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Abstract

This thesis presents a simulation model for a Control Area Network (CAN) software

stack, the Dual FIFO CAN (DFC) stack, and a method for identifying and incorpo-

rating the details of the host environment (hardware setup, operating system, etc.)

into the implementation of the simulation model in order to achieve a high level of

fidelity. The method enable the simulation model to produce more realistic simula-

tion results that are close to real-life experiments of the target system compared to

existing commercial and academic simulation tools, which mostly ignore the system

details

The simulation model is implemented based on the specification documents of

the DFC stack as well as knowledge gained from real-life experiments about the DFC

stack and its host environment, a dual-core Electric Control Unit (ECU) hardware test

bench that runs a real-time operating system (RTOS). Like the actual DFC stack,

the simulation model offers features such as dual non-preemptive FIFO transmit

queues and TX buffers, and reserved slots in the queues for higher-priority messages.

By using the method introduced in this research, the simulation model also offers

options, once enabled and configured with proper parameters, for simulating a host

environment that has effects on the behaviors of the modeled CAN stack. And these

features are not fully available in existing commercial and academic simulation tools.
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The model provides internal calibration values of the DFC stack as configurable

parameters to the user, making it easy to customize the simulation. Configurable cali-

bration values includes the total number of slots in the transmit FIFO queues, number

of reserved slots in the queues, transmit-rate thresholds that decide to which trans-

mit queue a message is routed and whether a message is eligible to enter the reserved

slots of the queues, and together they determine the queuing behaviors of the DFC

stack. The options for simulating a host environment (an ECU on a CAN network

in a modern vehicle, for instance) is capable of recreating the timing effects (delays,

jitters or other effects due to the processing load, physical limitation and internal

implementation) of the target host environment on the simulation results. Both de-

terministic (constant values, etc.) and/or statistical (probability distributions, etc.)

models can be used to configure each single timing effect from the simulated host

environment.

The simulation model is also automated to transmit a set of customized transmit

message (configurable message ID, DLC, period and internal transmission priority)

and process simulation results according to the purpose of the simulation (statistical

analysis, plots of data, etc). These features make it possible for the simulation model

to be used not only to simulate various customized simulation scenarios, but also for

different purposes in various stages of the development process, for instance, a pre-

experiment simulation run before a test bench experiment to test the correctness of

the calibrations and predict the possible outcomes of the experiment, or, simulations

for confirmation purposes in order validate the test bench data after the test exper-

iment. The model is compatible with typical modeling, simulation and development

environments as it is implemented in MATLAB SimEvents environment, which works
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with third-party CAN development tools such as Vector CANoe. It is also designed

to work with the high-fidelity model of the Vector CAN protocol stack from Whinton

(2016).
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Chapter 1

Introduction

The Controller Area Network (CAN) protocol was introduced over two decades ago

and has gained world-wide popularity (Di Natale et al. (2012)). It has many desirable

features such as low configuration and deployment costs, easy integration and simul-

taneous multi-ECU development, and boundable latency and utilization. The limited

data rate (nominal rate of 500kb/s) has become its main drawback due to increas-

ing bus load in modern vehicles, due to the addition of features such as user-facing

features (such as the in-vehicle infotainment system and Advanced Driver-Assistance

Systems), and diagnostic and security bus traffic. As a result, the overall bus utiliza-

tion is reaching its limit and the transmission of messages has gradually become the

bottleneck of using the CAN network. Careful design is essential to guarantee timely

and reliable delivery of messages.
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1.1 The problem

In industrial practice, Hardware test bench systems, for instance a hardware test

bench available at a industrial partner consisting of a dual-core micro-controller unit

(MCU) in an Electronic Control Unit (ECU) and Lauterbach hardware-in-the-loop

(HIL) debugger, are built to thoroughly test the CAN-related functionalities of soft-

ware such as the Dual FIFO CAN (DFC) stack. They are known for producing

experiment results that are identical or at least considerably close to the outcome of

the actual system. However, hardware test benches are typically difficult to set up,

require a large amount of capital to build, and become a bottleneck for engineers late

in the development life cycle since only one test scenario can be run at a time. Once

built, they are incompatible with other micro-controller platforms and they tend to

offer limited configuration options for only a fixed number of experimental scenarios.

Each scenario takes considerable time to setup and run on the test bench.

There are also existing software simulation tools that are available for the CAN

protocol. However, their implementations are highly abstracted and are based on in-

valid assumptions related to the details of the target system (Whinton (2016)), such

as the number of transmit buffers (TX buffers) of a node on the CAN network, or

that the host environment has no interference on the target CAN stack in real life,

which leads to discrepancies in behaviors between the simulation and real life. On the

other hand, these generally do not comprehensively possess all desirable features for

simulations of modern CAN systems, more specifically, features such as flexible mes-

sage queuing policy, configurable data logging options, support for dual-core control

unit and so on. Analytical approaches can be useful, but existing analysis contains

similar problems as the software simulation tools: unrealistic results compared to

2
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actual system output due to a lack of system details. And if analyzing a relatively

more complex CAN system, such as one with multiple transmitting nodes and large

quantity of transmit messages, a dedicated tool needs to be development to handle

the heavy load of computation.

1.2 Purpose

The purpose of this research is to develop a simulation model of the DFC stack,

which overcomes the drawbacks of the hardware test bench systems while being able to

produce simulation results identical or acceptably close the experiments on a hardware

test bench and thus can be used to effectively analyze the behaviors of the the DFC

stack.

The simulation model should offer the desirable features for simulations of modern

CAN systems and these features should be implemented as configurable features that

can be selectively enabled and configured with specific parameters to matched the

target system. During simulations, the simulation model should be able to capture

a large variety of internal data of the DFC stack and present the captured data in

various forms, such as summary statistics or graphical plots. The simulation model

should also be capable of simulating the loading effects of the host environment, which

helps to provide more realistic simulation results that are identical or at least close

to running the experiments of the same configurations on actual hardware. These

simulation results can be further validated in terms of how well the host environment

is modeled, so that, once validated, the simulation model can replace the hardware

test bench as the testing environment, and thus reduce the need to invest in hardware

test benches, resulting in savings in capital costs. Having immediate desktop access

3
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to the simulation model also saves engineers time, reducing their requirements to

book test bench time and go to the facility.

The simulation model is developed in the MathWorks MATLAB environment,

which is a well-established industrial-standard platform that many other commercial

simulation tools are built upon, such as Vector CANoe or dSpace tools. As a re-

sult, this would enable system-level simulations where the simulated CAN networks

contain nodes that are implemented on different CAN platforms, such as adding the

simulation model to an existing CAN network to analyze the impact on the CAN bus

utilization and so on.

The simulation model can be useful not only when used alone, but also when

used alongside with a test bench. As the number of test benches is often limited and

configuration of a test bench is often difficult (and sometimes will even require the

help of a trained personnel), the time an engineer can spend with the test bench can

be very limited. If having the simulation model, the engineers can first conduct pre-

experiment simulations to closely predict the outcomes of the test bench experiments

in order to increase the efficiency of work while working on the test bench.

The implementation of the simulation model will focus on modeling the message

transmission functionalities, more specifically the transmission of the periodic mes-

sages, due the limited time duration of this research and the fact that the point of

interest in modern CAN simulations is the analysis of message throughput of the

target CAN system in a potentially congested CAN network. Message reception

of modern CAN nodes is not a major concern due to the processing capabilities of

modern processing units (MCU, etc).

4



M.A.Sc. Thesis - Zhizhao Qian McMaster - Software Engineering

1.3 Contributions

First the thesis provides a high fidelity simulation model of a CAN stack that is widely

used by an industrial partner. The simulation model is implemented in the industry-

standard MATLAB environment, and it is easy to use and configure to model the

hardware and software behavior of an ECU. Second the thesis provides a method to

analyze patterns of behaviors in experiment data of the actual system, and to incorpo-

rate the models of the behaviors into the implementation of the simulation model to

match the actual system, which consequently improves the fidelity of the simulations

compared to the actual system. The model and method has been validated against

a test bench at an industrial partner of this research. The simulation model is being

adopted by production engineers at the industrial partner.

1.4 Organization of the Document

The remainder of the document is organized as follows: Chapter 2 covers the necessary

background on the Controller Area Network protocol, related work, existing tools and

the MATLAB/SimEvents environment, focusing on SimEvents features that will be

used in the simulation. Chapter 3 describes the Dual FIFO CAN stack that will

be simulated and Chapter 4 details the hardware test bench (host environment),

experimental data and impact that the host environment introduces to the system

output. The simulation model is covered by Chapter 5 and the simulation results

and validation of the model are described in Chapter 6. Chapter 7 summarizes the

results of the thesis and describes future work.
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Chapter 2

Preliminaries

2.1 Controller Area Network (CAN)

The CAN 2.0 standard was introduced in the early 1990s by BOSCH GmbH. It defines

the specification of the physical and data link layers (within the OSI model) of the

CAN protocol.

2.1.1 Physical Components

The physical components for the CAN protocol contains the CAN bus, the CAN

transceiver and the CAN controller.
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Figure 2.1: Typical Hardware Components of a CAN Network.

The CAN bus is a two-wire serial bus that terminates with a 120 ohm resistor at

each end (2 wires labeled “CAN high” and “CAN low”). A “dominant” bit, logical

0, transmitted on the bus is represented by a voltage differential across the 2 wires

of the CAN bus, while a “recessive” bit, logical 1, has no voltage differential. The

CAN protocol allows multi-master serial communication, and each node (electronic

control units, or ECUs, etc.) on the same network is capable of both transmission

and reception. Two or more nodes are required on the bus for communication.

The CAN transceivers translate the data stream between the signal levels that

are used by the CAN bus and the CAN controllers: converting from the CAN bus

signal levels to CAN controller signal levels when receiving, and vise-versa when

transmitting. The CAN controllers store received serial bits of CAN messages so that

the processor (i.e. MCU of the receiving ECU) can fetch the received messages, and
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send bit streams of out-going messages to the CAN transceiver when the processor

commands to transmit.

Typically, ECUs are connected to the CAN bus through a combination of a CAN

controller and a CAN transceiver (referred to as “CAN hardware”). The CAN hard-

ware translates transmit messages from digital bit streams to CAN waveforms when

transmitting, and captures waveforms of received messages from the bus and trans-

lates them back into digital bit streams. The transmit messages need to be loaded into

transmit buffers (or “TX buffer”) in the CAN controller so that the CAN controller

can start the transmitting process as data frames on the bus. Received messages are

either stored in receive buffers (“RX buffer”) or discarded based on RX buffer policies

(i.e. message ID filtering, message-ID-to-RX-buffer mapping, etc.).

2.1.2 Data Format

The format of CAN message frames are defined in the data link layer. There are

several different types of message frames that can be transmitted on the CAN network.

The Data frames carry data from the transmitting node while remote frames request

data to be sent by a certain node. The Error frames and the Overload frames can be

sent by the nodes that detect error or overload conditions. For the purpose of this

research, only data frames are considered.

Data frames contain the following fields:

• Start of Frame (SOF)

• Arbitration (message ID)

• Control (DLC)
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• Data

• Cyclic Redundancy Check (CRC)

• Acknowledgment (ACK)

• End of Frame (EOF)

Data frames can be in either standard frame format or extended frame format. In

standard frame format, only 11 bits of message ID is stored in the arbitration field,

while the extended frame format allows a message ID of 29 bits in the arbitration

field. The data field can be from 1 to 8 bytes depending on the data length specified

in the control (DLC) field. The SOF field is a dominant bit and it donates the start

of frame transmission. The CRC field is a 15-bit cyclic redundancy check followed by

1 recessive bit of delimiter. The ACK field consists of a 1-bit acknowledgment signal,

which is transmitted recessive by the transmitting node but is written dominant by

any receiver node that has successfully received the message, followed by a 1 recessive

bit delimiter. The EOF field is 7 recessive bits. The SOF, control, CRC, ACK, and

EOF fields have the same length for all data frames.

2.1.3 Arbitration

The CAN protocol uses a lossless bit-wise arbitration scheme for contention resolution

in its data transmission, which requires all the nodes on the same network to be

synchronized to sample every bit on the bus at the same time. If a node transmits

a dominant bit while another node transmits a recessive bit at the same time, then

there is a collision on the bus and the dominant bit wins the arbitration. The result

is a dominant bit, or logical 0, shown on the bus. When multiple nodes attempt to
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transmit on the bus at the same time, if a node reads a dominant bit when it transmits

a recessive bit, the node will notice the collision and that it has lost the arbitration.

The node will then stop the transmission of its message and attempt to re-transmit

that message at the start of the next frame on the bus. As a result, the message

that has won the arbitration will go through on the bus without any delay. This

scheme allows the assignment of priorities to messages on a CAN network through

the assignment of their message IDs. An example is shown in Figure 2.2, which shows

the arbitration of the 8 bits of the message IDs between messages transmitted by 3

ECUs as well as the resultant data stream on the bus.

BIT
1 2 3 4 5 6 7 8

ECU 1 0 0 0 1 1 0 1 1
ECU 2 0 0 1 - - - - -
ECU 3 0 0 0 1 1 1 - -

BUS 0 0 0 1 1 0 1 1

Figure 2.2: An Example of Arbitration between Three Messages.

The bit streams of the message IDs in binary are shown from the most significant

digit to the least significant digit from the left to the right, which is also the order of

which the message IDs are transmitted in the data frames. ECU 2 loses arbitration

at Bit 3 and stops transmitting as the ID of its message has a recessive bit while the

other two messages have a dominant bit. ECU 3 later loses arbitration to ECU 1 at

Bit 6 and stop transmitting. The message transmitted by ECU 1 wins the arbitration

as its message ID has the smallest numerical value. In other words, the smaller the

numerical value of a message ID is, the higher the transmit priority the message will

have.
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Each message ID should be unique in each CAN network, otherwise if two nodes

transmit the same message at the same time, they would both keep transmitting after

the arbitration field (ID) and cause an error.

2.1.4 Bit Stuffing

CAN uses non-return to zero (NRZ) coding, which is represented by the amount of

potential difference between the CAN high and CAN low wires. As CAN requires all

nodes on the network to synchronize to every single bit on the bus, it is necessary

to introduce a scheme to provide enough transitions to keep the nodes synchronized.

Thus during transmission, a single bit of opposite polarity is inserted after 5 consec-

utive bits of the same polarity. This is called bit stuffing. The stuffed data frames

are de-stuffed by receiving nodes. An example is shown in Figure 2.3. In the figure,

(a) is the original bit stream from the transmitting node. During transmission, bit

stream (b) is presented on the bus due to bit stuffing. Bit stream (c) is observed at

receiving nodes after the de-stuffing, which is identical to the original bit stream from

the transmitting node.

Figure 2.3: An Example of Bit Stuffing on CAN data stream.
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2.2 Related Work

Hofstee and Goense (1999) presents an early example of CAN simulation, which is

designed for a very specific CAN application for agricultural tractors. The focus of

the simulations is the priorities of the message, which bus certain ECUs are connected

to and the traffic levels of a specific bus. The main goal of the research is to use simu-

lation to validate that the tractor CAN system in compliance with the ISO standard

for CAN. The simulation does not concern itself with the internal implementation of

the ECUs and how the implementation details would affect the timing performance

of the ECU such as the message transmit rates.

Prodanov et al. (2009) discusses simulation of CAN transceivers at the signal

level. The research focuses on the electrical characteristics of the system in order to

evaluate the corner cases of electromagnetic interferences or signal integrity in CAN

systems, and to examine different types of fault scenarios such as short-circuits. In

contrast, the research of this thesis models communications in the higher layers of

the OSI model, and the focus is the queuing behaviors, correctness of output message

sequences and the transmit rates of messages.

There are several other works on CAN simulation that are more similar to the

research of this thesis in terms of the focus on timing performances and the level of

details for ECUs on a CAN network. Hao et al. (2011) discusses a simulation that

specifies a single non-preemptive TX buffer, however it does not offer any level of

configurability in its model of ECU such as more than one TX buffer or scheduling

behavior. This is very restrictive and is not the case in most ECUs. The simulations

described in Herpel et al. (2009) and Matsumura et al. (2013) offer some network

configuration options to generate system level models for simulation. However, similar
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to Hao et al. (2011), these simulations are also limit to a single non-preemptive TX

buffer in their ECU models, and provide no configurability for TX buffers or other

details of the ECU.

2.3 Existing Tools

There are several tools for CAN simulations. One of the popular simulation tools

currently in use is RTaW-Sim by Real Time at Work. According to its reference

manual, the tool includes a variety of features and functionalities such as a variable

number of TX buffers, configurable TX task periods, software queuing by FIFO or

priority, etc (Matsumura et al. (2013)).

CANoe CANalyzer simulation tool is a popular commercial CAN network design

tool by Vector Informatik GmbH. It offers several configuration options for the im-

plementation details of the ECU by default, and rest of configurable items are mostly

the message database of the CAN network or system description (Vector Informatik

GmbH (2014)). Since only a limited number of Vector and OEM model libraries

for ECUs are included by default, changing the configuration and behaviors of the

ECU model will require a custom-built library, which makes the modification of the

configurations rather cumbersome.

Another simulation tool developed at Nagoya university, Japan, called A Simu-

lation Model of Controller Area Network (CAN) for OMNeT++, offers several but

not all required features for the research of this thesis. The simulation tool features a

partial priority queue, where messages that have already queued to transmit on the

bus are not to be preempted from their queue position, which is different from the

non-preemptive FIFO queues used in this research. Furthermore, the rates of the TX
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tasks are not configurable.

There are existing CAN simulation tools developed in the MathWorks SimEvents

and Simulink platform, which provide an environment for developing discrete event

simulation tools. TrueTime is a tool developed in Simulink using the Control System

Toolbox for simulation of networked and embedded control systems (Cervin et al.

(2010)). Again, it lacks features such as configurable TX task periods and FIFO

transmit queues. MathWorks also provides a demo CAN model, Effects of Com-

munication Delays on an ABS Control System, which is connected to an Anti-lock

Braking System (ABS) controller model (MathWorks (2014)). The demo model does

not concern non-preemptive buffers and FIFO transmit queues, and the arbitration of

messages is dependent on the connected transmit input port of the bus model rather

than the message priority. Consequently, the demo model is only useful as a concept

of how CAN systems may be represented in the SimEvents environment rather than

a CAN simulation model, and is not suitable for the research in this thesis.

The most comprehensive CAN simulation tool seems to be the Vector CAN simu-

lation tool introduced in Whinton (2016), the “High-Fidelity Vector CAN Stack Sim-

ulation Model”, which was developed at McMaster University, Hamilton, Canada.

The tool is implemented in the SimEvents environment (Version 2014), and provides

following features:

• Configurable quantities of transmit (TX) and receive (RX) buffers.

• Message to (TX or RX) buffer mapping.

• Configurable buffer-loading policy (polling versus interrupt).

• Configurable TX Task and buffer loading polling rate.
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• ECU clock drift and initialization time.

• Simulated CAN bus with configurable baud rate, error rate and bit stuffing

options.

• Multiple-ECU CAN network simulation, and/or multiple CAN network connec-

tions for individual ECU.

The Vector CAN simulation tool developed in Whinton (2016) consists of two parts:

a custom SimEvents library and a set of model generation scripts. The SimEvents li-

brary contains two custom subsystem blocks (or, models), the generic ECU block and

the generic CAN bus block. The model generation scripts are written in MATLAB

code (saved in “.m” files) and are used to parse a system description and then as-

semble the system-level model with replicated instances of the ECU and bus blocks.

The system description is a combination of an ARXML file and a custom Excel

spreadsheet, which provides parameters of the target CAN network including the TX

and RX message information and the message ID to (TX and/or RX) buffer map-

ping of each ECU in the simulation, interconnections between the ECUs and CAN

networks, etc., or in other words, parameters for all the configurable features listed

earlier. The parameters extracted from the system description are used to configure

their corresponding ECU and bus blocks when the system-level model is assembled.

In summary, the Vector CAN simulation tool by Whinton (2016) contains all the

features that are offered by other existing simulation tools described above and also

allows easier modification of the configuration of ECUs, CAN bus and CAN network

layout. However, similar to other tools, it utilizes a different queuing mechanism than

the target system of this research.
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Common to all the existing tools introduced above, the reserved slot mechanism in

the FIFO transmit queues of the DFC stack is not addressed in their implementations.

Furthermore, these tools ignore the details of the host environment of the simulated

CAN system and any possible impact that the host environment may have on the

behavior of the CAN system, which, as later discussed in detail in Chapter 4, can

have significant effect on the output of the CAN subsystem in the cases studied for

this research.

2.4 MathWorks Software

2.4.1 MATLAB

MATLAB (MATrix LABoratory), Simulink, and SimEvents are all software tools

designed for technical computation in engineering and the sciences. They are all

part of the MATLAB suite of tools published by MathWorks. MATLAB is built on

a variety of libraries including C, C++, and Java, and provides an interpreter for

its own scripting language (MATLAB functions or script saved in “.m” file format).

Besides allowing users to perform various types of calculations, MATLAB provides

functionalities for generating various types of graphical plots (2D or 3D plots, etc.).

