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Abstract

In this thesis, we study problems related to the reconstruction (up to bi-interpretability)

of first-order theories from various functorial invariants: automorphism groups, endo-

morphism monoids, (categories of) countable models, and (ultra)categories of mod-

els.
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Chapter 1

Introduction

Let T be a first-order theory. Any formula ϕpxq of T eq (so a definable set of T

quotiented by a definable equivalence relation of T ) induces a “functor of points”

evϕpxq on the category ModpT q of models of T with maps the elementary embeddings,

by sending M ÞÑ ϕpMq. In this way the category DefpT q of 0-definable sets of

T embeds into the category of functors rModpT q,Sets, via the “evaluation map”

ev : T Ñ rModpT q,Sets.

Here is the motivating problem: how do we recognize, up to isomorphism, the image of

ev inside rModpT q,Sets? This would give a way of reconstructing the theory T from

its category of models ModpT q. That is, given an arbitrary functor X : ModpT q Ñ

Set—some way of attaching a set to every model of T , functorial with respect to

elementary embeddings—how can we tell if X was isomorphic to some functor of

points evϕpxq for some formula ϕpxq P T eq? We call such functors X definable.

A necessary condition for definability is compatibility with ultraproducts.  Los’ the-

orem 3.2.1 tells us that evaluation functors evϕpxq commute with ultraproducts, that

is,

ϕ

˜

ź

iÑU
Mi

¸

“
ź

iÑU
ϕpMiq.

1
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Strong conceptual completeness for first-order logic, as proved by Makkai in [12], pro-

vides a sort of converse to  Los’ theorem, and says that the definable functors are

precisely the ones which preserve ultraproducts and certain formal comparison maps

between ultraproducts, called ultramorphisms, which generalize the diagonal embed-

dings of models into their ultrapowers. This recovers T up to bi-interpretability. To

precisely state Makkai’s result, we must formalize what it means for an arbitrary

functor X : ModpT q Ñ Set to “preserve ultraproducts” and “preserve” these ul-

tramorphisms. This motivates the formalism of ultracategories, which we review in

chapter 3.

Any general framework which recovers theories from their categories of models should

be considerably simplified for ℵ0-categorical theories, whose definable sets are excep-

tionally easy to understand (being precisely the finite disjoint unions of orbits of the

automorphism group) and in fact are determined up to bi-interpretability by the auto-

morphism group of the unique countable model topologized by pointwise convergence.

We will show (Theorem 4.3.2) that when T is ℵ0-categorical, we can check definabil-

ity by checking compatibility with ultraproducts and just diagonal embeddings into

ultrapowers, so that for ℵ0-categorical theories, the definability criteria provided by

strong conceptual completeness can indeed be simplified.

By modifying our techniques, we will deduce the full statement of strong concep-

tual completeness for ℵ0-categorical T (Theorem 7.2.2) from just the preservation of

diagonal embeddings into ultrapowers. This will follow as a corollary of a general

definability criterion (Theorem 7.2.1) for recognizing the evaluation functors of de-

finable sets among the evaluation functors for objects in the classifying topos of any

first-order theory T .

Finally, in chapter 8, we construct counterexamples to Theorem 7.2.2 when the as-

sumption of ℵ0-categoricity is removed.

2



Chapter 2

Basic model theory and categorical

logic

2.1 Introduction

In this chapter, we develop the necessary categorical logic (and some model-theoretic

consequences) for our main results. We assume familiarity with the basics of first-

order logic and model theory, e.g. the first few chapters of [14]. We also assume

familiarity with basic category theory, e.g. the first few chapters of [9].

2.1.1 Notation and conventions

• Unless explicitly stated otherwise, we are always working in multisorted classical

first-order logic.

• Unadorned variables in formulas will generally stand for finite tuples of appropriately-

sorted variables.

• Similarly, when we say “sort” we mean a finite tuple of sorts. When we wish to

3
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stress that a sort is not a finite tuple of other sorts, we will say “basic sort”.

• If we have already mentioned a tuple of variables x, then we will write Sx for

the sort corresponding to x.

• ϕ, φ, ψ, and θ will usually mean first-order formulas.

• If L is a first-order language, we write FunctionspLq, RelationspLq, ConstantspLq,

and FormulaspLq to mean the collections of function symbols, relation symbols,

constant symbols, and first-order L-formulas, respetively.

• If X is a set, we write 2X for the power set tS
ˇ

ˇS Ď Xu.

2.2 Basic notions

2.2.1 The category of definable sets

The starting point for first-order categorical logic is the identification of a theory with

its category of definable sets.

Definition 2.2.1. Let T be a first-order L-theory. The category of definable sets

comprises:

$

’

&

’

%

Objects: FormulaspLq {„ , where φpxq „ ψpxq ðñ φpMq “ ψpMq for all M |ù T,

Morphisms: DefpT qpϕpxq, ψpyqq
df
“

´

tφ P FormulaspLq
ˇ

ˇT |ù φ is a function ϕpxq Ñ ψpyqu {„

¯

Some remarks:

1. In the above, we are defining morphisms to be equivalence classes of graphs of

definable functions, where we are using the same equivalence relation as we did

for objects.

2. Everything so far is 0-definable, and will remain so unless stated otherwise.

4
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3. By the completeness theorem for first-order logic, the notion of equivalence of

formulas used in defining the objects of DefpT q is the same as T -provable equiv-

alence: ϕpxq „ ψpyq ðñ T $ϕpxq Ø ψpxq. By the downward Lowenheim-

Skolem theorem, it also suffices to check „-equivalence by seeing if two formulas

have the same points on models whose sizes are less than or equal to the size of

the theory.

4. T always has an empty product of sorts, which we think of as a generic singleton

set 1. If T interprets a constant in a sort S, then we think of it as a nullary

function 1 Ñ S in DefpT q.

Below, we collect some observations on how certain categorical operations and category-

theoretic properties of DefpT q correspond to first-order logic in models of T .

Remark 2.2.2. To know that a formula ϕpxq lives in a sort B is to specify an

embedding of the definable set ϕpxq ãÑ B. If ϕpxq and ψpxq are two definable sets in

T both of the same sort B, then ϕpxq ^ ψpxq is the pullback

ϕpxq B

ϕpxq ^ ψpxq ψpxq.

Remark 2.2.3. Dually, ϕpxq_ψpxq is the pushout of ϕpxq and ψpxq over ϕpxq^ψpxq.

Remark 2.2.4. DefpT q has an initial object 0 “ H. It is also strict: any map into

0 is an isomorphism.

Remark 2.2.5. The existence of complements means that for every subobject ϕpxq ãÑ

B, there exists a unique (up to isomorphism) subobject  ϕpxq ãÑ B such that:

1. The meet ϕpxq ^  ϕpxq is 0.

2. The join ϕpxq _  ϕpxq is B.

An immediate consequence of our definitions (and a basic sanity check) is that the

operations of first-order logic inside DefpT q may be checked inside any model:

5
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Definition 2.2.6. Let M |ù T . Then M is the data of a functor M : DefpT q Ñ Set

(“taking M -points”; “passage to a model”; etc.) Explicitly, it is given by

`

ϕpxq
f
Ñ ψpyq

˘

ÞÑ
`

ϕpMq
fpMq
Ñ ψpMq

˘

,

where ϕpMq, fpMq, and ψpMq are the interpretations of ϕ, f, and ψ in the model M .

We write DefMpT q to denote the image of this functor (“the category of 0-definable

sets in M”.)

Lemma 2.2.7. The inclusion DefMpT q preserves and reflects finite limits (in fact

creates them.)

Proof. By the canonical product-equalizer decomposition (see [9], V.2.2.) for limits,

it suffices to check the preservation and reflection of limits on just products and

equalizers.

The usual construction of an equalizer of two maps f, g : X Ñ Y in Set is always

definable: it is the subset of X consisting of those elements x such that fpxq “ gpxq.

Similarly, if X and Y are definable, then X ˆ Y is definable, and the projections

X ˆ Y
πX
πY
Ñ

X, Y are definable.

If J is a finite diagram in DefMpT q and lim
ÐÝ

J its limit, and Z P DefMpT q is a definable

set in M equipped with a cone of definable maps to J , then Z has (in Set) a unique

mediating map to lim
ÐÝ

J , which is definable because it is definable in the cases when

J is a product or equalizer diagram, the limit is finite, and by the canonical product-

equalizer decomposition the mediating map for a general finite J is a composition of

finitely many mediating maps for products and equalizers.

2.2.2 Logical categories and elementary functors

One can try to isolate the categorical properties shared by those categories of the

form DefpT q for T some first-order theory. This was done in Makkai-Reyes [13] and

6
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the resulting notion is that of a (Boolean) logical category.

Definition 2.2.8. A category C is a logical category if it has all finite limits

(equivalently, all binary products and equalizers), and furthermore:

1. C has images: if f : X Ñ Y is a map in C, then there is a subobject impfq of Y

such that f factors through impfq ãÑ Y which satisfies the following universal

property: whenever there is a commutative triangle

X 1

X Y

g

f

then g factors uniquely through impfq.

2. C has finite sups of subobjects: given any finite collection of subobjects S1, . . . , Sn

of B, there exists a smallest subobject in the subobject poset of B among those

subobjects greater than all the Si.

3. Images and sups of subobjects in C are stable under pullback (“images and

unions commute with taking preimages”):

We require that the image of a map f : X Ñ Y satisfy the following property:

if g : Z Ñ Y is another map, then in the following situation with the

pullback square

X Y

X ˆY Z Z,

f

πZ

g

the pullback of impfq ãÑ Y along g is the same thing as impπZq.

We require that for any finite collection of subobjects S1, . . . , Sn of B with sup
Ž

i Si ãÑ B and any map g : Z Ñ B, then in the following situation with

7
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the pullback square
Ž

i Si B

Ž

i Si ˆB Z Z,πZ

g

the subobject
Ž

i SiˆBZ of Z is the same thing as
Ž

i tS1 ˆB Z, . . . , Sn ˆB Zu.

Furthermore C is called Boolean if every subobject has a complement, in the sense

of 2.2.5.

There is an obvious notion of maps between logical categories. In [13] these are

called, aptly, logical functors, but after introducing pretoposes (Definition 2.6.16) we

will work with pretoposes almost exclusively, and so we follow the terminology of [12],

wherein logical functors between pretoposes are called elementary.

Definition 2.2.9. Let C and C1 be logical categories. An elementary functor

C Ñ C1 is a functor which preserves finite limits, finite sups of subobjects, and

images.

Before we proceed, we verify, as claimed, that DefpT q is always a Boolean logical

category.

Proposition 2.2.10. Let T be a first-order theory. Then DefpT q is a Boolean logical

category.

Proof. 1. DefpT q has all binary products and equalizers: if ϕpxq and ψpyq are

formulas, then we form their product ϕpxq ˆ ψpyq as follows: replacing x and

y with identically-sorted variables as necessary so that x and y are disjoint, we

put ϕpxq ˆ ψpyq
df
“ ϕpxq ^ ψpyq Ď Sxy.

Similarly, if we have a pair of definable functions, ϕpxq
f

Ñ
g
ψpyq, their equalizer

is given by the formula ϕpx1q ^ ϕpx2q ^ fpx1q “ gpx2q (with x1 and x2 distinct

variables.)

8
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2. DefpT q has images: given a definable function f with graph relation Γpfqpx, yq,

the image impfq of f is just the definable set DxΓpfqpx, yq.

3. DefpT q has finite sups: given any finite collection ϕ1pxq, . . . , ϕnpxq of formulas

such that for all 1 ď i ď n, T |ù @xϕipxq Ñ ψpxq (so the ϕipxq are subobjects

of ψpxq in DefpT q), their sup is just their join
Ž

1ďiďn ϕipxq Ñ ψpxq.

One checks that the monomorphisms in DefpT q are definable injections and

that the pullback of two definable functions ϕ1pxq
f
ÝÑ ψpxq

g
ÐÝ ϕ2pxq is the

subobject of the product ϕ1pxq ˆ ϕ2pxq consisting of those pairs equalized by

f and g. In particular, the pullback of a subobject along f is the preimage of

the subobject along the definable function f . This implies that finite sups and

images are pullback-stable.

In the next section, we will review the non-categorical notions of interpretation be-

tween theories and structures in model theory, and show the extent to which these

notions of interpretation are captured by logical categories and elementary functors

between them.

We will then introduce the p´qeq-construction and a special class of logical categories

called pretoposes, and show that pretoposes and elementary functors completely cap-

ture the notions of theories and interpretations.

2.3 Interpretations between theories and interpre-

tations between structures

In this section, we review the notions of interpretations (abstractly between theories,

and concretely between models) from model theory. We then show how these two

9
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notions are related. We then show that models of T are the same thing as elementary

functors DefpT q Ñ Set, and prove that strict interpretations T Ñ T 1 are the same

thing as elementary functors DefpT q Ñ DefpT 1q.

2.3.1 Concrete interpretations

We will only define and work with concrete interpretations for one-sorted structures

(although with a little care to make sure arities are preserved, the notion can be

generalized to multi-sorted structures, by having functions f : US Ñ MpSq for each

sort S.)

Definition 2.3.1. Let M1 be an L1-structure and let M2 be an L2-structure. An

interpretation pf, f˚q : M1 Ñ M2 is a surjection f : U � M1 where U Ď Mk
2 ,

some k P N, such that the pullback f˚ : 2M1 Ñ 2M2 sends L1-definable sets of M1 to

L2-definable sets of M2.

We call such an interpretation a concrete interpretation.

Definition 2.3.2. If, in the above definition, the function f : U �M1 is also injective,

we say that pf, f˚q is a strict concrete interpretation.

Definition 2.3.3. (c.f. [1]) Let pf1, f
˚
1 q, pg1, g

˚
1 q : M Ñ M 1 be interpretations. We

say that pf1, f
˚
1 q is homotopic to pf2, f

˚
2 q, written pf1, f

˚
1 q „ pg1, g

˚
1 q, if, writing U

for the domain of f1 and V for the domain of f2, the equalizer relation

eqpf1, f2q “ tpu, vq
ˇ

ˇu P U, v P V, f1puq “ f2pvqu

is definable.

Definition 2.3.4. We additionally say that a homotopy is a strict homotopy if the

equalizer relation in the above definition is the graph of a definable bijection. Two

concrete interpretation are strict homotopic if and only if both concrete interpretations

are strict.

10
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Definition 2.3.5. (c.f. [1]) Let pf, f˚q : M Ñ M 1 and let pg, g˚q : M 1 Ñ M2 be

interpretations.

The composite interpretation pg, g˚q˝pf, f˚q “ pg˚f, pg˚fq˚q is defined as follows:

g ˚ f has domain g˚Uf where Uf is the domain of f , and is given by the composition

pg ˝ f where pg is the canonical extension of g to g˚Uf .

Definition 2.3.6. (c.f. [1]) A concrete bi-interpretation between two structures

M and M 1 is a pair of interpretations

pf, f˚q : M Ô M 1 : pg, g˚q

such that pgf, g˚f˚q „ 1M and pfg, f˚g˚q „ 1M 1 .

On the other hand, one can also define interpretations purely syntactically, between

theories.

2.3.2 Abstract interpretations

The following definition seems to be folklore.

Definition 2.3.7. Let L1 and L2 be two languages, so each equipped with a set of

sorts, function, relation, and constant symbols with arities taken from the set of sorts.

Let SymbpLq comprise all the nonlogical symbols of L.

An interpretation of languages I of L1 in L2 is an assignment comprising:

$

’

&

’

%

A map I0 : SortspL1q Ñ FormulaspL2q, and

a map I1 : SymbpLq Ñ FormulaspL2q,

(where we view the equality symbol of each sort as a definable relation) such that the

11
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maps are compatible with arity, i.e. the following diagram commutes:

SortspL1q FormulaspL2q

SortspL2q

SymbpL1q FormulaspL2q

I0

arity

arity

I1

arity

where we define the arity of a formula to be the sorts of its tuple of free variables.

Remark 2.3.8. Each interpretation of languages I : L1 Ñ L2 induces a map(by

induction on complexity of formulas) I : FormulaspL1q Ñ FormulaspL2q, in particular

a map I : SentencespL1q Ñ SentencespL2q.

So far, an interpretation of languages only requires that arities and sorts need to make

sense. The following definition ensures that symbols are interpreted in a sensible way.

Definition 2.3.9. Let T1 and T2 be L1- and L2-theories. An interpretation of theories

I : T1 Ñ T2 is an interpretation of languages I : L1 Ñ L2 such that

T1 |ù ψ ùñ T2 |ù Ipψq.

Remark 2.3.10. If T1 Ď T2 is an inclusion of L-theories, then the identity interpre-

tation of L induces an interpretation of theories T1 Ñ T2.

It follows that when T 11 Ď T1 is an inclusion of theories, any interpretation T1 Ñ T2

restricts to an interpretation T 11 Ñ T2.

In particular, any interpretation of an L1-theory T1 in an L2-theory T2 extends an

interpretation of the empty L1-theory in T2. Since the empty theory in any lan-

guage always proves that equality is an equivalence relation, equality must always be

interpreted as an equivalence relation.

Example 2.3.11. Every theory has the identity interpretation with itself; more gen-

erally, every theory can be n-diagonally interpreted in itself: send each sort S to the

12
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diagonal of

S ˆ S . . . (n times) ¨ ¨ ¨ ˆ S

and induce the rest of the interpretation by restricting from sorts to the definable sets

they contain. An explicit description in terms of a concrete interpretation of models

is given at 2.3.21.

Definition 2.3.12. If an abstract interpretation interprets equality as equality, we

say the interpretation is a strict abstract interpretation (in the literature, this is

often called a definition of one theory inside another.)

In keeping with the traditional Ahlbrandt-Zeigler ([1]) treatment of bi-interpretations,

which avoids imaginaries (for the definition of imaginaries and what it means to elim-

inate them, see 2.6.5), we define the abstract analogue of a concrete bi-interpretation

(Definition 2.3.6).

Definition 2.3.13. An abstract bi-interpretation between two theories T and T 1

is a pair of abstract interpretations F : T Ñ T 1 and G : T 1 Ñ T such that:

For any definable set X of T there exists a definable surjection ηX : GF pXq �

X whose kernel relation is equal to GF p“q, the definable equivalence relation

interpreting equality (on the definable set X). Furthemore, the collection of

ηX must satisfy the following naturality condition: for any definable function

X
f
Ñ Y in T , the square

X GF pXq

Y GF pY q

f

ηX

GF pgq

ηY

commutes, and dually

for any definable set X 1 of T 1 there exists a definable surjection εX 1 : FGpX 1q� X 1

in T 1 whose kernel relation is equal to FGp“q, the definable equivalence relation

interpreting equality on Y , such that for any definable function X 1 f
1

Ñ Y 1 in T 1,

13
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the square

FGpX 1q X 1

FGpY 1q Y 1

εX1

FGpf 1q f 1

εY 1

commutes.

We furthemore say that an abstract bi-interpretation is strict if all the maps ηX and

εY are bijective, not just surjective. An abstract bi-interpretation is strict if and only

if its constituent abstract interpretations are strict.

2.3.3 Comparing abstract and concrete interpretations

Now we explicate the relationship between abstract and concrete interpretations.

Proposition 2.3.14. pf, f˚q is a strict concrete interpretation M1 ÑM2 if and only

if f˚ also restricts to an elementary functor DefM1pThpM1qq Ñ DefM2pThpM2qq.

Proof. We only have to show that an interpretation pf, f˚q always induces an elemen-

tary functor DefpThpM1qq Ñ DefpThpM2qq.

Since the morphisms in these categories are already definable sets and the source and

target maps the projections (which correspond to existential quantification), functo-

riality will follow from the preservation of the elementary operations.

Since f˚ was induced by taking preimages along a function f , it preserves products

(i.e. arity), conjunction, and negation.

Since f was surjective, f˚ takes nonempty sets to nonempty sets, so existential state-

ments continue to have witnesses, i.e. existential quantification.

Finally, if Rp~cq is an atomic sentence in M1, then ~c P RM1 , and since f was a function,

f˚~c P f˚R, so f˚ preserves atomic sentences.

14
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Hence f˚ induces an interpretation ThpM1q Ñ ThpM2q, and therefore must restrict

to an elementary functor DefM1pThpM1qq Ñ DefM2pThpM2qq.

Proposition 2.3.15. Let M |ù T1 and N |ù T2 be structures, and let pf, f˚q : M Ñ

N , U Ď Nk, f : U Ñ M be a strict concrete interpretation of M in N . Then f˚

induces an elementary functor DefpT1q Ñ DefpT2q.

Proof. It suffices to see that f˚ preserves ^, and D. The first two are preserved

because f˚ is given by taking preimages along a function. D is preserved because

f is assumed surjective: if M |ù ϕpa, bq, then f˚ϕ is satisfied by the pair of imag-

inaries f˚tau and f˚tbu, so f˚tau satisfies Dxf˚ϕpx, yq if and only if f˚tau satisfies

f˚ pDxϕpx, yqq if and only if a P Dxϕpx, yq.

Combining the previous proposition with Theorem 2.4.1, we get:

Corollary 2.3.16. Strict concrete interpretations restrict to strict abstract interpre-

tations.

Remark 2.3.17. In the previous two propositions, strictness was necessary to even

define a functor (resp. abstract interpretation) because we needed the preimage of

a graph of a function to again be a graph of a definable function (resp. provably

equivalent in the interpreting theory to the graph of a function), c.f. remark 2.4.2.

We now answer the question: given a concrete interpretation pf, f˚q : M1 Ñ M2, for

f : U Ñ M1, which other concrete interpretations pg, g˚q induce the same abstract

interpretation as pf, f˚q? The next proposition says that any two concrete interpre-

tations which restrict to the same abstract interpretation must be conjugate by an

automorphism.

Proposition 2.3.18. Let M , N , and U be as before. If pf, f˚q and pg, g˚q are both

interpretations of M in N such that the domain of f and g are both U and f˚ and

g˚ induce identical elementary functors DefpT1q Ñ DefpT2q, then there exists an

15
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automorphism σ of M such that g “ σf.

Proof. Since f and g are surjective, we just need to show that

fpuq ÞÑ gpuq

satisfies ϕpfpuqq ðñ ϕpgpuqq for all tuples u P U and formulas ϕpxq. This works if

the preimage of any 0-definable set in M under f is the same as its preimage under

g, and this is precisely the assumption that f˚ and g˚ induce the same elementary

functor.

Proposition 2.3.19. An abstract interpretation F : T1 Ñ T2 can be realized as a

concrete interpretation pf, f
˚
q : M Ñ N for some M |ù T1 and N |ù T2.

Proof. By 2.4.1 and the discussion in Remark 2.5.6, given any model N |ù T2, we can

take reducts along the interpretation F and obtain a model M |ù T1.

