpm to half the rated speed (350rpm) and back at
25% rated torque.

inductance estimation (x = ϑ̂) for the sake of comparison. The results of the torque

reversal tests at the rated load and at 100 rpm is shown in Fig. 7.11 (a)-(e) and

Fig. 7.12 (a)-(d) for the case of x = [ϑ̂, L̂d, L̂q]
′ and x = ϑ̂ respectively. The steady

state position error is substantially improved for the case of x = [ϑ̂, L̂d, L̂q]
′ (within

±0.04 rad) as compared to x = ϑ̂ (0.225 rad). Similar to the steady state case of

the speed transient performance, this improvement is attributed to the estimation

of the inductances. The transient position error is also improved significantly for

the case of x = [ϑ̂, L̂d, L̂q]
′ (by 0.28 rad) as there is always the correct estimation
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Figure 7.10: Non-robust sensorless FCSMPC (x = ϑ̂) scheme- the experimental speed
sweep test results from 0 rpm to half the rated speed (350rpm) and back at 25% rated
torque.

of the inductances. The value of L̂q changes from saturated value (12.8 mH) to the

nominal value (14.3 mH) as iγ moves from −10A to 0 A as shown in Fig. 7.11 (c).

The reduction in L̂d (10.8 mH) as shown in Fig. 7.11 (c) from the nominal value (11

mH) is due to the cross saturation.

The experimental results of torque step tests from no load to the rated torque

for the proposed robust sensorless FCSMPC (x = [ϑ̂, L̂d, L̂q]
′) and for the sensorless

FCMPC without inductance estimation (x = ϑ̂) are shown in Fig. 7.11 (f)-(j) and

Fig. 7.12 (e)-(h) respectively. The estimated value of L̂q changes from the nominal

value (14.3 mH) to the saturated value (12.8 mH) as iγ steps from 0 A to -10 A. Similar

to the torque reversal test, the transient position error is improved substantially for

the case of x = [ϑ̂, L̂d, L̂q]
′ (by 0.25 rad) as there is always correct estimation of the

inductances as compared to x = ϑ̂. The steady state position error is also improved

for x = [ϑ̂, L̂d, L̂q]
′ by 0.175 rad. The additional experimental test results at different
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iδ and iγ to validate the estimation of L̂d and L̂q are are performed, but not included in

this thesis as it focuses on the performance of the sensorless FCSMPC with estimation

of the inductances.

The switching current ripples is slightly increasesd at the time of the torque tran-

sients for the case of FCSMPC with nominal inductances (see Fig. 7.12 (e) and (h))

whereas by providing the estimated inductances this behavior is not observed (see

Fig. 7.11 (e) and (j)). This is due to the fact that the prediction of the voltage vec-

tors is accurate with the estimated inductances and hence no increase in the switching

ripples. There are no other improvements in FCSMPC with estimated inductances

as found from the tests conducted for the reference IPMSM machine.

The summary of the experimental results is provided in Table II. The transient

position error is defined as the difference between the steady state and the maximum

transient errors. The response time is defined as the time from a torque or speed

steps happened to the steady state of the position error.

Table 7.1: Summary of Experimental Results

Operating con-
ditions

Steady state po-
sition error (rad)

Maximum tran-
sient state posi-
tion error (rad)

Response time (s)

Schemes Robust Non-robust Robust Non-robust Robust Non-robust

Speed reversal1 0 0.125 0.05 0.1 0.03 0.08

Speed reversal2 0.04 0.225 0.05 0.215 0.03 0.1

Speed sweep3 0 0.01 0.31 0.3 0.26 0.26

Torque reversal4 0.04 0.225 0.05 0.075 0.15 0.225

Torque step5 0.04 0.225 0.04 0.225 0.06 0.14

1: 100 rpm and 50% rated load, 2: 100 rpm and 100% rated load, 3: 0 rpm to 350 rpm at 25% rated load,

4: 100 rpm with rated load, and 5: 0 Nm to 100% rated load at 100rpm.
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Figure 7.11: Robust sensorless FCSMPC (x = [ϑ̂, L̂d, L̂q]
′) scheme- the experimental

torque transient tests at 100 rpm (a)-(e) torque reversal at the rated load, and (f)-(j)
torque step from no load to the rated load.
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Figure 7.12: Non-robust sensorless FCSMPC (x = ϑ̂) scheme- the experimental
torque transient tests at 100 rpm (a)-(e) torque reversal at the rated load, and (f)-(j)
torque step from no load to the rated load.

