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ABSTRACT

A dynamic real-time optimization (DRTO) formulation with closed-loop prediction

is used to coordinate distributed model predictive controllers (MPCs) by rigorously

predicting the interaction between the distributed MPCs and full plant response in

the DRTO formulation. This results a multi-level optimization problem and that is

solved by replacing the MPC quadratic programming subproblems by their equivalent

Karush-Kuhn-Tucker (KKT) first-order optimality conditions to yield a single-level

mathematical program with complementarity constraints (MPCC). The proposed for-

mulation is able to perform both target tracking and economic optimization with

significant performance improvement over decentralized control, and similar perfor-

mance to centralized MPC. A linear dynamic case study illustrates the performance

of the proposed strategy for coordination of distributed MPCs for different levels of

plant interaction,. The method is thereafter applied to a nonlinear integrated plant

with recycle, where its performance in both set-point target tracking and economic

optimization is demonstrated.

Subsequently, this study presents two techniques for approximation of the closed-loop

prediction within the DRTO formulation - a hybrid closed-loop formulation and an

input clipping formulation. The hybrid formulation generates closed-loop predictions

for a limited number of time intervals along the DRTO prediction horizon, followed by

an open-loop optimal control formulation extended to rest of the horizon. The input

clipping formulation utilizes an unconstrained MPC optimization formulation for each

distributed MPC, coupled with the application of an input saturation mechanism.

The performance of the approximation techniques is evaluated through application

to case studies based on linear and nonlinear dynamic plant models respectively. The

approximation techniques are demonstrated to be more computationally efficient than

than the rigorous counterpart without significant loss in performance.
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The performance of the proposed DRTO formulation can be further improved by the

introduction of nonlinearity. The nonlinear dynamic plant model is firstly introduced

in the DRTO formulation while maintaining the linear formulation for the distributed

MPCs. The performance of resulting formulation is demonstrated and compared

against the linear counterpart. The nonlinear MPC formulation is then included in

both lower-level control implementation and DRTO formulation. By reformulating

the Lagrangian of the nonlinear MPC optimization subproblems, the nonlinear MPC

formulation is successfully implemented in the DRTO formulation. The performance

of such DRTO formulation is further improved and shown using a nonlinear case

study.

The conclusion of this study is summarized and the potential directions of this re-

search such as large-scale applications, variation of MPC implementations, and robust

model-based control are outlined and explained in the end.
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Chapter 1

Introduction

A centralized model predictive control (MPC) system that considers all control ac-

tions simultaneously within a single optimization problem can be adopted for achiev-

ing optimal process operation. However, a collection of MPC controllers is usually

implemented for large scale systems such as oil refineries and chemical plants, each of

which is responsible for the control performance of an associated subsystem [Qin and

Badgwell, 2003; Scattolini, 2009]. Distributed MPC systems aim to provide equiva-

lent performance to that of a centralized counterpart, with additional flexibility and

reliability brought by the independence of each controller [Pannocchia, 2013].

In decentralized control, plant subsystems are independently controlled with no com-

munication between or coordination of the individual MPC subsystems. Failure to

recognize interaction between plant subsystems leads to performance degradation,

particularly when these interactions are strong. Distributed control architectures, on

the other hand, involve communication between the MPC subsystems and can take

different forms, such as use of a common MPC objective function (cooperative) or

use of independent local performance objectives (noncooperative). While the MPC

formulations may model the effects of inputs manipulated by other MPC subsystems,
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each MPC subsystem calculates and manipulates only the subset of inputs with which

it is associated. The MPC systems can alternatively be coordinated through a higher-

level supervisory system in a hierarchical architecture. A brief description of these

distributed control paradigms is provided in the next section; comprehensive reviews

are given in Scattolini [2009]; Christofides et al. [2013]; Pannocchia [2013].

This thesis presents a strategy for coordination of distributed MPC systems follow-

ing a hierarchical approach, through an upper-level dynamic real-time optimization

(DRTO) system. The DRTO system communicates with the underlying MPC sub-

systems through set-point trajectories that are calculated based on the prediction of

the closed-loop response of the plant under the distributed MPC system. The MPC

subsystems do not communicate directly with each other; they represent standard

MPC formulations with local dynamic models. We consider DRTO objectives based

on plant economics or set-point target tracking. This work extends the DRTO closed-

loop prediction paradigm proposed in Jamaludin and Swartz [2017b,a] to distributed

MPC systems.

Due to the inclusion of closed-loop prediction in the DRTO formulation, the issue of

computational complexity brought by problem size and large control horizon needs

to be addressed. Two approximation techniques are developed to reformulate the

rigorous DRTO formulation while preserving the performance. The approximation

techniques serve as extensions based on the work proposed by Jamaludin and Swartz

[2017a].

In order to further improve the performance, nonlinear dynamic plant model is sub-

sequently incorporated in the DRTO formulation to provide more accurate surrogate

plant response for the closed-loop prediction. The ordinary differential equations

(ODEs) are discretized using the implicit Euler approximation. While other dis-

cretization methods such as orthogonal collocation and direct multiple shooting can

be used, the Euler approximation is shown to be sufficient for the case study consid-
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ered.

The coordination scheme is not limited to linear MPC formulations. If the lower

level MPCs are nonlinear MPCs (NMPCs), the DRTO formulation can be also easily

adopted. The nonlinear formulation of MPCs can be included in the DRTO for-

mulation through use of the Lagrangian. By using the Karush-Kuhn-Tucker (KKT)

optimality conditions, the NMPC problem can be transformed into sets of algebraic

equations with appropriate Jacobian calculations. With both nonlinear dynamic plant

model and nonlinear MPCs, the DRTO formulation exhibits even better performance

for the case study considered.

The remainder of this thesis is organized as follows. Chapter 2 presents a brief review

of literature on different paradigms for coordination of distributed MPC systems and

recent developments in the area of DRTO. Chapter 3 presents the detailed DRTO

coordination scheme with solution approach and implementation variants, along with

linear and nonlinear case studies to demonstrate the use of the DRTO formulation.

Chapter 4 presents the approximation techniques applied to the DRTO formulation

and demonstrates the improvement in terms of computational complexity for such re-

formulations. Chapter 5 introduces various degrees of nonlinearity to the DRTO for-

mulation and control implementations and the further improvement of performances

are illustrated using nonlinear case studies. Chapter 6 gives a summary of conclusions

and contributions and provides a few future directions to be considered in subsequent

research endeavors.



Chapter 2

Literature Review

This chapter aims to provide a brief literature review on the concepts of distributed

model predictive control (MPC) and real-time optimization (RTO) so that the es-

sential background can be effectively illustrated and the novelty of this study can be

shown by comparison.

2.1 Distributed model predictive control

Large-scale industrial systems typically employ MPC systems in a decentralized con-

figuration, largely for reasons of maintainability and reliability [Scheu and Marquardt,

2011; Stewart et al., 2010]. Decentralized control, in which there is no communica-

tion between subsystems either directly or through a coordinator, can result in poor

performance and instability in the presence of strong interactions. Different method-

ologies have been developed to address this issue, with communication-based and

coordination-based MPC strategies being the two major paradigms. Some interest-

ing work on this topic is summarized in Maestre et al. [2014].

4
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The communication-based MPCs can be configured to either allow the cooperation

among MPCs under a global objective function, or only permit essential parameters

to be exchanged among controllers which do not share the same objective. Cam-

ponogara et al. [2002] describe a noncooperative MPC scheme in which local MPC

subsystems are solved in an iterative manner utilizing information from their neigh-

bors, and state conditions under which the scheme converges to an equivalent central-

ized MPC problem. They also provide stability conditions for a scheme in which the

local subsystems communicate their solutions only once during each control interval.

Venkat et al. [2008] consider both noncooperative and cooperative distributed MPC

schemes; the former utilizes local objective functions and upon convergence yields a

Nash equilibrium, while in the latter, the local MPCs utilize a common objective func-

tion. The general case involves iteration with exchange of information between local

controllers within each sample time. However, stability of the cooperative scheme is

established for termination of iterations prior to convergence. Stewart et al. [2010]

prove stability of cooperative MPC as a subcase of suboptimal MPC. They also con-

sider the stability of output feedback cooperative MPC with estimation error. Sun and

El-Farra [2008] consider a quasi-decentralized control system in which communication

between local controllers is limited. Linear state feedback is assumed, and the max-

imum allowable information update period for closed-loop stability is characterized.

Chen et al. [2012] propose a distributed Lyapunov-based economic MPC (LEMPC)

scheme in which the local controller inputs are sequentially computed. Stability of the

method is established, and its performance compared to that of centralized EMPC

through application to a chemical process network case study. Farina and Scattolini

[2012] present a noncooperative distributed MPC scheme in which local MPC sub-

systems do not require dynamic models of other subsystems, and require only state

information from their neighbors. State and input constraints are accommodated,

and stability is proved under stated conditions. Razzanelli and Pannocchia [2016]

propose a cooperative distributed MPC scheme in which local MPC subsystems do



6

not require information on the full plant state, resulting in reduced computational

and communication requirements.

The coordination-based MPCs contain a coordinator used to process information

collected from local controllers or share certain information for the purpose of coordi-

nation. Scheu and Marquardt [2011] present a sensitivity-based coordination scheme

for distributed MPC systems. The solution of a centralized optimization problem is

sought, whose objective function is separable in the local objective functions. The

local objective functions are augmented with a term containing first-order sensitivity

information from the other subproblems. Iteration is shown to converge to the solu-

tion of the centralized problem. Marcos et al. [2014] present a coordination scheme

developed for linear discrete-time unconstrained systems. A coordinator provides pre-

dicted states of the full plant and price information to local MPCs. Iteration is shown

to converge to the solution of the centralized problem. Closed-loop stability is ana-

lyzed, including for the case in which iterations are terminated prior to convergence.

Farina et al. [2017] propose a hierarchical control scheme in which a higher level con-

troller utilizes a reduced-order model, and is executed at a lower frequency than local

MPCs, with combined inputs applied to the process. A robust MPC formulation is

used at the upper level, and convergence analysis of the overall system is provided.

Mart et al. [2013] present a price coordination scheme that calculates the shared re-

sources to be assigned to lower-level NMPC controllers. The lower-level controllers

incorporate the price information in the objective function. The overall performance

approximates the centralized counterpart with shorter computational time. The pro-

posed control structure is applied to an oxygen supply system to reactors.
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2.2 Dynamic real-time optimization

Process plant automation systems have traditionally followed a hierarchical config-

uration in which an upper level RTO system provides set-points to an underlying

MPC layer [Qin and Badgwell, 2003]. Industrial RTO systems have conventionally

adopted steady-state models for the economic optimization [Marlin and Hrymak,

1997; Darby et al., 2011]. However, this assumption delays the economic evaluations

until steady-state operation has been reached, which poses a significant drawback for

processes exhibiting slow dynamics and frequent plant transitions. This has moti-

vated the development of strategies in which plant dynamics are considered in the

economic optimization calculation. Two key paradigms are a hierarchical approach in

which a dynamic plant model is used at the upper economic level (dynamic RTO or

DRTO) [Tosukhowong et al., 2004; Kadam et al., 2002], and a single-level economic

MPC (EMPC) approach in which economics and regulation are simultaneously ad-

dressed [Amrit et al., 2011; Heidarinejad et al., 2012]. In this section, we focus on

the former due to its close connection to the proposed formulation. A critical review

of feedback control structures for optimal process operation is given in Engell [2007],

and a comprehensive review of EMPC is given in Ellis et al. [2014].

Kadam et al. [2002] propose a two-level DRTO structure with nonlinear dynamic mod-

els at both the upper, economic optimization and lower, regulatory control levels. The

DRTO calculation is triggered based a disturbance sensitivity analysis. The method

is demonstrated through application to a semi-batch reactive distillation case study.

In Würth et al. [2011], a similar structure is adopted, with the lower level control

inputs updated based on sensitivity calculations. Tosukhowong et al. [2004] regulate

multiple MPC subsystems using the DRTO strategy in which a reduced-order model

designed to capture the slow dynamics is used at the upper, economic level, and is

executed at a lower frequency than that of the lower level MPCs. The feasibility of

the set-point trajectories generated by the DRTO layer is ensured by placing a coor-
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dination layer between the DRTO layer and the MPCs. Ellis and Christofides [2014]

propose a two-layer structure, with an upper level EMPC generating economically op-

timal state trajectories for a lower level Lyapunov MPC to track. A stability analysis

is conducted, and the performance of the method demonstrated through application

to a non-isothermal CSTR. The above-described two-level DRTO approaches utilize

an open-loop prediction of the plant response, in contrast to the formulation described

next, and on which the present study is based. However, these latter formulations do

not directly include stability conditions, as in Ellis and Christofides [2014].

Jamaludin and Swartz [2017b] propose a DRTO strategy in which the upper eco-

nomic layer utilizes the predicted closed-loop response of the plant under the action

of a single MPC system. This is shown to yield superior performance over prior

approaches based on open-loop plant dynamics, particularly when the MPC is de-

tuned such as in the presence of nonminimum phase characteristics. The DRTO

formulation results in a multilevel optimization problem due to the sequence of MPC

quadratic programming (QP) subproblems to generate the closed-loop response. This

problem is reformulated as a single-level mathematical program with complementar-

ity constraints (MPCC) by replacing the inner QP subproblems by their first-order

optimality conditions. Jamaludin and Swartz [2017a] propose three alternative formu-

lations for approximating the closed-loop dynamics, resulting in significantly reduced

computation times with little degradation in performance. The framework is shown

in Jamaludin and Swartz [2016] to readily accommodate a nonlinear DRTO plant

model.

In this study, a hierarchical DRTO framework is utilized for coordination of dis-

tributed MPC systems. The DRTO calculation is based on the prediction of the

closed-loop response of the plant under the action of the local MPCs, thereby ac-

counting for the interaction between subsystems. Communication from the DRTO

level to the local MPCs is through set-point trajectories, with no exchange of in-
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formation between local controllers and no iteration between the DRTO and MPC

levels within the DRTO sample time. The solution strategies and variation of the

formulations are introduced in the subsequent chapters.



Chapter 3

Rigorous DRTO Formulation

This chapter discusses the detailed rigorous formulation for the DRTO formulation.

It starts with the description of the dynamic models used in the formulation and then

moves on to the MPC formulation and the optimization formulation that describes

the general control structures. The strategies for implementation and solutions are

subsequently discussed and the efficacy of such a DRTO formulation is illustrated by

both linear and nonlinear case studies.

The formulations and results in this chapter have been submitted to and presented

in:

Li, H. and Swartz, C. L. (2017), “Coordination of distributed mpc systems through

dynamic real-time optimization with closed-loop prediction”, Computer Aided Chem-

ical Engineering, Vol. 40, pp. 1603 1608. Elsevier.

Li, H. and Swartz, C. L. (2017), “Dynamic Real-Time Optimization of Distributed

MPC Systems Using Rigorous Closed-Loop Prediction”, Submitted to Computers and

Chemical Engineering, in review.

Li, H. and Swartz, C. L. (2017), “Dynamic Real-Time Optimization of Distributed

10
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MPC Systems Using Rigorous Closed-Loop Prediction”, AICHE Annual Meeting

(2017), Minneapolis, MN, USA.

3.1 Closed-loop DRTO (CL-DRTO) formulation for

distributed MPC systems

The conceptual design of the two-layer architecture for coordination of distributed

MPCs is shown in Fig. 3.1. The upper layer incorporates a full plant model as a sur-

rogate to generate the predicted plant response. The MPC optimization subproblems

are embedded along the DRTO prediction horizon and generate the control actions for

the DRTO plant model whose outputs provide disturbance estimates for subsequent

MPC calculations. This sequential closed-loop prediction is optimized under a spec-

ified DRTO objective function (typically economics-based) and generates set-point

trajectories for the lower level distributed MPCs that perform subsequent control

tracking. The variables appearing in Fig. 3.1 are explained in detail in subsequent

sections.

3.1.1 Preliminaries: Full-scale and local plant models

For the purpose of this study, we assume that the models available for the DRTO

formulation are linear for both the full-scale plant model and local plant models.

The disturbance estimate corrects the offsets generated by plant-model mismatch.