Proposition 2.3.20. Let M |ù T and M 1 |ù T 1 be ℵ0-categorical. Then, there exists

a strict abstract bi-interpretation between T and T 1 if and only if there exists a strict

concrete bi-interpretation between M and M 1.

Proof. If there exists a strict concrete bi-interpretation of the countable models, then

by the previous proposition 2.3.14, the constituent concrete interpretations pf, f˚q and

pg, g˚q induce abstract interpretations F : T Ô T 1 : G. Since the concrete homotopies

are strict, there are definable bijections GFX
ηX
Ñ X and FGY

εY
Ñ Y for all X P DefpT q

and Y P DefpT 1q, and these with F and G form an abstract bi-interpretation between

T and T 1.

Conversely, if we know that T and T 1 are abstractly strict bi-interpretable, then by

Theorem 2.4.1, the abstract strict bi-interpretation T » T 1 induces a pair of elemen-

tary functors DefpT q Ô DefpT 1q. Since the constituent abstract interpretations of

the bi-interpretation are strict, the families of surjective definable functions tηXu and

16
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tεY u in the definition 2.3.13 of an abstract bi-interpretation must be definable bijec-

tions. Now, if we take points in M 1, by taking reducts we have the data of a strict

interpretation pf, f˚q : M Ñ M 1, and similarly by taking points in M and taking

reducts we have the data of a strict interpretation pg, g˚q : M 1 Ñ M , and the graphs

of the definable bijections tηXu and tεY u are precisely the definable equalizer relations

needed to make pg ˚ f, g˚f˚q „ 1M and pf ˚ g, f˚g˚q „ 1M 1 , which gives a concrete

strict bi-interpretation between M and M 1.

Here is an example of a bi-interpretation neither of whose constituent interpretations

are invertible.

Definition 2.3.21. Let M be an L-structure. Let n ě 1.

We define the n-diagonal interpretation pfn, f
˚
n q : M Ñ M as follows: write ∆npMq

for the diagonal of Mn, which is definable, and put fn to be the bijection ∆npMq »M

by pm, . . . ,mq ÞÑ m. Then f˚n pulls back every definable set X Ď Mk to the obvious

definable subset f˚nX Ď ∆npMqˆ (k times) ˆ∆npMq.

Example 2.3.22. The n-diagonal interpretations T
∆n
ÝÑ T for n ą 1 are pseudo-

inverse to themselves, but do not admit inverses. This is because if pg, g˚q : M ÑM

were an inverse to the n-diagonal interpretation pfn, f
˚
n q, g

˚ would need to pull back

∆npMq to M . However, if X is a definable set in the k-sort, then g˚X lives in a

k1-sort, where k1 is a positive integer multiple of k. Therefore, since ∆npMq lives in

the n-sort, and there is no positive integer multiple of n which is 1, there is no inverse

interpretation.

In what follows, we always work with abstract interpretations and multisorted lan-

guages unless otherwise specified.

17
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2.4 Interpretations as elementary functors

The aim of this subsection is to prove the following theorem, which lets us inter-

change strict abstract interpretations between theories with elementary functors be-

tween their logical categories of definable sets.

Theorem 2.4.1. I : L1 Ñ L2 is a strict abstract interpretation T1 Ñ T2 if and only

if I induces an elementary functor DefpT1q Ñ DefpT2q.

Proof. By the above discussion, we just need to show that an elementary functor

induces an interpretation. We proceed by an induction on complexity of formulas.

Since finite limits are preserved, I preserves meets of formulas (since the intersection

of two subsets of a sort is a pullback).

Since finite sups are preserved, I preserves joins of formulas.

I also preserves negations: ψpxq and  ψpxq are characterized by their pullback being

empty and their sup being all of the ambient sort Sx. Since I preserves pullbacks

and finite sups (in particular, the empty sup is the empty set), Ipψpxqq and Ip ψpxqq

satisfy that their pullback is empty and their join is IpSxq.

I preserves existential quantification since I preserves images and existential quan-

tification is the same as projecting to the sort of the remaining free variables.

Since binding under the existential is the same as projecting to remaining free vari-

ables, when we bind all the free variables we are projecting to the empty tuple of

variables, which corresponds to the empty product, which is the terminal object 1.

So now suppose we have a sentence ϕ “ Dxψpxq. Since T |ù Dxψpxq, the image of

the corresponding projection to 1 is all of 1. Since I preserves images and terminal

objects, the image IpDxψpxqq of the projection Ipψpxqq � Ip1q is again 1, and so

Ipψpxqq cannot be the empty subobject 0, since then its unique map to the terminal

object would have image 0.

18
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Therefore, I preserves sentences formed by existentially quantifying a formula.

It remains to provide the base for the induction on positive atomic sentences. But

these are relations (including equality) evaluated at non-variable terms, say Rpcq. In

DefpT1q this is the pullback of Rpxq along the inclusion tcu ãÑ Sx. If T1 |ù Rpcq, then

there is a definable function 1 Ñ Sx picking out c; this factors through the inclusion

of Rpxq into Sx, giving a pullback square

1 Rpxq

1 Sx.

Since I preserves finite limits (and hence the terminal object), applying I we get

1 IpRpxqq

1 IpSxq.

Since I was a functor, the horizontal map 1 Ñ IpSxq picks out Ipcq. Therefore

T2 |ù IpRpcqq, which provides the base for the induction on complexity of formulas

and completes the proof.

Remark 2.4.2. In the previous proof, strictness is needed to even form a functor,

because we need the interpretation Ipfq of a definable function f to be a T2-definable

function.

However, I being an abstract interpretation of theories and f being a T1-definable

function is not enough to ensure that IpΓpfqq is the graph of a T2-definable function.

This is because equality in T1 may be interpreted as a non-equality equivalence relation

E, so that Ipfq is only a function after quotienting out its domain and codomain by

E. Because of this, T2 does not necessarily prove that Ipfq is a function.

If T2 contains a quotient for E, then one could try replacing E by the equality relation

on that quotient set, which would provide a natural way of replacing the non-strict
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interpretation I by a strict intepretation homotopic to I. A priori, a first-order theory

need not contain quotients for all definable equivalence relations. However, we will

show in 2.6 that up to abstract bi-interpretability, we can replace any first-order

theory T with another first-order theory T eq which does contain all quotients for all

definable equivalence relations.

2.5 Models as elementary functors

A model M of T an L-theory is an assignment of the symbols of L onto sets which

preserves the truth of sentences: if T |ù ψ, then M |ù ψ. Set is easily seen to be a

logical category, we will see that up to isomorphism of functors, elementary functors

DefpT q Ñ Set are precisely the models.

Proposition 2.5.1. Every model of T corresponds to an elementary functor DefpT q Ñ

Set.

Proof. How every model M of T corresponds to a functor DefpT q Ñ Set was de-

scribed in 2.2.6 (“taking points in M”). That taking points in models preserves finite

limits is the content of 2.2.7.

To check preservation of finite sups, let tϕ1pxq, . . . , ϕnpxqu be a finite collection of

formulas of the same sort. Then their sup is given by
Ž

n ϕipxq, and the sup of

tϕ1pMq, . . . , ϕnpMqu is precisely
Ť

n ϕipMq. The empty sup is the empty formula,

represented in DefpT q by the T -provable equivalence class of “x ‰ x”, and this is

interpreted by M as the empty set, which is the empty sup for any set in Set.

To check preservation of images, let f be a definable function. The image of f in

DefpT q is just the formula which describes the image of f , and M interprets this

formula as the image of fpMq.

We have shown that every model M induces a functor, which by an abuse of notation
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we’ll also call M , from DefpT q Ñ Set. This completes the proof of the first part of

the proposition. Now we’ll show that for any elementary functor F : DefpT q Ñ Set

is, up to isomorphism of functors, a model.

For every basic sort B, there are canonical isomorphisms F pBkq » F pBqk. Up to

isomorphism of functors (where the isomorphism of functors is given by conjugating

by these canonical isomorphisms), we can assume therefore that F pBkq “ F pBqk.

Furthermore, for every sort ~B “ B1 ˆ ¨ ¨ ¨ ˆ Bn, there are canonical isomorphisms

F pB1 ˆ ¨ ¨ ¨ ˆ Bnq » F pB1q ˆ ¨ ¨ ¨ ˆ F pBnq. Again, up to isomorphism of functors, we

can assume that F p ~Bq “ ~F pBq. Furthermore, if ϕpxq is a formula of sort B, then there

is a canonical definable injection ϕpxq ãÑ B such that the image of F pϕpxq ãÑ Bq is a

subset of F pBq; arguing as before, we can assume up to an isomorphism of functors

that F pϕpxqq Ď F pBq. Similarly, we can assume up to an isomorphism of functors

that if T |ù @xpϕpxq Ñ ψpxqq, then F pϕpxqq Ď F pψpxqq.

The canonical isomorphisms described so far induce isomorphisms of Boolean algebras

2
~B » 2

~F pBq. Therefore, up to isomorphism of functors, we can assume that F pϕpxq _

ψpxqq “ F pϕpxqq Y F pψpxqq (resp. ^ and negations).

Since F preserves images, then for every definable function f , F pimpfqq » impF pfqq.

Then up to isomorphism of functors, F pimpfqq “ impF pfqq.

Now we have, up to isomorphism, completely “strictified” F . It remains to show that

an elementary functor which strictly preserves products, finite sups, and images is a

model.

Indeed, let ~c be a tuple of terms such that Rp~cq is an atomic sentence. Then by our

previous reductions, F px “ ~cq Ď F pRpxqq, so F |ù Rp~cq.

It is obvious that if ϕ and ψ satisfy that pT |ù ϕ ùñ F |ù ϕq and pT |ù ψ ùñ F |ù

ψq, then pT |ù ϕ^ ψ ùñ F |ù ϕ^ ψq.

If ϕpxq is a formula, then T |ù Dxϕpxq if and only if the image of the projection of
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ϕpxq to the empty sort (which is the empty product, so is the terminal object 1) is all

of 1. Since F is a logical functor, it preserves the terminal object and all maps into

the terminal object, so F of the image of the projection of ϕpxq to the empty sort

is still 1. Then F pϕpxqq cannot be empty, since if it were, the image of its canonical

map to 1 would be the empty set. So F |ù Dxϕpxq.

Similarly, if T |ù  ψ, then if ψ is quantifier-free it is easy to see that F |ù  ψ. If ψ

is of the form Dϕpxq, then as a subobject of the terminal object 1, Dxϕpxq “ H the

empty sup. Since F is logical, it preserves empty sups, so again Dxϕpxq “ H as a

subobject of the terminal set 1, and therefore, F |ù  Dxϕpxq.

This concludes the induction on complexity of formulas.

2.5.1 Elementary embeddings as natural transformations of

elementary functors

If elementary functors are models, what do the natural transformations between these

elementary functors correspond to at the level of models?

Let us recall the various notions of maps between two L-structures.

Definition 2.5.2. Let M1 and M2 be L-structures. An L-homomorphism is a

SortspLq-indexed collection of functions

tηS : M1pSq ÑM2pSquSPSortspLq

which preserve the interpretations of the nonlogical symbols of L in M1 and M2.

Remembering our convention that our collections of sorts are closed under formation

of finite tuples, we also require, for every finite tuple of sorts ~S “ pS1, . . . , Snq,

η~S “ ηS1 ˆ ηS2 ˆ ¨ ¨ ¨ ˆ ηSn .

Now, “preserving the interpretations of nonlogical symbols in L” means:
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1. For each constant c P L of sort S, ηS sends cM1 ÞÑ cM2 ,

2. For each relation symbol R P L of sort S, for any x PM1pSq, M1 |ù RM1pxq ùñ

M2 |ù RM2pηSpxqq.

3. For each function symbol f P L of sort S1 Ñ S2, whenever fM1pxq “ y, then

fM2pηs1pxqq “ ηS2pyq.

An L-homomorphism is called strict if it preserves inequality and the complements of

the relation symbols. If η : M1 ÑM2 is strict, it preserves the truth of all quantifier-

free L-formulas in M1 and M2: for all quantifier-free ψpx1, . . . , xnq,

M1 |ù ψpa1, . . . , anq ùñ M2 |ù ψpηpa1q, . . . , ηpanqq.

If one is able to remove the quantifier-free stipulation above, so that η preserves the

truth of all L-formulas, then η additionally reflects the truth of all L-formulas: for

every ψpx1, . . . , xnq,

M1 |ù ψpa1, . . . , anq ðñ M2 |ù ψpηpa1q, . . . , ηpanqq.

In this case, η is called an elementary embedding. By an easy induction on the

complexity of formulas, two models connected by an elementary embedding necessarily

have the same theory.

An L-homomorphism M Ñ M is called an L-automorphism if it admits an in-

verse L-homomorphism; it is easy to see that any L-automorphism is an elementary

embedding.

Lemma 2.5.3. A natural transformation f between models M1 ÑM2 of an L-theory

T is precisely an elementary embedding.

Proof. Since a model is an elementary functor, the components of a natural trans-

formation are induced by restricting its components at all (finite products of) sorts;

naturality requires f to send tuples x inside a definable set XM1 to inside XM2 . (In
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particular, natural transformations preserve types: tppx{Aq “ tppfpxq{fpAqq.) Hence

(because we have complementation) M1 |ù ϕpxq ðñ M2 |ù ϕpfpxqq.

Remark 2.5.4. More generally, in coherent (i.e. positive existential fragments of

first-order) logic, natural transformations are just L-homomorphisms; every finitary

first-order theory is bi-interpretable with its Morleyization, which is coherent.

Remark 2.5.5. Now that we have shown that natural transformations between ele-

mentary functors correspond to elementary embeddings of the corresponding models,

it is clear that the correspondence between elementary functors DefpT q Ñ Set and

models M |ù T described in 2.5.1 implements an equivalence of categories between:

1. The category of models of T , and

2. the category of strict elementary functors DefpT q Ñ Set.

Remark 2.5.6. Since we have shown (Proposition 2.5.1) that models of T are ele-

mentary functors ModpT q Ñ Set, and that interpretations T1 Ñ T2 are elementary

functors DefpT1q Ñ DefpT2q (Theorem 2.4.1), it follows that any interpretations

I : T1 Ñ T2 induces via precomposition a functor

I˚ : ModpT2q Ñ ModpT1q, by
`

M : DefpT2q Ñ Set
˘

ÞÑ
`

M˝I : DefpT1q Ñ DefpT2q Ñ Set
˘

.

Thus, given an interpretation T1 Ñ T2, every model of T2 determines a model of T1

by “restricting to the image of I”. We call such functors between categories of models

reduct functors. The prototypical example is when the interpretation I is induced

by an inclusion of languages; then the reduct functor is literally the reduct to the

smaller language.

For the rest of this document, when we say “reduct”, we will mean the more general

concept of a reduct functor induced by an interpretation.

Remark 2.5.7. Of course, the preceding discussion can be “relativized”: instead of

working with elementary functors into Set, we could look at all theories interpretable
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in another theory T , and consider instead of ModpT 1q the category of interpreta-

tions IntpT 1, T q, and the preceding remarks about interpretations inducing “reduct”

functors apply equally well.

The analogy carries further: just as natural isomorphisms between strict elementary

functors (models) DefpT q Ñ Set correspond precisely with isomorphisms of models,

natural isomorphisms between strict elementary functors (abstract interpretations)

F,GDefpT q Ñ DefpT 1q correspond precisely to having a strict concrete homotopy

in the sense of Ahlbrandt and Ziegler (Definition 2.3.3) between any two concrete

interpretations realizing F and G.

2.6 Pretoposes and the p´qeq-construction

One of the key insights in Makkai and Reyes [13] is that when T uniformly eliminates

imaginaries, DefpT q is a small pretopos; pretoposes were defined independently by

Grothendieck in SGAIV [2] as sites canonically presenting coherent toposes.

Moreover, in [13] it is shown that every logical category C can be completed to a

pretopos rC, and this pretopos completion is in a precise sense a categorification of

Shelah’s p´qeq-construction: ČDefpT q » DefpT eqq.

Remark 2.6.1. Another reason why pretoposes are desirable is that equivalences of

the Boolean logical categories DefpT1q » DefpT2q do not quite correspond to abstract

bi-interpretations T1 » T2, because abstract bi-interpretations are allowed to send

sorts to quotients of sorts by definable equivalence relations. For example, if T does

not uniformly eliminate imaginaries, DefpT q is a Boolean logical category but not

a pretopos. However, the canonical interpretation T Ñ T eq induces an elementary

functor DefpT q Ñ DefpT eqq. While this canonical interpretation is part of a bi-

interpretation, the induced elementary functor between the categories of definable

sets cannot be part of an equivalence of categories, because DefpT eqq has quotients
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of equivalence relations while by assumption DefpT q is missing the quotient of some

equivalence relation.

However, abstract bi-interpretations do correspond to equivalences of categories be-

tween the pretopos completions of DefpT1q and DefpT2q.

We will recall the p´qeq construction from model theory. Before we do, we will spell

out the notion of being an equivalence relation object in a category.

Definition 2.6.2. An equivalence relation (or internal congruence) in a cate-

gory C with finite limits is the following data:

1. An object X and a subobject E ãÑ X ˆX,

2. A reflexivity map r : X Ñ E such that r is a section to both projections

π1, π2 : X ˆX Ñ X,

3. A symmetry map s : E Ñ E such that π1 ˝ s “ π2 and π2 ˝ s “ π1,

4. A transitivity map r : E ˆX E Ñ E, where E ˆX E is the pullback of π1 and

π2, as in the following pullback square (where i : R ãÑ X ˆX is the inclusion

map):

E ˆX E R

R X

p2

p1 π1˝i

π2˝i

such that π1 ˝ i ˝ p2 “ π1 ˝ i ˝ t, and π2 ˝ i ˝ p2 “ π2 ˝ i ˝ t.

Here is the p´qeq-construction.

Definition 2.6.3. Let T be a complete first-order L-theory. We define the expansion

Leq of L as follows: for each ϕE which becomes an internal congruence E Ñ X in

DefpT q, we add a sort SϕE and a predicate symbol fϕEpx, eq, where x is in the sort

of x and e is in the sort of SϕE . The theory T eq is T expanded by sentences which

assert that for each ϕE, fϕEpx, eq is the graph of a surjection X Ñ SϕE which takes

each x P X to its E-class.
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Proposition 2.6.4. DefpT eqq has finite coproducts.

Proof. Let ∆S be the diagonal relation on some sort S of T . Then there is a 0-

definable equivalence relation E∆S
Ñ S ˆ S by a „ b ðñ pa P ∆S ^ a P ∆Sq _

`

a P  ∆S ^ b P  ∆S

˘

. Passage to T eq yields two definable constants. Taking binary

sequences of these two constants in powers of their imaginary sort SE∆S
yields arbi-

trarily large finite collections of constants, and this lets us take arbitrary finite disjoint

unions of definable sets.

The reason why the p´qeq-construction was introduced was to eliminate imaginaries.

Definition 2.6.5. T is said to eliminate imaginaries if for every E-class C of E a

definable equivalence relation E Ñ X, there exists a formula ϕCpx, yq such that for

every model M |ù T , there exists a tuple b such that b uniquely satisfies ϕCpMx, bq “

C.

Note that there is a canonical interpretation (which sends equality to equality) of T

in T eq.

Proposition 2.6.6. T eq eliminates imaginaries. Actually, we can do even better: T eq

will uniformly eliminate imaginaries, meaning that we can choose a ϕEpx, yq instead

of one for each C.

Proof. If E is a definable equivalence relation in T , then the graph of fE uniformly

eliminates the imaginaries of E. If E is instead a definable equivalence relation in

T eq, it suffices to see that E is equivalent (in the sense of DefpT eqq) to an equivalence

already definable in T . Indeed, let I : T eq Ñ T be the interpretation defined in

the previous remark. Then IpEq is an equivalence relation in T , hence eliminated

in T eq by the graph of fIpEq. Since IpEq-classes are, by definition, compatible with

the projections back to the imaginary sorts of the free variables of E, fIpEq definably

extends to a definable function whose domain has the same sort as E, and the graph
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of this eliminates E.

As the proof of Proposition 2.6.4 demonstrates, if T interprets two constants, then

DefpT q has finite coproducts. We point out another consequence of T interpreting

two constants:

Lemma 2.6.7. If T interprets two constants, then the epimorphisms of DefpT q are

precisely the definable surjections.

Proof. A definable surjection f : X Ñ Y is an epimorphism: if f equalizes g1, g2 then

g1 and g2 must agree everywhere on Y .

On the other hand, if f is not surjective and tc1, c2u are two constants, then f equalizes

the maps g1 and g2 where g1 sends all of Y f to c1 and g2 sends the image of f to c1

and Y z impfq to c2, so is not an epimorphism.

The proof of Proposition 2.6.4 shows that if T uniformly eliminates imaginaries, it

interprets two constants. Therefore:

Corollary 2.6.8. If T uniformly eliminates imaginaries, then the epimorphisms of

DefpT q are precisely the definable surjections.

Notation 2.6.9. For the remainder of this document, “elimination of imaginaries”

will mean uniform elimination of imaginaries in the above sense.

After this section, unless explicitly stated otherwise, we will replace T with T eq if T

does not already eliminate imaginaries.

Here are corresponding concepts on the category-theoretic side. Recall that a category

C is said to be complete (resp. finitely complete) if it has all small limits (resp.

finite limits).

Definition 2.6.10. The kernel pair of a morphism f : X Ñ Y in a finitely complete

category C is the internal congruence kerpfq Ñ X, where the parallel maps are the
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projections from the pullback kerpfq
df
“ X ˆf,Y,f X.

Definition 2.6.11. A category is regular if it is finitely complete and kernel pairs

of morphisms admit coequalizers. An epimorphism which arises as the kernel pair of

some morphism is called regular.

Definition 2.6.12. A category C is called Barr-exact if it is a regular category and

all internal congruences in C are effective: they arise as the kernel pair of some

morphism. This last condition is the analogue of elimination of imaginaries.

Lemma 2.6.13. DefpT q is regular for any first-order theory T .

Proof. Indeed, the kernel pair of a morphism f is coequalized by f 1, where f 1 is just

f treated as a surjection to impfq.

Corollary 2.6.14. All definable surjections of T are regular morphisms in DefpT q.

Definition 2.6.15. A (finitary) pretopos is a Barr-exact logical category with finite

coproducts.

We give a more direct description, as given in [12].

Definition 2.6.16. A pretopos is a category C satisfying the following:

1. C has all finite limits (is finitely complete); equivalently, C has a terminal object

and all pullbacks.

2. C has stable finite sups.

3. C has stable images.

4. C has a stable disjoint sum of any pair of objects. A disjoint sum A\B of objects

A,B is a coproduct of A and B such that, for the canonical maps i : A ãÑ A\B

and j : B ãÑ A\B, i and j are monomorphisms and the pullback AˆA\B B is

isomorphic to 0.