7.6 Summary

This chapter presents simulataneous estimation of position and parameters based

on nonlinear optimization to realize robust sensorless FCSMPC for IPMSM. The
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proposed sensorless FCSMPC scheme is capable of estimating the position and pa-

rameters from standstill to the rated speed without any changeover or additional

signal injection. The detailed robustness analysis carried out in this chapter shows

that d and q axis inductances are the major influencing parameters on the accuracy

of the position estimation. The experimental results of different speed and torque

transients tests verify that the co-estimation of d and q inductances with position im-

proves both steady and transient states performances. For an instance, the position

error is reduced to 0.04 rad from 0.225 rad at both steady and transient states, and

response time is improved by 57%, for a torque step from no load to the rated load

with co-estimation of parameters.
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Chapter 8

Conclusions and Future Work

This thesis presents the significance of persistent voltage vector excitations towards

the simultaneous estimation of machine parameters, position and speed for IPSMS

drives, and also shows that nonlinear optimization based technique is an ideal candi-

date for robust sensorless FCSMPC.

Not all the combinations of the machine parameters, position and speed are ob-

servable at steady state without persistent excitation in the system. This thesis

identifies all the non-observable combinations and determines the persistent excita-

tion requirements to meet the observability. The online estimations of the parameters

are realized with the help of recursive least square adaptation algorithm and exper-

imentally shows that the voltage vector injections by FCSMPC establish persistent

excitation and overcome the observability issues at steady state. Moreover, the wrong

convergence in the estimation of the coupled parameters is analyzed and a decoupling

technique is proposed .

The standard position estimation techniques cannot be applied for FCSMPC as it

applies finite voltage vectors without a modulator and generates arbitrary switching
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ripples with widely varying frequency. This thesis proposes a nonlinear optimization

based scheme for sensorless FCSMPC valid at entire operating range including no-

load standstill without any additional signal injection and switchover. This thesis also

proposes a compensator to avoid wrong convergences to the saddle and symmetrical

(π ambiguity) solutions. The experimental results from the speed and torque tran-

sient tests are promising and those are in par with the results from the tests conducted

for the vector control with the same sensorless scheme. There is an improvement in

steady state position error (by 0.045 rad) at standstill as compared to the vector con-

trol attributed to the strong switching ripples associated with FCSMPC. However,

the performance of the sensorless FCSMPC deteriorates at medium speed with load

(0.06 rad rise in position error) as the high switching ripples intensify the effect of in-

ductance variation by saturation. Moreover, the proposed sensorless scheme performs

superior as compared to other model based techniques in literature for FCSMP. The

proposed scheme has very low steady state position oscillations about ±0.025 rad and

the position error is 0.03 rad at no load and 0.225 rad at the full rated load.

A state of the art single observer based on nonlinear optimization for estimating

both position and parameters is proposed in this thesis to realize the robust sensorless

FCSMPC. The detailed robustness analysis shows that d and q axis inductances are

the major influencing parameters on the accuracy of the position estimation. The

experimental results of different speed and torque transients tests verify that the co-

estimation of d and q inductances with position improves both steady and transient

states performances. For an instance, the position error is reduced to 0.04 rad from

0.225 rad at both steady and transient states, and response time is improved by 57%,

for a torque step from no load to the rated load with the co-estimation of parameters.

127



Ph.D. Thesis - Shamsuddeen Nalakath McMaster - Electrical Engineering

8.1 Future Work

This thesis investigates and experimentally validates the importance of voltage vector

injections by FCSMPC to establish PE to simultaneously observe both the position

and parameters. The voltage vectors by FCSMPC should produce nonzero first and

second order derivatives of the currents in order be a PE input. The strong switching

ripples produced by voltage vector injections are able to meet these requirements.

However, the switching ripple is not a desirable performance for a motor drive, and

there are ongoing research on FCSMPC focused on its reduction. The work conducted

in this thesis should be extended to investigate the simultaneous observability at dif-

ferent levels of switching ripples. Moreover, it should be also interesting to investigate

the performance of other signal injections e.g. sinusoidal and square wave related to

conventional control schemes like vector control.

The experimental validations are conducted in this thesis to show that all the

machine parameter combinations which are not observable at steady state without

PE become observable with voltage vector injections by FCSMPC. However, all the

non-observable combinations with position and parameters are not validated in this

thesis as it is challenging to implement higher order observers in real time. Therefore,

the investigations for different observers which are light in computation and for high

performance dedicated real time hardware platforms would be the next logical step

in this research. Moreover, the proposed observers in this thesis are implemented

in dSPACE MicroAutobox II DS1401/1513 which comes with microprocessor IBM

PPC 750GL and runs at 900 MHz clock cycle. However, in practical perspective, the

observers should be implemented and tested in microcontrollers which are generally

run below 200 MHz clock cycles.
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In the robust sensorless position estimation scheme proposed in this thesis, the

apparent self inductances which implicitly account for the saturation and cross-

saturation effects are estimated simultaneously with the position. Although, the

experimental results for the reference IPMSM show that position estimation is ac-

curate with this treatment, it has been reported in the literature that the explicit

treatment of the incremental self and mutual inductances can further improve the

estimation accuracy. Therefore, it is beneficial to investigate the effects of mutual

inductance on the position estimation with the proposed estimation technique for

other IPMSMs. The permanent magnet flux linkage and the winding resistance are

not the major influencing parameters on the position estimation for reference IPMSM

however it should be verified for other IPMSMs.