However, the DRTO formulation is capable of handling a nonlinear model of the

plant in the primary optimization problem as shown in Jamaludin and Swartz [2016]

for application to centralized MPC systems. It can potentially incorporate nonlinear

MPCs in the formulation as well, which is addressed in Chapter 5.
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Figure 3.1: The control architecture for coordination of distributed MPCs with
CL-DRTO approach.
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Consider the linear discrete-time full-scale plant model available for the DRTO layer

to generate the plant response at each step in the DRTO prediction horizon j =

1, . . . , N :

xDRTO
j+1 = AxDRTO

j +BuDRTO
j (3.1)

yDRTO
j = CxDRTO

j (3.2)

where xDRTO
j ∈ Rnx , uDRTO

j ∈ Rnu and yDRTO
j ∈ Rny are the states, inputs and

outputs, respectively, of the DRTO plant model at time increment j.

We consider the full plant model to be decomposed into M subsystems. The local

plant model available for the MPC optimization subproblems of each subsystem i at

the DRTO prediction horizon step j can be written as:

x
(i)
j,k+1 = Aiix

(i)
j,k +Biiu

(i)
j,k (3.3)

y
(i)
j,k = Ciix

(i)
j,k (3.4)

where x(i) ∈ Rn
(i)
x , u(i) ∈ Rn

(i)
u and y(i) ∈ Rn

(i)
y are vectors of states, inputs and

outputs, respectively corresponding to the ith subsystem, and Aii, Bii, and Cii are

submatrices of the full plant matrices A, B, and C. We note that the MPC submodels

do not include off-diagonal submatrices, thus the states in general evolve differently

than those of the DRTO plant model.

3.1.2 MPC formulation

The MPC formulation employed in the subsequent sections corresponds to Quadratic

Dynamic Matrix Control (QDMC) [Garcia and Morshedi, 1986; Maciejowski, 2002].

The model embedded in the formulation adopts a state-space formulation, with con-

strained inputs. Since multiple distributed MPCs will be taken into consideration,
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the MPC formulation for subsystem i at DRTO prediction step j takes the form,

min
u
(i)
j,k

φ
(i)
j =

p∑
k=1

(y
(i)
j,k − y

sp(i)
j,k )TQ(i)(y

(i)
j,k − y

sp(i)
j,k )

+
m−1∑
k=0

(∆u
(i)
j,k)

TR(i)(∆u
(i)
j,k) +

m−1∑
k=0

(u
(i)
j,k − u

sp(i)
j,k )TS(i)(u

(i)
j,k − u

sp(i)
j,k )

s.t. x
(i)
j,k+1 = Aiix

(i)
j,k +Biiu

(i)
j,k, k = 0, . . . ,m− 1

x
(i)
j,k+1 = Aiix

(i)
j,k +Biiu

(i)
j,m−1, k = m, . . . , p− 1

y
(i)
j,k = Ciix

(i)
j,k + d

(i)
j,k, k = 1, . . . , p (3.5)

∆u
(i)
j,k = u

(i)
j,k − u

(i)
j,k−1, k = 0, . . . ,m− 1

u
(i)
min ≤ u

(i)
j,k ≤ u(i)

max, k = 0, . . . ,m− 1

where φ
(i)
j is a quadratic MPC objective function, and p and m are prediction and

control move horizons, respectively. ∆u
(i)
j,k denotes the manipulated input changes,

and u
(i)
min and u

(i)
max are the input constraint bounds. y

sp(i)
j,k and u

sp(i)
j,k represent the

set-point trajectories for outputs and inputs, respectively. Q(i) and S(i) are set-point

tracking weighting matrices, and the R(i) are positive semi-definite move suppression

weighting matrices.

The disturbance estimate is computed as the difference between the measured output

at current time point and the predicted output based on prior information, and is

kept constant over the prediction horizon [Cutler and Ramaker, 1979; Garcia and

Morshedi, 1986]. Thus the disturbance for the MPC problem corresponding to DRTO

time step j for subsystem i is calculated as:

d
(i)
j,k = y

m(i)
j − Ciix(i)

j,0, k = 1, . . . , p (3.6)

where y
m(i)
j represents the measured output corresponding to subsystem i at DRTO
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time step j, and x
(i)
j,0 is the initial state estimate obtained, for example, by applying the

dynamic model to advance the state from the previous time step as x
(i)
j,0 = Aiix

(i)
j−1,0 +

Biiu
(i)
j−1,0. In the DRTO formulation, the output of the full plant model, y

DRTO(i)
j ,

is used as a surrogate measurement for DRTO prediction steps j = 1, . . . , N . For

j = 0 (corresponding to the execution of the DRTO calculation) the actual plant

measurement is used. We also note that according to (3.5)

∆u
(i)
j,0 = u

(i)
j,0 − u

(i)
j,−1 (3.7)

Here, u
(i)
j,−1 corresponds to the first control move calculated at the previous time step

(and applied to the DRTO model as the control input), i.e.

u
(i)
j,−1 = u

(i)
j−1,0, j = 1, . . . , N (3.8)

For j = 0, u
(i)
j,−1 is taken as the most recent input applied to the actual plant.

We assume that the process is open-loop stable (or that it has been stabilized via

feedback control), and that a sufficiently long prediction horizon is chosen such that

closed-loop stability is maintained over the range of operating conditions considered.

This is a common assumption in industrial MPC applications. However, alternative

MPC formulations that include, for example, a terminal penalty and/or terminal

constraint for which stability can be guaranteed under certain conditions, can in

principle be accommodated by the proposed formulation. This is a topic for future

study.
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3.1.3 Optimization formulation

The two dynamic models for the primary optimization problem and MPC optimiza-

tion subproblems are embedded in the DRTO formulation as (3.9),

min
yref ,uref

φDRTO(xDRTO,yDRTO,uDRTO)

s.t. xDRTO
j+1 = AxDRTO

j +BuDRTO
j , j = 0, . . . , N − 1

yDRTO
j = CxDRTO

j + dDRTO
j , j = 1, . . . , N

gDRTO(xDRTO,yDRTO) ≥ 0

href
i (yref ,uref ,ysp(i),usp(i)) = 0, i = 1, . . . ,M

gref(yref ,uref) ≥ 0

uDRTO
j =

[
u

(1)T
j,0 , . . . ,u

(M)T
j,0

]T
, j = 0, . . . , N − 1, (3.9)

dDRTO
j = ym − CxDRTO

0 , j = 1, . . . , N

u
(i)
j,0 ∈ arg minu

(i)
j,k

φ
(i)
j =

∑p
k=1(y

(i)
j,k − y

sp(i)
j,k )TQ(i)(y

(i)
j,k − y

sp(i)
j,k )

+
∑m−1

k=0 (∆u
(i)
j,k)

TR(i)(∆u
(i)
j,k) +

∑m−1
k=0 (u

(i)
j,k − u

sp(i)
j,k )TS(i)(u

(i)
j,k − u

sp(i)
j,k )

s.t. x
(i)
j,k+1 = Aiix

(i)
j,k +Biiu

(i)
j,k, k = 0, . . . ,m− 1

x
(i)
j,k+1 = Aiix

(i)
j,k +Biiu

(i)
j,m−1, k = m, . . . , p− 1

y
(i)
j,k = Ciix

(i)
j,k + d

(i)
j,k, k = 1, . . . , p

d
(i)
j,k = ym(i) − Ciix(i)

j,0, k = 1, . . . , p, j = 0

d
(i)
j,k = y

DRTO(i)
j − Ciix(i)

j,0, k = 1, . . . , p, j > 0

∆u
(i)
j,k = u

(i)
j,k − u

(i)
j,k−1, k = 0, . . . ,m− 1

u
(i)
min ≤ u

(i)
j,k ≤ u

(i)
max, k = 0, . . . ,m− 1



MPC subproblems

j = 0, . . . , N − 1

i = 1, . . . ,M

where φDRTO represents a DRTO cost function, and xDRTO, uDRTO and yDRTO are

composite vectors of the DRTO states, inputs and outputs (xDRTO
j , uDRTO

j , yDRTO
j )

over all time increments j over the DRTO horizon. yref and uref are composite refer-
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ence trajectories for all plant outputs and inputs respectively over the DRTO predic-

tion horizon N , which constitute the optimization degrees of freedom in the primary

optimization problem, from which set-point trajectories for the MPC subproblems

along the the DRTO prediction horizon are extracted. The mapping between the

reference and set-point trajectories is expressed through constraints href
i , and is de-

scribed in more detail in the following. Consider yref
j and uref

j as the output and input

reference trajectory values corresponding to DRTO time step j, and y
sp(i)
j,k and u

sp(i)
j,k

as the set-point trajectories for the outputs and inputs for the MPC subproblem at

DRTO step j for MPC subsystem i at step k in the MPC prediction horizon. The

extraction of the set-point trajectory for MPC subproblem j and subsystem i from

the reference trajectory can then be represented as

y
sp(i)
j,k = E(i)

y yref
j+k, k = 1, . . . , p (3.10)

u
sp(i)
j,k = E(i)

u uref
j+k, k = 0, . . . ,m− 1 (3.11)

where E
(i)
y ∈ Rn

(i)
y ×ny and E

(i)
u ∈ Rn

(i)
u ×nu are matrices that map the full plant outputs

and inputs to the subsystem outputs and inputs. For example, for a system with three

outputs that is partitioned into two subsystems with the first containing y1 and the

second containing y2 and y3, the E
(i)
y matrices would be

E(1)
y =

[
1 0 0

]
, E(2)

y =

 0 1 0

0 0 1



Fig. 3.2 illustrates the extraction of the MPC set-point trajectory from the composite

reference trajectory for a centralized MPC configuration. We remark that the MPC

subproblems toward the end of the DRTO horizon require reference values that extend

beyond N . In this situation, reference trajectory values beyond N are set equal to

the values at N . gDRTO defines output and state constraints, while gref denotes the

constraints for reference trajectories which can be slightly less stringent than the
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0 1 2 p N - 1 Np + 1

yref

yDRTO

MPCj=0 MPCj=1

... ...

Figure 3.2: The illustration of set-point extraction from reference trajectory.

output constraints.

The first sets of control actions u
(i)
j,0 calculated by the MPC optimization subproblem

of each distributed MPC at the current time step are equated to the inputs of primary

optimization problem uDRTO
j at that time instance via

uDRTO
j =

[
u

(1)T
j,0 , . . . ,u

(M)T
j,0

]T
, j = 0, . . . , N − 1 (3.12)

where uDRTO
j is applied to the full plant model, hence comprises the inputs corre-

sponding to all the plant subsystems.

A disturbance estimate for the primary optimization problem is computed as the

difference between the outputs measured at current instance immediately before the

DRTO execution and predicted output values based on the prediction made at the

previous time instance, following a similar approach to that described earlier for the

MPC subproblems. The formulation readily admits alternative disturbance handling,

state estimation and MPC formulation schemes. We note that the input tracking
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term in the MPC objective function can be especially useful to eliminate degrees of

freedom for a non-square system, where the set-points generated for inputs correspond

to so-called ideal resting values [Qin and Badgwell, 2003]. We remark finally that

inclusion of input constraints in the MPC subproblems removes the requirement for

their inclusion in the primary DRTO problem, since the subproblems form part of

the overall DRTO optimization problem; inclusion of input constraints in the primary

DRTO problem is therefore redundant. In our implementation, we apply output

constraints at the primary DRTO level rather than in the MPC subproblems, as the

latter is known to contribute to problems of infeasibility and/or instability [Zafiriou

and Marchal, 1991].

Following the execution of the DRTO optimization problem (3.9), the optimal set-

point trajectories are supplied to the lower-level plant MPCs as

ysp(i) =
[
y

sp(i)T
j,1 , . . . ,y

sp(i)T
j,p

]T
, i = 1, . . . ,M (3.13)

with j = 0 initially, and incremented for each successive MPC execution until the next

DRTO execution, at which time the index j is reset to 0 and the process repeated.

The implementation scheme is illustrated in Fig. 3.1, with the time-shifted set-point

trajectories required for successive MPC executions illustrated in Fig. 3.2. We remark

that it is only the set-point trajectories that are passed from the DRTO system to

the plant MPCs, and not the inputs. The plant inputs are calculated by the local

plant MPCs, in accordance with the set-point trajectories.

3.1.4 Solution approach

The proposed formulation can be solved in principle by adopting a sequential solu-

tion approach, in which a closed-loop simulation is carried out for iterates of specified

output and input reference trajectories. However, to avoid potential difficulties due
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to nonsmoothness induced by the MPC input constraints, we follow instead a si-

multaneous solution approach in which the MPC QP subproblems are replaced by

their equivalent first-order Karush-Kuhn-Tucker (KKT) optimality conditions result-

ing in a single-level mathematical program with complementarity constraints (MPCC)

[Baker and Swartz, 2008; Jamaludin and Swartz, 2017b]. This transformation can be

illustrated using the general QP form:

min
z

1

2
zT H z + gT z

s.t. A z = b, (3.14)

z ≥ 0

whose KKT optimality conditions are:

H z + g − AT ν − η = 0

A z− b = 0, (3.15)

zi ηi = 0, i ∈ I

(z,η) ≥ 0

The set of constraints derived from MPC optimization subproblems contains com-

plementarity constraints that may pose difficulties to nonlinear programming (NLP)

algorithms. Here, this is addressed through an exact penalty formulation in which

the complementarity constraints are removed and incorporated as a suitably weighted

penalty term in the objective function [Ralph and Wright, 2004; Jamaludin and

Swartz, 2017b].
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3.1.5 Implementation variants

The proposed DRTO formulation can be used in two ways: economic dynamic opti-

mization based on an economic objective function, and target tracking which adopts

a least-squares form when process target values are known a priori.

Economic objective function

A profit based objective function can typically be written as,

φ = ∆tMPC

N∑
j=1

ϕj(x
DRTO
j ,yDRTO

j ,uDRTO
j−1 ) (3.16)

where ϕj represents profit per unit time. A key application of DRTO is to plants

undergoing frequent product transitions, in which case it is important to capture

the characteristic that revenue accrues only when the product quality is within a

prescribed specification band. We incorporate this by following the approach in Ja-

maludin and Swartz [2017b] in which the revenue term is multiplied by R1R2, where

R1 and R2 are hyperbolic tangent approximations of switching functions defined as

R1 =
1

2
tanh[γ(y − ytarget + δytarget)] +

1

2
≈

 0, y < y − δytarget

1, y > y − δytarget

(3.17)

R2 =
1

2
tanh[γ(ytarget + δytarget − y)] +

1

2
≈

 0, y > y + δytarget

1, y < y + δytarget

(3.18)

where γ is used to defined the steepness of this product transition function. Thus,

R1R2 ≈ 1 if the product quality represented by the output y falls within specification

bounds [y − δytarget, y + δytarget], and ≈ 0 otherwise.
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Target tracking

The DRTO strategy is also an effective mechanism to drive the process outputs and/or

inputs to specified target values through the prescription of set-point trajectories

to the distributed MPCs. In this way, the final targets are not initially fixed as

set-point trajectories along the horizon. The DRTO strategy is able to predict the

future interactions between controllers and the process and judiciously minimize the

differences between the response and the target.

In this study, the target tracking functionality is addressed in a weighted least squares

fashion, with the objective function adopting the following form:

φ = ∆tMPC

N∑
j=1

(∑
k∈K

wk(y
DRTO
j,k − ytarget

k )2 +
∑
i∈I

wi(u
DRTO
j−1,i − u

target
i )2

)
(3.19)

where K and I represent the set of outputs and inputs respectively for which target

values are specified, yDRTO
j,i and uDRTO

j,i represent the ith component of yDRTO
j and

uDRTO
j respectively, and the wi are weights.

Set-point variation reduction

The DRTO solution may exhibit unnecessarily high variation in the reference trajec-

tories due to solution nonuniqueness or a relatively flat objective function surface.

An effective mechanism to mitigate this effect is to maintain the reference trajectory

constant over a specified number of discretization intervals. We consider the effect of

this set-point hold (SPH) strategy in the next section.
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3.2 Case Studies

3.2.1 Case Study 1: Linear Dynamic System

Base case

This case study explores effect of centralized, decentralized and distributed MPC

configurations for a linear dynamic system when targets of the outputs are known.

Consider the following transfer function model that involves two inputs and two

outputs, taken from Chien et al. [1999]:

G(s) =

 22.89
4.572s+1

e−0.2s −11.64
1.807s+1

e−0.4s

4.689
2.174s+1

e−0.2s 5.80
1.801s+1

e−0.4s

 (3.20)

This transfer function matrix in (3.20) is partitioned into two subsystems shown in

(3.21), each of which consists of a single transfer function extracted from the diagonal

components of the full matrix, such that the subsystems do not acknowledge the

interactions between them. However, the full transfer function is used in the DRTO

level to generate the plant response.