29



M.Sc. Thesis - Jesse Michael Han McMaster University - Mathematics

Stability for disjoint sums means that whenever we have a diagram of the form

A A\B

A1 C 1 B

B1

i

j

with A1 and B1 pullbacks, then C 1 is the disjoint sum of A1 and B1.

5. C has quotients of equivalence relations.

Remark 2.6.17. The only difference between a pretopos and a Boolean logical cat-

egory is that pretoposes have quotients by all definable equivalence relations. If a

quotient by an equivalence relation exists in a logical category, then it is already

stable because it is the image of the quotient map and images are stable; by the

construction above involving the imaginaries coming from the diagonal and its com-

plement, one has a steady supply of finite disjoint unions of the terminal object, and

using these one can form finite disjoint unions of arbitrary objects (easily checked to

be stable).

Corollary 2.6.18. DefpT eqq is a pretopos.

Corollary 2.6.19. The natural notion of a pretopos morphism coincides with ele-

mentary functors between logical categories, since disjointness of a coproduct can be

checked using a pullback and the empty sup and the property of π : X Ñ Q being a

quotient of an equivalence relation E Ď X ˆ X is equivalent to the kernel relation

of π (definable from π) being the same as E: elementary functors preserve whatever

(fragments of the) pretopos structure are present in a logical category, so in particular

preserves all the pretopos structure between two pretoposes.

Remark 2.6.20. Now that we have introduced the p´qeq-construction, we see that

the definition of an abstract bi-interpretation (Definition 2.3.13) can be equivalently

defined as a pair of abstract interpretations F : T Ñ T 1 and G : T 1 Ñ T such that
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For any definable set X of T there exists a T eq-definable bijection ηX : X »

GF pXq{GF p“q (where GF p“q is the definable equivalence relation interpreting

equality) such that for any definable function X
f
Ñ Y in T eq, the square

X GF pXq{GF p“q

Y GF pY q{GF p“q

ηX

f GF pgq

ηY

commutes, and dually

for any definable set X 1 of T 1 eq there exists a definable bijection εX 1 : FGpX 1q{FGp“

q Ñ X 1 in T 1 eq such that for any definable function X 1 f
1

Ñ Y 1 in T 1 eq, the square

FGpX 1q{FGp“q X 1

FGpY 1q{FGp“q Y 1

εX1

FGpf 1q f 1

εY 1

commutes.

Thus, to every abstract bi-interpretation of theories, we can associate an equivalence

of categories between the pretoposes DefpT eq
1 q » DefpT eq

2 q (and vice-versa).

This gives a nicer reformulation of Proposition 2.3.20:

Proposition 2.6.21. Two ℵ0-categorical structures are concretely bi-interpretable if

and only if they have abstractly bi-interpretable theories.

Remark 2.6.22. As remarked in Makkai-Reyes [13], if we change the “finite” in

“stability of finite sups” and “finite coproducts” to “small” (in the sense of the ambient

universe), we get a Grothendieck topos (c.f. Giraud’s theorem 6.1.1 at the beginning

of chapter 6.

Notation 2.6.23. For the rest of this document, unless explicitly stated otherwise,

we will assume T “ T eq, and so DefpT q will always be a pretopos.
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2.7 The 2-category of structures and interpreta-

tions

In this section, we form the natural 2-categorical structure of structures and interpre-

tations and study the process of taking endomorphism monoids.

Roughly speaking, a 2-category is a category C all of whose hom-sets CpX, Y q are also

categories. This means that for any two morphisms F,G : X Ñ Y , there is a notion

of a higher “2-morphism” η : F Ñ G. The prototypical example for the concept is

the category of categories with objects categories and morphisms functors between

categories, and with 2-morphisms the natural transformations between functors. For

details, we refer the reader to ([9], XII.3).

Definition 2.7.1. A natural transformation γ : pf, f˚q Ñ pg, g˚q of two interpreta-

tions A
pf,f˚q
Ñ
pg,g˚q

B is a specification of a 0-definable bijection f˚pSq Ñ g˚pSq for each sort

S of A so that restriction yields 0-definable bijections f˚X Ñ g˚X for any definable

subset of A.

Definition 2.7.2. The 2-category of first-order structures and interpretations is given

by

Struct
df
“

$

’

’

’

’

’

&

’

’

’

’

’

%

Objects: first-order structures A

Morphisms: interpretations pf, f˚q : AÑ B

2-morphisms: natural transformations.

Proposition 2.7.3. Let TopMon be the 2-category of topological monoids. There is

a contravariant 2-functor (which only reverses 1-morphisms)

Structop Endp´q
Ñ TopMon
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given by

A ÞÑ EndpAq

A
pf,f˚q
Ñ B ÞÑ

´

EndpBq
Endppf,f˚qq
Ñ EndpAq

¯

ˆ

pf, f˚q
γ
Ñ pg, g˚q, for A

pf,f˚q
Ñ
pg,g˚q

B

˙

ÞÑ

´

Endppf, f˚qq
Endpγq
Ñ Endppg, g˚qq

¯

,

where EndpAq is the monoid of elementary self-maps AÑ A endowed with the topol-

ogy of pointwise convergence, Endppf, f˚qq is induced by restriction (elementarity of

an endomorphism ensures this restriction is well-defined) and Endpγq is the endomor-

phism of A induced by γ, which satisfies (this is the definition of a 2-morphism in the

2-cat TopMon):

Endpγq ˝ Endppf, f˚qqpσq “ Endppg, g˚qqpσq ˝ Endpγq

for all σ P EndpBq.

Proof. This last statement follows from endomorphisms σ being elementary: let xf

be f˚x in f˚A, then

γσxf “ σγxf ùñ γ ˝ pσ æ f˚Aqxf “ pσ æ g
˚Aq ˝ γxf

ùñ Endpγq ˝ Endpfqpσqpxq “ Endpgqpσq ˝ Endpγqpxq,

for all x P A.

Proposition 2.7.4. Furthermore, if we discard all morphisms which are not iso-

morphisms and all natural transformations which are not natural isomorphisms, and

thus restrict to the underlying 2-groupoid corepStructq of Struct, Endp´q becomes a

contravariant 2-functor

core pStructqop Autp´q
Ñ TopGrp

to the 2-category of topological groups. In particular, on 2-morphisms γ : pf, f˚q Ñ

pg, g˚q we have Autpgqpσq “ Autpγq ˝ Autpfq ˝ Autpγq´1 for all σ P AutpBq.
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Remark 2.7.5. Note that Endp´q reflects 2-isomorphisms: if f
γ
Ñ g becomes an

isomorphism after applying Endp´q, then Endpγq is invertible, so γ must have been

invertible.

Remark 2.7.6. By the above remark, Endp´q reflects equivalences: if we have a

mutual interpretation f : A Ô B : g and natural transformations η : idA Ñ gf and

ε : fg Ñ idB such that idAutpAq

Autpηq
» Autpgfq and idAutpBq

Autpεq
» Autpfgq then η and

ε must have already been isomorphisms, so that A and B were bi-interpretable.

Remark 2.7.7. Endp´q does not reflect 1-isomorphisms: if we have mutual interpre-

tations f : A Ô B : g with Endpfq and Endpgq forming an isomorphism of topological

monoids Endpgq : EndpAq Ô EndpBq : Endpfq, it is not generally true that f and g

invert each other. This is because there are “homotopies” h in the sense of Ahlbrandt

and Ziegler such that Endphq “ id .

2.8 More on ModpT q

2.8.1 Equivalences of theories induce equivalences of cate-

gories of models

Notation 2.8.1. The symbol » between categories means equivalence, not strict

isomorphism.

Notation 2.8.2. If C and D are categories, we write rC,Ds for the category of

functors C Ñ D.

We spell out the purely formal fact that taking functor categories r´,´s preserves

equivalences in either argument

Lemma 2.8.3. Suppose C1 » C2 and D1 » D2. Then rC1,D1s » rC2,D2s.
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Proof. Name the functors in the equivalences above i : C1 » C2 : j and k : D1 » D2 :

`. Let F : C1 Ñ D2. We induce a functor F : rC1,D2s Ñ rC2,D2s by F ÞÑ kFj and

η ÞÑ kηj for η a natural transformation. This is clearly functorial, and we’ll show it’s

full, faithful ,and essentially surjective.

Fullness: if η : kFj Ñ kGj is a natural transformation in rC2,D2s, we require an

η2 : F Ñ G such that kη2j “ η. By the full faithfulness of k, we can lift η to an

η1 : Fj Ñ Gj. So it suffices to show that precomposition by an equivalence is a

fully faithful functor between functor categories. To do this, we require the usual

construction, requiring the axiom of choice. η1 is already a C2-indexed collection

of maps in D1 between objects in the image of Fj and Gj (which are subsets of the

images of F andG, respectively), and we can (non-canonically) use the full faithfulness

and essential surjectivity of j to extend η1 to an η2 giving a C1-indexed collection of

maps between all objects in the full images of F and G. To be precise: select for

each isomorphism class rbs» of an object b P C1 a representative crbs» P C2, such that

Jcrbs» » b, and for each object b P C1 an isomorphism φb : Jpcrbs»q Ñ b. Then for all

b P C1, define η2b : FbÑ Gb by

Fb
Fφb
Ñ Fjcrbs»

η1crbs»
Ñ Gjcrbs»

Gφ´1
b
Ñ Gb.

To see this is a transformation, see that in the naturality diagram

b

b1

f

Fb Fjcrbs» Gjcrbs» Gb

b1 Fjcrb1s» Gjcrb1s» Gb1

Fφb

Ff

η1 Gφb

Gf

Fφb1 η1c
rb1s»

Gφb1

the squares on the left and right commute by assumption and the center one does as

well by the naturality of η1. Hence F is full.

Faithfulness: suppose that η ‰ ε as natural transformations from F to G in rC1,D1s.

So there is some b P C1 such that ηb ‰ εb. By faithfulness of k. kηb ‰ kεb. By
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the essential surjectivity of j, there is a c P C2 such that there is an isomorphism

φ : jc » b. Examining the naturality square for η at φ yields the identities

εjc “ Gφ´1
˝ ηb ˝ Fφ

´1 and εjc “ Gφ´1
˝ εb ˝ Fφ

´1.

Since functors preserve isomorphisms, and in general isomorphisms x Ñ x1, y Ñ y1

induce a bijection via conjugation Hompx, yq » Hompx1, y1q, ηb ‰ εb ùñ ηjc ‰ εjc.

Hence F is faithful.

Essential surjectivity: for each functor H : C2 Ñ D2, we require some F : C1 Ñ

D1 such that there is a natural isomorphism FF “ kFj » H. To do this, we

repeat the construction using the axiom of choice from the proof of fullness, this

time simultaneously to j and k, so that we have functions b ÞÑ
`

crbs» , φb
˘

and e ÞÑ
`

dres» , ψe
˘

. Given a bÑ b1 in C1, we construct F via the following sequence of maps:

pbÑ b1q ÞÑ

¨

˚

˚

˚

˝

b jcb»

b1 jcrb1s»

˛

‹

‹

‹

‚

(f.f.)
ÞÑ

`

crbs» Ñ crb1s»
˘

ÞÑ
`

Hcrbs» Ñ Hcrb1s»
˘

ÞÑ

¨

˚

˚

˚

˚

˚

˝

Hcrbs» kdrHcrbs»s»

Hcrb1s» kdrHcrb1s»s»

˛

‹

‹

‹

‹

‹

‚

(f.f.)
Ñ

´

drHcrbs»s»
Ñ drHcrb1s»s»

¯

,

which is easily seen to be functorial.

Corollary 2.8.4. If two theories T1, T2 are bi-interpretable, then their categories of

models are equivalent.

Proof. A bi-interpretation T1 » T2 induces an equivalence of pretoposes DefpT1q »

DefpT2q. A model of T is just an elementary functor from DefpT q into Set. Ele-

mentary functors are closed under composition, so the restriction of F as above to the

elementary functor categories is well-defined, and must be an equivalence.
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In light of this fact, it is natural to ask for a converse: if ModpT q » ModpT 1q, then

is there a bi-interpretation T » T 1? Can we find a bi-interpretation which induces

the original equivalence ModpT q » ModpT 1q?

Later, we will give an example which shows that the answer to the first question is

“no”. The conceptual completeness theorem of Makkai and Reyes [13] says that if

we are given an interpretation T Ñ T 1 to start with, then if the induced functor

ModpT 1q Ñ ModpT q is an equivalence, then the interpretation must have been a

bi-interpretation.

2.8.2 Accessibility of ModpT q

Two important features of the category of models of a theory T are that it has all

filtered colimits, and any model can be written as a filtered colimit of elementary

submodels the size of the theory.

Proposition 2.8.5. ModpT q has all filtered colimits.

Proof. Standard inductive construction.

Proposition 2.8.6. Let T be a first-order theory. For every N P ModpT q, N is

either of cardinality |T |, or N is the filtered colimit over its elementary submodels

of smaller cardinality than N . In fact, N is the filtered colimit over its elementary

submodels of cardinality |T |.

Remark 2.8.7. Computing the filtered colimit of a diagram of countable models

actually yields that every uncountable model of a first-order theory is the union of a

proper infinite elementary chain of submodels:

1. By downward Lowenheim-Skolem, every element x of the uncountable model N

is contained in a countable elementary submodel Mx. For cardinality reasons,
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there must be at least |N | distinct countable elementary submodels that arise

this way.

2. Index the Mx’s by α the first ordinal of length |N |. By downward Lowenheim-

Skolem, amalagate M0 with M1, then with M2, taking the union at ω. Then

amalgamate this union with Mω, etc.; continuing until α, we end up with an

elementary chain which covers N .

We record here some consequences of accessibility.

Lemma 2.8.8. Suppose there is an equivalence F : ModpT q » ModpT 1q : G. Then

for all models M |ù T where M “ |T |, |F pMq| “ maxp|T |, |T 1|q.

Proof. Write F pMq as a filtered colimit over distinct elementary submodels M 1
i of size

|T 1|. Passing through the equivalence, write M » lim
ÝÑ

GpM 1
iq. Since M has cardinality

|T |, only |T |-many of the GpM 1
iqs are required in the filtered colimit for M . Therefore,

only |T |-many of the M 1
is are required in the filtered colimit for F pMq. Since each

M 1
i has size |T 1|, |F pMq| is bounded from above by the size of the |T |-indexed disjoint

union of the M 1
i ’s, which has size |T | ˆ |T 1| “ maxp|T |, |T 1|q. By the construction in

2.8.7, F pMq is actually a proper elementary chain of length |T | and therefore |F pMq|

is at least as big as M 1
0 plus a single point for every model in the chain, so |F pMq| is

at least as big as |T | ` |T 1| “ maxp|T |, |T 1|q.

Proposition 2.8.9. Suppose there is an equivalence F : ModpT q » ModpT 1q : G.

Then for all models M |ù T , |F pMq| “ maxp|M |, |T 1|q.

Proof. The proof is the same as that of 2.8.8.

Corollary 2.8.10. Let κ be an infinite cardinal. Then for countable theories, κ-

categoricity is invariant under bi-interpretation.

Proof. A bi-interpretation induces an equivalence of categories of models, and by the

proposition 2.8.9, this sends models of size κ to models of size κ. Since it is an
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equivalence, this induces a bijection between the isomorphism classes of models of

size κ on either side.

2.9 ℵ0-categorical structures and theories

In this section, we review the theory of ℵ0-categorical structures and prove some

lemmas which will be necessary for our main results. In the rest of the thesis, unless if

we say otherwise, an ℵ0-categorical theory will always mean (in light of our convention

2.6.23) the p´qeq of a one-sorted ℵ0-categorical theory.

2.9.1 The Ryll-Nardzewski theorem

There is a nice description of what the automorphism groups of ℵ0-categorical struc-

tures look like. As permutation groups on ω, they must be oligomorphic; this is the

Ryll-Nardzewski theorem.

Definition 2.9.1. A group action G ñ X is oligomorphic if each of the product

actions

G ñ X,G ñ X2, G ñ X3 . . .

has only finitely many orbits.

Theorem 2.9.2. (Ryll-Nardzewski) A structure M is ℵ0-categorical if and only if its

automorphism group action is oligomorphic.

Proof. Suppose M is ℵ0-categorical. The omitting types theorem says that a non-

isolated type can be omitted, and every infinite compact space must have a non-

isolated point. So the type spaces of M in every tuple of sorts have to be finite, and

every type is isolated by a formula, so M is ω-saturated. Then any two tuples of the
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same type are conjugate by an automorphism (via a back-and-forth argument; homo-

geneity follows from the fact that naming finitely many constants doesn’t change the

saturation), so AutpMq is oligomorphic. Conversely, suppose towards the contrapos-

itive that M was not ℵ0-categorical. Then a type space of M is infinite, since any

point of a finite Stone space (whence Hausdorffness) is isolated. The number of types

in a tuple of sorts is a lower bound on the number of AutpMq-orbits on that tuple of

sorts, so AutpMq is not oligomorphic.

Here are some examples.

Example 2.9.3. (i) Consider the theory of a dense linear order, which at cardinal-

ity ℵ0 has just one model: the rationals with the canonical ordering. The orbits

in higher powers are determined by how we fiddle with “ă” and ““” relating

finitely many points picked from Q.

(ii) A theory with a single equivalence relation with infinitely many infinite classes.

(iii) The theory of equality on an infinite set.

(iv) The theory of the countable random graph.

(v) Relatedly to the above examples: the theory of any Fräıssé limit.

(vi) Here is a nonexample, which we know is not ℵ0-categorical and hence not sat-

urated by Ryll-Nardzewski 2.9.2: pN,ăq. This does not realize the type of the

point at infinity.

Here is what an ω-saturated extension of this looks like:

N` . . .Z` Z` ¨ ¨ ¨ ` Z` . . .

where each Z is equipped with the usual ordering; we can think of those as points

at infinity. These copies of Z are actually dense, so the order type properly
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written is N`QZ.

(vii) For another non-example which is more purely model-theoretic, take the theory

of just equality in an infinite model and name infinitely many distinct con-

stants. Note that if we name just finitely many constants, we still have the

Ryll-Nardzewski 2.9.2 theorem—the finitely many orbits are just those con-

stants and then the orbit which contains everything else—but as soon as we

name infinitely many, we can take a model which consists of just those con-

stants versus a model where we’ve added an unnamed element.

2.9.2 The Coquand-Ahlbrandt-Ziegler theorem

Definition 2.9.4. Given a group action G ñ M , we can canonically turn M into a

first-order structure InvpG ñ Mq, called the invariant structure of G ñ M , in the

language where we name every G-invariant subset of any finite power Mn of M with

a new predicate symbol.

Theorem 2.9.5. (Coquand, Ahlbrandt-Ziegler, [1]) Two ℵ0-categorical structures are

bi-interpretable if and only if their automorphism groups are isomorphic as topological

groups.

Proof. Let A and B be ℵ0-categorical, and let G1 and G2 be their automorphism

groups. Suppose there is a topological isomorphism ϕ : G1
„
Ñ G2.

Since our automorphism groups are topologized under pointwise convergence, open

subgroups are stabilizers of tuples. By the Ryll-Nardzewski theorem, there are only

finitely many orbits of G2 ñ B. Take representatives b
df
“ pb1, . . . , bnq of those or-

bits. Consider Stabpbq an open subgroup of G2. This corresponds via the topo-

logical isomorphism to an open subgroup H of G1, which we can assume is of the

form Stabpa
df
“ pa1, . . . , akqq. The domain U of the interpretation will be all the
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G1-conjugates of
ď

iďn

`

ai, a
˘

and the interpretation

U
f
� B

is given by

f
`

σpaiq, σpa1q, . . . , σpakq
˘ df
“ ϕpσqpbiq

for 1 ď i ď k and σ P G1. Carrying out this process for the inverse topological

isomorphism ψ : G2 Ñ G1 and obtaining a V
g
� B, we see that pf, f˚q and pg, g˚q

form a concrete bi-interpretation InvpG1q » InvpG2q. (To take care of the necessary

homotopies: since f and g will be bijections U » B and V » A and they were

defined by translating orbit representatives, the obvious isomorphisms g˚f˚B » B

and f˚g˚A » A gotten by chasing b P B and a P A through f and g will be G-

invariant.)

Remark 2.9.6. The conclusion of this theorem fails to hold as soon as we weaken

the ω-categoricity assumption, if instead of looking at the topological automorphism

group of the unique countable model we look at the topological automorphism group

of a countable saturated model.

For example, let T be the theory of an infinite set expanded by countably infinitely

many distinct constants. The saturated countable model M of this theory has in-

finitely many elements which are not constants (these are realizations of the omittable

type which says “I am not any of the constants.”). The AutpMq-invariant structure

InvpAutpMq ñ Mq (see 2.9.4) on M recognizes this omittable type as an infinite

predicate which contains no constants.

Since no infinite definable set inM |ù T contains no constants, M is not bi-interpretable

with InvpAutpMq ñ Mq.
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2.10 Recovering ModpT q from EndpMq

In this section, we will prove (this appears without proof in a paper [11] by Daniel

Lascar):

Proposition 2.10.1. Let T1 and T2 be ω-categorical theories. Let Endωp´q take an

ω-categorical theory to the monoid of endomorphisms (in ModpT q) of its countable

model. Then every isomorphism of monoids F : EndωpT1q Ñ EndωpT2q : G induces

an equivalence of categories F : ModpT1q Ñ ModpT2q : G.

Proof. The functor is obtained by taking colimits of countable submodels. If N |ù T ,

we write AgeωpNq for the diagram of countable elementary submodels of N with

inclusions between them (these inclusions are automatically elementary maps since

the countable models are elementary submodels of N).

AgeωpNq is a filtered diagram in ModpT q, and N » lim
ÝÑ
pAgeωpNqq.

Proof of claim. Filteredness is equivalent to every finite subdiagram admitting

a cocone in the diagram, and this follows from Lowenheim-Skolem: a finite sub-

diagram in this case is just a finite collection of countable elementary submodels

of N . Then N models the elementary diagram of the union of these countable

elementary submodels, and so by Lowenheim-Skolem admits a countable ele-

mentary submodel which is a cocone to the finite subdiagram.

Since every n P N is contained in some countable submodel Mn, a cocone

Mn
fMn
Ñ N 1 under AgeωpNq extends uniquely to a map out of N by sending

n ÞÑ fMnpnq; the compatibility of the fMn with the transition maps in the

diagram AgeωpNq ensures that this map is well-defined. So N satisfies the

universal property of the colimit, hence is isomorphic to the colimit.

