
Energy-Aware Multiserver Queueing Systems with

Setup Times: Structural Properties, Exact Analysis,

and Asymptotic Performance

I dedicate this thesis to my wife Stephanie. It would not have been possible without

her constant support.

Abstract

Energy consumption of today’s data-centers is a constant concern from the stand-

points of monetary and environmental costs. An intuitive solution to address these

immense energy demands is to turn servers off to incur less costs. As such, many

different authors have modeled this problem as an M/M/C queue where each server

can be turned on, with an exponentially distributed setup time, or turned off instan-

taneously. What policy the model should employ, or rather when each server should

be turned on and off is far from a trivial question. A specific policy is often exam-

ined, but determining which policy to study can be a difficult process and is often

a product of intuition. Moreover, while a specific policy may do comparatively well

against another, in general it may be far from optimal. This problem is further ac-

centuated when one considers the case that a policy may do well or even be optimal

under a specific cost function, but far from optimal under another. To address this

issue this thesis studies the structural properties of the optimal policy under a wide

range of cost functions, allowing for a significant reduction in the search space; then

leverages these structural properties to intelligently select three families of policies to

study further. An exact analysis of these policies is given, alongside offering insights,

observations, and implications for how these systems behave. In particular, results

are found which grant insight into the question of the number of servers that should

remain on at all times under a general cost function. The model is then analysed un-

der a fixed-load, many-server asymptotic regime, i.e. C →∞, while the load remains

fixed, i.e. 0 < ρ < 1, where it is shown that not only are many of the policies in

the literature equivalent under this regime, but they are also optimal under any cost

function which is non-decreasing in the expected energy cost and response time.

ii

Acknowledgements

Firstly, and most importantly, I must express my sincerest gratitude to Dr. Douglas

Down, my supervisor of over five years. His profound guidance through the academic

landscape was invaluable in the formation and completion of this thesis, as well as

all other aspects of my academic career. His keen and vigilant editorial skills were

an incredible asset throughout. And his willingness to help and good nature were

paramount to my overwhelming positive experiences a graduate student. I cannot

thank him enough.

Secondly, I would like to acknowledge the guidance of my advisory committee. Their

constructive feedback and willingness to help steer my research is greatly appreciated.

Lastly, this research was funded by the Natural Sciences and Engineering Research

Council of Canada.

iii

Contents

iv

List of Figures

2.1 General birth-death process . 10

2.2 CTMC of an M/M/C queue . 14

4.1 A broad overview of this thesis’ problem and approach 27

4.2 The model under study. Dynamic servers take time exponentially dis-

tributed with rate γ to move from setup to idle or busy, all other

transitions happen instantly if the system state allows it. 28

4.3 A broad overview of this thesis’ problem and approach in finer detail 32

4.4 Reduction of the set of candidate policies via deriving optimal struc-

ture. Grey sections represent policies which are known to always be

sub-optimal. 35

4.5 An example CTMC for a two server system where servers turn off when

they idle, and the number in setup equals the number of waiting jobs

when possible. 37

5.1 Threshold lattice: some orderings (arrows) from Theorem 5.3 are left

off for readability . 47

6.1 The underlying CTMC for an energy-aware system (3, λ, µ, γ), imple-

menting a threshold policy. 54

6.2 The underlying CTMC for an energy-aware system (3, λ, µ, γ), imple-

menting a bulk setup policy with CS = 0, and k = 2. If the parameters

were to be changed to CS = 1, and k = 2, row 0 (shaded over in grey)

would be merged with row 1, and the red dotted line (red) transitions

would be added. 63

6.3 Expected response time vs CS for γ = 0.1 94

6.4 Expected energy consumption rate vs CS for γ = 0.1 95

v

6.5 Expected response time vs CS for γ = 0.01 96

6.6 Expected energy consumption rate vs CS for γ = 0.01 97

6.7 Expected response time vs CS for γ = 0.001 98

6.8 Expected energy consumption rate vs CS for γ = 0.001 99

6.9 Expected response time vs CS for γ = 0.1 103

6.10 Expected energy consumption rate vs N∗ for γ = 0.1 104

6.11 Expected response time vs CS for γ = 0.01 105

6.12 Expected energy consumption rate vs N∗ for γ = 0.01 106

6.13 Expected response time vs CS for γ = 0.001 107

6.14 Expected energy consumption rate vs CS for γ = 0.001 108

6.15 Expected response time vs CS for γ = 0.1 114

6.16 Expected energy consumption rate vs CS for γ = 0.1 115

6.17 Expected response time vs CS for γ = 0.01 116

6.18 Expected energy consumption rate vs CS for γ = 0.01 117

6.19 Expected response time vs CS for γ = 0.001 118

6.20 Expected energy consumption rate vs CS for γ = 0.001 119

7.1 Expected response time vs C for λ = C/2, µ = 1 126

7.2 Expected energy cost and expected energy cost per job vs C for λ =

C/2, µ = 1 . 128

7.3 Expected response time and expected energy cost per job vs ρ for C =

500, µ = 1 . 131

vi

Chapter 1

Introduction

The immense energy consumption of data-centers has become a fact of modern life.

The United States spends on the order of billions of dollars powering these systems

each year [12, 37], and a large standalone corporation such as Google pays an annual

energy bill on the order of hundreds of millions of dollars [52, 60]. While some may

see this as an obligatory cost, the truth is many of these servers spend a significant

amount of time idle. Moreover, an idling server uses a large percentage of the energy

it would if it were busy [5]. To conserve costs, servers often have a lower energy state

they can be switched to (off, sleep, etc.). However, the choice of if and when to make

such a switch for each server is far from trivial.

Due to these extravagant costs and open questions regarding data-centre behaviour,

a great amount of interest has been cultivated. Specifically, can something be done to

avoid said costs while at the same time achieving reasonable performance? Due to the

complexity of these systems, direct analysis is intractable, and researchers fall back

on two broad strategies, the first being simulation and the second being modelling.

1

Thesis - Vincent Maccio McMaster - Software Engineering

With no discredit to the merits of simulation, this thesis focuses strictly on modelling

a data-centre and directly analysing said model.

At its simplest description, the model is one where jobs arrive, are served/processed,

and then depart. To make the model interesting (and more true to life), time between

job arrivals, alongside job sizes (how long it takes to serve/process a job) follow some

statistical distribution; a considerable amount of uncertainty is present. Moreover,

since data-centres have many machines, the model allows for many servers. To cap-

ture how one can potentially save energy, each of these servers can independently

be turned on (after a setup delay which also follows a statistical distribution) or off

(instantly). The idea is that one has the ability to turn a server off to save operat-

ing costs such as energy, but does so with the penalty of potentially harming system

performance. If a server is off, jobs are more likely to experience longer wait times in

queue, and in turn a larger response time.

At a glance, one may determine there to be a direct trade-off between efficiency (en-

ergy costs) and efficacy (system performance). However, things are more complicated

than they initially seem. For example, when one turns a server off, they risk incur-

ring more costs in the long run due to that server now having to expend energy to

turn back on, as well as risk system thrashing (servers frequently turning on and off

without processing many jobs). Therefore, it is not safe to assume turning a server

off will decrease costs. This is an unfortunate observation since one can not obviously

determine if energy costs can be saved, let alone how. Complexities such as these are

what make the model appealing to study. Moreover, as will be seen, the insights one

2

Thesis - Vincent Maccio McMaster - Software Engineering

can draw from the model are often practical and counterintuitive.

As stated previously, the main interest lies in determining the best way to manage

the system/model (when to turn servers on and off) with regards to cost and perfor-

mance. A full description of how to manage the system is referred to as a policy. To

determine which policy is the best (or more formally, optimal) there must be a way

to compare them. This comparison is done via a cost function which is dependent on

appropriate system metrics. That is, letting Cπ denote the value of the cost function

under policy π, given two policies π1 and π2, π1 is considered a better policy if and

only if Cπ1 < Cπ2 . Moreover, π∗ is an optimal policy if and only if for all π, Cπ∗ ≤ Cπ.

With these notions in mind an informal and brief overview of the contributions of this

thesis can be made explicit. That is, the contributions of this thesis include but are

not limited to:

1. The description of a formal model, referred to as an energy-aware system, and

two corresponding Markov decision processes which can be used to determine

an optimal policy for said model.

2. Formal proofs regarding several novel, insightful, and counterintuitive structural

properties which the optimal policy is guaranteed to adhere to under a wide

range of cost functions.

3. A formal description of the optimal policy via threshold decision variables, along-

side the formal description of three different sets of policies which approximate

the optimal policy while considerably reducing the search space.

3

Thesis - Vincent Maccio McMaster - Software Engineering

4. A large suite of numerical results of the three aforementioned policy sets, show-

ing the existence of configurations where one can get reasonably close to optimal

with regards to efficiency and efficacy simultaneously.

5. Several key observations regarding the behaviour of these policies including the

existence of a simple static provisioning which does reasonably well most of the

time.

6. A formal proof showing that as the number of servers approaches infinity while

the load on the system remains fixed, a large set of policies all become optimal

under a large set of cost functions.

7. A suite of numerical experiments showing the convergence rates of the previous

optimality result, alongside observations to induce this optimal behaviour more

quickly.

The organization of this thesis is as follows:

• Chapter 2 Preliminaries: A brief overview regarding the technical material

needed, alongside several examples based on simplified versions of the model

employed throughout. If one is confident in their understanding of stochastic

modelling and Markovian mechanisms, this chapter could be glossed over or

skipped without a fundamental disconnect from the rest of the content.

• Chapter 3 Literature Review: An overview of the great number of methods

and approaches used by researchers to tackle the problem of energy provisioning

in data-centres. Moreover, the chapter gives a finer-grained overview of theo-

retical works examining the same (or similar) models examined in this work, to

4

Thesis - Vincent Maccio McMaster - Software Engineering

illuminate the specific contributions of this thesis, as well as where this work

fits in the literature overall.

• Chapter 4 Problem Formulation and Approach: This chapter formally

defines the model described previously in the introduction. Likewise, a formal

definition of the other components which make up the problem are also defined;

namely, policies and cost functions. With the model, policy, and cost function

given, the chapter gives an overview to the approach and methodology which

the thesis employs, and gives the reader a better appreciation for the significance

of the contributions.

• Chapter 5 Structural Properties: The first of the three-pronged approach

used in this thesis, this chapter examines the structure of the optimal policy.

Specifically, it gives formal results which, if not adhered to, imply certainty

of sub-optimality. Moreover, several of these properties are counterintuitive,

further adding to their value.

• Chapter 6 Exact Analysis: Leveraging the structural properties of the pre-

vious chapter, three formal, but fundamentally different, families of policies

are defined. An exact analysis is performed on their underlying continuous time

Markov chains, from which a large suite of numerical experiments is given. From

these experiments several key observations are made and discussed regarding the

system behaviour.

• Chapter 7 Asymptotic Performance: Policies of the model are further

analysed under a fixed-load, many-server asymptotic regime. Under this regime

it is shown that a large set of policies are equivalent and optimal under a large

5

Thesis - Vincent Maccio McMaster - Software Engineering

set of cost functions.

• Chapter 8 Conclusion: This thesis concludes and provides a discussion of

the potential extensions and future work for this research.

• Appendices Proofs: All proofs of the results given in Chapters 5 and 7 are

shown in detail, alongside the proof of a lemma which after finalization of this

work, was left unused in the main results.

This thesis is a comprehensive and augmented compilation of the work given in [41,

42, 43, 45, 47]. It may also be viewed as an extension of the work [40, 44, 46].

6

Chapter 2

Preliminaries

This chapter is included for the sake of completeness and clarity. If the reader feels

they are comfortable with the concepts of continuous time Markov chains (CTMCs),

M/M/C queues, and/or Markov decision processes (MDPs) it is encouraged that

they skip or gloss over this chapter. If the reader has further interest in the material

presented here, they are directed to [27, 28, 36] for a much more detailed overview of

stochastic modelling.

2.1 Stochastic Process

A stochastic process is a mathematical abstraction used to represent and model a ran-

domly changing system over time. Formally, a stochastic process is a set of random

variables (or a set of vectors of random variables) {Xt | t ∈ T}, where the index set

T is typically interpreted as a set of time values, and the random variables Xt denote

state information of the system in question and may be either discrete or continuous.

For example, at time t, Xt may be the number of customers, the energy consumed,

7

Thesis - Vincent Maccio McMaster - Software Engineering

remaining service time of the current customer, etc. In contrast, T may be countable,

i.e. T = {1, 2, 3... } or defined on some interval, i.e. T = R+. Informally, one can view

a stochastic process as a time dependent random variable.

Specializations of these stochastic processes can be instantiated under particular as-

sumptions. A stochastic process is said to be a Markov process if the Markov property

holds. The Markov property states that for every sequence of increasing time values

(t0, t1, t2, ..., tn), given the values of Xt0 , Xt1 , Xt2 , ..., Xtn−1 , the conditional distribution

of Xtn depends only on Xtn−1 . This is seen formally as,

P [Xtn ≤ xn | Xt0 = x0, Xt1 = x1, Xt2 = x2, ..., Xtn−1 = xn−1]

= P [Xtn ≤ xn|Xtn−1 = xn−1].

This has the interpretation that the conditional distribution of the current value

depends only on the most recent value known. Taking the most recent known value

as the present time, one can say that the future values depend only on the present

value, and are completely independent from past values. This is often referred to

as the process being memoryless. Exploiting the memoryless property of a Markov

process often allows for an elegant analysis of such systems, since one can analyse all

future behaviours of a system with only the knowledge of the current system state.

This result is the cornerstone for the analysis of many stochastic models.

8

Thesis - Vincent Maccio McMaster - Software Engineering

2.1.1 Continuous Time Markov Chains

A continuous time Markov chain (CTMC) is a Markov process where the random

variables {Xt | t ∈ T} take on discrete values from some set S, called the state space,

and the set T is defined on some continuous interval. A CTMC is often thought of

as a directed graph where the vertices of the graph are the elements of S (the system

states), and the edges are the transition rates between states, labelled by qi,j, denoting

the rate at which the system moves from state i to state j. Given the transition rates,

one can construct the transition matrix for a given Markov chain as shown in (2.1),

Q =



−q0,0 q0,1 q0,2 · · ·

q1,0 −q1,1 q1,2 · · ·

q2,0 q2,1 −q2,2 · · ·
...

...
...

. . .


(2.1)

where qi,i =
∑

j 6=i qi,j. This last relation comes from the fact that for each state, the

sum of probabilities to move to any other state (including the given state) equals 1.

Table 2.1 shows the different classes of stochastic processes when switching between

discrete and continuous state spaces.

Time Values
State Space Discrete Continuous

Discrete Discrete-Time Markov Chain Continuous-Time Markov Chain
Continuous Discrete-Time Markov Process Continuous-Time Markov Process

Table 2.1: Stochastic Process Classes

One important special case of CTMCs is the birth-death process. Here, there exists a

mapping from the state space of the CTMC to a subset of the natural numbers, i.e.

9

Thesis - Vincent Maccio McMaster - Software Engineering

Figure 2.1: General birth-death process

S ⊆ N. For example, the state space may be the number of jobs in the system, the

number of servers currently online, etc. Moreover, transitions between these states can

only be made in a step-wise manner. That is, a single event can only increase/decrease

the current state by a value of one. Letting λi denote the rate at which the state space

is increased by one in state i (thought of as the birth rate in state i), and letting µi

denote the rate at which the state space is decreased by one in state i (thought of as

the death rate in state i), one can define a CTMC via its transition matrix:

Q =



−λ0 λ0 0 · · ·

µ1 −(λ1 + µ1) λ1 · · ·

0 µ2 −(λ2 + µ2) · · ·
...

...
...

. . .


.

This can also be seen graphically in Figure 2.1. The general solution to CTMCs of

this form is well understood. Letting πn denote the steady-state probability of being

in state n, i.e. πn = limt→∞ P (Xt = n),

πn = π0
Πn−1
i=0 λi

Πn
i=1µi

,

∞∑
i=0

πi = 1.

Furthermore, if the state space denotes the number of jobs in the system, the expected

10

Thesis - Vincent Maccio McMaster - Software Engineering

number of jobs, E[N], follows immediately as

E[N] =
∞∑
i=1

iπi.

From here, there are two well known results which are used throughout this thesis,

and aid with further analysis of these systems. The first is Little’s law, which states

that the long term mean number of customers or jobs in a stable system is equal to

the product of the arrival rate to said system and the mean time a job spends in said

system, where the time a job spends in the system is referred to as the response time.

Letting λ denote the arrival rate and E[R] denote the expected response time, this

result is more commonly stated as,

E[N] = λE[R].

This is a powerful result as it allows one to relate the expected number of jobs in

system to the expected response time, which can be notoriously difficult to arrive

at directly. Moreover, Little’s law holds with incredible generality; it is indepen-

dent of the arrival distribution, the number of servers, routing, the employed service

policy, etc., making it one of, if not the most important result, in stochastic modelling.

Looking back to the general birth death process, applying Little’s law allows one to

express the expected response time via,

λ =
∞∑
i=0

λiπi E[N] = λE[R].

11

Thesis - Vincent Maccio McMaster - Software Engineering

The second result, although not as widely used as Little’s law, is important to un-

derstanding the analytic techniques used in this thesis. This is the renewal reward

theorem, which says that given a renewal process (here a renewal interval is taken

to be the time between leaving a reference state and returning to it), the expected

amount of a reward gained, divided by the expected length of the renewal interval

equals the expected rate of said reward gained by the entire system. As an example,

take the general birth death process from Figure 2.1 and let the renewal interval be

the time from the system leaving state 0 (when it is empty) until it returns to state

0, and let the reward be the energy consumed by the system. Letting E0, T0, and

E denote the total energy consumed during the renewal interval, the length of the

renewal interval, and the rate of energy consumption of the system, respectively, the

renewal reward theorem states that

E[E] =
E[E0]

E[T0]
.

This turns out to be extremely convenient, as it allows for metrics which are typically

difficult to determine directly, to be expressed by (what is often the case) relatively

easy values to obtain.

2.2 The M/M/C Queue

As an example of the typical methodology for these CTMCs, as well as their appli-

cations, an analysis of the well understood M/M/C queue is presented. An M/M/C

queue is a system which meets the following criteria.

1. Arrivals follow a Poisson process with rate λ. This is equivalent to stating times

12

Thesis - Vincent Maccio McMaster - Software Engineering

between arrivals are exponentially distributed with rate λ.

2. Jobs arrive to a central queue and are served on a first come first serve (first in

first out) basis.

3. There are C homogeneous servers. An idle server will take the job at the front

of the queue and begin processing it. Job service times are exponentially dis-

tributed with rate µ and servers only process one job at a time.

The notation M/M/C follows Kendall’s notation. The first M is a shorthand for

Markovian arrivals, the second M is a shorthand for Markovian service times, and

the C is a shorthand for the number of servers. Letting the state space be the number

of jobs in the system (in queue and in service), an M/M/C queue can be modelled

as a birth-death process where:

∀i : λi = λ, and µi = min(i, C)µ.

The corresponding CTMC is illustrated in Figure 2.2. Applying the birth-death for-

mulas, after some algebra it can be shown that

πi =


π0

(Cρ)i

i!
, if 0 < i < C

π0
CCρi

C!
, if C ≤ i

and π0 =

[(C−1∑
i=0

(Cρ)i

i!

)
+

(Cρ)C

C!

1

1− ρ

]−1

where ρ = λ/(Cµ). Furthermore, for stability, it is assumed ρ < 1. Continuing with

the approach described previously for birth-death-processes, it then follows that

E[N] =
λ

µ
+ π0

ρ(Cρ)C

(1− ρ)2C!
,

13

Thesis - Vincent Maccio McMaster - Software Engineering

Figure 2.2: CTMC of an M/M/C queue

and after applying Little’s law

E[R] =
1

µ
+ π0

ρ(Cρ)C

λ(1− ρ)2C!
.

2.3 Markov Decision Process

To demonstrate the framework of a Markov decision process (MDP) consider an

M/M/C queue with a small alteration. Control is imposed such that the queue

is not forced to serve a job when possible, but cannot stop processing a job once it

has started. That is, the system (or manager of that system) can choose to leave a

server idle rather than serve a job from the queue. For this decision to be non-trivial,

there must be some incentive to process a job, as well as let a server idle.

Before these incentives are made clear, some notation must first be introduced. Let

S denote the set of states in the MDP. Here S = {(i, j) | j ∈ N, 0 ≤ i ≤ min(j, C)},

where j denotes the number of jobs in the system, and i denotes the number of servers

busy processing jobs. Let A denote the set of actions the control can make. Here an

action is equivalent to how many servers will be busy until the next decision is made.

Therefore, A = {a | 0 ≤ a ≤ C}. However, it should be clear that in certain states

some actions are impossible. For example in state (2, 0) the control cannot choose for

14

Thesis - Vincent Maccio McMaster - Software Engineering

five servers to be busy, as there are not enough jobs present to do so. Similarly, in

state (4, 4) the control cannot choose for only two servers to be busy as the system

does not allow service times to be interrupted. As such, As ⊆ A is defined where As

denotes the set of admissible actions in state s. Here, Ai,j = {a | i ≤ a ≤ min(C, j)}.

Actions are performed at specific moments in time referred to as decision epochs. To

determine when these decision epochs occur the MDP often undergoes uniformization,

see [59] for further explanation. The main points to be aware of are that after an MDP

has been uniformized, the expected times between all decision epochs are equal, and

whenever an event occurs (in the example an event is a job departing or arriving),

there will also be a decision epoch. Note however the converse does not hold, i.e.

it may not be the case that at every decision epoch an event occurs simultaneously

(these are often referred to as dummy events). Another consequence of uniformization

is that the rates can then be used as probabilities (with the appropriate dropping of

units) when determining the next state of the system.

When an action is performed the MDP gains a reward (or incurs a cost), defined by

a reward function w(s, a), which denotes the expected reward gained when action a

is performed while in state s. By definition it must hold that a ∈ As. An example

reward function for the controllable M/M/C queue would be:

w((i, j), a) = j + βa,

where βa captures the cost of running servers, while j captures the cost of having

jobs in the system (this is often referred to as the holding cost). The goal is to choose

15

Thesis - Vincent Maccio McMaster - Software Engineering

an action a at each decision epoch such that the sum of rewards (costs) is maximized

(minimized) until some time horizon is reached; this time horizon could be infinite.

The difficulty lies in the fact that a chosen action may be appealing in the short run,

but bring the system to an unfavourable state in the long run. To formalize this

notion, more notation must be introduced. Let p(s′|s, a) denote the probability of

being in state s′ at the next decision epoch, given that at the current decision epoch

the system was in state s and performed action a. For the running example,

p((i′, j′)|(i, j), a) =


aµ if i′ = a, j′ = j − 1

λ if i′ = a, j′ = j + 1

1− aµ− λ if j′ = a, j′ = j

The MDP is now fully defined. To determine the optimal policy (the optimal action

a corresponding to each state), there are two popular algorithms, value iteration,

and policy iteration. Neither of these methods are directly employed in this thesis

however, and therefore, further interest on the matter is left to the responsibility of

the reader, see [59].

16

Chapter 3

Literature Review

In general, the topic of green computing is an active and thriving area of research.

This is partly due to the immense energy costs of modern systems which in turn gives

a major incentive to study this area. This is also partly due to the broad nature of the

term green computing, and the variety of approaches one can take to tackle the prob-

lem. This chapter gives reference and summary to a great number of these works, but

focuses on research using methodologies and/or tools directly or tangentially related

to queueing theory. For approaches to the problem not grounded in queueing theory,

the reader is directed to [2, 6, 7, 49, 53, 68].

Chen et al. [9] were among the first (if not the first) to address the issue of turn-

ing servers off to conserve energy by defining a formal model. They approached the

problem by inspecting the model at discrete time events, and determined the optimal

number of servers to switch on/off based on system parameters at said time (work-

load, current provisioning, etc.). As such, the model lends itself to be described as an

optimization problem if all information was known ahead of time (the optimal policy

17

Thesis - Vincent Maccio McMaster - Software Engineering

could be determined offline). The parameters for the objective function and con-

straints are determined via known queueing theory formulas. For the online approach

they also offered a control theory methodology. For both approaches however, due

to setups happening instantaneously, the discrete time units (time between decision

epochs) had to be large enough such that actual setup times were negligible. The end

result is that their model is geared towards looking at these systems over larger time

scales, where some of the finer grained details may be lost.

A similar optimization problem was examined by Liu et al. [39]. Here, they again

determined the optimal number of servers to be operating at a decision epoch, but

over a much larger (geographical) scale. That is, they account for work loads arriving

from all over the country (United States of America) and which data-centre(s) should

said work be routed to under the considerations of latency delays, and energy cost of

a specific data-centre (for example different states have different energy costs, taxes,

etc.). Moreover, not only are the financial costs considered, but also the environmen-

tal cost of a particular choice. For example, one data-centre may be run on fossil fuels,

another nuclear, another wind, any combination thereof, and so on. Again however,

due to the assumed instant setups, the time scale must be considered to be relatively

large to be applicable.