The most distinctive feature of the MATLAB environment is that it uses matrices as

base data types and provides robust matrix manipulations and vectorized operations

with easy graphing and data visualization capabilities.
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2.4.2 Simulink

The Simulink environment is the graphical modeling language designed for ease-of-you

and rapid development of models. Although developing in Simulink is quite differ-

ent from coding in MATLAB, Simulink allows incorporating MATLAB code directly

in its models, and provides an API for model generation, modification and analy-

sis in MATLAB scripts. Fundamental block elements form the base syntax of the

Simulink language, which define the output signal as a function of its input signals

and/or parameters. The fundamental blocks include things like constants, addition

and multiplication operations, integral and derivative operations, and signal gener-

ation. Instances of these blocks may be declared, configured and interconnected in

a model to define new and more complex models such as analogue filters, PID con-

trollers, etc. Other blocks implement control flow behaviors, such as “if” conditions

or signal switches, which allow for mode switching or decision making. Signal scopes

are also provided in the Simulink environment to allow signal levels to be displayed

at real time or to be saved in MATLAB workspace.

2.4.3 SimEvents

SimEvents introduces the concept of discrete event simulation to Simulink. In contrast

to Simulink, where signals are continuous and always have a value, the SimEvents

signals are discrete and do not always have a value. Other than this, signals are the

same and can be passed through between blocks in both environments, except that

when continuous signals need to be sampled at the appropriate event occurrences in

order to be converted to discrete signals, or discrete signals need to hold their most

recent sample values in order to be converted to continuous signals. The SimEvents
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environment also introduces the concept of entities, which are discrete objects that

propagate through the entity ports of SimEvents blocks in a model. They can be

used to model data packages in communication protocols or partial products in an

assembly process. Entities can have attributes attached to them, which are key-value

pairs that can be written or read by certain SimEvents blocks, and can be used to store

values of signals. Since entities are discrete objects, they may experience queuing,

blocking, service times and other sources of time delays that are implemented by

the fundamental blocks in SimEvents. There are also several entity routing and

management blocks available to control the flow of entities such as switching entities

into one of several output paths from a single input paths based on an input signal

or the value of a specific attribute attached to the input entities, etc.

The simulation model discussed in this thesis has been developed in MathWorks

SimEvents environment (Version 2015a) primarily because it is a comprehensive mod-

eling and simulation environment that is well suited for modeling of event-based sys-

tems and communication protocols such as CAN. An example of a simplified CAN

models in the SimEvents is provided by MathWorks. It can be used as a basis for

many behavioral elements required in the higher-fidelity models.

Developing a simulation model in the same platform as the The Vector CAN

simulation tool developed in Whinton (2016) allows for possible future work such as

system-level simulation of a CAN network containing both Vector CAN stack ECUs

and the DFC stack ECUs, which opens up possibilities in analysis of more complicated

CAN networks. For this purpose, the DFC stack simulation model is implemented so

that it can utilize the generic bus block in the Vector CAN simulation tool, and thus

is able to transmit and receiver messages on a network connected to the generic bus
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block.
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Chapter 3

The Dual FIFO CAN Stack

As the behaviors of the DFC stack are determined by both the internal implemen-

tation of the DFC stack and characteristics of the host environment (hardware test

bench with a dual-core ECU and the RTOS, in the case of this thesis), the complete

introduction of the DFC stack will be presented in 2 separate chapters, this chapter

and Chapter 4. This chapter will cover the specifications of the DFC stack, providing

details about the internal implementation, and Section 4 will discuss the host envi-

ronment, experiment data and the impact of host environment on the output of the

DFC stack.

3.1 Overview of Dual FIFO Queue CAN Stack

The DFC stack is part of the RTOS that runs on the dual-core ECU of the hardware

test bench, and it provides the CAN related functionalities to its upper layer appli-

cations in the RTOS. It implements 2 software abstraction layers: the CAN Handler

layer and the CAN Device Driver layer, on top of the CAN hardware layer and the

20



M.A.Sc. Thesis - Zhizhao Qian McMaster - Software Engineering

CAN bus layer (both physical hardware), as demonstrated in Figure 3.1. The DFC

stack can be customized by several configurable calibration values, which determine

the behavior of the DFC stack, such as queuing policy, etc. The user can also ar-

bitrarily define the transmit messages of the DFC stack, including the message IDs,

DLCs, message periods and internal transmission priority. The calibration values and

the transmit messages are defined offline before the DFC stack is initialized and can

not be changed during run-time.

Figure 3.1: Dual FIFO Queue CAN Stack Abstraction Layers
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3.1.1 CAN Handler

The CAN Handler provides an interface for upper layer applications in the RTOS,

which enables the applications to communicate serial data on the CAN network with-

out concerns about the implementation of the serial data network.

The CAN Handler implements three periodic TX tasks, each of which manages

the transmission of a subset of the periodic transmit messages of the DFC stack, as

shown in Figure 3.2. The TX tasks execute once every 6.25ms, 12.5ms and 25ms,

respectively, which are frequently used loop rates of TX tasks for the CAN protocol

in education (Di Natale (2009)), research (Di Natale et al. (2012)) and industrial

practice ( Jiang and Zhang (2016) ). The CAN Handler utilizes the routines provided

by the CAN Device Driver that build and transmit the messages on the CAN network

through the lower layers. More details will be provided in Section3.2.

Figure 3.2: Components in the Layers of Dual FIFO CAN stack.
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3.1.2 CAN Device Driver

The CAN Device Driver connects the CAN Handler and the CAN hardware, providing

an interface that facilitates the exchange of CAN messages between the two layers

while hiding the specifics of the CAN hardware. Based on the actual hardware setup

of the CAN node, it is possible that the CAN Device Driver needs to be connected to

multiple CAN controllers in order to provide sufficient resources to the higher layers.

For each CAN network that the DFC stack is connected to, the CAN Device Driver

implements two non-preemptive FIFO (first-in-first-out) queues (Queue 0 and Queue

1) for the transmit messages. The two FIFO queues are implemented as circular

buffer structures. Queue 0 is intended for transmission of messages with relatively

higher priorities, and the rest of the messages are to be transmitted through Queue

1. A designated TX buffer is assigned to each of the FIFO queues from the CAN

hardware layer by the CAN Device driver (TX buffer 0 for Queue 0 and TX buffer

1 for Queue 1). Messages intended of one of the FIFO queues are transmitted on

the bus only through the designated TX buffer of that queue, and are not allowed

to use the buffer of the other queue. The buffer usage is relatively restricted in the

DFC stack in contrast to other popular platforms, such as the STMicroelectornics’

STM32F4 micro-controller series, which have multiple TX buffers, are capable of

transmitting a message through an arbitrarily selected buffer, and support various

buffer transmit priority assignments when more than 1 TX buffers are loaded with

messages (STMicroelectronics (2017)).
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3.2 Message Transmission

The basic flow of transmission of a message in DFC stack is shown in Figure 3.3. Once

a message becomes pending for transmission during the execution of its TX task,

the TX task will attempt to transmit the message. The eligibility for transmission

of a transmit-pending message is decided through the queuing assessment, which

decides whether the message can be transmitted during the current instance of the

TX task. The queuing assessment determines the eligibility based on the configurable

calibration values, transmit rate of the assessed message and several real-time factors

(queue depth and TX buffer availability of the target FIFO queue). If a message is

eligible for transmission, it can be transmitted in 2 different paths: (i) if the target

FIFO queue is empty and the corresponding TX buffer is available, the message will

bypass the queue and enter the TX buffer directly for transmission on the CAN bus,

and (ii) if the TX buffer is occupied but the message is eligible for entering the target

queue, the message will be placed into the queue and waits for its turn to be loaded

into the TX buffer. After the queuing assessment, a transmission-eligible message is

then built and loaded into the target queue (or TX buffer directly) by the CAN Device

Driver routines, which are invoked by the TX task of that message. For a message

that is not eligible for transmission, it will be assessed again in a later instance of its

TX task. Detailed discussion is provided in the following subsections.
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Figure 3.3: The Basic Flow of a Transmit Message in the DFC Stack.

3.2.1 Message Enqueuing

The CAN Handler implements three periodic TX tasks that have periods of 6.25ms,

12.5ms, and 25ms, respectively. The TX tasks manage the periodic transmit messages

of the DFC stack, which are divided into 3 subsets based on their transmit rates and

are assigned to these TX tasks. Since the loop rates of the slower TX tasks are integer

multiples of the more frequent TX task, there are scenarios where more than one of

them arrive at the same time. In such cases, the order of execution of these TX tasks

is from the most frequent TX task to the least frequent TX task.

The CAN handler keeps a transmit-pending flag for each of the periodic messages,

indicating if the corresponding message is pending for transmission, or in other words,

needs to be assessed for queuing. Messages with transmit rates less than or equal to

6.25ms are managed by the 6.25ms TX task, and for this reason, the 6.25ms TX
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task sets the transmit-pending flag of all its messages in every execution. Similarly,

the 12.5ms TX task manages messages with transmit rates smaller than or equal

to 12.5ms but greater than 6.25ms, and its messages are pending for transmission

in every execution. However for the 25ms TX task, which manages messages with

transmit rates greater than 12.5ms, there may be messages that have transmit rates

greater than 25ms. As a result, there is a timer associated with each of the 25ms

TX task messages to keep track of these slower messages that need to be transmitted

only once every several instances of the 25ms TX task. When the 25ms TX task

executes, it first updates the timers of its messages, then sets the transmit-pending

flag of any message that has an expired timer. Once the a message become pending

for transmission, its transmit-pending flag will stay set until it is either placed into a

FIFO queue or loaded into a TX buffer directly for transmission on the bus.

All periodic message from the 6.25ms TX task are to be transmitted only through

Queue 0, which is intended for messages with faster transmit rates. The 12.5ms TX

task messages can be transmitted through either Queue 0 or Queue 1, depending on

the transmit queue threshold calibration (DFC Queue0 TxThresh). If this calibration

value is set to 12.5ms or greater, then all the 12.5ms TX task messages will be

transmitted through Queue 0, otherwise through Queue 1. As for the messages that

are managed by the 25ms TX task, the target FIFO queue is decided individually for

each message, by comparing the transmit rate of each 25ms TX task message to the

calibration value DFC Queue0 TxThresh. If the transmit rate of a message is smaller

than DFC Queue0 TxThresh, then the message is to be transmitted through Queue

0. Otherwise, the message is to be transmitted through Queue 1.

When the CAN Handler is initialized, the subset of periodic messages for each
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TX task is provided in the form of an array, listing the messages in their internal

transmission priorities. The internal transmission priority determines the order in

which a TX task transmits its messages, in other words, the order for setting the

transmit pending flag (and updating the timer in the 25ms TX task) and for the

queuing assessment during the execution of a TX task. More details of internal

transmission priority is provided in Section 4.1.2.

The FIFO queues managed by the CAN Device Driver are non-preemptive cir-

cular buffer structures. The total number of slots in each queue can be individually

configured by the user, as long as it is above the minimum requirements: minimum

of 10 slots in Queue 0 and minimum of 20 slots in Queue 1. Each slot in a queue is

labeled with a slot number ranging from 1 to the maximum number of slots. Each

FIFO queue is associated with a non-preemptive TX buffer. TX buffer 0 only accepts

messages from Queue 0, and TX buffer 1 only from Queue 1. Once a message is

loaded into a TX buffer, the buffer will start the transmission of the CAN frame on

the bus immediately.

For messages that are loaded into the FIFO queues, they are placed in one of the

two types of slots, the reserved slots and the non-reserved slots. The reserved slot

mechanism is implemented according to the method specified in Kaufer et al. (2015).

The calibration value DFC TxNotReservedQueueX, where X is the queue number,

can be customized by the user to specify the number of non-reserved slots in a queue.

DFC TxNotReservedQueueX has to be less than or equal to the maximum number of

slots of the queue, which means that it is possible for a queue to consist of solely non-

reserved slots if the calibration is equal to the total number of slots. The remaining

slots aside from the non-reserved slots are the reserved slots. During the queuing
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assessment of a message that is not to directly enter a TX buffer, the message is

eligible to enter the target queue if (i) there is at least one available non-reserved slot,

or (ii) in the case where all the non-reserved slots in that queue have been occupied

but at least one reserved slot is available, if the transmit rate of that message is less

than or equal to the transmit rate threshold for reserved slots (configurable calibration

value DFC TxReserveThreshQueueX, where X is the queue number) of the queue. In

any other scenarios, such as a full queue or transmit rate exceeding the threshold,

the message will not be eligible to enter the queue, and will be delayed and assessed

again during the execution of the next instance of its TX task. The reserved-slot

mechanism aims to prevent scenarios where a more important message is pending

for transmission but the queue is filled with less important messages, which is very

likely to delay the transmission of that message to a later instance of its TX task

and possibly causes the message to miss its deadline. By having the reserved-slot

mechanism, the depth of queues is always kept below a certain level to reserve room

for more important messages. Due to the nature of the circular buffer structure, the

reserved slots are not fixed to any particular slots in the queue, as the head and the

tail of occupied slots are constantly moving around the circular buffer.

When a message leaves a queue, the slot released by that message will be counted

as a reserved slot if the number of currently occupied reserved slots is less than the

total number of reserved slots. When all the specified number of reserved slots are

available in a queue, newly released slots will be counted as the non-reserved slots. By

doing this, newly released slots at a busy time of message transmission will always be

first reserved for more frequent messages that are eligible to enter the reserved slots.
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3.2.2 Message Dequeuing

Message dequeuing is performed during the execution of the transmission-complete

interrupt service routine (ISR), which is implemented and executed by the CAN De-

vice Driver. The transmission-complete ISR is responsible for moving messages from

the FIFO queues to the corresponding TX buffers, and is triggered by transmission-

complete interrupts from the TX buffers. Whenever a TX buffer successfully trans-

mits a message on the bus and becomes available, it generates a transmission-complete

interrupt to inform the CAN Device Driver to execute the ISR. The transmission-

complete ISR then checks if there is any message waiting in the corresponding FIFO.

If there are messages still queued for transmission, the transmission-complete ISR

moves a message from the head of the queue to the TX buffer. If the queue is empty,

the transmission-complete ISR exits with no further action.

While the dequeuing of messages is interrupt-based, it is typically initialized by

a message that bypasses the FIFO queue and directly enters the TX buffer, and this

message tends to be the first message of a TX task. When a TX task assesses its first

pending message, its more likely that the target FIFO queue and its corresponding

TX buffer are empty compared for the rest of the messages, and consequently the first

message of a TX task is more likely to directly enter the TX buffer. Once this message

is transmitted on the bus and the TX buffer empties, a series of interrupt-based

dequeuing is started for messages that have been placed into the queue. However, it

is also possible for the first message of a TX task to be loaded into a FIFO queue,

if there are still messages left in the FIFO queue and/or in the TX buffer from a

previous TX task execution.

29



Chapter 4

Hardware Test Bench and

Experiment Data

In order to validate the DFC stack simulation model, real-life data of the DFC stack

has been collected from experiments on the dual-core ECU hardware test bench. This

chapter will discuss the details of the hardware test bench, the experiments with the

DFC stack, and the knowledge about the DFC stack and the host environment (RTOS

and hardware test bench) gained through the observations of the experiment results.

4.1 The Hardware Test Bench

The test bench consists of a CAN network that has a single ECU, which has generic

dual-core MCU connected to a dSPACE hardware-in-the-loop (HIL) simulator. A

Lauterbach hardware debugger is attached to the ECU to record data. The DFC

stack is executed in a RTOS that runs on the ECU. Due to the limited time duration

of this research, experiments conducted on the test bench consist of only a small
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number scenarios where the ECU of the DFC stack is the sole transmitting node on

the CAN network, in order to reflect the behavior of the DFC stack without any

interference of bus load from other nodes on the same network.

4.1.1 The DFC stack and Operating System Scheduling

The tasks inside the DFC stack are separately executed on both cores of the processor,

as shown in Figure 4.1. While one of the cores is used for enqueuing of the messages

(execution of the TX tasks in CAN Handler as well as the enqueue routine provided

CAN Device Driver that builds and loads messages into the queues), the other core

is for dequeuing of the messages (execution of the transmission-complete ISR that

removes messages from the queues and loads them into the TX buffers). In other

words, both cores need to access the contents of the FIFO queues and TX buffers

from time to time. In order to prevent simultaneous access to the queues and buffers

between the enqueue and dequeue related routines, a semaphore is used to enforce

mutual exclusion of the critical sections of the routines. For the tasks performed by

the enqueue core, the critical section is the queuing assessment of messages, during

which the enqueue core reads reads and modifies the queue depth. For the dequeue

core, the critical section is when the transmission-complete ISR removes a message

and loads it into a TX buffer. This is essential for the DFC stack to function correctly,

since during the queuing assessment the depth of the queue is an important criterion

and any simultaneous dequeue action would stop the TX task from obtaining the

up-to-date information.
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Figure 4.1: The DFC Stack and Dual Core ECU

Due to the fact that the DFC stack is a component of the RTOS, there are other

tasks running in the RTOS that may effect the timing of the tasks and ISR in the

DFC stack. For instance, some of the tasks in the RTOS may have higher priority

and it is possible that their executions will delay the TX tasks of the DFC stack and

cause jitters in the invocation or execution times of the TX tasks.

4.1.2 Internal transmit priority of TX Messages

The internal transmit priority of the transmit messages of the DFC stack can be

configured through the Bus Number As the ECU of the test bench is capable of

communicating on multiple CAN networks simultaneously, the transmit messages in

the DFC stack can be configured to be transmitted on different buses (Bus A, Bus

B, etc.) even for messages managed by the same TX task. The transmit messages
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are assigned transmit priorities internal to the DFC stack based on their bus number.

The internal transmit priority decides the order in which the messages are assessed

for queuing and transmission. For instance, if a number of messages are pending for

transmission during a TX task invocation, the TX task will first attempt to transmit

messages that are labeled Bus A, and then messages labeled Bus B, and so on. As

a result, depending on the configuration of the message set of the experiment, the

internal transmit priorities of these messages may differ from the priorities on a regular

CAN network (based on numerical value of message ID: the smaller the numerical of

the ID, the higher the priority on the CAN bus). During the test bench experiments,

the transmit messages are assigned with different bus numbers, however they are

transmitted on the same and only physical CAN bus that the ECU is connected to.

The resultant internal transmit priority is shown in Figure 4.3. The message IDs

are listed in descending orders of transmit priorities from top to the bottom in the

message ID columns.

As the host environment of the DFC stack may use any customized internal trans-

mit priority schemes, it is crucial that the simulation model can be configured to

flexibly use the same scheme as the host environment in order to produce the same

output sequence of the transmit messages.

4.1.3 Experiment Scenarios and Captured Experiment Data

Due to limited access to the hardware test bench and the time consumption for

configuring the test bench and debugger, it is possible to only conduct a small number

of experiments. The test bench experiments consist of 2 configurations of the DFC

stack, and 7 sets of transmit messages are tested on each configuration, which yields a
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total of 14 scenarios. A single experiment run has been conducted for each experiment

scenario, and the debugger has captured events for a duration of 1 second in each

experiment.

The 2 configurations of the DFC stack differ in the number of reserved slots in

Queue 1 and the message transmit rate threshold for entering those reserved slots,

as shown in Figure 4.2, and the rest of the calibration values are identical through-

out the experiments, which are the transmit rate threshold for entering Queue 0

(DFC Queue0 TxThresh), the total number of slots in the FIFO queues and the

number of reserved slots in Queue 0 (DFC TxNotReservedQueue0 ).

Figure 4.2: Calibration Values in the 2 Experiment Configurations of the DFC Stack.

The calibration DFC Queue0 TxThresh is set to 6.25ms, which means that only

messages managed by the 6.25ms TX task are to be transmitted through Queue 0 and

messages managed by the 12.5ms and 25ms TX tasks are to be transmitted through

Queue 1. The value 6.25ms is chosen because There is a total of 10 slots in Queue

0 and a total of 20 slots in Queue 1. The calibration DFC TxNotReservedQueue0 is

34



M.A.Sc. Thesis - Zhizhao Qian McMaster - Software Engineering

set to 10, which means there is no reserved slots in Queue 0. For the differences be-

tween the two configurations, while one configuration specifies 18 non-reserved slots in

Queue 1 and that only messages with transmit rate faster than 75ms can enter the re-

served slots, the other configuration specifies 19 non-reserved slots in Queue 1 and an

entering threshold of 50ms. Due to limited access to the test bench and the fact that

the only way to setup the test bench experiment in order to observe different behav-

iors of the reserved-slot mechanism is to modify the reserved-slot mechanism related

calibration values (in contrast, it is possible to use different sets of transmit messages

to analyzed the behaviors determined by the queue capacity related calibration val-

ues), the number of reserved slots and the entering threshold of Queue 1 are chosen

to be the variables to reflect differences in the simulation results (it is sufficient to

observe the reserved-slot mechanism in only Queue 1 because the reserved-slot mech-

anism behaves under the same logic in both queues, and that no differences in Queue

0 could also avoid potential uncertainty when having more variables). Between the 2

configurations of the reserved slots in Queue 1, with less reserved slots, the transmit

rate threshold of entering the reserved slots should be set to a smaller value (faster

transmit rate) to ensure that those slots are reserved for only the even more frequent

messages. As for the identical calibrations between the configurations, their values

are chosen from one of the several commonly used values in industrial practice.