G1(s) =
22.89

4.572s+ 1
e−0.2s

G2(s) =
5.80

1.801s+ 1
e−0.4s (3.21)

The objective function for the target tracking is defined as,

φ = ∆tMPC

N∑
j=1

(yDRTO
j,1 − 1)2 + (yDRTO

j,2 − 2)2 (3.22)
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Table 3.1: Design parameters for the DRTO and MPC layers in Case Study 1.

Parameter Description Value (central-
ized MPC)

Value (distributed and
decentralized MPCs)

∆tMPC MPC sample time 1 hr 1 hr
∆tDRTO DRTO sample time - 1 hr
p prediction horizon 10 10
m control horizon 5 5
Q output tracking weight 2I 2
R move suppression weight 20I 20
N optimization horizon - 50
ρ complementarity penalty - 100

parameter

subject to constraints,

0 ≤ yDRTO
j,1 ≤ 2, 0 ≤ yDRTO

j,2 ≤ 4, j = 1, . . . , N

0 ≤ yref
j,1 ≤ 2, j = 0, . . . , N − 1 (3.23)

0 ≤ yref
j,2 ≤ 4, j = 0, . . . , N − 1

− 5 ≤ u
(1)
j,k , u

(2)
j,k ≤ 5, j = 0, . . . , N − 1, k = 0, . . . ,m− 1

where yDRTO
j,i and yref

j,i are the ith component of yDRTO
j and yref

j respectively. The

target for the first and second outputs are set as 1 and 2, respectively. The set-point

trajectories for both centralized and decentralized MPCs are kept constant at the

target values. The parameters for setting up the DRTO and MPC layers for both

centralized and distributed cases are summarized in Table 3.1.

Fig. 3.3 shows the plant response for the centralized and decentralized MPC configu-

rations. As shown in the figure, the decentralized case exhibits significant oscillations

due to the interaction not accounted for in the MPC formulation. We observe that

the response generated by decentralized MPCs exhibits inverse response for the first

output y1, since the decentralized MPCs only see the diagonal elements of the transfer
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function and there is a large negative gain in the (1,2) off-diagonal element affecting

the first output. Thus, the response generated based on the control action of the

first move becomes negative. Fig. 3.4 shows the response with the DRTO strategy

as the supervisory layer for the distributed cases with no SPH mechanism. Rapid

responses are achieved, with performance approaching that of centralized MPC. The

SPH method is then used to reduce the set-point variation, with the set-points held

constant over every 3 MPC sample intervals. The results are shown in Fig. 3.5. Due

to reduced variation allowed in the trajectories by the additional constraints of set-

point hold, the performance is more sluggish compared to the counterpart without

the SPH mechanism. We point out that the set-point trajectories shown in the figures

are composites comprised of the portions of the set-point trajectories computed at

each DRTO execution until the next (at which point an entirely new trajectory is

computed). In reality, a suite of set-point trajectories is generated during the course

of the simulation, with a new set of trajectories computed at each DRTO execution.

A visualization of this for centralized MPC is given in Jamaludin et al. [2017]. In

order to numerically evaluate the performance for each case, the sum of squared errors

(SSE) between the final targets and the process responses is calculated. The results

are summarized in Table 3.2. From the results in the Table 3.2, it can be concluded

that the DRTO strategy is able to assign set-point trajectories to underlying MPCs

flexibly based on the rigorous prediction of interactions between controllers and the

process. While the centralized MPC gives the best performance, the performance of

the coordinated distributed case is quite comparable. A point to note is that the lim-

its imposed on the set-point trajectories can have a significant impact on the overall

performance for the distributed case. If the upper limit for the set-points of the first

output is increased to 4 instead of 2, the distributed case outperforms the centralized

counterpart due to the combined effects of the additional degrees of freedom pro-

vided by the set-point trajectories over the constant set-points used in the centralized

scheme, and the relaxed set-point bounds. The average CPU time for the DRTO
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Figure 3.3: Output response under centralized and decentralized MPC alone.
Dot-dashed line: centralized MPC, Solid line: decentralized MPC, Dashed line:

set-point.
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Figure 3.4: Output response (solid line) with set-points (dashed line) under
distributed MPC coordinated by DRTO layer with no SPH, and output response

(dot-dashed line) under centralized MPC.
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Table 3.2: Performance for configurations in Case 1 in terms of sum of squared
errors (SSE).

Configuration Control archi-
tecture

Reduction
mechanism

SSEy1
SSEy2

Performance
loss

Avg.
DRTO
CPU time
(sec)

centralized MPC n/a 1.149 5.626 0% -
distributed DRTO + MPC no SPH 1.582 5.573 18.4% 0.40
distributed DRTO + MPC SPH=3 1.854 5.643 30.9 % 0.49
decentralized MPC n/a 12.881 6.840 521.5 % -

execution is also listed in Table 3.2, using the CONOPT solver accessed from AMPL.

Given that the DRTO sample time for this case is 1 hr, the significantly lower DRTO

execution time of under 1 second establishes its viability for real-time application.

Impact of plant interaction effects

In this section, a scaling factor α has been added to the off-diagonal elements in the

original transfer function:

Gα(s) =

 22.89
4.572s+1

e−0.2s −11.64α
1.807s+1

e−0.4s

4.689α
2.174s+1

e−0.2s 5.80
1.801s+1

e−0.4s

 (3.24)

The motivation of this section is to investigate the effect of interactions among sub-

systems on the performance of the different control architectures. The scaling factor

α is selected to have values of either 0 or 0.5. When α = 0, the interaction between

the subsystems is non-existent, whereas when α = 0.5, the interaction is weakened

by half compared to that of the original plant considered in the previous section.

The simulation procedure remains the same as in the section discussed above but

for simplicity, results are only generated without the set-point variation reduction
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Figure 3.5: Output response (solid line) with set-points (dashed line) under
distributed MPCs coordinated by DRTO layer with SPH = 3, and output response

(dot-dashed line) under centralized MPC.
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Table 3.3: Performance for configurations in Case Study 1 in terms of sum of
squared errors (SSE) for different interaction scaling factors α.

Configuration Control architecture SSEy1
SSEy2

Performance loss
(α = 1)

centralized MPC 1.149 5.626 0%
distributed DRTO + MPC 1.582 5.573 18.4%
decentralized MPC 12.881 6.840 521.5 %
Configuration Control architecture SSEy1

SSEy2
Performance loss
(α = 0.5)

centralized MPC 1.207 6.005 0 %
distributed DRTO + MPC 1.614 4.968 8.2%
decentralized MPC 4.234 5.788 123.6 %
Configuration Control architecture SSEy1

SSEy2
Performance loss
(α = 0)

distributed DRTO + MPC 1.031 4.826 0 %
centralized MPC 1.233 6.167 23.7%
decentralized MPC 1.233 6.167 23.7 %

mechanism. Table 3.3 presents the summary of performance when the scaling factor

varies from 0 to 1.

We observe from Table 3.3 that as α decreases, the performance of the decentralized

configuration approaches that of the centralized case, since at α = 0, there is no in-

teraction between the plant subsystems. Also, as α decreases, the performance of the

distributed case gradually approaches that of the centralized counterpart and eventu-

ally surpasses it. This is due to a combination of the reduction in interaction effects

with diminishing α hence improving the performance of the distributed controllers,

accounting for the effects of local control action and subsystem interaction through

the DRTO closed-loop prediction, and the additional degrees of freedom provided

through the non-constant set-point trajectories determined in the DRTO calculation.
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3.2.2 Case Study 2: Dynamic optimization on a nonlinear

integrated plant

This case study considers an integrated plant that consists of three units, two CSTRs

and a separator, as shown in Figure 3.6. Two inlet streams F10 and F20 provide reac-

tant A to the first and second reactor, respectively. The reactant A in both reactors

undergoes a reaction that converts A into desired product B, and small amount of

product B is further converted to side product C. Two reactors are configured in series

and the effluent from the second reactor enters the separator which has a recirculation

stream that supplies condensed overhead vapor back to the first CSTR. The purified

product is withdrawn as the bottom stream. This integrated plant model is presented

by Liu et al. [2009] and Farina and Scattolini [2012]. The differential equations that

describe the overall process can be found in Liu et al. [2009], under the assumption

that the levels in the vessels are perfectly controlled. The parameters for this model

is presented in Table 3.4. The steady-state values of the model, and constraints for

inputs and outputs are summarized in Tables 3.5 and 3.6, respectively. Table 3.5 also

defines the partitioning of the system into two subsystems and the corresponding

states, inputs and outputs.

The partial model for each distributed MPC subsystem is constructed by including

only relevant equations for the subsystem. The full plant model is utilized in the

DRTO formulation for generating the plant response. The partial models and full

plant model are linearized at the operating point, and the discrete-time state-space

forms embedded in the DRTO formulation. The nonlinear model is used to simulate

the real plant response.

The temperatures of each vessel and the product concentration are selected as outputs

for distributed and centralized MPCs due to monitoring of product quality and safety

considerations.
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Figure 3.6: Process schematic of the integrated plant.

When this integrated plant is controlled by a centralized MPC, two degrees of freedom

are available due to the non-square configuration. As a result, the inputs Q1 and Fr

are assigned set-points along with the other four outputs.

In the distributed configuration for this system, each MPC has one degree of freedom

so that one of the inputs for each MPC can be assigned a set-point trajectory. The

selected inputs with set-point tracking are the heat Q1 and the recirculation flow rate

Fr.

Target tracking

When the information for specific targets required for outputs is available, the DRTO

formulation can be used as a supervisory layer to oversee the transition to such

targets. Compared to having constant set-points assigned directly to the centralized

or distributed MPCs, the DRTO layer in the coordinated distributed configuration

foresees the interaction between the controllers and plant and assigns appropriate

set-point trajectories at each DRTO execution, which offers greater flexibility as well
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Table 3.4: Process parameters for the integrated plant.

ParameterDescription Value Units
V1 volume of vessel 1 89.4 m3

V2 volume of vessel 2 90 m3

V3 volume of vessel 3 13.27 m3

k1 first reaction constant 0.336 s−1

k2 second reaction constant 0.089 s−1

E1 activation energy for reaction 1 -813.4 J/mol
E2 activation energy for reaction 2 -1247.1 J/mol
T10 temperature of F10 313 K
T20 temperature of F20 313 K
xA10 mass fraction of A in F10 1 -
xA20 mass fraction of A in F20 1 -
∆H1 heat of reaction for reaction 1 -40 kJ/kg
∆H2 heat of reaction for reaction 2 -50 kJ/kg
Cp heat capacity 2.5 kJ/(kg K)
αA relative volatility of component A 3.5 -
αB relative volatility of component B 0.5 -
αC relative volatility of component C 1.1 -
ρ solution density 0.15 kg/m3

Table 3.5: Initial steady-state values for inputs and outputs of the integrated plant.

subsystem 1
x1 y1 u1

variable value variable value variable value
xA1 0.264 T1 337.02K F10 8.3m3/s
xB1 0.396 Q1 10kJ/s
T1 337.02K

subsystem 2
x2 y2 u2

variable value variable value variable value
xA2 0.106 T2 344.43K F20 0.5m3/s
xB2 0.404 xB3 0.475K Q2 10kJ/s
T2 344.43K T3 346.51K Fr 4m3/s
xA3 0.057 Q3 10kJ/s
xB3 0.475
T3 346.51K
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Table 3.6: Bounds for inputs and outputs of the integrated plant.

Variable lower
bound

upper
bound

Variable lower
bound

upper
bound

F10 0 15 F20 0 20
Fr 0 15 Q1 0 50
Q2 0 100 Q3 0 20
T1, T sp1 326 357 T2, T sp2 324 364
xB3, xspB3 0.45 0.65 T3, T sp3 326 366

as interaction mitigation.

The objective function for target tracking is formed in a least-squares fashion:

min ∆tMPC

N∑
j=1

w1(TDRTO
1j − T target

1 )2 + w2(TDRTO
2j − T target

2 )2 + w3(TDRTO
3j − T target

3 )2

+ w4(xDRTO
B3j − xtarget

B3 )2 + w5(FDRTO
r,j−1 − F target

r )2 + w6(QDRTO
1,j−1 −Q

target
1 )2

(3.25)

where T target
1 = 347.02K, T target

2 = 354.43K, T target
3 = 347.02K, xtarget

B3 = 0.475,

F target
r = 5kg/s, Qtarget

1 = 10.1J/s, and weights wi = 1 (i, . . . , 6). The decision vari-

ables in this problems are the reference trajectories, set-point trajectories, and DRTO

and MPC plant states, inputs and outputs. The optimization degrees of freedom, tak-

ing into account the equality constraints, correspond to the reference trajectories for

the output and input variables, T1, T2, T3, xB3, Fr and Q1.

The associated design and tuning parameters are summarized in Table 3.7. The

plant response for the distributed case with the DRTO formulation is shown in Fig.

3.7 for the outputs and Fig. 3.8 for the inputs. It can be seen in the graphs that

the final targets assigned to the outputs and inputs are achieved. The variation in

set-point trajectories helps the system act faster compared to MPC configurations

alone. To make a clear comparison, the performance of centralized and decentralized
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Figure 3.7: Output responses under distributed MPC with DRTO layer for target
tracking case (SSE = 49.8799).
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Figure 3.8: Input responses under distributed MPC with DRTO layer for target
tracking case (SSE = 49.8799).
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Figure 3.9: Output responses under centralized MPC alone for target tracking case
(SSE = 79.7913).
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Figure 3.10: Input responses under centralized MPC alone for target tracking case
(SSE = 79.7913).
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Figure 3.11: Output responses under decentralized MPC for target tracking case
(SSE = 84.3017).

counterparts without the DRTO formulation to achieve the desired targets is also

addressed in Figs. 3.9 to 3.12, which show slower responses when the set-points

are fixed throughout the horizon. The set-point hold (SPH) method is utilized for

the set-point trajectories generated by the DRTO formulation, with set-points held

constant over a number of time periods given by ∆tDRTO/∆tMPC . The average DRTO

execution time for this part of the case study is 0.39 seconds using the CONOPT solver

from within AMPL, which is well below the DRTO sample time of 15 s.

Table 3.8 shows the performance measured as the sum of squared errors between

the process variables and final targets. While all the scenarios shown here are able

to achieve the desired target, the performance varies significantly from case to case.

The process responses with the help of the DRTO formulation are substantially better

than MPC alone due to the increased flexibility in prescribing set-point trajectories,

coupled with the prediction of future interaction effects between the plant and con-
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Figure 3.12: Input responses under decentralized MPC for target tracking case (SSE
= 84.3017).



39

Table 3.7: Design parameters for the DRTO and MPC layers for the target tacking
case in Case Study 2.

Parameter Description Value (central-
ized)

Value
(MPC1)

Value
(MPC2)

T tracksim total simulation time 300 s 300 s 300 s
∆tDRTO DRTO sample time - 15 s 15 s
∆tMPC MPC sample time 5 s 5 s 5 s
p prediction horizon 5 5 5
m control horizon 2 2 2
Q output tracking weight diag(1,1,104,1) 1 diag(1,104,1)
R move suppression weight diag(1,1,1,1,1,1) diag(1,1) diag(1,1,1,1)
S control tracking weight diag(0,10,0,0,10,0) diag(0,10) diag(0,0,10,0)
N optimization horizon - 12 12
ρ complementarity penalty

parameter
- 1000 1000

Table 3.8: Performance of each scenario for the target tracking case.

Configuration Control architecture SSE Value
distributed MPC + DRTO 49.8799
centralized MPC 79.7913
decentralized MPC 84.3017

trollers.

Economic optimization

The economic optimization of this integrated process can be achieved by formulating

an objective function to maximize the profit. The objective function for this part of

case study is

max
{

product revenue−cost of raw materials−cost of purge stream−utility costs
}
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which written in terms of process variables becomes

min ∆tMPC

N−1∑
j=0

−50(F10j + F20j)R
1
jR

2
j + (F10j + F20j) + 0.01Frj + 5(Q1j +Q2j +Q3j)

(3.26)

where R1 and R2 are defined as hyperbolic tangent switching functions discussed pre-

viously. The decision variables and optimization degrees of freedom are as described

for the target-tracking case.

The objective function reflects that if the concentration of product B, xB3 , stays

within specification limits, the revenue will accrue based on the inlet flow rates of raw

materials, due to the assumption of perfectly controlled liquid level in all vessels. The

utility cost and raw material cost will accumulate throughout the entire simulation

time. The design and tuning parameters for this case study are summarized in Table

3.9. The set-point hold (SPH) method is also utilized for the set-point trajectories

generated by the DRTO formulation, and held constant over ∆tDRTO/∆tMPC periods.