To address the assumption on setup times (or disregard thereof), a considerable num-

ber of researchers began modelling data-centres as queueing systems, where a server

can be switched on (after a setup delay), or off (sometimes after a delay but more

usually instantly). It is worth noting that similar queueing models have existed for

18

Thesis - Vincent Maccio McMaster - Software Engineering

decades, known as vacation models [64]. However, there exist subtle differences which

inhibit vacation models from being interpreted as an energy-aware system (or individ-

ual server). Specifically, in vacation models [4, 13, 30, 55, 57, 63], a server enters its

vacation period (interpreted as its setup process in the context of green computing)

immediately after switching off; whereas it is likely a server should remain off for an

interval of time (or until an event occurs) before beginning to turn on. Therefore,

while only slightly different, a new family of models was built up.

Perhaps the most widely recognized and cited of this new family of models is the

body of work produced by Gandhi et al. [14, 15, 16, 17, 18, 19, 20, 21]. The work

began by examining an M/M/1 queue, where the server can be switched on after

some setup delay or switched off instantly [15]. Moreover, they studied the model

under the energy-response product (ERP) cost function, which is the product of the

expected response time and the expected energy cost. They showed that under this

cost function the optimal policy will either be the one that always keeps the server

on, or the one that turns the server off the moment it idles, and begins its setup the

moment a job arrives. It is worth noting that the surprising aspect of this result is not

that the server will never idle (since it instantly turns off), but rather that it is always

optimal to start a server setup as soon as any job arrives, as opposed to waiting for

potentially more jobs to accumulate. As the authors note, this is a consequence of

the cost function, and is not optimal in general.

Gandhi et al. [19] continued research on similar models but for multiserver models.

It is worth noting that in general, multiserver systems are notoriously more difficult

19

Thesis - Vincent Maccio McMaster - Software Engineering

to analyse than the corresponding single server equivalents. They began by looking

at the policy which turns servers off the moment they idle; if there is ever a job wait-

ing in the queue while at least one server is off, then exactly one server will be in

setup. They were able to give an exact analysis of this policy (but not closed form

expressions). Moreover, relaxing the assumption of exponentially distributed service

times, they showed decomposition results relating their model to the M/G/C queue

via z-transforms. As one may intuitively observe, such a policy has the potential to

be incredibly slow to adapt to bursts of traffic (the policy is quick to turn servers

off and hesitant to turn servers on). As such in [14], they offered and analysed two

other policies. The first policy, instead of turning one server on at a time, keeps the

number of servers in setup equal to the number of waiting jobs (when possible), and

turns servers off when they idle. The second policy uses the same turn on scheme as

the first, but waits an exponentially distributed amount of time before turning an idle

server off. As noted by Gandhi et al. [22] and also in this thesis, being liberal with

server turn offs can be disastrous. When analysing the underlying CTMCs, Gandhi et

al. [14] also introduced a novel approach termed the recursive renewal reward (RRR)

method, based around the renewal reward theorem, and an inherent recursion one can

exploit within these CTMCs. This thesis also employs this method and its application

will be seen in detail in Chapter 6.

Working with the previous research as a foundation (or concurrently to it) other re-

searchers studied the same model. This research can separated into two classes: single

server, and multiserver. The review continues firstly, with the single server case. Mac-

cio and Down [40, 44, 46] extended the single server model given in [15] by allowing

20

Thesis - Vincent Maccio McMaster - Software Engineering

for k jobs to accumulate before beginning the setup process, as well as allowing the

server to idle for an exponentially distributed amount of time before turning off. This

modification allowed the model to describe the optimal policy under a much wider

range of cost functions. Moreover, the authors were able to relax the exponential

assumption on the service and setup times, and give explicit closed form expressions

for the performance metrics. Other authors extended this model further, or used it

in a larger framework.

Hyytiä et al. leveraged this model in a number of publications. Specifically, in [33]

they analysed the model under the processor sharing (PS) and last come first serve

(LCFS) service disciplines (whereas before jobs were processed first come first serve).

In [32] they derived closed form expressions for higher moments of the response time,

which is used to reason about fairness. In [34] they used the single server model in a

multiserver context with routing, expanding on some of the preliminary observations

made in [46]. Although the overall system has multiple servers, the model is a single

server queue, therefore, it is categorized with other single server models. Gebrehiwot

et al. also took this single server model and adapted it. In [23] they added multiple

sleep states which the server could power down to (each with its own setup time and

energy cost). In [24] they showed that in a multiserver routing scenario (jobs are

routed to single server models as before), it can be beneficial to allow servers to idle

for a period of time, implying the optimal policy is no longer one which immediately

switches a server off. In [25] and [26] they examine the model with batch arrivals under

the PS and shortest remaining processing time (SRPT) service disciplines. The idea

of batch arrivals became a popular extension as Harrison et al. [29] also studied it, but

21

Thesis - Vincent Maccio McMaster - Software Engineering

relaxed the assumption of instant turn offs (giving the server a power down time in

addition to the setup time). In this case, they were able to arrive at exact solutions for

the response time and busy time distributions, rather than just the means. Moreover,

batch arrivals were also considered by Yajima and Phung-Duc [67] with the addition

of speed scaling (the server can process jobs more quickly but at a greater energy cost).

When conducting research on single server models, as may be inferred from the pre-

vious summary, the typical approach is to either extend the analysis to provide

greater insight, e.g. higher moments of performance metrics, distributions of those

performance metrics, routing scenarios, etc., or relax model assumptions to make it

more generalized, e.g. general service times, batch arrivals, non-trivial turn offs, etc.

Analysing these extensions is possible due to the single server nature of these sys-

tems. Specifically, much of the analysis relies on events happening non-concurrently

(a single server system cannot be processing a job and be in setup at the same time).

This in turn allows for traditional exploitation of Markovian properties, usually by

constructing an embedded Markov chain. In the multiserver case however, such ex-

tensions are difficult to analyse if one hopes to arrive at explicit expressions using

typical methods. In fact, even fundamental queueing problems remain to be solved,

e.g. there is no known closed form expression for the expected response time of a

classical M/G/C queue. Here difficulties come from the fact multiple servers could

be processing multiple jobs/be in setup at the same time. Therefore, the number of

parameters required to describe the system state increases, and worse yet, are con-

tinuous rather than discrete. This is not to say however, that further research on

22

Thesis - Vincent Maccio McMaster - Software Engineering

multiserver systems with setups is hopeless, in fact far from it, but a different ap-

proach is usually taken. Instead of extending the model or relaxing assumptions, one

instead studies a typical M/M/C queue with setups under a novel policy or family of

policies (when to turn servers on/off). Due to the aforementioned complexities which

the multiserver models exhibit, such an examination of a specific family of policies

can often times be insightful, and in most cases novel in its own right.

Mitrani [50] studied this model where a reserved set of servers are brought into setup

when the number of jobs in the system exceeds a threshold, and then shuts those

servers off once the number of jobs drops below another threshold. In addition to

this reserve of setup servers, a static set of servers is always available to the system

at all times. The author was able to derive the moment generating function of the

response time via a z-transform apporach. This policy was further studied in [31]. Xu

and Tian [66] studied the set of policies where e servers are turned off when there are

d servers idle. Giving an exact analysis of the underlying CTMC allows one to per-

form numerical experiments (as is often the case). Kuehn and Mashaly [38] analysed

policies which wait for a threshold number of jobs to accumulate in the queue before

a server starts its setup and turns servers off when they idle, under the presence of

a finite buffer. Shortly after this publication, Phung-Duc analysed the same variant

(finite buffer and threshold) in [54]. In addition, Phung-Duc [56] gives an alternative

analysis to the multiserver policies analysed by Gandhi et al. and in [58] analyses

a threshold policy, similar to the one examined in Chapter 6, with the addition of

customer abandonments. Lastly, Ren et al. [61] analysed a finite two-dimensional

23

Thesis - Vincent Maccio McMaster - Software Engineering

CTMC similar to Kuehn and Mashaly in the context of virtual networks, which al-

lows for a number of servers to always remain operational, but omits the use of turn

on thresholds.

In addition to the directly related work described above, there are a few examples

of these models (or similar models) being used in different contexts/domains. For

example, a similar formulation of the corresponding MDP is given in [48] but in the

context of logistics/shipping. It is also natural to extend these models to the domains

of manufacturing, where a server would be a machine which could be switched on and

off. This idea is explored in [3]. Perhaps the most closely related context however,

is speed scaling (which was briefly mentioned previously in this chapter). Here the

server can process jobs at a faster rate but at a higher energy cost [10, 11, 65]. At

a glance it seems fundamentally different to the setup models. However, it is the

authors’ opinion that these models share an underlying commonality. Specifically, if

setup times in the setup models were assumed to be instant, or relatively quick, one

could approximate or directly mimic the speed scaling case. That is, one could turn

more servers on (increase the service rate of the system) at a greater energy cost to

imitate the effect of speed scaling. There do exist complications however. Specifically,

setup models have linear energy cost (number of servers on/busy), while the speed

scaling usually has an energy cost cubic in the service rate. One way around this is to

look at the structure of these policies (as done in Chapter 5) under an abstract but

monotonically increasing energy cost.

Although a great deal of research has been performed in the area, a great deal of open

24

Thesis - Vincent Maccio McMaster - Software Engineering

problems still exist, specifically, those related to the optimal policy in the multiserver

context. Moreover, problems exist with the current methodology when researching

these systems. These issues, and how they are addressed, are discussed in the next

chapter.

25

Chapter 4

Problem Formulation and

Approach

A high level view of the problem examined in this thesis can be seen as follows. Jobs

arrive to an energy-aware system in a non-deterministic fashion, where a manager

has control over each server. That is, the manager has the ability to turn servers on

to increase efficacy and off to increase efficiency. A full description of when to turn

each server on and when to turn each server off is referred to as a policy. Moreover,

the manager has an objective or cost function which they wish to optimize. That is,

the manager wishes to determine a policy such that their costs are minimized. As

such, the problem can be thought of as three abstract components: an energy-aware

system, a policy, and a cost function. An abstract graphical representation of how

these components interact can be seen in Figure 4.1.

The difficulty of this problem lies in the three required steps shown in Figure 4.1.

Firstly, when choosing a policy to analyse further, the set of potential policies one

26

Thesis - Vincent Maccio McMaster - Software Engineering

Figure 4.1: A broad overview of this thesis’ problem and approach

could choose is infinite, and moreover, the conclusions one draws from said analysis

could be extremely sensitive to this choice. Secondly, analysing a specific policy is far

from trivial. It often requires a significant amount of time and care to arrive at any

conclusions from numerical studies. Lastly, once the analysis is complete and closed

form expressions for the system metrics arrived at, one is again faced with choosing a

specific element from an infinite set, i.e. one must choose a cost function. But again,

the conclusions one draws from a policy, that is, whether that policy is favourable

to implement, is sensitive to one’s choice of cost function. In other words, a specific

policy may be appealing under one cost function, but disastrous under another. For-

tunately, this thesis provides counterintuitive results which allows one to overcome

most, if not all of these issues. The overview of the problem will be revisited with

finer detail once the components of the problem are formally defined.

4.1 Model

An energy-aware system is modeled as an M/M/C queue where each server can

be switched on and off, and where turn-offs are instantaneous, but turn-ons take an

exponentially distributed setup time. This is described formally as follows. Jobs arrive

27

Thesis - Vincent Maccio McMaster - Software Engineering

to a central infinite queue following a Poisson process with rate λ, are processed on a

first come first served basis, and have service times (job sizes) which are exponentially

distributed with rate µ. Furthermore, there are C homogeneous servers, each of which

can be in one of four energy states: off, setup, idle, or busy. For ease of exposition

this work often refers to a server being busy, idle, off, or in setup as shorthand for a

server being in the corresponding energy state. Regarding definitions and transitions,

when a server is off it may begin turning on by moving to setup. Once in setup the

server will remain there for an exponentially distributed amount of time with rate γ

before it is turned on and becomes idle or busy. When on, the server is idle if it is

not processing a job and busy if it is. Servers are free to move between idle and busy

as long as there is a job present which it could serve. Furthermore, at any time a

server can instantly be switched off. It is worth noting that this implies a server’s

setup process can be canceled (moved from setup to off). The model of study can be

viewed graphically in Figure 4.2.

Figure 4.2: The model under study. Dynamic servers take time exponentially dis-

tributed with rate γ to move from setup to idle or busy, all other transitions happen

instantly if the system state allows it.

Formally an energy-aware system can be viewed as a four-tuple (C, λ, µ, γ), where C

28

Thesis - Vincent Maccio McMaster - Software Engineering

is the number of servers, and λ, µ, and γ are the arrival, processing, and setup rates,

respectively. The system load ρ is defined as ρ = λ/(Cµ). For ease of reference this

definition is restated below.

Definition 4.1. Energy-Aware System: An energy-aware system is formally de-

fined as a four-tuple (C, λ, µ, γ), where C is the number of servers, and λ, µ, and γ

are the arrival, processing, and setup rates, respectively.

These underlying four parameters of an energy-aware system are usually thought to

be given, that is to say there does not exist any control to modify these values. One

does have control however, of when each of these C servers are turned on/off. As

mentioned before, a precise description of this server behaviour is referred to as a

policy. For example, given a two server system (C = 2), one could describe a policy

as: turn the first server on if there are two or more jobs in the system, turn the second

server on if there are five or more jobs in the system, turn both servers off when the

system becomes empty. Of course as C gets larger describing a policy in this way

can become tedious. As such, policies are often described in a broader fashion. Some

examples of these descriptions are: the number of servers which are on or in setup

equals the number of jobs in the system, turn all servers on once there are k jobs in

the system and turn them off when they idle, keep all servers on all the time, etc.

Often times when describing these policies a set of servers is provisioned which always

remain on. A server which always remains on is referred to as static. Furthermore,

a server which regularly turns off and on is referred to as dynamic. Throughout this

work a specific policy is often denoted by π.

Regarding these energy-aware systems, the set of potential policies one can study is

29

Thesis - Vincent Maccio McMaster - Software Engineering

infinite, but to make a recommendation on which policy to implement, this infinite

set must be ordered; policies must be able to be compared against each other. To

achieve this ordering, one first needs to associate metrics with an energy-aware system

employing a given policy. In other words, one must define what it means for a policy

to be better than another. This work examines the trade-off between efficacy and

efficiency. The expected response time, denoted by E[R] is employed to evaluate

efficacy, while the expected energy cost, denoted by E[E], is employed to evaluate

efficiency. The expected response time is defined as the expected amount of time a

job spends in the system, from arrival to departure. Defining the expected energy

cost takes a little more care. Each of the energy states (off, idle, busy, and setup) has

a corresponding energy consumption rate. Let these rates be denoted by EOff, EIdle,

EBusy, and ESetup, respectively. Furthermore, let the random variables COff, CIdle,

CBusy, and CSetup denote the number of servers which are off, idle, busy, or in setup,

respectively. Then

E[E] = EOffE[COff] + EIdleE[CIdle] + EBusyE[CBusy] + ESetupE[CSetup], (4.2)

where it is assumed throughout this work that EOff = 0; this assumption could be

relaxed to account for lower energy consumption states where the server cannot pro-

cess jobs, e.g. sleep states. Moreover, an inherent ordering is imposed on the energy

rates. That is, EOff < EIdle < ESetup and EIdle < EBusy (note that no assumption is

imposed on the ordering of EBusy relative to ESetup). Often times it is advantageous

to consider only the expected excess energy cost. Here, one is only interested in the

cost contributed by servers which are idle or in setup. This is done because, as it will

be shown, energy costs due to busy servers is independent from which policy is being

30

Thesis - Vincent Maccio McMaster - Software Engineering

implemented. However, unless it is stated explicitly within the chapter, E[E] denotes

the expected total energy cost, and not the expected excess.

One last way one can view the expected energy cost is on a per job basis. That is,

letting EJ be a random variable denoting the energy cost contributed by some job J ,

then by definition

E[EJ] = E[E]/λ.

This is often useful (as will be seen in Chapter 7) when system parameters are allowed

to go to infinity. This is due to the possibility of E[E] being infinite, while E[EJ] may

remain finite.

From here one can begin to build cost functions from the system metrics. While

specific and popular cost functions do arise in the literature, e.g. E[R]E[E], and E[R]+

βE[E] [9, 15, 46], like the set of potential policies the set of potential cost functions

is infinite. A subset of cost functions is referred to as well-formed cost functions and

is defined as follows.

Definition 4.2. Well-Formed Cost Function: A cost function, C(·), is a well-

formed cost function if it is non-decreasing in, dependent on, and only dependent

on, the expected response time, i.e. E[R], and the expected energy cost, i.e. E[E].

Moreover, a cost function, C(·), is a linear well-formed cost function, if it is a well-

formed cost function and linear in E[R] and E[E].

With the previous notions of an energy-aware system, a policy, and a cost function in

mind, one can view the problem illustrated by Figure 4.1 in finer detail in Figure 4.3.

While associating formal parameters and metrics to the previous problem overview

31

Thesis - Vincent Maccio McMaster - Software Engineering

gives a more concrete understanding of how to follow this method, some fundamen-

tal problems are still present. Specifically, it can be unclear how or why one would

choose a policy (especially before any analysis has been done), and furthermore, how

or why one would choose a well-formed cost function once that analysis has been done.

Figure 4.3: A broad overview of this thesis’ problem and approach in finer detail

As an example, consider two policies π1 and π2. Arbitrarily, let π1 be the policy that

when possible, the number of servers in setup equals the number of jobs waiting in

the queue, and has servers turn off the moment they idle. Also arbitrarily, let π2 be

the policy that when possible, the number of servers in setup equals the number of

jobs in the system (not just waiting), and servers turn off if there are ever five or

more servers idle. Even to the initiated neither of these policies seem unreasonable.

In fact, it could be argued that it would be unreasonable to simply estimate (based

on one’s experience with these models) which policy one should employ between the

two. However, the analysis of either of these policies is far from trivial. Moreover,

computations needed to arrive at numerical values for E[R] and E[E] can be time

consuming, especially for systems with larger values of C. Therefore, performing an

analysis of both π1 and π2 may be infeasible. Taking a step back and realizing that

the actual choice of policies is not just between π1 and π2, but in fact across an infinite

32

Thesis - Vincent Maccio McMaster - Software Engineering

set, the choice can become daunting. As such, one is often forced to guess at which

policy, or family of policies, will be fruitful to study.

Worse yet, this problem compounds when one then realizes they must also choose a

cost function to optimize against. Returning to the two policies, one can note that π2

turns and keeps servers on more readily than π1 does. As such it may be reasonable

to suggest that π2 has a relatively low E[R] but a relatively high E[E]. Conversely, π1

has a relatively high E[R] but a relatively low E[E]. Now consider the following two

cost functions:

C1(E[R],E[E]) = E[R] + 100E[E] and C2(E[R],E[E]) = 100E[R] + E[E].

In other words, C1 values policies with a low expected energy cost, while C2 values

policies with a low expected response time. As such under C1, π1 may be deemed the

better policy, while under C2, π2 may be deemed the better policy. Therefore, it seems

unreasonable to state one policy is strictly better than another. Again, this problem

becomes ever more daunting when one realizes that there are not just two, but rather

an infinite number of cost functions to choose from.

This problem complexity makes it seemingly impossible to make overarching claims,

such as, for all energy-aware systems, policy π is optimal under all well-formed cost

functions. To contradict this assertion, all one would need to do is identify a case

in which π under-performs, e.g. short setup times, light load, etc., and suggest an-

other policy specifically geared to handle that case, or inspect the metrics of π, and

construct a cost function skewed to exploit π’s (potentially niche) weakness. The

33

Thesis - Vincent Maccio McMaster - Software Engineering

problem worsens as it is not even clear if one can make overarching exclusions, such

as, for all energy-aware systems, policy π is suboptimal under all well-formed cost

functions. It is entirely plausible that one could always manufacture an energy-aware

system and/or cost function specifically tailored to magnify any unique, albeit slight,

advantage which π may grant.

While the above arguments are valid, there exist approaches and measures one can

take to confidently make broad, strong statements. In fact, this thesis will prove

that in certain contexts for all energy-aware systems, many policies are optimal under

all well-formed cost functions. This becomes more intuitive after one becomes more

familiar with these systems and begins to realize that viewing a policy as a tradeoff

between E[R] and E[E] is fundamentally incorrect, and insidiously misleading. That

is, one can construct policies which simultaneously have low expected response times,

and low expected energy cost. Essentially, in regards to efficacy and efficiency, poli-

cies exist which win on both fronts. Determining whether these policies exist, and

moreover, which policies these are, takes some care.

This thesis addresses this problem using a three-pronged approach. Firstly, it ad-

dresses the infinite set of candidate policies to analyse further. This is done by exam-

ining the optimal policy. Specifically, by deriving structural properties the optimal

policy is known to have, one can then eliminate all policies which do not exhibit this

structure from the set of candidate policies, since such a policy would be known to

always be suboptimal. Once several properties have been proven, the set of candidate

policies will have been reduced to a significant degree. As such, a policy from this now

34

Thesis - Vincent Maccio McMaster - Software Engineering

reduced set is guaranteed to share a number of behaviours with the optimal policy,

and therefore has a greater chance of being a policy worth analysing further. This

concept is illustrated in Figure 4.4.

Figure 4.4: Reduction of the set of candidate policies via deriving optimal structure.

Grey sections represent policies which are known to always be sub-optimal.

Secondly, once the set of candidate policies has been reduced, specific policies are

selected to analyse further. Due to the underlying assumptions of the model, an ex-

act analysis can be performed via several methods. Once analysed, one can then run

numerical experiments to identify these aforementioned win-win scenarios where E[R]

and E[E] are simultaneously minimized (or are reasonably close to being simultane-

ously minimized). From these identified cases, one can extrapolate these observations

to provide general insights into how these systems should be provisioned and managed.

Lastly, this work examines what can be said when these systems become large. That

is, the model is examined under a fixed-load, many-server asymptotic regime, where

C → ∞ while the load remains fixed, i.e. 0 < ρ < 1. As will be seen in Chapter 7

when this is done a broad range of policies simultaneously minimize E[R] and E[E],

35

Thesis - Vincent Maccio McMaster - Software Engineering

and therefore are optimal under all well-formed cost functions.

4.2 Analytic Tools

To achieve the goals described by the approach, a number of analytic tools are em-

ployed. Because the underlying distributions are all exponential, i.e. the interarrival,

service, and setup times, Markovian methods can be applied. This work focuses on

two. The first is a Markov decision processes (MDP) approach. Here, informally, the

state space is a three-tuple from which one can precisely determine the number of

jobs in the system, the number of servers currently on, and the number of servers in

setup; the action space is the number of servers one wishes to turn on or off; decisions

are made at every event, where an event is a job arriving or completing, or a server

completing its setup process.

Using an MDP has advantages and disadvantages. In order to run well-known algo-

rithms such as policy iteration, the state space must be finite. However, based on

the definition of the model, specifically the presence of an infinite queue, the state

space is infinite. Therefore, one must truncate the state space, which offers only an

approximation of the optimal policy. If the truncation is done appropriately, said

approximation may be reasonable or even equivalent to the optimal. What MDPs

do allow one to achieve, without any compromise or truncation, is to examine the

optimal policy in detail, and prove structural properties which it adheres to. As such,

MDPs are leveraged when reducing the state space of candidate policies, as shown in

Figure 4.4. The definition of an MDP of the model, as well as the optimal structural

properties themselves are given in detail in Chapter 5.

36

Thesis - Vincent Maccio McMaster - Software Engineering

The second Markovian tool used is continuous time Markov chains (CTMC). Unlike

with MDPs, one can perform an exact analysis on a CTMC if it has an infinite state

space. That is, one can theoretically arrive at closed form expressions for the cost

metrics E[R] and E[E] without any compromise (truncation) to the definition of the

model. Here the state space is an ordered pair, the first entry being the number of

servers currently on, and the second being the number of jobs in the system; the

state transitions are dependent on which policy is being employed. Details of these

CTMCs, as well as their exact analysis, are presented in Chapter 6. An example of a

CTMC corresponding to a smaller, two server, system is illustrated in Figure 4.5.

Figure 4.5: An example CTMC for a two server system where servers turn off when

they idle, and the number in setup equals the number of waiting jobs when possible.

37

Thesis - Vincent Maccio McMaster - Software Engineering

Table 4.2: Chapter 4 notation summary

Notation Description
C The number of servers
λ The arrival rate; arrivals follow a Poisson process
µ The service rate; service times are exponentially distributed
γ The setup rate; setup times are exponentially distributed

E[R] The expected response time of the system
E[E] The expected energy cost of the system,
π The employed policy, π∗ is an optimal policy

4.3 Summary

The general approach to the problem is to reduce the set of candidate policies by

deriving structural properties of the optimal policy via MDPs. From this reduced set,

select policies to analyse further. Perform an exact analysis of these selected policies

via CTMCs. From the exact analysis derive the metrics. Using the derived metrics,

make insightful observations and conclusions across the problem domain. Formally

back up these conclusions by analysing the asymptotic performance of the system,

and show a large number of policies are optimal under all well-formed cost functions.

A table of notation presented in this chapter is given in Table 4.2.

38

Chapter 5

Structural Properties

As will be seen, the optimal policy for energy-aware systems (if such a policy exists)

can in general be quite complex and difficult to determine explicitly. However, there

exist several structural properties which the optimal policy adheres to. These proper-

ties allow one to make decisions regarding when to turn servers on/off in a much more

intelligent manner. Specifically, some decisions which may appear to be intuitively

viable are shown to be suboptimal. This chapter is primarily reserved for presenta-

tion, discussion, and implications of the results, all proofs can be found in Appendix A.