For each of the two configurations, 7 different sets of transmit message are used to

conduct experiments. Figure 4.3 shows the IDs and periods of the transmit messages

in the message sets, listed in internal priority order: the highest to the lowest priority

from top to the bottom of the list.
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Figure 4.3: The Message IDs and Nominal Transmit Rates of Transmit Messages in
Each Message Set, Listed in the Order of Internal Transmission Priority.

With no prior knowledge of the test bench system, these sets of transmit messages

are designed based on the choices of the calibration values (total number of slots in the

FIFO queues, number of reserved slots, etc.), and they differ in number of messages

of each TX task in order to create different scenarios that can show the behaviors

of the DFC stack under different levels of message load. The unique characteristics

of each message set are shown in Figure 4.4, with the corresponding choices of the

number of messages assigned to each of the TX tasks.
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Figure 4.4: Unique Characteristics of the Transmit Message Sets.

According to the configuration of the experiments, Queue 0 has a total number of

10 slots, and consequently the maximum capacity at any given time is 11 messages,

including the TX buffer of Queue 0, which means that Queue 1 should be able to

effectively transmit 11 messages after a series of consecutive enqueues in a TX task

execution (first message would be loaded into the TX buffer directly since the queue

is empty and the buffer is available). Similarly, Queue 1 has a maximum capacity

of 21. The 6.25ms TX task is assigned with transmit messages in only message

Sets 1 through 3, and the focus of these message sets is to analyze the behaviors of

Queue 0 at different message loads. These message sets specifies different numbers of

messages that are to be transmitted through Queue 0, more specifically, the maximum

possible number of transmit-pending messages for Queue 0 during an instance of the
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6.25ms TX task that is below, equal to and over the maximum capacity of Queue

0, respectively, in order to reflect the order of message enqueues and exactly which

messages are enqueued in Queue 0. Besides the insights of Queue 0 behaviors, message

Sets 1 through 3 also show behavior of Queue 1 when having a maximum number of

transmit-pending messages that is below the maximum capacity. For messages Set 4

through 7, there are no messages assigned to the 6.25ms TX tasks and the focus is

on the behaviors of Queue 1 when having a total number of messages that is equal

to, slightly above and significantly above the maximum capacity.Note that message

Set 7 has the same message IDs and internal transmission priories as Set 6, however

different transmit rates are assigned to those message IDs, aiming to allow different

subsets of the transmit messages to enter the reserved slots. Message Sets 4 through

7 are set out to create experiment scenarios that can reflect (i) the order of message

enqueues, (ii) which messages are enqueued in each instance of their TX tasks, (iii)

how messages are handled if they are not eligible for transmission after they become

pending for transmission and (iv) the usage of reserved slots in Queue 1.

By having a Lauterbach hardware debugger connected to the hardware test bench,

it is possible to record the contents of several memory locations of interest at run time,

obtaining the raw trace files for each experiment scenario. In order to translate the

recorded raw traces a into a more readable form, a parser program has been developed

to parse the raw trace files, translate each raw trace into a trace of a series events of

interest and then save the translated traces into comma-separated-values (CSV) files.

A section of a post-parser trace is shown in Figure 4.5. In the first column, there is

the unique number assigned to each event by the Lauterbach debugger. The second

column shows the time stamps, in microseconds, of the captured events in absolute
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time since the start of the test bench experiment. The third column (“Event Type”)

is a descriptive name of the event telling the type of the event (enqueue, dequeue or

transmission-complete interrupt) and the transmit queue associated with that event.

Message IDs of messages involved in events in Queue 0 are listed in Columns 4 and 5.

A message ID in Column 4 indicates that an instance of a message with that ID has

just entered Queue 0, and a message ID shown in Column 5 indicates that an instance

of a message with that ID has just been loaded into the TX Buffer 0 for transmission.

Similarly, Column 6 and 7 show the enqueued and dequeued message IDs of Queue

1. When a message bypasses its target queue and gets loaded into the corresponding

TX buffer of the target queue (if the target queue is empty and its corresponding TX

buffer is available when a message is assessed for queuing), it is shown as a dequeue

event, and the message ID of that message will be displayed in either Column 5 or

7 depending on the target queue. Such a queue-bypass event differs from a regular

dequeue event in the sense that there is not a previous enqueue event with the same

dequeue-event message ID. For a transmission-complete ISR event, the ID of the

message, which has just been transmitted on the bus and invokes the ISR, is shown

in Column 8, the last column.
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Figure 4.5: A Section of the Parsed Trace Data of a Test Bench Experiment.
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4.2 Observations about Test Bench Behavior and

Bench Data

Compared to the specification documents of the DFC stack, unexpected timing be-

haviors have arisen in the experiment data obtained from the hardware test bench.

These behaviors do not conflict with the specification documents of the DFC stack

however are not described in the documents. This section will identify unexpected

data patterns observed in test bench traces about the test bench (RTOS and hardware

setup) and DFC stack but are not described in the specification documents. After

careful analysis of the experiment data, it is concluded that the unexpected behaviors

arise due to the characteristics of the host environment, more specifically the perfor-

mance limitation of the test bench hardware and the internal implementation of the

RTOS. The patterns of such behaviors provide insights to how the host environment

effects the timing of different types of events in the DFC stack.

For generating realistic simulation results, it is crucial to identify the causes of

these patterns and then implement corresponding configurable features in the simu-

lation model so that the timing effects introduced by the host environment can be

reflected in the simulation results. Suitable models of the timing effects need to be

created based on the test bench trace data, and will be used as input parameters to

the configurable features to recreate the characteristics of the host environment. As

a beneficial side effect, the DFC stack simulation model will be able to simulate the

DFC stack running on other host environment if it is possible to determine the input

parameters of the target host environment for these configurable features.

This section discusses the patterns and the impact of the timing effects introduced
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by the host environment, and explains the importance of incorporating such system

details in the simulations, while more details on the how they are modeled will be

provided in Section 6.

4.2.1 Message Enqueue Time

Based on the time stamps of consecutive enqueue events in the test bench traces,

there is a time gap between each enqueue event of a transmit message and its previous

event. The duration of such time gaps is the “regular enqueue time” of a message,

which is the total amount of time it takes for the queuing assessment (by the CAN

Handler) of the message and loading the message into its target queue (by the CAN

Device Driver). A duration of regular enqueue time is mandatory for loading any

transmit-pending message into its target queue.

As mentioned earlier, one of the cores of the dual-core MCU is assigned to handle

the enqueuing of transmit messages while the other is for the dequeuing of messages.

There is a semaphore that protects the critical sections of the enqueue and dequeue

events. However, once exiting the critical section of the enqueue process of a message

(near the beginning of the duration of the enqueue process), it is possible that a

transmission-complete ISR is invoked and stalls the enqueuing process. In such sce-

narios, where the transmission-complete ISR is invoked during the enqueue process of

a message, the bench data shows that the total duration of the message enqueue (the

total duration that the enqueue core spends of both before and after the interruption

of the transmission-complete ISR) is extended compared to a regular enqueue pro-

cess. The total duration of this interrupted enqueue process is called the “irregular

enqueue time”, as shown in Figure 4.6.
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Figure 4.6: Regular and Irregular Enqueue Times

Based on the bench data, it appears that the duration of the irregular enqueue

time is generally longer than the combined duration of the execution time of the

transmission-complete ISR and the regular enqueue time for a single message, which

is mostly likely due to the overhead work (context switch in processor, etc.) that

the RTOS has to perform when switching back and forth between the enqueue and

dequeue tasks.

Figure 4.7 shows a comparison of message enqueue sequences between applying

minimal regular enqueue times and relatively longer enqueue times in a hypothetical

situation where there are a total of 7 transmit-pending messages at time 0 and only

6 empty slots left in the queue.
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Figure 4.7: Impact of Regular Enqueue Times in Message Output Sequence

A blue box in the enqueue core region indicates the enqueue process of a message

and the width of the box is the duration of the enqueue time. A red box in the

dequeue core region indicates the execution of the transmission-complete ISR, during

which a message is removed from the queue and loaded into the TX buffer of that

queue.

When having minimal regular enqueue times (top part of the figure), the queue

will be filled up by Messages (a) through (a + 5) and there is no space left in the

queue for Message (a + 6). A transmission-complete ISR is invoked after the enqueue

of Message (a + 5), but since the TX task has already finished executing, Message

(a + 6) will be delayed and assessed again for queuing during the next instance of

its TX task. However, if there are longer than regular enqueue times for messages

(the bottom part of the figure), because the transmission-complete ISR is invoked, for
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example during the enqueuing of Message (a + 4), it is executed before the queuing

assessment of Message (a + 6), as it takes longer to load messages into the queue.

Consequently, a queue slot is freed up by the execution of the transmission-complete

ISR so there are enough slots in the queue for all of the transmit-pending messages in

the current instance of the TX task to be enqueued, including Message (A + 6). As

a result, when having relatively longer durations for the regular enqueue times, the

messages that are transmitted on the bus during the current instance of the TX task

are different than in the case where there were only minimal regular enqueue times.

To demonstrate the impact that the extended duration of an irregular enqueue

has on the message output during the current instance of the TX task, Figure 4.8

shows a hypothetical situation where there are 7 transmit-pending messages at time

0 and only 5 empty slots left in the queue.

Figure 4.8: Impact of Irregular Enqueue Times on Message Output Sequence
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A transmission-complete ISR is invoked during the enqueue of Message (a + 1),

which frees up a slot in the queue and makes it 6 available slots for 7 transmit-pending

messages. If the total duration of the enqueue time of a message is not affected by

the transmission-complete ISR’s (no extended duration for an irregular enqueue, as

shown in the top part of the figure), by the end of the current instance of the TX

task, Messages (a) through (a + 5) successfully enter the 6 available slots in the

queue but Message (a + 6) is delayed until a later instance of the TX task due to

a full queue. However, if irregular enqueue time is introduced by the transmission-

complete ISR during the enqueuing of Message (a + 1), the enqueue of Message (a

+ 5) is delayed, which allows the execution of an additional transmission-complete

ISR to take place before Message (a + 6) is assessed for queuing. Execution of the

additional transmission-complete ISR frees up a slot in the queue for Message (a +

6) so that Message (a+6) can enter the queue during the current instance of the TX

task.

In summary, the durations of the regular and irregular enqueues can affect the

number of messages that can be transmitted during the current instance of the TX

tasks. It is essential to model these durations in order to produces realistic simulation

results that can reflect the behaviors of the actual system.

4.2.2 Inter-TX-Task Delay

As the DFC stack is a part of an RTOS which runs many tasks, and it is possible that

jitters and delays are introduced into the execution of DFC stack related tasks due

to the arrivals of higher-priority tasks in the RTOS. The test bench traces revealed

time gaps in-between the execution of the 3 TX tasks of the DFC stack, when more
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than 1 of the TX tasks arrive at the same time in all of the experiment scenarios.

The cause is that there are tasks from other parts of the RTOS constantly being

scheduled in-between the 3 TX tasks of the DFC stack. These inter-TX-task delays,

during which external tasks are being executed, are called “ti”, time of inactivity, as

shown in Figure 4.9, where ti,1 denotes time of inactivity between the 6.25ms and

12.5ms TX tasks and ti,2 denotes time of inactivity between the 12.5ms and 25ms TX

tasks.

Due to the fact that the periods of the 12.5ms and 25ms TX tasks are multiples of

2 and 4 of the period of the 6.25ms TX task, respectively, whenever the 25ms TX task

is released, the other two TX tasks are also released at the same time. As a result,

there are only ti,1 and ti,2, but there is no such thing as a ti between the 6.25ms and

25ms TX tasks.

Figure 4.9: Time of Inactivity in-between TX Tasks

The durations of ti,1’s and ti,2’s have been profiled from test bench traces of all 14

experiment scenarios. Each occurrence of a ti,1 is computed by taking the backward

time difference between the time stamp of the first dequeue event of the 12.5ms

TX task (it always showed up as a dequeue event since the first message of the

12.5ms always bypassed the FIFO queue due to Queue 1 being empty and an available

hardware TX buffer) and the time stamp of the last enqueue event of the 6.25m TX
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task. The ti,2’s are computed in the same fashion between the 12.5ms and 25ms

TX tasks (however, the first event of the 25ms TX task may be either an enqueue or

dequeue event depending if there are still 12.5ms TX task messages left in their target

FIFO queue and TX buffer). The computed ti,1’s and ti,2’s from each individual trace

are shown in Figure 4.10 and Figure 4.11, respectively. Note that for ti,1, results are

available for only message Sets 1 through 3, because there are no transmit messages

in the 6.25ms TX task for message Sets 4 through 7.

Figure 4.10: Profiled ti,1 Between 6.25ms TX Task and 12.5ms TX Task

48



M.A.Sc. Thesis - Zhizhao Qian McMaster - Software Engineering

Figure 4.11: Profiled ti,2 Between 12.5ms TX Task and 25ms TX Task

The durations of the ti,1’s appear to be very close to one another across all experi-

ment scenarios, and so are the durations of the ti,2’s. Therefore, the statistical model

of each ti is created from the durations of all its occurrences in the 14 experiment sce-

narios. More details on how the ti’s are modeled will be provided later in Section 6.2.

For demonstration purposes, Figure 4.12 shows the computed parameters (arithmetic

mean, standard deviation, etc.) for the Gaussian distribution models of ti,1 and ti,2.
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Figure 4.12: Parameters for Gaussian Distribution Statistical Models of ti,1 and ti,2.

Due to these inter-TX-task delays, the enqueue of the messages from 12.5ms and

25ms TX tasks are delayed to a later point in time after they become pending for

transmission, which consequently affects the arrival times of these messages on the

bus. Therefore, it is essential to model the ti delays in the DFC stack simulation

model in order to achieve a high level of fidelity. Figure 4.13 shows the effect of the

inter-TX-task delays (more specifically, ti,2’s in this example) in a hypothetical but

realistic situation, in which:

• There are a total of 25 transmit-pending messages from the 12.5ms and 25ms

TX tasks that have just been released.

• All the transmit-pending messages are to enter Queue 1 for transmission.

• The total number of available slots in Queue 1 is 20, and these slots are all

non-reserved slots.
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Figure 4.13: Effect of Non-zero Inter-TX-Task Delay(ti,2) on Message Enqueuing

Without ti,2, the 25ms TX task messages will be assessed for queuing immediately

after the 12.5ms TX task, which means all 25 messages are to be assessed very closely

in time. However, Queue 1 and its TX buffer can only take in up to 21 messages

(including the case where the first message bypasses the queue and enters a TX

buffer directly due to an empty queue and available TX buffer). This would only

allow 21 out of 25 messages to be transmitted at the current instance of their TX

tasks, and the 4 messages that are not transmitted will not be assessed again until

the next instance of their TX tasks, which would delay the arrivals on bus of these 4

messages for at least the duration of one period of their TX task.

On the other hand, if the RTOS delays the 25ms TX task for a duration of ti,2 after

the 12.5ms TX task, as happens in the test bench experiments, it is very likely that

a number of the enqueued 12.5ms TX task messages have been transmitted during

51



M.A.Sc. Thesis - Zhizhao Qian McMaster - Software Engineering

the delay. If 3 of the 12.5ms TX task messages have been transmitted on the bus, 3

slots that were occupied by those 3 messages will become available in the queue for

the 25ms TX task messages, which would allow 3 more 25ms TX task messages to be

transmitted during the current instance of 25ms TX task. As a result, 24 out of 25

messages will be transmitted and 1 message is delayed till the next instance of the

25ms TX task, instead of 21 messages transmitted and 4 messages delayed messages

when there is no ti,2. This would consequently create a different message sequence on

the CAN bus as the possibly delayed messages will appear on the bus after different

instances of the 25ms TX task.

4.2.3 Measurement Jitter in Message Bus Times

From the experiment trace data, it is possible to proximate the bus time (duration of

a successful transmission of a complete CAN frame on the bus) of each instance of the

transmit messages. Since the DFC stack ECU is the only transmitting node in the

CAN network, whenever a message starts transmission on the bus after being loaded

into a TX buffer, that message will automatically win arbitration with no collision

on the bus, and finishes transmission on its first attempt. Therefore, the bus time

of a message in the test bench experiments (“recorded bus time”) can be calculated

by taking the backward time difference between the message’s transmission-complete

ISR event and its dequeue event (message loaded into TX buffer).

Theoretical bus times of the transmit messages are calculated and are compared

with the recorded bus times in the test bench traces. Since arbitrary data is being

sent in the data frames during the test bench experiments, it is possible that the bus

times of the messages are under the effect of bit-stuffing. The bus time of a CAN data
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frame is calculated by dividing the number of bits by the baud-rate of the bus. For

a CAN data frame with a standard 11-bit identifier (all message in the experiments

use standard identifiers), the total length is the sum of 47 bits (required structure of

the data frame format) and the bits in the data field. This gives the formula for bus

time without any bit stuffing as:

tbus =
47 + 8 ∗DLC

baudrate

The DLC field of a message DLC of indicates the number of bytes in the data

field and there are 8 bits in each byte of data. Out of the required 47 bits, 33 bits are

prone to bit stuffing. Therefore the total number of bit that are prone to bit-stuffing

is (33 + (8 ∗DLC)). For worst-case bit stuffing (wcbs), as introduced in Section 2.1,

1 bit is stuffed for every 4 bits. Therefore the total number of bits under worst-case

bit stuffing is:

47 + (8 ∗DLC) + b0.25 ∗ (33 + 8 ∗DLC)c

The bus time of a data frame under worst-case bit stuffing is then:

tbus,wcbs =
47 + (8 ∗DLC) + b0.25 ∗ (33 + 8 ∗DLC)c

baudrate

During the experiments on the hardware test bench, the influence of the char-

acteristics of the physical CAN bus and electromagnetic interference is assumed to

be insignificant and is ignored, it is safe to assume the actual bus times of messages

transmitted by the DFC stack ECU are very close to their theoretical bus times.

The recorded bus times of the messages in each experiment scenario are compared

to the theoretical bus times (calculated values of the theoretical bus times). A section
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of the bus time comparison chart is shown in Figure 4.14. The top row with yellow

background shows the message information and theoretical bus times with and with-

out worst-case bit stuffing. The blue-background and green-background data show

the recorded bus times of the same message set under two different configuration of

the DFC stack. As each message appears many times during an experiment run, only

the average (arithmetic mean), maximum and minimum of the recorded bus times

are shown in the figure. The bounds of the measurement jitter between the recorded

bus times and theoretical bus times are shown in the bottom two rows.

Figure 4.14: A Section of the Bus Time Comparison Chart.

It appears that, even though the durations of recorded bus times are generally

shorter than the theoretical bus times under worst-case bit stuffing, they are still

considerably longer than the theoretical bus times without any bit stuffing, for all

transmit messages in all 14 experiment scenarios. It is concluded that there is jitter

between the actual bus times of the messages and the recorded bus times that are

computed from the test bench traces. The jitter in the recorded bus time is called the

“measurement jitter”, and it is most likely caused by software, more specifically, the
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RTOS and/or DFC stack itself. Figure 4.15 shows the relationship between the actual

bus time, the measurement jitter and the recorded bus time of a transmit message in

the DFC stack.

Figure 4.15: The Actual Bus Time and the Measurement Jitter in the Recorded Bus
Time of a Message.

Although it is not clear what exactly causes the jitter, Figure 4.16 shows several

possible causes, in a zoomed-in illustration of what might causing the duration labeled

“measurement jitter” in Figure 4.15. After a message finishes transmission on the

bus and the CAN Device Driver invokes the transmission-complete ISR, the RTOS

may be busy with some other higher-priority task and the ISR has to wait until

the RTOS responds. Once RTOS decides to service the transmission-complete ISR,

it will prepare the MCU through a context-switch. After the ISR starts execution,

there may be other work that the ISR needs to handle before it writes the message

ID of the transmitted message to memory, where the debugger monitors and captures

the ISR event when a new message ID is written. And during the execution of the

transmission-complete ISR, it may be interrupted by the RTOS to execute a higher-

priority ISR from other parts of the RTOS.
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Figure 4.16: The Possible Components of the Measurement Jitter

Figure 4.17 shows a comparison of message throughput between the test bench

experiment, where there is measurement jitter, and a hypothetical system, where the

durations of the measurement jitter are only minimal. Each tall green arrow in the

figure indicates the start of transmission of a message (message ID labeled below

the time axis).The gap between the 2 tall green arrows indicates the duration of

the message transmission that is measurable from the experiment traces, or in other

words, the recorded bus time of that message. The actual durations that it takes for

the TX buffer to transmit any message in this example, or the actual bus time of

messages, are assumed constant.
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Figure 4.17: Measurement Jitter’s Impact on Message Throughput

Compared to the message throughput at the top of the figure, minimal measure-

ment jitter allows the messages in the queue to leave the queue sooner, which frees

up some of the occupied queue slots for the remaining transmit-pending messages

before they are assessed for queuing. Consequently, this will potentially allow more

messages to enter the queue during the current instance of their TX tasks. In other

words, when a large number of messages are pending for transmission, having smaller

durations of measurement jitter is likely to allow more transmission-pending messages

to enter the queue, and consequently produce a different message sequence on the bus

compared to having longer measurement jitter durations.