The plant responses for the coordinated distributed case are shown in Fig. 3.13

for the outputs and Fig. 3.14 for the inputs. The profit accumulated during the

simulation time is $66,113. The average DRTO execution time is 2.53 seconds. It

is apparent that the original steady-state is not at the economic optimum and the

DRTO layer is able to generate set-point trajectories to gradually guide the overall

process towards a new steady-state condition that is economically optimal. The

process tends to minimize the heat provided for each vessel and maximize the feed

flow so that the process can operate under lower temperatures while maintaining the

concentration needed for saleable product. It is worth noting that the inlet flow rate

F20 does not reach the maximum value, since there is an economic trade-off between

the subsequent evaporation which affects the product quality and product flow rate.

We remark that use of a linearized DRTO model may result in the system settling
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Table 3.9: Design parameters for the DRTO and MPC layers for the economic case
in Case Study 2.

Parameter Description Value (MPC1) Value (MPC2)
T econsim total simulation time 240 s 240 s
∆tDRTO DRTO sample time 15 s 15 s
∆tMPC MPC sample time 5 s 5 s
p prediction horizon 5 5
m control horizon 2 2
Q output tracking weight 1 diag(1,106,1)
R move suppression weight diag(1,10) diag(1,1,1,1)
S control tracking weight diag(0,10) diag(0,0,10,0)
N optimization horizon 12 12

at a suboptimal steady-state operating point. Use of a nonlinear DRTO model for

dynamic coordination of distributed MPC systems is explained in subsequent chapter.
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Figure 3.13: Output responses under distributed MPC with DRTO formulation for
economic case (profit = $66,113).
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economic case (profit = $66,113).



Chapter 4

Approximation Techniques

This chapter introduces two approximation approaches to the rigorous formulation

to address the issue of computational complexity. The hybrid formulation uses the

rigorous formulation for a short horizon and approximates the feedback for the rest of

the horizon. The input clipping method allows the MPC optimization subproblems

to be formulated as unconstrained optimization problems and addresses the input

constraints when the inputs are applied to the dynamic model using input saturation

mechanisms. The detailed formulations are outlined in this chapter and the efficacy of

using those approximation techniques demonstrated using both linear and nonlinear

case studies.

The formulation and results in this chapter have been submitted to:

Li, H. and Swartz, C. L. (2017). “Approximation techniques of dynamic real-time

optimization (DRTO) for distributed MPC systems”, Submitted to Computers and

Chemical Engineering, in review.

44
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Figure 4.1: The control architecture for coordination of distributed MPCs with
CL-DRTO approach

4.1 Closed-loop DRTO formulation

The plant models used for the DRTO and MPC formulations are first discussed, after

which the rigorous formulation is presented.

The DRTO formulation adopted follows a two layer control structure, as shown in

Figure 4.1. The lower MPC layer provides optimal control actions to the underlying

process. Such action is calculated based on assigned set-point trajectories from the

upper layer. A sequence of MPC optimization subproblems is embedded in the upper

layer. A process model of the plant is also incorporated to generate a surrogate

plant response for each controller. The overall closed-loop prediction of the process

is optimized under a suitably defined objective function. Set-point trajectories are
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calculated as decision variables by the DRTO formulation and subsequently assigned

to the lower layer for control tracking.

4.1.1 Preliminaries: Full-scale and local plant models

A linear full-scale plant model is available for the DRTO formulation and linear local

plant models are available for both the DRTO formulation and MPC formulation. A

disturbance estimate corrects the offsets generated by plant-model mismatch. How-

ever, a nonlinear model of the plant can be implemented in the primary optimization

problem as shown in Jamaludin and Swartz [2016] for application to centralized MPC

systems. One topic for future research is to incorporate nonlinear MPCs as the MPC

optimization subproblems in the DRTO formulation.

A discrete-time, linear, full-scale plant model is available for the DRTO layer. The

plant is assumed to be partitioned into M subsystems, each of which is controlled by

a local MPC. The full-scale plant model generates the plant response at each step

along the DRTO prediction horizon, j:

x
DRTO(i)
j+1 = Aiix

DRTO(i)
j +Biiu

DRTO(i)
j +

∑
h∈M
h6=i

Aihx
DRTO(h)
j +

∑
h∈M
h6=i

Bihu
DRTO(h)
j (4.1)

y
DRTO(i)
j = Ciix

DRTO(i)
j +

∑
h∈M
h6=i

Cihx
DRTO(h)
j (4.2)

Each subsystem i has a local plant model for solving the MPC optimization subprob-

lems at the DRTO prediction horizon step j. The local plant model can be written
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as:

x
(i)
j,k+1 = Aiix

(i)
j,k +Biiu

(i)
j,k (4.3)

y
(i)
j,k = Ciix

(i)
j,k (4.4)

where vectors x(i) ∈ Rn
(i)
x , u(i) ∈ Rn

(i)
u and y(i) ∈ Rn

(i)
y are states, inputs and outputs,

respectively, corresponding to the ith subsystem. The diagonal blocks of A, B and

C are expressed as Aii, Bii and Cii and are made available for both the full plant

model and local plant models. The off-diagonal blocks Aij, Bij and Cij are available

exclusively to the primary optimization problem to capture the interactions among

subsystems in the generation of the outputs to reflect the behavior of the true plant

response used in the DRTO objective function and constraints, and as surrogate

plant measurements for the embedded local MPCs used to generate the predicted

closed-loop response.

4.1.2 Rigorous CL-DRTO formulation

The closed-loop dynamics are simulated in the DRTO formulation through a sequence

of MPC optimization subproblems to generate control inputs and applying them at

each time instance to produce the plant response. The DRTO optimization formu-

lation, based on the predicted closed-loop response, consequently takes the form of

a multilevel optimization problem containing a sequence of MPC QP subproblems.

The detailed formulation is presented in Eq.(4.5).
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min
yref ,uref

φDRTO(xDRTO,yDRTO,uDRTO)

s.t. x
DRTO(i)
j+1 = Aiix

DRTO(i)
j +Biiu

DRTO(i)
j +

∑
h∈M

h6=i

Aihx
DRTO(h)
j +

∑
h∈M

h6=i

Bihu
DRTO(h)
j , j = 0, . . . , N − 1

y
DRTO(i)
j = Ciix

DRTO(i)
j +

∑
h∈M

h 6=i

Cihx
DRTO(h)
j + d

DRTO(i)
j , j = 1, . . . , N

gDRTO(xDRTO,yDRTO) ≥ 0

href
i (yref ,uref ,ysp(i),usp(i)) = 0, i = 1, . . . ,M

gref(yref ,uref) ≥ 0

u
DRTO(i)
j = u

(i)
j,0, j = 0, . . . , N − 1, i = 1, . . . ,M (4.5)

d
DRTO(i)
j = ym − Ciix

DRTO(i)
0 −

∑
h∈M

h6=i

Cihx
DRTO(h)
0 , j = 1, . . . , N

u
(i)
j,0 ∈ arg min

u
(i)
j,k

φ
(i)
j =

∑p
k=1(y

(i)
j,k − y

sp(i)
j,k )TQ(i)(y

(i)
j,k − y

sp(i)
j,k )

+
∑m−1

k=0 (∆u
(i)
j,k)TR(i)(∆u

(i)
j,k) +

∑m−1
k=0 (u

(i)
j,k − u

sp(i)
j,k )TS(i)(u

(i)
j,k − u

sp(i)
j,k )

s.t. x
(i)
j,k+1 = Aiix

(i)
j,k +Biiu

(i)
j,k, k = 0, . . . ,m− 1

x
(i)
j,k+1 = Aiix

(i)
j,k +Biiu

(i)
j,m−1, k = m, . . . , p− 1

y
(i)
j,k = Ciix

(i)
j,k + d

(i)
j,k, k = 1, . . . , p

d
(i)
j,k = ym − Ciix

(i)
j,0, k = 1, . . . , p, j = 0

d
(i)
j,k = y

DRTO(i)
j − Ciix

(i)
j,0, k = 1, . . . , p, j > 0

∆u
(i)
j,k = u

(i)
j,k − u

(i)
j,k−1, k = 0, . . . ,m− 1

u
(i)
min ≤ u

(i)
j,k ≤ u

(i)
max, k = 0, . . . ,m− 1



MPC subproblems

j = 0, . . . , N − 1

i = 1, . . . ,M

The output and set-point constraints are addressed in the primary optimization prob-

lem and the input constraints are addressed in the MPC optimization subproblems,

throughout the entire DRTO prediction horizon. Composite state, input and output

vectors for the DRTO plant model are defined as

xDRTO = [(xDRTO
0 )T , (xDRTO

1 )T , ..., (xDRTO
N )T ]T

uDRTO = [(uDRTO
0 )T , (uDRTO

1 )T , ..., (uDRTO
N−1 )T ]T

yDRTO = [(yDRTO
1 )T , (yDRTO

2 )T , ..., (yDRTO
N )T ]T (4.6)
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where the xDRTO
j , uDRTO

j and yDRTO
j comprise their collective subsystem states, inputs

and outputs, which for the states can be written as

xDRTO
j =

[
(x

DRTO(1)
j )T , . . . , (x

DRTO(M )
j )T

]T
with analogous expressions for the inputs and outputs.

The composite output and input reference trajectories over the DRTO prediction

horizon N , yref and uref , respectively, are the main decision variables and comprise

the degrees of freedom in the primary optimization problem. The set-point trajec-

tories for the MPC subproblems y
sp(i)
j,k and u

sp(i)
j,k are extracted from these reference

trajectories along the DRTO prediction horizon. The constraints href
i describe the

mapping between the reference and set-point trajectories, shown in more detail as

follows. Consider yref
j and uref

j as the reference trajectories corresponding to DRTO

time step j. The extraction of the set-point trajectory for MPC subproblem j and

subsystem i from the reference trajectory can then be represented as

y
sp(i)
j,k = E(i)

y yref
j+k, k = 1, . . . , p (4.7)

u
sp(i)
j,k = E(i)

u uref
j+k, k = 0, . . . ,m− 1 (4.8)

where the matrices E
(i)
y ∈ Rn

(i)
y ×ny and E

(i)
u ∈ Rn

(i)
u ×nu map the full plant outputs

and inputs to the subsystem outputs and inputs. The extraction of the MPC set-

point trajectory from the composite reference trajectory is illustrated in Fig.4.2 for a

centralized MPC configuration.

The reference trajectory for a particular output or input has a unique value for each

sample interval along the DRTO horizon. However, portions of the reference tra-

jectory can correspond to different set-point trajectories, depending on the position

along the DRTO horizon of the MPC subproblems to which the set-point trajectories

apply, as well as the length of the MPC prediction and/or control move horizon. It
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Figure 4.2: The illustration of set-point extraction from reference trajectory.

is noted that the extension of reference values beyond N are required for the MPC

subproblems toward the end of the DRTO horizon, and are set equal to the values at

N . The output and state constraints are contained in gDRTO, and constraints on the

reference trajectories are applied as gref .

Each distributed MPC generates sets of control actions, u
(i)
j,k, at each DRTO step j,

the first of which u
(i)
j,0 are equated to the inputs of primary optimization problem,

u
DRTO(i)
j , at that time instance:

u
DRTO(i)
j = u

(i)
j,0, j = 0, . . . , N − 1 (4.9)

Disturbance estimates are computed for both the DRTO plant model and the MPC

subproblems. The first disturbance estimate is computed as the difference between

the outputs measured immediately prior to the DRTO execution and predicted output

values based on information at the previous time step. The disturbance estimate for
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subsequent MPC problems along the DRTO horizon utilize the outputs generated by

the full DRTO plant model as surrogate measurements. The initial states in (4.5)

may be obtained by advancing the states corresponding to the previous time step

through the relevant dynamic model.

Alternative disturbance handling, state estimation and MPC formulation schemes can

be readily implemented in the proposed formulation. In order to eliminate degrees

of freedom for a non-square system, the input tracking term is included in the MPC

objective function, with the input set-points corresponding to ideal resting values

[Qin and Badgwell, 2003]. The output constraints for MPCs are implemented at

the primary DRTO level rather than in the MPC subproblems, as the latter may

contribute to problems of infeasibility and/or instability [Zafiriou and Marchal, 1991].

4.2 Closed-Loop Approximation

This section provides details of two strategies for approximating the closed-loop re-

sponse of the plant under constrained, distributed MPC, with the goal of reducing

computation time while maintaining a high degree of accuracy.

4.2.1 Hybrid CL-DRTO formulation

The hybrid formulation incorporates rigorous closed-loop prediction for a limited

DRTO prediction horizon and then uses a single MPC optimization subproblem for

the remainder of the horizon. We denote the number of MPC sample intervals for

which feedback is accounted for in the DRTO horizon as n. The relation between

the control inputs applied to the full DRTO plant model and those generated by the
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MPC subproblems now takes the form,

u
DRTO(i)
j = u

(i)
j,0, i = 1, . . . ,M, j = 0, . . . , n− 1 (4.10)

u
DRTO(i)
n+k = ū

(i)
k , k = 0, . . . , N − n− 1 (4.11)

where ū
(i)
k denotes the control inputs calculated by the last MPC optimization sub-

problem, which is formulated in the same way as the previous MPC subproblems in

the sequence, but with the prediction and control move horizons extended to N − n

in order to provide sufficient control inputs for the DRTO plant model for the rest of

the DRTO prediction horizon. We use an overbar to denote the variables associated

with the last MPC subproblem, and note that only one subscript is necessary for the

states, outputs and inputs since no further MPC subproblems are defined over the

DRTO horizon.

The detailed formulation for the hybrid formulation is organized as Eq. (4.12).
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min
yref ,uref

φDRTO(xDRTO,yDRTO,uDRTO)

s.t. x
DRTO(i)
j+1 = Aiix

DRTO(i)
j +Biiu

DRTO(i)
j +

∑
h∈M

h6=i

Aihx
DRTO(h)
j +

∑
h∈M

h6=i

Bihu
DRTO(h)
j , j = 0, . . . , N − 1

y
DRTO(i)
j = Ciix

DRTO(i)
j +

∑
h∈M

h 6=i

Cihx
DRTO(h)
j + d

DRTO(i)
j , j = 1, . . . , N

gDRTO(xDRTO
j ,yDRTO

j ) ≥ 0

href(yref ,uref ,ysp(i),usp(i)) = 0, i = 1, . . . ,M

gref(yref
j ,uref

j ) ≥ 0, j = 0, . . . , N − 1

u
DRTO(i)
j = u

(i)
j,0, j = 0, . . . , n− 1

u
DRTO(i)
j+k = ū

(i)
k , j = n, k = 0, . . . , N − n− 1 (4.12)

d
DRTO(i)
j = ym − Ciix

DRTO(i)
0 −

∑
h∈M

h 6=i

Cihx
DRTO(h)
0 , j = 1, . . . , N

u
(i)
j,0 ∈ arg min

u
(i)
j,k

φ
(i)
j =

∑p
k=1(y

(i)
j,k − y

sp(i)
j,k )TQ(i)(y

(i)
j,k − y

sp(i)
j,k )

+
∑m−1

k=0 (∆u
(i)
j,k)TR(i)(∆u

(i)
j,k) +

∑m−1
k=0 (u

(i)
j,k − u

sp(i)
j,k )TS(i)(u

(i)
j,k − u

sp(i)
j,k )

s.t. x
(i)
j,k+1 = A(i)x

(i)
j,k +B(i)u

(i)
j,k, k = 0, . . . ,m− 1

x
(i)
j,k+1 = Aiix

(i)
j,k +Biiu

(i)
j,m−1, k = m, . . . , p− 1

y
(i)
j,k = Ciix

(i)
j,k + d

(i)
j,k, k = 1, . . . , p

d
(i)
j,k = ym − Ciix

(i)
j,0, k = 1, . . . , p, j = 0

d
(i)
j,k = y

DRTO(i)
j − Ciix

(i)
j,0, k = 1, . . . , p

∆u
(i)
j,k = u

(i)
j,k − u

(i)
j,k−1, k = 0, . . . ,m− 1

u
(i)
min ≤ u

(i)
j,k ≤ u

(i)
max, k = 0, . . . ,m− 1
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j = 0, . . . , n− 1

i = 1, . . . ,M

ū(i) ∈ arg minū(i) φ(i) =
∑N−n

k=1 (ȳ
(i)
k − ȳ

sp(i)
k )TQ(i)(ȳ

(i)
k − ȳ

sp(i)
k )