Before any formal analysis can be performed on the optimal policy, a formal framework

to determine the optimal policy (and structure therein) must first be defined. As

such, Markov Decision Processes (MDPs) are employed to describe the control of an

energy-aware system S = (C, λ, µ, γ). Without loss of generality it is assumed S

has undergone uniformization, i.e. the rates (including those of dummy events) sums

to one in all states. This work borrows the notation of [59] where As denotes the

allowable set of actions in state s, and p(s′|s, a) denotes the probability of being in

39

Thesis - Vincent Maccio McMaster - Software Engineering

state s′ at the next decision epoch, given that at the current decision epoch the system

is in state s and performs action a. Here, an action a (the control) is the number of

servers to turn on (or off if a is negative). Due to the nature of MDPs, here the state

space must be a three-tuple rather than the two-tuple described in Chapter 4. That

is, the state space is denoted by (i, j,m), where i, j, and m denote the number of

servers on, jobs in the system, and servers in setup, respectively. Therefore, letting

s, and s′ be shorthand for (i, j,m) and (i′, j′,m′) respectively, the first of two MDP

formulations of an energy-aware system is given below,

p(s′|s, a) =



λ if j′ = j + 1, i′ = i+min(0, a),

m′ = m+max(0, a)

min(j, i+min(0,m+ a))µ if j′ = j − 1, i′ = i+min(0, a),

m′ = m+max(0, a)

(m+max(0, a))γ if j′ = j, i′ = i+ 1 +min(0, a),

m′ = m− 1 + max(0, a)

1− λ if j′ = j, i′ = i+min(0, a),

−min(j, i+min(0, a))µ m′ = m+max(0, a)

−(m+max(0, a))γ

(5.3)

40

Thesis - Vincent Maccio McMaster - Software Engineering

where,

A(i,j,m) ={−i,−i+ 1, ...,−1, 0, 1, ..., C − i− 1, C − i},

and the immediate cost (reward) function is given by w(s, a), which for now is left un-

specified. A key assumption of this formulation is that setups cannot be interrupted.

One can infer this from the probabilities and action space. Formally, in the energy

state setup, a server cannot be moved to the energy state off. For the majority of this

thesis this assumption is relaxed (it is assumed setups can be interrupted) but due to

this chapters’ specific interest in the structure of the optimal policy, this assumption

is imposed for a portion of the analysis. As such to make an explicit distinction,

an energy-aware system where server setups cannot be interrupted is referred to as

a non-interruptible energy-aware system, while a system where setups can be inter-

rupted is referred to as an interruptible energy-aware system. For the remainder of

this chapter, if a statement is made for energy-aware systems, it is implicitly stating

it for both non-interruptible and interruptible energy-aware systems.

Fortunately, the MDP for an interruptible energy-aware system is significantly sim-

pler. Due to the underlying exponential distribution of the setup times and their

ability to be cancelled without penalty, the state space can be reduced from three

parameters, to two. The MDP for an interruptible energy-aware system is given by:

41

Thesis - Vincent Maccio McMaster - Software Engineering

p((i′, j′)|(i, j), a) =



λ if j′ = j + 1, i′ = i+min(0, a)

min(j, i+min(0, a))µ if j′ = j − 1, i′ = i+min(0, a)

max(0, a)γ if j′ = j, i′ = i+ 1

1− λ

−min(j, i+min(0, a))µ if j′ = j, i′ = i+min(0, a)

−max(0, a)γ

(5.4)

and

A(i,j) ={−i,−i+ 1, ...,−1, 0, 1, ..., C − i− 1, C − i},

and again the immediate cost (reward) function w(s, a), is left unspecified. Note

that at each decision epoch the decision variable a (if a ≥ 0) represents the number

of servers which will be in setup until the next decision epoch. This implies if one

wished to cancel all current setup processes one would let a = 0. If a < 0 this implies

no servers will be in setup (all current setups are interrupted) and |a| of the on servers

will be switched off.

These MDP formulations were a numerical starting point for all of the structural

42

Thesis - Vincent Maccio McMaster - Software Engineering

properties presented in this chapter, the majority of formal proofs are performed

independent from these formulations. Nevertheless these formulations still have in-

herent worth when reasoning about the structure and behaviour of the optimal policy.

To confidently grasp the more advanced structural properties of the optimal policy,

it is imperative to first understand the rudiments of how the optimal policy behaves.

In a Markovian setting like the one defined, if an optimal action is performed, it is

immediately following a non-dummy event. This means that it is only optimal to

turn off or on a server the moment a job arrives, a job leaves, or a server finishes its

setup. The optimal policy also has two other simple structural properties that allow

for its analysis to be somewhat simplified before more sophisticated properties are

considered.

Theorem 5.1. For all energy-aware systems, the optimal policy is a pure policy.

That is, at every decision epoch, the optimal policy will never turn a non-zero number

of servers off and at the same time put a non-zero number of servers into setup.

This theorem is particularly convenient as an observant reader may have noticed

this result embedded in the MDPs as an assumption (since there is only one action

variable). This along with the next result allows one to begin to formally describe the

optimal policy.

Theorem 5.2. For all energy-aware systems, the decision to turn a specific server on

or a specific server off follows a threshold policy based on the number of jobs in the

system.

This means that if in state (i, j,m) it is optimal to have m′ servers in setup, then in

state (i, j + 1,m) it is optimal to have at least m′ servers in setup. Likewise when

43

Thesis - Vincent Maccio McMaster - Software Engineering

dealing with turning servers off, if it is optimal to turn off n servers in state (i, j,m),

then it is also optimal to turn off at least n servers in state (i, j − 1,m).

Theorem 5.2 allows for a convenient description of the optimal policy, by simply pro-

viding a set of threshold values. For 0 ≤ i < m ≤ C, the mth server will have a

threshold value k+
m,i which indicates that if there are at least k+

m,i jobs in the system

while there are i servers currently on, and if the mth server is currently off or in setup,

then it will switch to or remain in setup. Conversely, if there are less than k+
m,i jobs

in the system and the mth server is currently off, then it will remain off. Moreover,

in an interruptible energy-aware system, if there are less than k+
m,i jobs in the system

and the mth server is currently in setup, then it will be switched off. These values

are referred to as the on-thresholds.

Furthermore, let k−i,m denote the threshold decision variables for server turn-offs, where

0 < i ≤ C and 0 ≤ m < C − i; the variable k−i,m is the lower threshold number of jobs

needed to turn a server off if there are exactly i servers on and m servers in setup.

That is, in state (i, j,m) the ith server will be turned off if and only if j ≤ k−i,m. These

values are referred to as the off-thresholds. For an interruptible energy-aware system,

the subscript m can be dropped as servers are free to move between setup and off

and only servers which are already on need be considered when switching servers off.

Therefore, for an interruptible energy-aware system, the off-thresholds are defined

such that if in state (i, j) the ith server will be switched off if and only if j ≤ k−i .

From the definition of the threshold variables an initial ordering immediately follows.

Corollary 5.1. For all m, i ≥ 0 such that m+i < C, k+
m,i ≤ k+

m+1,i and k+
m,i ≤ k+

m,i+1.

44

Thesis - Vincent Maccio McMaster - Software Engineering

Furthermore, for all m ≥ 0 and i > 0 such that m + i < C, k−i,m ≤ k−i+1,m. For an

interruptible energy-aware system for all i such that 0 ≤ i < C, k−i ≤ k−i+1.

For an energy-aware system S = (C, λ, µ, γ), to find the optimal policy one must

determine C(C+1)/2+C threshold values if S is interruptible and C(C+1) threshold

values if it is not. Delving deeper into these threshold values leads to a result which

offers a significant reduction to the state space which should be considered.

Theorem 5.3. For all non-interruptible energy-aware systems, if while in the state

(i− 1, j,m) it is optimal to begin turning a server on, then in state (i, j,m) it is sub-

optimal to turn a server off. Furthermore, for all interruptible energy-aware systems

if while in the state (i− 1, j) it is optimal to begin turning a server on, then in state

(i, j) it is suboptimal to turn a server off.

Corollary 5.2. For all non-interruptible energy-aware systems, if while in the state

(i, j,m) it is optimal to turn a server off, then for all j′ ≤ j it is suboptimal to turn

a server on in state (i − 1, j′,m). Furthermore, for all interruptible energy-aware

systems if while in the state (i, j) it is optimal to turn a server off, then for all j′ ≤ j

it is suboptimal to turn a server on in state (i− 1, j′).

Corollary 5.3. For all 0 < m ≤ C and 0 ≤ i < m, k−i,m < k+
m,i, and k−i < k+

m,i.

For a system with instantaneous setups, i.e. 1/γ = 0, this theorem becomes trivial,

since it would make no sense to turn a server on and then immediately turn it off.

However, consider the more interesting case of a system with long setup times (1/γ

is large) in some state (i, j,m) where in state (i + 1, j,m) it is known that turning

a server off is optimal. It may be reasonable to think that although the system was

in a state where it is optimal to turn a server off given it was currently turned on,

45

Thesis - Vincent Maccio McMaster - Software Engineering

it might still be optimal to begin turning it on in anticipation of many jobs arriving

before the server completes its setup. However, this is not the case. Importantly,

this gives a relation between the orderings of the off and on thresholds, where before

there was none. From here a comprehensive partial order for all threshold values can

be derived.

Theorem 5.4. For all 0 ≤ i < (C − 1) and 0 ≤ j < (C − i− 1), k+
m+1,i ≤ k+

m,i+1, and

0 < i < C and 0 ≤ j ≤ (C − i), k−i,m+1 ≤ k−i+1,m and k−i,m ≤ k−i,m+1.

Corollary 5.4. A partial order can be defined on the threshold values, of which the

lattice is shown in Figure 5.1, where x→ y implies x ≤ y.

One should note that in the optimal policy it is possible to have some number of

servers which always remain on. If this is the case, a system employing an optimal

policy in state (C, 0, 0) would immediately turn off C − c∗ servers, where c∗ is the

optimal number of servers which always remain on. Figure 5.1 still captures this be-

haviour, by letting k+
m,i ≤ 0 for all m + i < c∗, alongside k−i,m < 0 for all i + m ≤ c∗.

From Theorem 5.3 and the fact that there cannot be less than zero jobs in the system,

it is known these servers will always remain on (once they have been turned on).

Theorem 5.3 offers insight into on-thresholds relative to the off-thresholds. Therefore,

it would be appealing to gain direct insight into the off-thresholds themselves. A

popular simplification when creating tractable models for these systems is to have

servers turn off as soon as they idle. In general, when describing the optimal policy,

there is no compelling reason why this should be the case. In fact, feasible values for

off-thresholds seem to be as free as the on-thresholds. Clearly, there exists a configu-

ration of parameters and cost function where it is optimal to have a server idle until

46

Thesis - Vincent Maccio McMaster - Software Engineering

Figure 5.1: Threshold lattice: some orderings (arrows) from Theorem 5.3 are left off

for readability

some lower threshold is reached (a server which always remains on is a trivial exam-

ple of this). But conversely, is there a configuration of parameters and cost function

where it is optimal to turn a server off while there are jobs to be processed?

At first glance there seems to be two arguments which suggest that there should be.

Firstly, turning a server off will decrease the energy consumed by the system in the

short run (although it will increase holding costs). Secondly, and the more subtle of

the two arguments, keeping a server on (referred to as s1) will cause the system to

remove jobs at faster rate. Thus, other servers (referred to as s2 and s3) could start

47

Thesis - Vincent Maccio McMaster - Software Engineering

to turn off sooner due to jobs departing quickly. Once s2, s3 and potentially other

servers are off, more jobs could arrive and cause those servers to now start a setup

which could have been avoided if s1 was initially turned off instead of allowing for jobs

to be processed at a fast rate. In essence, the system could thrash. Therefore, if s1 was

instead turned off the system would process jobs at a slower rate, which in turn causes

less setups, and correspondingly less potential energy costs. These arguments seem

to indicate that the cost tradeoffs in the optimal policy may be inordinately complex.

However, while these arguments may seem intuitive, they are in fact incorrect, as

demonstrated by the next theorem.

Theorem 5.5. For all energy-aware systems, for all linear well-formed cost functions,

if the number of jobs in the system is greater than or equal to the number of servers

currently turned on, it is always suboptimal to turn a server off, which is already on.

Corollary 5.5. For all linear well-formed cost functions, for all 1 ≤ i ≤ C and

0 ≤ j < C − i, k−i,m < i and k−i < i.

With regards to the fallacious intuition presented before Theorem 5.5, it would never

make sense to turn a server off while there is a job to process for the sole reason of

saving the energy cost to process the job. The job will have to be processed even-

tually, otherwise the system is not stable, or unnecessary holding costs are incurred.

Therefore, it is preferable to incur the energy cost now, since processing it earlier

will also decrease the holding cost. It is much harder to show the second argument

(keeping a server on in the short run causes more setups in the long run) to be false,

and this is where the real value of Theorem 5.5 is seen. One of the popular turn off

policies used in the literature is to turn a server off the moment it idles, such as the

“staggered setup” model in [14]. Theorem 5.5 also allows such models to be used with

48

Thesis - Vincent Maccio McMaster - Software Engineering

greater confidence as it is now shown that such a policy is not suboptimal with respect

to the turn off criterion. On the other hand, if one were to construct a policy such

that a server will turn off when there are k > 0 jobs waiting in the queue, it would

immediately be known to be suboptimal. While it is true that the above only holds

for a subset (albeit a popular subset) of well-formed cost functions, it is conjectured

that this holds for all well-formed cost functions.

Theorem 5.5 gives concrete guidance as to when to turn servers off. However, it

remains to determine an explicit structure pertaining to turning servers on. As such,

this work introduces the notion of a bulk setup scheme. Here, when the system

decides to turn a server on, instead of just putting one server in setup, it instead puts

all available servers into setup. Assuming the system in question is an interruptible

energy-aware system, it follows that once one of the servers completes its setup, the

system can simultaneously cancel all remaining setups if it chooses to. One may see

this as incurring unnecessary costs, but it offers advantages as well. In particular,

where before there were C(C + 1)/2 on-thresholds, the bulk setup scheme decreases

this to C. If there are i servers currently on, where 0 ≤ i < C, then there is a single

threshold k+
i such that if there are greater than or equal to k+

i jobs in the system then

the remaining (C − i) servers are in setup. Conversely, if there are less than k+
i jobs

in the system then the remaining (C − i) are off. A fortunate result of this scheme is

that under an appropriate cost function, there is no disadvantage.

Theorem 5.6. For all interruptible energy-aware systems, for all well-formed cost

functions linear in E[R] and E[E], the optimal policy turns servers on following a

bulk setup scheme.

49

Thesis - Vincent Maccio McMaster - Software Engineering

While perhaps surprising at first, this flavour of result arises in other research [8] and

follows from the assumption of exponentially distributed setup times. If one were to

turn m servers on, although the energy costs would be incurred at m times the rate

of the single server, due to the nature of the exponential distribution, it would be for

an expected amount of time that is reduced by a factor m. Compare this to having

the setup time follow a degenerate distribution (constant setup times). Under this

assumption such a policy would be a disaster, especially if C were large.

While the sensitivity to the distribution can be worrisome, there is another potential

problem with such a policy. In practice, managers are reluctant to turn machines

on/off due to potential wear-and-tear, risk of failure, etc. As such, some authors

incorporate a switching cost into their cost function associated with such an action

[9, 40, 44]. Clearly, for such a cost function a bulk setup policy would not be optimal

in general. While the bulk setup issue can be addressed by incorporating switching

into the cost function, one could instead constrain the model directly to not allow such

behaviour. This is seen in models where the turn on policy follows some predefined

structure, such as the staggered setup described in [20]. But if one chooses to exclude

switching from the cost function and allows freedom with regard to turn on decisions,

they should be aware of this problem when searching for an optimal policy.

With these notions in mind it seems that when setups are interruptible, the assump-

tion of exponentially distributed setup times alongside a cost function independent

of switching costs gives rise to a model with optimal behaviour that may be prob-

lematic to actually implement. Therefore, one should be cautious when using results

50

Thesis - Vincent Maccio McMaster - Software Engineering

derived from such a model. These concerns are considered in Chapter 6, but it will

be seen that using a bulk setup policy as a base, one can make powerful conclusions

for determining near optimal policies which do not use a bulk setup scheme.

5.1 Three Server Example

Here a small example is presented to demonstrate the worth of the structural prop-

erties with regards to reduction of search space. Consider an energy-aware system

S = (3, λ, µ, γ) where λ < 3µ. Firstly, from Theorems 5.1 and 5.2 it is known that

an optimal policy has twelve decision variables. These decision variables are the on-

threshold k+
m,i where m, i ≥ 0 and m+ i < 3, and the off-thresholds k−i,m where i > 0,

m ≥ 0 and i+m ≤ 3.

When examining the off-thresholds, if in complete ignorance of previously presented

results in this chapter, then the set of feasible values is {−1, 0, 1, 2, ..., K − 1, K} for

an arbitrarily large constant K. However, applying Theorem 5.5 (assuming a linear

well-formed cost function), the feasible state space shrinks significantly. The feasible

sets of values for the off thresholds k−1,m, k−2,m, and k−3,m are {−1, 0}, {−1, 0, 1} and

{−1, 0, 1, 2}, respectively. This result alone makes the problem much easier to tackle

as one has greater confidence in heuristics for picking such values, as well as the abil-

ity to iterate through a much smaller set of values if determining the optimal policy

numerically.

Changing focus to the on-thresholds, some simplifications can also be made. Similar

to the off-thresholds, with no structural results the set of potential thresholds has K

51

Thesis - Vincent Maccio McMaster - Software Engineering

elements, i.e. {0, 1, 2, ..., K − 1, K} for some arbitrarily large constant K. While the

presented theorems cannot be applied directly, simplifications can be made assuming

the off-thresholds are known. Specifically, using the off-thresholds the set of feasible

values can be truncated by applying Theorem 5.3. That is, for each threshold k+
m,i

the feasible set of values now becomes {k−i+1,m + 1, k−i+1,m + 2, k−i+1,m + 3, ..., K− 1, K}.

While the truncation only eliminates a relatively small number of values from the set,

they are arguably the most important values to eliminate. The greater the value of

the threshold, the lesser the impact increasing (or decreasing) that threshold by one

would have on the performance of the system. For example in general, if the optimal

value of say k+
2,0 were 3 and a value of 2 was chosen, the difference in performance

would be greater than say if the optimal value was 20 and 19 was chosen. Therefore,

even a small truncation could have a large impact when choosing these thresholds.

Although reduction in the search space for specific threshold values is useful, the main

advantage of these structural properties is applying them to policy heuristics to ensure

said heuristics are not suboptimal. This allows for a confident and feasible analysis

of energy-aware systems, even when C is large.

52

Chapter 6

Exact Analysis

Once a policy for an energy-aware system has been determined, it remains to analyse

said policy. Due to Definition 4.2, to properly evaluate a policy one must be able to

arrive at the values for E[R] and E[E]. In general, this is an intractable task for large

values of C (there being a combinatorial explosion of decision variables). When using

the results presented in Chapter 5 however, one can restrict the set of policies such

that the analysis of E[R] and E[E] has sufficient structure to be tractable. Specifically,

from Theorem 5.2, limiting the scope of policies to threshold policies allows for all

policies, for all energy-aware systems, to be modelled as a two dimensional CTMC

with the following two useful properties:

1. The state space of the CTMC is (i, j), where i denotes the number of servers

on, and j denotes the number of jobs in the system. Therefore, the CTMC

is infinite in one dimension (the number of jobs), but finite in the other (the

number of servers on). Moreover, a state can only transition to states adjacent

to it. That is, if in state (i, j), the next state the system will be in is one of

(i + 1, j), (i − 1, j), (i, j + 1), or (i, j − 1). As an aside, this is referred to

53

Thesis - Vincent Maccio McMaster - Software Engineering

as a quasi-birth-death process (QBD), and is well understood in the stochastic

modelling community.

2. There exists a column j such that the CTMC begins repeating for all columns

greater than j. That is, there exists a j∗ such that for all i and j ≥ j∗ if the

transition rates to states (i + 1, j), (i − 1, j), (i, j + 1), (i, j − 1) from state

(i, j) equal r1, r2, r3, and r4 respectively, then the transition rates to states

(i+ 1, j + 1), (i− 1, j + 1), (i, j + 2), (i, j) from state (i, j + 1) also equal r1, r2,

r3, and r4, respectively. As an example, in the CTMC illustrated in Figure 6.1

the repeating portion of the chain begins at column 6.

Figure 6.1: The underlying CTMC for an energy-aware system (3, λ, µ, γ), implement-

ing a threshold policy.

With this structure, a variety of methods exist to analyse the underlying CTMC. For

example, two of the more popular methods are z-transforms, and the matrix geometric

method. This thesis uses the recursive renewal reward (RRR) method, which exploits

the structure of the CTMC to build a finite recursion, and then leverages the renewal

54

Thesis - Vincent Maccio McMaster - Software Engineering

reward theorem (given in Chapter 2) to arrive at the cost metrics, i.e. E[R] and E[E].

To understand this method, some notation and concepts must be introduced. In gen-

eral, the RRR method keeps track of how much of a certain reward is accumulated

before the CTMC arrives to the column directly left of the current column. That is, it

tracks the reward accumulated when the CTMC has j jobs present until the moment

it has j − 1.

For the purposes of this work, the derived rewards (hereafter referred to as costs) are

the expected amount of time, the expected holding costs (at rate one per job), and the

expected excess energy costs incurred before transitioning one column left. For state

(i, j) these values are denoted by Ti,j, Hi,j and Ei,j, respectively. As a reminder to

the definition of excess energy, because jobs must be processed eventually, the choice

of (stable) policy has no impact on how much energy is spent processing jobs (busy

servers). What the policy does have impact on, is the amount of energy spent idling

and setting up servers. For ease of exposition, for the remainder of chapter, excess

energy will simply be referred to as energy.

Due to the assumption of stability, i.e. λ < Cµ, all of these values of Ti,j, Hi,j and Ei,j

are finite. As a visual aid, in Figure 6.1, T1,3 would denote the expected amount of time

for the system to reach one of the states (0, 2), (1, 2), or (2, 2), given that it started

in state (1, 3). The value H0,5 would denote the expected amount of holding cost

incurred during the time the system transitions from state (0, 5) to one of the states

(0, 4), (1, 4), (2, 4), or (3, 4). Furthermore, to build a recursive relationship between

these values, one must know the probability of being in a particular state once a

55

Thesis - Vincent Maccio McMaster - Software Engineering

transition one column left has been made. Therefore, Pi′(i, j) denotes the probability

of being in row i′ after moving one column left of state (i, j). In Figure 6.1, P2(0, 4)

would denote the probability of being in state (2, 3) the moment the system reaches

one of the states (0, 3), (1, 3), (2, 3), or (3, 3), given it started in state (0, 4). The

recursions for these costs and probabilities are “tied off” once the CTMC reaches the

repeating portion.

6.1 Repeated Values

One of the fortunate properties of these systems is that regardless of which threshold

policy is being implemented, the repeating portions of the CTMC are equivalent.

Therefore, one can analyse the repeating portion of these CTMCs with complete

generality. Hence, that is where the analysis of these CTMCs begins.

6.1.1 Repeated Row Probabilities

Due to the nature of the CTMC in the repeating portion, one can write down quadratic

equations which describe the column transition probabilities. Firstly, consider the

value PC(C, j) where j is large enough to be in the repeating portion of the chain.

This is trivially known, since the system must first progress to the left before it can

progress down the rows (the threshold to turn the Cth server off is outside the re-

peating portion). Therefore PC(C, j) = 1. For ease of expression, since the transition

probabilities are independent of which column the system is in once it is in the re-

peating portion, the j parameter is suppressed. Therefore, the previous equality can

be rewritten as PC(C) = 1. The more interesting cases arise when the system is

56

Thesis - Vincent Maccio McMaster - Software Engineering

not in row C. Progressing through the rows one inspects the terms PC(C − 1) and

PC−1(C − 1). Again it is known that when transitioning one column left the system

will either remain in its current row, or move up some number of rows. Therefore,

PC(C − 1) + PC−1(C − 1) = 1. The explicit expressions are derived as follows:

PC−1(C − 1) =
(C − 1)µ

λ+ (C − 1)µ+ γ
+

λ

λ+ (C − 1)µ+ γ
P 2
C−1(C − 1)

⇒ 0 =
λ

λ+ (C − 1)µ+ γ
P 2
C−1(C − 1)− PC−1(C − 1) +

(C − 1)µ

λ+ (C − 1)µ+ γ

PC(C − 1) =
γ

λ+ (C − 1)µ+ γ

+
λ

λ+ (C − 1)µ+ γ
(PC(C − 1) + PC−1(C − 1)PC(C − 1))

⇒ PC(C − 1)

(
1− λ

λ+ (C − 1)µ+ γ
(1 + PC−1(C − 1))

)
=

γ

λ+ (C − 1)µ+ γ

⇒ PC(C − 1) =
γ

(C − 1)µ+ γ − λPC−1(C − 1)

Here it is seen that solving for PC−1(C − 1) yields a quadratic, while solving for

PC(C − 1) does not. For the general expression Pi′(i), where 0 ≤ i, i′ ≤ C, it can

be said that if i′ = i then the resulting expression is quadratic, but otherwise is not.