The measurement jitter can have great impact on the output message sequence on

the CAN bus, and it is necessary that the DFC stack incorporates the measurement

jitter in the implementation to generate more realistic simulation results.
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Chapter 5

The Simulation Model

This section will introduce the DFC stack simulation model in detail, covering aspects

such as the components of the model, design decisions and MATLAB SimEvents

features that are used to develop the model.

In order to achieve a high level of configurability, the simulation model should be

able to accept input parameters that provide necessary information for the target sim-

ulation setup, more specifically, information containing the configuration of the DFC

and a description of the simulated host environment. Consequently, the DFC stack

simulation model is implemented as two parts, the simulation script and the DFC

stack SimEvents model. The simulation script provides access to the configurable

input parameters for the simulation and is the user interface for using the SimEvents

model. To start a simulation, the user can simply configure the input parameters

in the simulation script and then run the simulation script, which loads the input

parameters into the MATLAB environment, runs the simulation on the SimEvents

model and processes the simulation results once the simulation completes.
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5.1 The Simulation Script

The simulation script is a MATLAB script and it consists of two sections.

The first section contains the configurable input parameters of the DFC stack

SimEvents model. These input parameters can be divided further into three cate-

gories, more specifically, ones that are relate to the configuration of the DFC stack,

ones that provide information about the host environment to be simulated and ones

that specify how the simulations are to be conducted. The input parameters are saved

as MATLAB workspace variables during simulations so that they can be accessed by

other scripts and SimEvents blocks in the simulation model.

The second section of the simulation script contains MATLAB instructions that

setup and start the simulation, as well as calls to other scripts that process the

simulation results.

5.1.1 Configurable Input Parameters

The first category of the input parameters contains calibrations (settings) for the

DFC stack and information about the transmit messages.

Each combination of values for the calibrations forms a unique configuration of

the DFC stack. Although the simulation model is capable of simulations with any

values for the calibrations, in order to validate the simulation model against the test

bench experiments (Section 6), there are 2 pre-defined sets of calibration values in

the simulation script that correspond to the 2 configurations that are used during the

test bench experiments. The first set of calibrations specifies 18 non-reserved slots in

Queue 1 and 75 milliseconds as the message transmit rate threshold for entering the

reserved slots (Section 3.2.1), while the second set specifies 19 non-reserved slots and
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50 milliseconds as the transmit rate threshold. Aside from these 2 calibrations, other

calibrations are identical in the pre-defined sets of calibrations, more specifically, zero

reserved slots in Queue 0 and 6.25 milliseconds as transmit-rate threshold for entering

Queue 0 (i.e., only 6.25ms TX task messages will be able to enter Queue 0, all 12.5ms

and 25ms TX task messages will be routed to Queue 1).

The information about the transmit messages is required to run a simulation, and

it is defined in terms of a message set in the simulation script. For each message set,

the message ID, DLC, nominal transmit rate and internal transmit priority have to be

provided separately for each message. For validation purposes of this thesis, 7 sets of

transmit messages are pre-defined in this section of the simulation script. Although

the specifics of these message sets are identical to that of the test bench experiments,

the simulation model is capable of running simulation with any combinations of mes-

sage IDs, DLCs, etc. for the transmit messages. As an example, Figure 5.1 shows the

definition of Message Set 3 of the pre-defined transmit message sets. For convenience,

the messages belonged to the 6.25ms, the 12.5ms and the 25ms TX tasks are referred

to as the Bucket 1, Bucket 2 and Bucket 3 messages, respectively, in the SimEvents

model, and they are further abbreviated as “B1”, “B2” and “B3” messages in the

simulation script.
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Figure 5.1: Definition of Message Set 3 in the Simulation Script.

The message IDs of each message bucket are listed in an array in the order of

their internal transmit priorities: highest to the lowest from left to right (or, from the

first to the last element in the array). The nominal transmit rates (“PRD”, period)

and the DLCs of the same message bucket are listed in the same order so that each

value in these arrays is at the same position as its corresponding message ID in the

message ID array.

The second category of the configurable input parameters contains the information

for modeling the timing effects that are introduced by the host environment (discussed

in Section 4.2). These input parameters will allow the simulation model to recreate the

timing effects introduced by the host environment. The simulation model is capable

of modeling the timing effects based on both deterministic and statistical models of

their durations, and the available modeling options are provided in this section of

the simulation script. The duration of each type of timing effects can be separately
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set to either a constant value (deterministic model) or a random value generated

based on a specified probability distribution (statistical model) through the use of

pseudo-random number generation in MATLAB. The supported types of probability

distributions include normal distribution, gamma distribution and kernel distribution.

An addition modeling option is available besides using probability distributions, which

is to randomly pick a value from the actual data of the durations, giving equal chance

to every entry in the data. By having a variety of modeling options, the user can

choose the one that best resembles each type of timing effect in order to increase the

fidelity of the simulated host environment.

When using a probability distribution to generate the duration of a specific type of

timing effect, the parameters of that probability distribution need to be entered into

this section of the simulation script. For instance, the arithmetic mean and standard

deviation are required for using the normal distribution, the scale and shape values are

required for using the gamma distribution, etc.. The input parameters for the timing

effects (introduced by the test bench) for these supported probability distributions

have been computed from the test bench experiment traces and are provided in this

section of the simulation script as pre-defined modeling options (more details on how

they are computed are provided in Section 6.2).

The third category of the input parameters lists various options for automated

simulations, including the duration of each simulation run, number of simulation runs

for the current configuration, the types of simulation results that are to be processed

and plotted after the simulations, and multiple sets of pre-defined values for previous

categories of input parameters (DFC stack calibration values, transmit message set

and parameters for the simulated host environment). The user can simply specify
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the one of the available choices for each option here so that the simulation script can

later perform simulations according to the specified options. For instance, the user

can command the simulation model to plot the FIFO queue depths versus time graph

or the inter-arrival times of the transmit messages on the bus after the simulations.

For model validation purposes, the pre-defined values for the input parameters are

identical to the test bench experiments (more details are in Section 6).

5.1.2 Simulation Instructions

The MATLAB instructions in this section of the simulation script automates the

simulations and the processing of simulation results.

The instructions first read the specified indices for the input parameters and load

the corresponding sets of values into the MATLAB workspace under variable names

that are recognized by the SimEvents model. Then, the SimEvents model is started

based on the specified duration of simulation and number of simulation runs. In

between the simulation runs, the simulation instructions perform tasks such as shuf-

fling and seeding the pseudo-random number generator, cleaning up and setting up

temporary workspace variables, etc..

Depending on the chosen options for simulation results in the input parameter

section, the simulation instructions will selectively execute the supporting scripts at

different times during the entire simulation procedure. For instance, the script, which

computes and analyze the transmit rates of message based on the model generated

trace, is called by the simulation instructions after each simulation run in order to

record the transmit rate results from every single simulation run, while another script

that formats and saves the transmit rate results is only called once after the entire
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simulation procedure is completed.

5.1.3 Supporting Scripts

In order to present useful simulation results to the user, many lines of MATLAB

instructions are used beside the 2 sections of the simulations script mentioned above.

They perform tasks such as processing the simulation results, plotting results in figures

and charts, saving results to files, etc. These MATLAB instructions have relatively

more complex structures and are larger in volume than the rest of the simulation

script, and they are low-level instructions that most likely do not interest the user.

Therefore, in order to make the simulation script a straight-forward user interface,

instead of having these instructions in the simulation script, they are organized into

separate and smaller scripts with more readable natural-language names, and are

called by the simulation script when necessary. The scripts are later referred to as

the “supporting scripts”, and are considered as a part of the simulation script.

5.2 The SimEvents Model

The DFC stack SimEvents model is contained in a SimEvents block that has three

ports for the message entities to flow in and out. Transmitted messages entities leave

the model through the TX port, and any received messages enter the model from the

RX port. In order to allow integration of the DFC stack model with the Vector CAN

stack library Whinton (2016), the DFC stack SimEvents model also has a Return port

aside from TX and RX ports. The Return port will allow message entities, which are

originally transmitted by the DFC stack model on the CAN network, to return to the
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model to complete its transmission.

Figure 5.2: The Root Level Components of the SimEvents Model

Figure 5.2 shows the components in root level of the SimEvents model. The

transmit messages propagates through two major components: new instances of the

messages are generated in the Message Arrivals subsystem block, they are queued

and/or loaded into TX buffers in the Queuing and Transmission subsystem block,
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and then they leave the DFC SimEvents model through the TX port for transmission

on the CAN network. Returned (or, successfully transmitted) messages re-enter the

Queuing and Transmission block to complete their transmissions. There are also other

SimEvents blocks in the root level of the model: the Global Data Store Memory blocks

(labeled “inter-arrival times”, etc) and the Resources Pool blocks (labeled “TX buffer

1”, etc), and they will be introduced in detail in the following sections.

To illustrate the propagation of a message entity inside the DFC stack SimEvents

model, Figure 5.3 shows the activity flow of a message instance, including the tran-

sitions and activities of that message from the creation of its message entity to the

departure from the model.

Figure 5.3: General Activity Flow of a Message in the DFC Stack

Each activity (in rectangular boxes) is associated with a time delay in the flow

however a transition is not. The duration of the delays can vary for different messages
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or different instances of the same message, since it is based on a number of real time

factors inside the ECU. For instance, when a 25ms TX task message becomes pending

for transmission, the duration of the “Wait for TX task execution” activity is the sum

of the number of transmit-pending message in the 6.25ms and 12.5ms TX task and the

inter-TX-task delays from the RTOS, as the 25ms TX task is the last to be executed

among the 3 TX tasks. The duration of “Wait for TX buffer availability” activity

varies based on the DLC of the message currently being transmitted and the current

bus load. The duration of an activity can also be zero. In the cases of the 6.25ms

TX task messages, whose TX task is the first to be executed in the DFC stack, the

duration of the “Wait for TX task execution” activity is zero if there are no other

tasks in the RTOS scheduled ahead of the 6.25ms TX task at its time of arrival.

The following sections will provide more details on the SimEvents features that

are utilized in the model, and the major blocks that implement the behaviors of the

DFC stack.

5.2.1 Global Data Store Memory Blocks

The Global Data Store Memory block allows declarations of data structures in a

SimEvents model, and provides other MATLAB function blocks or SimEvents blocks

in the same scope with access to the declared data structures.

There are three memory blocks deployed in the root level of the SimEvents model:

25ms TX task message timer, inter-transmission timer and RX message objects.

The 25ms TX task message timer memory block stores the index in message set,

nominal transmit rate, current timer value and transmit-pending flag of the messages

that are managed by the 25ms TX task. Since some of the 25ms TX task messages
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become pending for transmission once every several instances of 25ms TX task, this

memory block is necessary for keeping track of the values of the timers on these

messages. Furthermore, in the case where a transmit-pending message is refused to

enter a fully occupied queue, its transmit-pending is saved in the memory block so

that it can be assessed again for queuing in the next instance of the 25ms TX task. In

contrast, the 6.25ms and 12.5ms TX tasks transmit all their messages in each arrival,

and therefore no memory blocks are required for the 6.25ms and 12.5ms TX tasks.

The inter-arrival time memory block keeps a timestamp for each message, which

records the time of the previous successful transmission of each message ID on the

CAN network (i.e. time of the most recent transmission-complete ISR event). Once

a new instance of a message is successfully transmitted, the inter-arrival time can be

calculated by taking the backward time difference between the current simulation time

and the timestamp stored in the inter-arrival time memory block. Then the current

simulation time will replace the old timestamp in the inter-arrival time memory block

so it can be used in the calculation of next inter-arrival time.

The RX message objects memory block is used for basic reception functionalities

of the simulation model, such as definition of messages ID to RX buffer mapping,

RX message counter, etc.. It is part of the basic framework for message reception

functionalities of the DFC stack which can be used for future expansion of this project.

5.2.2 Resource Management Subsystem Blocks

The Resource Management blocks allow custom resources to be defined and provides

utilities to conveniently manage these resources. There are 3 types of Resource Man-

agement blocks in the SimEvents library: the Resource Pool block, the Resource
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Acquire block and the Resource Release block.

Custom resources are defined in the Resource Pool blocks. Only 1 type of custom

resource can be defined in each Resource Pool block, but it is possible to have multiple

Resource Pool blocks in order to use a number of different types of custom resources

in a SimEvents model. Aside from the name of the resource, each custom resource

has properties including granularity, the amount of the resource and whether this

resource is reusable upon release.

The Resource Acquire block allows an entered entity to request to acquire any

amount of a single or multiple types of custom resources. Figure 5.4 shows all the

configurable block parameters of a Resource Acquire block. When an entity enters,

if the remaining amount of any requested resource is less than requested amount,

the entity will be blocked and waits in the Resource Acquire block until at least the

requested amount of resource becomes available. Once the entity departs from the

block, the acquired amount of resource is subtracted from the remaining amount in the

corresponding resource pool. The maximum number of waiting entities in a Resource

Acquire block can also be specified as a configurable parameter. In the case where

there are messages waiting to acquire resources inside multiple Resource Acquire

blocks in a SimEvents model at the same time, SimEvents will first consider resource

allocation for the Resources Acquire block with the highest acquisition priority.
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Figure 5.4: Configurable Parameters of Resource Acquire Block

Resources that are acquired by an entity will be attached to that entity until the

entity enters a Resource Release block. The Resource Release blocks can be configured

to release one or multiple types of resources that are attached to the entering entities.

However once a type of resource is specified to be released, the entire amount of that

resource attached to the entering entities will be released.

The Resource Management blocks provide utilities for conveniently managing the

amounts of limited resources in the modeled system, and make it easier to enforce the

priority of resource acquisition when multiple entities attempt to request resources at

the same time, compared to using the Global Data Store Memory blocks to keep track
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of the numbers of the resources and priorities of resource acquisition as implemented

in the Vector CAN stack Whinton (2016) in the MATLAB 2014 environment.

In the DFC stack SimEvents model, several types of custom resources are simu-

lated using the Resources Pool blocks. A TX buffer Resource Pool is defined for each

transmit queue. Since there is only 1 TX buffer for each transmit queue in the DFC

stack, the total amount of each of the TX buffer resource is set at 1 (however, the

total amount of TX buffers is configurable and can be changed to other values if using

the simulation model to simulate other software or hardware specifications). The TX

buffer resource is meant to allow only 1 message to be “loaded in to the TX buffer”

and make the rest of transmit-pending messages wait in the transmit queue. The

semaphore, which protects the critical section of the queuing assessment, enqueue

and dequeue events, is defined as a custom resource with total amount of 1 to ensure

the mutual exclusion of the critical sections. The number of transmit-pending mes-

sages in each TX task is defined as a custom resource, so is the number of remaining

available slots in each transmit FIFO queue, which is used to monitor the depth of

queues. Although these are not technically resources in the actual system, they are

defined as custom resources so that the model can utilize the Resource Management

blocks for data manage during simulation or to control the advancement of message

entities at certain places inside the model, such as making an entity waiting for a

resources in a Resource Acquire block, etc.. More details will be provided in the

following sections.
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5.2.3 The Message Arrivals Subsystem Block

The Message Arrivals subsystem block manages the timing of new instance arrivals of

the transmit messages as well as the generation of the message entities. It simulates

parts of the TX task routines provided by the CAN Handler that manage the timers

and transmit-pending flags of messages and prepares transmit-pending messages for

queuing assessment.

Figure 5.5: The Message Entity Generation Mechanism for the 6.25ms TX Task.

Figure 5.5 shows the mechanism for message entity generation for the 6.25ms TX

task. Time-Based Entity Generator blocks are deployed to generate messages entities

for the TX tasks. Since the TX tasks each have a fixed arrival rate and fixed number

of periodic transmit messages, the generator block for each TX task is configured

to repeatedly generate the same number of entities as its transmit messages at the

frequency of its rate of arrival. The generated entities are blank entities, and, after
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their departure from the generator block, they enter a Set Attribute block, which at-

taches the required information fir the transmit messages to them as entitie attributes.

Each departed entity carries the information of a transmit message, which includes

the message ID, nominal transmit rate, DLC, index in the message set (internal trans-

mit priority) and bus number. After obtaining the message information, each entity

will acquire a “transmit-pending message count resource”, which is defined separately

for each TX task. These message count resources indicate the number of remaining

transmit-pending messages for each TX task that still need to be assessed for queu-

ing, and are used for regulating the advancement of message entities in lower-priority

TX tasks, which will be discussed in more details later in this section. This message

entity genration mechanism is also deployed separately for the 12.5ms and 25ms TX

tasks. Thus there are a total of 3 streams of messages entities generated in the Mes-

sage Arrivals block, as shown in Figure 5.6. The red-colored blocks, yellow-colored

blocks and the blue-colored blocks belong to the 6.25ms, 12.5ms and 25ms TX tasks,

respectively.
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Figure 5.6: The Structure inside the Message Arrivals Block.

The Set Attribute block in the message entity generation mechanism for each

TX task attaches message information to the entered blank entities in the order of

descending transmit priority, so that, after the entities depart from the Set Attribute

block, they advance in the order of their priorities. To further ensure the priorities

of the messages once the message entities from all 3 streams merge, a Priority Queue

subsystem block (implemented in the Vector CAN stack in Whinton (2016)) is used

before the entities leave the Message Arrival subsystem block.

The message entity generation mechanisms are identical for the 6.25ms and the
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12.5ms TX tasks, as all messages managed by these TX tasks become pending for

transmission in every instance of their TX tasks. In contrast, the 25ms TX task

handles messages that have slower transmit rates than 25ms, and it may take more

than 1 instance of the 25ms TX task to increment the timers of these messages before

they become pending for transmission. Therefore, all message entities generated in the

6.25ms and 12.5ms TX task routes are set out to leave the Message Arrivals block (and

advance into queuing and transmission later), while the message entities generated

in the 25ms TX task route, before they leave the Message Arrival block, will advance

through a mechanism that decides if the timer of the entered message has expired.

The timer-checking mechanism is contained in a Subsystem block labeled “Check

timer”, and its internal structure is shown in Figure 5.7. The center component of the

mechanism is a MATLAB Function block (inside the Function-Call Subsystem block

labeled “Update timer and flag”) that updates the timer and checks the transmit-

pending flag (saved in the 25ms TX task message timer memory block) of a passing

message. If the timer expires or the flag is already asserted (if the message was

transmit-pending in the previous instance of TX task but was not able to enter

the transmit queue), the message will be able to leave the 25ms TX task route as

a transmit-pending message, otherwise the message entity is discarded since that

message is not yet supposed to become pending for transmission. In other words,

even though an entity is generated for every transmit message in the 25ms TX task

at the rate of once every 25ms, the generated entity gets to leave the Message Arrivals

block and proceed further only if its corresponding message is pending for transmission

at the time of its generation. Due to this nature, a 25ms TX task message entity will
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not acquire the transmit-pending message count until it is confirmed to be transmit-

pending by the timer-checking mechanism.

Figure 5.7: The Mechanism that Updates timer and Decides if a Message is Pending
for Transmission.

Since the transmit messages from the 12.5ms and the 25ms TX tasks can be

configured to transmit through either Queue 0 or Queue 1 based on the DFC stack

calibration DFC Queue0 TxThresh, a Queue Picker subsystem block is deployed in

each of the 12.5ms and 25ms TX task message routes, which attaches a Queue Number

attribute to each entered entity to indicate their target transmit FIFO queue before

they leave the Message Arrivals subsystem block. The Queue Number attribute

will later be used for determining the route of each message entity in the Queuing

and Transmission block. Since the 6.25ms TX task messages are to be transmitted

only through Queue 0, the Queue Number attribute of their entities always indicates

Queue 0, and is attached by the Set Attribute block in the message entity generation

mechanism of the 6.25ms TX task.
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5.2.4 The Queuing and Transmission Subsystem Block

The Queuing and Transmission subsystem block contains the transmit message queues,

their corresponding TX buffers and other SimEvents blocks that implement the queu-

ing assessment, simulation data logging and part of the timing effects from the host

environment.

The Queuing and Transmission block has 6 input ports and 1 output port, as

shown previously in Figure 5.2. Besides the ports that allow message entities to flow

in and out (“Msg in”, “Msg out” and “TX-complete ISR” ports), the rest of the ports

are connected to the “Amount in use” port of several Resource Pool blocks. The TX

buffer of each transmit queue is defined as a reusable custom resource (previously

acquired resources becomes available again upon release from an entity) that has a

total amount of 1. The TX buffer resource will be acquired and held by a message

entity throughout the duration while the simulated message is “loaded into the TX

buffer and being transmitted on the bus”. During this time, a value of “1” will be

shown on the “Amount in use” port of the Resource Pool block of the TX buffer,

which indicates that the TX buffer is busy so that no more message entities will

be loaded into that buffer. The other 2 connected Resource Pool blocks define the

“transmit-pending message count” resources for the 6.25ms and 12.5ms TX tasks.