Since every endomorphism of a countable model M |ù T1 is an elementary embedding

of the form M ãÑ M , the isomorphism F of endomorphism monoids tells us how to
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define F on AgeωpNq. We extend this to a true functor F : ModpT1q Ñ ModpT2q by

defining

F pN1 ãÑ N2q
df
“ lim

ÝÑ

`

F AgeωpN1q
˘

ãÑ lim
ÝÑ

`

F AgeωpN2q
˘

,

where the induced map is the canonical comparison map between colimits, induced

by the natural inclusion of AgeωpN1q in AgeωpN2q. Functoriality follows from the

uniqueness of these comparison maps. G : ModpT2q Ñ ModpT1q is defined entirely

analogously.

It now remains to show that F and G form an equivalence of categories when they

are induced by F and G forming an isomorphism of monoids. Since G inverts F

on countable models and elementary embeddings between them, there is already a

natural map, in fact a canonical comparison map

N » lim
ÝÑ

AgeωpNq ÝÑ GFN.

To see that this is in fact an isomorphism, it suffices to see that any copies of the

countable model M 1 |ù T2 that show up in F pNq is in fact of the form F pMq for some

M ãÑ N.

Since filtered colimits in ModpT q are unions of the models that appear in the underly-

ing diagram of the filtered colimit, any countable elementary submodel M 1 i
Ñ F pNq is

covered by countably many elementary submodels tF pMmqumPM 1 (since each element

of M 1 is contained in some F pMiq).

By using Lowenheim-Skolem again, we can jointly embed the Mm into another count-

able elementary submodel ĂM of N . Then the elementary embedding i factors through

the inclusion of the countable elementary submodel F pĂMq into F pNq. Viewing the

map M 1 Ñ F pĂMq as an endomorphism M 1 ÑM 1, we apply the isomorphism to obtain

a corresponding endomorphism GpM 1q Ñ ĂM . Since the composition of elementary

embeddings is an elementary embedding, GpM 1q is part of AgeωpNq, so that M 1 of

the form F pGpM 1qq.
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Chapter 3

Ultraproducts, ultracategories, and

Makkai’s strong conceptual

completeness

In this chapter we provide the necessary background on Makkai’s theory of ultracat-

egories.

3.1 Introduction

Definition 3.1.1. An ultraproduct of a family pAiqiPI of non-empty sets with re-

spect to a non-principal ultrafilter U on I is the set

ź

iÑU
Ai

df
“
ś

iPI Ai
L

„U ,

where pxiqiPI „U pyiqiPI if and only if tj P I
ˇ

ˇxi “ yiu P U . Given a representative

pxiqiPI of a U -class, we write rxisiÑU for its „U -class.
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Inside the category Set, this definition can be recast as the filtered colimit

ź

iÑU
Ai

df
“ lim

ÝÑ

˜

ź

iPP

Ai

¸

PPU

,

where the transition maps in the filtered diagram
ś

iPP Ai Ñ
ś

iPP 1 Ai are the pro-

jections to the coordinates P X P 1. This correctly handles the possibility that on a

U -small set of indices, the sets Ai are empty.

However, it is safe to assume that for the remainder of this document, we will ignore

empty models, and so the definition of an ultraproduct of sets can be taken to be the

first one.

Definition 3.1.2. When computing an ultraproduct of sets
ś

iÑI Ai, we will follow

the conventions:

1. Whenever we form an I-indexed product
ś

iPI Ai, we will think of each sequence

paiqiPI as the set tpi, aiqu and we will always write
ś

iPI Ai as the set of those

sequences: ttpi, aiquu.

2. Whenever we have a set X and an equivalence relation E Ñ X, we will always

write the quotient X{E as the set of (literal) equivalence classes of X.

With these conventions in place, we know exactly what set is the ultraproduct of

a given family of sets; by applying the ultraproduct construction to the graphs of

functions pXi Ñ YiqiPI , we also know exactly how to take ultraproducts of functions.

This all determines ultraproduct functors rUs : SetI Ñ Set, for every I and every

ultrafilter U on I.

Since ModpT q is the category of elementary functors (which we think of as pretopos

morphisms) PretoppDefpT q,Setq, once we have specified how to take ultraproducts

in Set, this tells us how to define ultraproducts of models “pointwise”:

Definition 3.1.3. Let pMiqiPI be an I-indexed sequence of models of T . We define the

ultraproduct of models
ś

iÑU Mi to be the following elementary functor DefpT q Ñ

46



M.Sc. Thesis - Jesse Michael Han McMaster University - Mathematics

Set: on objects A P DefpT q, put
˜

ź

iÑU
Mi

¸

pAq
df
“

ź

iÑU
pMipAqq ,

so that we have defined where
ś

iÑU Mi sends the object A to be precisely the ultra-

product in Set of where each elementary functor Mi sends A.

This determines where
ś

iÑUpMiq sends maps f : A Ñ B in DefpT q, by treating f

as its graph relation.

As pointed out by Makkai in [12], the content of the  Los theorem (see 3.2.1) is that

the previous definition of an ultraproduct of models is still an ultraproduct of models

(and this boils down to showing that the ultraproduct functors on Set are elementary

functors SetI Ñ Set). However, in ModpT q, ultraproducts of models admit no nice

definition in terms of a filtered colimit of infinite products as when we were computing

ultraproducts in Set—because infinite products of models might not exist.

However, since ultraproducts of models are still computed sort-by-sort (indeed, de-

finable set-by-definable set), one might believe that there is some residual “niceness”

from Set manifesting in how the ultraproducts of models interact with each other.

The purpose of the notion of ultracategory, modeled after ModpT q, is to formalize

this notion of a category equipped with extra structure coming from a “nice” notion

of taking ultraproducts of its objects. In particular, since in Set, ultraproducts are

a combination of products and filtered colimits, there are purely formal “comparison

maps” between ultraproducts arising from the universal properties of products and

filtered colimits, and we will see that part of the extra structure includes naming

these “comparison maps”. Functors which preserve this extra structure are called

ultrafunctors, and ultrafunctors between ultracategories X : K Ñ K1 will generalize

the reduct functors ModpT 1q Ñ ModpT q induced by an interpretation T Ñ T 1.

Makkai’s duality theorem [12] tells us that there is a dual adjunction between first-

order theories (pretoposes) and ultracategories, in fact given by taking appropriate
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categories of Set-valued functors. Strong conceptual completeness says that the counit

of this adjunction is an equivalence, i.e. that a pretopos T is equivalent to the category

of ultrafunctors UltpModpT q,Setq.

3.2 Basic notions

3.2.1 The  Los theorem

To every non-principal ultrafilter U on an indexing set I, we have fixed an ultraproduct

functor

rU s : SetI Ñ Set, pXiqiPI ÞÑ
ź

iÑU
Xi.

The starting point is the  Los ultraproduct theorem, which we rephrase in terms of

the ultraproduct functors in Set:

Theorem 3.2.1. ( Los theorem) Let I be an indexing set and U an ultrafilter on I.

Then the ultraproduct functor rU s : SetI Ñ Set is elementary.

Proof. An elementary functor preserves initial and terminal objects, pullbacks, dis-

joint sums, and quotients by equivalence relations1.

• Initial objects: a product of the empty set is the empty set, and a quotient of

the empty set is the empty set.

• Terminal objects: a product of terminal objects is terminal, and the quotient of

a singleton is a singleton.

• Pullbacks: a product of pullbacks is a pullback, and finite limits commute with

filtered colimits.

1Note that this implies that images are preserved: the image of any definable function f : X Ñ Y

is the projection to Y of the graph Γpfq of f , and is therefore in definable bijection with the quotient

of Γpfq by the definable equivalence relation px, yq » px1, y1q ðñ y “ y1.

48



M.Sc. Thesis - Jesse Michael Han McMaster University - Mathematics

• Disjoint sums: a product of disjoint sums is a disjoint sum of products, and

colimits commute with colimits.

• Quotients: a product of quotients Xi{Ei is a quotient of products
ś

I Xi{
ś

I Ei,

and colimits commute with colimits.

Corollary 3.2.2. Let pMiqiPI be an I-indexed family of L-structures. For each L-

formula ϕpxq, each element a of the ultraproduct
ś

iPIMi {U ,

ś

iPIMi {U |ù ϕras ðñ ti P I
ˇ

ˇMi |ù ϕraisu P U .

Proof. By 3.2.1 the ultraproduct functor is elementary, so that the process of taking

points inside a model of a definable set commutes with taking ultraproducts. In

symbols,
˜

ź

iPI

Mi{U

¸

pXq »
ź

iPI

MipXq{U .

Since this is a filtered colimit, a sequence x satisfies that its germ rxs is in
ś

iPIMi{UpXq

if and only if there is some J P U such that the restriction of x to J is in
ś

jPJMjpXq.

i.e. if xj PMjpXq for each j P J .

We recount the proof via regular ultraproducts of the compactness theorem for first-

order logic. This technique will be used in various arguments later on.

Fact 3.2.3. (Compactness theorem for first-order logic) Let T be a first-order theory.

T has a model if and only if every finite subset Ts Ď
fin
T has a model.

Proof. Let I index the finite fragments of T a first-order theory. For each i P I, let

Pi be the collection of all j P I such that viewed as finite fragments of T , j Ě i. The

collection F
df
“ tPiuiPI has the finite intersection property: Pi X Pi1 “ tj P I

ˇ

ˇ j Ě

i and j Ě i1u “ tj P I
ˇ

ˇ j Ě i Y i1u “ PiYi1 . Now take a completion F of F to an
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ultrafilter. Let Mi model each finite fragment of T given by i P I, and consider the

ultraproduct

M˚ df
“
ś

IMi {F .

Then for every sentence φ P T , φ is supported on some subcollection belonging to F ,

so is satisfied in M˚.

We also recount and prove the following useful ultraproduct characterization of ele-

mentary classes, due to Chang and Keisler:

Definition 3.2.4. Let M be an L-structure. An ultraroot of M is some structure N

such that NU »M for some non-principal ultrafilter U .

Fact 3.2.5. A class C of L-structures is an elementary class if and only if it is closed

under isomorphisms, ultraproducts, and ultraroots.

Proof. Suppose that C is the objects ModpT q0 of ModpT q for some L-theory T .

Then it closed under isomorphisms, ultraproducts (by the  Los theorem 3.2.1), and

ultraroots (since diagonal embeddings into ultrapowers are elementary).

On the other hand, suppose that C is a class of L-structures closed under isomor-

phisms, ultraproducts, and ultraroots. Let T be the theory

T
df
“

č

MPC

ThLpMq.

It suffices to show that C “ ModpT q0. By definition, C Ď ModpT q0, and the

inclusion C ãÑ ModpT q0 reflects isomorphisms. By the Keisler-Shelah isomorphism

theorem 3.2.6, the inclusion reflects elementary equivalences. Therefore, if there is an

M P ModpT q0zC, its theory must not show up in tThpNq
ˇ

ˇN P Cu.

Since T “
Ş

tThpNq
ˇ

ˇN P Cu, for every finite fragment Σ Ď
fin

ThpMq, there exists an

NΣ P C such that ThpNq |ù Σ. (Otherwise, there is a sentence ψ P ThpMqzT such

that for all N P C, N |ù  ψ, so that  ψ P T , a contradiction).
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There is a regular ultrafilter U such that
ź

ΣÑU
ΣĎ

fin
ThpMq

NΣ |ù ThpMq. Since C was closed

under ultraproducts, this contradicts our assumption that M R C. Therefore, C “

ModpT q is an elementary class.

Finally, we state the Keisler-Shelah isomorphism theorem (though much of the time,

special models arguments suffice to replace it.)

Theorem 3.2.6. (Keisler-Shelah isomorphism theorem) Two L-structures are ele-

mentarily equivalent if and only if they have isomorphic ultrapowers.

3.2.2 Frayne’s lemma and Scott’s lemma

In this subsection, we state Frayne’s lemma and the related Scott’s lemma, which will

be needed for some later results. We omit the proofs (somewhat-elaborate regular

ultraproduct arguments) and refer the interested reader to [3].

Lemma 3.2.7. Let N ”M be elementarily equivalent. Then N elementarily embeds

into some ultrapower MU of M .

Lemma 3.2.8. Let M
f
Ñ N be an elementary map. Then there is an ultrapower MU

of M and an elementary embedding N
g
ÑMU such that the diagram

MU

M N

∆M

f

g

commutes.
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3.2.3 The Beth definability theorem

In this subsection, we state and prove a version of the Beth definability theorem, due

to Bradd Hart.

Theorem 3.2.9. Let L0 Ď L1 be two languages, so that L1 has no new sorts. Let T1

be a theory in L1. Let F be the reduct functor

ModpT1q Ñ ModpHL0q

(here HL0 is the empty theory in L0, whose models are just all the L0-structures.)

Suppose that we know any one of the following:

1. There is a theory T0 in L0 such that F factors through ModpT0q with ModpT1q Ñ

ModpT0q an equivalence of categories.

2. F is fully faithful.

3. F is injective on objects.

4. F is full and faithful just on automorphism groups.

5. For all M P ModpT1q, every L0-elementary map f : F pMq Ñ F pMqU is

(uniquely lifts to) an L1-homomorphism f “ rf : M Ñ MU (between M and

MU viewed as L1-structures.)

Then: every L1-formula is T1-equivalent to an L0-formula.

Proof. 1 clearly implies 2.

2 is equivalent to 3: assume not 3. Then there are two distinct L1-expansions M and

N of the same L0-structure K, and so the identity automorphism is not in the image

of F restricted to HomL1pM,Nq: M and N being different must be witnessed by a

single tuple k and some symbol R from L1zL0 such that |ù RMpkq and |ù  RMpkq.
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Therefore, any automorphism of K which fixes k cannot be L1-elementary, and this

negates 2.

Now assume not 2. Since taking reducts along an inclusion of languages is always

faithful, this must fail to be full, and so this must be witnessed by an L0-elementary,

L1-not-elementary map g : FM Ñ FN . But then the pushforward L1-structure of M

along g induces an L1-expansion of FN distinct from N , which negates 3.

2 clearly implies 4.

4 implies 5: it suffices to show fullness, so let f : FM Ñ pFMqU . We use a special

models argument: by repeatedly invoking Scott’s lemma, start with FM Ñ pFMqU

and obtain a diagram of iterated ultrapowers

FM pFMqU0
`

pFMqU′
˘U2

¨ ¨ ¨

pFMqU
`

pFMqU
˘U1

´

`

F pMqU
˘U1

¯U3

¨ ¨ ¨

f

so that the vertical arrows become an isomorphism fω : M1 Ñ M2 in the limit

which extends f . The diagonal arrows become an isomorphism gωM2 Ñ M1 in the

limit, and from the commutativity of the diagram at every stage, gω ˝ fω becomes an

automorphism of M1 which extends f . Then gω ˝ fω lifts to an L1-automorphism.

Restricting gω ˝ fω from M1 to FM , we get that f also lifts to an L1-homomorphism.

Now, to show that 5 implies that every L1-formula is equivalent modulo T to an

L0-formula: suppose not, so that there is an L1 formula ψpxq such that for all L0-

formulas ψpxq, there exists an a and a b such that ϕpaq ^ ϕpbq for all ϕpxq P L0, but

ψpaq ^  ψpbq.

This is saying that there exists a model M of T1 on which the indicator function of

ψpxq disagrees with the indicator functions of every ϕpxq P L0.

Now, since a and b have the same L0-type, there exists an ultrafilter U and a pair of
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maps

FM
f

Ñ
∆FM

pFMqU

where f is some embedding which sends b ÞÑ a.

Since b and a have distinct L1-types, rf is not L1-elementary. Since rf is a homomor-

phism lifting an elementary embedding, it is an embedding, so a and b have the same

quantifier-free L1-type. Therefore, ψ was not quantifier free.

This implies that every quantifier-free L1 formula ψ is T -provably equivalent to an

L0-formula.

Since interpretations commute with quantification, we conclude that every L1-formula

is T -provably equivalent to an L0-formula.

With a little more work, we can remove the stipulation that no new sorts are added.

Theorem 3.2.10. Let L0 Ď L1 be an inclusion of languages, possibly with new sorts.

Let T be an L1-theory.

Suppose that whenever M |ù T and U is an ultrafilter, then every elementary map

M æL0
Ñ

`

M æL0

˘U

has a unique lift to a homomorphism on M .

Then every definable set X of T is T -provably equivalent (i.e. equivalent modulo T )

to an L0-imaginary sort.

Proof. The proof proceeds via the following steps:

1. Show that under our assumptions, in every model M |ù T , the points in M

of every L1-sort is contained in the definable closure of the points in M of the

L0-sorts.

2. By a compactness argument (see proof of 3.2.11), every L1-sort is the surjective

image of an L0-imaginary sort.
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We will spell out the first item, and trust that the reader will be able to imitate the

identical compactness argument from 3.2.11. Suppose towards the contrapositive that

there exists a model M |ù T such that there is an L1-sort S such that MpSq is not

in the definable closure of MpL0q. Then (possibly enlarging M) there are two points

x, y P MpSq with the same type over MpL0q. So, for some ultrapower MU of M ,

∆Mpxq and ∆Mpyq are conjugate by an automorphism σ fixing MpL0q.

Then both ∆M : M ÑMU and σ ˝∆M : M ÑMU lift ∆ : M æL0
Ñ

`

M æL0

˘U
, which

violates the assumptions of the theorem.

3.2.4 Conceptual completeness

In this subsection, we state the conceptual completeness theorem (7.1.8, [13]) from

Makkai-Reyes and give a proof, following (4.4, [8]).

Theorem 3.2.11. Let T1 and T2 eliminate imaginaries. Let J : DefpT1q Ñ DefpT2q

be an interpretation of T1 in T2. Let J˚
df
“ p´˝Jq be the induced functor ModpT2q Ñ

ModpT1q.

Then J is an equivalence of categories if and only if J˚ is.

Proof. That J˚ is an equivalence of categories if J is is purely formal, c.f. the lemma

2.8.3.

Towards the other direction, suppose J˚ is an equivalence of categories. We need to

show that J is full, faithful, and essentially surjective.

To see that J is faithful: if f1 ‰ f2 for Y1

f1

Ñ
f2

Y2 in DefpT1q, then their equalizer is

not all of Y1, which is to say that

|ù Dy P Y1 s.t. y R eqpf1, f2q.
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Since J is an interpretation, as a functor it preserves finite limits, complementa-

tion, and existential quantification. Applying J to the above sentence, conclude that

Jpf1q ‰ Jpf2q.

Claim. If J is essentially surjective, it is full.

Proof of claim. If g : JpY1q Ñ JpY2q is a definable function, then its graph Γpgq

is a definable set Γpgq ãÑ JpY1 ˆ Y2q. If J is essentially surjective, then there is

a corresponding Γpgq ãÑ pY1 ˆ Y2q such that Jpgq “ g.

So, it suffices to see that J is essentially surjective.

First, we show that to prove this, it suffices to be able to place every object of DefpT2q

inside an object coming from T1:

Claim. Let X P DefpT2q. If there exists Y P DefpT1q with X ãÑ JpY q, then there

exists X P DefpT1q with JpXq “ X.

Proof of claim. Let M and N be two models of T2. If J˚M “ J˚N , then

MpXq “ NpXq since MpXq ãÑ MpY q “ NpY q Ðâ NpXq and since J˚ is

an equivalence (consider a lift of the identity and the corresponding naturality

square for the inclusion X ãÑ JpY q), MpXq “ NpXq.

Next, we claim that if M2 is any model of T2, then any element a of M2 is definable

over J˚M2. Indeed, we can replace M2 with a larger model such that there are two

elements a and b which are not definable over J˚M2 but which have the same type

over J˚M2. Then there is an ultrapower ˚M2 of M2 and an automorphism of this

ultrapower which moves ∆paq to ∆pbq. This would yield two different embeddings of

M2 in ˚M2; these agree on J˚M2, which would contradict that J˚ was an equivalence.

We will now use a compactness argument to show that, in DefpT2q, any definable set

Y of T2 is the image of a definable map from a definable set JpXq coming from T1.

So, suppose that Y is not covered by any finite collection of functions whose domains
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lie in sorts coming from T1. This means that for any finite collection of such functions,

every model realizes a witness d P Y which lies outside the images of the functions.

That is, after introducing a generic constant symbol d, the theory

T 1
df
“ T2 Y t Drφpr, dq

ˇ

ˇφ is a function whose domain lies in a T1-sortu Y td P Y u

is finitely consistent, therefore consistent. So T 1 has a model. But in any model M of

T 1, the realization of d will not be T2-provably definable over J˚M (since otherwise the

formula ϕpx, yq which witnesses this can be restricted to a definable function whose

domain is in a sort coming from T1), contradicting the previous claim. Therefore, there

exists some definable set JpXq such that there is a definable surjection JpXq� Y .

By the second claim of this proof, the kernel relation of the definable surjection

JpXq � Y is in the image of J . Therefore, Y is isomorphic to an imaginary sort of

T1, and since T1 eliminates imaginaries, Y is in the essential image of J .

3.3 Ultracategories and ultrafunctors

3.3.1 Pre-ultracategories and pre-ultrafunctors

Definition 3.3.1. ([12], Section 1) A pre-ultracategory S is a category S along with

specified ultraproduct functors rU s : SI Ñ S for every set I and every non-principal

ultrafilter U on I.

(Of course, this is not enough structure to nail down what it means to have a nice no-

tion of being able to form ultraproducts of families of objects; there are no restrictions

on what these ultraproduct functors might be, or how they interact. For example,

given an pre-ultracategory, we could replace rUs for each I with rVs for V some fixed

principal ultrafilter, and this would still be a pre-ultracategory.)
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The prototypical pre-ultracategory is Set; we have already described its ultraproduct

functors.

There is an obvious notion of a structure-preserving map between pre-ultracategories.

Definition 3.3.2. ([12], Section 1) A pre-ultrafunctor S Ñ S1 is a functor X : S Ñ S1

along with a specified transition isomorphism

ΦX,U : X ˝ rU s
»
Ñ rU s ˝XI ,

for each I and each U an ultrafilter on I. That is, we require all diagrams

SI pS1qI

S S1

XI

rUsS rUsS1

X

to commute, where U ranges over all non-principal ultrafilters on I ranging over all

small indexing sets. (“Ultraproducts are preserved up to the transition isomorphism

ΦX,U .”)

Remark 3.3.3. Every functor of points evϕpxq can be canonically viewed as a pre-

ultrafunctor with the transition isomorphisms Φ just the identity maps (corresponding

to the equality signs in the above diagrams).

Remark 3.3.4. Because we only require our pre-ultrafunctors to commute with ul-

traproducts up to transition isomorphisms, one can have functors X : ModpT q Ñ Set

induced by taking certain (clearly non-definable) subsets of models which are isomor-

phic anyway by some natural transformation of functors to a definable functor. We

give an example below, which is the basis of the constructions in 8.1.