However, it is noted that if i′ < i then Pi′(i) = 0 due to the structure of the CTMC

(to move from row i to i − 1, the system must first move at least one column left).

57

Thesis - Vincent Maccio McMaster - Software Engineering

This is explicitly given below.

Pi(i) =
iµ

λ+ iµ+ (C − i)γ
+

λ

λ+ iµ+ (C − i)γ
P 2
i (i)

⇒ 0 =
λ

λ+ iµ+ (C − i)γ
P 2
i (i)− Pi(i) +

iµ

λ+ iµ+ (C − i)γ
(6.5)

The above quadratic yields real roots. Furthermore, the stability condition of λ < Cµ

implies a unique steady state distribution, which guarantees exactly one root lies

between 0 and 1. The analysis proceeds under the assumption i′ > i (recall if i′ < i,

then it is trivially known Pi′(i) = 0).

Pi′(i) =
(C − i)γ

λ+ iµ+ (C − i)γ
Pi′(i+ 1) +

λ

λ+ iµ+ (C − i)γ

i′∑
m=i

Pi′(m)Pm(i)

⇒ Pi′(i) =
(C − i)γPi′(i+ 1) + λ

∑i′−1
m=i+1 Pi′(m)Pm(i)

iµ+ (C − i)γ + λ(1− Pi(i)− Pi′(i′))
(6.6)

6.1.2 Repeated Transition Time Values

In order to apply the RRR method to derive a desired metric, an expected cycle

time must always be known. To derive an expected cycle time, the expected column

transition time must be known. As in Section 6.1.1, because it is assumed that the

system is in a column which is in the repeating portion of the chain, the column

denotation of Ti,j is suppressed. Therefore, Ti denotes the expected time to move one

column left, given the system is in the repeating portion of the chain and in row i.

Fortunately, unlike the repeated probabilities, solving these values does not result in

58

Thesis - Vincent Maccio McMaster - Software Engineering

a quadratic:

Ti =
1

iµ+ (C − i)γ + λ
+

(C − i)γ
iµ+ (C − i)γ + λ

Ti+1

+
λ

iµ+ (C − i)γ + λ

(
Ti +

C∑
i′=i

Ti′Pi′(i)

)

⇒ Ti

(
iµ+ (C − i)γ − λPi(i)
iµ+ (C − i)γ + λ

)
=

1 + (C − i)γ
iµ+ (C − i)γ + λ

Ti+1

+
λ

iµ+ (C − i)γ + λ

C∑
i′=i+1

Ti′Pi′(i)

⇒ Ti =
1 + (C − i)γTi+1 + λ

∑C
i′=i+1 Ti′Pi′(i)

iµ+ (C − i)γ − λPi(i)
. (6.7)

While the above equation is valid for i = C, it is also noted that TC is equivalent to

the busy period of an M/M/1 queue with service rate Cµ. That is,

TC =
1

Cµ− λ
.

6.1.3 Repeated Cost Values

One of the metrics this analysis aims to derive is the expected number of jobs in the

system, i.e. E[N]. Recall from Little’s law, E[R] immediately follows from knowledge

of E[N]. The approach is to first calculate the expected holding cost incurred over

a single cycle, and then divide that by the expected cycle time. From the renewal

reward theorem, this ratio is known to equal E[N]. Just as when solving for the cycle

time, one must solve the column transition values with respect to the holding cost

59

Thesis - Vincent Maccio McMaster - Software Engineering

incurred. To solve for the transition values, the repeating portion must be solved.

However, unlike repeated probability and time values, the holding costs of states in

the same row are not equal in the repeating portion, i.e. for j ≥ j∗, Hi,j 6= Hi,j+1.

Fortunately, for j ≥ j∗ an expression for Hi,j can be derived which is not dependent

on values from other columns, by noting that Hi,j+1 = Hi,j + Ti.

Hi,j =
j

λ+ iµ+ (C − i)γ
+

(C − i)γ
λ+ iµ+ (C − i)γ

Hi+1,j (6.8)

+
λ

λ+ iµ+ (C − i)γ

(
Hi,j+1 +

C∑
m=i

Hm,jPm(i)

)

⇒ Hi,j

(
iµ+ (C − i)γ − λPi(i)
λ+ iµ+ (C − i)γ

)
=

j

λ+ iµ+ (C − i)γ
+

(C − i)γ
λ+ iµ+ (C − i)γ

Hi+1,j

+
λ

λ+ iµ+ (C − i)γ

(
Ti +

C∑
m=i+1

Hm,jPm(i)

)

⇒ Hi,j =
j + (C − i)γHi+1,j + λ(Ti +

∑C
m=i+1 Hm,jPm(i))

iµ+ (C − i)γ − λPi(i)
(6.9)

The top row also deserves a special mention here as it is always repeating for j ≥ C

(if Theorem 5.5 is being enforced) and can be used as a base case when solving the

non-repeating portion. For j ≥ C,

HC,j =
j

Cµ− λ
+

λ

Cµ− λ
HC,j+1

⇒ HC,j
Cµ

Cµ− λ
=

j

Cµ− λ
+

λ

Cµ− λ
TC

60

Thesis - Vincent Maccio McMaster - Software Engineering

⇒ HC,j =
j + λTC
Cµ

Now all that remains to solve for in the repeating portion are the energy consumption

values.

Ei,j =
(C − i)ESetup

λ+ iµ+ (C − i)γ
+

(C − i)γ
λ+ iµ+ (C − i)γ

Ei+1,j (6.10)

+
λ

λ+ iµ+ (C − i)γ

(
Ei,j+1 +

C∑
m=i

Em,jPm(i)

)

⇒ Ei,j

(
iµ+ (C − i)γ − λPi(i)
λ+ iµ+ (C − i)γ

)
=

(C − i)ESetup

λ+ iµ+ (C − i)γ
+

(C − i)γ
λ+ iµ+ (C − i)γ

Ei+1,j

+
λ

λ+ iµ+ (C − i)γ

C∑
m=i+1

Em,jPm(i)

⇒ Ei,j =
(C − i)ESetup + (C − i)γEi+1,j + λ

∑C
m=i+1Em,jPm(i)

iµ+ (C − i)γ − λPi(i)
(6.11)

Thus, the repeated transition values for all threshold policies are now solved, and can

be used to terminate the recursion for specific policy implementations.

6.2 Bulk Setup

The first specific policy is the bulk setup policy. For any policy to be fully defined

one must determine what criteria must be true for each server to turn on, and what

criteria must be true for a server to turn off. A formal definition of this policy is given

below. Recall that static servers are those which always remain on, and dynamic

61

Thesis - Vincent Maccio McMaster - Software Engineering

servers are those which may switch on and off.

Definition 6.1. Bulk Setup Policy: A policy is a bulk setup policy if it has two

decision variables, CS and k, where CS denotes the number of servers which always

remain on, i.e the number of static servers, and k is a threshold variable such that

dynamic servers behave in the following manner:

• For all m and i where CS < m ≤ C, and CS ≤ i < m, k+
m,i = CS +(i−CS +1)k.

In other words, if there are ever CS + (i−CS + 1)k or more jobs in the system,

where i is the number of servers currently on, then all remaining servers will be

in setup, and if the number of jobs in the system is less than CS + (i−CS + 1)k,

then all servers which are not already on, will be switched off (have their setups

cancelled).

• For all m where CS < m ≤ C, k−m = m−1. That is, servers turn off the moment

they idle.

Figure 6.2 gives an underlying CTMC for an energy-aware system implementing a

bulk setup policy.

6.2.1 Boundary Probabilities

Before transition probabilities for the non-repeating portion can be derived, it is

important to note that certain boundary probabilities are known. For example, it is

known that in Figure 6.2 P3(4, 4) = 1, since once the system progresses to column

3 (there are three jobs in the system), all idle servers will immediately turn off.

62

Thesis - Vincent Maccio McMaster - Software Engineering

Figure 6.2: The underlying CTMC for an energy-aware system (3, λ, µ, γ), implement-

ing a bulk setup policy with CS = 0, and k = 2. If the parameters were to be changed

to CS = 1, and k = 2, row 0 (shaded over in grey) would be merged with row 1, and

the red dotted line (red) transitions would be added.

Therefore,

Pi(i+ 1, i+ 1) = 1.

More formally, one can express all boundary probabilities as follows.

(∀i > CS : Pi−1(i, i) = Pi−1(i− 1, i) = 1)

(∀j ≤ CS : PCS
(CS, j) = 1)

It is assumed that all future derivations of the non-repeating transition probabilities

in this section are not boundary probabilities.

63

Thesis - Vincent Maccio McMaster - Software Engineering

6.2.2 Row Probabilities

All metrics hinge on the probabilities corresponding to which row the CTMC will be

in once it has transitioned one column left of its current state. Therefore, the analysis

starts there. Firstly, the row CS probabilities are solved. The CSth row can be broken

into two parts, where the column j is such that all remaining servers are off, or all

remaining servers are turning on, i.e. j − CS < k and j − CS ≥ k. Beginning with

j − CS < k and j > 0, the following is derived.

PCS
(CS, j) =

min(CS, j)µ

λ+ min(CS, j)µ
+

λ

λ+ min(CS, j)µ
PCS

(CS, j)PCS
(CS, j + 1)

⇒ PCS
(CS, j)

(
1− λ

λ+ min(CS, j)µ
PCS

(CS, j + 1)

)
=

min(CS, j)µ

λ+ min(CS, j)µ

⇒ PCS
(CS, j) =

min(CS, j)µ

min(CS, j)µ+ λ(1− PCS
(CS, j + 1))

The analysis proceeds with solving PCS+1(CS, j).

PCS+1(CS, j) =
λ

λ+ min(CS, j)µ

(
(PCS+1(CS, j)PCS

(CS, j + 1)

+ PCS+1(CS + 1, j)(PCS+1(CS, j + 1))

)

⇒ PCS+1(CS, j)

(
1− λ

λ+ min(CS, j)µ
PCS

(CS, j + 1)

)
=

λ

λ+ min(CS, j)µ
PCS+1(CS + 1, j)PCS+1(CS, j + 1)

64

Thesis - Vincent Maccio McMaster - Software Engineering

⇒ PCS+1(CS, j) =
λPCS+1(CS + 1, j)PCS+1(CS, j + 1)

min(CS, j)µ+ λ(1− PCS
(CS, j + 1))

From here, an argument can be made that for any column transition, to get to row

i′ when moving one column left of state (CS, j), the probability is the product of the

probabilities of the column transition to get to row m from state (CS, j + 1) and the

probability of the column transition of getting to row i′ from state (m, j). This is

assuming i′ 6= CS, in which case an extra term would need to be added, equal to the

probability of a departure being the next event witnessed by the system.

Pi′(CS, j) =
λ

λ+ min(CS, j)µ

i′∑
m=CS

Pi′(m, j)Pm(CS, j + 1)

⇒ Pi′(CS, j) =
λ
∑i′

m=CS+1 Pi′(m, j)Pm(CS, j + 1)

min(CS, j)µ+ λ(1− PCS
(CS, j + 1))

The portion of the CS row where j−CS ≥ k is a different story as the next event may

be a setup completion. Proceeding as before (solving for PCS
(CS, j) and PCS+1(CS, j))

gives rise to a slightly different pattern.

PCS
(CS, j) =

min(CS, j)µ

λ+ min(CS, j)µ+ (C − CS)γ

+
λ

λ+ min(CS, j)µ+ (C − CS)γ
PCS

(CS, j)PCS
(CS, j + 1)

⇒ PCS
(CS, j)

(
1− λ

λ+ min(CS, j)µ+ (C − CS)γ
PCS

(CS, j + 1)

)

65

Thesis - Vincent Maccio McMaster - Software Engineering

=
min(CS, j)µ

λ+ min(CS, j)µ+ (C − CS)γ

⇒ PCS
(CS, j) =

min(CS, j)µ

min(CS, j)µ+ (C − CS)γ + λ(1− PCS
(CS, j + 1))

Proceeding with the next row yields the following.

PCS+1(CS, j) =
(C − CS)γ

λ+ min(CS, j)µ+ (C − CS)γ
PCS+1(CS + 1, j)

+
λ

λ+ min(CS, j)µ+ (C − CS)γ

(
PCS+1(CS, j)PCS

(CS, j + 1)

+ PCS+1(CS + 1, j)PCS+1(CS + 1, j + 1)

)

⇒ PCS+1(CS, j)

(
1− λ

λ+ min(CS, j)µ+ (C − CS)γ
PCS

(CS, j + 1)

)
=

(C − CS)γ

λ+ min(CS, j)µ+ (C − CS)γ
PCS+1(CS + 1, j)

+
λ

λ+ min(CS, j)µ+ (C − CS)γ
PCS+1(CS + 1, j)PCS+1(CS + 1, j + 1)

⇒ PCS+1(CS, j) =
(C − CS)γPCS+1(CS + 1, j) + λPCS+1(CS + 1, j)PCS+1(CS, j + 1)

min(CS, j)µ+ (C − CS)γ + λ(1− PCS
(CS, j + 1))

Moving to a general i′th row from this portion of the chain proceeds as before, but

now with a γ term present in the numerator.

Pi′(CS, j) =
(C − CS)γ

λ+ min(CS, j)µ+ (C − CS)γ
Pi′(CS + 1, j)

+
λ

λ+ min(CS, j)µ+ (C − CS)γ

i′∑
m=CS

Pi′(m, j)Pm(CS, j + 1)

66

Thesis - Vincent Maccio McMaster - Software Engineering

⇒ Pi′(CS, j) =
(C − CS)γPi′(CS + 1, j) + λ

∑i′

m=CS+1 Pi′(m, j)Pm(CS, j + 1)

min(CS, j)µ+ (C − CS)γ + λ(1− PCS
(CS, j + 1))

This completes all the column transition probabilities from row CS. That is, the

probabilities of being in one of the rows CS through C once the system moves one

column left, given it began in row CS. However, it remains to calculate the transition

probabilities given that the system started in an arbitrary row. In other words, it

remains to derive Pi′(i, j) for all valid values of i, j, and i′. Similar to the above

derivations, the analysis starts with the simpler case of i′ = i. However, no matter

which valid row is under consideration, the two distinct parts of the non-repeating

portion must be considered separately. That is, the portions of the ith row where

j < (i− CS + 1)k + CS and where j ≥ (i− CS + 1)k + CS. The analysis starts with

the simpler case of j < (i− CS + 1)k + CS.

Pi(i, j) =
min(i, j)µ

λ+ min(i, j)µ
+

λ

λ+ min(i, j)µ
Pi(i, j)Pi(i, j + 1)

⇒ Pi(i, j) =
min(i, j)µ

min(i, j)µ+ λ(1− Pi(i, j + 1))

The analysis proceeds under the assumption j < (i− CS + 1)k + CS, but relaxes the

restriction on i′, i.e. now i′ > i.

Pi′(i, j) =
λ

λ+ min(i, j)µ

i′∑
m=i

Pi′(m, j)Pm(i, j + 1)

67

Thesis - Vincent Maccio McMaster - Software Engineering

⇒ Pi′(i, j) =
λ
∑i′

m=i+1 Pi′(m, j)Pm(i, j + 1)

min(i, j)µ+ λ(1− Pi(i, j + 1))

This fully solves for all of the column transition probabilities for j < (i−CS+1)k+CS.

The case where transitions due to setups are present is now considered, i.e. j ≥

(i− CS + 1)k + CS. Firstly, assuming i′ = i,

Pi(i, j) =
min(i, j)µ

λ+ min(i, j)µ+ (C − i)γ

+
λ

λ+ min(i, j)µ+ (C − i)γ
Pi(i, j)PCS+i(i, j + 1)

⇒ Pi(i, j) =
min(i, j)µ

min(i, j)µ+ (C − i)γ + λ(1− Pi(i, j + 1))
.

Secondly, assuming i′ > i,

Pi′(i, j) =
(C − i)γ

λ+ min(i, j)µ+ (C − i)γ
Pi′(i+ 1, j)

+
λ

λ+ min(i, j)µ+ (C − i)γ

i′∑
m=i

Pi′(m, j)Pm(i, j + 1)

⇒ Pi′(i, j) =
(C − i)γPi′(i+ 1, j) + λ

∑i′

m=i+1 Pi′(m, j)Pm(i, j + 1)

min(i, j)µ+ (C − i)γ + λ(1− Pi(i, j + 1))
.

With the above solved, the probability derivations are now complete.

68

Thesis - Vincent Maccio McMaster - Software Engineering

6.2.3 Transition Costs

To apply the renewal reward theorem one must look at the cost incurred over a single

cycle of any system state. The most basic (and also necessary) cost to solve for is the

cycle time. One can view this as the system incurring cost at a rate of one per unit

of time. With the transition probabilities solved for, deriving the expected amount of

time to move one column left of the current state is relatively simple. As was done

with the non-repeating portion of each row i for the transition probabilities, the time

values for each row must be solved for the two distinct parts. That is when the column

j < (i−CS+1)k+CS, and when it is past its setup threshold, or j ≥ (i−CS+1)k+CS.

Firstly, the former is assumed, i.e. j < (i− CS + 1)k + CS.

Ti,j =
1

λ+ min(i, j)µ
+

λ

λ+ min(i, j)µ

(
Ti,j+1 +

C∑
m=i

Tm,jPm(i, j + 1)

)

⇒ Ti,j

(
1− λPi(i, j + 1)

λ+ min(i, j)µ

)
=

1

λ+ min(i, j)µ

+
λ

λ+ min(i, j)µ

(
Ti,j+1 +

C∑
m=i+1

Tm,jPm(i, j + 1)

)

⇒ Ti,j =
1 + λ(Ti,j+1 +

∑C
m=i+1 Tm,jPm(i, j + 1))

min(i, j)µ+ λ(1− Pi(i, j + 1))

The analysis proceeds under the assumption j ≥ (i− CS + 1)k + CS.

Ti,j =
1

λ+ min(i, j)µ+ (C − i)γ
+

(C − i)γ
λ+ min(i, j)µ+ (C − i)γ

Ti+1,j

+
λ

λ+ min(i, j)µ+ (C − i)γ

(
Ti,j+1 +

C∑
m=i

Tm,jPm(i, j + 1)

)

69

Thesis - Vincent Maccio McMaster - Software Engineering

⇒ Ti,j

(
1− λ

λ+ min(i, j)µ+ (C − i)γ
Pi(i, j + 1)

)
=

1

λ+ min(i, j)µ+ (C − i)γ
+

(C − i)γ
λ+ min(i, j)µ+ (C − i)γ

Ti+1,j

+
λ

λ+ min(i, j)µ+ (C − i)γ

(
Ti,j+1 +

C∑
m=i+1

Tm,jPm(i, j + 1)

)

⇒ Ti,j =
1 + (C − i)γTi+1,j + λ(Ti,j+1 +

∑C
m=i+1 Tm,jPm(i, j + 1))

min(i, j)µ+ (C − i)γ + λ(1− Pi(i, j + 1))

With the expected times solved for, one can proceed with the derivation of expres-

sions pertaining to the cost metrics. As mentioned previously, these are the expected

response time of the system, and the expected rate of energy consumption.

Solving for the expected response time is equivalent to solving for the expected number

of jobs in the system, due to Little’s law. To solve for the expected number of jobs in

the system, the expected accumulated holding cost incurred while in a non-repeating

state (i, j) before transitioning to column j−1, is derived. It is worth noting that this

derivation is similar to that of Ti,j, with the difference being cost is incurred at a rate

equal to the number in the system, or j, rather than at a rate of one. As before, the

non-repeating portion of each row must be analysed separately. Again, the analysis

begins by assuming j < (i− CS + 1)k + CS.

Hi,j =
j

λ+ min(i, j)µ
+

λ

λ+ min(i, j)µ

(
Hi,j+1 +

C∑
m=i

Hm,jPm(i, j + 1)

)

70

Thesis - Vincent Maccio McMaster - Software Engineering

⇒ Hi,j

(
1− λPi(i, j + 1)

λ+ min(i, j)µ

)
=

j

λ+ min(i, j)µ

+
λ

λ+ min(i, j)µ

(
Hi,j+1 +

C∑
m=i+1

Hm,jPm(i, j + 1)

)

⇒ Hi,j =
j + λ(Hi,j+1 +

∑C
m=i+1Hm,jPm(i, j + 1))

min(i, j)µ+ λ(1− Pi(i, j + 1))

Now assume that there are enough jobs present to begin turning the remaining servers

on, i.e. j ≥ (i− CS + 1)k + CS.

Hi,j =
j

λ+ min(i, j)µ+ (C − i)γ
+

(C − i)γ
λ+ min(i, j)µ+ (C − i)γ

Hi+1,j

+
λ

λ+ min(i, j)µ+ (C − i)γ

(
Hi,j+1 +

C∑
m=i

Hm,jPm(i, j + 1)

)

⇒ Hi,j

(
1− λ

λ+ min(i, j)µ+ (C − i)γ
Pi(i, j + 1)

)
=

j

λ+ min(i, j)µ+ (C − i)γ
+

(C − i)γ
λ+ min(i, j)µ+ (C − i)γ

Hi+1,j

+
λ

λ+ min(i, j)µ+ (C − i)γ

(
Hi,j+1 +

C∑
m=i+1

Hm,jPm(i, j + 1)

)

⇒ Hi,j =
j + (C − i)γHi+1,j + λ(Hi,j+1 +

∑C
m=i+1 Hm,jPm(i, j + 1))

min(i, j)µ+ (C − i)γ + λ(1− Pi(i, j + 1))

Lastly, the analysis derives Ei,j, which denotes the expected amount of energy accu-

mulated by starting in state (i, j) before transitioning to column j − 1. As before,

it is firstly assumed that j < (i − CS + 1)k + CS. However, these distinct portions

71

Thesis - Vincent Maccio McMaster - Software Engineering

of the rows tell one a bit more when solving for the expected energy. Firstly, if

j < (i − CS + 1)k + CS then it is known that no servers are currently in setup, and

therefore no immediate consequential energy costs are accumulated. Furthermore, it

is in the definition of the policy that a server will turn off the moment it idles. This

implies that no energy costs are immediately incurred, unless the system is in row CS,

where the policy allows for servers to idle.

Ei,j =
max(i− j, 0)EIdle

λ+ min(i, j)µ
+

λ

λ+ min(i, j)µ

(
Ei,j+1 +

C∑
m=i

Em,jPm(i, j + 1)

)

⇒ Ei,j

(
1− λPi(i, j + 1)

λ+ min(i, j)µ

)
=

max(i− j, 0)EIdle

λ+ min(i, j)µ

+
λ

λ+ min(i, j)µ

(
Ei,j+1 +

C∑
m=i+1

Em,jPm(i, j + 1)

)

⇒ Ei,j =
max(i− j, 0)EIdle + λ(Ei,j+1 +

∑C
m=i+1 Em,jPm(i, j + 1))

min(i, j)µ+ λ(1− Pi(i, j + 1))

Proceeding under the assumption that j ≥ (i− CS + 1)k + CS,

Ei,j =
(C − i)ESetup

λ+ min(i, j)µ+ (C − i)γ
+

(C − i)γ
λ+ min(i, j)µ+ (C − i)γ

Ei+1,j

+
λ

λ+ min(i, j)µ+ (C − i)γ

(
Hi,j+1 +

C∑
m=i

Em,jPm(i, j + 1)

)

⇒ Ei,j

(
1− λ

λ+ min(i, j)µ+ (C − i)γ
Pi(i, j + 1)

)
=

(C − i)ESetup

λ+ min(i, j)µ+ (C − i)γ
+

(C − i)γ
λ+ min(i, j)µ+ (C − i)γ

Ei+1,j

72

Thesis - Vincent Maccio McMaster - Software Engineering

+
λ

λ+ min(i, j)µ+ (C − i)γ

(
Ei,j+1 +

C∑
m=i+1

Em,jPm(i, j + 1)

)

⇒ Ei,j =
(C − i)ESetup + (C − i)γEi+1,j + λ(Ei,j+1 +

∑C
m=i+1Em,jPm(i, j + 1))

min(i, j)µ+ (C − i)γ + λ(1− Pi(i, j + 1))
.

6.2.4 Summary

Here all final closed form equations needed to implement the method are listed.