+
∑N−n−1

k=0 (∆ū
(i)
k )TR(i)(∆ū

(i)
k ) +

∑N−n−1
k=0 (ū

(i)
k − ū

sp(i)
k )TS(i)(ū

(i)
k − ū

sp(i)
k )

s.t. x̄
(i)
k+1 = Aiix̄

(i)
k +Biiū

(i)
k , k = 0, . . . , N − n− 1

ȳ
(i)
k = Ciix̄

(i)
k + d̄

(i)
k , k = 1, . . . , N − n

d̄
(i)
k = y

DRTO(i)
j − Ciix

(i)
j,0, k = 1, . . . , N − n

∆ū
(i)
k = ū

(i)
k − ū

(i)
k−1, k = 0, . . . , N − n− 1

u
(i)
min ≤ ū

(i)
k ≤ u

(i)
max, k = 0, . . . , N − n− 1



MPC subproblems

i = 1, . . . ,M

j = n
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4.2.2 Input clipping formulation

Instead of constrained MPC optimization subproblems embedded along the DRTO

prediction horizon, the input clipping formulation uses unconstrained MPC coupled

with an input saturation mechanism. The controller output u
MPC(i)
j for subsystem i

computed by the unconstrained MPC optimization subproblems and the DRTO input

u
DRTO(i)
j to be implemented to the dynamic process follow the relationship expressed

as

u
DRTO(i)
j =


u

(i)
min, u

MPC(i)
j < u

(i)
min

u
MPC(i)
j , u

(i)
min ≤ u

MPC(i)
j ≤ u

(i)
max

u
(i)
max, u

MPC(i)
j > u

(i)
max

(4.13)

The conditional expression above can be combined into a continuous formulation with

complementarity constraints, as proposed by Baker and Swartz [2004], which we show

in the next section to be readily solvable using a standard NLP solver. Slack variables,

η
1(i)
j and η

2(i)
j are introduced for each DRTO prediction step j and MPC subsystem

i:

u
DRTO(i)
j = u

MPC(i)
j + η

1(i)
j − η

2(i)
j (4.14)

The constraint set is then formulated such that the slack variables corresponding to an

input variable are both zero if the MPC input is within its constraint bounds, and of

not, the slack variable corresponding to the bound that is violated would be positive

( η
1(i)
j for the minimum bound and η

1(i)
j for the maximum), forcing the DRTO input

to take on the value of the constraint limit through a complementarity constraint.
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This is achieved with the formulation,

u
MPC(i)
j + η

1(i)
j − η

2(i)
j = u

DRTO(i)
j

u
MPC(i)
j + η

1(i)
j − η

2(i)
j = u

DRTO(i)
j

u
DRTO(i)
j − u

(i)
min = µ

1(i)
j

u(i)
max − u

DRTO(i)
j = µ

2(i)
j (4.15)

(η
1(i)
j )Tµ

1(i)
j = 0

(η
2(i)
j )Tµ

2(i)
j = 0

(η
1(i)
j ,η

2(i)
j ,µ

1(i)
j ,µ

2(i)
j ) ≥ 0

Eq. (4.16) shows the input clipping formulation applied to the rigorous formulation

presented previously. The input saturation mechanism can also be implemented in

the hybrid formulation.
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min
yref ,uref

φDRTO(xDRTO,yDRTO,uDRTO)

s.t. x
DRTO(i)
j+1 = Aiix

DRTO(i)
j +Biiu

DRTO(i)
j +

∑
h∈M

h6=i

Aihx
DRTO(h)
j +

∑
h∈M

h6=i

Bihu
DRTO(h)
j , j = 0, . . . , N − 1

y
DRTO(i)
j = Ciix

DRTO(i)
j +

∑
h∈M

h 6=i

Cihx
DRTO(h)
j + d

DRTO(i)
j , j = 1, . . . , N

gDRTO(xDRTO,yDRTO) ≥ 0

href
i (yref ,uref ,ysp(i),usp(i)) = 0, i = 1, . . . ,M

gref(yref ,uref) ≥ 0

u
DRTO(i)
j = u

(i)
j,0, j = 0, . . . , N − 1, i = 1, . . . ,M

d
DRTO(i)
j = ym − Ciix

DRTO(i)
0 −

∑
h∈M

h6=i

Cihx
DRTO(h)
0 , j = 1, . . . , N (4.16)

u
MPC(i)
j = u

(i)
j,0, j = 0, . . . , N − 1

u
MPC(i)
j + η

1(i)
j − η

2(i)
j = u

DRTO(i)
j

u
DRTO(i)
j − u

(i)
min = µ

1(i)
j

u
(i)
max − u

DRTO(i)
j = µ

2(i)
j

(η
1(i)
j )Tµ

1(i)
j = 0

(η
2(i)
j )Tµ

2(i)
j = 0

(η
1(i)
j ,η

2(i)
j ,µ

1(i)
j ,µ

2(i)
j ) ≥ 0



Input saturation mechanism

for MPC subsystem i = 1, . . . ,M

for j = 0, . . . , N − 1

u
(i)
j,0 ∈ arg min

u
(i)
j,k

φ
(i)
j =

∑p
k=1(y

(i)
j,k − y

sp(i)
j,k )TQ(i)(y

(i)
j,k − y

sp(i)
j,k )

+
∑m−1

k=0 (∆u
(i)
j,k)TR(i)(∆u

(i)
j,k) +

∑m−1
k=0 (u

(i)
j,k − u

sp(i)
j,k )TS(i)(u

(i)
j,k − u

sp(i)
j,k )

s.t. x
(i)
j,k+1 = Aiix

(i)
j,k +Biiu

(i)
j,k, k = 0, . . . ,m− 1

x
(i)
j,k+1 = Aiix

(i)
j,k +Biiu

(i)
j,m−1, k = m, . . . , p− 1

y
(i)
j,k = Ciix

(i)
j,k + d

(i)
j,k, k = 1, . . . , p

d
(i)
j,k = ym − Ciix

(i)
j,0, k = 1, . . . , p, j = 0

d
(i)
j,k = y

DRTO(i)
j − Ciix

(i)
j,0, k = 1, . . . , p, j > 0

∆u
(i)
j,k = u

(i)
j,k − u

(i)
j,k−1, k = 0, . . . ,m− 1



Unconstrained

MPC subproblems

i = 1, . . . ,M

j = 0, . . . , N − 1
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4.3 Solution approach

In this section, we describe a solution strategy for the multilevel DRTO problem,

as well as two approaches for determining the solution to the unconstrained MPC

optimization problem utilized in the input clipping approximation method.

4.3.1 Karush-Kuhn-Tucker(KKT) optimality conditions

The proposed formulation can be solved in principle by adopting a sequential solution

approach involving a succession of closed-loop simulations. However, in order to avoid

potential difficulties with nonsmoothness induced by the MPC input constraints, a

simultaneous solution approach is followed in this work. The MPC subproblems are

replaced by their equivalent first-order Karush-Kuhn-Tucker(KKT) optimality con-

ditions, which results in a single-level mathematical program with complementarity

constraints (MPCC) [Baker and Swartz, 2008]. This transformation can be illustrated

using the following general QP formulation,

min
z

1

2
zT H z + gT z

s.t. A z = b, (4.17)

z ≥ 0

whose KKT optimality conditions are given by,

H z + g − AT ν − η = 0

A z− b = 0, (4.18)

zi ηi = 0, i ∈ C

(z,η) ≥ 0
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The set of constraints derived from MPC optimization subproblems contains comple-

mentarity constraints that may pose difficulties to nonlinear programming (NLP)

algorithms; however, effective strategies for dealing with them have been devel-

oped, based on modifications to the NLP algorithm or problem formulation [Baum-

rucker et al., 2008]. Here, we follow an exact penalty approach [Ralph and Wright,

2004], where the complementarity constraints are removed from the constraint set

and included instead in the objective function as a penalty term,

φDRTO + ρ

N∑
k=1

zTk ηk (4.19)

where ρ is a penalty parameter.

4.3.2 Analytical solution of unconstrained MPC problem

While the unconstrained MPC optimization subproblems arising in the input clipping

formulation can be formulated using their KKT conditions as before (without the in-

put constraint Lagrange multipliers), the analytical solution of the unconstrained

MPC problem can be directly embedded in the DRTO formulation. By using the

analytical solution, the problem dimension for the DRTO formulation can be fur-

ther reduced due to the elimination of the state variables and Lagrange multipliers

corresponding to the MPC optimization subproblems.



59

Consider the unconstrained formulation of the MPC problem, represented as

min
uk

φ =

p∑
k=1

(yk − ysp
k )TQ(yk − ysp

k ) +
m−1∑
k=0

(∆uk)
TR(∆uk) +

m−1∑
k=0

(uk − usp
k )TS(uk − usp

k )

s.t. xk+1 = Axk +Buk, k = 0, . . . ,m− 1

xk+1 = Axk +Bum−1, k = m, . . . , p− 1 (4.20)

yk = Cxk + dk, k = 1, . . . , p

∆uk = uk − uk−1, k = 0, . . . ,m− 1

The variables and parameters used above are consistent with those used in the pre-

vious section, but for clarity the plant subsystem and DRTO time step indices have

been omitted. Direct solution of (4.20) through the KKT system involves the solution

of a linear equation system in the state, input and output variables, and Lagrange

multipliers corresponding to the equality constraints. An alternative approach is to

reformulate (4.20) in terms of input changes as the optimization decision variables,

with elimination of the states through the equality constraints. The resulting problem

can be stated as

min
∆ũ

φ̃ = (ỹ − ỹsp)T Q̃(ỹ − ỹsp) + (∆ũ)T R̃(∆ũ) +

(ũ− ũsp)T S̃(ũ− ũsp)

s.t. ỹ = Ã∆ũ + b̃ (4.21)

ũ = ũ−1 + IL∆ũ

where the vectors ỹ, ũ, ∆ũ, ỹsp and ∆ũ are composite vectors of the outputs, inputs,
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input changes, output setpoints and input set-points appearing in (4.20), defined as

ỹ =


y1

y2

...

yp

 ỹsp =


ysp

1

ysp
2

...

ysp
p

 ũ =


u0

u1

...

um−1

 ∆ũ =


∆u0

∆u1

...

∆um−1

 ũsp =


usp

0

usp
1

...

usp
m−1


(4.22)

The mapping of the remaining parameters and matrices in (4.21) to those in (4.20)

is given in Appendix A. Eliminating the equality constraints in (4.21) though substi-

tution of ỹ and ũ into the objective function, and setting the gradient to zero gives

the optimal solution as

∆ũ = (ÃT Q̃Ã+ R̃ + ITL S̃IL)−1[ÃT Q̃(ỹsp − b̃) + ITL S̃(ũsp − ũ−1)]

= K1(ỹsp − b̃) +K2(ũsp − ũ−1) (4.23)

consistent with the well-known solution to the unconstrained MPC problem as re-

ported, for example, in Garcia and Morshedi [1986]. We note moreover, that (i) K1

and K2 can be computed ahead of time, and (ii) only the first nu rows of K1 and K2

are needed, where nu is the number of inputs, since it is only ∆u0 that defines inputs

that are applied to the DRTO plant model.

4.4 Case Studies

To execute the case studies below, MATLAB (version 2017a) is used to simulate

the lower-level control implementation and real plant. The upper layer is formulated

within AMPL (version 3.12.8) with the CONOPT solver (version 3.15C). The machine

configuration is 3.40GHz Intel(R) Core(TM) i7-3770 processor and 8.00GB of RAM
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with a Windows 8 64-bit operating system.

4.4.1 Target tracking for a linear transfer function system

Performance analysis

In this section, the performance of the approximation techniques is compared against

the rigorous counterpart, with the performance of a decentralized configuration in-

cluded to contrast this against that obtained with dynamic coordination via the

closed-loop DRTO scheme.

Consider the transfer function for a copolymerization reactor, provided by Conga-

lidis et al. [1986]:

G(s) =


0.34

0.85s+1
0.21

0.42s+1
0.50(0.50s+1)
0.12s2+0.40s1

0 6.46(0.9s+1)
0.07s2+0.30s+1

−0.41
2.41s+1

0.66
1.51s+1

−0.3
2.71s+1

0 −3.72
0.80s+1

0.30
2.54s+1

0.49
1.54s+1

−0.71
1.35s+1

−0.20
2.71s+1

−4.71
0.08s2+0.41s+1

0 0 0 0 1.03(0.23s+1)
0.07s2+0.31s+1

 (4.24)

The control structure for this case study has been studied by Congalidis et al. [1986];

Gudi and Rawlings [2006]. Congalidis et al. [1986] propose a decentralized approach

for this transfer function system with three pairing sets based on an RGA analy-

sis. Gudi and Rawlings [2006] consider three control loops, the first of which is a

multivariable loop comprising inputs u2 and u3, and outputs y1 and y2, the second

comprising u4 and y3, and the third comprising u5 and y4. The first input is kept

constant, as suggested by Congalidis et al. [1986]. In this work, the plant transfer

function is partitioned into two subsystems in which the second and third loops con-

sidered by Gudi and Rawlings [2006] are combined into one subsystem. In addition,

the first input is allowed to vary to demonstrate the MPC’s capability of handling



62

a non-square system. Thus, the first subsystem comprises the first two outputs and

first three inputs. The complete transfer function model (4.24) is used to generate

the full plant response and is embedded in the primary optimization problem in the

DRTO formulations. The two subsystems are used for the lower level MPCs to gen-

erate control actions and MPC optimization subproblems in the DRTO formulation,

given by

G1(s) =

 0.34
0.85s+1

0.21
0.42s+1

0.50(0.50s+1)
0.12s2+0.40s1

−0.41
2.41s+1

0.66
1.51s+1

−0.3
2.71s+1

 (4.25)

G2(s) =

 −0.20
2.71s+1

−4.71
0.08s2+0.41s+1

0 1.03(0.23s+1)
0.07s2+0.31s+1

 (4.26)

By partitioning the transfer function system in this fashion, each subsystem is as-

sumed to have knowledge of only the portion of the plant assigned to it. Since the

first subsystem is a non-square system, an input set-point trajectory can be assigned

to the MPC along with two output set-point trajectories.

The objective function for target tracking with associated input and output con-

straints is defined as:

min
yref

∆tMPC

N∑
j=1

(yDRTO
j,1 − ytarget

1 )2 + (yDRTO
j,2 − ytarget

2 )2

+ (yDRTO
j,3 − ytarget

3 )2 + (yDRTO
j,4 − ytarget

4 )2 + (uDRTO
j−1,3 − u

target
3 )2

− 2 ≤ yDRTO
j,i ≤ 2, i = 1, . . . , 4 j = 1, . . . , N (4.27)

− 2 ≤ yref
j,i ≤ 2, i = 1, . . . , 4 j = 1, . . . , N

− 2 ≤ uj,i ≤ 20, i = 1, . . . , 5, j = 0, . . . , N − 1

where yDRTO
j,i and yref

j,i are the ith component of yDRTO
j and yref

j respectively, and
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Table 4.1: Design parameters for the DRTO and MPC layers for the linear transfer
function system

Parameter Description Value
Tsim total simulation time 10
∆tDRTO DRTO sample time 2
∆tMPC MPC sample time 1
p prediction horizon 15
m control horizon 10
Q output tracking weight MPC1:diag(20,20)

MPC2: diag(20,20)
R move suppression weight MPC1:diag(2,2,2)

MPC2:diag(2,2)
S control tracking weight MPC1:diag(0,0,1)

MPC2: diag(0,0)
N optimization horizon 20
n closed-loop prediction horizon for hybrid case 4
ρ penalty parameter 1000

uj,i represents the ith input corresponding to DRTO step j, with the constraints

applied in accordance with the DRTO scheme used. The set-point targets are assigned

as ytarget
1 = 1, ytarget

2 = 1, ytarget
3 = 1, ytarget

4 = 0, utarget
3 = 0.5. The targets are

kept constant throughout the set-point trajectories for the decentralized MPCs. The

parameters for setting up the DRTO and MPC layers for the distributed cases are

summarized in Table 4.1. The performance for each case is evaluated by using the sum

of squared errors (SSE) for all inputs and output with assigned set-point trajectories.