Example 3.3.5. Let T be the theory of equality on an infinite set expanded by de-

numerably many distinct constant symbols tciuiPω. Then the functor X : ModpT q Ñ

Set which is induced by sending

M ÞÑ tci
ˇ

ˇ i evenu Y pMztciuiıωq
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is isomorphic to the functor ev“, which just takes the 1-sort of any model. The

isomorphism X » ev“ is given by on each model M by making it the identity on the

omittable type pMztciuiıωq; on constants, we use any bijection NÑ 2N, say k ÞÑ 2 ¨k.

We want to work with a category of pre-ultrafunctors, so we must describe what it

means to have a morphism of pre-ultrafunctors.

Definition 3.3.6. ([12], Section 1) Given two pre-ultrafunctors pX,Φq and pX 1,Φ1q,

we define a map between them, called an ultratransformation, to be a natural

transformation η : X Ñ X 1 which satisfies the following additional property: all

diagrams

X p
ś

iÑU Miq
ś

iÑU XpMiq

X 1 p
ś

iÑU Miq
ś

iÑU X
1pMiq

ΦpMiq

ηś
iÑU Mi

ś

iÑU ηMi

Φ1
pMiq

must commute.

Definition 3.3.7. The category of pre-ultrafunctors PUltpModpT q,Setq com-

prises the following data:

PUltpModpT q,Setq
df
“

$

’

&

’

%

Objects: pre-ultrafunctors pX,Φq : ModpT q Ñ Set

Morphisms: ultratransformations η : pX,Φq Ñ pX,Φ1q.

3.3.2 Ultramorphisms

In Set ultraproducts are computed as certain filtered colimits, and so there are canon-

ical comparison maps between them induced by maps between their underlying dia-

grams (via their universal properties).

For example, consider the terminal map I Ñ 1. This induces a diagonal map A Ñ
ś

iPI A by a ÞÑ pa, a, a, . . . q, and this induced map extends along ultraproducts to

give the diagonal map

∆ : M ãÑMU
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of a model into its ultrapower.

In ModpT q, these filtered colimits don’t usually exist because products of models of a

first-order theory don’t usually exist. For example, ModpT q doesn’t see the diagonal

map A Ñ
ś

iPI A, only the diagonal map ∆ : M ãÑ MU it induces on models. So

the pure category ModpT q does not distinguish (say) ∆ : M ãÑ MU from any other

embedding M ãÑ MU , because there is no canonical way to obtain ∆. But once we

force ModpT q to remember that ultraproducts of models are computed as certain

filtered colimits in Set, then ∆ : M ãÑ MU is distinguished by the ultracategory

ModpT q because it arises in a canonical way.

The purpose of the notion of ultramorphisms is to name all the maps between ultra-

products in an pre-ultracategory which “should” arise in a canonical way. It turns out

that this is enough to correct for the laxness in the definition of a pre-ultracategory:

an ultracategory will be precisely a pre-ultracategory with as many ultramorphisms as

possible, and after that we get Makkai’s duality and strong conceptual completeness.

The definition of an ultramorphism

Definition 3.3.8. ([12], Section 3) An ultragraph Γ comprises:

(i) Two disjoint sets Γf and Γb, called the sets of free nodes and bound nodes,

respectively.

(ii) For any pair γ, γ1 P Γ, there exists a set Epγ, γ1q of edges. This gives the data

of a directed graph.

(iii) For any bound node β P Γb, we assign a triple (“ultraproduct data”) xI,U , gy df
“

xIβ,Uβ, gβy where U is an ultrafilter on I and g is a function g : I Ñ Γf .

Definition 3.3.9. ([12], Section 3) An ultradiagram of type Γ in a pre-ultracategory

S is a diagram A : Γ Ñ S assigning an object A to each node γ P X, and assigning a
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morphism in S to each edge e P Epγ, γ1q, such that

Apβq “
ź

iPIβ

Apgβpiqq{Uβ

for all bound nodes β P Γb.

Given this notion of a diagram with extra structure, there is an obvious notion of

natural transformations between such diagrams which preserve the extra given struc-

ture.

Definition 3.3.10. ([12], Section 3) Let A,B : Γ Ñ S. A morphism of ultradia-

grams Φ : AÑ B is a natural transformation Φ satisfying

Φβ “
ź

iÑUβ

Φgβpiq

for all bound nodes β P Γb.

Finally, we can define ultramorphisms.

Definition 3.3.11. ([12], Section 3) Let HompΓ,Sq be the category of all ultradia-

grams of type Γ inside S with morphisms the ultradiagram morphisms 3.3.10 defined

above. Any two nodes k, ` P Γ define evaluation functors pkq, p`q : HompΓ,Sq Ñ S,

by

pkq
´

A
Φ
Ñ B

¯

“ Apkq
Φk
Ñ Bpkq

(resp. `).

An ultramorphism of type xΓ, k, `y in S is a natural transformation δ : pkq Ñ p`q.2

Examples of ultramorphisms

Let us unravel this definition for the prototypical example ∆ : M ãÑ MU of an

ultramorphism.

2Note that in our terminology, an ultramorphism, singular, refers to a collection of possibly many

maps (the components of the natural transformation pkq Ñ p`q).
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Example 3.3.12. Given an ultrafilter U on I, put:

• Γf “ tku,

• Γb “ t`u,

• Epγ, γ1q “ H for all γ, γ1 P Γ,

• xI`,U`, g`y “ xI,U , gy where g is the constant map to k from I.

By the ultradiagram condition 3.3.9, an ultradiagram A of type Γ in S is determined

by Apkq, with Ap`q “ ApkqU .

By the ultradiagram morphism condition 3.3.10, an ultramorphism of type xΓ, k, `y

must be a collection of maps
`

δM : M ÑMU
˘

MPModpT q
which make all squares of the

form

MU NU

M N

fU

∆M

f

∆N

commute. It is easy to check that setting δM “ ∆M the diagonal embedding gives an

ultramorphism.

Definition 3.3.13. The next least complicated example of an ultramorphism are the

generalized diagonal embeddings. Here is how they arise: let g : I Ñ J be a

function between two indexing sets I and J . g induces a pushforward map g˚ : βI Ñ

βJ between the spaces of ultrafilters on I and J , by g˚U
df
“ tP Ď J

ˇ

ˇ g´1pP q P U . Fix

U P βI and put V df
“ g˚U . Let pMjqjPJ be a J-indexed family of models.

Then there is a canonical “fiberwise diagonal embedding”

∆g :
ź

jÑV
Mj Ñ

ź

iÑU
Mgpiq

given on rajsjÑV by replacing each entry aj with g´1ptajuq-many copies of itself.

In terms of the definition 3.3.11 of an ultramorphism, the free nodes are J , and there

are two bound nodes k and `. To k we assign the triple xJ,V , idJy and to ` we assign
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the triple xI,U , gy. Then ∆g induces an ultramorphism pkq Ñ p`q.

3.3.3 What it means for a pre-ultrafunctor to preserve an

ultramorphism

Given the protytpical diagonal embedding ultramorphisms ∆M , we can say what it

means that a pre-ultrafunctor pX,Φq preserves diagonal embeddings.

Definition 3.3.14. We say that a pre-ultrafunctor 3.3.2 pX,Φq is a ∆-functor if for

every I, for every U , and for every M and the diagonal embedding M
∆M
ÝÑ MU , the

diagram

X
`

MU
˘

XpMq

XpMqU

ΦpMq

Xp∆M q

∆XpMq

commutes.

Analogously, we can define what it means for pX,Φq to preserve a general ultra-

morphism 3.3.11. Let pX,Φq : K Ñ S be a pre-ultrafunctor between the pre-

ultracategories K and S, and let δ be an ultramorphism in K and δ1 an ultramorphism

in S, both of type xΓ, k, `y.

Recall that in the terminology of the definition 3.3.11, δ is a natural transformation

pkq
δ
Ñ p`q of the evaluation functors

pkq, p`q : HompΓ,Kq Ñ K.

(Resp. δ1, S.)

One would like to be able to say that for any ultradiagram M P HompΓ,Kq, we

can apply X to produce a “pushforward” ultradiagram X ˝M in HompΓ,Sq. How-

ever, since we defined ultradiagrams “strictly” (by requiring that there is a literal
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equality between M pβq for β a bound node with ultraproduct data pI,U , gq and
ś

iÑU M pgpiqq), this only happens if pX,Φq is a strict preultrafunctor (c.f. 3.4.1). So,

we will do the next best thing and “strictify” X ˝M .

Definition 3.3.15. ([12], Section 3) Let pX,Φq : K Ñ S be a pre-ultrafunctor be-

tween the pre-ultracategories K and S. We define an ultradiagram XM : Γ Ñ S as

follows:

1. If γ is a free node, then XM pγq
df
“ X ˝M pγq.

2. If β is a bound node with ultraproduct data pI,U , gq, then XM pβq
df
“
ś

iÑU X ˝

M pgpiqq.

There is an obvious natural isomorphism of functors ν : X ˝ M » XM whose

component νβ at a bound node β with ultraproduct data pI,U , gq is the appropriate

component of the transition isomorphism νβ
df
“ ΦX˝M pgpiqq and whose component at a

free node γ is just the identity map νγ
df
“ idX˝M pγq.

Definition 3.3.16. ([12], Section 3) Let pX,Φq : K Ñ S be a pre-ultrafunctor be-

tween the pre-ultracategories K and S, and let δ be an ultramorphism in K and δ1

an ultramorphism in S, both of type xΓ, k, `y.

We say that X carries δ into δ1 (prototypically, δ and δ1 will both be canonically

defined in the same way in both K and S and in this case we say that δ has been

preserved) if for every ultradiagram M P HompΓ,Kq, the diagram

X pM pkqq X pM p`qq

pXM qpkq pXM qp`q

XpδM q

νk ν`

δ1XM

commutes.
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3.3.4 The definitions of ultracategory and ultrafunctor

Denote the class of all ultramorphisms in Set by ∆pSetq.

Definition 3.3.17. ([12], Section 3) An ultracategory K is a pre-ultracategory

(c.f. 3.3.1) K whose ultramorphisms are “fibered over” those of Set: we additionally

require a specification of an ultramorphism δK associated with any δ P ∆pSetq such

that δK is of the same type pΓ, k, `q as δ.

Definition 3.3.18. ([12], Section 3) We define an ultrafunctor X : K Ñ S between

ultracategories K, S to be a pre-ultrafunctor (c.f. 3.3.2) which respects the fibering

over Set: for every δ P ∆pSetq, X carries δK into δS (in the sense of the definition

3.3.16 above) for all δ P ∆pSetq.

Definition 3.3.19. A map between ultrafunctors is just an ultratransformation 3.3.2

of the underlying pre-ultrafunctors.

We write UltpModpT q,Setq for the category of ultrafunctors ModpT q Ñ Set.

3.4 The ultracategory structure on ModpT q

ModpT q is canonically equipped with the structure of a pre-ultracategory by “lifting”

the canonical pre-ultracategory structure on Set: an ultraproduct of models is just

the ultraproduct of the underlying sets of the models.

We now describe how to additionally canonically equip ModpT q with the structure of

an ultracategory (“lifting”, as before, the canonical ultracategory structure on Set).

Lemma 3.4.1. Let M : Γ Ñ ModpT q be an ultradiagram. Let X : ModpT q Ñ Set

be a strict pre-ultrafunctor. Then:

1. X ˝M : Γ Ñ Set is an ultradiagram.
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2. if η : M1 Ñ M2 is an ultradiagram morphism, then Xη
df
“ tX pηγquγPΓ is an

ultradiagram morphism X ˝M1 Ñ X ˝M2.

Proof. If β is a bound node of Γ with ultraproduct data pI,U , gq, then

1.

X ˝M pβq “ X

˜

ź

iÑU
M pgpiqq

¸

“
ź

iÑU
X ˝M pgpiqq,

whence strictness of the pre-ultrafunctor X. Thus the ultradiagram condition

3.3.9 is satisfied.

2.

X pηβq “ X

˜

ź

iÑU
ηgpiq

¸

“
ź

iÑU
X

`

ηgpiq
˘

,

whence strictness of the pre-ultrafunctor X. Thus the ultradiagram morphism

condition 3.3.10 is satisfied.

Definition 3.4.2. ([12], Section 3) We make the pre-ultracategory ModpT q into an

ultracategory by specifying, for each ultramorphism δ in ∆pSetq of type pΓ, k, `q, for

every ultradiagram M : Γ Ñ ModpT q, and for every object A P DefpT q,

``

δModpT q

˘

M

˘

A

df
“ δevA ˝M .

Remembering that δModpT q is supposed to be a natural transformation of evaluation

functors on ultradiagrams, and elementary embeddings are natural transformations,

the equation displayed above reads: the component at the definable set A of the

component at M of the ultramorphism δM pT q is defined to be the component at the

ultradiagram evA ˝M of δ.

It is easy to verify that δModpT q so defined is an ultramorphism, using the previous

lemma.
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Proposition 3.4.3. Let A P DefpT q. Then the strict pre-ultrafunctor evA : ModpT q Ñ

Set is an ultrafunctor.

Proof. Setting up the preservation of ultramorphisms condition 3.3.16, it remains to

check that the diagram

evApM pkqq evApM p`qq

evA pM pkqq evApM p`qq

evAppδModpT qqMq

δevA ˝M

commutes. So,

evA
``

δModpT q

˘

M

˘

“
``

δModpT q

˘

M

˘

A
,

which was defined above to be δevA˝M .

3.5 Strong conceptual completeness

There is a canonical evaluation functor

rev : DefpT q Ñ UltpModpT q,Setq

sending each definable set A P T to its corresponding ultrafunctor revA, and we

now have the following picture of factorizations of the original evaluation map ev :

DefpT q Ñ rModpT q Ñ Sets:

DefpT q UltpModpT q,Setq

PUltpModpT q,Setq

rModpT q,Sets

ev

xev

Ăev

Now, we can state strong conceptual completeness.

Theorem 3.5.1. ([12], Section 4) rev : DefpT q Ñ UltpModpT q,Setq is an equiva-

lence of categories.
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Chapter 4

∆-functors and definability for

ℵ0-categorical theories

In this chapter, we apply (pre)-ultracategories and ∆-functors to deduce a definability

criterion for ℵ0-categorical theories (Theorem 4.3.2): a functor X : ModpT q Ñ Set

is definable, i.e. isomorphic as a functor to evϕpxq for some ϕpxq P T , if and only if

there is some transition isomorphism Φ such that pX,Φq is a ∆-functor.

This shows that for ℵ0-categorical theories, the rest of the ultramorphisms 3.3.11

that were part of Makkai’s reconstruction data for strong conceptual completeness

are unnecessary for checking definability.

The result 4.3.2 is related to, but distinct from, Makkai’s strong conceptual complete-

ness. From 4.3.2, we know that if pX,Φq is a ∆-functor, then the underlying functor

X is isomorphic to an evaluation functor. This situation does not necessarily imply

that pX,Φq is an ultrafunctor. A counterexample is given in 8.1, where a definable

functor is expanded by a transition isomorphism to a non-ultrafunctor. As the coun-

terexample shows, we need to exploit the ℵ0-categoricity assumption further before

we can deduce strong conceptual completeness for ℵ0-categorical theories.
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Indeed, later we will prove a coherence criterion (Theorem 7.2.1) for objects in the

classifying toposes of first-order theories, specialize to ℵ0-categorical T , and deduce

as a corollary Theorem 7.2.2, which says that any ∆-functor pX,Φq : ModpT q Ñ Set

is an ultrafunctor, completing our deduction of strong conceptual completeness for

ℵ0-categorical theories.

4.1 ∆-functors and the finite support property

Definition 4.1.1. We say a functor X : ModpT q Ñ Set has the finite support

property (is fsp, has fsp) if for every M P ModpT q, for every x P XpMq, there

exists an a P M such that for every pair of elementary embeddings h1, h2 : M Ñ N ,

h1paq “ h2paq ùñ Xh1pxq “ Xh2pxq.

As a warm-up to the theorem 4.3.2, we will show in general that if X : ModpT q Ñ Set

is a ∆-functor, X must map AutpMq continuously to SympXpMqq.

Proposition 4.1.2. Let T be any theory, and let pX,Φq : ModpT q Ñ Set be a

∆-functor. Then for any model M |ù T , the restriction of X to a map AutpMq Ñ

SympXpMqq is a continuous group homomorphism (where both groups are topologized

by pointwise convergence).

Proof. Since X is a functor, its restriction to AutpMq is a group homomorphism. To

check continuity, let D be a directed partial order indexing a net of automorphisms

rσαsαPD. It suffices to check that if rσαsαPD Ñ σ in AutpMq, then rXσαsαPD Ñ Xσ in

SympXpMqq.

We will suppose not and take an ultraproduct of counterexamples. So suppose that

rXσαsαPD does not converge to Xσ. The basic open neighborhoods Bc ÞÑ d of Xσ are

parametrized by tuples c, d of the same sort, and they look like this:

Bc ÞÑ d
df
“ tρ : XpMq Ñ XpMq

ˇ

ˇ ρpcq “ du.
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Since rXσαsαPD does not converge to Xσ, then there exists some neighborhood Bc ÞÑ d

such that for every α P D, there exists an α1 ě α P D such that Xσα1 R Bc ÞÑ d.

Now, let I be the underlying set of D, and consider the collection of subsets tPα Ď

IuαPD, where each Pα is the set of all β P D such that β ě α. Since D was a

directed partial order, tPαuαPD has the finite intersection property, and can therefore

be completed to an ultrafilter U .

Then consider the ultraproduct of automorphisms

rXσα1sαÑU : XpMqU Ñ XpMqU .

Let ∆XpMq be the diagonal embedding of XpMq into XpMqU . Since every Xσα1 sends

c to d1 ‰ d, rXσα1sαÑU sends ∆XpMqpcq to ∆XpMqpd
1q ‰ ∆XpMqpdq. Therefore,

rXσα1sαÑU ˝∆XpMq ‰ rXσsαÑU ˝∆XpMq.

By the definition 3.3.14 of a ∆-functor, we can replace ∆XpMq with ΦpMq ˝ X p∆Mq.

By the definition 3.3.2 of a pre-ultrafunctor, we can replace rXσα1sαÑU and rXσsαÑU

with

ΦpMq ˝X prσα1sαÑUq ˝ Φ´1
pMq and ΦpMq ˝X prσsαÑUq ˝ Φ´1

pMq.

Substituting into the displayed inequality above and letting inverse transition isomor-

phisms cancel out, we obtain

ΦpMq ˝X prσα1sαÑUq ˝X p∆Mq ‰ ΦpMq ˝X prσsαÑUq ˝X p∆Mq

and since ΦpMq is a bijection, we may omit it:

X prσα1sαÑUq ˝X p∆Mq ‰ X prσsαÑUq ˝X p∆Mq .

Since X is a functor, we conclude that

X prσα1sαÑU ˝∆Mq ‰ X prσsαÑU ˝∆Mq
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and since X is certainly a function from ModpT qpM,MUq Ñ Set
`

XpMq, X
`

MU
˘˘

,

this means that

rσα1sαÑU ˝∆M ‰ rσsαÑU ˝∆M .

But this inequality says that there is some a PM such that for every α, there is an α1

such that tσα1paquα disagrees with tσpaquα on some U -large set of indices P . Letting

c “ a and d “ σpcq, we have that a U -large subset of tσα1paquα lies outside of the basic

open Bc ÞÑ d Q σ. Since U contains all the principal filters in D, we have that for every

α P D, the intersection P X Pα is nonempty. So, for the basic open Bc ÞÑ d Q σ, we

have that for every α we can find some α2 P P XPα such that σα2 R Bc ÞÑ d. Therefore,

rσαsαPD does not converge to σ, which is the contrapositive.

Since for any T and M |ù T , EndpMq is the closure of AutpMq inside the product

space MM , one easily modifies the above proof to obtain:

Theorem 4.1.3. Let T and T 1 be any two theories. If pX,Φq : ModpT q Ñ ModpT 1q

is a ∆-functor, then for each M P ModpT q,

XM
df
“ X æEndpMq : EndpMq Ñ EndpXpMqq

is continuous.

Theorem 4.1.4. ([12], Section 4) Let pX,Φq : ModpT q Ñ Set be a ∆ functor. Then

X is fsp.

Proof. Towards the contrapositive, suppose X is not fsp. Then there is some M and

x P XpMq such that for every tuple a P M , there exists elementary embeddings

ha, h
1
a : M Ñ Na such that hapaq “ h1apaq while Xhapxq ‰ Xh1apxq.

As in the ultraproduct proof 3.2.3 of compactness, let I index all the finite subsets

(i.e. tuples) of M . Let U be an ultrafilter completing the collection tPiuiPI where Pi

is the set of all j P I such that, viewed as finite subsets of M , j Ě i; this collection

has the finite intersection property, so is contained in some ultrafilter.
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Now, take the ultraproducts h and h1 of ha and h1a. On any element rasiÑU of the

diagonally embedded copy of M in MU , h and h1 agree on ras whenever b Ě a. Hence,

this happens on Pa, which was in U .

Therefore, the maps h,h1 : MU Ñ
ś

U Na are equalized by ∆M : M ãÑMU .

By assumption, this is not preserved by the functor X, so X must have failed to

preserve ∆M or an ultraproduct.

Remark 4.1.5. An fsp functor is not necessarily the underlying functor of a ∆-

functor. For example, if p is a complete non-isolated type, then the functor X :

ModpT q Ñ Set taking each model M to its realizations ppMq of p is fsp (if there is

a realization, then it is its own support inside the model).

However, this X does not commute with ultraproducts (with the obvious choice of

transition map): if M omits p, then XpMq “ H. The ultraproduct of an empty set

is empty, but since MU realizes p, X is not a ∆-functor.

Somewhat less trivially, if X is definable then the infinite disjoint union
Ů

iPI X again

has fsp (every point is its own support), but with the obvious choice of transition map

is not definable.

Later, we will see that in general these two examples are “absolutely undefinable”, in

the sense that there is no isomorphism whatsoever to any definable functor.

Finally, we point out that 4.1.3 and 4.1.4 are really saying the same thing:

Theorem 4.1.6. X : ModpT q Ñ Set is fsp if and only if it induces continuous maps

on endomorphism monoids.

Proof. Suppose X is fsp. Fix M . For any finite tuple x P XpMq with support

ax, we have from the definition 4.1.1 of fsp that whenever σax “ idM ax, Xσx “

idXpMq x. Therefore, Stabpaxq Ď X´1pStabpxqq, so X´1pStabpxqq is open. Since x

was an arbitrary finite tuple and the pointwise convergence topology has a basis of
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neighborhoods of the identity given by stabilizers of finite tuples, this means that

X restricts to a continuous map between endomorphism monoids equipped with the

topology of pointwise convergence.

On the other hand, suppose X induces continuous monoid maps at each M . Then for

every finite tuple x P XpMq, X´1pStabpxqq is open, hence contains some basic open

neighborhood of the identity of the form Stabpaxq, for some ax which we put as the

support of x.