The message input port of the Queuing and Transmission block is connected to

the message output port of the Message Arrivals block. Once the message entities

enter the Queuing and Transmission block, they are first separated and routed into 3

routes, each of which represents the route of a TX task, as shown in Figure 5.8 (there

is an Attribute Scope block in each route that can display the passing message IDs

with respect to time, for debug purposes). This structure is implemented in order
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to simulate the inter-TX-task delays, the ti’s, which are applied before the queuing

assessment of the first message of the 12.5ms and the 25ms TX tasks.

Figure 5.8: Mechanism that Divides Transmit-Pending Messages and Simulates Inter-
TX-Task Delays.

As mentioned in Section 4.1.1, as the DFC stack runs inside a host environment

such as the test bench, which has an RTOS, it is normal that the RTOS schedules

other higher-priority tasks in-between the TX tasks of the DFC stack, and thus

delays are introduced in-between the execution of the TX tasks. These inter-TX-

task delays exist between the 6.25ms and the 12.5ms TX tasks, and between the

12.5ms and the 25ms TX tasks, and thus a delay mechanism is deployed in each of

the 12.5ms and 25ms TX task routes (the lower 2 routes shown in Figure 5.8). The

delay mechanism consists of an Enabled Gate block and the Inter-TX-Task Delay

subsystem block that generates the enable signal for the gate. During the inter-TX-

task delay, or while there is a higher-priority task transmitting its messages, the delay
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subsystem block outputs a logic low to close the gate so that the message entities are

stalled and have to wait the required time in the Priority Queue block before passing

through the gate. Once it is the inter-TX-task delay is over, the gate is opened by

a logic high signal from the delay subsystem block and the message in the Priority

Queue block can then advance. The Inter-TX-Task Delay subsystem blocks output

their enable signals based on the number of transmit-pending messages from higher-

priority TX tasks (defined as custom resources in root level of the SimEvents model).

A zero number of transmit-pending messages in higher-priority TX tasks indicate

the completion of these TX tasks. Figure 5.9 shows the mechanism that converts

the number of transmit-pending messages to the input signals for the Inter-TX-Task

Delay blocks. For the 12.5ms TX task, when there is no transmit-pending messages

from the 6.25ms TX task, the Compare To Zero block outputs a logic high (value

“1”) to a connected SimEvents Goto block, which sends the signal “wirelessly” to the

Inter-TX-Task Delay block in the route of the 12.5ms TX task. For the 25ms TX

task, since it is executed after both the 6.25ms and the 12.5ms TX tasks, the input

signal to the delay block in its route is based on the number of transmit-pending

messages of both the 6.25ms and 12.5ms TX tasks.
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Figure 5.9: Signal Conversion from the Number of Transmit-Pending Messages to the
Inputs for the Inter-TX-Task Delay Subsystem Blocks.

Figure 5.10: The Internal Implementation of the Inter-TX-Task Delay Subsystem
Block.

The internal implementation of the Inter-TX-Task Delay subsystem block, as il-

lustrated in Figure 5.10, is a closed loop (high-lighted blocks) structure that generates

the enable signal by using the flow of a single SimEvents entity. The Time-based En-

tity Generator generates an entity at the start of the simulation and sends it into

the closed loop from the top input port of the Path Combiner Block. The entity will

then wait in a FIFO Queue block until the Release Gate blocks opens when the input
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signal to the delay block shows a rising edge (changes from logic low to logic high,

completion of higher-priority TX tasks). After the Release Gate block, the Compute

Ti Delay subsystem block will generate and attach a duration of inter-TX-task delay

(based on the specified modeling option for inter-TX-task delay in the simulation

script) to the entity as an attribute, and the duration is then set as the Timeout

duration of the entity by the Schedule Timeout block. The Start Timer block then

starts the Timeout timer on the entity before the entity enters and waits in the Single

Server block labeled “Inter-TX-task delay server”. The server block has an infinite

service time, which would keep the entered entity inside indefinitely. However, when

the Timeout timer of the entity expires the TO port (Timeout port) of the server

block is enabled, which provides the entity in this subsystem an exit. As a result,

the entity stays in the Single Server block for exactly the duration of the attached

inter-TX-task delay. Once it leaves the server block, the entity enters a second FIFO

Queue block. While the entity stays in the queue, the Number of Entities in Queue

signal port (labeled “#n”) becomes “1” and will thus gives a logic high to the output

of the Inter-TX-Task Delay subsystem block. The output will stay high until the sec-

ond Release Gate block opens and allows the entity to leave the FIFO Queue block.

The second release gate opens on a falling edge from the input signal of the Inter-TX-

Task delay block, which indicates the start of a new instance of any higher-priority

TX task. The entity will then again enter the first FIFO Queue block at the start of

the closed loop and wait for the completion of the higher-priority tasks.

The Compute Ti Delay subsystem block implements the available modeling op-

tions for the inter-TX-task delay. Figure 5.11 below shows the internal structure of

the subsystem block. An entity that enters the subsystem block is first routed by an
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Output Switch block to one of 5 routes, each of which corresponds to one of the 5

modeling options. From top to the bottom of the entity routes, the delay durations

are generated based on a constant value, normal distribution, gamma distribution,

random value from the actual delay data from the test bench results and kernel distri-

bution, respectively, which cover modeling options of using both deterministic models

(constant values) and statistical models (parametric and non-parametric probability

distribution functions, more details on using the statistical models provided in Chap-

ter 6). The top route, which attaches a constant value to the inter-TX-task delay,

uses a single Set Attribute block and simply attaches the constant value specified in

the simulation script to the entity. The rest of the routes have similar structures: a

pseudo-random inter-TX-task delay duration is generated from a Event-Based Ran-

dom Number block and the delay duration value is then passed into a mechanism

that constrains that value within the bounds of inter-TX-task profiled from the test

bench traces.
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Figure 5.11: The Internal Implementation of the Compute Ti Delay Subsystem Block.

Back to the Queuing and Transmission subsystem block, once the message entities

leave the route of its TX task and advance past the Path Combiner block in Figure 5.8,

they enter a Priority Queue block and wait for the queuing assessment in the order

of their internal transmit priorities, as shown in Figure 5.12. Their arrival at the

Priority Queue block indicates the start of execution of their TX task. The message

entities will then one by one advance into the “Semaphore acquire” Resource Acquire

block to request the semaphore resource that protects the critical sections of the

queuing assessment, enqueue and dequeue events, which access the contents of the

transmit queues and TX buffers. The semaphore resource pool has the amount of

1, which means that only 1 message entity will be able to acquire the semaphore at

any given time and thus enforces the mutual exclusion of these events. Beside the

semaphore resource, another custom resource is acquired when an entity leaves the
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Resource Acquire block: the Enqueue Core resource. The Enqueue Core resource

is custom resource defined in the scope of the Queuing and Transmission subsystem

block. It is is meant to be acquired by an message entity that is being processed by

the enqueue core of the dual-core MCU, i.e. during the queuing assessment and the

enqueue process. The Enqueue Core resource is also used for detecting an irregular

enqueue event, which will be discussed in more details later in this section.

Figure 5.12: Acquisition of Semaphore before Queuing Assessment

After the resource acquisition, the entity of a transmit-pending message enters one

of the two routes that model the two transmit FIFO queues (as well as their corre-

sponding TX buffers) of the DFC stack. The routing of message entities is performed

by an Output Switch block based on the Queue Number attribute that is attached to

each messages entity in the Message Arrivals subsystem block. Figure 5.13 shows the

SimEvents structure inside the Queuing and Transmission block that implements the

entity routes for the 2 transmit FIFO queues. The green-background blocks belong

to the route for Queue 0 and the blue-background blocks belong to Queue 1. The

orange-background blocks implement the simulation data logging mechanism, which

will be introduced in the sections below.
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Figure 5.13: SimEvents Blocks that Implement the Transmit Queues, the TX Buffers
and Simulation Data Logging mechanism.

Aside from the common characteristics between the 2 transmit FIFO queues of

the DFC stack, more features have been implemented in the SimEvents model for

Queue 1 compared to Queue 0 (as shown by the difference in complexity between

the blue-background route and the green-background route in Figure 5.13). The

extra features include timer management of the 25ms TX messages, modeling of the

irregular enqueue times and data logging for the reserved slots. For better explanation

of the transmit FIFO queue related implementation, the structures in the green-

background message entity route for Queue 0, which is common to both queues, will

be discussed first, and the extra structures in the Queue 1 route will be discussed

afterwards.

Once a transmit-pending message entity enters the route for Queue 0, it will

advance through a mechanism as shown in Figure 5.14, where the queuing assessment

of message entities is performed.
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Figure 5.14: The Queuing Assessment Mechanism.

The decision for the queuing assessment is made in the Function-Call Subsystem

Block in the center of the mechanism labeled “Queue 0 Routing”. It collects the

necessary message information from the message entity as well as real-time informa-

tion of the DFC stack including the depth of Queue 0, number of messages departed

from Queue 0 (used to decide the slot number in the ring buffer for the next incoming

message) and TX buffer availability, and then makes the decision whether the entered

message is eligible for transmission (enter the queue or bypass the queue and enter the

TX buffer). The decision of the queuing assessment of any message entity is attached

as attributes, which will be used by an Output Switch (labeled “Message delayed?”)

that either routes the message entity into an entity sink (not eligible for transmission,

therefore discarded) or lets the entity advance to Queue 0 or the TX buffer (eligible
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for transmission) through the “OUT1” port. The nominal transmit rate of a mes-

sage (abbreviated as “mPrd” in the model, or message period) is extracted from the

message entity, and is used to decide whether the message is eligible for entering a

reserved slot when all unreserved slots are occupied. After the assessment decision

has been made, the “rsvSlot” attribute, which indicates whether the assessed message

is placed into a reserved slot, is attached to the entity for simulation data logging

purposes, and so is the number of the slot in the FIFO queue that the message is

placed in.

For a message that is eligible for transmission, which departs the “Message De-

layed?” Output Switch block from the “OUT1” port, it will propagate through one

of the 2 routes of the transmit queue mechanism shown in Figure 5.15.

Figure 5.15: The Transmit Queue (Queue 0) Mechanism.

The top route in the mechanism is for messages that bypass the FIFO queue and

enter the TX buffer directly. The only SimEvents block in the top route is a Resource
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Release block that releases the semaphore and enqueue core resources from the de-

parted message entity, since the queuing assessment of the entity has completed. The

bottom route implements the queue process of the messages. An entering message en-

tity first releases only the semaphore resources at the “Release semaphore” Resource

Release block and is then ready to be loaded into Queue 0. The duration of the en-

queue is simulated in the Queue 0 Regular Enqueue subsystem block, which generates

a duration of the regular enqueue time based on the modeling option of the regular

enqueue time specified in the simulation scripts, and stalls the entered message entity

for the generated time duration. The Queue 0 Regular Enqueue subsystem block has

a similar internal structure as Compute Ti Delay subsystem block as shown earlier

in Figure 5.11, in order to implement multiple modeling options for generating the

regular enqueue times. On top of the common structures, there is an extra Single

Server block before the exit of the subsystem block that stalls the entered entity for

the generated regular enqueue time duration. Once a message entity departs from

the Queue 0 Regular Enqueue block, it is considered “inside Queue 0”, and it will

immediately acquire a queue 0 slot count resource (used to keep track of the number

of queued messages in Queue 0) and release the enqueue core and transmit-pending

message count resources. Before it enters the FIFO Queue block labeled “Queue 0”,

which is the actual FIFO queue that holds the enqueue Queue 0 messages, it needs

to go through the Message Entity Replicator subsystem block. The Message Entity

Replicator block creates a replica of the entered entity that carries the same types and

values of attributes, and then sends the replica to the simulation data logging mech-

anism, which allows the data logging mechanism to extract the attached attributes

from the the replica and record the enqueue event (more details provided later in
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Section 5.2.6). The SimEvents library provides a Replicate block but it is not used

in the simulation model due to the fact that the message entities in the simulation

model carry custom resources from time to time and resources can not be replicated.

Instead, the Message Entity Replicator subsystem is implemented to generate replicas

of the entered message and the replicas possesses only the attributes of the original

entity but not the custom resources. Finally, for message entities that wait in the

“Queue 0” Priority Queue block after the Message Entity Replicator block, whenever

the TX buffer becomes available (informed wirelessly by the SimEvents From block

that transmits the number of in-use Queue 0 TX buffer resource), the message entity

at the head Queue 0 will advance forward to the TX buffer from the “Towards TX

buffer” Path Combiner block.

On the other sided of the “Towards TX Buffer” Path Combiner block, is the

mechanism that implements the TX buffer. The structure of the TX buffer mechanism

is shown in Figure 5.16. When a message entity enters, it will first request the

TX buffer and semaphore resources in the Resource Acquire block. The Number

of Entities Departed port (labeled “#d”) of the Resource Acquire block is enabled

to send the number of transmitted Queue 0 messages to the queuing assessment

mechanism wirelessly through a Goto block. Once it has acquired the resources, the

message entity will enter the TX Buffer Loading Time subsystem block, which stalls

the entity in order to simulate the duration it takes to load the message into the TX

buffer. In the case of this thesis, the TX buffer loading time is zero for all simulations

conducted on the simulation model, however, this block provides modeling options in

buffer loading times that can be used for future work with the simulation model. After

the TX buffer loading of the message, the semaphore and Queue 0 slot count resources
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are released from the entity. From this point, the message entity only carries the TX

buffer resources, since it is in the state of “being transmitted on the CAN bus in the

TX buffer”. The entity then is ready to leave the Queuing and Transmission block

and “start its transmission on the CAN network” (leave the DFC stack SimEvents

model and enter the CAN network) after passing through a Message Entity Replicator

block, which logs the dequeue event (or, TX buffer loading event).

Figure 5.16: The TX Buffer Mechanism.

The output of the TX buffer mechanism (connected to the “Original” output port

of the Message Entity Replicator block) of the Queue 0 route is combined with the

output of the TX buffer mechanism of the Queue 1 route through a Path Combiner

block, so that the message entities that are transmitted through both of these routes

leave the Queuing and Transmission subsystem block through a common output port.

For the Queue 1 route, the extra features includes subsystem blocks that handle

the timing of the 25ms TX messages, the irregular enqueue times and logging of usage
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of the reserved slots.

The 25ms TX Message Timing Management subsystem block is created to manage

the timers and transmit-pending flags of the 25ms TX task messages, and its internal

implementation is shown in Figure 5.17.

Figure 5.17: The Internal Implementation of the 25ms TX Message Timing Manage-
ment Subsystem Block.

An entered message entity first arrives at a Get Attribute block and provides

its message ID and a number that identifies its TX task. The message ID and the

bucket number (indicates the TX task that the message belongs to) are then used as

inputs to the “Update Timer and Flag” Function-Call Subsystem block, which clears

the corresponding timer and transmit-pending flag of the entered message saved in

the 25ms TX task message timer memory block. Checking the bucket number is

necessary, since even though both messages from the 12.5ms and 25ms TX tasks are

transmitted through Queue 1, only the 25ms TX task messages have timers.

This 25ms TX Message Timing Management block is deployed in both of the

routes of the transmit queue mechanism of Queue 1, so that when a 25ms TX task

message is eligible for transmission, whether bypass or enter the queue, its timer and
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transmit-pending flag are reset.

In order to simulated the irregular enqueue times, 2 Subsystem blocks are im-

plemented. First, the triggering condition for a irregular enqueue event needs to be

detected, which is a dequeue event of a queued message that happens within the

duration of the regular enqueue process of a transmit-pending message. The Irregu-

lar Enqueue Detection subsystem block is deployed in the TX buffer mechanism of

Queue 1 after the TX Buffer Loading Time block, and its internal structure is shown

in Figure 5.18. When a message enters this subsystem block, at which point it is

considered “already loaded into the TX buffer”, its entry will generate a function

call to the MATLAB Function block that checks the availability of the enqueue core

resource. If the enqueue core is being used, which indicates an on-going enqueue pro-

cess at the time, then the irregular enqueue triggering condition is detected and the

duration of the on-going enqueue process should be extended. The result of detection

from the Irregular Enqueue Detection subsystem block is stored in a Global Data

Store Memory block.
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Figure 5.18: The Internal Implementation of the Irregular Enqueue Detection Sub-
system Block.

Once an irregular enqueue triggering condition has been detected, the duration of

the enqueue process is extended by the Enqueue Time Adjustment subsystem block,

which is deployed after the Regular Enqueue subsystem block in the second route

of the transmit queue mechanism of Queue 1. The internal structure is shown in

Figure 5.19. The entry of a message entity will first generate a function call to the

“Irregular Enqueue Detected?” Function-Call subsystem block to check the result

of triggering condition detection stored in the Global Data Store Memory block. If

no irregular enqueue has been detected, the message entity will advance through the

“OUT1” port to the top route and leave the Irregular Enqueue Detection subsystem

block without any time delay. If an irregular enqueue condition has been detected,

the message entity will be routed to the mechanism shown in the bottom half of the

figure, which is very similar to the internal structure in the Computer Ti Delay sub-

system block and the Queue 0 Regular Enqueue subsystem block mentioned before.
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The mechanism generates the duration of the irregular enqueue time according to

the specified modeling option (in the simulation scripts) for the irregular enqueue

times, and then delays the message entity for the computed duration to simulated

the irregular enqueue.

Figure 5.19: The Internal Implementation of the Enqueue Time Adjustment Subsys-
tem Block.

The last of the extra features in the Queue 1 route is the Reserved Slot Logging

subsystem block, which records of list of timestamps of messages that are loaded into

the reserved slots in Queue 1. The internal structure is shown in Figure 5.20. The
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block is deployed in the transmit queue mechanism of the Queue 1 route after the

Regular Enqueue and Enqueue Time Adjustment subsystem blocks, which means all

enqueue message entities will advance pass this block. The entered message entity

is routed to either the top route, if the message is loaded into a reserved slot, or

the bottom route, if it is loaded into a non-reserved slot, based on the “rsvSlot”

attribute attached after the queuing assessment. If a message entity is loaded into a

non-reserved slot, the entity simply exits the subsystem block. If the message entity

is loaded into a reserved slot, the current simulation time (from a Clock block) is first

attached to the entity through the Set Attribute block, and is then extracted and

saved to a MATLAB workspace log together with the message ID and slot number of

the enqueued message.

Figure 5.20: The Internal Implementation of the Reserved Slot Logging Subsystem
Block.

5.2.5 Return of Successfully Transmitted Messages

Any message that is originally transmitted by the DFC stack SimEvents model will be

routed back into the model by the Vector CAN bus block (Whinton (2016)) through
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the Return port. Figure 5.21 shows the route for a returned message entity in the

root level of the SimEvents model before it re-enters the Queuing and Transmission

subsystem block.

Figure 5.21: The Return Route for Successfully Transmitted Messages in Root Level
of the SimEvents Model.

The Measurement Jitter subsystem block models the measurement jitter intro-

duced by the host environment. It has a similar internal structure to other subsystems

that are used to model the timing effects from the host environment, more specifically,

the Compute Ti Delay subsystem, the Regular Enqueue subsystem and the Enqueue

Time Adjustment subsystem blocks. The duration of the jitter is generated with one

of the 5 modeling options (constant value, random value from the actual jitter data

and pseudo-random number based on a normal distribution, gamma distribution or

kernel distribution) based on the specified option in the simulation script.

Once the measurement jitter has been applied, the returned message entity enters

a Resource Release block and releases the TX buffer resource it has been carrying

from the start of its transmission (after it is loaded into the TX buffer). The released

TX buffer resource can then be acquired by a queued message in the transmit queues

if there is any.

After the release of the TX buffer resource, the message entity has finished the

complete life cycle of its transmission. It will enter the Queuing and Transmission

subsystem block and arrive at the simulation data logging mechanism so that the
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transmission-complete ISR event can be captured. Differring from the way that the

enqueue and dequeue events are logged through the use of a replica of the message

entity, the logging for ISR events uses the original message entity as the entity at this

point carries no resources and is to be discarded at a Entity Sink.

5.2.6 Simulation Data Logging

The simulation data logging mechanism is a structure implemented in the Queu-

ing and Transmission subsystem block, shown as orange-background blocks in Fig-

ure 5.13. The mechanism captures the enqueue, dequeue and transmission-complete

ISR events in the DFC stack simulation model, and saves the list of events in a

MATLAB workspace variable, which is referred to as the “model generated trace”.

As briefly mentioned in previous sections, the simulation data logging mechanism

records events through receiving SimEvents entities that carry information of the

event and of the message involved in that event (“event entities”). For enqueue or

dequeue events, a replica of the enqueued or dequeued message entity is created and

sent to the simulation data logging mechanism at the time of the event, carrying

information such as the message ID, slot number in the queue, etc. Since there is

zero elapsed simulation time between the creation of the replica and the reception

of the replica at the simulation data logging mechanism, the exact time of the event

can be captured. For the transmission-complete ISR events, the original message

entity is received at the simulation data logging mechanism instead of a replica.