The performance evaluated numerically is presented in Table 4.2. The SSE value

for the rigorous formulation with the input clipping method is only slightly larger

than the case without the input clipping method, but has a significantly shorter

computing time. This is because the number of constraints drops markedly when the

input constraints are enforced only for the first control inputs generated by the MPC

optimization subproblems by the input saturation mechanism, which also leads to a
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Table 4.2: Summary of performance for the linear transfer function system

Control architecture Solution strategy SSE No. of variables Avg.
DRTO
comp.
time (sec)

Rigorous KKT 3.0410 21124 39.60
Rigorous w/ clipping KKT 3.0548 17524 10.02
Rigorous w/ clipping Analytical 3.0548 8857 2.63
Hybrid KKT 3.0848 6003 2.60
Hybrid w/ clipping KKT 3.1058 5283 1.88
Hybrid w/ clipping Analytical 3.1058 3158 0.86
decentralized MPCs n/a 12.497 n/a n/a

reduction of problem size. The responses for the rigorous formulation are shown in

Figures 4.3 and 4.4.

The three cases with the hybrid formulation exhibit significant improvement in the

computational speed, but with slightly worse performance when compared to the

corresponding rigorous formulations with the same implementation variation, because

only a limited number of rigorous predictions are incorporated and an open-loop

prediction of plant response is used for the rest of DRTO prediction horizon. The

results for the hybrid formulation are shown in Figures 4.5 and 4.6.

When compared to the decentralized configuration shown in Table 4.2, all the DRTO

formulations demonstrate superior performance in terms of lower SSE values, which

further confirms the efficacy of using DRTO formulations to judiciously assign set-

point trajectories based on the closed-loop prediction of the plant response that ac-

counts for interactions among controllers and the plant.



65

0 2 4 6 8 10

Time

0

0.5

1

1.5

2

y 1

0 2 4 6 8 10

Time

0

0.5

1

1.5

2

y 2

0 2 4 6 8 10

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

y 3

0 2 4 6 8 10

Time

-2

-1

0

1

2

y 4

Figure 4.3: Output responses with set-point trajectories for the rigorous case
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Figure 4.4: Input responses with set-point trajectories for the rigorous case

Problem size analysis

As the number of MPC optimization subproblems included in the closed-loop simula-

tion and their associated length of control horizon increases, the rigorous formulation

solution time can potentially be intractable. Those two causes can be addressed ei-

ther separately or simultaneously. Figure 4.7 shows the growth of problem sizes for

DRTO formulations due to the increment on control horizons of the MPC optimiza-

tion subproblems. The prediction horizon p is set to 35 consistently to accommodate

a large control horizon. The other parameters are left consistent with the ones from

the previous section.

First, the significant gap between the rigorous formulation and hybrid formulation

can be attributed to the reduction in the number of MPC optimization subproblems

in the hybrid formulation, since the last MPC optimization subproblem in the hybrid

formulation approximates the closed-loop behaviour for a large portion of the closed-

loop prediction horizon, while the rigorous case generates a set of control inputs at

every step of the DRTO horizon.
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Figure 4.5: Output responses with set-point trajectories for the hybrid case
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Figure 4.6: Input responses with set-point trajectories for the hybrid case

Second, for the cases with the rigorous formulation, when the control horizon is small,

there is no noticeable differences between the formulations with the input clipping

method and those without. This is due to the limited number of input constraints

that are eliminated. The input clipping method applies the input constraints only

to the first control move of each MPC subproblem over the DRTO horizon. This

is the reason why the improvement becomes significant when control horizons are

long. The reduction in the number of variables through the analytical solution of the

unconstrained MPC subproblems as opposed to the KKT formulation, as discussed

in section ??, is evident in Figure 4.7.

Lastly, for the cases with the hybrid formulation, the input clipping method does not

substantially decrease the problem size anymore, since a large portion of the closed-

loop prediction horizon is approximated by the last MPC optimization subproblem.

This MPC optimization subproblem computes the control inputs for the control hori-

zon of n to N − n− 1 and applies the entire horizon of inputs to the dynamic plant

to generate the plant response. Thus, only the closed-loop prediction approximation
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Figure 4.7: The problem sizes with increasing control horizon

portion of the hybrid formulation benefits from the clipping method.

Since the hybrid formulation contains a small number of MPC optimization subprob-

lems to generate the closed-loop response, followed by an MPC optimization sub-

problem that generates input trajectories that are directly implemented, the length

of closed-loop prediction becomes an additional degree of freedom that needs to be

determined a priori. Figure 4.8 demonstrates the effect of the closed-loop prediction

length. The entire DRTO prediction horizon is set to be 40 and other parameters

are consistent with those used in the previous section. It can be clearly seen that as
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Figure 4.8: The problem sizes for hybrid formulation with increasing closed-loop
prediction horizon

the length of closed-loop prediction increases, the problem size for hybrid formulation

grows substantially due to the increasing number of MPC optimization subproblems

needed to generate the closed-loop prediction.

4.4.2 Dynamic optimization of a nonlinear system of two

CSTRs in series

In this section, the effect of coordination using the DRTO formulation is investigated

in the context of economic optimization. By assigning calculated set-point trajecto-

ries, the DRTO formulation is able to find the economic optimum based on the process

conditions and economic objective function. In order to achieve this, the DRTO for-
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Figure 4.9: Schematics of the two CSTRs in series

mulation is able to utilize the closed-loop prediction of the controller actions along

with the process dynamics, to generate time-varying set-points at the current time

instance.

We consider the scenario of two CSTR in series, using the model provided by Loeblein

and Perkins [1998] with schematic shown in Figure 4.9. The reaction A→ B occurs

in both CSTRs, but a side reaction B → C also occurs during the process. Pure

reactant A enters the systems in the feed stream F1 for the first CSTR and the

intermediate feed stream M to the mixer. The product from the first reactor along

with the intermediate fresh feed of reactant A is fed to the second reactor to further

continue the reaction. Cooling jackets are installed to both reactors to avoid over-

heating. Constant liquid density and heat capacity are assumed. The levels in both

CSTRs are also assumed to be perfectly controlled.

The rigorous model for the process is constructed with the following mass and energy
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balances:

dcA1

dt
= QF1cA,F1 −Q1cA1 − cA1V1k0,Ie

(− EI
RT1

)
(4.28)

dcB1

dt
= QF1cB,F1 −Q1cB1 + cA1V1k0,Ie

(− EI
RT1

) − cB1V1k0,IIe
−EII

RT1 (4.29)

dcC1

dt
= QF1cC,F1 −Q1cC1 + cB1V1k0,IIe

(−EII
RT1

)
(4.30)

dT1

dt
= QF1TF1 −Q1T1 −

∆HR,I

ρcp
cA1V1k0,Ie

(− EI
RT1

) − ∆HR,II

ρcp
cB1V1k0,IIe

(−EII
RT1

) − qcool,1

(4.31)

dcA2

dt
= QF2cA,F2 −Q2cA2 − cA2V2k0,Ie

(− EI
RT2

)
(4.32)

dcB2

dt
= QF2cB,F2 −Q2cB2 + cA2V2k0,Ie

(− EI
RT2

) − cB2V2k0,IIe
−EII

RT2 (4.33)

dcC2

dt
= QF2cC,F2 −Q2cC2 + cB2V2k0,IIe

(−EII
RT2

)
(4.34)

dT2

dt
= QF2TF2 −Q2T2 −

∆HR,I

ρcp
cA2V2k0,Ie

(− EI
RT2

) − ∆HR,II

ρcp
cB2V2k0,IIe

(−EII
RT2

) − qcool,2

(4.35)

With the following algebraic equations:

qcool,i = Ua,i∆Tln,i i = 1, 2 (4.36)

∆Tln,i =
Tci,out − Tci,in

ln(Ti − Tci,in)/(Ti − Tci,out)
i = 1, 2 (4.37)

qcool,i = Qc,i(Tci,out − Tci,in) i = 1, 2 (4.38)

QF2 = Q1 +QM (4.39)

QF2ci,F2 = Q1ci,1 +QMci,M i = A,B,C (4.40)

QF2TF2 = Q1T1 +QMTM (4.41)

The following constraints are applied to ensure that product quality, safety, supply,



73

and operational constraints are met:

T1 ≤ 350 K, T2 ≤ 350 K (4.42)

QF1 +QM ≤ 0.8 m3/s (4.43)

Tc1,out ≤ 330 K, Tc2,out ≤ 300 K (4.44)

QF1 ≥ 0.05 m3/s, QM ≥ 0.05 m3/s (4.45)

cA2 ≤ 0.3 kmol/m3 (4.46)

The economic objective function is also provided by Loeblein and Perkins [1998] and

expressed on a per unit time basis to maximize the profit calculated based on revenue,

and material and utility cost:

φ = 10(QF1cA,F1 +QMcA,M −Q2(cA,2 + cC,2))

−0.01qcool,1 − qcool,2 − 0.1QF1 − 0.1QM (4.47)

The objective function is integrated in the DRTO formulation to account for the

accumulated profit throughout the transition.

The overall process is partitioned into two subsystems comprising the first and second

reactors respectively, with the reactor temperatures selected at the outputs, and QF1

and QM as the inputs.

A complete listing of the process parameters and their values is given in Appendix B.

The plant is regulated by all DRTO formulations introduced with different combina-

tions of approximation techniques described in this paper. The design parameters for

all DRTO formulations are summarized in Table 4.3 and all initial values are sum-

marized in Table 4.4. The accumulated profits, along with problem sizes solved by

the DRTO formulations and average computing time are summarized in Table 4.5.
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Table 4.3: Design parameters for the DRTO and MPC layers for the two-CSTR
system

Parameter Description Value
Tsim total simulation time 10 s
∆tMPC MPC sample time 0.5 s
∆tDRTO DRTO sample time 2 s
p prediction horizon 11
m control horizon 10
N optimization horizon 20
n closed-loop prediction horizon for

hybrid case
8

ρ penalty parameter 100
Q output tracking weight MPC1:10

MPC2: 1
R move suppression weight MPC1:104

MPC2:104

S control tracking weight MPC1:0
MPC2: 0

[ysp
min ysp

max] bounds for set-point trajectories MPC1:[100 360]
MPC2:[100 360]

Table 4.4: Initial steady-state values for inputs and outputs of the integrated plant.

variable value variable value variable value
cA1 0.1217 kmol/m3 cA2 0.2106 kmol/m3 QF1 0.2 m3/s
cB1 19.7252 kmol/m3 cB2 19.6627 kmol/m3 QM 0.2 m3/s
cC1 0.1530 kmol/m3 cC2 0.1268 kmol/m3

T1 342.1333 K T2 331.598 K
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Table 4.5: The process results for the two-CSTR system

Control architecture Solution
strategy

Accumulated
profits

No. of variables Avg.
DRTO
computing
time (sec)

Rigorous KKT 892.758 8508 1.78
Rigorous w/ clipping KKT 892.229 7068 0.89
Rigorous w/ clipping Analytical 892.229 3546 0.44
Hybrid KKT 892.748 3790 0.56
Hybrid w/ clipping KKT 892.196 3358 0.39
Hybrid w/ clipping Analytical 892.196 1988 0.14

The optimal process conditions achieved are listed as followed: QF1 = 0.274 m3/s,

QM = 0.236 m3/s, T1 = 350 K, Tc2,out = 300 K, φ = 82.84 £/h. These values are

consistent with those provided by Loeblein and Perkins [1998] without specifying the

optimum condition in advance.

Results for the rigorous and approximate DRTO formulations are presented in Table

4.5. It can be seen that the performance of the cases with approximation tech-

niques applied can decrease the computational time with only a slight performance

drop, when compared with that of the rigorous case. By combining different solution

strategies and approximation techniques, the problem sizes can be substantially de-

creased. Further reductions could be expected for larger control horizons. However,

since the problem size analysis was done in the previous section, this case study is

primarily intended to show the impact of the closed-loop approximation on the eco-

nomic performance in addition to the computational performance, and also how the

approximation fares with application to a nonlinear plant. The plant responses for

the hybrid formulation with clipping are shown in Figures 4.10 and 4.11.
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Figure 4.10: The output responses with setpoint trajectories for the hybrid with
clipping case
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Figure 4.11: The input responses with setpoint trajectories for the hybrid with
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Appendix A: Mapping of Parameters Between MPC

Representations

The parameter vectors and matrices in the MPC formulation (4.21) are related to

those in MPC formulation (4.20) as follows, for a dynamic system with nu inputs, ny

outputs and nx states, and MPC prediction horizon p and control horizon m.

The symmetric positive semidefinite matrices Q̃ ∈ Rpny×pny , R̃ ∈ Rmnu×mnu , and

S̃ ∈ Rmnu×mnu in the objective function are block diagonal matrices comprised of the

weighting matrices Q ∈ Rny×ny , R ∈ Rnu×nu , and S ∈ Rnu×nu as follows,

Q̃ =


Q 0 . . . 0

0 Q . . . 0
...

...
. . .

...

0 0 . . . Q

 R̃ =


R 0 . . . 0

0 R . . . 0
...

...
. . .

...

0 0 . . . R

 S̃ =


S 0 . . . 0

0 S . . . 0
...

...
. . .

...

0 0 . . . S

 (4.48)

IL ∈ Rmnu×mnu relates future inputs to future input changes over the control horizon



78

m, where I ∈ Rnu×nu within IL represents the identity matrix of dimension nu:

IL =


I 0 . . . 0

I I . . . 0
...

...
. . .

...

I I . . . I

 (4.49)

ũ−1 is a composite vector of the inputs most recently applied to the plant, u−1,

ũ−1 = [uT−1 . . .u
T
−1]T (4.50)

The dynamic matrix Ã used to relate the predicted outputs to future input changes

is constructed from the linear dynamic system matrices A, B and C via

Ã =



CB . . . 0
...

. . .
...

m−1∑
i=0

CAiB . . . CB

m∑
i=0

CAiB . . . CAB + CB

...
. . .

...
p−1∑
i=0

CAiB . . .
p−m∑
i=0

CAiB


(4.51)
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with b̃ in (4.21) defined as

b̃ =



CA
...

CAm

CAm+1

...

CAp


x0 +



CB
...

m−1∑
i=0

CAiB

m∑
i=0

CAiB

...
p−1∑
i=0

CAiB


u−1 +



dk+1

...

dk+m

dk+m+1

...

dk+p


(4.52)

where x0 ∈ Rnx is the initial state, and u−1 ∈ Rnu is the vector of inputs implemented

at the previous step.

Appendix B: Case Study 2 Parameters

Symbol Description and steady-state values

cA,F1 concentration of A in feed to first reactor, 20 kmol/m3

cB,F1 concentration of B in feed to first reactor, 0 kmol/m3

cC,F1 concentration of C in feed to first reactor, 0 kmol/m3

cA,M concentration of A in feed to mixer, 20 kmol/m3

cB,M concentration of B in feed to mixer, 0 kmol/m3

cC,M concentration of C in feed to mixer, 0 kmol/m3

EI/R activation energy of main reaction, 6000 K

EII/R activation energy of side reaction, 4500 K

k0,I main reaction rate constant, 2.7× 108 s−1

k0,II side reaction rate constant, 160 s−1

qcool,1 cooling rate for the first reactor, m3K/s

qcool,2 cooling rate for the second reactor, m3K/s

Qc1 cooling water flow to first reactor, 0.7 m3/s
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Qc2 cooling water flow to second reactor, 0.7 m3/s

Tc1,in inlet cooling water temperature to first reactor, 300 K

Tc2,in inlet cooling water temperature to second reactor, 275 K

TF1 temperature of feed flow to the first reactor, 300 K

TM temperature of feed flow to the mixer, 300 K

Ua1 heat transfer coefficient in the first reactor, 0.35 m3/s

Ua2 heat transfer coefficient in the second reactor, 0.35 m3/s

V1 holdup in the first reactor, 5 m3

V2 holdup in the second reactor, 5 m3



Chapter 5

Inclusion of Nonlinearity

In previous chapters, the DRTO formulation only contains linear dynamic models

for the DRTO formulation and lower-level MPCs. This chapter introduces various

degrees of nonlinearity within the DRTO formulation and control implementation.

Firstly, the dynamic plant model which generates the surrogate plant responses is

changed to a nonlinear model so that the DRTO formulation can capture the plant

behavior in the upper level with better accuracy. Then, the lower-level MPCs and

the inner optimization subproblems are also formulated in a nonlinear fashion to

introduce nonlinearity to the control problems. The improvement of performances is

demonstrated using nonlinear case studies.

The formulations and results in this chapter have been submitted to:

Li, H. and Swartz, C. L. (2017). “Coordination of distributed MPC systems using a

nonlinear dynamic plant model with closed-loop prediction”, Proceedings of the 13th

International Symposium on Process Systems Engineering, in press.