The inverter to drive the reference IPSMS used in this thesis employs silicon

carbide power MOSFETs from CREE C2M0025120D (800V, 30A) which has turn-

on resistance about eight times (25 mΩ) lesser than the similar rated silicon based

MOSFETs. Therefore, the turn-on resistance does not play a significant role in the

estimation of the parameters and position and hence not considered in this thesis. It

should be also noted the phase resistance of the reference IPMSM is 0.4 Ω which is

much higher than the device turn-on resistance. However, the impact of turn-on resis-

tance should be investigated if the standard switching devices are used. The effects of

other inverter nonlinearities like dead time, parasitic capacitance and unsymmetrical

turn-on/off delays should be also explored.

The experimental results prove that the proposed robust position estimation tech-

nique is a promising scheme for sensorless IPMSM drives with FCSMPC. Therefore,

it is worthwhile to apply it for other control techniques and machine topologies.
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Appendix A

Clarke and Park Transformation

The transformation from one reference frame to other is performed to simplify the

modeling, analysis, and control of electric machinery and systems. The popular trans-

formations are the Clarke or αβ and the Park or dq.

A.1 Full Tranformation

In Clark, the variables corresponding to three stationary axes (abc) sperated by 2π/3

rad are transformed into two stationary quadrature axes (αβ) with the help of ge-

ometrical relationships between those axes. A general three phase variable vector

xabc ∈ R3 is transformed from abc to αβ to obtain xαβ ∈ R3 is

xαβ = Tαβxabc (A.1)
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where Tαβ is the transformation matrix

Tαβ =
2

3


1 −1

2
−1

2

0
√
3
2

−
√
3
2

1
2

1
2

1
2

 (A.2)

The variable vector xαβ is transformed into the reference frame dq to yield xdq ∈ R3

which rotates with a speed ω and displaced from αβ with corresponding rotational

angle θ as

xdq = Tdqxαβ (A.3)

where Tdq is the corresponding transformation matrix

Tdq =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 (A.4)

Both Tαβ and Tdq are invertible and corresponding to power-variant approach.

A.2 Partial Transformation

The zero sequences components do not exist for a balanced three phase systems and

for the system with isolated neutral point. Therefore, the partial transformations

of (A.1) and A.3) are often preferred for modeling and control. The corresponding
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transformation matrices are

Tαβ =
2

3

 1 −1
2

−1
2

0
√
3
2

−
√
3
2

 (A.5)

and

Tdq =

 cos θ sin θ 0

− sin θ cos θ 0

 (A.6)

A.3 Transforming Derivatives

The transformation matrix Tαβ is a constant and hence transformation of ẋabc into

αβ is found as

ẋαβ = Tαβẋabc (A.7)

As θ is continuously varying with respect time, the transformation of ẋαβ into dq

is found as

ẋdq = Tdqẋαβ +TrTdqxαβ (A.8)

where Ṫdq = TrTdq, and Tr is a rotational matrix

Tr =


0 −1 0

1 0 0

0 0 0

 , and Tr =

 0 −1

1 0

 (A.9)

for partial tranformation.
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Appendix B

Experimental Setup

The photograph of the experimental setup is depicted in Fig. B.1. It consists of

a 5 kW induction motor with the Yaskawa A-1000 drive as the dyno, and the ref-

erence IPMSM driven by silicon carbide inverter with dSPACE MicroAutobox II

DS1401/1513. The motor control and estimation algorithms for the reference IPMSM

are implemented in MicroAutobox II . The silicon carbide power MOSFETs are from

CREE C2M0025120D (800V, 30A). The details of the reference machine is provided

in Table B.1. The controllers are configured to run the IM in speed control and

the IPMSM in current control and the sampling and switching frequencies are kept

at 10kHz for all the experiments. The inductance profile of the reference IPMSM

machine measured offline is provided in Fig. B.2. The inductance is measured by

conducting tests at steady state with a speed close to the rated speed and by varying

id and iq.
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Figure B.1: Motor dyno setup.

Table B.1: The Details of the Reference IPMSM
Details Values

Number of poles 10

Rated current 9.4 A

Rated torque 29.7 Nm

Rated speed 700 rpm

Nominal d inductance 11 mH

Nominal q inductance 14.3 mH

Nominal PM flux linkage 333.3 mWb

Nominal stator resistance 400 mΩ

DC link voltage 300 V
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Figure B.2: The measured apparent inductances (a) for d axis, and (b) for q axis.
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