As a results, a total of 5 input entity routes are connected to the simulation data

logging mechanism, as shown in Figure 5.22, where the routes with blocks in green

background are for the enqueue and dequeue events in Queue 0, respectively, routes

97



M.A.Sc. Thesis - Zhizhao Qian McMaster - Software Engineering

with blue-background blocks are for the enqueue and dequeue events in Queue 1 and

the magenta-background route is for returned message entities of the transmission-

complete ISR events. The Set Attribute blocks in the input entity routes attach an

attribute that indicates the type of event, which can be the enqueue, the dequeue or

the transmission-complete ISR event.

Figure 5.22: The Merge of Input Entity Routes before the Simulation Data Logging
Mechanism.

A Priority Queue block is deployed after the Path Combiner blocks to sort the

event entities that arrive at exactly the same time, based on the type of the event.

The order of priority from high to low is: the transmit-complete ISR event, the

dequeue event, the enqueue event. With TX buffer loading time set to zero, after
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a transmission-complete ISR event, a message is dequeued and loaded into the TX

buffer with zero elapsed simulation time, which will cause the event entity for the

dequeue event to arrive at the logging mechanism at exactly the same time as the

transmission-complete ISR event entity. In situations like this, the Priority Queue

block will make sure that these 2 consecutive events are logged in the correct order

by putting the transmission-complete ISR event entity at the head of the queue.

Once an event entity leaves the Priority Queue block, it enters the simulation data

logging Mechanism, which is shown in Figure 5.23.

Figure 5.23: The Simulation Data Logging Mechanism.

The information of the captured event and associated message is extracted from

the entered event entity through the Get Attribute block, and is then fed into a

Function-Call Subsystem block together with the current simulation, queue depth

and number of transmitted messages of both Queue 0 and Queue 1. Each time
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an event entity enters the logging mechanism, the “Add Entry to Trace” Function-

Call Subsystem block formats the received information into an entry for the model

generated trace in the format of an array of values, and then outputs the array to the

To Workspace block, which appends the new entry to the workspace variable of the

trace. Any entity that enters the simulation data logging mechanism is discarded in

an Entity Sink block after its associated event has been recorded.

Figure 5.24 shows a section of a raw model-generated trace from a simulation run.

A “-1” is shown in the cells that are to be ignored, and it is used instead of zero

because some of the useful values in the model generated trace can actually be zero.

Similar to the parsed test bench trace, a row in the model generated trace represents

a captured event. The first column shows the time of the event in milliseconds.

The red-background columns show the message ID of either an enqueue or a dequeue

event that takes place in Queue 0, if a message ID appears in these column. Similarly,

the blue-background columns shows the message IDs associated with the enqueue or

dequeue events in Queue 1. The message ID of a transmission-complete ISR event is

shown in the green-background column. The last 3 columns on the right of the chart

show the queue depth and total number of transmitted messages of the associated

queue of the current event, and the backward time difference between the current and

the previous rows, respectively.
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Figure 5.24: A Section of a Sample Model Generated Trace.
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Chapter 6

Results and Validation

This section will discuss the results from the simulations conducted on the DFC stack

simulation model and validate the accuracy of the simulation results against the test

bench experiment results.

Similar to the test bench experiments, the DFC stack will be the only transmitting

node on the CAN network, which means there will be no other sources of bus load on

the CAN network. The list of steps for the validation of the DFC stack simulation

model is as follow:

• Conduct simulations on the DFC stack simulation model under the “ideal im-

plementation”, or the ideal environment where there is no randomness in timing

of the events and no interferences from the host environment, and compare the

message sequences in the simulation results against knowledge of the DFCstack

obtained from specification documents and the test bench experiments.

• Create statistical models of the timing effects introduced by the host environ-

ment.
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• Conduct simulations for all experiment scenarios in a simulated practical en-

vironment that closely resembles the host environment of the DFC stack (in

the case of this thesis, the test bench), where the timing effects from the host

environment are modeled. The simulations results are then compared against

the nominal values and results from the test bench experiments.

The simulations under the ideal implementation is to validate the correctness

of the logic of the simulation model, to ensure that the simulation model handles

the transmit messages according to the specification documents, as discussed in Sec-

tion 6.1. More specifically, the results is used to confirm whether the transmit mes-

sages and TX tasks are executed at expected times of arrival, whether the messages

are enqueued and loaded into the TX buffers in the expected order, whether only

eligible messages are loaded into the reserved slots and whether the delayed messages

(transmit-pending messages that are not eligible for transmission in the current in-

stance of their TX tasks) are assessed for queuing again in a later instance of their

TX tasks.

As identified and analyzed from the test bench experiment data, the timing effects

of the host environment have considerable impact on the behavior of the DFC stack.

In order to create a practical environment that closely resembles the host environment

of the actual system, statistical models of these timing effects are created based on

the duration data from the experiments, and are used as input parameters to con-

figure the simulation model. Then, simulations conducted with the combination of a

logic-validated DFC stack simulation model and an simulated host environment will

theoretically produce end results that can reflect the behaviors of the DFC running

on the actual system, in other words, the simulation results should be identical or at
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least very close to the test bench experiment results. Section 6.2 details the method

used for creating the statistical models of the timing effects from the host environ-

ment, the simulations conducted in a simulated host environment incorporating these

timing effects, and the validation of the simulation results, which proves the accuracy

of the combination of the simulation model and the statistical models of the host

environment against real-life data. The simulation results under the simulated prac-

tical environment will be validated against the test bench experiment results in terms

of the transmit rates (TX rates) and output sequences of messages on the CAN bus

(the message transmit rates will also be compared to their nominal values, which are

defined off-line prior to the simulations and corresponding test bench experiments).

Simulations under both the ideal implementation and practical environment will

consist of 2 different configurations of the DFC stack and 7 different sets of transmit

messages for each configuration (pre-defined in the simulation script), which are iden-

tical to the test bench experiments. In other words, a total of 14 simulation scenarios

will be simulated under both the ideal implementation and the practical environment.

As explained in Section 4.1.3, for both configurations of the DFC stack, there are no

reserved slots in Queue 0, and the transmit rate threshold for entering Queue 0 is set

at 6.25 milliseconds so that only the 6.25ms TX task messages will be transmitted

through Queue 0. While one of the configurations specifies 18 non-reserved slots in

Queue 1 and that messages with transmit rates less than or equal to 75ms can enter

the reserved slots, the other configuration specifies 19 non-reserved slots in Queue 1

and 50ms of entering transmit rate threshold.Figure 6.1 shows message sets including

the message IDs, transmit rates and internal transmission priorities of the transmit

messages. The message IDs are listed in the order of their internal transmission
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priorities: the higher its position in the list, the higher the transmit priority.

Figure 6.1: The Message IDs and Nominal Transmit Rates of Transmit Messages in
Each Message Set, Listed in the Order of Internal Transmission Priority.

In order to conveniently refer to different simulation scenarios, a code is assigned

to each simulation scenario, which captures only the differences in the configurations

of each scenario, more specifically, the calibrations in Queue 1 and the message set.

Any simulation scenario is referred to as the “a-b-c simulation”, where the number

“a” stands for the number of non-reserved slots in Queue 1, the number “b” stands

for the the transmit rate threshold for entering the reserved slots in Queue 1, and the

number “c” is the message set number. For instance, for the simulation scenario that

has 18 non-reserved slots in Queue 1, 75ms as transmit rate threshold for reserved
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slots and message Set 3, it is called the “18-75-3 simulation”.

6.1 Simulations in the Ideal Implementation

During simulations under the ideal implementation, the durations of all events in the

DFC stack are determined based on deterministic models, and, in the case of this

thesis, are set to constant values. More specifically, the durations of the transmission

time of messages on the bus (message bus times) and the timing effects introduced by

the host environment are specified as constant values to eliminate randomness in the

system. For a realistic enqueue performance, the regular enqueue time of any message

is set at 8 microseconds, the arithmetic mean of regular enqueue times computed from

the test bench data. The irregular enqueue time is set at 0, which means the total

duration of enqueue is not extended for message enqueues that are interrupted by

the transmission-complete ISR. The inter-TX-task delays, ti’s, are set at 0, which

means the execution of the TX tasks are not affected by RTOS scheduling. And the

measurement jitter is also set at 0, which means that the RTOS causes no jitter in

the captured transmission-complete ISR events and that the durations of measured

message transmission times on the bus from the simulations are the same as the actual

transmission times.

To simulate the bus time for each transmitted message, the DFC stack SimEvents

model is connected to a SimEvents Single Server block, which simulates the CAN bus

and stalls an entering message entity for a specific amount of time (the transmission

time on the bus). All message transmitted in the ideal implementation have a DLC

value of 8 (for consistent bus times for all messages and thus better readability in

simulation results), and are always transmitted without bit stuffing. Similar to the
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test bench experiments, all messages in the simulations will have standard identifiers,

and the baudrate of the CAN bus is set at 500 kilobits per second. The total number

of bits in a CAN data frame without bit stuffing is (47 + 8 * DLC), and thus the bus

time of the data frame is then:

tbus =
47 + 8 ∗DLC

baudrate

At a baudrate of 500 kilobits per second, the bus time of a CAN frame is thus 222

microseconds. Hence the service time of the “CAN bus” Single Server block is set to

222 microseconds.

Since there is no randomness in simulations on the ideal implementation, only

1 simulation run is conducted for each simulation scenario. For each simulation

scenario, simulation data is collected for a duration of 2 seconds of simulation time

(in comparison, the trace captured in the test bench experiments only provides 1

second of data).

The ideal implementation is validated by comparing the model generated mes-

sage sequences from all 14 simulation scenarios to the knowledge obtained from the

specifications documents and hardware test bench traces. Comparison of the message

sequence include the messages IDs of those messages that are placed into the transmit

queues, the order in which they are placed and the order in which the messages are

loaded into the TX buffers. The queuing assessment should control the queue depths

according to the calibration values (Section 3.2.1), and the order in which messages

are enqueued should follow the transmit priorities of those messages. The order of

messages in the dequeue sequence should be consistent with the order of messages in

the enqueue sequence due to the nature of the FIFO queues.
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The comparison of the message sequences is performed on all captured events

during a complete hyper-period of all the transmit messages, during which all transmit

messages are expected to appear at least once on the CAN bus. The term “the start

of a hyper-period” is defined as the point in time when all messages become pending

for transmission, which only occurs when all TX tasks arrive at the same time. By

this definition, the start of any hyper-period in a simulation, and in a test bench

experiment, is the point in time where there is the largest number of transmit-pending

messages, and thus the transmit queues have the most load. The starting point of the

message sequence comparison is the start of the first hyper-period, after which the

events captured in the trace are expected to repeat themselves once every duration

of the hyper-period.

In message Sets 1, 2 and 4, the total number of transmit messages in each queue

is no more than the maximum capacity of that queue (total number of slots in the

queue plus the TX buffer). This ensures that even at start of a hyper-period, all

transmit-pending messages will be eligible for transmission and thus no messages will

be delayed. On the other hand, message Sets 3, 5, 6 and 7 have larger numbers of

messages than the queue capacities, and it is quite likely that some of their messages

will be delayed at the start of hyper-periods. Therefore, in order to demonstrate

how the simulation model handles delayed messages, the thesis will provide detailed

discussion on simulations with message Sets 3, 5 and 7 (message Set 6 is very similar

to Set 7), more specifically, the 18-75-3, 19-50-5 and 19-50-7 simulations. Since the

behavior of the reserved-slot mechanism with either DFC stack configuration can be

well observed from a single simulation run, only one of the configuration is demon-

strated in detail for the chosen message sets (for instance, only the 18-75-3 simulation
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is discussed, but the 19-50-3 simulation is not). The behavior of the simulation model

when there are no delayed messages is also demonstrated in the results of these sim-

ulations, from captured events that occur in other parts of the hyper-periods when

only a subset of the transmit messages become pending for transmission. Message

Sets 3, 5 and 7 have Queue 1 messages. Message Set 3 also has messages that are

transmitted through Queue 0, which will demonstrates Queue 0 related behaviors.

6.1.1 The 18-75-3 Simulation

In the 18-75-3 simulation, the message set contains messages with periods of 6.25ms,

12.5ms, 25ms, 50ms and 100ms, which yields a hyper-period of 100ms. Figure 6.2

shows all the expected arrivals of TX tasks in a complete hyper-period in the 18-75-3

simulation, and Figure 6.3 shows the expected transmit-pending messages in each

instance of the arrived TX tasks.
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Figure 6.2: TX Task Arrivals During a Complete Hyper-Period in the 18-75-3 Simu-
lation.
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Figure 6.3: Expected Transmit-pending Messages in Each Instance of the TX Tasks.

Figure 6.4 and Figure 6.5 show a section of the model generated trace captured

during the 18-75-3 simulation. The trace shows events that are related to the first

instance of each TX task, which arrives at the start of the first hyper-period in the

simulation run. Since the timers and transmit-pending flags of messages are reset at
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the beginning of simulation (simulation time 0ms), the start of the first hyper-period

in the 18-75-3 simulation is at simulation time 100ms.
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Figure 6.4: Model Generated Trace of the the 18-75-3 Simulation under the Ideal
Implementation, from the Start of the First Hyper-period, Part 1
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Figure 6.5: Model Generated Trace of the the 18-75-3 Simulation under the Ideal
Implementation, from the Start of the First Hyper-period, Part 2

Each line in the model generated trace represents an event. The first column is the

absolute time in milliseconds since the start of the simulation. The blue-background

columns show information of enqueue and dequeue events in Queue 0. In an enqueue

event, the enqueued message ID is shown in the left of the 2 blue-background columns
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and the target slot number in Queue 0 is shown in the right column; in a dequeue

event, the ID of the message that is loaded into TX buffer 0 is shown on the right

column while the left column is left blank (a TX buffer loading event of a message,

which bypasses the queue and enters the TX buffer directly, shows up in the identical

format in the trace). Similar to the blue-background columns, the green-background

columns shows the enqueue and dequeue events in Queue 1. If a message ID is shown

in the yellow-background column, it means that line is a transmission-complete ISR

event, and the ID is of the message that has just been successfully transmitted.

The last 3 right-most columns in the trace show the queue depth and total number

of transmitted messages of the queue associated with the captured event, and the

backward time difference between the current event and previous event in the trace.

At simulation time 100ms, the first of the 6.25ms messages, Message 5, is assessed

for transmission. Since Queue 0 is empty and TX Buffer 0 is available, Message 5

bypasses Queue 0 and enter the TX buffer directly, as shown in the first line of the

model generated trace in Figure 6.4. The second message, Message 6, is assessed right

after the first TX buffer loading event and is loaded into Queue 0 after 8 microseconds,

at simulation time 100.008ms. Message 6 is placed into Slot 1 (the slot number counts

start from 1) of Queue 0 and the queue depth of Queue 0 is incremented to 1. This

enqueue process continues for another 9 messages and stops after Message 11 is loaded

into Queue 0 at simulation time 100.08ms. After this enqueue event, Message 11 has

taken the last available slot in Queue 0 and Queue 0 has reached its full capacity.

There are still 3 more 6.25ms TX task messages (Messages 12, 13 and 14) pending

for transmission, however due a full queue they will not be able to enter the queue

during this instance of the TX task. In fact, these 3 messages never get transmitted:
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there is a total of 10 slots in Queue 0 and 14 messages pending for transmission in

each instance of the 6.25ms TX task, the first message bypasses the queue and enters

the TX buffer, the next 10 messages take up the entire queue space, and the last 3

messages are never eligible for transmission due to a full queue. The enqueue sequence

so far for the Queue 0 messages are as expected the current combination of the DFC

stack configuration and message set.

From simulation time 100.08ms, the queuing assessment starts for Queue 1 mes-

sages, which are managed by the 12.5ms and the 25ms TX tasks. The first 12.5ms

TX task message, Message 17, bypasses Queue 1 and enters TX Buffer 1 since Queue

1 is empty and TX Buffer 1 is available. Then the rest of 12.5ms TX task messages

and all 25ms TX task messages enters the queue in order of their transmit priorities.

Since in message Set 3 the total number of transmit messages for Queue 1 is less than

the total number of slots in Queue 1, all of these messages are eligible for transmis-

sion. There are a total of 12 transmit messages for Queue 1, the first message enters

the TX buffer directly and the next 11 enter Queue 1, taking up Slots 7 through 17

in the case of this simulation (not always Slots 1 through 12 due to the nature of the

ring buffer structure of the FIFO queues).

At simulation time 100.222ms, 222 microseconds after Message 5 is loaded into

TX Buffer 0 for transmission on the bus, Message 5 has finished transmission and a

transmission-complete ISR is generated. Message 6 is then loaded into TX Buffer 0

for transmission, and the queue depth decrements by 1. Between Message 6 in TX

buffer 0 and Message 17 in TX Buffer 1, Message 6 wins arbitration on the CAN bus

and starts transmission. After 222 microseconds, an ISR event is captured, indicating

the completed transmission of Message 6. This continues until all Queue 0 messages
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are transmitted on the bus, since the message IDs of Queue 0 messages always have

smaller numerical values than the Queue 1 messages. Once the last Queue 0 message,

Message 11, is successfully transmitted at simulation time 102.442ms, the Queue 1

messages are then transmitted on the bus, starting with Message 17, which has been

previously loaded to TX Buffer 1.

In the rest of the trace captured during the 18-75-3 simulation, the TX tasks

execute at their designated rates, the transmit messages arrive at expected instances

of TX tasks, and the message sequences are in expected orders according to the DFC

stack specifications.

6.1.2 The 19-50-5 Simulation

As message Set 5 contains transmit messages with periods of 12.5ms, 25ms, 50ms

and 100ms, the duration of the hyper-period is 100ms. The expected arrivals of TX

tasks within a hyper-period is the same as the 18-75-3 simulation (Figure 6.2). Since

message Set 5 does not contain any 6.25ms messages, the 6.25ms TX task has zero

execution time. The expected arrivals of the TX tasks and their transmit messages

of a complete hyper-period in the 19-50-5 simulation are shown in Figure 6.6. For

easier reference, a number is shown in the parentheses beside each instance of the

TX tasks, separately numbering the instances of each TX task since the start of the

hyper-period.
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Figure 6.6: Expected Transmit-pending Messages in Each Instance of the TX Tasks
in the 19-50-5 Simulation.

Compared to the 18-75-3 simulation, both the 12.5ms and the 25ms TX tasks

in the 19-50-5 simulation manage a larger number transmit messages. There are a

total of 23 transmit-pending messages (6 messages from the 12.6ms TX task and 17

messages from the 25ms TX task) at the start of the first hyper-period in the 19-50-5

simulation. The total number of transmit-pending messages exceeds the maximum

capacity of Queue1, and therefore some of these messages are expected to be delayed

when they they become pending for transmission.

Figure 6.7 through Figure 6.10 show a section of the model generated trace cap-

tured during the 19-50-5 simulation. The section of the trace shows all events related

to the TX task instances that arrive from simulation time 100ms to simulation time

125ms, during which all messages that have become transmit-pending at the start of

the hyper-period are transmitted (some transmit-pending messages delayed to a later
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instance of their TX tasks in which they become pending for transmission).
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Figure 6.7: Model Generated Trace of the 19-50-5 Simulation, Ideal Implementation,
Part 1. 120
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Figure 6.8: Model Generated Trace of the 19-50-5 Simulation, Ideal Implementation,
Part 2. 121
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Figure 6.9: Model Generated Trace of the 19-50-5 Simulation, Ideal Implementation,
Part 3. 122
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Figure 6.10: Model Generated Trace of the 19-50-5 Simulation, Ideal Implementation,
Part 4.

At simulation time 100ms, the first of the transmit-pending messages, Message 5

from the 12.5ms TX task, bypasses Queue 1 and enters the empty TX buffer 1. The

enqueue sequence then starts with the rest of the transmit-pending messages: the 5

remaining messages from the 12.5ms TX task and then the 25ms TX task messages.

Once the 12.5ms TX task messages have entered Queue 1, there are only 15 available

slots left in the queue (20 slots in total, 5 occupied), which is not sufficient for the

17 transmit-pending messages from the 25ms TX task. As a result, at the end of

the first instance of 25ms TX task, only 15 out of 17 messages have entered Queue 1

by simulation time 100.16ms. The 2 messages that are not eligible for transmission,

Message 16 and 19, will be assessed for queuing again during the next instance of

the 25ms TX task, which arrives at simulation time 125ms.One thing to note in the

19-50-5 simulation is the use of the reserved slot in Queue 1. By configuration, 19

out of 20 slots in Queue 1 are non-reserved slot, and thus, as Queue 1 is being filled

up, the last available slot is a reserved slot. The last message loaded into Queue 1

in the enqueue sequence is Message 15 from the 25ms TX task. It has a nominal

transmit-rate of 50ms, which is equal to the threshold for entering the reserved slots,
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and thus it is eligible to enter the reserved slot (the criterion for entering a reserved

slot is to be below or equal to the threshold). The order of message enqueuing is

identical to internal transmit priority of these messages.