Li, H. and Swartz, C. L. (2017). “Economic Coordination of Distributed Nonlinear

MPC Systems using Closed-loop Prediction of a Nonlinear Dynamic Plant”, Submitted

81
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to 6th IFAC Conference on Nonlinear Model Predictive Control, Madison, WN, USA.

5.1 Problem Formulation for the Inclusion of Non-

linear Dynamic Plant Model

The general architecture of the two-layer coordination scheme for distributed MPCs

is shown in Figure 5.1. A nonlinear dynamic plant model is embedded in the upper

layer as a surrogate model to generate the plant response. Along the DRTO prediction

horizon, a series of MPC optimization subproblems are embedded and generate the

control actions applied to the nonlinear dynamic model at each time instance. This

sequential closed-loop prediction is thus optimized under a typically economic objec-

tive function, and generates set-point trajectories for lower level distributed MPCs to

perform subsequent control tracking.

5.1.1 Model Discretization

Consider the nonlinear dynamic behaviour of the process plant to be accurately cap-

tured by a set of ODEs in the following form:

ẋDRTO(t) = fDRTO(xDRTO(t),uDRTO(t)) (5.1)

yDRTO(t) = CxDRTO(t) (5.2)

xDRTO(0) = x0, for t ∈ [0, tf ] (5.3)

where xDRTO(t) ∈ Rnx denotes the differential state vector, xDRTO(0) ∈ Rnx the initial

state vector, and uDRTO(t) ∈ Rnu the input vector. tf represents the duration of the

DRTO prediction horizon. To solve the ODE system in the DRTO formulation, the

system is discretized using an implicit Euler approximation. The controller sample
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CL-DRTO approach.
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time is assumed to be consistent with the finite element interval ∆tj and the piecewise

constant inputs are applied to each finite element along the DRTO prediction horizon.

There are various other discretization techniques available to achieve the same effect,

such as orthogonal collocation on finite elements. However, implicit Euler integration

is demonstrated to be sufficiently accurate to reflect the dynamic behavior generated

by the actual plant for the case study considered. The plant is partitioned into

subsystems i ∈ O, each of which is controlled by a local MPC based on a linear (or

linearized) model of the form x
(i)
k+1 = Aiix

(i)
k +Biiu

(i)
k , y

(i)
k = Ciix

(i)
k .

5.1.2 State and Disturbance Estimation for Nonlinear Plant

Model

Prior to each DRTO execution, the current state estimate x̂` is first calculated based

on the discretized model with previous state estimate x̂`−1 and the most recently

implemented control action uMPC
`−1 . The predicted state estimate x̂` serves as the initial

condition x0 for the DRTO model in the upper level. The disturbance added to the

DRTO model is calculated by taking the difference between the current measured

outputs and predicted outputs and assumed constant over the horizon:

x̂` − x̂`−1

∆t`
= fDRTO(x̂`,u

MPC
`−1 )

dDRTO
` = ym − Cx̂` (5.4)

x0 = x̂`
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5.1.3 Optimization Formulation

The dynamic models for the primary optimization problem and MPC optimization

subproblems are embedded in the DRTO formulation as Eq.(5.5):

min
yref ,uref

φecon(xDRTO,yDRTO,uDRTO)

s.t.
xDRTO
j − xDRTO

j−1

∆tj
= fDRTO(xDRTO

j ,uDRTO
j−1 ), j = 1, . . . , N

yDRTO
j = CxDRTO

j + dDRTO
j , j = 1, . . . , N

gDRTO(xDRTO,yDRTO) ≥ 0

href
i (yref ,uref ,ysp(i),usp(i)) = 0, i ∈ O

gref(yref ,uref) ≥ 0

u
DRTO(i)
j = u

(i)
j,0, j = 0, . . . , N − 1 (5.5)

u
(i)
j,0 ∈ arg min

u
(i)
j,k

φ
MPC(i)
j (y

(i)
j,k,y

sp(i)
j,k ,u

(i)
j,k,u

sp(i)
j,k )

s.t. x
(i)
j,k+1 = Aiix

(i)
j,k +Biiu

(i)
j,k, k = 0, . . . ,m− 1

x
(i)
j,k+1 = Aiix

(i)
j,k +Biiu

(i)
j,m−1, k = m, . . . , p− 1

y
(i)
j,k = Ciix

(i)
j,k + d

(i)
j,k, k = 1, . . . , p

d
(i)
0,k = ym(i) − Ciix(i)

0 , k = 1, . . . , p

d
(i)
j,k = y

DRTO(i)
j − Ciix(i)

j−1,1, k = 1, . . . , p, j > 0

u
(i)
min ≤ u

(i)
j,k ≤ u

(i)
max, k = 0, . . . ,m− 1



MPC subproblems

subproblem i ∈ O

j = 0, . . . , N − 1

The closed-loop DRTO formulation consists of a primary optimization problem based

on the nonlinear dynamic system to predict closed-loop response, and inner MPC

optimization subproblems based on linear models of the plant subsystems to compute

control actions. φecon denotes the objective function that captures the performance

criterion to be optimized. The main decision variables for the primary optimization

problem are reference trajectories yref and uref , from which the set-point trajectories
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for distributed MPCs y
sp(i)
j,k and u

sp(i)
j,k are extracted, while the decision variables in

the inner MPC optimization subproblems are the control actions u
(i)
j,k. href represents

the mapping of the DRTO reference trajectories to the MPC set-point trajectories,

and can be used to enforce the trajectories to be constant within each DRTO interval

over the DRTO prediction horizon, which can be explicitly represented as:

y
sp(i)
j,k = E(i)

y yref
j+k, k = 1, . . . , p (5.6)

u
sp(i)
j,k = E(i)

u uref
j+k, k = 0, . . . ,m− 1 (5.7)

where E
(i)
y ∈ Rn

(i)
y ×ny and E

(i)
u ∈ Rn

(i)
u ×nu are matrices that map the full plant outputs

and inputs to the subsystems. gref represents the upper and lower bounds of the

trajectories. xDRTO, yDRTO, and uDRTO are composite vectors of xDRTO
j , yDRTO

j , and

uDRTO
j respectively over the DRTO horizon. u

DRTO(i)
j and y

DRTO(i)
j are subvectors of

uDRTO
j and yDRTO

j corresponding to the inputs and outputs of MPC subsystem i. A

quadratic MPC objective function is used to yield a QDMC formulation as proposed in

Garcia and Morshedi [1986] (see also Maciejowski [2002]). The disturbance estimate

d
(i)
j,k is determined as proposed in Cutler and Ramaker [1979] and Garcia and Morshedi

[1986], and utilizes the plant measurement ym(i) for the first set of MPC subproblems,

and the DRTO model output, y
DRTO(i)
j , for subsequent time steps in the DRTO

horizon, where ym(i) is a subvector of the plant measurements corresponding to MPC

subsystem i.

The multi-level optimization formulation of the closed-loop DRTO problem can be

transformed into a single-level optimization problem by reformulating the MPC quadratic

programming subproblems as a set of constraints using the Karush-Kuhn-Tucker

(KKT) optimality conditions, as proposed by Baker and Swartz [2008]. This cor-
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respondence for a general convex quadratic programming problem is:

QP KKT conditions

minz
1
2
zT H z + gT z H z + g − AT ν − η = 0

s.t. A z = b, z ≥ 0 A z = b, zi ηi = 0, (z,η) ≥ 0

where variable z denotes a generalized variable within the QP problem. The pres-

ence of the complementarity constraints in the reformulated problem may be effec-

tively handled through an exact penalty formulation in which they are included as

a penalty term in the objective function [Ralph and Wright, 2004; Jamaludin and

Swartz, 2017a]. The DRTO formulation are solved using AMPL with the IPOPT

solver, and the lower-level control calculations and continuous plant simulation are

implemented in MATLAB using the ode15s integrator.

5.1.4 Case Study

We consider a reactor-separator network studied by Baldea and Daoutidis [2007]. A

zero order reaction converts component A to component B in the reactor, and the

product is then fed to the separator. The mole transfer rate between the vapor and

liquid for component i ∈ {A,B,I} in the vessel is modeled with the rate expression,

Nj = Kjα(yj − (P s
j /Pc)xj)(ML/ρL). The differential equations used for this system

are given below, whereMR,MV ,ML denote the molar holdup in the reactor, condenser

vapor and liquid phase, and N = NA +NB +NI . For simplicity, the molar hold-ups
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are assumed to be perfectly controlled.

ẏA,R = 1
MR

[Fo(yA,o − yA,R) +R(yA − yA,R)− k1MRyA,R]

ẏI = 1
MV

[F (yI,R − yI)−NI + yIN ]

ẏI,R = 1
MR

[Fo(yI,o − yI,R) +R(yI − yI,R)]

ẋA = 1
ML

[NA + xAN ]

ẏA = 1
MV

[F (yA,R − yA)−NA + yAN ]

ẋI = 1
ML

[NI + xIN ]

The nominal values for all process parameters are summarized in Baldea and Daou-

tidis [2007]. The manipulated and control variables selected for the reactor are raw

feed Fo and vapor composition of component A, yA,R, respectively. The manipu-

lated and controlled variables selected for the separator are condenser pressure Pc

and liquid composition of component A, xA, respectively. The tuning parameters for

distributed MPCs and the DRTO formulation are summarized in Table 5.3. It is

noted that the first move suppression weight value is small due to the small nominal

value of the condenser pressure (0.338 MPa compared to feed flow rate 100 mol/min).

In this case study, the system is given pre-determined targets for two outputs that

are required to be tracked; the DRTO objective function is consequently formulated

in a least-squares fashion. However, other forms of linear or nonlinear objective func-

tion can be readily used. The system is regulated separately for both centralized

and decentralized MPC. For each case, the associated DRTO formulation is added to

generate set-point trajectories for those MPCs. The performance is quantified using

the sum-squared-errors between the plant dynamics and final target values. Figure

5.2 shows the set-point trajectories and response process dynamics for distributed

cases using linear and nonlinear DRTO formulations. While the difference between

the nonlinear and linear DRTO implementations appears slight, numerical results

confirm the superior performance of the nonlinear approach. Table 5.2 summarizes
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the performance for several configurations: centralized and distributed DRTO with a

nonlinear DRTO plant model, centralized and distributed DRTO with a linear DRTO

plant model, and decentralized MPC with constant set-point trajectories correspond-

ing to the set-point targets. From the results it can be seen that the nonlinear DRTO

formulation outperforms the linear counterpart, which aligns with expectation since

the DRTO formulation can generate a more accurate plant response based on the

nonlinear model. The table also shows that the distributed cases experience only a

slight performance drop when compared to the centralized counterparts due to the

ability of DRTO formulation to predict the plant behavior based on a complete plant

model that is not available to distributed MPCs. The performance drop can be justi-

fied by the additional flexibility and reliability offered by the distributed architecture

over the centrazlied counterpart.

Table 5.1: DRTO and MPC parameters for the process

Parameter Description Value (MPC1 & MPC2)
∆tDRTO DRTO sample time 20
∆tMPC MPC sample time 10
N Optimization horizon 10
P Prediction Horizon 5
M Control Horizon 3
Q Output tracking weight 10 & 2
R Move suppression weight 10−4 & 5
ymin, ymax Output and setpoint bounds [0 1] & [0 1]
umin, umax Input bounds [0 250] & [0 1]
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Figure 5.2: Set-points and output response for distributed MPC cases

5.2 Problem Formulation for Coordination of Non-

linear MPCs

The coordination scheme for distributed NMPCs using the two-layer approach is

illustrated in Fig. 5.3. In order to generate a predicted plant response, a nonlinear

dynamic plant model is embedded in the upper layer. The control actions applied to

the nonlinear dynamic model are produced by a series of nonlinear MPC optimization

subproblems embedded along the DRTO prediction horizon. The entire optimization

problem can be optimized under either a least-squares objective for tracking targets

or an economic objective function to maximize profit. The set-point trajectories are
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Table 5.2: The summary of performance under different configurations

Configuration Control architecture
∑
SSE performance

loss
centralized nonlinear DRTO + MPC 2.473 0%
distributed nonlinear DRTO + MPC 2.556 3.36 %
centralized linear DRTO + MPC 2.743 10.91%
distributed linear DRTO + MPC 2.790 12.82%
decentralized MPC 6.61 167.29%

min φecon

  s.t.    nonlinear plant and local NMPC models 

           constraints on reference trajectories

           constraints on predicted closed-loop response

NMPC N

Plant with PID controls

...

set-point 

trajectories

input input

set-point 

trajectories

NMPC 1

measurement

measurement

measurement

measurement

Figure 5.3: The control architecture for coordination of distributed MPCs with
closed-loop DRTO approach.

the decision variables of this optimization problem and assigned to the lower level

distributed NMPC systems to perform subsequent control tracking.
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5.2.1 Model Discretization

Consider the nonlinear dynamic behavior of the process plant to be accurately cap-

tured by a set of ordinary differential equations (ODEs) in the following form:

ẋDRTO(t) = fDRTO(xDRTO(t),uDRTO(t)) (5.8)

yDRTO(t) = CxDRTO(t) (5.9)

xDRTO(0) = x0, for t ∈ [0, tf ] (5.10)

where xDRTO(t) ∈ Rnx denotes the differential state vector, xDRTO(0) ∈ Rnx the initial

state vector, and uDRTO(t) ∈ Rnu the input vector. tf represents the duration of the

DRTO prediction horizon. x0 represents the initial conditions for the full plant states.

The plant is partitioned into subsystems i = 1, . . . ,M , each of which is controlled by

a local nonlinear MPC based on the form:

ẋ(i)(t) = f (i)(x(i)(t),u(i)(t)) (5.11)

y(i)(t) = C(i)x(i)(t) (5.12)

x(i)(0) = x
(i)
0 , for t ∈ [0, tp] (5.13)

where x(i)(t) ∈ Rn
(i)
x denotes the differential state vector, x(i)(0) ∈ Rn

(i)
x the initial

state vector, and u(i)(t) ∈ Rn
(i)
u the input vector. tp represents the duration of the

NMPC prediction horizon. In this work, we consider open-loop stable systems and a

sufficiently long prediction horizon to maintain closed-loop stability for the transitions

considered. Alternative NMPC formulations that guarantee closed-loop stability un-

der certain conditions through inclusion of a terminal penalty term and/or constraint

can be accommodated with corresponding adjustments to the DRTO formulation.

To solve the ODE systems in the DRTO formulation, the systems are discretized using



93

an implicit Euler approximation. Piecewise constant control inputs are assumed over

the controller sample time ∆tj, which for the present application is also chosen as

the integration step size. Various other discretization techniques may be used, such

as orthogonal collocation on finite elements and multiple shooting [Allgower et al.,

2004]. However, implicit Euler integration is demonstrated to be sufficiently accurate

to reflect the dynamic behavior generated by the actual plant for the case study

considered.

5.2.2 State and Disturbance Estimation for Nonlinear Plant

Model

Prior to each DRTO execution, the current state estimate x̂` for the nonlinear dynamic

plant and x̂
(i)
` for the ith NMPC are first calculated based on their associated models

applied to the previous state estimate x̂`−1 and x̂
(i)
`−1, respectively, utilizing the most

recently implemented control action uMPC
`−1 . The predicted state estimate x̂` serves as

the initial condition x0 for the DRTO model, and x̂
(i)
` as the initial condition x

(i)
0 for

the NMPC model in the upper level. The disturbance added to the DRTO model

is calculated by taking the difference between the current measured outputs and

predicted outputs and assumed constant over the horizon. The relevant expressions
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are as follows:

x̂` − x̂`−1

∆t`
= fDRTO(x̂`,u

MPC
`−1 ) (5.14)

dDRTO
` = ym − Cx̂` (5.15)

x0 = x̂` (5.16)

x̂
(i)
` − x̂

(i)
`−1

∆t`
= f (i)(x̂

(i)
` ,u

MPC
`−1 ) (5.17)

d
(i)
` = ym(i) − Cx̂

(i)
` (5.18)

x
(i)
0 = x̂

(i)
` (5.19)

where ym is the full set of plant measurements, and ym(i) is the subvector of mea-

surements corresponding to subsystem.
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min
yref ,uref

φDRTO(xDRTO,yDRTO,uDRTO)

s.t. fDRTO(xDRTO
j ,xDRTO

j−1 ,uDRTO
j−1 ) = 0, j = 1, . . . , N

yDRTO
j = CxDRTO

j + dDRTO
j , j = 1, . . . , N

gDRTO(xDRTO,yDRTO) ≥ 0

href
i (yref ,uref ,ysp(i),usp(i)) = 0, i = 1, . . . ,M

gref(yref ,uref) ≥ 0

u
DRTO(i)
j = u

(i)
j,0, j = 0, . . . , N − 1 (5.20)

u
(i)
j,0 ∈ arg min

u
(i)
j,k

φ
MPC(i)
j (y

(i)
j,k,y

sp(i)
j,k ,u

(i)
j,k,u

sp(i)
j,k )

s.t. f (i)(x
(i)
j,k+1,x

(i)
j,k,u

(i)
j,k) = 0, k = 0, . . . ,m− 1

f (i)(x
(i)
j,k+1,x

(i)
j,k,u

(i)
j,m−1) = 0, k = m, . . . , p− 1

y
(i)
j,k = Cix

(i)
j,k + d

(i)
j,k, k = 1, . . . , p

d
(i)
0,k = ym(i) − Cix(i)

0 , k = 1, . . . , p

d
(i)
j,k = y

DRTO(i)
j − Cix(i)

j−1,1, k = 1, . . . , p, j > 0

u
(i)
min ≤ u

(i)
j,k ≤ u

(i)
max, k = 0, . . . ,m− 1



MPC subproblems

subproblem i = 1, . . . ,M

j = 0, . . . , N − 1

5.2.3 Optimization Formulation

The closed-loop DRTO formulation comprises a primary optimization problem based

on the full dynamic model to predict the closed-loop response of the actual plant, and

inner MPC optimization subproblems based on plant subsystem models to compute

control actions to be implemented on the plant to generate surrogate outputs.