4.2 Failure of F to preserve the ultracategory struc-

ture

In [4], a pair of ℵ0-categorical structures M |ù T and M 1 |ù T 1 are constructed

which have isomorphic endomorphism monoids EndpMq » EndpM 1q that are not

isomorphic as topological monoids. By 2.9.5 and 2.3.20, T is not bi-interpretable

with T 1. With what we have so far, we can see the failure of bi-interpretability at the

level of ultracategories.

By 2.10.1, we know that the isomorphism of endomorphism monoids F :

EndpMq » EndpM 1q : G induces an equivalence of categories of models F : ModpT q »

ModpT 1q : G. By strong conceptual completeness 3.5.1, if there were a way of

expanding F and G to ultrafunctors pF ,Φq : ModpT q » ModpT 1q : pG,Ψq, this

would induce an equivalence of categories of ultrafunctors UltpModpT q,Setq »

UltpModpT 1q,Setq, and hence of pretoposes DefpT 1q » DefpT q. Therefore,

Theorem 4.2.1. F or G cannot be the underlying functor of an ultrafunctor.

Proof. Suppose there existed Φ and Ψ such that pF ,Φq and pG,Ψq are ultrafunctors.

Then pF ,Φq and pG,Ψq are ∆-functors. By 4.1.3, F and G are then continuous. Since
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they already invert each other, EndpMq and EndpM 1q are isomorphic as topological

monoids, a contradiction.

4.3 A definability criterion for ℵ0-categorical the-

ories

Lemma 4.3.1. Let T be any theory, and let X : ModpT q Ñ Set be a ∆-functor.

Then X preserves filtered colimits of models: for any model N , if N can be written

as the filtered colimit N » lim
ÝÑ

Mi, then XpNq » lim
ÝÑ

XpMiq.

Proof. First, we’ll show that being a ∆-functor implies that elementary embeddings

are sent to injective functions:

Claim: Let f : M Ñ N be an elementary embedding. Then Xpfq : XpMq Ñ XpNq

is injective.

Proof of claim. By Scott’s lemma (see e.g. [3] for a proof), there is an ultrapower

MU of M and an elementary map g : N ÑMU such that the diagram

MU

M N

∆M

f

g

commutes. Since X was assumed to be a ∆-functor, the diagram

XpMqU X
`

MU
˘

XpMq XpNq

ΦpMq

Xp∆M q

Xpfq

∆XpMq

Xpgq

commutes. Since ∆XpMq : XpMq ãÑ XpMqU is injective and ΦpMq is a transition

isomorphism, Xp∆Mq is injective, and therefore the composite Xpgq ˝ Xpfq is

injective. Therefore, Xpfq was injective.
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Claim: For any N |ù T , the collection of maps tXpfq
ˇ

ˇ f : M Ñ N, M countableu

jointly surject onto XpNq.

Proof of claim. Since N is covered by copies of countable models, we do know that

tf
ˇ

ˇ f : M Ñ N, M countableu jointly covers N .

Let I index the elementary embeddings from (representatives of isomorphism

classes of) all countable models to N . Let U be a non-principal ultrafilter on I

which contains the sets P~n
df
“ ti P I

ˇ

ˇ impfiq Q ~nu, which has the finite intersection

property by the downward Lowenheim-Skolem theorem.

Consider the map
ź

iÑU
Mi

rfisiÑU
Ñ NU .

The diagonal copy of N in NU is in the image of this map: if rnsiÑU P N
U , then

ti P I
ˇ

ˇ Dmi s.t. fipmiq “ nu is in U , so rfisiÑU rmisiÑU “ rnsiÑU . Pulling back

∆NpNq along rfisiÑU , we obtain a map η from N into
ś

iÑU Mi such that the

diagram

NU

N
ś

iÑU Mi

∆N

η

rfisiÑU

commutes.

Now apply X, obtaining the commutative diagram (it is easy to check that the

extra subdiagrams involving Xpηq commute by ΦpNq and ΦpMiq being isomor-

phisms):

XpNq

X
`

NU
˘

XpNqU

X p
ś

iÑU Miq XpMqU .

Xp∆N q ∆XpNq

Xpηq

ΦpNq

XprfisiÑU q

ΦpMiq

rXpfiqsiÑU
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In particular,

∆XpNq “ rXpfiqsiÑU ˝ ΦpMiq ˝Xpηq.

This implies that ∆XpNq is contained inside the image of rXpfiqsiÑU .

Now, suppose that the Xpfiq did not cover XpNq. That is, suppose that there

exists an x P XpNq such that x lies outside of the image of Xpfiq for every i P I.

Then for any rmisiÑU P
ś

iÑU Mi, fipmiq ‰ x for all i P I. Therefore, ∆XpNqpxq

is not contained in the image of rXpfiqsiÑU , a contradiction.

We conclude that tXpfq
ˇ

ˇ f : M Ñ Nu jointly surjects onto XpNq.

Claim: Present N as a filtered colimit of its countable submodels Mi. Then XpNq »

lim
ÝÑ

XpMiq.

Proof of claim. Our two previous claims show that we may view XpNq as the

union of the XpMiq’s. lim
ÝÑ

XpMiq can be canonically written as

`
Ů

iPI XpMiq
˘

{E

where px P XpMiqq „E py P XpMjqq if and only if x and y become the same

element in some XpMkq for Mk amalgamating Mi and Mj. It is easy to check

that sending an x P XpNq to the E-class of an arbitrary lift x1 P XpMiq (for a

choice of some XpMiq containing x1) gives a bijection

XpNq » lim
ÝÑ

XpMiq by x ÞÑ rx1sE,

compatible over the XpMiq’s.

So far, we have shown that X preserves filtered colimits of countable models. But

every model is a filtered colimit of countable models. Explicitly, if we have N “ lim
ÝÑ i

Ni

where the Ni are possible uncountable, we have that each Ni “ lim
ÝÑ j

N i
j , so that we

have written N as a filtered colimit of countable models N i
j :

N “ lim
ÝÑ i

lim
ÝÑ j

Nu
j “ lim

ÝÑpi,jq
N i
j
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Then

XpNq » lim
ÝÑpi,jq

XpN i
jq » lim

ÝÑ i
lim
ÝÑ j

XpN i
jq » lim

ÝÑ i
XpNiq.

Theorem 4.3.2. Let T be ℵ0-categorical. A functor X : ModpT q Ñ Set is definable

if and only if there is a transition isomorphism Φ such that pX,Φq is a ∆-functor.

Proof. If X is definable, then its isomorphism to an evaluation functor ϕ pulls back

ϕ’s transition isomorphism Φ1 to a transition isomorphism Φ for X, and since pϕ,Φ1q

was an ultrafunctor pX,Φq is also (these are diagrammatic conditions on Φ1 and so

are invariant under conjugation by isomorphisms).

On the other hand, suppose that pX,Φq is a ∆-functor. AutpMq acts via X on XpMq,

and so XpMq splits up into AutpMq-orbits. For each representative x of these orbits,

we know from the remarks following 4.1.2 that there is a tuple ax PM which supports

x, and the map ax ÞÑ x induces an AutpMq-equivariant map from the orbit (type) of

ax to the orbit of x.

Therefore, each AutpMq-orbit of XpMq is a quotient of an AutpMq-orbit of M by some

AutpMq-invariant equivalence relation. Since M is ℵ0-categorical, these equivalence

relations are definable and all types are isolated by formulas, so we can write:

XpMq »
ł

iPI

Mpϕipxiqq »
ğ

iPI

Mpϕipxiqq.

By the previous lemma 4.3.1 and the fact that colimits always commute with colimits

and definable functors always commute with filtered colimits of models, we conclude
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(writing N “ lim
ÝÑ j

Mj):

XpNq » lim
ÝÑ
j

˜

ğ

iPI

ϕipMjq

¸

(4.1)

»
ğ

iPI

¨

˝lim
ÝÑ
j

ϕipMjq

˛

‚ (4.2)

»
ğ

iPI

¨

˝ϕiplim
ÝÑ
j

Mjq

˛

‚ (4.3)

»
ğ

iPI

ϕipNq. (4.4)

Now we will show that the I indexing the ϕi must be finite.

In the pre-ultrafunctor condition

X p
ś

U Miq
ś

U pXpMiqq

X p
ś

U Niq
ś

U pXpNiqq ,

Xp
ś

U fiq

ΦU,pMiq

ś

U Xpfiq

ΦU,pNiq

restricting our attention to just ultraproducts of automorphisms tells us that ΦpMiq :

X p
ś

iÑUqMi Ñ
ś

iÑU XpMiq is a
ś

iÑU AutpMiq-equivariant bijection, and therefore

induces a bijection on the orbits of the action on either side.

Let U be some ultrafilter such that |IU | ą |I|. Then, at the countable model M , we

have the bijection:

X
`

MU˘ ΦpMq
» pXpMqqU .

Now, the left hand side is
Ů

iPI ϕi
`

MU
˘

. Each ϕi
`

MU
˘

is actually an AutpMqU -orbit,

since ϕipMq was an AutpMq-orbit. Therefore, the number of AutpMqU -orbits on the

left hand side is |I|.

On the right hand side, we have p
Ů

iPI ϕipMqq
U . Two points rxisiÑU and ryisiÑU

are AutpMqU -conjugate if and only if there exists a P P U such that for all j P P ,
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ϕxj “ ϕyj (where ϕxi means which ϕk xi came from.) But, this is the same as saying

rϕxj sjÑU “ rϕyj sjÑU . So the number of orbits on the right hand side is |I|U .

Therefore, |IU | “ |I|, so I must be finite. Hence there is a formula ϕpxq such that

XpNq » ϕpNq for all N |ù T . Since for each N , this isomorphism XpNq » ϕpNq is

induced via filtered colimits by XpMq » ϕpMq, this is a natural isomorphism, so X

is definable.

4.3.1 AutpMqU orbit-counting

Besides the observation 4.1.3 that ∆-functors induce continuous maps of automor-

phism groups, the key step in the proof of the theorem 4.3.2 was counting AutpMqU -

orbits in an ultrapower, coming from the fact that pre-ultrafunctors X : ModpT q Ñ

Set are defined by requiring all squares

X p
ś

U Miq
ś

U pXpMiqq

X p
ś

U Niq
ś

U pXpNiqq .

Xp
ś

U fiq

ΦU,pMiq

ś

U Xpfiq

ΦU,pNiq

to commute; in particular, when Ni “ Mi for all i, this says that X is necessarily

AutpMqU -equivariant, where

AutpMqU
df
“ trσisiÑU

ˇ

ˇσi P AutpMqu,

where rσisiÑU : MU ÑMU is defined by pointwise application on elements rxisiÑU of

the ultrapower.

Note that while MU might be saturated and so ppMUq is transitively acted upon by

the full automorphism group AutpMUq, this is not true under the AutpMqU -action: a

non-isolated type p will have realizations rxisiÑU which are U -often not realizations

of p.
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For example, take a countable model of the (theory of the infinite set + countably

many distinct constants), such that the non-isolated type “I am not any of the con-

stants” is realized by some a. In a countable ultrapower of this model, ∆paq is not

AutpMqU -conjugate to rci
ˇ

ˇ i P ωsiÑU (in fact, since this element of MU comes from a

sequence of constants, this is a fixed point of the AutpMqU -action.)

We can write down an explicit description of the AutpMqU -orbits of ppMUq for a

complete type p.

Lemma 4.3.3. Let p be a complete type of T . Let
`

ai PMi

ˇ

ˇMi |ù T
˘

be a sequence

of elements in possibly distinct models. Let U be a non-principal ultrafilter on I.

Then tppraisiÑUq “ p if and only if in the Stone space, the sequence
´

pi
df
“ tppaiq

¯

iPI

U-converges to p.

Proof. Suppose that raisiÑU |ù p. Then for each ϕ P p, U -often, ai P ϕpMiq. Hence

for each Dϕ the basic open neighborhood of p corresponding to ϕ in the Stone space,

U -often, pi P Dϕ. Hence pi
U
Ñ p.

Now suppose that pi
U
Ñ p. Let ϕ P p. Then U -often, pi P Dϕ, equivalently, U -often,

ai P ϕpMiq. Hence raisiÑU |ù p.

Theorem 4.3.4. The
ś

iÑU AutpMiq-orbits of p p
ś

iÑU Miq refine the equivalence

classes rpisiÑU where each pi is realized in Mi and pi
U
Ñ p in the Stone space.

Furthermore, if the Mi are homogeneous (so that any two realizations of the same type

in each Mi are AutpMiq-conjugate), then we can improve “refine” to “are exactly”.

Proof. It suffices to show that the map

tpU df
“ praisiÑU ÞÑ rtppaiqsiÑUq : p

˜

ź

iÑU
Mi

¸

Ñ StpT qU

is constant on each AutpMqU orbit.1

1Note that this only means that we have a well-defined surjection from AutpMqU -orbits onto the
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Let raisiÑU be AutpMqU -conjugate to rbisiÑU . Then (ultrafilter-often), tppaiq “ tppbiq

so tpU praisiÑUq “ tpU prbisiÑUq.

Now, suppose furthermore that in each Mi, any two realizations of the same type

in Mi are AutpMiq-conjugate. Then if two realizations raisiÑU and rbisiÑU of p in
ś

iÑU Mi are not AutpMiqiÑU -conjugate, it follows that U -often, tppaiq ‰ tppbiq.

Therefore, tpUpraisiÑUq ‰ tpUprbisiÑUq.

Remark 4.3.5. With this theorem, the role of ω-categoricity in the orbit-counting

argument for the proof of 4.3.2 is clear: there are only finitely many types in every

sort, and all the types are isolated, so in the Stone space, the only sequences which

approach these types are constant sequences of these types.

Therefore, counting AutpMqU -orbits of
Ž

iPI pi
`

MU
˘

yields |I|, whereas counting

AutpMqU -orbits of p
Ž

iPI pipMqq
U yields |IU |.

ultraproducts of sequences of types converging to p. To get injectivity also, we would need to show

that the values are different for different orbits.
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Chapter 5

Strictifications of pre-ultrafunctors

In this chapter, we prove a purely formal theorem comparing non-strict pre-ultrafunctors

ModpT q Ñ Set (i.e. those whose transition isomorphisms are not all the identity

map) with strict ones (i.e. those whose transition isomorphisms are all the identity

map), showing how for any non-strict pre-ultrafunctor we may obtain an isomorphic

strict pre-ultrafunctor. To carry out this construction we perform a transfinite induc-

tion on the “ultraproduct complexity” of models; this complexity is given in terms of

an ordinal-valued rank.

5.1 Strict vs non-strict pre-ultrafunctors

Throughout, we will work with the usual (pre)ultracategory structures on ModpT q

and Set. In particular, in Definition 3.1.2, we fixed once and for all the ultraproduct

functors rU s : SetI Ñ Set, and whenever we talk about ultraproducts of sets, we

understand that we are applying those specific ultraproduct functors. As we saw

in Definition 3.1.3, once the pre-ultracategory structure on Set has been fixed, this

induces a “standard” pre-ultracategory structure on ModpT q, and so determines what

the ultraproduct functors are for ModpT q, too.
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In general, pre-ultrafunctors ModpT q Ñ Set are only required to “preserve ultra-

products up to a specified transition isomorphism”, which means that the squares

X p
ś

iÑU Miq
ś

iÑU X pMiq

X p
ś

iÑU Niq
ś

iÑU X pNiq

ΦpMiq

Xp
ś

iÑU fiq
ś

iÑU Xpfiq

Φpăiq

(ranging over all indexing sets I, ultrafilters U on I, and I-indexed sequences of

elementary embeddings pMi
fi
Ñ Niq) commute, where ΦpMiq does not necessarily have

to be the identity map, only some isomorphism.

Definition 5.1.1. If a pre-ultrafunctor X does have identity maps for all of it tran-

sition isomorphisms, we say that X is strict.

Remark 5.1.2. The proof of the  Los theorem 3.2.1 shows that the evaluation functors

M ÞÑMpXq for any (eq)-definable set X is a strict pre-ultrafunctor.

Remark 5.1.3. One might worry about being able to achieve strictness in the sit-

uation where there is a way to write a model N as two different ultraproducts, say

N “ MU and N “
ś

iÑU Mi; then, after applying a general pre-ultrafunctor X, we

have

X
`

MU
˘

X p
ś

iÑU Miq

XpMqU
ś

iÑU XpMiq

ΦpMq ΦpMiq

„

where the bottom isomorphism is the unique map given by composing the isomor-

phisms in the rest of the diagram.

If we try to make X strict, say by setting ΦpMiq to be the identity, then we see that

the other transition isomorphism ΦpMq can’t be the identity, which would present an

obstruction to finding any strict pre-ultrafunctor on ModpT q.

However, as long as we are careful about what sets we assign to be ultraproducts

(as when we made the conventions in Definition 3.1.2 about what the ultraproduct

functors on Set precisely were), this situation never arises; we explain below.
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Lemma 5.1.4. If we have unidentical data pI,U , pMiqiPIq ‰ pI 1,U 1, pM 1
iqiPI 1q, then

ś

iÑU Mi ‰
ś

iÑU 1 ,M
1
i .

Proof. Recalling our conventions made in Definition 3.1.2 about how we construct

products and quotients in Set, we look at the three cases:

1. If I ‰ I 1, then for every definable set A,

ź

iÑI

MipAq “
 

tpa, iq
ˇ

ˇ a PMipAquiPI
(

‰
 

tpa1, i1q
ˇ

ˇ a1 PM 1
i1pAqui1PI 1

(

“
ź

i1PI 1

Mi1 ,

and so their quotients, which we think of as collections of equivalence classes,

cannot literally be the same set.

2. If U ‰ U 1, then even if all the other data were the same, the quotients of the

I-indexed products by U and U 1, which we think of as collections of equivalence

classes, cannot be the same since U and U 1 are distinct.

3. Even if I “ I 1 and U “ U 1, if for some i P I, we have distinct models Mi ‰M 1
i ,

then by definition, for some definable set A, the sets MipAq and M 1
ipAq are

distinct. Then the I-indexed products are distinct and so are the quotients by

U .

Strong conceptual completeness [12] tells us that ultrafunctors ModpT q Ñ Set are

definable, i.e. are isomorphic to evaluation functors of the kind in the previous para-

graph. In particular, every ultrafunctor is isomorphic to a strict ultrafunctor, and we

can think of the condition of preserving all ultramorphisms as forcing any non-identity

transition isomorphisms of a given pre-ultrafunctor to be, in some way, “canonical”.

The purpose of this section is to show that any non-strict pre-ultrafunctor is iso-

morphic to a strict one, and that the construction of this isomorphism respects the

preservation of ultramorphisms. In particular, any non-strict ∆-functor is isomorphic
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to a strict ∆-functor and this gives another proof that any non-strict ultrafunctor is

isomorphic to a strict ultrafunctor.

5.2 The ultraproduct rank of a model

Now we introduce the ultraproduct rank of a model, which will be an inductively-

defined ordinal rank that measures how complicated it is to write a model up to

isomorphism as a non-trivial ultraproduct of smaller models.

To avoid quantifying over proper classes of isomorphism types of models, we make an

auxiliary definition:

Definition 5.2.1. Let κ be a regular cardinal. A κ-bounded model of T is a model

M 1 : DefpT q Ñ Set which factors through the full subcategory Setκ of Set spanned

by the hereditarily κ-small sets. (Equivalently, for any A P T , M 1pAq must be a

hereditarily κ-small set.

Since our theories have only a small number of definable sets, for any model M :

DefpT q Ñ Set, there exists some isomorphic κ-bounded model M 1 : DefpT q Ñ Setκ.

Definition 5.2.2. The ultraproduct rank of a model M is an ordinal upcpMq

which we define inductively as follows:

(i) If M is not isomorphic to a non-trivial ultraproduct of |M |`-bounded models,

then put upcpMq
df
“ 0.

(ii) Otherwise, put

upcpMq
df
“ inf

"

pMjq

ˇ

ˇ

ś

jÑU Mj»M

*

sup
j

upcpMjq

(here the infimum runs over all sequences of |M |`-bounded models pMjqjPJ such

that
ś

jÑU Mj »M for some non-principal ultrafilter U on J .)
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Remark 5.2.3. In part (ii) of the previous definition, we can derive from the cardi-

nality of M a bound on the cardinality of the possible indexing sets J , and there are

only a set’s worth of κ-bounded models of T , so for each M we are only quantifying

over a set’s worth of things: the ultraproduct rank is well-defined.

To perform the construction in the next section, we will make some arbitrary choices.

In particular, we will need to choose witnesses for the value of the ultraproduct rank.

Definition 5.2.4. If upcpMq “ α, we define a witness for this to be a sequence

pMjqjPJ and an ultrafilter U on J such that
ś

hÑU Mj » M and supj upcpMjq “ α.

Since the ordinals are well-ordered, witnesses always exist.

5.3 Constructing the isomorphism

Theorem 5.3.1. For every non-strict pre-ultrafunctor X : ModpT q Ñ Set, there

exists a strict pre-ultrafunctor X 1 : ModpT q Ñ Set and an isomorphism X » X 1.

Proof. We start building X 1 by asking that if M1 and M2 are rank 0, then

X 1
´

M1
f
ÑM2

¯

df
“ XpM1q

Xpfq
Ñ XpM2q.

This defines X 1 on the full subcategory of rank 0 models and completes the base of

the induction.

Now the induction step. If X 1 has already been defined on the full subcategory

C Ď ModpT q of rank ă α models, then fix choices of witnesses for anything in C

extending any choices of witnesses we have made at an earlier stage, and extend X 1 to

a full subcategory C1 Ď ModpT q made of anything that is an ultraproduct of objects
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of C by setting X 1pM1
f
ÑM2q to the dashed map below:

X 1 p
ś

iÑU Miq

X 1

´

ś

jÑV Nj

¯

X 1pfq

,

/

/

/

/

/

.

/

/

/

/

/

-

df
“

ś

iÑU X
1pMiq X p

ś

iÑU Miq

ś

jÑV X
1pNjq X

´

ś

jÑV Nj

¯

!

Φ1
pMiq

Xpfq

Φ1
pNjq

,

where:

(i) Φ1
pMiq

(resp. pNjq) is defined by the composition

X p
ś

iÑU Miq
ś

iÑU X
1pMiq

ś

iÑU XpMiq

!

ΦpMiq ś

iÑU σi
,

and where:

(ii)

σi
df
“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

idXpMiq if upcpMiq “ 0,

Φ1
pM i

jq
if X 1pMiq was defined at an earlier stage, and
ś

jÑW M i
j “ Mi is a witness for the nonzero ul-

traproduct rank of Mi.