Once Message 5 is successfully transmitted on the bus, indicated by the transmission-

complete ISR event at simulation time 100.222ms, the dequeue sequence of Queue

1 starts. The messages in Queue 1, Message 6 through Message 15, are dequeued

consecutively in the order of their enqueue events. The last enqueued message that

becomes pending for transmission at the beginning of the hyper-period, Message 15,

completes its transmission at simulation time 104.662ms.

At simulation time 112.5ms, the second instance of the 12.5ms TX task arrives and

starts transmitting its messages. As Queue 1 has been emptied and the TX buffer is

available, Message 5 again bypasses Queue 1 and enters the TX buffer directly. Then

the rest of the 12.5ms TX task messages enter Queue 1, and are transmitted in the

expected order.

At simulation time 125ms, the third instance of the 12.5ms TX task and the

second instance of the 25ms TX task arrive at the same time. All the 12.5ms TX

task messages become pending for transmission as usual, while only 6 of the 25ms

TX task messages become pending for transmission, more specifically, the 6 messages

that have a common transmit rate of 25ms. Aside from these 6 messages, Message

16 and 19 are still pending for transmission since the previous instance of the 25ms

TX task. As a result, a total of 14 messages are transmit-pending at simulation

time 125ms (6 from the 12.5ms TX tasks and 8 from the 25ms TX task). The first

message, Message 5, enters TX buffer 1 directly as Queue 1 is empty and the TX

buffer is available. The rest of the transmit-pending messages are all able to enter
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Queue 1 as all 20 slots in Queue 1 are available. After the enqueue sequence from

simulation time 125ms to 125.104ms, the transmit-pending messages are loaded into

Queue 1 in the order of their transmit priorities. From simulation time 125.222, the

dequeue sequence starts. The enqueued messages are transmitted on the bus in the

order of their enqueue events.

Since Message 16 and 19 are not eligible for transmission at the start of the hyper-

period and are delayed till the second instance of the 25ms TX task, their timers and

transmit-pending flags are not reset until the second instance of the 25ms task, which

is executed at simulation time 125ms. Consequently, Message 16, which has a nominal

transmit rate of 50, will become transmit-pending again at simulation time 175ms.

Hypothetically, if Message 16 was successfully transmitted in the first instance of the

25ms TX task, it would become transmit-pending at simulation time 150ms. The

delayed transmission of Message 16 has created a phase difference of 25ms since the

start of the first hyper-period. Instead of predicted arrivals shown in Figure 6.6,

Message 16 will be transmit-pending at simulation time 175ms, 225ms, 275, etc..

The same effect is created on arrivals of Message 19, which will be transmit-pending

at simulation time 225ms, 325ms, 425ms, etc. instead of 200ms, 300ms, 400ms, etc.

In the rest of the trace, the TX tasks execute at their designated rates, the transmit

messages arrive at expected instances of the TX tasks, and the message sequences

are in expected orders according to the DFC stack specifications.

6.1.3 The 19-50-7 Simulation

The message Set 7 contains transmit messages with periods of 12.5ms, 25ms, 75ms

and 100ms, and thus the duration of the hyper-period is 300ms. Similar to the 19-50-5
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simulation, the 19-50-7 simulation has a number of Queue 1 messages that exceeds

the maximum capacity of slots in Queue 1. Consequently, it is also very likely in

the 19-50-7 simulation that some of the transmit-pending messages at the start of a

hyper-period will be delayed due to a full Queue 1. Based on the simulation results of

the 19-50-7 simulation, it appears that the number of Queue 1 messages in the 19-50-7

simulation is actually so large that there are messages being delayed at points in time

other than the start of a hyper-period. Detailed explanation will be discussed below.

First, Figures 6.11 and 6.12 show the model generated trace at the start of the

first hyper-period in the 19-50-7 simulation (at simulation time 300ms), which shows

the message sequences that are related to only the 1st instances of the 12.5ms and

25ms TX tasks.
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Figure 6.11: Model Generated Trace of Ideal Implementation, the 19-50-7 Simulation,
from the Start of the First Hyper-period, Part 1.
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Figure 6.12: Model Generated Trace of Ideal Implementation, the 19-50-7 Simulation,
from the Start of the First Hyper-period, Part 2.

As expected, the first transmit-pending message, Message 5, bypasses Queue 1

and enters the TX buffer directly, and Messages 6 through 11 enter Queue 1 in the

order of their internal transmit priorities. Once Message 11 has entered the queue, all

slots in Queue 1 have been occupied (including the reserved slot, which is occupied

by Message 11). Consequently, the rest of the 25ms TX task messages, Messages 12

through 27, which are expected to be pending for transmission, are not loaded in
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the first instance of the 25ms TX task. Since Messages 12, 13, 14, 15 and 16 have

transmit-rates for 25ms, they will naturally appear in the 2nd instance of the 25ms

TX task no matter being delayed or not, while Messages 19 and 27 should appear

as an addition to the rest of the messages since they are expected to be pending for

transmission.

Figure 6.13 shows the enqueue events that are performed during the 2nd instance

of the 25ms TX task (arrived at simulation time 325ms) in the model generated trace.

Figure 6.13: Model Generated Trace for the 2nd Instance of the 25ms TX Task.

After the enqueue events for the 12.5ms TX task messages, the transmit-pending

25ms TX task messages are then loaded into Queue 1. Message 19, which was ex-

pected to become transmit-pending from the previous instance of the 25ms TX task,

is the last enqueued message in this instance of the 25ms TX task. The other message

129



M.A.Sc. Thesis - Zhizhao Qian McMaster - Software Engineering

that is also expected to be transmit-pending, Message 27, is still not yet enqueued

even though Queue 1 still has 4 available slots. In fact, Message 27 is loaded into

Queue 1 during the 3rd instance of the 25ms TX task since the start of the first

hyper-period, which arrives at simulation time 350ms, and the enqueue sequence in

that instance (together with the 12.5ms TX task instance that arrives at the same

time) is shown in Figure 6.14 below.

Figure 6.14: Model Generated Trace for the 3rd Instance of the 25ms TX Task.

This outcome of Message 27 is because the fact that its earlier arrivals before the

start of the first hyper-period have been delayed, and thus its arrivals after the delay

have a phase difference from predicted arrivals assuming no delays. Message 27 is not

enqueued during the 2nd instance of the 25ms TX task while there are still available

slots in Queue 1, because it has not become transmit-pending at simulation time
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325ms. Thus it is loaded into Queue 1 during the 3rd instance of 25ms TX task as

it becomes transmit-pending at simulation time 350ms. To demonstrate the cause of

this outcome, sections of the model generated trace before the start of the first period

will be discussed below. With a nominal transmit rate of 100ms, Message 27 first

becomes pending for transmission at simulation time 100ms. Figure 6.15 shows the

enqueue sequence in Queue 1 during TX tasks that arrive at simulation time 100ms.

Figure 6.15: The Enqueue Sequence of TX Tasks Arrived at Simulation Time 100ms.

By simulation time 100.16ms, the 20 slots in Queue 1 has been taken by Messages

6 through 16. Message 27 is not eligible for transmission since the queue is full, and

it is therefore delayed for assessment until the next instance of the 25ms TX task,
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which arrives at simulation time 125ms. Figure 6.16 shows the enqueue sequence in

Queue 1 since simulation time 125ms.

Figure 6.16: The Actual Arrival of the 1st Instance of Message 27.

At simulation time 125.136ms, Message 27 is successfully loaded into Queue 1,

and thus its timer and transmit-pending flag are reset. Consequently, Message 27

will become transmit-pending again in 100ms, or, at simulation time 225ms. The

enqueue sequence during the TX tasks that arrive at simulation time 225ms is shown

in Figure 6.17.
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Figure 6.17: The Enqueue Sequence of TX Tasks Arrived at Simulation Time 225ms.

During the instance of the 25ms TX task that arrives at simulation time 225ms,

messages with transmit rates of 75ms become pending for transmission, and they

are assessed for queuing before Message 27 due to higher internal transmit priorities.

Consequently, Queue 1 if fully filled before Message 27 is assessed, and Message 27 is

delayed again until the next instance of the 25ms TX task, which arrives at simulation

time 250ms. And as expected, Message 27 is successfully enqueued during the 25ms

TX task arrived at simulation time 250ms, as shown in the enqueue sequence in

Figure 6.18 below. As a result, after the enqueue, Message 27 is then expected to

become transmit-pending at simulation time 350ms, but not at 300ms.
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Figure 6.18: The Actual Arrival of the 2nd Instance of Message 27.

The generated trace from the 19-50-7 simulation shows that the DFC stack simu-

lation model is able to produce expected message sequences when having a relatively

large quantity of transmit messages under the ideal implementation.

The simulations under the ideal implementation has demonstrated expected mes-

sage sequences in all 14 simulation scenarios, and thus validate the correctness of the

logic of the DFC stack according to the specification documents.

6.2 Simulations in Practical Environment

This section first details the method for creating the statistical models of the timing

effects from the host environment, and then discusses the simulation results and the
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validation of the simulation model under the simulated practical environment.

The simulation model is capable of simulating 4 types of timing effects from the

host environment based on their statistical models that are specific to the target host

environment. The timing effects are the inter-TX-task delays (ti’s), the measurement

jitter, the regular and the irregular enqueue times of transmit messages. From the

visual observation of the test bench experiment data, the durations of these timing

effects seem to be random, and it is more reasonable to simulate them by using statis-

tical models than deterministic models such as constant values. To create a statistical

model for each of the timing effects, it is necessary to first determine the existence of

correlation among the data points, and then, once confirmed that there is no correla-

tion (i.e. the durations of a timing effect are independent from each other), a suitable

probability distribution is chosen to model the durations. The correlation among the

data points is analyzed based on the autocorrelation plot created through the MAT-

LAB function xcorr. As for choosing the most suitable probability distribution, 3

candidate probability distributions are created (fitted on the duration data through

the MATLAB function fitdist) and compared to the distribution of the duration

data. The candidate probability distributions include 2 parametric distributions (the

normal distribution and the gamma distribution) and 1 non-parametric distribution

(the kernel distribution). If the distribution of the duration data of a timing effect

appears to be in an uncommon shape that is visually different from the parametric

distributions, the kernel distribution is used to model that timing effect. Otherwise,

the chi-squared test is performed to determine which parametric distribution between

the normal and gamma distributions best resembles the duration data of the timing

effect.
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Due to the existence of randomness in using statistical models (random number

generation, etc.), it is desirable to gather as much simulation data as possible, in

order to gain more confidence that the captured data can closely reflect the behavior

of the simulation model. However, due to limited access to the research facility at

the industrial partner, it was not possible to gather sufficient data from the industrial

test bench to allow a more rigorous analysis of the statistical nature of the data in

order to be able to precisely determine how many simulation runs would be needed.

As a result, for simulation data gathering, it was decided to conduct simulations in

the MATLAB environment for a specified duration of time that requires a reasonable

amount of effort to complete. More specifically, simulations conducted under the

practical environment takes around 5 hours, during which 20 simulation runs have

been completed for each simulation scenario and each simulation run captures data

for 2 seconds of simulation time. In contrast to the test bench experiment data, which

provides only a single 1-second experiment for each scenario, the simulations provide

as many as 40 times the events captured during test bench experiments.

Different from the simulations under the ideal environment, where the DFC stack

SimEvents model is connected to a SimEvents Single Server block that simulates

constant bus times for all transmit message, an instance of the CAN Bus blocked

implemented in the Vector CAN stack library is deployed instead of the single server

block in order to simulate a more realistic CAN bus, in which the bus times of messages

are computed based on their DLCs (Whinton (2016)). For simulations under the

simulated practical environment, two aspects of the simulation results are validated

against the test bench experiment data: (i) the transmit rates of the transmit message

(also compared to nominal values) and (ii) the output message sequence on the bus.
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6.2.1 Statistical Models of the Regular and Irregular En-

queue Times

The durations of the message enqueue times are profiled from the traces of all 14

experiment scenarios and are combined into 3 sets of data: the Queue 0 regular

enqueue times, Queue 1 regular enqueue times and the Queue 1 irregular enqueue

times.

As observed from the test bench experiment data, the irregular enqueues have only

occurred in Queue 1. It appears that the transmission time of a single message on the

bus is longer than filling Queue 0 with messages from the empty state to full capacity

(enqueuing 10 messages into a total of 10 slots in Queue 0), and consequently no

message enqueue has been interrupted by a transmission-complete ISR and irregular

enqueues have not occurred in Queue 0.

To determine the correlation among the durations of the message enqueue times,

the normalized autocorrelation plots of the Queue 0 regular enqueue times, Queue

1 regular enqueue times and the Queue 1 irregular enqueue times are shown in Fig-

ures 6.19, 6.20 and 6.21, respectively.
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Figure 6.19: Autocorrelation of Normalized Regular Enqueue Times in Queue 0.
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Figure 6.20: Autocorrelation of Normalized Regular Enqueue Times in Queue 1.
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Figure 6.21: Autocorrelation of Normalized Irregular Enqueue Times in Queue 0.

The y-axes in the figures show the normalized autocorrelation, and the x-axes

show the lag in number of data points. In the plots, all 3 sets of data have an

autocorrelation value of “1” when the lag is “0”, and a low autocorrelation value

(well below “1”) anywhere else, which indicates that the data sets are independent

and there is no correlation among the data points in each set.

The next step is to find the probability distribution that best resembles the ac-

tual data. To visually compare between the candidate probability distributions, Fig-

ure 6.22 shows the normal distribution, the gamma distribution and the kernel distri-

bution along with the histogram of the actual duration data of the regular enqueue

times in Queue 0.
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Figure 6.22: Candidate Probability Density Functions and the Histogram of Regular
Enqueue Times in Queue 0.

The x-axis displays the enqueue times in microseconds. The histogram of enqueue

times is plotted in blue vertical bars and number of occurrences indicated by the bars

is shown on the left y-axis. The red, yellow and purple lines are the probability density

functions of the normal, gamma and kernel distributions, respectively, that are fitted

on the actual duration data of the regular enqueue times in Queue 0. As shown

in the figure, the histogram appears to be close to the shape of a bell curve, which

is more similar to the parametric distributions (normal or the gamma distribution)

than the kernel distribution.Therefore the durations of the Queue 0 regular enqueue

times are to be modeled by either the normal or gamma distribution, based on the

result of a chi-squared test between each probability distribution and the actual data.

From the chi-squared tests for the normal and the gamma distribution, while the
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null hypothesis is rejected for both, the probability value (p value) for the gamma

distribution is smaller than that of the normal distribution, which indicates that

the gamma distribution better resembles the actual data. As a result, the gamma

distribution is used to model the durations of the Queue 0 regular enqueue times.

Figures 6.23 and 6.24 show the fitted probability density functions versus his-

togram plots of the regular and irregular enqueue times in Queue 1, respectively.

Figure 6.23: Candidate Probability Density Functions versus Histogram of Regular
Enqueue Times in Queue 1.
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Figure 6.24: Candidate Probability Density Functions versus Histogram of Irregular
Enqueue Times in Queue 0.

The gamma distribution is used for modeling the regular enqueue times in Queue 1,

for similar reason when deciding the probability distribution for modeling the Queue

0 regular enqueue times. However, for the irregular enqueue times in Queue 1, the

histogram of the durations has a double-hump shape, which appears different than

the parametric distribution candidates. As a results the kernel distribution function

is used for modeling the durations of the irregular enqueue times in Queue 1.

6.2.2 Statistical Model of the Inter-TX-Task Delays

Figures 6.25 and 6.26 shows the autocorrelation of the profiled durations of the ti,1’s

(inter-TX-task delays between the 6.25ms and 12.5ms TX tasks) and ti,2’s (inter-TX-

task delays between the 12.5ms and 25ms TX tasks), respectively.
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Figure 6.25: Autocorrelation of Normalized ti,1.
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Figure 6.26: Autocorrelation of Normalized ti,2.

From the autocorrelation plots, we can conclude that the inter-TX-task delays are

independent and there is no correlations among the profiled ti,1 or ti,2 values, since

for both sets of data the autocorrelation has a value “1” only when the lag is “0”.

Figures 6.27 and 6.28 below show the candidate probability density functions

versus histogram plots of ti,1 and ti,2, respectively.
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Figure 6.27: Candidate Probability Density Functions versus Histogram of ti,1.
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Figure 6.28: Candidate Probability Density Functions versus Histogram of ti,2.

For both ti,1 and ti,2, there multiple humps in the shape of their histograms.

Consequently, the normal and gamma distributions, which projects relatively simpler

shapes, are not as suitable as the kernel distribution. Therefore, the kernel distribu-

tion is used to model both ti,1 and ti,2 from the host environment.

6.2.3 Statistical Model of the Measurement Jitter

The measurement jitter is applied by the host environment to each individual suc-

cessful message transmission. The amount of profiled measurement jitter durations is

considerably larger than other types of timing effects from the host environment. Be-

fore testing the autocorrelation on the large amount of data, it is helpful to first split

the entire set of measurement jitter data into smaller sets based on a characteristic
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that divides the transmitted messages, and check if the smaller sets have different data

patterns that are potentially caused by that characteristic. Thus, the duration data

is first split into several separated sets based on the transmit rates of the transmit

messages. In other words, the measurement jitter durations in each set are profiled

from transmit messages of the same nominal transmit rate. The existing transmit

rates in the 7 message sets are 6.25ms, 12.5ms, 25ms, 50ms, 75ms, 100ms and 750ms.

Thus the measurement jitter data are first split into 7 sets. After plotting the his-

togram of the jitter durations in each set, the shapes of these histograms appear to

be similar, and distribution of the durations in all data sets appears to congregate

within a very similar range. Therefore, it is concluded that the measurement jitter

caused by the host environment is not dependent on the nominal transmit rate of

the messages, and it is safe to analyzes the autocorrelation among the the collective

durations of the measurement jitter across messages with different nominal transmit

rates. Figure 6.29 below shows the autocorrelation plot of the combined measurement

jitter durations, and the plot concludes that the measurement jitter durations from

the test bench experiments are independent.
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Figure 6.29: Autocorrelation of Normalized Measurement Jitter.

The probability density functions of the candidate probability distributions versus

histogram of the measurement jitter is plotted in Figure 6.30 below. Due to the

double-hump shaped histogram, the kernel distribution is a better fit compared to the

normal and gamma distributions. Thus the kernel distribution is used for modeling

the measurement jitter in the simulated practical environment.
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Figure 6.30: Candidate Probability Density Functions versus Histogram of Measure-
ment Jitter.

6.2.4 Transmit Rates of Messages

For validation of message transmit rates under the simulated practical environment,

the transmit rates of the messages in the simulations (“simulated transmit rates”)

will be compared to the nominal transmit rates and the profiled transmit rates from

the corresponding test bench experiment trace (“test bench transmit rates”). The

simulated and the test bench transmit rates are compared between each simulation

scenario and its corresponding test bench experiment scenario which has the same

DFC stack configuration. The definition of “accurate transmit rate in a simulation”

compared to the nominal or the test bench transmit rate requires that the 95% con-

fidence interval of the simulated transmit rate of a message ID contains the nominal

150



M.A.Sc. Thesis - Zhizhao Qian McMaster - Software Engineering

or the test bench transmit rate within its bounds, respectively, where the the 95%

confidence interval is computed by applying the MATLAB function paramci (“con-

fidence interval for probability distribution parameters”) on the normal distribution

fitted on the data of the simulated transmit rate.

The validation procedure is shown in Figure 6.31. For each simulation scenario, 20

simulation runs are conducted, and thus there is a total of (20 * 14 = 280) simulation

runs in a complete validation procedure of the message transmit rates. From each

single simulation run, the numbers of messages IDs, whose simulated transmit rate

95% confidence intervals contains its nominal or test bench transmit rates within

the bounds, called the “number of containment” of the nominal or the test bench

transmit rates, are gathered and are added together to compute an overall percentage,

the “percentage of containment”, which is calculated by dividing the total numbers of

containment by the total number of occurrences of all message IDs, and the percentage

of containment is the quantitative result of the validation. The data collection process

will be explained further below by different stage in the validation procedure.
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Figure 6.31: The Data Collection Process for Message Transmit Rates Validation.

The first step is the calculation of the message transmit rates of the simulations

and the test bench experiments (the nominal transmit rates are pre-defined for the

experiment scenarios and require no calculation). The transmit rate of a message is

calculated by taking the arithmetic mean of the inter-arrival times of that message

on the bus, and the inter-arrival times are computed by taking the backward time

difference of every 2 consecutive transmission-complete ISR events associated with

the same message ID. This is done for both the simulated and the test bench trans-

mit rates. And then, the 95% confidence interval of the simulated transmit rate of

message is computed from a normal distribution fitted on the inter-arrival times of

that message message during a simulation (normal distribution is fitted on the inter-

arrival times through the MATLAB function fitdist, and the confidence interval is

calculated through the MATLAB function paramci). For both the simulation model
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and the test bench setup, the transmit rate calculation is based on the timestamps

of the transmission-complete ISR events in the traces, which records the completion

times of successful transmissions of each message. In contrast, the dequene events

are not used for the inter-arrival time calculation because the completion time of the

TX buffer loading event of a message does not always reflect the time that a message

appears on the bus (such as when a message is loaded into the TX buffer while the

CAN bus is not idle, etc).