Firstly, the boundary values for the transition probabilities,

(∀i > CS : Pi−1(i, i) = 1) and (∀j ≤ CS : PCS
(CS, j) = 1). (6.12)

All required expressions pertaining to the non-repeating portion of the chain where

no servers are in setup, i.e. when j < (i− CS + 1)k + CS, CS ≤ i ≤ C, and i ≤ i′ are

as follows:

Pi′(i, j) =
λ
∑i′

m=i+1 Pi′(m, j)Pm(i, j + 1)

min(i, j)µ+ λ(1− Pi(i, j + 1))
, (6.13)

Ti,j =
1 + λ(Ti,j+1 +

∑C
m=i+1 Tm,jPm(i, j + 1))

min(i, j)µ+ λ(1− Pi(i, j + 1))
, (6.14)

Hi,j =
j + λ(Hi,j+1 +

∑C
m=i+1Hm,jPm(i, j + 1))

min(i, j)µ+ λ(1− Pi(i, j + 1))
, (6.15)

Ei,j =
max(i− j, 0)EIdle + λ(Ei,j+1 +

∑C
m=i+1Em,jPm(i, j + 1))

min(i, j)µ+ λ(1− Pi(i, j + 1))
. (6.16)

73

Thesis - Vincent Maccio McMaster - Software Engineering

Finally, all required expressions are compiled for the non-repeating portion of the

chain where servers are in setup, i.e. when j ≥ (i− CS + 1)k + CS, CS ≤ i ≤ C, and

i ≤ i′. They are as follows:

Pi′(i, j) =
(C − i)γPi′(i+ 1, j) + λ

∑i′

m=i+1 Pi′(m, j)Pm(i, j + 1)

min(i, j)µ+ (C − i)γ + λ(1− Pi(i, j + 1))
, (6.17)

Ti,j =
1 + (C − i)γTi+1,j + λ(Ti,j+1 +

∑C
m=i+1 Tm,jPm(i, j + 1))

min(i, j)µ+ (C − i)γ + λ(1− Pi(i, j + 1))
, (6.18)

Hi,j =
j + (C − i)γHi+1,j + λ(Hi,j+1 +

∑C
m=i+1Hm,jPm(i, j + 1))

min(i, j)µ+ (C − i)γ + λ(1− Pi(i, j + 1))
, (6.19)

Ei,j =
(C − i)ESetup + (C − i)γEi+1,j + λ(Ei,j+1 +

∑C
m=i+1Em,jPm(i, j + 1))

min(i, j)µ+ (C − i)γ + λ(1− Pi(i, j + 1))
.

(6.20)

6.3 Dual Threshold

While the setup portion of the policy in Section 6.2 is known to be optimal for linear

well-formed cost functions, it is admittedly unappealing to implement in practice, not

true if switching costs are included, and furthermore, dependent on the assumption

imposed on the setup times being exponentially distributed. Therefore, an alternate

policy is analysed.

Definition 6.2. Dual Threshold Policy: A policy is a dual threshold policy if it

has two decision variables, CS and k, where CS denotes the number of servers which

always remain on, i.e the number of static servers, and k is a threshold variable such

74

Thesis - Vincent Maccio McMaster - Software Engineering

that dynamic servers behave in the following manner:

• For all m and i where CS < m ≤ C, and CS ≤ i < m, k+
m,i = (m− CS)k. This

implies that if there are i servers on, and j jobs in the system, the number of

servers in setup is given by f(i, j) = {bj/kc − (i− CS)}+.

• For all m and i, where CS < m ≤ C and CS ≤ i < m, k−m = min(k+
m,i−1,m−1).

That is, a server turns off the moment the number of jobs drops below said

server’s setup threshold and said server is also idle.

One can note that the system is less aggressive with regards to its setup behaviour

than a bulk setup policy. That is, servers are turned on gradually as needed instead

of all at once. As mentioned previously in Section 6.1, all the derived repeated values

still apply to this policy. However, the column in which this policy starts repeating

is (C − CS)k.

6.3.1 Boundary Probabilities

As for the bulk setup policy, one must keep track of the boundary states where a

server will turn off once the system progresses to one column left of that state. In

the bulk setup policy this was easily done due to the structure of a server turning off

if and only if it is idle. However, as described in the previous section, in this policy

it is possible for a server to remain idle for a time before it turns off (because its

off threshold is reached). Therefore, these boundaries require some special attention.

Specifically, the boundary transition probability for row i is,

Pi−1(i, j) = 1, where j = min(i, k(i− CS)).

75

Thesis - Vincent Maccio McMaster - Software Engineering

As for the bulk setup policy, it is assumed that all of the following derived transition

probabilities are not boundary values.

6.3.2 Row Probabilities

To build up the recursions, the analysis proceeds in the same manner as was done in

Section 6.2. As such, beginning with the row transition probabilities.

PCS
(CS, j) =

min(CS, j)µ

λ+ min(CS, j)µ+ f(CS, j)γ
+

λPCS
(CS, j)PCS

(CS, j + 1)

λ+ min(CS, j)µ+ f(CS, j)γ

+
f(CS, j)γ

λ+ min(CS, j)µ+ f(CS, j)γ
PCS

(CS + 1, j)

⇒ PCS
(CS, j)

(
1− λPCS

(CS, j + 1)

λ+ min(CS, j)µ+ f(CS, j)γ

)
=

min(CS, j)µ

λ+ min(CS, j)µ+ f(CS, j)γ
+

f(CS, j)γ

λ+ min(CS, j)µ+ f(CS, j)γ
PCS

(CS + 1, j)

⇒ PCS
(CS, j) =

min(CS, j)µ+ f(CS, j)γPCS
(CS + 1, j)

min(CS, j)µ+ f(CS, j)γ + λ(1− PCS
(CS, j + 1))

The analysis continues by deriving PCS+1(CS, j).

PCS+1(CS, j) =
f(CS, j)γPCS+1(CS + 1, j)

λ+ min(CS, j)µ+ f(CS, j)γ

+
λ(PCS+1(CS, j)PCS

(CS, j + 1) + PCS+1(CS + 1, j)PCS+1(CS, j + 1))

λ+ min(CS, j)µ+ f(CS, j)γ

⇒ PCS+1(CS, j)

(
1− λPCS

(CS, j + 1)

λ+ min(CS, j)µ+ f(CS, j)γ

)

76

Thesis - Vincent Maccio McMaster - Software Engineering

=
f(CS, j)γPCS+1(CS + 1, j)

λ+ min(CS, j)µ+ f(CS, j)γ
+
λPCS+1(CS + 1, j)PCS+1(CS, j + 1)

λ+ min(CS, j)µ+ f(CS, j)γ

⇒ PCS+1(CS, j) =
f(CS, j)γPCS+1(CS + 1, j) + λPCS

(CS, j + 1)

min(CS, j)µ+ f(CS, j)γ + λ(1− PCS
(CS, j + 1))

With the transition probabilities of the first two rows solved explicitly, the analysis

proceeds to the general cases. Firstly, when i′ = i,

Pi(i, j) =
min(i, j)µ

λ+ min(i, j)µ+ f(i, j)γ
+

f(i, j)γPi′(i+ 1, j)

λ+ min(i, j)µ+ f(i, j)γ

+
λPi′(i, j)Pi(i, j + 1)

λ+ min(i, j)µ+ f(CS, j)γ
,

⇒ Pi(i, j)

(
1− λPi(i, j + 1)

λ+ min(CS, j)µ+ f(CS, j)γ

)
=

min(i, j)µ+ f(i, j)γPi′(i+ 1, j)

λ+ min(i, j)µ+ f(i, j)γ
,

⇒ Pi(i, j) =
min(i, j)µ+ f(i, j)γPi′(i+ 1, j)

min(i, j)µ+ f(i, j)γ + λ(1− Pi(i, j + 1))
.

Continuing with the general case, where i′ 6= i,

Pi′(i, j) =
f(i, j)γPi′(i+ 1, j)

λ+ min(i, j)µ+ f(i, j)γ
+
λ
∑C

m=i Pi′(m, j)Pm(i, j + 1)

λ+ min(i, j)µ+ f(CS, j)γ
,

⇒ Pi′(i, j)

(
1− λPi(i, j + 1)

λ+ min(i, j)µ+ f(CS, j)γ

)
=
f(i, j)γPi′(i+ 1, j) + λ

∑C
m=i+1 Pi′(m, j)Pm(i, j + 1)

λ+ min(i, j)µ+ f(i, j)γ
,

77

Thesis - Vincent Maccio McMaster - Software Engineering

⇒ Pi′(i, j) =
f(i, j)γPi′(i+ 1, j) + λ

∑C
m=i+1 Pi′(m, j)Pm(i, j + 1)

min(i, j)µ+ f(i, j)γ + λ(1− Pi(i, j + 1))
.

6.3.3 Transition Costs

With the probabilities solved, the analysis proceeds with the transition costs for the

time, holding, and energy consumption values.

Ti,j =
1

λ+ min(i, j)µ+ f(i, j)γ
+

f(i, j)γ

λ+ min(i, j)µ+ f(i, j)γ
Ti+1,j

+
λ

λ+ min(i, j)µ+ f(i, j)γ

(
Ti,j+1 +

C∑
m=i

Tm,jPm(i, j + 1)

)

⇒ Ti,j

(
1− λPi(i, j + 1)

λ+ min(i, j)µ+ f(i, j)γ

)
=

1

λ+ min(i, j)µ+ f(i, j)γ

+
f(i, j)γ

λ+ min(i, j)µ+ f(i, j)γ
Ti+1,j

+
λ

λ+ min(i, j)µ+ f(i, j)γ

(
Ti,j+1 +

C∑
m=i+1

Tm,jPm(i, j + 1)

)

⇒ Ti,j =
1 + f(i, j)γTi+1,j + λ(Hi,j+1 +

∑C
m=i+1 Tm,jPm(i, j + 1))

min(i, j)µ+ f(i, j)γ + λ(1− Pi(i, j + 1))

Hi,j =
i

λ+ min(i, j)µ+ f(i, j)γ
+

f(i, j)γ

λ+ min(i, j)µ+ f(i, j)γ
Hi+1,j

+
λ

λ+ min(i, j)µ+ f(i, j)γ

(
Hi,j+1 +

C∑
m=i

Hm,jPm(i, j + 1)

)

78

Thesis - Vincent Maccio McMaster - Software Engineering

⇒ Hi,j

(
1− λPi(i, j + 1)

λ+ min(i, j)µ+ f(i, j)γ

)
=

i+ f(i, j)γHi+1,j

λ+ min(i, j)µ+ f(i, j)γ

+
λ

λ+ min(i, j)µ+ f(i, j)γ

(
Hi,j+1 +

C∑
m=i+1

Hm,jPm(i, j + 1)

)

⇒ Hi,j =
i+ f(i, j)γHi+1,j + λ(Hi,j+1 +

∑C
m=i+1 Hm,jPm(i, j + 1))

min(i, j)µ+ f(i, j)γ + λ(1− Pi(i, j + 1))

Ei,j =
max(0, i− j)EIdle + f(i, j)ESetup

λ+ min(i, j)µ+ f(i, j)γ
+

f(i, j)γ

λ+ min(i, j)µ+ f(i, j)γ
Ei+1,j

+
λ

λ+ min(i, j)µ+ f(i, j)γ

(
Ei,j+1 +

C∑
m=i

Em,jPm(i, j + 1)

)

⇒ Ei,j

(
1− λPi(i, j + 1)

λ+ min(i, j)µ+ f(i, j)γ

)
=

max(0, i− j)EIdle + f(i, j)ESetup + f(i, j)γEi+1,j

λ+ min(i, j)µ+ f(i, j)γ

+
λ

λ+ min(i, j)µ+ f(i, j)γ

(
Ei,j+1 +

C∑
m=i+1

Em,jPm(i, j + 1)

)

⇒ Ei,j =
max(0, i− j)EIdle + f(i, j)ESetup + f(i, j)γEi+1,j

min(i, j)µ+ f(i, j)γ + λ(1− Pi(i, j + 1))

+
λ(Ei,j+1 +

∑C
m=i+1 Em,jPm(i, j + 1))

min(i, j)µ+ f(i, j)γ + λ(1− Pi(i, j + 1))

79

Thesis - Vincent Maccio McMaster - Software Engineering

6.3.4 Summary

In summary, the equations required to implement the RRR method for this policy are

as follows. Firstly, set the boundary column transitions (when a server turns off).

(∀i > CS : (∀j such that j = min(i, (i− CS)k) : Pi−1(i, j) = 1))

and (∀j ≤ k : PCS
(CS, j) = 1). (6.21)

A list of the column transition values is given as follows, where the indices are given

as CS ≤ i ≤ C, i ≤ i′, (i, j) is not a boundary state given in (6.21), and j <

max(k(C − CS), CS), i.e. j is to the left of the repeating column:

Pi(i, j) =
min(i, j)µ+ f(i, j)γPi′(i+ 1, j)

min(i, j)µ+ f(i, j)γ + λ(1− Pi(i, j + 1))
, (6.22)

Pi′(i, j) =
f(i, j)γPi′(i+ 1, j) + λ

∑C
m=i+1 Pi′(m, j)Pm(i, j + 1)

min(i, j)µ+ f(i, j)γ + λ(1− Pi(i, j + 1))
, (6.23)

Ti,j =
1 + f(i, j)γTi+1,j + λ(Ti,j+1 +

∑C
m=i+1 Tm,jPm(i, j + 1))

min(i, j)µ+ f(i, j)γ + λ(1− Pi(i, j + 1))
, (6.24)

Hi,j =
i+ f(i, j)γHi+1,j + λ(Hi,j+1 +

∑C
m=i+1 Hm,jPm(i, j + 1))

min(i, j)µ+ f(i, j)γ + λ(1− Pi(i, j + 1))
, (6.25)

Ei,j =
max(0, i− j)EIdle + f(i, j)ESetup + f(i, j)γEi+1,j

min(i, j)µ+ f(i, j)γ + λ(1− Pi(i, j + 1))

+
λ(Ei,j+1 +

∑C
m=i+1Em,jPm(i, j + 1))

min(i, j)µ+ f(i, j)γ + λ(1− Pi(i, j + 1))
, (6.26)

80

Thesis - Vincent Maccio McMaster - Software Engineering

where, as a reminder, f(i, j) = {bj/kc − i}+.

6.4 Staggered Threshold

Here a third policy is introduced which incorporates aspects from the policies defined

in Sections 6.2 and 6.3. This is done with the goal of combining favourable aspects

of both previously described policies, while eliminating some potentially problematic

ones. That is, the policy described here will not have the unappealing implementation

issues of Bulk Setup, but will have more direct control over how many servers are kept

operational.

Definition 6.3. Staggered Threshold Policy: A policy is a staggered threshold

policy if it has two decision variables, CS and k, where CS denotes the number of

servers which always remain on, i.e the number of static servers, and k is a threshold

variable such that dynamic servers behave in the following manner:

• For all m and i where CS < m ≤ C, and CS ≤ i < m, k+
m,i = CS + (m− CS)k.

This implies that if there are i servers on, and j jobs in the system, the number

of servers in setup is given by f(i, j) = {b{j − CS}+/kc − (i− CS)}+.

• For all m where CS < m ≤ C, k−m = m−1. That is, servers turn off the moment

they idle.

This can again intuitively be thought of as each of the dynamic servers being respon-

sible for k jobs when all of the static servers are busy. The difference from the bulk

setup policy is this policy gradually begins to turn more servers on instead of all at

once. For example, if all dynamic servers are off, and there are CS + k jobs in the

81

Thesis - Vincent Maccio McMaster - Software Engineering

system exactly one server will be moved to setup, if there are CS + 2k jobs in the

system, then two servers will be in setup, and so on.

For the sake of completeness the analysis proceeds following the pattern shown in

Sections 6.2 and 6.3. In fact, due to the abstract definition of f(·), the analysis is

identical to that in Section 6.3. Therefore, if the reader is comfortable with these

derivations, they could skip ahead to Section 6.4.4 without loss of clarity.

6.4.1 Boundary Probabilities

As usual, a definition for all of the boundary transition states which are known to

equal one is given. Since an idle server will instantly turn off, it is known that

Pi(i + 1, i + 1) = 1. Furthermore, although covered in future derivations in this

section, it is also trivially known that Pi(i, i+1) = 1. Again this follows from the fact

that an idle server must always be switched off immediately, assuming it is not static.

6.4.2 Row Probabilities

The recursion is built from the base case, beginning with the probability of being in

row CS after moving one column left of state (CS, j).

PCS
(CS, j) =

min(CS, j)µ

λ+ min(CS, j)µ+ f(CS, j)γ
+

λPCS
(CS, j)PCS

(CS, j + 1)

λ+ min(CS, j)µ+ f(CS, j)γ

+
f(CS, j)γ

λ+ min(CS, j)µ+ f(CS, j)γ
PCS

(CS + 1, j)

⇒ PCS
(CS, j)

(
1− λPCS

(CS, j + 1)

λ+ min(CS, j)µ+ f(CS, j)γ

)

82

Thesis - Vincent Maccio McMaster - Software Engineering

=
min(CS, j)µ

λ+ min(CS, j)µ+ f(CS, j)γ
+

f(CS, j)γ

λ+ min(CS, j)µ+ f(CS, j)γ
PCS

(CS + 1, j)

⇒ PCS
(CS, j) =

min(CS, j)µ+ f(CS, j)γPCS
(CS + 1, j)

min(CS, j)µ+ f(CS, j)γ + λ(1− PCS
(CS, j + 1))

Continuing by deriving PCS+1(CS, j),

PCS+1(CS, j) =
f(CS, j)γPCS+1(CS + 1, j)

λ+ min(CS, j)µ+ f(CS, j)γ

+
λ(PCS+1(CS, j)PCS

(CS, j + 1) + PCS+1(CS + 1, j)PCS+1(CS, j + 1))

λ+ min(CS, j)µ+ f(CS, j)γ

⇒ PCS+1(CS, j)

(
1− λPCS

(CS, j + 1)

λ+ min(CS, j)µ+ f(CS, j)γ

)
=

f(CS, j)γPCS+1(CS + 1, j)

λ+ min(CS, j)µ+ f(CS, j)γ
+
λPCS+1(CS + 1, j)PCS+1(CS, j + 1)

λ+ min(CS, j)µ+ f(CS, j)γ

⇒ PCS+1(CS, j) =
f(CS, j)γPCS+1(CS + 1, j) + λPCS

(CS, j + 1)

min(CS, j)µ+ f(CS, j)γ + λ(1− PCS
(CS, j + 1))

.

With the transition probabilities to the first two rows solved explicitly, the analysis

proceeds to the general cases. Firstly, when i′ = i,

Pi(i, j) =
min(i, j)µ

λ+ min(i, j)µ+ f(i, j)γ
+

f(i, j)γPi′(i+ 1, j)

λ+ min(i, j)µ+ f(i, j)γ

+
λPi′(i, j)Pi(i, j + 1)

λ+ min(i, j)µ+ f(CS, j)γ

⇒ Pi(i, j)

(
1− λPi(i, j + 1)

λ+ min(CS, j)µ+ f(CS, j)γ

)
=

min(i, j)µ+ f(i, j)γPi′(i+ 1, j)

λ+ min(i, j)µ+ f(i, j)γ

83

Thesis - Vincent Maccio McMaster - Software Engineering

⇒ Pi(i, j) =
min(i, j)µ+ f(i, j)γPi′(i+ 1, j)

min(i, j)µ+ f(i, j)γ + λ(1− Pi(i, j + 1))
.

Now, with i′ 6= i,

Pi′(i, j) =
f(i, j)γPi′(i+ 1, j)

λ+ min(i, j)µ+ f(i, j)γ
+
λ
∑C

m=i Pi′(m, j)Pm(i, j + 1)

λ+ min(i, j)µ+ f(CS, j)γ

⇒ Pi′(i, j)

(
1− λPi(i, j + 1)

λ+ min(i, j)µ+ f(CS, j)γ

)
=
f(i, j)γPi′(i+ 1, j) + λ

∑C
m=i+1 Pi′(m, j)Pm(i, j + 1)

λ+ min(i, j)µ+ f(i, j)γ

⇒ Pi′(i, j) =
f(i, j)γPi′(i+ 1, j) + λ

∑C
m=i+1 Pi′(m, j)Pm(i, j + 1)

min(i, j)µ+ f(i, j)γ + λ(1− Pi(i, j + 1))
.

6.4.3 Transition Costs

Proceeding with the transition costs for the time, holding, and energy consumption

values yields the following.

Ti,j =
1

λ+ min(i, j)µ+ f(i, j)γ
+

f(i, j)γ

λ+ min(i, j)µ+ f(i, j)γ
Ti+1,j

+
λ

λ+ min(i, j)µ+ f(i, j)γ

(
Ti,j+1 +

C∑
m=i

Tm,jPm(i, j + 1)

)

⇒ Ti,j

(
1− λPi(i, j + 1)

λ+ min(i, j)µ+ f(i, j)γ

)
=

1

λ+ min(i, j)µ+ f(i, j)γ
+

f(i, j)γ

λ+ min(i, j)µ+ f(i, j)γ
Ti+1,j

84

Thesis - Vincent Maccio McMaster - Software Engineering

+
λ

λ+ min(i, j)µ+ f(i, j)γ

(
Ti,j+1 +

C∑
m=i+1

Tm,jPm(i, j + 1)

)

⇒ Ti,j =
1 + f(i, j)γTi+1,j + λ(Ti,j+1 +

∑C
m=i+1 Tm,jPm(i, j + 1))

min(i, j)µ+ f(i, j)γ + λ(1− Pi(i, j + 1))

Hi,j =
i

λ+ min(i, j)µ+ f(i, j)γ
+

f(i, j)γ

λ+ min(i, j)µ+ f(i, j)γ
Hi+1,j

+
λ

λ+ min(i, j)µ+ f(i, j)γ

(
Hi,j+1 +

C∑
m=i

Hm,jPm(i, j + 1)

)

⇒ Hi,j

(
1− λPi(i, j + 1)

λ+ min(i, j)µ+ f(i, j)γ

)
=

i+ f(i, j)γHi+1,j

λ+ min(i, j)µ+ f(i, j)γ

+
λ

λ+ min(i, j)µ+ f(i, j)γ

(
Hi,j+1 +

C∑
m=i+1

Hm,jPm(i, j + 1)

)

⇒ Hi,j =
i+ f(i, j)γHi+1,j + λ(Hi,j+1 +

∑C
m=i+1Hm,jPm(i, j + 1))

min(i, j)µ+ f(i, j)γ + λ(1− Pi(i, j + 1))

Since the only portion of the chain where idle servers are present is the CSth row, this

can be accounted for in a single expression as follows.

Ei,j =
max(0, i− j)EIdle + f(i, j)ESetup

λ+ min(i, j)µ+ f(i, j)γ
+

f(i, j)γ

λ+ min(i, j)µ+ f(i, j)γ
Ei+1,j

+
λ

λ+ min(i, j)µ+ f(i, j)γ

(
Ei,j+1 +

C∑
m=i

Em,jPm(i, j + 1)

)

85

Thesis - Vincent Maccio McMaster - Software Engineering

⇒ Ei,j

(
1− λPi(i, j + 1)

λ+ min(i, j)µ+ f(i, j)γ

)
=

max(0, i− j)EIdle + f(i, j)ESetup + f(i, j)γEi+1,j

λ+ min(i, j)µ+ f(i, j)γ

+
λ

λ+ min(i, j)µ+ f(i, j)γ

(
Ei,j+1 +

C∑
m=i+1

Em,jPm(i, j + 1)

)

⇒ Ei,j =
max(0, i− j)EIdle + f(i, j)ESetup + f(i, j)γEi+1,j

min(i, j)µ+ f(i, j)γ + λ(1− Pi(i, j + 1))

+
λ(Ei,j+1 +

∑C
m=i+1 Em,jPm(i, j + 1))

min(i, j)µ+ f(i, j)γ + λ(1− Pi(i, j + 1))

6.4.4 Summary

In summary, the equations required to implement the RRR method for this policy are

as follows. Firstly, set the boundary column transitions (when a server turns off).

Pi(i+ 1, i+ 1) = 1, Pi(i, i+ 1) = 1 (6.27)

A list of the column transition values are given as follows, where the indices are

given as CS ≤ i ≤ C, i ≤ i′, (i, j) is not a boundary state given in (6.27), and

j < max(k(C − CS) + CS, CS), i.e. j is left of the repeating column:

Pi(i, j) =
min(i, j)µ+ f(i, j)γPi′(i+ 1, j)

min(i, j)µ+ f(i, j)γ + λ(1− Pi(i, j + 1))
, (6.28)

Pi′(i, j) =
f(i, j)γPi′(i+ 1, j) + λ

∑C
m=i+1 Pi′(m, j)Pm(i, j + 1)

min(i, j)µ+ f(i, j)γ + λ(1− Pi(i, j + 1))
, (6.29)

86

Thesis - Vincent Maccio McMaster - Software Engineering

Ti,j =
1 + f(i, j)γTi+1,j + λ(Ti,j+1 +

∑C
m=i+1 Tm,jPm(i, j + 1))

min(i, j)µ+ f(i, j)γ + λ(1− Pi(i, j + 1))
, (6.30)

Hi,j =
i+ f(i, j)γHi+1,j + λ(Hi,j+1 +

∑C
m=i+1 Hm,jPm(i, j + 1))

min(i, j)µ+ f(i, j)γ + λ(1− Pi(i, j + 1))
, (6.31)

Ei,j =
max(0, i− j)EIdle + f(i, j)ESetup + f(i, j)γEi+1,j

min(i, j)µ+ f(i, j)γ + λ(1− Pi(i, j + 1))

+
λ(Ei,j+1 +

∑C
m=i+1Em,jPm(i, j + 1))

min(i, j)µ+ f(i, j)γ + λ(1− Pi(i, j + 1))
, (6.32)

where, as a reminder, f(i, j) = {b{j − CS}+/kc − (i− CS)}+.

6.5 Derivation of E[N] and E[E]

To arrive at the cost metrics (the expected response times and rate of energy con-

sumption) the recursions presented in Sections 6.1, 6.2, 6.3, and 6.4 must first be

solved. An explicit step by step description of how to do so is given below.