To complete the induction step, we have to extend X 1 to all the rank-α models (note

that N being a rank-α model only means that N is isomorphic to an ultraproduct of

rank ă α models, not necessarily that N is an ultraproduct of rank ă α models), so

we choose a witness
ś

iÑU Mi » N that upcpNq “ α In particular, we have chosen an

isomorphism
ś

iÑI Mi » N . We then extend X 1 to the full subcategory of ModpT q

spanned by C1 Y tNu by decreeing that X 1pNq “ X 1 p
ś

iÑU Miq, and that the chosen

isomorphism is sent to the identity. Doing this for all N , we extend X 1 to the full

subcategory of rank-α-models.

Since we observed (Remark 5.2.3) that the ultraproduct rank is well-defined, every

model is reached at some (possibly transfinite) stage of this construction.
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X 1 is a functor because conjugating by Φ1’s cancels out.

To check pre-ultrafunctoriality, we need the diagrams

X 1 p
ś

iÑU Miq
ś

iÑU X
1pMiq

X 1 p
ś

iÑU Niq
ś

iÑU X
1pNiq

X 1p
ś

iÑU fiq
ś

iÑU X
1pfiq

to commute, i.e. that X 1 p
ś

iÑU fiq “
ś

iÑU X
1pfiq.

So, unravelling the definitions, we calculate:

X 1

˜

ź

iÑU
fi

¸

?
“

ź

iÑU
X 1
pfiq

ðñ Φ1pNiq ˝X

˜

ź

iÑU
fi

¸

˝
`

Φ1pMiq

˘´1 ?
“

ź

iÑU
X 1
pfiq

ðñ
ź

iÑU
σNi ˝ ΦpNiq ˝X

˜

ź

iÑU
fi

¸

˝
`

ΦpMiq

˘´1
˝

˜

ź

iÑU
σMi

¸´1

?
“

ź

iÑU
X 1
pfiq

ðñ
ź

iÑU
σNi ˝

ź

iÑU
Xpfiq ˝

˜

ź

iÑU
σMi

¸´1

?
“

ź

iÑU
X 1
pfiq

ðñ
ź

iÑU

´

σNi Xpfiq
`

σMi
˘´1

¯

?
“

ź

iÑU
X 1
pfiq

?
“

ź

iÑU
Φ1NiXpfiq

`

Φ1Mi

˘´1

“
ź

iÑU
σNi Xpfiq

`

σMi
˘´1

.

In the final step, we are observing that since Φ1Ni is idNi if Ni was from the base case,

ΦNi is σNi (resp. Mi).
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5.4 Showing the constructed isomorphism respects

preservation of ultramorphisms

Now we will show that the property of a pre-ultrafunctor pX,Φq preserving an ultra-

morphism is invariant under the construction 5.3.1 of X 1.

Heuristically, this should be true because preserving ultramorphisms is a “local”,

component-by-component property of the transition isomorphisms Φ, and the only

source of the new data Φ1 in the construction of X 1 was taking ultraproducts of

components of the old Φ, with maybe some identity maps interspersed.

Rigorously, this follows from some definition-unraveling. To give an idea for it, we will

first prove the special case that the preservation of the diagonal maps ∆ is invariant

under the construction of X 1.

Proposition 5.4.1. A pre-ultrafunctor pX,Φq preserves the diagonal embeddings ∆

if and only if X 1 preserves the diagonal embeddings ∆.

Proof. Suppose first that X preserves the diagonal maps. The diagram

X 1
`

MU
˘

X 1pMq

pX 1pMqqU

X 1p∆M q

∆X1pMq

commutes if and only if

X 1
p∆Mq “ ∆X 1pMq

if and only if (note that since M is being viewed as a trivial ultraproduct, ΦM “ idM
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and
ś

jÑV σ
M “ σM)

X 1
p∆Mq

?
“ ∆X 1pMq

ðñ Φ1MU ˝Xp∆Mq ˝ pΦ
1
Mq

´1 ?
“ ∆X 1pMq

ðñ
ź

iÑU
σM

U

i ˝ ΦMU ˝Xp∆Mq ˝ Φ´1
M ˝

`

σM
˘´1 ?

“ ∆X 1pMq

ðñ
ź

iÑU
σM

U

i ˝∆XpMq ˝
`

σM
˘´1 ?

“ ∆X 1pMq.

By chasing the diagram

X 1pMq XpMq

X 1pMqU XpMqU

∆X1pMq

σM

∆XpMq

ś

iÑU σ
M
i

clockwise, we see that

x
`

σM
˘´1

x

rxsiÑU

”

`

σM
˘´1

x
ı

iÑU

commutes, so the equation is true and X 1 preserves the diagonal maps.

Conversely, suppose X 1 preserves the diagonal maps. Then multiplying the left and

right sides of the equation

ź

iÑU
σM

U

i ˝ ΦMU ˝Xp∆Mq ˝ Φ´1
M ˝

`

σM
˘´1

“ ∆X 1pMq

by
´

ś

iÑU σ
MU
i

¯´1

and σM , respectively, yields

ΦpMq ˝Xp∆Mq “

˜

ź

iÑU
σM

U

i

¸´1

˝∆X 1pMq ˝ σ
M ?
“ ∆XpMq.

Checking the final equality can be done by a diagram chase entirely analogous to the

one from the first half of the proof.

Of course, the statement is true even when we replace ∆ with general ultramorphisms.
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Theorem 5.4.2. Let δ and δ1 be ultramorphisms of type xΓ, k, `y in the ultracategories

ModpT q and Set, respectively. A pre-ultrafunctor pX,Φq : ModpT q Ñ Set carries δ

into δ1 if and only if the X 1 given by the construction 5.3.1 does also.

Proof. Suppose first that X carries δ into δ1.

Let M be an ultradiagram in ModpT q. By the definition 3.3.16, X carries δ into δ1

if and only if

XpM pkqq XpM p`qq

pXM qpkq pXM qp`q

XpδM q

ΦMpkq ΦMp`q

δ1XM

commutes. We need to check (whence strictness of X 1) that

X 1
pδM q

?
“ δ1X 1M ,

ðñ Φ1M p`q ˝XpδM q ˝
`

Φ1M pkq

˘´1 ?
“ δ1X 1M

ðñ
ź

iÑU
σ

M p`q
i ˝ ΦM p`q ˝XpδM q ˝

`

ΦM pkq

˘´1
˝

˜

ź

iÑU
σ

M pkq
i

¸´1

?
“ δX 1M

ðñ
ź

iÑU
σ

M p`q
i ˝ δ1XM ˝

˜

ź

iÑU
σ

M pkq
i

¸´1

?
“ δ1X 1M ,

which is true if and only if the diagram

XM pkq XM p`q

X 1M pkq X 1M p`q

δ1XM

ś

iÑU σ
Mpkq
i

ś

iÑU σ
Mp`q
i

δ1
X1M

commutes. Since δ1 is a natural transformation of the evaluation functors pkq and `,

to check that this square commutes, it suffices to check that the vertical maps arise

from a morphism between the ultradiagrams XM and X 1M in HompΓ,Setq. The
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condition to check for this is

Φβ “
ź

iÑUβ

Φgβpiq

for all bound nodes β, but this is easily seen to be true after we remember that if k

or ` are not bound, then their ultraproducts in the above square become trivial and
ś

iÑU σ
M pkq
i is just a map σM pkq.

Therefore, X 1 carries δ to δ1.

Conversely, suppose X 1 carries δ to δ1.

We need to check that

δ1XM
?
“ ΦM p`q ˝XpδM q ˝

`

ΦM pkq

˘´1
.

Multiplying on the left by
ś

iÑU σ
M p`q
i and on the right by

´

ś

iÑU σ
M pkq
i

¯´1

, we get

ź

iÑU
σ

M p`q
i ˝ δ1XM ˝

˜

ź

iÑU
σ

M pkq
i

¸´1

?
“ X 1

pδM q,

and by our assumption, the previous equation is true if and only if

δ1X 1M “ X 1
pδM q,

which is what we assumed.
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Chapter 6

Classifying toposes of first-order

theories

The aim of this chapter and of chapter 7 is to prove that ultraproducts provide a

natural characterization of the coherent objects of the classifying topos of a first-order

theory. The classifying topos E pT q of T is a natural enlargement of DefpT q whose

models in Set are the same as T ’s, and whose objects pick out a subcategory of evalua-

tion functors ModpT q Ñ Set containing the image of ev : DefpT q Ñ rModpT q,Sets.

We will show in Theorem 7.2.1 that the property of evB being a pre-ultrafunctor with

respect to a canonical transition map characterizes whether or not B P E pT q is iso-

morphic to an object in DefpT q.

6.1 Preliminaries on the classifying topos

For the construction and standard facts about the classifying topos of a first-order

(or generally, a coherent) theory, see e.g. Part D of [7] or Volume III of [5]. For our

convenience we will repeat the essentials for our results.
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Throughout this chapter, “topos” will mean “Grothendieck topos”, i.e. a category

of sheaves on a small site. For detailed definitions of sites, sheaves, and toposes, we

direct the reader to the relevant sections of the excellent references [10], [5], and [7].

For the reader’s convenience, we will repeat Giraud’s axiomatic characterization of

Grothendieck toposes (see C.2.2.8, [7]):

Fact 6.1.1. A (possibly large) category E is a Grothendieck topos if and only if the

following conditions are satisfied:

1. Every class of morphisms E pX, Y q in E is a set (E is ”locally small”).

2. There exists a set S of objects in E such that for every pair of maps f, g : X Ñ Y

in E such that for all S P S, for all e : S Ñ X, f ˝ e “ g ˝ e, then e “ g (E has

a “small separating set of objects”).

3. E has all small limits.

4. E has all small coproducts, which are disjoint and stable under pullback.

5. All equivalence relations in E have quotients which are stable under pullback.

Note the similary to the definition of a pretopos (Definition 2.6.16). Indeed, it was

shown in [13] that one could generalize the closure under “finitary” operations defining

a pretopos to a notion of a κ-pretopos for a regular cardinal κ, and that Grothendieck

toposes are precisely 8-pretoposes with a small separating set of objects.

Definition 6.1.2. The classifying topos of a first-order theory T is a topos E pT q

equipped with a fully faithful functor y : DefpT q Ñ E pT q which is also a model in

the sense of 2.5.1 (the definition given there only involves the preservation of certain

categorical properties, so makes sense for functors into any topos instead of Set). E pT q

additionally satisfies the following universal property: for any other topos S and any

model M : DefpT q Ñ S of DefpT q in S , there exists a unique ĂM : E pT q Ñ S such
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that the diagram

E pT q

DefpT q S

ĂMy

M

commutes.

This characterizes E pT q up to equivalence. We call ĂM the inverse image functor

associated to the modelM . We also call objects of E pT q which are, up to isomorphism,

in the image of y representable (echoing the standard construction of E pT q as a

certain category of sheaves on DefpT q.)

As the definition indicates, the extension ĂM of M from DefpT q to E pT q should be

determined by what M does on the objects of DefpT q. The following discussion is

meant to make this intuition explicit, and to give a formula for computing what ĂM

is outside of the image of y inside E pT q.

6.1.1 Computing the associated inverse image functor ĂM

Definition 6.1.3. (3.7.1 of [5]) Let F : A Ñ B and G : A Ñ C be functors. The

left Kan extension of G along F , if it exists, is a pair pK,αq where K : B Ñ C

is a functor and α : G Ñ K ˝ F is a natural transformation satisfying the following

universal property if pH, βq is another pair with H : B Ñ C a functor and β : G Ñ

H ˝ F a natural transformation, then there exists a unique natural transformation

γ : K Ñ H satisfying the equality pγF q ˝ α “ β, as in the following diagram:

A B

C

G

F

H

K , γ : K
!
Ñ H.

We write LanF G for the left Kan extension of G along F . Right Kan extensions are

defined dually, and are written RanF G.
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Before proceeding, we give two definitions around the category of points of a (con-

travariant) functor.

Definition 6.1.4. Consider the diagram of functors
C D.

E
F G

The

comma category pF Ó Gq is given by:

Objects: pc, d, αq where c P C, d P D,α : F pcq Ñ Gpdq P E.

Morphisms: HompFÓGq ppc1, d1, α1q, pc2, d2, α2qq is defined to be the set

$

’

’

’

&

’

’

’

%

pβ1, β2q
ˇ

ˇ β1 : c1 Ñ c2, β2 : d1 Ñ d2, and

F pc1q F pc2q

Gpd1q Gpd2q

α1

F pβ1q

α2

Gpβ2q

commutes.

,

/

/

/

.

/

/

/

-

.

Definition 6.1.5. If F : C Ñ Set is a Set-valued functor on a locally small category

C, the category of (global) points of F , written
şcPC

F pcq, is the comma category

p1 Ó F q.

Explicitly, it is given by:

Objects:
 

pc, xq
ˇ

ˇ c P C, x P F pCq
(

.

Morphisms: HomşcPC F pcq ppc1, x1q, pc2, x2qq is defined to be the set

 

f
ˇ

ˇ f : c1 Ñ c2 and F pfqpx1q “ x2.
(

If F : Cop Ñ D is a contravariant functor, we write
ş

cPC
F pcq for the opposite of

şcPC
F pcq.

The category of points of a functor F : C Ñ D is equipped with a projection (forgetful)

functor π back to C.

Lemma 6.1.6. (3.7.2 of [5]) Consider two functors F : AÑ B and G : AÑ C with

A small and C cocomplete. Then the left Kan extension of G along F exists, and is
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given pointwise by a colimit

pbÑ b1q ÞÑ lim
ÝÑ

ˆ
ż aPA

Bpa, bq
π
Ñ A

G
Ñ C

˙

Ñ lim
ÝÑ

ˆ
ż aPA

Bpa, b1q
π
Ñ A

G
Ñ C

˙

Lemma 6.1.7. (3.7.3 of [5]) Let F : A Ñ B be a full and faithful functor with A a

small category. Let C be a cocomplete category. Then for any functor A Ñ C, the

canonical natural transformation G
α
Ñ pLanF Gq ˝ F is an isomorphism (so that the

inner triangle from 6.1.3 “commutes”).

Corollary 6.1.8. Every model M : DefpT q Ñ Set extends uniquely along y DefpT q
y

ãÑ

E pT q to an inverse image functor ĂM , as in

E pT q

DefpT q Set

ĂMy

M

.

The extension to E pT q is given by a pointwise Kan extension, so that for any B P

E pT q, ĂMpBq can be computed as the colimit

lim
ÝÑ

˜

ż APDefpT q

E pT qpA,Bq
π
Ñ DefpT q

M
Ñ Set

¸

.

6.2 Coherence, compactness and definability in E pT q

In this section, we review the necessary parts of the theory of classifying toposes of

first-order theories. We refer the reader to section D3 of [7] for details.

Definition 6.2.1. An object A of a topos E is compact if every covering family of

maps tfi
ˇ

ˇ i P Iu of maps into A contains a finite subcover.

Definition 6.2.2. An object A of a topos E is stable if for every morphism f : B Ñ A

where B is compact, the domain K of the kernel relation K Ñ B
f
Ñ A is also compact.

Definition 6.2.3. An object A of a topos E is coherent if it is both compact and

stable.
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Remark 6.2.4. In a coherent topos, the pretopos of coherent objects is not necessarily

closed under arbitrary finite colimits. This is because coequalizers are quotients by

(at least) transitive closures of certain relations, so if one has a relation R Ñ X whose

transitive closure is properly ind-definable, the coequalizer ypRq Ñ ypXq � Y will

not be definable.

Lemma 6.2.5. (D3.3.7, [7]) An object B of the classifying topos E pT q of a first-order

theory T is representable (i.e. isomorphic to an object from DefpT q ãÑ E pT q) if and

only if it is coherent.

Remark 6.2.6. If one constructs the classifying topos E pT q as a category of sheaves

on DefpT q (where T might not necessarily eliminate imaginaries), then taking the

coherent objects of E pT q yields an alternate construction of the pretopos completion

of DefpT q. Thus, if T eliminates imaginaries (as we have assumed for most of this

document), the pretopos completion of DefpT q is isomorphic to DefpT q, hence the

previous lemma.

Notation 6.2.7. From now on, when working in the classifying topos E pT q of a

first-order theory, we will use “definable” and “coherent” interchangably.

Definition 6.2.8. Let C be a category, and let B be an object of C. Let cB be

the constant functor C Ñ B which sends every morphism in C to idB. The slice

category C{B is defined to be the comma category (Definition 6.1.4) pidC, cBq.

The “fundamental theorem of topos theory” (see A2.3, [7]) says that for a topos E ,

any slice category E {B of E is also a topos.

Lemma 6.2.9. (D3.3.16, [7]) Let E pT q be the classifying topos for a first-order theory.

Then an object B P E pT q is coherent if and only if the slice category E pT q{B is a

coherent topos, which is presented by the coherent site DefpT q{B of coherent objects

A P E pT q over B.

We also record the following observation, which seems to be folklore:
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Lemma 6.2.10. Let B P E pT q be coherent. Then the slice topos E pT q{B is presented

by the theory of T extended by a generic constant of b, written T rb : Bs.

Proof. One easily verifies that the adjoint p´qˆB to the forgetful functor E pT q{B Ñ

E pT q restricts to an interpretation of the underlying pretoposes which factors through

DefpT rb : Bsq, and that the induced map between the categories of models ModpT rb :

Bsq Ð ModpE pT q{Bq is an isomorphism. By conceptual completeness 3.2.11, the

map DefpT rb : Bsq Ñ DefpT q{B was a bi-interpretation of pretoposes.
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Chapter 7

Ultraproducts and coherence in the

classifying topos

7.1 Compact non-coherent objects in E pT q

In the previous chapter, we introduced the notions of compact, stable, and coherent

objects in E pT q, and we claimed that the coherent objects were precisely the definable

ones. In this section, we analyze the compact non-coherent objects. As we saw in

6.2.4, the prototypical example in a coherent topos of a compact non-coherent object

is the coequalizer of a definable relation R Ñ X on a definable set X with a properly

ind-definable transitive closure. Our aim in this section is to prove the lemma 7.1.4,

which says that this obstruction to coherence actually characterizes the compact non-

coherent objects in a coherent topos.

An important basic category-theoretic fact is the canonical coproduct-coequalizer de-

composition of colimits (whose proof can be found, for example, in [9]):

Fact 7.1.1. Let D be a subcategory of C a category with all colimits.
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Then the colimit lim
ÝÑ
pDq of D is isomorphic to the coequalizer of the following diagram:

˜

ğ

fPD1

spfq

¸

F
Ñ
G

˜

ğ

dPD0

d

¸

where on each component spfq P D0 of the left hand side, F sends spfq to itself

d “ spfq by the identity map of d “ spfq, and on each spfq P D0 of the left hand side,

G sends spfq to tpfq by the map f .

We apply this fact to show the following:

Lemma 7.1.2. An object B of a coherent topos E pT q is compact if and only if every

covering of B whose domains are representables admits a finite subcover.

Proof. The implication “ñ” is immediate.

Conversely, suppose that tBi Ñ Bu is a covering of B. By the Kan extension colimit

formula and the coproduct-coequalizer decomposition of colimits, each Bi is covered

by (possibly infinitely many) representables. The collection of all these representables

across all Bi form a covering of representables of B. By assumption, this covering

admits a finite subcovering. Therefore, only finitely many of these Bi were needed

since all these representable coverings factored through some Bi.

We recount the following fact from [6], closely related to the lemma 7.1.4:

Fact 7.1.3. (Lemma 7.36 of [6]). Let E be a topos generated by compact objects. Let

X be a coherent object of E, and let R Ñ X be an equivalence relation with coequalizer

R Ñ X � X.

Then Y is coherent if and only if R is compact.

Our next lemma 7.1.4 is a sharpening of the fact 7.1.3: not only will we show that a

compact non-coherent object is the quotient of a coherent object by a non-compact
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congruence, but we will explicitly describe the non-compact congruence as an infinite

join of coherent objects.

Lemma 7.1.4. Let B P E pT q be a compact non-coherent object. Then B is the

quotient of a coherent object A by a non-compact equivalence relation E which is a

join of infinitely many coherent equivalence relations on A.

Proof. Write B as a colimit of a diagram D whose objects are representables Ai. By

the coproduct-coequalizer decomposition, B is a quotient of the coproduct
Ů

APD′
A

and therefore the maps Ai ãÑ
Ů

APD′
A

pB
Ñ B are a covering family for B. Since B is

compact, finitely many Ai, say A1, . . . , An suffice to cover B.

What we have said so far amounts to saying that B is a quotient of the coherent

object
Ů

iďnAi, since the obvious map
˜

ğ

iďn

Ai

¸

i
ãÑ

˜

ğ

APD0

A

¸

pB
Ñ B

covers B.

It now remains to calculate the kernel relation K 1 of pB ˝ i and show that it is an

infinite union of coherent relations on
Ů

iďnAi.

We break the remainder of the proof into the following steps:

1. The kernel relation K 1 of pB ˝ i is the pullback of the kernel relation K of pB

along the inclusion

iˆ i :

˜

ğ

iďn

Ai

¸

ˆ

˜

ğ

iďn

Ai

¸

ãÑ

˜

ğ

APD0

A

¸

ˆ

˜

ğ

APD0

A

¸

and therefore in every model consists of those pairs pa1, a2q P K such that both

a1 and a2 are in
Ů

iďnAi.

2. Fix an arbitrary model. There is no harm in working with points and sets in

a generic model since by Deligne’s completeness theorem we can then lift our

calculations to the classifying topos.
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Now, K is by definition the smallest equivalence relation containing “Db : F pbq “

a1 and Gpbq “ a2 ùñ a1 „K a2.” By how F and G are constructed, this means

that a „K a1 if and only if there are finitely many other points a1, . . . , an and

maps linking a to a1, each ai to ai`1, and an to a1, where the maps may point

in either direction.

It follows that K 1 is finer than just the kernel relation of the coequalizer of the

pullback of F,G :
Ů

APD0
A Ñ

Ů

APD0
A along the inclusion i, and is given by

the following union:

K 1
“
ł

nPω

Rn

where R0 is the diagonal copy of
Ů

iďnAi, R1 consists of those pairs pa1, a2q such

that there is some a10 in
Ů

APD0
A such that there is a map f in D1 that moves a1

to a10 or vice-versa, and there is a map g in D1 that moves a10 to a2 or vice-versa,

etc.

3. R1 is the infinite union
Ž

APD0
SA, where each SAk corresponds to the A con-

taining a particular witness ak “ a10 as above.

4. Each SAk looks like this:

ł

pf,f 1,g,g1q

 

pai, ajq P Ai ˆ Aj
ˇ

ˇ Dak P Ak
`

pai, akq P Γpfq _ Γpf 1q and paj, akq P Γpgq _ Γpg1q
˘(

,

where the 4-tuple of maps pf, f 1, g, g1q ranges over definable maps

DefpT qpAi, Akq ˆDefpT qpAk, Aiq ˆDefpT qpAj, Akq ˆDefpT qpAk, Ajq

and therefore each SAk is
Ž

-coherent.