For each simulation run, the statistics related to both the simulated and the corre-

sponding test bench message transmit rates are computed and saved in a spreadsheet.

Figure 6.32 shows the transmit rate statistics of a single simulation run of the 18-75-3

simulation scenario.
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Figure 6.32: Message Transmit Rate Validation Statistics from a Single Simulation
Run of the 18-75-3 Simulation Scenario.

The first column in Figure 6.32 lists the message IDs of the transmit message

set in the 18-75-3 simulation scenario. The message IDs are listed in descending

order of the internal transmit priorities. Columns 2, 3 and 4, which have uncolored

background, list the arithmetic mean, minimum and maximum of the inter-arrival

times of messages in the simulation run. (The maximum inter-arrival times can be

used for worst-case scenario analysis of message response times, where the maximum

inter-arrival time of messages are compared to their deadlines to see if any deadlines
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are missed.) The fifth column in the spreadsheet indicates if the message ID of

each row has appeared at least 10 times on the bus. This is necessary since the

probability distribution fitting function (fitdist) in MATLAB requires at least 10 data

samples, and if the number of occurrences of a message is too low the statistics will be

considerably less meaningful. Therefore, if a message ID does not have sufficient data

(i.e. appear on the bus for less than 10 times), no comparison with the confidence

interval will be made and there will be a “NO” in the fifth column, and thus this

message ID is not eligible to be used towards the overall result, the percentage of

containment. The columns in green background show the lower and upper bounds of

the 95% confidence interval of the simulated transmit rate of each transmit message.

The columns in yellow background show the nominal transmit rate of each message

and whether the simulated transmit rate confidence interval of that message contains

the nominal transmit rate within its bounds. And similarly, the blue-background

columns show the test bench experiment transmit rates and containment of the 95%

confidence interval of the simulated transmit rates.

In this particular spreadsheet, it appears that Message IDs 12, 13 and 14 do not

have sufficient data to be compared with the nominal and the test bench transmit

rates. This is because, as mentioned in Section 6.1.1, the maximum capacity of Queue

0 during a single execution of the 6.25ms TX task is 11 and there are 14 message in the

6.25ms TX task in the 18-75-3 simulation scenario, and consequently the 3 messages

with the lowest priorities never get transmitted. This outcome is also agreed by the

test bench trace of the 18-75-3 experiment, as no events related to these message IDs

are captured in the test bench trace (indicated by a “0” in the first blue-background

column, where it shows the test bench experiment transmit rates). And, as expected,
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the transmit rate validation result from any simulations of the 19-50-3 simulation

scenario, which has the same transmit message set, also shows the same outcome, as

shown in Figure 6.33.

Figure 6.33: Transmit Message Transmit Rate Validation Statistics from a Simulation
Run of the 19-50-3 Simulation Scenario.

As shown in both Figure 6.32 and Figure 6.33, in the columns that indicate the

numbers of containment (the right of the yellow-background and blue-background

columns), most of the message IDs have a simulated transmit rate confidence interval
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that contains the nominal and test bench values within the bounds. However, for

Message 24 in Figure 6.32 and Messages 24 and 25 in Figure 6.33, their test bench

transmit rates lie outside of the 95% confidence intervals of there simulated transmit

rates. Because timing effects from the host environment are modeled with pseudo-

random number generation, it is normal that the simulated transmit rates and their

confidence intervals fluctuate, and thus occasionally the confidence intervals do not

contain the nominal and/or test bench transmit rates within the bounds. And to

demonstrate other possible outcomes, Figures 6.34 and 6.35 show statistics of a dif-

ferent simulation run for the 18-75-3 and 19-50-3 simulation scenarios, respectively, in

which, for all messages IDs, the simulated transmit rate confidence intervals contain

both the nominal and test bench transmit rates within their bounds.
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Figure 6.34: Another Sample of Transmit Rate Validation Result of the 18-75-3
Simulation Scenario.
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Figure 6.35: Another Sample of Transmit Rate Validation Result of the 19-50-3
Simulation Scenario.

To explain how the transmit rate statistics from a single simulation run is used

towards the overall results of the validation, the transmit rate statistics of the 18-75-3

simulation scenario shown in Figure 6.32 will be used as an example for discussion.

The 18-75-3 simulation scenario transmits message Set 3, which has a total of 26

transmit messages. Since there is not enough data for 3 of the message IDs (Mes-

sages 12, 13 and 14), the total number of eligible message IDs for transmit rate
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validation is 23. Out of the 23 eligible message IDs, 22 of them have a simulated

transmit rate 95% confidence interval that contains their test bench transmit rates

within the bounds (except for Message 24), and thus the number of containment

for the test bench transmit rate is 21 in this particular simulation run. Since the

nominal transmit rates of all eligible message IDs fall within their simulated transmit

rate confidence interval, the number of containment for nominal transmit rate is 23.

Similarly, the numbers of containment are counted for all 20 simulation runs of the

18-75-3 simulation scenario and they are listed in Figure 6.36, along with the number

of eligible message IDs in each simulation run. Each row in the figure represent a

simulation run, and it shows the numbers of containment for the nominal transmit

rate in yellow background, the test bench transmit rates in blue background and the

total number of eligible message IDs in red background. The totals of these numbers

are summed and displayed in the row labeled “Total”, and they will be later summed

together with total numbers from other simulation scenarios towards the calculation

of the overall results, the percentages of containment. Note that the percentages of

containment of this particular simulation scenario are also shown in the chart but

they are just for debug purposes (to check if the collected data are within expected

range, etc.).
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Figure 6.36: Intermediate Results: Numbers of Containment from All Simulation
Runs of the 18-75-3 Simulation Scenario.

Once completed the 20 simulation runs for each simulation scenario, the results

from all 14 simulation scenarios are collected into a chart shown in Figure 6.37. Each

row in the middle that has a simulation scenario code in the first column shows the

total numbers of containment and total number of eligible message IDs of that partic-

ular simulation scenario. To compute the overall results of the validation procedure,

the totals of the two categories of number of containment from all 14 simulation sce-

narios are separately summed, and are shown in the row labeled “Overall number of
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containment” near the bottom of the chart. The total of eligible message IDs from

all 14 scenarios is also computed and is shown in the same row. Then, the overall

percentage of containment for the nominal transmit rate is computed by dividing

the overall number of containment by the total number of eligible messages IDs, and

the same is performed for the test bench transmit rate. The overall percentages of

containment are shown in the last row in Figure 6.37.

Figure 6.37: Transmit Message Transmit Rate Validation Overall Results: Percentage
of Containment of the 95% Confidence Interval.

It appears that the overall percentage of containment of both nominal and test

bench transmit rates are very close to 100%, and are at approximately 99.15% and

97.75%, respectively.

The overall percentage of containment for the test bench transmit rate is slightly

lower than that for the nominal rate. There are 2 likely causes to this outcome:
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• The message transmit rates profiled from the test bench traces (arithmetic

means of the inter-arrival times) are generally slower (larger in value) than

their nominal values, as can be seen in Figures 6.34 and 6.35, and this happens

in all 14 test bench experiments. The test bench transmit rates vary randomly

by message IDs, and vary for the same message ID in different experiment

scenarios, which would introduce uncertainty into the comparison.

• As mentioned earlier, the timing effects from the host environment are modeled

with pseudo-random number generation. Consequently, the model generated

trace from each simulation run is unique, and thus will show a different set of

message transmit rates that may have a higher or a lower number of contain-

ment.

The transmit rates of messages from simulations under the practical environment

are very to their nominal and test bench experiment values. Thus it is concluded

that the DFC simulation model is capable to transmit messages at the designated

transmit rates in the practical (realistic) environment compared to the hardware test

bench experiments.

6.2.5 Output Message Sequence on the CAN Bus

For validation of output message sequence on the bus compares the instances of the

TX task, during which a message ID is transmitted. A message ID with “accurate

output message sequence on the bus” during a simulation is transmitted in exactly

the same instances of its TX task in the simulations compared to the corresponding

test bench experiment that has identical DFC stack configuration. In order to make

the comparison, each instance of the TX task is given an index (starting from 1,
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from the start of the analysis) during a simulation, and the indices of the TX task

instances corresponded to the transmissions of a message ID is collected into a list,

for all messages IDs in the simulation. And the same process is performed for test

bench experiment data as well. Figure 6.38 demonstrates how the “list of indices”

of TX task instances is created for several message IDs in a hypothetical simulation

scenario.

Figure 6.38: Creation of the List of Indices of TX Task Instances, in which the
Message is Transmitted.

In this hypothetical simulation, the start of the first hyper-period is at simulation

time 100ms. Therefore, for validation purposes, the first instance of interest of the

25ms TX task is the one that arrives at 100ms. The transmit messages shown in this

example, Messages 301, 302 and 303, have transmit rates of 25ms, 50ms and 100ms,

respectively, and they belong to the 25ms TX task. The 25ms TX task arrives at

100ms, 125ms, etc. Message 301 is transmitted in every single instance of the 25ms

TX task from the start of the first hyper-period, and thus its list of indices is [ 1, 2,

3, 4, 5 ]. Message 302 is transmitted during every other 25ms TX task at a transmit
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rate of 50ms, and thus its list of indices is [ 1, 3, 5 ]. Lastly, Message 303 has a rate

of 100ms and therefore its list of indices is [ 1, 5 ].

For validation of the output message sequence, for each simulation run, the entire

model generated trace is profiled in order to identify all instances of the TX tasks, in

which a message ID is transmitted, and the list of indices of those TX task instances

are created for each message ID. The same profiling process is also performed for the

test bench traces. Then, for each message ID, the list of indices from the particular

simulation run is compared against the list of indices of the same message ID from

the corresponding test bench experiment. If 2 lists of indices are identical for a

message ID, then that message ID is counted as a message ID that has accurate

output message sequence on the bus. One thing to note, since the test bench traces

only contain 1 second of captured events while the simulations collect traces for 2

seconds, it is expected that the model generated traces capture more instances of TX

tasks. Therefore, the comparison of the list of TX task instances is performed from

the first to the last captured TX task in the test bench trace.

Similar to the validation of message transmit rates, the complete validation pro-

cedure for the output message sequences also consists of 20 simulation runs for each

of the 14 simulation scenarios, and thus a total of 280 simulation runs are conducted.

The validation procedure is demonstrated in Figure6.39.
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Figure 6.39: The Data Collection Process for Output Message Sequence Validation.

The total number of message IDs that have a matching output sequence (“sequence-

matched message IDs”) from each simulation run are summed together towards the

overall number of sequence-matched message IDs. The overall result, the percentage

of sequence-matched message IDs, is computed by dividing the overall number of

sequence-matched message IDs by the total number of eligible message IDs through-

out the validation procedure (message ID that appears on the bus at least once in a

simulation run).
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Figure 6.40: Output Message Sequence Validation Statistics from a Single Simulation
Run of the 19-50-3 Simulation Scenario.

Figure 6.40 above shows the statistics for output message sequence from a single

simulation run of the 19-50-3 simulation scenario. The message IDs of the transmit

message set is shown in the first column. The second column indicates whether the

simulated output message sequence in this particular simulation run matches the

output message sequence of the same message ID in the corresponding test bench
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experiment. If a “N/A” is shown in this column, it means that this message ID

has not shown up at all in the test bench, and the message ID in that row is then

not eligible to be accounted the overall results. The third column shows the index

of the first mismatch in the list of the TX task instances, if the output message

sequences mismatch for message ID in that particular row. Otherwise a “N/A” is

shown in the third column. In this particular simulation run, besides the 3 ineligible

message IDs (Messages 12, 13 and 14, which never get transmitted due to limited

maximum capacity of Queue 0), the output sequences in model generated traces of

all messages are identical to their corresponding output sequences in the test bench

trace, and consequently the entire third column shows “N/A”. The 2 bottom rows

show a summary of results for this simulation run, more specifically, the number of

eligible message IDs, the number of sequence-matched message IDs and the percentage

of sequence matched message IDs. In this particular simulation run, out of the 23

eligible message IDs, 23 message IDs have identical output message sequences on the

bus compared to the corresponding test bench trace, which yields a 100% match.

As the durations of the timing effects from the host environment are modeled

with pseudo-random number generation and their durations vary from one instance

to another, it is possible to see mismatched output message sequences. Figure 6.41

below shows the simulation statistics from a single simulation run of the 18-75-7 sim-

ulation scenario, in which 2 message IDs have mismatched output message sequences

compared to the test bench trace.
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Figure 6.41: Output Message Sequence Validation Statistics from a Single Simulation
Run of the 18-75-7 Simulation Scenario.

In this simulation run, Messages 19 and 27 (both belong to the 25ms TX task)

169



M.A.Sc. Thesis - Zhizhao Qian McMaster - Software Engineering

appear to have mismatched output sequences in this particular simulation run. The

index of the first mismatched instance of the 25ms TX task is shown in the last

column. The scheme for determination of the index of the first mismatch is shown

in Figure 6.42, which demonstrates the cases of 2 hypothetical message IDs with

mismatched output sequences on the bus.

Figure 6.42: Determination of the Index of the First Mismatched Instance of the TX
Task in Output Message Sequence Comparison.

When comparing between the 2 lists of indices, the test bench list is used as the

reference. In the case of a mismatch, the index to be displayed in the simulation

statistics chart is taken from the list of indices of the test bench trace. For Message

401, it is transmitted during the 12th instance of its TX task in the simulation, while

in the test bench experiment it is transmitted during the 11th instance. Based on

the pattern in the list of indices, Message 401 is mostly likely to become transmit-

pending every 2 instances of the TX task (or in instance of the TX tasks with an odd-

number index), and thus it should become transmit-pending during the 11th instance.

However, according to list of indices from the simulation, it is not transmitted until

the 12th instance. This could be caused by a full FIFO queue at the time of arrival

of Message 401, and thus Message 401 is assessed again in a later instance of the TX
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task. As a result, the comparison of the output sequences is a mismatch, and the

index of the first mismatch shows “11”. In the case of Message 402, it is transmitted

during the 26th instance of its TX task in the test bench experiment, but in the

simulation it is transmitted during the 25th instance. Different from Message 401,

which is delayed in the simulation run, Message 402 seems to be delayed in the test

bench experiment instead. However, since the test bench list is reference, “26” is

shown in the simulation statistics as the index of the first mismatched instance of the

TX task, instead of “25”.

Once 20 simulation runs have been completed for a simulation scenario, the per-

scenario results are gathered in a chart like the one shown in Figure 6.43, which shows

the simulation statistics for all simulation runs of the 18-75-5 simulation scenario.
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Figure 6.43: Output Message Sequence Validation Simulation Statistics of All Simu-
lation Runs for the 18-75-5 Simulation Scenario.

The second column in Figure 6.43 shows the number of sequence-matched message

IDs in each simulation run, and the third column shows the number of eligible message

IDs. The summed totals are shown row labeled “Total” near the bottom of the chart.

Figure 6.44 shows the overall results for the output message sequence validation.
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Figure 6.44: Overall Simulation Results for Output Message Sequence Validation.

The total number of sequence-matched message IDs from each simulation scenario

is listed in the 2nd (blue-background) column and the total number of eligible message

IDs is listed in the 3rd (red-background) column. The overall statistics are shown in

the 2 bottom rows (green-background) of the chart, showing the overall numbers of

both sequence-matched and eligible message IDs from all 14 simulation scenarios, and

the overall percentage of the sequence-matched message IDs.

The simulation results show that a considerably high percentage, approximately

97.67%, of transmit message have identical output message sequences on the CAN

network during the simulations compared to the corresponding test bench experi-

ments. It can be concluded that, under the simulated practical environment, the

DFC stack simulation model is able to transmit its messages in expected sequences

according to the test bench experiment data.
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6.3 Summary

In an ideal environment, where there is no randomness and no interference from the

host environment, the DFC stack simulation model is able to transmit the periodic

messages in expected sequences according to the specification documents. Under the

practical environment, where the timing effects of the host environment are simulated

through the use of statistical models based on the experiment data, the simulation

model is able to transmit the messages at transmit rates that are acceptably close

to their nominal transmit rates and profiled transmit rates observed from test bench

experiments. Furthermore, the output message sequences of a considerably high

percentage of messages are identical to the output message sequences observed in the

test bench experiments. It can be concluded that the simulation model of the DFC

stack is able to closely model the behaviors of the actual DFC stack running on the

hardware test bench.

Although there are mismatches in the comparisons for the message transmit rates

and output message sequences between the simulation and test bench results, the

amount of mismatches is at an acceptable level and appears to be due to the ex-

istence of randomness in the simulated practical environment. The timing effects

introduced by the host environment are modeled with pseudo-random number gen-

eration and thus their durations are expected to fluctuate. Furthermore, the flow

of a message inside the DFC stack simulation model always involves not a single,

but rather multiple modeled timing effect, which means that the fluctuation in the

timely behaviors of each message transmission is affected by multiple pseudo-random

number generations. As a result, even if there are mismatches in the comparisons of

transmit rates and output message, the combination of the simulation model and the
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simulated practical environment is capable of producing meaningful simulation data

that close resembles the actual DFC stack running on the hardware test bench.

To look at the mismatches from a different perspective, since the statistical models

of the timing effects are created based on the experiment results bench data, the

simulations results obtained under the effects of the timing effects of the hardware

test bench should be able to effectively predict practical but possibly unseen behaviors

of the DFC stack running on the actual test bench. This can be further verified if

more data is collected from the test bench, which, however will exceed the limitation

of this thesis.

If comparing between the results from the simulations conducted under the ideal

implementation and the simulated practical environment of the same DFC configura-

tion, discrepancies can be observed in the timing behaviors such as message transmit

rates. Figure 6.45 shows an example of discrepancies in the message transmit rates

in a 19-50-5 simulation.
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Figure 6.45: Example of Discrepancies in Message Transmit Rates between Simula-
tions Under The Ideal Implementation and The Simulated Host Environment.

The chart first shows the 95% confidence intervals of the simulated transmit rates

under the practical environment, and they are compared to the simulated transmit

rates in ideal implementation, nominal transmit rates and the test bench transmit

rates. It appears that a relatively large number of ideal-implementation transmit

rates are not contained within the confidence interval of the practical-environment

transmit rates (compared to only 1 of the nominal transmit rate and 0 test bench rate
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that are not contained). The difference between these ideal-implementation transmit

rates and the nominal rates can be several orders of magnitude larger compared to

that of the test bench rates: such as in the case of Message 19, the difference between

the ideal-implementation and the nominal transmit rate is 25ms and there is only a

difference of approximately 0,01ms for the test bench rates. Examples like this can be

found in all simulation scenarios. Since the simulation model with the simulated host

environment has been validated in terms of closely resembling the behaviors of the

actual system (i.e. practical-environment transmit rates resembles test bench trans-

mit rates), these discrepancies effectively demonstrate the improvement in the fidelity

of the simulation results when having the details of the actual system incorporated

into the implementation of the simulation model.
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Conclusions

In the ideal implementation where there is no randomness and interference from the

host environment, the simulation model of the DFC stack is capable to enqueue and

load messages into TX buffers in expected orders according to the specification doc-

uments. With the help of the method proposed in this thesis, which aims to identify

and incorporates the system details into the implementation of the simulation model,

it is possible to run simulations under a simulated practical environment, where the

timing effects introduced by the host environment (the combination of the RTOS and

the dual-core ECU test bench) are simulated through the use of statistical models

of their duration data. And the simulations under the simulated practical environ-

ment have proved that the simulation model is capable of transmitting the periodic

messages at rates that are close to the nominal and test-bench-experiment transmit

rates, and that the output message sequences on the CAN bus during the simulations

closely resembles the output sequences of the actual test bench experiments. It can be

concluded that the combination of the simulation model and the method used in this

research is capable of generating realistic simulation results that closely reflect the
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behaviors of the actual system. This should provide a high level of confidence to the

user of this simulation model that the model is a possible substitute of the hardware

test bench setup that also offers additional possibilities, such as vast diversity of test

scenarios or different purposes at various stages of development cycle.

7.1 Future Research

Even though very good results have been obtained during the validation of the simu-

lation model, mismatches have occurred in the comparisons of message transmit rates

and output message sequences during simulation. We believe these mismatches are

due to the use of random number generation (statistical models) during the simu-

lations. It is possible that these mismatches are signs of behaviors that only occur

infrequently but did not appear in the limited amount experiment data available for

this research. This can be validated if more experiment results are available, more

specifically, more data from each test bench experiment scenario, or data from ex-

periments with a larger variety of combination of DFC stack calibration values. If

successfully validated, the simulation model can be used to conveniently predict corner

cases that occur at very low possibility and require a large amount of experimentation

on a test bench.

Future research could also focus on further validation of the model in additional

application scenarios. The DFC stack model could also be integrated with the Vector

CAN stack model of Whinton (2016) to allow simulation of networks with ECUs

utilizing the different CAN stacks as often occurs in production vehicles. Further

investigation of how the combined simulation models could be used in the network

design workflow of engineers working on new vehicle designs or trying to validate fixes
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for issues that have been identified in existing networks.
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