1. Solve all repeated and boundary probability values. First, use equations (6.5)

and (6.6). Note that (6.5) is a quadratic, therefore choose the root which is

a valid probability, i.e. is between 0 and 1. Secondly, depending on the policy

which is being analysed, use either (6.12), (6.21), or (6.27) to determine the

boundary values for each row. Furthermore, for the top row, set all values of

PC(C, j) for j between the boundary and repeating columns to 1. Once this step

is complete, all remaining unsolved transition probability values will lie between

the repeated and boundary columns of their corresponding rows.

87

Thesis - Vincent Maccio McMaster - Software Engineering

2. Solve the remaining transition probabilities Pi′(i, j). This is done by noting that

Pi′(i, j) does not depend on Pi′(n,m) if i > n or if m < j. To do this, start with

the highest unsolved values of i and j and corresponding lowest feasible value of

i′. For most decision variable choices, this is i = i′ = C− 1 and j corresponding

to one column left of the repeating portion of the chain. Then use either (6.13)

and (6.17), (6.22), or (6.28) and (6.29) to solve the value. Repeat this process

by decreasing j and moving left along the row. Do this for all i′ such that

i ≤ i′ ≤ C. This will fully solve all probability transition values for row i. To

find all probability values of interest repeat the above process for each row in a

decreasing manner. After this step is complete, all transition probabilities will

be explicitly determined.

3. Solve for the transition time values. Firstly, use (6.7) to get the repeating time

values. Then solve for all non-repeating Ti,j values. To do this, again the analysis

exploits that Ti,j does not depend on Tn,m if n < i or if m < j. Therefore, start

by setting i and j to the highest unknown values and work down the row by

firstly decreasing j, and then i while using the corresponding equations (6.14)

and (6.18), (6.24), or (6.30).

4. Now all that remains is to solve for the holding cost values, and the energy

consumption values, i.e. Hi,j and Ei,j. The values for i and j are iterated

through in the exact manner of the previous step, with the exception that the

equations employed are now (6.15), (6.16), (6.19), (6.20), (6.25), (6.26), (6.31),

and (6.32). Once this step is complete all of the recursions have been solved for.

With the recursion complete, one can now solve for the system metrics E[N] and

E[E]. To arrive at the expected number of jobs in the system, it is enough to know

88

Thesis - Vincent Maccio McMaster - Software Engineering

the expected incurred holding cost over a single renewal cycle (denoted by H), and

the expected time to complete that same renewal cycle (denoted by T). That is, from

the renewal reward theorem,

E[N] =
H
T
.

Furthermore, it is noted that H and T are easily derived from the transition costs

determined above. By letting (CS, 0) be the cycle reference state, one can determine

the total holding cost over a single cycle by determining the holding cost incurred

before transitioning to state (CS, 1), and then the total holding cost incurred before

returning to state (CS, 0) from (CS, 1). However, the latter value is HCS ,1 by definition,

and the holding cost incurred in state (CS, 0) before moving to state (CS, 1) equals 0

as there are no jobs present in the system. Therefore,

H = HCS ,0.

The above argument can also be applied to determine T . That is, the expected time

to transition to state (CS, 1) from state (CS, 0) is 1/λ, plus the expected time to

transition back to state (CS, 0) from state (CS, 1). Therefore,

T =
1

λ
+ TCS ,1.

Similarly, the expected rate of energy consumption can also be determined. Letting

E denote the expected amount of energy used over one cycle,

E[E] =
E
T

where E =
CS
λ
EIdle + ECS ,1.

89

Thesis - Vincent Maccio McMaster - Software Engineering

Leveraging the transition costs as such allows one to perform exact analysis on the

expected response time, and expected energy consumption rate. In turn, this allows

one to inspect the trade off between performance and energy efficiency.

6.6 Numerical Results and Observations

The numerical experiments are organized as follows. Each of the three policies (bulk

setup, dual threshold, and staggered threshold) are evaluated under the same set of

parameter configurations. The total number of servers (C) equals one of 20, 50, or

100. The setup rate (γ) equals one of 0.1, 0.01, or 0.001. The arrival rate (λ) is

fixed to equal C/2, and the service rate (µ) is fixed at 1. Therefore, for the set

of static servers to be stable on their own (without extra servers needing to turn

on), it must hold that CS > C/2. For experiments regarding the expected energy

consumption rate, it is assumed that while idle a server accumulates cost at rate

0.7 and while in setup it accumulates cost at rate 1. This choice is influenced by

the work presented in [5]. This range of parameters gives nine configurations for

each of the policies. For each of these configurations E[R] and E[E] are evaluated

with decision variables k = 1, 3, 5, 7, 10, 15, 20, 25, 30 and all valid values of CS, i.e.

CS = 0, .., C. The experiments yield exact results and were done using standard

Matlab libraries. While the Matlab code was not written with public use in mind,

all source code needed to run these experiments can be found at [1]. The following

three subsections, i.e. subsections 6.6.1, 6.6.2 and 6.6.3, are organized such that the

discussions of the numerical experiments are at the beginning of each subsection, while

all figures pertaining to these discussions can be found at the end of each subsection.

90

Thesis - Vincent Maccio McMaster - Software Engineering

6.6.1 Bulk Setup

The behaviour of E[R] under the bulk setup policy is the first to be examined. This

behaviour can be seen in Figures 6.3, 6.5, and 6.7. As expected, E[R] is monotonically

decreasing in CS. However, E[R] has a more interesting relationship with regards to

the choice of k. One would perhaps expect that the lower the value of k the lower the

expected response time would be. This is a reasonable thought since a lower value

of k means a more proactive system, where servers are more inclined to turn on if

there are jobs waiting. However, this is not always the case. Figure 6.7-(c) is a good

example of this. Here for some lower values of CS the expected response time for k = 1

is actually the largest among all curves shown. While at first perplexing, there is an

intuitive explanation. While it is true that for a larger value of k the first few jobs

to arrive and wait in the queue will have a longer response time, this is overcome by

the fact that when the server turns on, there are now more jobs to process. Because

there are more jobs to process, it will take longer for the server to become idle. Due

to there being a larger window for a job to arrive when the server is already on, a

larger value of k can actually result in a lower expected response time.

Observation 6.1. There exist system configurations where increasing the value of k

decreases E[R].

Looking at the curves with larger values of k, i.e. the graphs on the right hand side

of Figures 6.3, 6.5, and 6.7, shows another interesting behaviour. It seems that when

k is sufficiently large, the expected response time decreases linearly with CS until a

point where it begins to converge to 1/µ. The point at which this changes in relation

to CS happens around C/2, but seems to vary slightly based on C. For example in

Figure 6.3-(e) the relation seems to change further to the right of C/2, or in this case

91

Thesis - Vincent Maccio McMaster - Software Engineering

10, at about the CS = 12 region. The reason for E[R] converging to 1/µ is clear. As

the number of servers which are always on increases, the probability that the job has to

wait in queue decreases, and its response time becomes its service time. On the other

hand, if CS is lower, the probability of a job having to wait in the queue increases.

While it is not entirely clear why this increase in expected response time is linear,

the following is noted. When a job arrives to the system and has to wait in queue,

it can be served by one of two ways. Firstly, a fresh server can turn on and begin to

process it. Secondly, a server which is currently processing a job can complete and

begin to process the job that is waiting. Due to the bulk setup nature, the expected

amount of time to turn on a single server increases with CS. However, the expected

time for a server to become available decreases with CS. These two conflicting effects

may counteract each other to produce a linear decrease in the expected response time

of the system, in relation to CS.

Observation 6.2. For a large enough k, E[R] and E[E] can be described by two

linear components. However, the value of k required to invoke this behaviour in the

E[R] curve is less than the corresponding value of k for the E[E] curve.

Focusing on the behaviour of the energy consumed by the system in Figures 6.4, 6.6,

and 6.8 also leads to some interesting cases. Unlike the expected response time, the

expected energy rate is not monotonically decreasing (or increasing) in CS. This leads

to local maxima and minima. Firstly, it is noted that around ρ = λ/µ = C/2 there

is a local maximum. The conjectured reason for this is the system is in a lose-lose

scenario. That is, it is in a configuration where servers are regularly idling, while at

the same time the system has a relatively high chance of being in a state where there

are servers in setup. This is in contrast to the curve around ρ+
√
ρ, where there is a

92

Thesis - Vincent Maccio McMaster - Software Engineering

local minimum, or in the case where γ is small, a global minimum. Here the system

finds itself in a win-win configuration. That is, the chance of a job arriving to the

system where there is not a server idling is low (consistent with the square root staffing

rule [28]), and therefore the chance of servers being in setup is also low. On the other

hand, servers which always remain on have a reasonable chance of being utilized,

keeping the idling costs low. These two observations together make CS = ρ +
√
ρ an

appealing choice, especially for systems with longer expected setup times.

Observation 6.3. For lower values of γ, E[E] has a local maximum around CS = ρ.

Looking back at the expected response time, the observation of CS = C/2 +
√
C/2

being a good choice for the expected energy cost also holds from the performance stand

point. The previous point that a job will rarely wait implies that the expected response

time is close to its lower bound of 1/µ. This can be seen in Figures 6.3, 6.5, and

6.7. Furthermore, while the expected energy rate is sensitive to some configurations

around CS = C/2 +
√
C/2, it is less sensitive to the right. In other words, around

CS = C/2 +
√
C/2, E[E] increases at a lower rate when CS increases, than if CS

were to decrease. This is also good news from a performance stand point, as E[E] is

monotonically decreasing in CS. Therefore, if one wished to err on the side of caution

they could set their choice of CS to the right of the minimum value without being

punished too harshly.

Observation 6.4. For low values of γ (large expected setup times), the values for CS

corresponding to the minimums of E[E] and E[R] are approximately equal.

93

Thesis - Vincent Maccio McMaster - Software Engineering

(c) C = 100, λ = 50, µ = 1, γ = 0.1 (d) C = 100, λ = 50, µ = 1, γ = 0.1, with
larger k

(e) C = 50, λ = 25, µ = 1, γ = 0.1 (f) C = 50, λ = 25, µ = 1, γ = 0.1, with larger
k

(g) C = 20, λ = 10, µ = 1, γ = 0.1 (h) C = 20, λ = 10, µ = 1, γ = 0.1, with larger
k

Figure 6.3: Expected response time vs CS for γ = 0.1

94

Thesis - Vincent Maccio McMaster - Software Engineering

(c) C = 100, λ = 50, µ = 1, γ = 0.1 (d) C = 100, λ = 50, µ = 1, γ = 0.1, with
larger k

(e) C = 50, λ = 25, µ = 1, γ = 0.1 (f) C = 50, λ = 25, µ = 1, γ = 0.1, with larger
k

(g) C = 20, λ = 10, µ = 1, γ = 0.1 (h) C = 20, λ = 10, µ = 1, γ = 0.1, with larger
k

Figure 6.4: Expected energy consumption rate vs CS for γ = 0.1

95

Thesis - Vincent Maccio McMaster - Software Engineering

(c) C = 100, λ = 50, µ = 1, γ = 0.01 (d) C = 100, λ = 50, µ = 1, γ = 0.01, with
larger k

(e) C = 50, λ = 25, µ = 1, γ = 0.01 (f) C = 50, λ = 25, µ = 1, γ = 0.01, with
larger k

(g) C = 20, λ = 10, µ = 1, γ = 0.01 (h) C = 20, λ = 10, µ = 1, γ = 0.01, with
larger k

Figure 6.5: Expected response time vs CS for γ = 0.01

96

Thesis - Vincent Maccio McMaster - Software Engineering

(c) C = 100, λ = 50, µ = 1, γ = 0.01 (d) C = 100, λ = 50, µ = 1, γ = 0.01, with
larger k

(e) C = 50, λ = 25, µ = 1, γ = 0.01 (f) C = 50, λ = 25, µ = 1, γ = 0.01, with
larger k

(g) C = 20, λ = 10, µ = 1, γ = 0.01 (h) C = 20, λ = 10, µ = 1, γ = 0.01, with
larger k

Figure 6.6: Expected energy consumption rate vs CS for γ = 0.01

97

Thesis - Vincent Maccio McMaster - Software Engineering

(c) C = 100, λ = 50, µ = 1, γ = 0.001 (d) C = 100, λ = 50, µ = 1, γ = 0.001, with
larger k

(e) C = 50, λ = 25, µ = 1, γ = 0.001 (f) C = 50, λ = 25, µ = 1, γ = 0.001, with
larger k

(g) C = 20, λ = 10, µ = 1, γ = 0.001 (h) C = 20, λ = 10, µ = 1, γ = 0.001, with
larger k

Figure 6.7: Expected response time vs CS for γ = 0.001

98

Thesis - Vincent Maccio McMaster - Software Engineering

(c) C = 100, λ = 50, µ = 1, γ = 0.001 (d) C = 100, λ = 50, µ = 1, γ = 0.001, with
larger k

(e) C = 50, λ = 25, µ = 1, γ = 0.001 (f) C = 50, λ = 25, µ = 1, γ = 0.001, with
larger k

(g) C = 20, λ = 10, µ = 1, γ = 0.001 (h) C = 20, λ = 10, µ = 1, γ = 0.001, with
larger k

Figure 6.8: Expected energy consumption rate vs CS for γ = 0.001

99

Thesis - Vincent Maccio McMaster - Software Engineering

6.6.2 Dual Threshold

Examining the dual threshold policy leads to some interesting differences and similar-

ities to the bulk setup policy. Firstly, the overall shape of the expected response time

curves, i.e. the shape of the curves in Figures 6.9, 6.11, and 6.13, is similar to the cor-

responding curves for the bulk setup policy. This is due to the nature of these systems

already having substantial constraints on how these curves must behave. Specifically

there are two major criteria. Firstly, the expected response time must be monotoni-

cally decreasing in CS. Secondly, the expected response time must converge to 1/µ.

Within these constraints there is not a lot of interesting behaviour which can occur.

Having said that, it is true that between the two policies there exist differences. For

example, the response curves “bulge” due to the choice of k in Figure 6.11 while they

remain closer to linear in Figure 6.5.

Observation 6.5. The expected energy cost of the system is more sensitive to the

choice of policy than the expected response time.

Inspecting the energy curve tells a different story, i.e. Figures 6.10, 6.12, and 6.14

seem to be wildly different from the bulk setup curves. This is due to the quick to

respond nature of the dual threshold policy. Consider the case where CS = 60 and

k = 1. In the bulk setup policy no servers would be in setup if there are sixty or

less jobs in the system, and forty dynamic servers would be in setup or on if there

were sixty-one or more jobs in the system. Examining how the dual threshold policy

operates in this case tells a different story, for the same parameters. If there were forty

or more jobs in the system, then the remaining forty servers would either be in setup

or idle. This leads to a substantial difference in the expected energy cost as well as

how one would choose the decision variables. Specifically, it would seem that the dual

100

Thesis - Vincent Maccio McMaster - Software Engineering

threshold policy over-provisions the system with servers which have a low probability

of being turned off. For example, take Figure 6.12-(c), for the curve of k = 1 it can

be seen that the minimum is around CS = 20. The minimum of these energy curves

is a sweet spot where not too many servers are turning on, nor are too many idling

often. However, with these parameters it is clear that if the system only keeps twenty

servers on, it will be unstable (until more are turned on). Therefore, if there are only

twenty static servers, there should be a significant amount of setups and in turn a

significant amount of energy costs. But this is not what one sees. This is because a

certain number of the dynamic servers are behaving as static servers, i.e. a certain

number of the remaining eighty servers which can be switched on or off are remaining

on virtually all of the time. This should not be too surprising if one understands the

nature of the policy. In this example, the twenty-first server will begin setup when

there is at least one job in the system, and only turn off when the system is empty.

However, the probability that the system is empty is extremely low, which will cause

a server which is technically dynamic to behave instead as a static server. This effect

continues (although to a lesser extreme) for the rest of the dynamic servers.

Observation 6.6. For the dual threshold policy, a certain number of dynamic servers

will behave as static servers. Furthermore, the lower the value of k, the larger this set

of servers will be.

This observation can be further seen in the upper range of CS in Figure 6.12-(c) for

k = 1. One may expect (as was seen in other figures) the expected energy cost to

increase linearly for higher values of CS. This is due to noting that for higher CS

values these servers will be highly under utilized, and therefore each server will add

101

Thesis - Vincent Maccio McMaster - Software Engineering

its idling cost to the overall energy cost. However, for CS > 75 the expected en-

ergy cost is almost flat. This is again due to the fact that these servers which are

now explicitly added to the set of static servers were in a sense implicitly already there.

While the observation that the set of static servers is for all intents and purposes

larger than CS is an interesting one, it may be unappealing from an implementation

standpoint. That is, it is harder to predict or determine how the system will actually

behave. The decision variable CS does not describe what it is meant to. Therefore,

while the bulk setup policy has an unappealing setup criteria for implementation, it

also has a more predictable behaviour with regards to the decision variables. This is

the reason for the third policy analysed in this work - the staggered threshold policy

attempts to incorporate the positive aspects of the bulk setup and dual threshold

policies.

102

Thesis - Vincent Maccio McMaster - Software Engineering

(c) C = 100, λ = 50, µ = 1, γ = 0.1 (d) C = 100, λ = 50, µ = 1, γ = 0.1, with
larger k

(e) C = 50, λ = 25, µ = 1, γ = 0.1 (f) C = 50, λ = 25, µ = 1, γ = 0.1, with larger
k

(g) C = 20, λ = 10, µ = 1, γ = 0.1 (h) C = 20, λ = 10, µ = 1, γ = 0.1, with larger
k

Figure 6.9: Expected response time vs CS for γ = 0.1

103

Thesis - Vincent Maccio McMaster - Software Engineering

(c) C = 100, λ = 50, µ = 1, γ = 0.1 (d) C = 100, λ = 50, µ = 1, γ = 0.1, with
larger k

(e) C = 50, λ = 25, µ = 1, γ = 0.1 (f) C = 50, λ = 25, µ = 1, γ = 0.1, with larger
k

(g) C = 20, λ = 10, µ = 1, γ = 0.1 (h) C = 20, λ = 10, µ = 1, γ = 0.1, with larger
k

Figure 6.10: Expected energy consumption rate vs N∗ for γ = 0.1

104

Thesis - Vincent Maccio McMaster - Software Engineering

(c) C = 100, λ = 50, µ = 1, γ = 0.01 (d) C = 100, λ = 50, µ = 1, γ = 0.01, with
larger k

(e) C = 50, λ = 25, µ = 1, γ = 0.01 (f) C = 50, λ = 25, µ = 1, γ = 0.01, with
larger k

(g) C = 20, λ = 10, µ = 1, γ = 0.01 (h) C = 20, λ = 10, µ = 1, γ = 0.01, with
larger k

Figure 6.11: Expected response time vs CS for γ = 0.01

105

Thesis - Vincent Maccio McMaster - Software Engineering

(c) C = 100, λ = 50, µ = 1, γ = 0.01 (d) C = 100, λ = 50, µ = 1, γ = 0.01, with
larger k

(e) C = 50, λ = 25, µ = 1, γ = 0.01 (f) C = 50, λ = 25, µ = 1, γ = 0.01, with
larger k

(g) C = 20, λ = 10, µ = 1, γ = 0.01 (h) C = 20, λ = 10, µ = 1, γ = 0.01, with
larger k

Figure 6.12: Expected energy consumption rate vs N∗ for γ = 0.01

106

Thesis - Vincent Maccio McMaster - Software Engineering

(c) C = 100, λ = 50, µ = 1, γ = 0.001 (d) C = 100, λ = 50, µ = 1, γ = 0.001, with
larger k

(e) C = 50, λ = 25, µ = 1, γ = 0.001 (f) C = 50, λ = 25, µ = 1, γ = 0.001, with
larger k

(g) C = 20, λ = 10, µ = 1, γ = 0.001 (h) C = 20, λ = 10, µ = 1, γ = 0.001, with
larger k

Figure 6.13: Expected response time vs CS for γ = 0.001

107

Thesis - Vincent Maccio McMaster - Software Engineering

(c) C = 100, λ = 50, µ = 1, γ = 0.001 (d) C = 100, λ = 50, µ = 1, γ = 0.001, with
larger k

(e) C = 50, λ = 25, µ = 1, γ = 0.001 (f) C = 50, λ = 25, µ = 1, γ = 0.001, with
larger k

(g) C = 20, λ = 10, µ = 1, γ = 0.001 (h) C = 20, λ = 10, µ = 1, γ = 0.001, with
larger k

Figure 6.14: Expected energy consumption rate vs CS for γ = 0.001

108

Thesis - Vincent Maccio McMaster - Software Engineering

6.6.3 Staggered Threshold

The numerical results are completed with the staggered threshold policy. As discussed

in Section 6.4, this policy aims to capture the predictability and stability of the bulk

setup policy, while having a much more appealing implementation. The first thing

of note is that in general these graphs look similar to those seen in Section 6.6.1.

While it is true that both policies turn servers off when they idle, it should be obvious

that the staggered nature of turning servers on makes the system slower to adapt to

waiting jobs or bursts of traffic. However, the majority of the observations made for

the bulk setup policy also hold here. One notable difference between these policies is

that the response time does not decrease as close to linearly here as it did in the bulk

setup results. Figure 6.17 is a good example of this, in contrast to Figure 6.5.

Observation 6.7. The overall shape of the E[R] and E[E] curves with respect to the

decision variables is relatively insensitive to using the bulk setup or staggered threshold

policies.

Arguably the most important similarity to that of the bulk setup policy is the presence

of the aforementioned “sweet spot” in the energy curves. That is, the expected rate of

energy consumption often has a minimum relatively close to ρ+
√
ρ, where ρ = λ/µ,

for many of the energy curves. It should be noted that for some of the energy curves

with large values of k, such as Figure 6.16-(d), while the minimum is actually at CS,

the value at ρ+
√
ρ is still only a slight increase in value of the minimum. Therefore,

for all the experiments conducted, it holds that ρ+
√
ρ is a reasonable choice for CS

with regards to energy costs. However, by inspection it is clear to see this is also

a good choice for CS from a performance standpoint. This will be shown later in

this section. Moreover, inspecting the choice of k for this value of CS leads to an

109

Thesis - Vincent Maccio McMaster - Software Engineering

interesting implication.

Observation 6.8. The expected energy costs for the bulk setup and staggered threshold

policies are decreasing in k.

Reviewing Figures 6.16, 6.18, and 6.20 one will note that for all fixed values of CS the

expected energy cost is decreasing in k. That is, the longer the system is willing to

wait before turning servers on, the lower the energy costs will be. This is an intuitive

result, but perhaps not obvious. Consider the following fallacious argument. If k is

large, the system could be faced with a situation where there are a lot of jobs in the

system by the time the next server turns on, which will cause a greater number of

servers to be turned on in the short run. Due to this large number of servers now

on, the system will quickly clear out all of the current jobs. Jobs departing from the

system due to dynamic servers being turned on will now cause static servers to become

idle where they otherwise may have been busy, thus incurring a higher expected energy

cost. However, from the numerical results it can be seen that this is not the case (at

least for the parameters examined). The reason the energy costs are lower for higher

values of k is that dynamic servers are less likely to “thrash”. For example, if a server

begins its setup when there is one job waiting (k = 1), it will incur an initial setup

cost in the short run that it may otherwise not for a larger value of k, but it may

also quickly clear the job out, switch off, and then find itself in the same situation of

one job waiting to be served in the near future. This causes multiple setup cycles to

occur to deal with a set of jobs which a higher value of k may deal with using only a

single setup or potentially without any setups at all. Due to a lower number of server

setups for a higher value of k, the expected energy cost is strictly lower. Therefore,

if energy costs are the only concern, one should choose the highest possible value of

110

Thesis - Vincent Maccio McMaster - Software Engineering

k. But a higher value of k could have a (potentially disastrous) negative impact on

performance. However, leveraging the previous observation for a reasonable choice for

CS, i.e. CS = ρ+
√
ρ, this may not be the case. Viewing Figures 6.15, 6.17, and 6.19

one notes that around CS = ρ +
√
ρ the expected response time is quite insensitive

to the choice of k. Therefore, the largest possible value of k should be chosen. Since

there is no restriction on the ceiling of k, one should let k → ∞. But if that is

the case, the system degenerates to the well known M/M/CS queueing system where

CS = ρ+
√
ρ.

Observation 6.9. For all parameter configurations examined here, for both the ex-

pected response time and expected energy costs, the degenerate solution of using an

M/M/CS queue is near-optimal for some CS around ρ+
√
ρ.

While perhaps at first this is a disappointing result, since it implies energy costs can-

not be saved, it gives an elegant and simple solution to what appears on the surface

to be a complex problem. It is argued that for linear cost functions the bulk setup

policy is a reasonable approximation of the optimal policy. However, the bulk setup

turn on scheme (and in turn the bulk setup policy) hinges on interruptible setups and

exponentially distributed setup times. Therefore, in turn, the staggered threshold

policy is analysed. It is found that an M/M/CS queue is close to optimal for both

of these policies. Thus, it is argued that an M/M/CS is close to optimal across all

potential policies for some CS. Again, this gives rise to a simple solution which is

easy to implement.