The dynamic models for both parts are nonlinear. The formulation is shown in (5.20).

The objective function φDRTO specifies the performance criterion to be optimized. The

reference trajectories yref and uref are constructed as decision variables, from which
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Figure 5.4: The set-point trajectory extractions from the reference trajectory.

the set-point trajectories for distributed MPCs y
sp(i)
j,k and u

sp(i)
j,k are extracted and

assigned to the lower-level NMPCs for tracking. The extraction of the set-point tra-

jectories for the embedded NMPCs along the DRTO prediction horizon is illustrated

in Fig. 5.4, with the subsystem indices omitted.

The equality constraints href
i represent such extraction of MPC set-point trajectories,

with detailed expressions given by:

y
sp(i)
j,k = E(i)

y yref
j+k, k = 1, . . . , p (5.21)

u
sp(i)
j,k = E(i)

u uref
j+k, k = 0, . . . ,m− 1 (5.22)

where E
(i)
y ∈ Rn

(i)
y ×ny and E

(i)
u ∈ Rn

(i)
u ×nu are matrices that map the full plant outputs

and inputs to the subsystem outputs and inputs. For instance, if a system with three

outputs is partitioned into two subsystems with the first subsystem containing the

first output, and the second subsystem containing the second and third outputs, the



97

E
(i)
y matrices can be written as:

E(1)
y =

[
1 0 0

]
, E(2)

y =

 0 1 0

0 0 1



For the inner optimization subproblems, the decision variables are the control actions

u
(i)
j,k, which are in turn equated to the inputs applied to the plant by direct mapping.

The bounds for generated trajectories can be specified in gref . xDRTO, yDRTO, and

uDRTO are composite vectors of xDRTO
j , yDRTO

j , and uDRTO
j respectively over the DRTO

horizon. u
DRTO(i)
j and y

DRTO(i)
j are subvectors of uDRTO

j and yDRTO
j corresponding to

the inputs and outputs of MPC subsystem i.

The disturbance estimate d
(i)
j,k is determined as proposed in Cutler and Ramaker [1979]

and Garcia and Morshedi [1986], and utilizes the plant measurement ym(i) for the first

set of MPC subproblems, and the DRTO model output, y
DRTO(i)
j , for subsequent time

steps in the DRTO horizon.

5.2.4 Solution Strategy

The multi-level optimization formulation of the closed-loop DRTO problem is trans-

formed into a single-level optimization problem by reformulating the NMPC subprob-

lems as a set of constraints using the Karush-Kuhn-Tucker (KKT) optimality condi-

tions, as proposed by Baker and Swartz [2008] and Jamaludin and Swartz [2017b] for

linear MPC. Consider the general nonlinear MPC problem below:

min
z

1

2
zT H z + gT z

s.t. f(z) = 0 (5.23)

z ≥ 0
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where z is a composite vector of variables in the NMPC formulation. The Lagrangian

of this problem can be written as:

L(z) =
1

2
zT H z + gT z− λT f(z)− ηTz (5.24)

Thus, the KKT conditions can be expressed as:

∇zL = H z + g − λT fz − η = 0 (5.25)

f(z) = 0 (5.26)

zi ηi = 0, (z,η) ≥ 0 (5.27)

The presence of the complementarity constraints in the reformulated problem is han-

dled through an exact penalty formulation in which they are included as a penalty

term in the objective function [Ralph and Wright, 2004; Jamaludin and Swartz,

2017a]. The DRTO and NMPC formulations are solved using AMPL with the IPOPT

solver at their associated sample time. The continuous plant simulation is carried out

in MATLAB using the ode15s integrator.

5.3 Case Study

MPC coordination using the DRTO formulation is demonstrated by applying the

formulation to two CSTRs in series, utilizing the model presented in Loeblein and

Perkins [1998]. The process is illustrated in Fig. 5.5. All assumptions and process

parameter values are as in the original paper. The levels in both CSTRs are also

assumed to be perfectly controlled. The model is derived from material and energy
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Figure 5.5: The process schematics for the two-CSTRs process

balances, given by

dcAi
dt

= QFicA,F i −QicAi − cAiV k0,Ie
(− EI

RTi
)

(5.28)

dcBi
dt

= QFicB,F i −QicBi + cAiV k0,Ie
(− EI

RTi
)

(5.29)

− cBiV k0,IIe
−EII

RTi (5.30)

dcCi
dt

= QFicC,F i −QicCi + cBiV k0,IIe
(−EII

RTi
)

(5.31)

dTi
dt

= QFiTFi −QiTi −
∆HR,I

ρcp
cAiV k0,Ie

(− EI
RTi

)
(5.32)

− ∆HR,II

ρcp
cBiV k0,IIe

(−EII
RTi

) − Pci
ρcp

i = 1, 2 (5.33)
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with the following algebraic equations:

qcool,i =
Pci
ρcp

=
UA

ρcp
∆Tln,i = Ua∆Tln,i (5.34)

∆Tln,i =
Tci,out − Tci,in

ln(Ti − Tci,in)/(Ti − Tci,out)
(5.35)

qcool,i = Qci(Tci,out − Tci,in), i = 1, 2 (5.36)

QF2 = Q1 +QM (5.37)

QF2ci,F2 = Q1ci,1 +QMci,M i = A,B,C (5.38)

QF2TF2 = Q1T1 +QMTM (5.39)

The following constraints are imposed to meet safety, supply, process and product

quality restrictions:

T1 ≤ 350 K, T2 ≤ 350 K (5.40)

QF1 +QM ≤ 0.8 m3/s (5.41)

Tc1,out ≤ 330 K, Tc2,out ≤ 300 K (5.42)

QF1 ≥ 0.05 m3/s, QM ≥ 0.05 m3/s (5.43)

cA,2 ≤ 0.3 kmol/m3 (5.44)

The economic objective function is provided by Loeblein and Perkins [1998] on a per

unit time basis to maximize the profit calculated based on revenue, and material and

utility cost:

φ = 10(QF1cA,F1 +QMcA,M −Q2(cA,2 + cC,2))

−0.01qcool,1 − qcool,2 − 0.1QF1 − 0.1QM (5.45)

The objective function is integrated in the DRTO formulation to account for the

accumulated profit throughout the transition. The overall process is decomposed
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into two subunits. The temperature for each CSTR serves as the output for its

assigned NMPC. The inlet flow rate to the first CSTR serves as the input for the first

NMPC and the flow rate of fresh feed to the mixer for the other NMPC. The safety

constraints are directly addressed in the DRTO formulation. The tuning parameters

for distributed MPCs and the DRTO formulation are summarized in Table 5.3.

Table 5.3: DRTO and MPC parameters for the process

Parameter Description Value (MPC1 & MPC2)
∆tDRTO DRTO sample time 0.5 s
∆tMPC MPC sample time 0.5 s
N Optimization horizon 20
p MPC Prediction Horizon 5
m MPC Control Horizon 3
Q Output tracking weight 1 & 1
R Move suppression weight 5000 & 5000
ymin, ymax Output bounds [100 360] & [100 360]
yspmin, yspmax Set-point bounds [100 360] & [100 360]
umin, umax Input bounds [0.05 0.805] & [0.05 0.8]

Three separate cases of control architecture are compared. The plant is first regu-

lated using the linear MPCs whose assigned set-point trajectories are generated by

the DRTO formulation in which a linearized plant model and linear MPC subprob-

lems are used (Case 1). The second case uses a nonlinear plant model in the DRTO

formulation to generate the predicted plant response, while retaining the linear for-

mulations for the MPC optimization subproblems and the lower-layer MPCs (Case

2). The expected benefit of this formulation is that the DRTO formulation can take

advantage of generating an accurate plant response while maintaining a linear MPC

formulation for control actions. The last case implements nonlinear MPC formulations

in both lower-layer MPCs and MPC optimization subproblems while the predicted

plant outputs are generated with a nonlinear plant model (Case 3). In this way, the

dynamics of the lower-level NMPCs can be accurately captured by the closed-loop
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DRTO formulation, and the advantage of accounting for nonlinearity is fully reflected

in both levels.

5.3.1 Target Tracking

When the values to be achieved for certain outputs of the process are known, the

DRTO formulation can be used to drive the system to achieve such targets by judi-

ciously adjusting the set-point trajectories for the lower-level MPCs. In this section,

the process objective is to raise the temperatures of the two CSTR tanks by 5K.

Hence, the objective function for DRTO formulation is expressed in a least squares

fashion:

φ = ∆tMPC

N∑
j=1

(TDRTO
1,j − T target

1 )2 + (TDRTO
2,j − T target

2 )2 (5.46)

where T target
1 = 347 K and T target

2 = 336 K. The three cases classified previously are

each executed under the same objective function. The process responses are shown in

Fig. 5.6. From the graphs, it can be easily seen that the set-points are firstly adjusted

to the upper bound to induce a faster response of the process and gradually settle

down to the target values. These cases show minor variations due to the different

levels of nonlinearity brought by the MPC formulations and plant model in the DRTO

formulation.

To numerically evaluate the process performance for the three scenarios, the sum-

squared-error (SSE) values are calculated, by taking the difference between the final

target values and process values at each sample time. The results are summarized in

Table. 5.4. The third case has the smallest SSE value, since the lower-level MPCs and

MPC optimization subproblems in the DRTO formulation, and plant model used to

generated plant responses are all nonlinear and overall can generate the most accurate
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Figure 5.6: The plant response and set-point trajectories for target tracking
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closed-loop predictions and control implementations throughout the simulation.

Table 5.4: The summary of SSE values for three cases

Case Description SSE values
1 DRTO + MPC 56.56
2 NDRTO + MPC 54.78
3 NDRTO + NMPC 53.57

5.3.2 Economic Optimization

The process responses for economic optimization for all three cases are illustrated in

Fig. 5.7. All three cases achieve the final optimal steady state values specified in

Loeblein and Perkins [1998]. However, despite the steady-state optima for all cases

being consistent with each other, the process transition can exhibit different behavior.

To optimize such transitions is the main goal of the DRTO formulations, and it can

be numerically evaluated by calculating the cumulative profits for all cases which are

summarized in Table. 5.5.

Table 5.5: The summary of profits for three cases

Case Description Accumulated
profits

1 DRTO + MPC 1721.25
2 NDRTO + MPC 1721.97
3 NDRTO + NMPC 1722.53

The case where the models available for both DRTO and MPC formulations are non-

linear gives the highest profit due to its accuracy of capturing the plant dynamics in

the DRTO formulation to generate set-point trajectories and lower-layer MPC con-

trol implementations. The differences in profit are relatively small in this application,
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likely due to the small range of the transition between the initial and final operating

points.
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Figure 5.7: The plant response and set-point trajectories for economic optimization



Chapter 6

Conclusions and Recommendations

This chapter summarizes the contributions of the entire study and some recommen-

dations are made for future research directions.

6.1 Conclusions

The primary focus of this thesis is to design a coordination scheme for distributed

MPCs using the dynamic real-time optimization (DRTO) formulation. This formula-

tion fully considers the interactions between distributed MPCs and the dynamic plant

behaviour and complies with the hierarchical industrial process automation control

structure.

1. Closed-loop prediction formulation for distributed MPCs

The interactions between distributed MPCs and plant dynamics are rigorously mod-

eled in the DRTO formulation. The distributed MPCs only consider the local plant

behavior while the plant dynamic model contains the information for the entire plant

process. Such persistent plant model mismatch is simulated along the closed-loop
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prediction horizon. The performance of DRTO formulation is compared with control

structures with only centralized or decentralized MPCs. The advantages of using

the DRTO formulation to coordinate distributed MPCs are clearly demonstrated us-

ing both linear and nonlinear case studies. The capabilities of target tracking and

economic optimization are also demonstrated.

2. Approximation techniques applied to closed-loop prediction for dis-

tributed MPC systems

Due to the complexity of closed-loop prediction for multiple distributed MPCs with

plant dynamics, two approximations methods are discussed: the hybrid formulation

and the input clipping method. Those approaches significantly reduces the complexity

of closed-loop prediction. The performance and problem size analysis are first done

on a MIMO linear system. Economic optimization is subsequently conducted on a

two-CSTR-in-series system and the computing time can be drastically diminished,

which further indicates the practical application of DRTO formulation in a realistic

setting.

3. Inclusion of nonlinearity within the DRTO formulation

The DRTO formulation introduced previously is based on linear dynamic models for

both control implementation and generating surrogate plant outputs. This chap-

ter demonstrates that introducing various degrees of nonlinearity can improve the

performance of DRTO formulation since the closed-loop prediction is able to reflect

the plant dynamics with better accuracy. Firstly, the holistic plant model takes a

nonlinear form and this nonlinear formulation is compared with its linear counter-

parts. A noticeable increase in performance is observed for the case study observed.

Subsequently, the MPCs also utilize a nonlinear formulation to provide a better con-

trol implementation in both the lower and upper levels. The performance is further

improved based on the case study considered.
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6.2 Recommendations for Further Work

Some broad areas for future research in this area related to this topic are summarized:

1. Large-scale industrial applications of DRTO formulation for distributed

MPCs

A case study should be conducted on a large-scale industrial system so that the benefit

of using this hierarchical structure can be fully captured. However, due to the large

simulation models used for large-scale systems, embedding the holistic plant model

or local models can be challenging. Thus, certain model reduction methods should

be properly explored. Due to current industrial applications of steady-state RTO,

transforming the steady-state models to a dynamic one could be another solution to

this problem. Approximation techniques should be also applied to alleviate the issue

of computational complexity.

2. Alternative MPC formulations used in the control implementation and

inner MPC optimization subproblems of DRTO formulation

The MPC formulation used in this study is limited to stable system dynamics so the

issue of stability is largely not explored. Various formulations have been developed

in the research area to address the issue of stability. Incorporating some of those

formulations would demonstrate the wide applicability of the DRTO formulation for

various lower-control structure and for both stable and unstable systems. Rigorous

theoretical proofs for stability are also needed for the DRTO formulation to illustrate

its ability to handle unstable systems. Various discretization methods for nonlinear

MPCs can be another option to explore. Logic-based MPCs are used in industry,

and addressing such formulations would expand the potential choices of application

as well.

3. Robust model-based control using closed-loop prediction
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Certain parameters in industrial processes are time varying. Such uncertainty can

be addressed using the hierarchical control structure by assigning optimized set-point

trajectories by the upper layer to the lower level control implementation. The lower-

level MPC contains a dynamic model with a nominal value of the uncertain variable.

Assuming there is known minimum and maximum of the uncertainty parameter,

the upper layer utilizes the closed-loop prediction with multiple realizations of the

plant dynamics. Each scenario can produce the closed-loop dynamics between its

corresponding plant realization and the nominal MPC. All MPC optimization sub-

problems track a universal reference trajectory generated by the primary optimization

part, and the set-point trajectories are extracted from this reference trajectory for

lower-level control tracking. In this way, while maintaining the simple control struc-

ture of a nominal MPC, the upper layer effective capture the possible scenarios of

constraint violations and closed-loop dynamics. Both target-tracking and economic

optimization are feasible when this structure is used.
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