Therefore, R1 is
Ž

-coherent.

5. Let us inductively assume that Rk is
Ž

-coherent as the union
Ž

iPI Ti. Then

Rk`1 is the following subset of Rk ˆR1:

Rk`1 “

$

&

%

pa, bq
ˇ

ˇ

ł

pTi,SAqPIˆD0

Dc s.t. pa, cq P Ti ^ pa, bq P SA

,

.

-
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and is therefore also
Ž

-coherent.

We conclude that K 1 is
Ž

-coherent.

7.2 The coherence criterion

Theorem 7.2.1. Let E pT q be the classifying topos of a first-order theory. Let B be

an object of E pT q. The following are equivalent:

1. B is coherent.

2. evB : ModpT q Ñ Set is the underlying functor of a pre-ultrafunctor pevB,Φq

such that, if B is canonically the colimit of representables Ai, then each canonical

map Ai Ñ B induces an ultratransformation of the pre-ultrafunctors pevAi , idq Ñ

pevB,Φq.

Proof. p1 ùñ 2q If B is coherent, then it is representable and pevB, idq is a pre-

ultrafunctor,, and since y : DefpT q Ñ E pT q is full and faithful, every map Ai Ñ

B corresponds to a definable function, which induces an ultratransformation

evpAiq Ñ evpBq.

(2 ùñ 1) First, we note that under the assumptions, evB’s transition isomorphism

is uniquely determined by the transition isomorphisms of the representables

appearing in the Kan extension colimit formula for B: all diagrams of the form

evB p
ś

iÑU Miq
ś

iÑU evBpMiq

evA p
ś

iÑU Miq
ś

iÑU evApMiq

evA1
ś

iÑU evA1pMiq

ΦB
pMiq

ΦA
pMiq

ΦA
1

pMiq
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commute, and since the Kan extension colimit formula is computed pointwise,

the transition isomorphism ΦB
pMiq

is a unique comparison map from the colimit

evB p
ś

iÑU Miq of the evAp
ś

iÑU Miq’s into
ś

iÑU evBpMiq.

Now, knowing this, suppose B is not coherent. Then either B cannot be covered

by finitely many definables, or it can. If it can be covered by the finitely many

definables A1, . . . , An, then the associated map A1\¨ ¨ ¨\An � B does not have

a definable kernel relation, and in fact by 7.1.4, the kernel relation is properly

ind-definable.

In either case, we know what the transition isomorphism ΦB
pMiq

looks like. In the

first case, if B cannot be covered by finitely many definables, we still know from

the Kan extension colimit formula that it can be covered by infinitely many

pAiqiPI . Fix a model M and take a sequence paiqiPI such that for every Aj,

cofinitely many ai are not in (the image of) Aj (in B). Then for a non-principal

ultrafilter U on I, raisiPU is not in any of the (images of the) pMUqpAjq’s. There-

fore, it is not in the image of the transition isomorphism ΦB
pMq, a contradiction.

In the second case, if B looks like a definable set A quotiented by a properly

ind-definable equivalence relation R “
Ť

iPI Ri, then once again we know that

the transition isomorphism

˜

ź

iÑU
Mi

¸

pA{Rq Ñ
ź

iÑU
pMipA{Rqq

is the “obvious” one. Here’s what the “obvious” map is: since A is definable,

we are really comparing two equivalence relations on the same set. On the left

hand side, we have that raisiÑU „ rbisiÑU if and only if there exists some Rj

such that p
ś

iÑU MiqpRjq contains prais, rbisqiÑU . On the right hand side, we

have that raisiÑU „ rbisiÑU if and only if ai „R bi U -often. Since R is properly

ind-definable, the equivalence relation on the left is properly contained in the

equivalence relation on the right. This containment induces a map between the
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quotients, and since the containment is proper, this map is not injective, and

cannot be a bijection.

Now we use this result to prove a stronger statement than 4.3.2. The difference is that

in the original statement of 4.3.2, we only concluded that X was definable, without

saying anything about the transition isomorphism Φ which allowed us to view pX,Φq

as a ∆-functor. In fact, we can show that pX,Φq is isomorphic to evϕpxq, and must

therefore be an ultrafunctor.

Theorem 7.2.2. Let T be ℵ0-categorical. Let pX,Φq be a pre-ultrafunctor. Then the

underlying functor X is definable if and only if for some ϕpxq P T , pX,Φq is isomor-

phic as a pre-ultrafunctor to evϕpxq (equivalently, by strong conceptual completeness

3.5.1, pX,Φq is an ultrafunctor).

Proof. By applying the lemma 4.3.1 that ∆-functors preserve filtered colimits and

arguing as in the first part of the proof of 4.3.2, we conclude that X is isomorphic to a

possibly infinite disjoint union of representables
Ů

iPI Ai. In this way, X is canonically

the colimit of the representables Ai. It remains to verify the rest of item 2, i.e. the

canonical inclusions Ak ãÑ
Ů

iPI Ai » X induce ultratransformations.

Before proceeding, we reduce the problem of verifying this for all ultraproducts to

just verifying this for all ultrapowers. This is because, in general, every ultraproduct

is a filtered colimit of ultraproducts of countable models: for every rxisiÑU in some

ultraproduct
ś

iÑU Ni, take a countable elementary model Mi
fi
ãÑ Ni which contains

xi; then there is an embedding
ś

iÑU fi :
ś

iÑU Mi ãÑ
ś

iÑU Ni, and the collection

of all such embeddings covers
ś

iÑU Ni. Since T is ℵ0-categorical, an ultraproduct of

countable models is just an ultrapower of the unique countable model.
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So, it remains to check that the diagram

X
`

MU
˘

XpMqU

A
`

MU
˘

ΦpMq

ι
MU

ś

iÑU ιi

commutes. Each component ιN of the ultratransformation is determined by filtered

colimits of the countable model M , with ιM determined by sending the support ax P

ApMq to x. Since ∆M : M Ñ MU is part of the filtered diagram of countable

submodels of MU , ιMU of ∆Mpaxq “ Xp∆Mqpxq, and since pX,Φq was a ∆-functor,

ΦpMq ˝Xp∆Mqpxq “ ∆XpMqpxq.

On the other hand,

ź

iÑU
ιi p∆paxqq “ rιMpaxqsiÑU “ ∆XpMqpxq.

So the diagram commutes, and now we are done by the direction 2 ùñ 1 of the

theorem.
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Chapter 8

Exotic functors ModpT q Ñ Set

In this chapter, we will construct for, certain theories T , “exotic” functors ModpT q Ñ

Set which will exhibit the failure of 7.2.2 when the assumption of ℵ0-categoricity is

removed.

8.1 Counterexamples to Theorem 7.2.2 in the non-

ℵ0-categorical case

The basis for our counterexamples is the theory of an infinite set, expanded by count-

ably many distinct constants. We will construct an example of a pre-ultrafunctor

which is not a ∆-functor, and an example of a ∆-functor which is not an ultrafunctor

(specifically, we will find an example which fails to preserve the generalized diagonal

embeddings 3.3.13).

For the rest of this section, T will mean the theory of an infinite set with countable

many distinct constants tciuiPω. In a single variable, T has a unique non-isolated type

ppxq, whose realizations are those elements which are not any constants.
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Definition 8.1.1. The underlying functor X for the pre-ultrafunctors we will con-

struct will be given on the objects of ModpT q by:

XpMq
df
“ ppMq Y

 

cMk
ˇ

ˇ k is even
(

.

On elementary embeddings f : M Ñ N , we set Xpfq to just be the restriction of f

to XpMq.

There is an obvious map which compares
ś

iÑU XpMiq with X p
ś

iÑU Miq, namely the

inclusion of the former in the latter. However, this cannot be an isomorphism, since

any unbounded increasing sequence of odd constants will realize p in an ultrapower. To

complete the construction of the counterexamples, it remains to construct transition

isomorphisms for X.

For our convenience, we record an analysis of the automorphisms of the functor X

which will be useful in the construction of the exotic ∆-functor 8.1.1.

Lemma 8.1.2. Any automorphism η : X Ñ X of X satisfies the following prop-

erty: for every M |ù T , ηM : XpMq Ñ XpMq permutes the constants and fixes the

nonconstants.

Proof. Fix an arbitrary model M , let ∆M : M ÑMU be the diagonal embedding into

some ultrapower MU , and consider the naturality diagram which must be satisfied by

the components tηMuMPModpT q of η:

M X pMq X pMq

MU X
`

MU
˘

X
`

MU
˘

∆M Xp∆M q

ηM

Xp∆M q

η
MU

Suppose ηM sends a constant c to a nonconstant ηMpcq. Then the commutativity of

the naturality diagram tells us ηMU sends Xp∆Mqpcq “ ∆Mpcq to Xp∆MqpηMpcqq “
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∆MpηMpcqq. However, any injection M Ñ MU which identifies constants with con-

stants and sends nonconstants to nonconstants is an elementary embedding, and we

can certainly find an embedding f : M Ñ MU which does not send the nonconstant

ηMpcq to ∆MpηMpcqq. Then, since elementary embeddings fix constants, the naturality

diagram

M X pMq X pMq

MU X
`

MU
˘

X
`

MU
˘

f Xpfq

ηM

Xpfq

η
MU

would not commute. So, ηM must send constants to constants. Since η is an isomor-

phism and hence invertible, ηM cannot send nonconstants to constants either.

Now suppose that ηM does not fix the nonconstants, so that for some nonconstant

d, d ‰ ηMpdq, with ηMpdq a nonconstant. Consider again the naturality diagram for

∆M : M ÑMU :

M X pMq X pMq

MU X
`

MU
˘

X
`

MU
˘

∆M Xp∆M q

ηM

Xp∆M q

η
MU

This tells us that ηMU p∆Mpdqq “ ∆MpηMpdqq.

Let d1 stand for ∆MpηMpdqq, and let e be another nonconstant in MU , distinct from

∆Mpdq and d1. Since d1 and e are nonconstants, we can find an automorphism σ :

MU ÑMU which fixes ∆Mpdq but which moves d1 to e. Then the naturality diagram

for σ

MU X
`

MU
˘

X
`

MU
˘

MU X
`

MU
˘

X
`

MU
˘

σ Xpσq

η
MU

Xpσq

η
MU
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tells us that

σ ˝ ηMU p∆Mpdqq “ ηMU ˝ σp∆Mpdqq

“ σpd1q “ ηUMp∆Mpdqq

“ e “ d1,

a contradiction. Therefore, ηM fixes the nonconstants.

Finally, we remark that any permutation of the constants can be realized in an auto-

morphism η : X Ñ X, and in fact AutpXq » Sympωq.

8.1.1 The exotic ∆-functor

Now we will construct a transition isomorphism Φ for X such that pX,Φq is a ∆-

functor which is not an ultrafunctor (and, in fact, which fails to preserve the general-

ized diagonal embeddings 3.3.13).

Fix I and a non-principal ultrafilter U . Let pMiqiPI be an I-indexed sequence of

models. Consider X p
ś

iÑU Miq, in which we can canonically identify
ś

iÑU XpMiq as

a subset.

Definition 8.1.3. Let ApMiq be the complement of
ś

iÑU XpMiq inside X p
ś

iÑU Miq.

ApMiq consists of those elements rxisiÑU of
ś

iÑU Mi which:

1. realize the non-isolated type ppxq, i.e. are not constants, and

2. such that any representative sequence pxiqiÑU is U -often an odd constant (equiv-

alently, can be represented by a sequence made up entirely of odd constants).

Let BpMiq be the subset of
ś

iÑU XpMiq which consists of those elements rxisiÑU of
ś

iÑU which:

1. realize the non-isolated type ppxq, i.e. are not constants, and
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2. such that any representative sequence pxiqiÑU is U -often an even constant (equiv-

alently, can be represented by a sequence made up entirely of even constants).

Finally, let CpMiq be the complement of BpMiq inside
ś

iÑU XpMiq.

Note that CpMiq consists precisely of those elements of X p
ś

iÑU Miq which are either

constants or which are nonconstants rxisiÑU for which any representative sequence

pxiqiÑU is U -often a nonconstant.

Since elementary embeddings preserve the property of a tuple being constant or non-

constant, for any sequence of elementary embeddings pfi : Mi Ñ NiqiÑU , we have that

rfisiÑU restricts to a map CpMiq Ñ CpNiq, and furthermore because elementary embed-

dings fix constants, rfisiÑU restricts to bijections ApMiq Ñ ApNiq and BpMiq Ñ BpNiq.

Now, we have disjoint unions

X

˜

ź

iÑU
Mi

¸

“ ApMiq \BpMiq \ CpMiq and
ź

iÑU
XpMiq “ BpMiq \ CpMiq,

and our task is to find a transition isomorphism ΦpMiq : ApMiq \ BpMiq \ CpMiq
„
ÝÑ

BpMiq \ CpMiq.

We define ΦpMiq to be the identity on CpMiq. It remains to specify a bijection σ :

ApMiq\BpMiq » BpMiq. Since any such σ only involves identifying certain ultraproducts

of constants with other ultraproducts of constants, then after fixing a σ we can use σ

to define ΦpNiq for arbitrary I-indexed sequences of models pNiq. With this setup, we

will show that any choice of σ works.

While in general, transition isomorphisms depend on the three pieces of information

I,U and pMiq, we have constructed candidate transition isomorphisms by making a

choice σ which only depends on I and U , so we make this explicit by writing σI,U .

Now, fix σI,U and let pMi
fi
Ñ NiqiPI be an I-indexed sequence of elementary embed-
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dings, and consider the pre-ultrafunctor diagram

X p
ś

iÑU Miq
ś

iÑU XpMiq

X p
ś

iÑU Niq
ś

iÑU XpNiq.

ΦpMiq

XprfisiÑU q rXpfiqsiÑU

ΦpNiq

To show it commutes, consider an arbitrary element rxisiÑU of the top left corner

X p
ś

iÑU Miq. There are three cases:

1. rxisiÑU is in CMi
. Recall that ΦpMiq and ΦpNiq were defined to be the identities on

CpMiq, CNiq, and that rfisiÑU restricts to a map CpMiq Ñ CpNiq. Chasing rxisiÑU

through the diagram, we get

rxisiÑU rxisiÑU

rfixisiÑU rfixisiÑU .

2. rxisiÑU is in ApMiq. Recall that rfisiÑU restricts to bijections ApMiq Ñ ApNiq and

BpMiq Ñ BpNiq. Chasing rxisiÑU through the diagram, we get

rxisiÑU rσI,UxisiÑU

rxisiÑU rσI,UxisiÑU .

3. rxisiÑU is in BpMiq. Recall that rfisiÑU restricts to bijections ApMiq Ñ ApNiq and

BpMiq Ñ BpNiq. Chasing rxisiÑU through the diagram, we get

rxisiÑU rσI,UxisiÑU

rxisiÑU rσI,UxisiÑU .

Therefore, after making choices of bijections σI,U for every I and U , we obtain a

transition isomorphism Φ such that pX,Φq is a pre-ultrafunctor.
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pX,Φq is also a ∆-functor: for any ultrapower MU , recall that the subset CpMiq 8.1.3

of X
`

MU
˘

contains all those elements which are constants or nonconstants that are

ultraproducts of nonconstants. In particular, if a P M , then ∆Mpaq “ rasiÑU is a

constant if a is a constant or a nonconstant which is an ultraproduct of nonconstants

if a is a nonconstant, so the image of ∆XpMq is contained inside CpMiq Ď XpMqU .

Xp∆Mq is just the restriction of ∆M to XpMq, so the image of Xp∆Mq also lies in

CpMq and agrees with the image of ∆XpMq. This means in the below diagram, the

upper-left and lower-left triangles commute:

X
`

MU
˘

XpMq CpMq

XpMqU .

ΦpMq

∆XpMq

Xp∆M q

Furthermore, ΦpMq was defined to be the identity on CpMq, so the curved subdiagram

on the right commutes. Therefore, the entire diagram commutes; in particular, the

outer triangle from the definition 3.3.14 of a ∆-functor commutes, so pX,Φq is a

∆-functor.

The theory T is countable, and by strong conceptual completeness there as many

isomorphism classes of ultrafunctors as there are definable sets of T . But for any

I and U , any choice of a bijection σI,U worked. We will show that there are at

least uncountably many isomorphism classes of ∆-functors pX,Φq that arise from our

construction. This will imply that there is some choice of Φ such that pX,Φq is not

an ultrafunctor.

Let I now be countable, and let Φ and Φ1 be two different transition isomorphisms

which arise from making the choices of σI,U and σ1I,U during our construction. An
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isomorphism of pre-ultrafunctors pX,Φq Ñ pX,Φ1q is an automorphism η : X Ñ X

such that, additionally, all diagrams of the form

X p
ś

iÑU Miq
ś

iÑU XpMiq

X p
ś

iÑU Miq
ś

iÑU XpMiq

ηś
iÑU Mi

Φ

ś

iÑU ηMi

Φ1

commute.

By our earlier analysis 8.1.2 of the automorphisms of X, it is easy to see that when

restricted to CpMiq, the above diagram commutes.

However, if we restrict to ApMiq\BpMiq, then chasing an element around the diagram

ApMiq \BpMiq BpMiq

ApMiq \BpMiq BpMiq

σI,U

ηś
iÑU Mi

ś

iÑU ηMi

σ1I,U

yields the tentative equality

rxisiÑU σI,UprxisiÑU

rxisiÑU σ1I,Uprxisq
?
“
ś

iÑU ηMi
pσI,U prxisiÑUqq

so we see that if the transition isomorphisms Φ and Φ1 induced by σI,U and σ1I,U are

isomorphic, then there is an automorphism η : X Ñ X such that
ś

iÑU ηMi
˝ σI,U “

σ1I,U . Therefore, defining G to consist of all ultraproducts
ś

iÑU ηpMiq admissible in the

above diagram (so only those which restrict to a permutation on BpMiq), the number

of isomorphism classes among the pX,Φq is bounded from below by the number of

orbits of the action by composition

G ñ Bijections
`

ApMiq \BpMiq, BpMiq

˘

.

However, G can be identified with a subgroup of SympωqU . Since I was countable,

SympωqU has size ď c the size of the continuum.
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On the other hand, the set on whichG acts has the same cardinality as | Sym
`

BpMiq

˘

| ě

2c.

Therefore, this action has uncountably many orbits, and so there are uncountably

many isomorphism classes of pX,Φq arising from our construction. So, one of them

cannot be an ultrafunctor.

We can also see that Φ can be chosen to violate a generalized diagonal embedding

3.3.13. Fix indexing sets I and J such that |I| ą |J |, a surjection g : I � J , and U

an ultrafilter on I with V its pushforward g˚U . Let pMjqjPJ be a J-indexed sequence

of models.

Then the associated generalized diagonal embedding ∆g :
ś

jÑV Mj Ñ
ś

iÑUV Mgpiq

induces, informally speaking, a relationship between ultraproducts computed with

respect to different indexing sets and ultrafilters: for it to be preserved, the diagram

X
´

ś

jÑV Mj

¯

X
`
ś

iÑU Mgpiq

˘

ś

jÑV XpMjq
ś

iÑU XpMgpiqq

ΦpMjq

Xp∆gq

ΦpMgpiqq

∆Xpgq

must commute, for all choices of pMjq. However, our construction of Φ involved a

specification of ΦpMjq based on a choice of σJ,V which is independent of the choice of

σ1I,U used to specify ΦpMgpiqq
. To make this concrete, if for a given Φ and pMjq the

diagram above happens to commute, then for any a P ApMjq in the upper-left corner

which gets sent to some b P BpMgpiqq
in the lower-right corner, we can change our

choice of ΦpMjq so that ∆Xpgq ˝ ΦpMjq sends a to a different b1 ‰ b while keeping the

rest of Φ the same, with the modified transition isomorphism Φ1 still making pX,Φ1q

a ∆-functor.
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8.1.2 The exotic pre-ultrafunctor

In the previous section, the transition isomorphisms Φ making pX,Φq a ∆-functor

were constructed to be the identity on CpMq, and hence also restricted to the identity

on the image of diagonal embeddings ∆M : M ÑMU .

In general, CpMiq splits into a disjoint union of even constants and nonconstants which

are ultraproducts of nonconstants of Mi:

CpMiq “ Cc
pMiq

\ Cnc
pMiq

.

We can easily modify the construction of the transition isomorphism to not preserve

the diagonal map, by requiring that Φ restricts to the identity only on Cnc
pMiq

, while

on Cc
pMiq

, we now require that Φ restricts to any permutation CpMiq Ñ CpMiq, while

keeping the rest of the construction the same.

Now we verify the pre-ultrafunctor condition. When we verified the pre-ultrafunctor

condition during the construction of the exotic Delta-functor, we had three cases

8.1.1, according to whether an element rxisiÑU P X p
ś

iÑU Miq was in ApMiq, BpMiq

or CpMiq. With the new definition, the verification of the first two cases remains the

same, but the case of CpMiq splits into the two cases of whether rxisiÑU P CpMiq is

a constant or nonconstant. If rxisiÑU is a nonconstant, then since Φ still acts as

the identity on rxisiÑU , the diagram commutes. If rxisiÑU is a constant, then even

if Φ restricts to a nontrivial permutation of CpMiq, the diagram commutes because

elementary embeddings preserve constants.

However, when Φ restricts to a nontrivial permutation on the even constants, the

diagonal embedding ∆M : M Ñ MU is not preserved, i.e. the triangle diagram

in 3.3.14 does not commute. For any even constant c in XpMq which is not fixed

by Φ (and identifying XpMqU as a subset of X
`

MU
˘

, and this as a subset of MU ,

Xp∆Mqpcq “ ∆XpMqpcq “ ∆Mpcq, but Φp∆XpMqpcqq ‰ ∆Mpcq.
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8.2 Further directions

8.2.1 Non-definable counterexamples

In this chapter, we have constructed counterexamples to Theorem 7.2.2. Thus, our

counterexamples are not a priori counterexamples to Theorem 4.3.2. Indeed, as we

pointed out in 3.3.5, our functor X is definable, in fact isomorphic to the functor of

points of the 1-sort of T .

We therefore ask:

Question 8.2.1. What is an example of a non-definable pre-ultrafunctor?

Given the examples of exotic functors we have constructed in this section, it is natural

to also ask the following questions:

Question 8.2.2. Does there exist a pre-ultrafunctor which preserves the generalized

diagonal maps ∆g, but which is not an ultrafunctor?

Question 8.2.3. Given any ultramorphism δ, does there exist a pre-ultrafunctor

which preserves δ but which is not an ultrafunctor?

Question 8.2.4. Given any set of ultramorphisms S, does there exist a pre-ultrafunctor

which preserves every δ P S, but fails to preserve every δ R S?
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