These results would suggest that near-optimal control of these multiserver systems

can be achieved with a single decision variable, CS. Moreover, the choice of CS is

111

Thesis - Vincent Maccio McMaster - Software Engineering

solely dependent on ρ. In other words, to have a near-optimal system, one need

only concern themselves with accurately determining λ and µ (and not potentially

complicated setup and turn off criteria). Such a solution offers an additional benefit.

Researchers often choose to incorporate the expected rate of switching (how often

servers turn on/off) to capture the wear-and-tear cost of the hardware [9, 46, 51]. It

immediately follows that this cost metric is trivially minimized when only a static

allocation of servers is employed (no switching occurs). Therefore, any well-formed

cost function including the expected rate of switching also agrees with the degenerate

solution.

The argument of an M/M/CS queue being a near-optimal solution is further rein-

forced by revisiting Observation 6.8 in more detail. Observation 6.8 tells us that to

minimize the expected energy cost, the best choice of k is the largest value of k, or

k = 30 if limited to the choice of the experimental parameters. But if the system

is stable, specifically if the system has approximately ρ +
√
ρ static servers, what is

the physical interpretation of such a large value for k? Clearly, the probability that

there are greater than n jobs in the system for the model, is less than or equal to

the probability that there are greater than n jobs in an M/M/CS queue. That is,

P (N > n) < P (NM/M/CS
> n), where NM/M/CS

is a random variable denoting the

number of jobs in an M/M/CS queue, and CS < C. But using CS = dρ +
√
ρe = 58

and C = 100, one can do a quick calculation to find that P (N > 87) ≈ 0.0023. In

other words, if k = 30, at least 434 jobs out of 435 will not cause the first dynamic

server to begin its setup process when they arrive. Furthermore, approximately only

1 job out of every 44,000 has a chance of initiating the setup process of the second

112

Thesis - Vincent Maccio McMaster - Software Engineering

dynamic server when it arrives. Therefore, the physical interpretation that larger

values are a good choice for k corresponds to saying the system should not utilize its

dynamic servers, but instead be statically provisioned.

This simple solution, while derived from a mathematical model, agrees with practical

results from real-world policies. As an example, in [22] the authors note that dynamic

capacity management policies are too quick to turn idle servers off. Examining Fig-

ures 6.3-6.20 reinforces this notion via analysis. One can quickly observe that not

having a reasonable number of static servers (say 40 and below for these particular

experiments) results in a punishing lose-lose scenario.

113

Thesis - Vincent Maccio McMaster - Software Engineering

(c) C = 100, λ = 50, µ = 1, γ = 0.1 (d) C = 100, λ = 50, µ = 1, γ = 0.1, with
larger k

(e) C = 50, λ = 25, µ = 1, γ = 0.1 (f) C = 50, λ = 25, µ = 1, γ = 0.1, with larger
k

(g) C = 20, λ = 10, µ = 1, γ = 0.1 (h) C = 20, λ = 10, µ = 1, γ = 0.1, with larger
k

Figure 6.15: Expected response time vs CS for γ = 0.1

114

Thesis - Vincent Maccio McMaster - Software Engineering

(c) C = 100, λ = 50, µ = 1, γ = 0.1 (d) C = 100, λ = 50, µ = 1, γ = 0.1, with
larger k

(e) C = 50, λ = 25, µ = 1, γ = 0.1 (f) C = 50, λ = 25, µ = 1, γ = 0.1, with larger
k

(g) C = 20, λ = 10, µ = 1, γ = 0.1 (h) C = 20, λ = 10, µ = 1, γ = 0.1, with larger
k

Figure 6.16: Expected energy consumption rate vs CS for γ = 0.1

115

Thesis - Vincent Maccio McMaster - Software Engineering

(c) C = 100, λ = 50, µ = 1, γ = 0.01 (d) C = 100, λ = 50, µ = 1, γ = 0.01, with
larger k

(e) C = 50, λ = 25, µ = 1, γ = 0.01 (f) C = 50, λ = 25, µ = 1, γ = 0.01, with
larger k

(g) C = 20, λ = 10, µ = 1, γ = 0.01 (h) C = 20, λ = 10, µ = 1, γ = 0.01, with
larger k

Figure 6.17: Expected response time vs CS for γ = 0.01

116

Thesis - Vincent Maccio McMaster - Software Engineering

(c) C = 100, λ = 50, µ = 1, γ = 0.01 (d) C = 100, λ = 50, µ = 1, γ = 0.01, with
larger k

(e) C = 50, λ = 25, µ = 1, γ = 0.01 (f) C = 50, λ = 25, µ = 1, γ = 0.01, with
larger k

(g) C = 20, λ = 10, µ = 1, γ = 0.01 (h) C = 20, λ = 10, µ = 1, γ = 0.01, with
larger k

Figure 6.18: Expected energy consumption rate vs CS for γ = 0.01

117

Thesis - Vincent Maccio McMaster - Software Engineering

(c) C = 100, λ = 50, µ = 1, γ = 0.001 (d) C = 100, λ = 50, µ = 1, γ = 0.001, with
larger k

(e) C = 50, λ = 25, µ = 1, γ = 0.001 (f) C = 50, λ = 25, µ = 1, γ = 0.001, with
larger k

(g) C = 20, λ = 10, µ = 1, γ = 0.001 (h) C = 20, λ = 10, µ = 1, γ = 0.001, with
larger k

Figure 6.19: Expected response time vs CS for γ = 0.001

118

Thesis - Vincent Maccio McMaster - Software Engineering

(c) C = 100, λ = 50, µ = 1, γ = 0.001 (d) C = 100, λ = 50, µ = 1, γ = 0.001, with
larger k

(e) C = 50, λ = 25, µ = 1, γ = 0.001 (f) C = 50, λ = 25, µ = 1, γ = 0.001, with
larger k

(g) C = 20, λ = 10, µ = 1, γ = 0.001 (h) C = 20, λ = 10, µ = 1, γ = 0.001, with
larger k

Figure 6.20: Expected energy consumption rate vs CS for γ = 0.001

119

Chapter 7

Aysmptotic Performance

While past chapters (mainly Chapters 5 and 6) studied the model under general pa-

rameters (no constraints on C, λ, µ, and γ), it is often insightful to analyse stochastic

models under an asymptotic regime, i.e. analysing the system’s limiting behaviours.

This typically includes allowing certain parameters to approach infinity, or the system

to approach instability (from the stable side). In turn, certain asymptotic regimes run

the risk of trivializing the model in question, and granting no additional insight. For

example, an energy-aware system under a heavy-load asymptotic regime (ρ→ 1 from

below), has its optimal policy degenerate to a “keep all servers on all the time” policy.

This follows from the observation that the steady state probability that any server is

idle approaches zero under such a regime.

There are however, asymptotic regimes which do grant insight. Consider an energy-

aware system under a fixed-load, many-server asymptotic regime. Here the number of

servers approaches infinity (C → ∞) while the load remains fixed on some constant

(ρ = λ/(Cµ)). It is not obvious what an optimal policy would behave like under this

120

Thesis - Vincent Maccio McMaster - Software Engineering

regime for a given cost function, or if such a regime eases analysis. This is because

there are an infinite number of servers which in practical terms are not needed, and

therefore have the possibility of incurring infinite (unnecessary) energy costs. More-

over, due to the availability of these servers, the potential for the system to thrash

cannot be ignored. For example, consider the case where a significantly large number

of jobs accumulates in queue causing a large portion of these servers to be switched

on. This then causes an over provisioning of processing power, which strongly pushes

back on the accumulating jobs causing many servers to turn off which are usually busy.

Having many servers turn off in the short run could cause a significantly large number

of jobs to build up in the system and the cycle repeats. Therefore, this fixed-load,

many-server regime offers non-trivial challenges, while potentially easing analysis.

Whereas in Chapter 6 the analysis produced results under a wide range of cost func-

tions (identifying situations where E[R] and E[E] are both close to their minimum

values), this chapter looks to extend this generalization to a wide range of policies.

Before this is done however, it is important to note that while in Chapter 6 E[E]

denoted the expected excess energy cost (due to convenience), for the remainder of

this chapter E[E] will again denote the expected total energy cost (again, this is done

due to convenience of future analysis). With that small consideration out of the way,

two classes of policies are defined below.

Definition 7.1. Class A Policy: A policy is said to be a Class A policy if the

following conditions are met:

1. Server setups are invoked following a threshold scheme.

2. A server will never turn off if there is a job which it could be processing.

121

Thesis - Vincent Maccio McMaster - Software Engineering

Before the second class of policies is given, another definition must first be introduced.

Because this work examines energy-aware systems as C →∞ it may be the case that

while a policy gives a criterion to turn on some server s, the probability of this

criterion being met approaches 0. Therefore to reason about these cases, and others,

the following framework is introduced. Let XE(s, t) be an indicator function such that

XE(s, t) =


1, if server s is in energy state E at time t,

0, otherwise,

where E ∈ {off, setup, idle, busy}. Then it is said that s is an always E server if and

only if as t → ∞, P (XE(s, t) = 1) → 1. As an example, if a server s has a criterion

which turns it on and it is known that the server will always eventually turn off, but

the probability that the turn on criterion is met approaches 0 as t → ∞, s would

be called an always off server, since as t → ∞, P (Xoff (s, t) = 1) → 1. With these

notions in mind the second class of policies is defined as follows.

Definition 7.2. Class B Policy: A policy is said to be a Class B policy if the

following conditions are met:

1. It is a Class A policy.

2. There exists an α < 1 such that the number of always idle servers is less than

(1− ρ)Cα.

3. For all n1 and n2, if a server s turns off when there are n1 servers on and n2

jobs in the system, then while there are at least n1 servers on, s will not begin

its setup until there are at least n2 + 1 jobs in the system.

122

Thesis - Vincent Maccio McMaster - Software Engineering

The second condition for Class B policies states that the number of servers which

are always idle cannot be on the same order as the total number of servers. The

third condition protects against known suboptimal behaviour (and is necessary for

the proof), see Theorem 5.3. That is, it is never the case that when a server switches

off it immediately begins its setup process. It is worth noting that most policies

studied in the literature are Class B policies, i.e. the policies of focus in [14, 15, 16,

20, 38, 42, 56, 58, 61, 66] are all Class B policies. The sets of Class A and Class B

policies are denoted by ΠA and ΠB respectively, and furthermore, for a specific policy

π, E[Rπ] and E[Eπ] denote the expected response time and expected energy costs

under policy π, respectively.

Theorem 7.1. All policies in ΠA are asymptotically optimal with regards to expected

response time. In other words, given an energy-aware system, for any πa ∈ ΠA, as

λ,C →∞ and λ/(µC) is fixed to be ρ, where 0 < ρ < 1, E[Rπa]→ 1/µ.

While perhaps surprising at first, such a result becomes intuitive as one considers the

details of the system behaviour. Informally, there is a significant proportion of jobs

which are served immediately on arrival, and therefore a significant proportion of jobs

have a response time equal to their service time. And while it is true that some jobs

will have to wait to be served, whether it be for a server to complete a job or finish

a setup, the number of these jobs turns out to be negligible under the asymptotic

regime. It is worth noting that Theorem 7.1 would not necessarily hold for policies

which turned servers off while there are waiting jobs that could be processed. On the

other hand, belonging to ΠA is not necessary for minimizing the expected response

time. With optimal policies now known for E[R], the focus shifts to the second cost

metric, E[E]. Recall that E[EJ] denotes the expected energy cost for a single job, and

123

Thesis - Vincent Maccio McMaster - Software Engineering

furthermore, E[EJ,π] denotes the expected energy cost for a single job under policy π.

Theorem 7.2. All policies in ΠB are asymptotically optimal with regards to expected

energy cost. In other words, given an energy-aware system, for any πb ∈ ΠB, as

λ,C → ∞ and λ/µC is fixed to be ρ, where 0 < ρ < 1, E[Eπb]/λ → E[EJ,πb] →

EBusy/µ.

Corollary 7.1. All Class B policies are asymptotically optimal under any well-formed

cost function.

The optimality result for the expected energy cost is arguably more surprising than

the result for the expected response time. One may have the intuition that some of

these policies would regularly have an infinite number of servers in a specific energy

state, such as setup, which would in turn incur an infinite amount more cost than

some other policy. For example, one policy may regularly have an infinite number of

servers in setup, while another may instead have an infinite number of servers idle.

Considering these two policies, it may be fair to think one would incur infinitely more

cost than the other, which makes the notion of these policies being equivalent under

all cost functions difficult to wrap one’s mind around. While this line of thinking

is not contradicted by Theorem 7.2, it does say that focusing on details of servers

which do spend a certain amount of time in setup or idling is a misleading way to

think about these systems. In other words, under the asymptotic regime, although

there are an infinite number of servers idle and/or in setup under many policies, the

probability of a server being idle or in setup is zero. On the other hand, the proba-

bility of a server being off or busy is one. That is, the number of servers which are

always busy and off is on the order of C; whereas the number of servers which are idle

124

Thesis - Vincent Maccio McMaster - Software Engineering

or in setup is on some order less than C, albeit still potentially infinite. One possi-

ble example would be the case where the number of servers idle is on the order of
√
C.

As will be seen in Section 7.1 and Appendix C, reasoning about the energy cost from

the perspective of the servers, as was seen in (4.2), results in complexities which are

washed away when the energy costs are viewed from the perspective of the jobs, i.e.

E[E] = λE[EJ]. Once these observations are made, these seemingly complex systems

become simple to reason about.

The most significant implication of Theorems 7.1 and 7.2 is that under the asymptotic

regime the trade-off between E[R] and E[E] is in fact not a trade-off at all. That is,

not only are both cost metrics minimized across a large set of policies, but over all

well-formed cost functions. This is a powerful result, since if a system is close to this

asymptotic regime, then a manager can confidently employ a Class B policy knowing

that it will be reasonably close to optimal. Of course this begs the question, what

does it mean for a system to be close to the system of study? This work addresses

this question by numerically inspecting energy-aware systems with a finite number

of servers C, to see how quickly the cost metrics approach their bounds described in

Theorems 7.1 and 7.2.

7.1 Numerical Experiments

All numerical experiments presented here are done for an energy-aware system employ-

ing a staggered threshold policy, with a specific instantiation of its decision variables

k, and CS. See Section 6.4 for details of the policy and method of analysis.

125

Thesis - Vincent Maccio McMaster - Software Engineering

(a) γ = 0.1 (b) γ = 0.001

Figure 7.1: Expected response time vs C for λ = C/2, µ = 1

The purpose of these numerical experiments is firstly to ensure that exact analysis

agrees with the results pertaining to the system under the asymptotic regime, and

secondly to examine how quickly the system approaches the corresponding optimal

behaviour as the parameters are appropriately scaled up.

Figure 7.1 shows the behaviour of E[R] as the system is scaled up. A preliminary

observation is that for the curves where CS = 0, the corresponding value of E[R] can

be far from optimal even for large values of C. As an example, the curve where k = 3

and CS = 0 in Figure 7.1-(a) is more than double that of the optimal value even for

the largest values of C analysed. And perhaps even worse than that, the curves where

CS = 0 have extremely slow convergence rates. On the other hand, one may also note

that when CS = ρC, E[R] becomes reasonably close to its optimal value relatively

quickly. This effect is accentuated further in Figure 7.1-(b), where the setup times

126

Thesis - Vincent Maccio McMaster - Software Engineering

are large. Here, all curves which share the same choice of CS are visually grouped

together, and moreover, when CS = 0 the expected response time can be far from

optimal even for larger values of C. But the curves which have a number of servers

which are forced to be on, i.e. CS = ρC, gets much closer to the minimum value.

In other words, the convergence rate is sensitive to the choice of CS, while relatively

insensitive to the threshold value k, especially when setup times are large. Forcing

the system to have a number of servers always on, where the number always on equals

ρC, causes the system to more quickly approach its minimum expected response time.

The appealing choice of forcing λ/µ = ρC servers to always remain on is interesting,

since as can be seen in Appendix C, the number of servers which are always busy

approaches λ/µ = ρC under the asymptotic regime. In other words, when the system

parameters are finite, setting CS = ρC forces the system to behave in a manner in

which it is known to behave under the asymptotic regime. As such, it is intuitive that

when the system is constrained to invoke certain asymptotic behaviour, i.e. CS = ρC,

the corresponding values of E[R] are closer to values which would be seen under the

asymptotic regime.

Shifting focus to the expected energy costs per job and Figures 7.2 (a) and (b), a

similar trend regarding the choice of CS is seen. That is, when CS is forced to take

on the value it practically approaches under the asymptotic regime, E[EJ] gets closer

to its optimal value. Here plotting the expected energy cost on a per job basis allows

one to clearly see how the system is becoming more efficient as the parameters are

scaled up. This is in contrast to viewing the total expected energy cost as seen in

127

Thesis - Vincent Maccio McMaster - Software Engineering

(a) Expected energy cost per job vs C, γ = 0.1 (b) Expected energy cost per job vs C, γ = 0.001

(c) Expected energy cost vs C, γ = 0.1 (d) Expected energy cost vs C, γ = 0.001

Figure 7.2: Expected energy cost and expected energy cost per job vs C for λ = C/2,

µ = 1

Figure 7.2 (c) and (d). Here one in fact sees that the curves are diverging from their

lower bound. At first this may seem to be a direct contradiction of Theorem 7.2 due

to the observed divergence, but this is not the case. While it is true that the differ-

ence between the expected energy costs and the optimal value is getting larger, it is

important to remember that the lower bound itself is also growing with the system

128

Thesis - Vincent Maccio McMaster - Software Engineering

parameters, specifically λ. In other words, as C →∞ the difference between the en-

ergy costs and lower bound is growing to infinity, but is growing sub-linearly. At the

same time, the lower bound is growing to infinity linearly. Therefore, the difference

between the expected energy cost and the lower bound, while infinite, becomes neg-

ligible when compared to the total cost. One of the key insights that looking at the

per job expectations of the energy cost grants under this scaling, is that a divergence

from the lower bound of the total expected energy cost does not imply suboptimality,

specifically under the asymptotic regime.

Another aspect of these systems which warrants attention, is how sensitive the con-

vergence rate is to the load. This is seen in Figure 7.3. Examining the load’s effect on

the expected response time, one can observe that when the setup times are relatively

short, the convergence rate is relatively insensitive to choice of load. Furthermore,

the most sensitive parts of the curves are when the load is light or heavy, especially

in Figure 7.3 (b) where the setup times are longer. This makes some intuitive sense,

since when the loads are light or heavy the system is more likely to exhibit behaviour

that is not described by the asymptotic regime. When the load is light, the system

has a significant chance to be empty, and in turn has a significant chance to have the

minimum number of servers on. When jobs arrive it begins to overcompensate with

more setups than are needed and the servers begin to thrash. On the other hand

when the system load is high there is a significant chance that there will be more

than C jobs in the system. So even if all servers were on, jobs would still have to

wait. Having many servers regularly thrashing, or having more jobs in the system

than servers are two characteristics which are never exhibited by a system under the

129

Thesis - Vincent Maccio McMaster - Software Engineering

asymptotic regime. Therefore, it is intuitive that a system under light or heavy loads

would be slower to exhibit asymptotic behaviour than a system with a medium load.

With this sensitivity in mind, one can still clearly note that the previous observation

regarding having ρC servers always on induces the asymptotic behaviour to occur

sooner. The only curve not to agree with this notion is the case where k = 2 and

CS = 0 in Figure 7.3 (c). In this case the system is approaching the minimum value

E[EJ] i.e. EBusy/µ, slightly quicker than the curves where CS = ρC. This is a product

of the servers thrashing, causing most jobs to see the system when many other jobs

are present and therefore little energy is wasted, but is only achieved at the cost of

a significant increase in E[R], and therefore this configuration would not be suggested.

Overall the numerical experiments offer favourable results. That is the optimality of

policies belonging to the set ΠB can be seen in systems with a finite number of servers

relatively quickly. Moreover, modern data-centres have a number of servers on the

order of tens of thousands (likely on the order of hundreds of thousands for tech giants

such as Google, Amazon, etc.). The experiments ran here were only for values on the

order of hundreds (due to computational constraints). Therefore, one could apply this

observation to a practical setting with a reasonable degree of confidence. Further still,

this static provisioning around ρC to induce asymptotic behaviour strongly agrees

with the key observations from Chapter 6. That is, in Chapter 6 for it was seen that

for systems with a finite number of servers, a static provisioning around ρC +
√
ρC

was near optimal for both metrics. But of course as C gets large ρC +
√
ρC and ρC

become approximately equal relatively quickly.

130

Thesis - Vincent Maccio McMaster - Software Engineering

(a) Expected response time vs ρ, γ = 0.1 (b) Expected response time vs ρ, γ = 0.001

(c) Expected energy cost per job vs ρ, γ = 0.1 (d) Expected energy cost per job vs ρ, γ = 0.001

Figure 7.3: Expected response time and expected energy cost per job vs ρ for C = 500,

µ = 1

131

Chapter 8

Conclusion

Energy consumption of modern day data-centres is immense, and growing. One of

the primary concerns when dealing with these systems is when should one turn an

idle server off (to attempt to save operating costs) and when should one then turn

that server back on (to improve system performance). Due to uncertainties such as

when will the next job arrive, how long will it take to process, how long will a server

take to turn on, etc., these aforementioned questions are far from trivial to answer.

This work presented an established model and identified several difficulties and po-

tential shortcomings regarding its analysis. That is, due to the range of system

parameters and choice of cost function, making claims on policies can be problematic,

and making strong claims such as: a policy π is optimal under all well-formed cost

functions seems impossible. To address these issues, this thesis took a three-pronged

approach.

132

Thesis - Vincent Maccio McMaster - Software Engineering

Firstly, using Markov decision processes (MDPs) the structure of the optimal pol-

icy was studied. Providing formal proofs of these structural results allowed for an

exclusion of policies which were now immediately known to always be suboptimal.

Secondly, from this now smaller set of policies, three further families of policies were

defined and analysed, i.e. Bulk Setup, Dual Threshold, and Staggered Threshold.

From an exact analysis, a suite of numerical experiments were conducted granting

several key insights. Of these insights, arguably the two most important are 1) that

scenarios exist where E[R] and E[E] are simultaneously close to their corresponding

minimums, and 2) that while policies may seem to be quite different by definition,

their overall behaviour can be quite similar (see Bulk Setup and Staggered Thresh-

old). Lastly, to explore this observation of policies behaving similarly, the model is

analysed under a fixed-load, many-server asymptotic regime, where C →∞, λ→∞,

while λ/(Cµ) is fixed. Here, it is formally proven that a large set of policies, including

the vast majority which are studied in the literature, become equivalent and optimal

under this regime. Numerical studies verified these results, and also granted insights

into how to induce these optimality results sooner.

8.1 Future Work

As is often the case with research, providing results and solving problems gives rise

to even more questions; this thesis is no exception. There are many fruitful directions

future research could take. Perhaps the most obvious is the relaxation of model as-

sumptions. For example, while interarrival times being exponentially distributed is a

justifiable assumption (this follows from an analytic result showing as the number of

mutiplexed renewal processes increases, the aggregate process weakly converges to a

133

Thesis - Vincent Maccio McMaster - Software Engineering

Poisson process [28]). The imposed assumption on the service and setup times also

being exponentially distributed is more difficult to justify. Service times have been

studied to often times be heavy tailed, and typical experience can contradict expo-

nentially distributed turn on times.

Of course, these assumptions were made for analytic tractability, which begs the ques-

tion, what can one do assuming general distributions rather than exponential? At the

risk of sounding pessimistic, the hope of performing an exact analysis on the model

is minimal (if not completely gone). This intuition follows from the fact that much

simpler queueing models with general distributions still remain to be solved, e.g. the

M/G/1 queue. However, some things can still be done. Of course one could always

fall back on simulation to empirically verify if the observations offered in this thesis

still hold with the distributional assumptions relaxed. But other options exist as well,

specifically, if the setup times are allowed to follow an arbitrary distribution, while

exact analysis may still be challenging, it is the author’s opinion that the asymptotic

performance results could be extended under a further restriction to the set of poli-

cies. That is, if a subset of Class B policies were to be defined, say Class C policies,

where each arriving job could cause at most a finite number of servers to enter setup,

then there is a strong hope that Theorem 7.2 would still hold; of course, the devil is

in the details.

There is also intuition that some of the structural properties should still hold as well.

Specifically, there is no obvious reason that general distributions for both the ser-

vice and setup times would now cause one to want to turn a server off while there

134

Thesis - Vincent Maccio McMaster - Software Engineering

are jobs in the system. The immediate challenge is that the proof of this structural

property is built around renewal arguments which exploit the memoryless property

of the exponential distribution. However, one may be able to cleverly choose certain

system states of which a cycle still qualifies as a renewal process. For example, again

assume that service times are exponentially distributed while setup times are arbitrar-

ily distributed. Here, any state which does not have servers in setup is memoryless.

Furthermore, because server setups are interruptible, the only time one would want

to consider turning a server off is in a state where no servers are currently in setup.

Therefore, it would stand that a similar proof may exist for a model with generally

distributed setup times.

While relaxing the assumptions on the underlying distributions may be an obvious

next step, there is another assumption which is somewhat more subtle. When defining

the expected energy cost, E[E], it is assumed that the cost is linear in the number

of servers in certain states. As an example, if a two-server system has one server off

and one server in setup, and another two-server system has both servers in setup, the

current energy cost of the latter would be twice that of the former. This at first seems

like a fair assumption. However, it may not be. It is true that the energy used by

these systems is likely close to linear in the number of servers in setup, but the energy

cost could be highly non-linear. That is, energy providers charge more for clients who

are using more energy at a given time. This has many interesting implications to how

management of these systems could change. As an example, putting multiple servers

into setup (such as in the bulk setup policy), may be incredibly unappealing compared

to putting servers into setup one at a time. From the analytic side of things, again,

135

Thesis - Vincent Maccio McMaster - Software Engineering

relaxing such an assumption would be challenging. To make the model as general as

possible one could define E[E] abstractly, and assume that it is monotonically increas-

ing in the number of busy, idle, and setup servers. Exact analysis becomes difficult if

this is done, but some structural properties may still hold. Moreover, if one imposed

a ceiling on the energy cost (for instance, the maximum rate which a provider would

charge) the asymptotic performance may also be extendable. One instant benefit of

abstracting the definition of E[E] is that the model can exactly capture the behaviour

of speed scaling models (discussed in Chapter 3) by appropriately instantiating the

definition of E[E] and letting γ →∞.

Moving past relaxing assumptions and looking at further analysis which could be per-

formed on the model as is, is also interesting. One issue that exists in these systems,

but is rarely ever addressed, is that of fairness. As an example, consider an energy-

aware system with a single server which turns the server off the moment it idles and

begins turning it on when ten jobs are waiting in the queue. It is completely reason-

able for a policy such as this to be optimal for some set of system parameters and

cost function. Furthermore, such a policy could also have reasonable performance, i.e.

E[R] may be close to 1/µ. However, consider the differing experiences of a job which

arrives to an empty system, and one which arrives to a system where the server is on.

The job arriving to an empty system not only has to wait for the setup process of

the server, but also has to wait for nine more jobs to arrive to the system before that

setup process even begins. From the assumption that λ < µ, this implies that job will

expect to wait at least 9/µ (perhaps much longer), whereas lucky jobs like the one

arriving to a system where the server is already on, could wait much less time. It is

136

Thesis - Vincent Maccio McMaster - Software Engineering

true that in all stochastic models some jobs will have a better experience than others,

due to uncertainty, but here it seems these effects may be exaggerated. As such, this

issue of vastly different response times (which may also be seen quite frequently), may

deserve some attention.

One popular criticism of the model (and ones similar to it) is the arrival rate is con-

stant, whereas in practice data-centres historically experience heavier and lighter loads

throughout the day. This is a well known open question in the community. However,

it is the author’s opinion that if the change in arrival rate is on a slow enough time

scale, say hours, while other system parameters/events are on the order of seconds

or less (interarrival time, service times, setup times), then the observations provided

in this work are still applicable, but may need to be updated on the aforementioned

macro time scale.

It is clear that there is no shortage of potential directions this research can take,

and hopefully the material presented in this section has highlighted some of those

directions. Having said that, the results provided in this work are substantial, novel,

and insightful. Using higher level theoretical approaches this work developed, derived,

and presented conclusions that are practical to timely real world issues.

137

Bibliography

[1] Source code. http://www.cas.mcmaster.ca/~macciov/publications.html.

Accessed: 2016-03-01.

[2] I. Ahmed and S. Ranka. Handbook of Energy-Aware and Green Computing - Two

Volume Set. CRC Press, 2016.

[3] A. Allahverdi, C. Ng, T. Cheng, and M. Y. Kovalyov. A survey of scheduling

problems with setup times or costs. European Journal of Operational Research,

187(3):985–1032, 2008.

[4] J. R. Artalejo. A unified cost function for M/G/1 queueing systems with remov-

able server. Trabajos de Investigacion Operativa, 7(1):95–104, 1992.

[5] L. A. Barroso and U. Holzle. The case for energy-proportional computing. Com-

puter, 40(12):33–37, 2007.

[6] A. Beloglazov, J. Abawajy, and R. Buyya. Energy-aware resource allocation

heuristics for efficient management of data centers for cloud computing. Future

Generation Computer Systems, 28(5):755 – 768, 2012.

[7] M. Callau-Zori, L. Arantes, J. Sopena, and P. Sens. MERCi-MIsS: Should I turn

138

http://www.cas.mcmaster.ca/~macciov/publications.html

Thesis - Vincent Maccio McMaster - Software Engineering

off my servers? In Distributed Applications and Interoperable Systems, pages

16–29, 2015.

[8] M. Caramia and S. Giordani. Resource allocation in grid computing: An eco-

nomic model. WSEAS Transactions on Computer Research, 3(1):19–27, 2008.

[9] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and N. Gautam.

Managing server energy and operational costs in hosting centers. SIGMETRICS

Performance Evaluation Review, 33(1):303–314, 2005.

[10] M. Elahi and C. Williamson. Autoscaling effects in speed scaling systems. In

2016 IEEE 24th International Symposium on Modeling, Analysis and Simulation

of Computer and Telecommunication Systems (MASCOTS), pages 307–312, Sept

2016.

[11] M. Elahi, C. Williamson, and P. Woelfel. Decoupled speed scaling: Analysis and

evaluation. Performance Evaluation, 73:3 – 17, 2014. Special Issue on the 9th

International Conference on Quantitative Evaluation of Systems.

[12] EPA. Report to congress on server and data center energy efficiency. Technical

report, U.S Environmental Protection Agency, 2007.

[13] S. W. Fuhrmann and R. B. Cooper. Stochastic decompositions in the M/G/1

queue with generalized vacations. Operations Research, 33:1117–1129, 1985.

[14] A. Gandhi, S. Doroudi, M. Harchol-Balter, and A. Scheller-Wolf. Exact analysis

of the M/M/k/setup class of Markov chains via recursive renewal reward. In

ACM SIGMETRICS, 2013.

139

Thesis - Vincent Maccio McMaster - Software Engineering

[15] A. Gandhi, V. Gupta, M. Harchol-Balter, and M. A. Kozuch. Optimality anal-

ysis of energy-performance trade-off for server farm management. Performance

Evaluation, 67(11):1155–1171, 2010.

[16] A. Gandhi and M. Harchol-Balter. M/M/k with exponential setup. Technical

report, Carnegie Mellon University, 2010.

[17] A. Gandhi and M. Harchol-Balter. How data center size impacts the effectiveness

of dynamic power management. In 2011 49th Annual Allerton Conference on

Communication, Control, and Computing (Allerton), 2011.

[18] A. Gandhi and M. Harchol-Balter. M/G/k with staggered setup. Operations

Research Letters, 41(4):317 – 320, 2013.

[19] A. Gandhi, M. Harchol-Balter, and I. Adan. Decomposition results for an

M/M/K with staggered setup. SIGMETRICS Performance Evaluation Review,

38(2):48–50, Oct. 2010.

[20] A. Gandhi, M. Harchol-Balter, and I. Adan. Server farms with setup costs.

Performance Evaluation, 67(11):1123–1138, 2010.

[21] A. Gandhi, M. Harchol-Balter, and M. A. Kozuch. Are sleep states effective

in data centers? In Proceedings of the 2012 International Green Computing

Conference (IGCC), IGCC ’12, pages 1–10, Washington, DC, USA, 2012. IEEE

Computer Society.

[22] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A. Kozuch. Autoscale:

Dynamic, robust capacity management for multi-tier data centers. ACM Trans-

actions on Computer Systems, 30(4):14:1–14:26, Nov. 2012.

140

Thesis - Vincent Maccio McMaster - Software Engineering

[23] M. E. Gebrehiwot, S. Aalto, and P. Lassila. Optimal sleep-state control of energy-

aware M/G/1 queues. In 8th International Conference on Performance Evalua-

tion Methodologies and Tools, 2014.

[24] M. E. Gebrehiwot, S. Aalto, and P. Lassila. Energy-aware control of server

farms. In 2016 39th International Convention on Information and Communica-

tion Technology, Electronics and Microelectronics (MIPRO), pages 748–753, May

2016.

[25] M. E. Gebrehiwot, S. Aalto, and P. Lassila. Energy-aware server with SRPT

scheduling analysis and optimization. In Lecture notes in computer science, pages

107–122, 2016.

[26] M. E. Gebrehiwot, S. Aalto, and P. Lassila. Energy-performance trade-off for

processor sharing queues with setup delay. Operations Research Letters, 44(1):101

– 106, 2016.

[27] D. Gross and C. M. Harris. Fundamentals of Queueing Theory. Wiley-

Interscience, Third edition, 1998.

[28] M. Harchol-Balter. Performance Modeling and Design of Computer Systems:

Queueing Theory in Action. Cambridge University Press, 2013.

[29] P. G. Harrison, N. M. Patel, and W. J. Knottenbelt. Energy–performance trade-

offs via the EP queue. ACM Transactions on Modeling and Performance Evalu-

ation of Computing Systems, 1(2):6:1–6:31, June 2016.

[30] M. Hassan and M. Atiquzzaman. A delayed vacation model of an M/G/1 queue

141

Thesis - Vincent Maccio McMaster - Software Engineering

with setup time and its application to SVCC-based ATM networks. IEICE Trans-

actions on Communications, pages 317–323, 1997.

[31] J. Hu and T. Phung-Duc. Power consumption analysis for data centers with

independent setup times and threshold controls. In AIP, 2015.

[32] E. Hyytiä and R. Righter. Fairness through linearly increasing holding costs in

systems of parallel servers with setup delays. In 2015 27th International Tele-

traffic Congress, pages 143–151, Sept 2015.

[33] E. Hyytiä, R. Righter, and S. Aalto. Energy-aware job assignment in server farms

with setup delays under LCFS and PS. In 2014 26th International Teletraffic

Congress (ITC), pages 1–9, Sept 2014.

[34] E. Hyytiä, R. Righter, and S. Aalto. Task assignment in a heterogeneous server

farm with switching delays and general energy-aware cost structure. Performance

Evaluation, 75:17 – 35, 2014.

[35] D. L. Iglehart. Limiting diffusion approximations for the many server queue and

the repairman problem. Journal of Applied Probability, 2(2):429–441, 1965.

[36] L. Kleinrock. Queueing Systems, volume One. Wiley-Interscience, 1975.

[37] J. Koomey. Growth in data center electricity use 2005 to 2010. A report by

Analytical Press, completed at the request of The New York Times, http://

www.analyticspress.com/datacenters.html, 2011.

[38] P. J. Kuehn and M. E. Mashaly. Automatic energy efficiency management of

data center resources by load-dependent server activation and sleep modes. Ad

Hoc Networks, 25(2):497–504, 2015.

142

http://www.analyticspress.com/datacenters.html
http://www.analyticspress.com/datacenters.html

Thesis - Vincent Maccio McMaster - Software Engineering

[39] Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. H. Andrew. Greening geograph-

ical load balancing. In the ACM SIGMETRICS Joint International Conference

on Measurement and Modeling of Computer Systems, SIGMETRICS, pages 233–

244, 2011.

[40] V. J. Maccio. On optimal policies for energy-aware servers. Master’s thesis,

McMaster University, 2013.

[41] V. J. Maccio and D. G. Down. Asymptotic performance of energy-aware mul-

tiserver queueing systems with setup times. Technical Report CAS-16-05-DD,

Department of Computing and Software, McMaster University.

[42] V. J. Maccio and D. G. Down. Exact analysis of energy-aware multiserver queue-

ing systems with setup times. Technical Report CAS-16-01-DD, Department of

Computing and Software, McMaster University.

[43] V. J. Maccio and D. G. Down. On optimal control for energy-aware queueing sys-

tems. Technical Report CAS-15-05-DD, Department of Computing and Software,

McMaster University.

[44] V. J. Maccio and D. G. Down. On optimal policies for energy-aware servers. In

the IEEE 21st International Symposium on Modeling, Analysis and Simulation

of Computer and Telecommunication Systems (MASCOTS), pages 31–39, 2013.

[45] V. J. Maccio and D. G. Down. On optimal control for energy-aware queueing

systems. In 27th International Teletraffic Congress (ITC 27), pages 98–106, 2015.

[46] V. J. Maccio and D. G. Down. On optimal policies for energy-aware servers.

Performance Evaluation, 90:36 – 52, 2015.

143

Thesis - Vincent Maccio McMaster - Software Engineering

[47] V. J. Maccio and D. G. Down. Exact analysis of energy-aware multiserver queue-

ing systems with setup times. In 2016 IEEE 24th International Symposium on

Modeling, Analysis and Simulation of Computer and Telecommunication Systems

(MASCOTS), pages 11–20, Sept 2016.

[48] M. J. Magazine. On optimal control of multi-channel service systems. Naval

Research Logistics Quarterly, 18(2):429–441, 1971.

[49] M. Mazzucco and D. Dyachuk. Optimizing cloud providers revenues via energy

efficient server allocation. Sustainable Computing: Informatics and Systems,

2(1):1–12, 2012.

[50] I. Mitrani. Managing performance and power consumption in a server farm.

Annals of Operations Research, 202(1):121–134, 2013.

[51] T. H. Nguyen, M. Forshaw, and N. Thomas. Operating policies for energy efficient

dynamic server allocation. Electronic Notes in Theoretical Computer Science,

318:159–177, 2015.

[52] D. Paul, W. D. Zhong, and S. K. Bose. Energy efficient scheduling in data centers.

In 2015 IEEE International Conference on Communications (ICC), pages 5948–

5953, June 2015.

[53] Y. Peng, D. K. Kang, F. Al-Hazemi, and C. H. Youn. Energy and QoS aware re-

source allocation for heterogeneous sustainable cloud datacenters. Optical Switch-

ing and Networking, Preprint, 2016.

144

Thesis - Vincent Maccio McMaster - Software Engineering

[54] T. Phung-Duc. Multiserver queues with finite capacity and setup time. In Ana-

lytical and Stochastic Modelling Techniques and Applications: 22nd International

Conference, pages 173–187, 2015.

[55] T. Phung-Duc. Single-server systems with power-saving modes. In Analytical

and Stochastic Modelling Techniques and Applications: 22nd International Con-

ference, pages 158–172, 2015.

[56] T. Phung-Duc. Exact solutions for M/M/c/setup queues. Telecommunication

Systems, 64(2):309–324, 2017.

[57] T. Phung-Duc. Single server retrial queues with setup time. Journal of Industrial

and Management Optimization, 13(3):1329–1345, 2017.

[58] T. Phung-Duc and K. Kawanishi. Energy-aware data centers with s-staggered

setup and abandonmen. In Analytical and Stochastic Modelling Techniques and

Applications: 23rd International Conference, pages 269–283, 2016.

[59] M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. Wiley-Interscience, 2005.

[60] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs. Cutting the

electric bill for internet-scale systems. ACM SIGCOMM Computer Communica-

tion Review, 39(4):123–134, 2009.

[61] Y. Ren, T. Phung-Duc, J. C. Chen, and Z. W. Yu. Dynamic auto scaling algo-

rithm (DASA) for 5G mobile networks. In Global Communications Conference

(GLOBECOM), pages 1–6, 2016.

145

Thesis - Vincent Maccio McMaster - Software Engineering

[62] D. R. Smith and W. Whitt. Resource sharing for efficiency in traffic systems.

Bell System Technical Journal, 60(1):39–55, 1981.

[63] N. Tian and Z. G. Zhang. A two threshold vacation policy in multiserver queueing

systems. European Journal of Operational Research, 168(1):153–163, 2006.

[64] N. Tian and Z. G. Zhang. Vacation Queueing Models - Theory and Applications.

Springer Science, 2006.

[65] A. Wierman, L. L. H. Andrew, and A. Tang. Power-aware speed scaling in

processor sharing systems: Optimality and robustness. Performance Evaluation,

69(12):601–622, Dec. 2012.

[66] X. Xu and N. Tian. The M/M/c queue with (e, d) setup time. Journal of Systems

Science and Complexity, 21(3):446–455, 2008.

[67] M. Yajima and T. Phung-Duc. Batch arrival single-server queue with variable

service speed and setup time. Queueing Systems, pages 1–20, 2017.

[68] B. Yang, Z. Li, S. Chen, T. Wang, and K. Li. Stackelberg game approach for

energy-aware resource allocation in data centers. IEEE Transactions on Parallel

and Distributed Systems, 27(12):3646–3658, 2016.

146

Appendices

A Proofs for Theorems of Chapter 5

Before this work presents the proofs in Chapter 5, some notation must first be in-

troduced. Using the MDP given in (5.3) one can define the traditional optimality

equations as follows

w∗ + u(i, j,m) = min
a∈As

{w(i, j,m, a) + λu(i+ min(0, a), j + 1,m+ max(0, a))

+ (m+ max(0, a))γu(i+ min(0, a) + 1, j,m+ max(0, a)− 1)

+ min(j, (i+ min(0, a+m)))µu(i+ min(0, a), j − 1,m+ max(0, a))

+ [1− λ− (m+ min(0, a))γ − (i+ max(0, a))µ]

· u(i+ max(0, a), j,m+ min(0, a))} (1)

where w∗ is the optimal average cost. Similarly, the corresponding optimality equation

can be defined for the MDP given in (5.4).

w∗ + u(i, j) = min
a∈As

{w((i, j), a) + λu(i+ min(0, a), j + 1) + (max(0, a))γu(i+ 1, j)

+ min(j, (i+ min(0, a)))µu(i+ min(0, a), j − 1)

147

Thesis - Vincent Maccio McMaster - Software Engineering

+ (1− λ−min(0, a)γ − (i+ max(0, a))µ)u(i+ max(0, a), j)},

(2)

where w∗ again, is the optimal average cost. These equations are important specifically

to the proof of Theorems 5.5 and 5.6. With these definitions aside, the proofs of the

theorems presented in Chapter 5 are given.

A.1 Proof of Theorem 5.1

For simplicity of navigation Theorem 5.1 is restated.

Theorem 5.1. For all energy-aware systems, the optimal policy is a pure policy.

That is at every decision epoch, the optimal policy will never turn a non-zero number

of servers off and put a non-zero number of servers into setup.

Proof. This theorem is shown using a sample path argument, exploiting the fact that

a server consumes energy at a lesser rate while idle, than in setup. Consider a system

in state (i, j,m) which puts n1 servers into setup, and turns n2 servers off, where

0 < n1 ≤ (C − i − m) and 0 < n2 ≤ i. This would now put the system in state

(i − n2, j,m + n1) until the next decision epoch. If this behaviour can be shown to

always be suboptimal, then the theorem is proven. The following two cases show this

is indeed true.

In Case 1, suppose that n1 ≥ n2. The system could have used a pure setup strategy

by turning on n1 − n2 servers, putting the system in state (i, j,m + (n1 − n2)). It is

easy to see that u(i, j,m + (n1 − n2)) < u(i − n2, j,m + n1). This is due to the fact

that the mixed system (the system which simultaneously switches servers on and off)

148

Thesis - Vincent Maccio McMaster - Software Engineering

has n1 more servers in setup than the system that only performs server setups as its

current action. Although the pure setup strategy has n2 more servers on than the

mixed strategy, even in the worst case, (j ≤ i + n2), these servers will still incur a

lesser cost since the energy cost of idling is less than the energy cost of being in setup.

It is also noted that in the best case (j ≥ i+ n2), the extra n2 servers do not incur a

cost at all since the energy required to process jobs will be used eventually. Once the

next event occurs, the pure setup strategy can be changed back to a mixed strategy

to synchronize the two systems. As a result, the pure strategy (only server setups)

incurs lesser cost than the mixed strategy.

In Case 2, suppose that n1 < n2. As in Case 1, the system could have used a pure

strategy but instead of putting servers into setup, it could just turn (n2− n1) servers

off. This would put the system in state (i − (n2 − n1), j,m). Similar to Case 1, it

can be seen that u(i− (n2 − n1), j,m) < u(i− n2, j,m+ n1). The system employing

the mixed strategy has n1 extra servers in setup, while the system employing the

pure strategy has an extra n1 servers on. Again, even in the worst case of all of the

additional i servers being idle, the pure strategy is still preferred since idle servers

incur energy costs at a lower rate than those in setup. As for the previous case, the

two systems can then be synchronized at the next decision epoch, leading to a strictly

lesser cost for the pure strategy. Furthermore, the same arguments can be applied to

an interruptible energy-aware system which has a two dimensional state space.

149

Thesis - Vincent Maccio McMaster - Software Engineering

A.2 Proof of Theorem 5.2

For simplicity of navigation Theorem 5.2 is restated.

Theorem 5.2. For all energy-aware systems, for all well-formed cost functions, the

optimal policy is a threshold policy.

Proof. To prove that the optimal policy is a threshold policy three properties must

be shown. Firstly, optimal actions are always made the moment an event occurs.

Secondly, any benefit of turning off the ith server in state (i, j + 1,m) is also gained

by turning off the ith server in state (i, j,m). Lastly, any benefit gained by turning on

the (i+m+ 1)th server in state (i, j,m) is also gained by turning on the (i+m+ 1)th

server in state (i, j + 1,m).

The first property is an immediate consequence of all underlying distributions being

exponential. As such, the proof moves to the second property (the threshold nature

of the turn offs). This is shown via contraposition. That is, if it is optimal to keep

the ith server on in state (i, j), then it is also optimal to keep the ith server on in

state (i, j + 1), if and only if the second property holds.

Therefore, it is shown that any benefit which keeping the ith server on offers in state

(i, j,m) will also be offered in state (i, j+1,m). In fact, keeping the ith server on can

be even more beneficial in state (i, j + 1,m). Firstly, if the ith server could process

a job in state (i, j,m), then it can clearly process a job in state (i, j + 1,m) as there

are more jobs in the system. Secondly, if the server were to idle in anticipation of

a job arriving in state (i, j,m), then it could also idle in state (i, j + 1,m), with an

even higher probability that it will be utilized in the future since there are more jobs

150

Thesis - Vincent Maccio McMaster - Software Engineering

present. Lastly, there exists the case of j = i − 1, where in state (i, j,m) the server

would idle, while in state (i, j + 1,m) it would be able to process jobs. If however,

for whatever reason in state (i, j + 1,m) it would instead be better for the system

for the ith server to idle rather than process the job (to mimic its behaviour in state

(i, j,m)) this would also be an option. Therefore, any benefit (lesser cost incurred)

which keeping on the ith server on offers in state (i, j,m) is also present in state

(i, j + 1,m).

To show that the turn on criteria also follows a threshold policy is slightly more com-

plex, since unlike turn offs, setups do not happen instantaneously. As such a sample

path argument is used to show that if it is optimal to turn on a server in state (i, j,m),

then it is also optimal to turn said server on in state (i, j + 1,m).

Consider two energy-aware systems, S1 = S2 = (C, λ, µ, γ), where S1 is in state

(i, j,m) and S2 is in state (i, j + 1,m). Furthermore, with the exception of the extra

job in S2, assume all future and current job sizes, setup times, and job arrival times

to be the same in both systems. Assume S1 employs an optimal policy and in state

(i, j,m) it begins to turn on the (i+m+ 1)th server. S2 uses a policy which behaves

as follows:

• S2 dynamically marks any job that begins to or is currently being processed in

S1, as well as the extra job which was initially present

• All servers in S2 will only process a job if it is marked, and will immediately

begin to process any marked job which is waiting (a server will never turn off if

there is a marked job to be processed)

151

Thesis - Vincent Maccio McMaster - Software Engineering

• Each server in S2 (denoted by s2,i), dynamically inspects the corresponding

server in S1 (denoted by s1,i), and behaves according to the following conditions:

– If s2,i is off and s1,i enters setup, then s2,i immediately enters setup.

– If there are no marked jobs waiting to be processed in S2, s2,i is idle, and

s1,i is off, then s2,i turns off.

– If there are no marked jobs waiting to be processed in S2, s2,i is idle, and

s1,i is in setup, then s2,i remains idle.

Firstly, from this policy it is clear that there will never be more jobs in S1 than in S2,

as S2 is constrained to only process jobs which have been or are being processed by

S1. Secondly, because S1 is employing an optimal policy, when a server turns off in

S2 and no new jobs have arrived since the corresponding server turned off in S1, S2 is

performing an optimal action (the same number of jobs are present in S2 as there were

in S1 when the server was turned off). On the other hand, if more jobs have arrived

since the corresponding server in S1 turned off, knowing this future information, it

may have been optimal to keep the corresponding server in S1 on. Therefore, it would

now also be optimal to keep the server on in S2. However, since S1 is employing

an optimal policy the total cost incurred is less than the total cost saved by turning

the servers off. Moreover, it is never optimal to turn off a server in S2 but keep the

server on in S1 due to the threshold nature of turn offs. Thirdly, while S1 and S2 are

unsynchronized, the cost saved by turning on the (i+m+ 1)th server in S2 is greater

than or equal to the cost saved by turning on the (i+m+ 1)th server in S1. This is

due to the fact that in S2 the (i+m+ 1)th server will process at least the amount of

jobs it does in S1 (along with the potential to also process the extra marked job), and

152

Thesis - Vincent Maccio McMaster - Software Engineering

not incur any extra energy cost. The energy costs are less than or equal to those of S1

since as any server in S2 that idles in S1 also idles or is in setup (setup incurs energy

costs at a higher rate than idling). Lastly, S1 and S2 will synchronize once there are

no longer any marked jobs in S2 and all costs for the two systems moving forward will

be equal (optimal). Therefore the overall cost to turn on the (i + m + 1)th server in

state (i, j+ 1,m) is less than keeping it off, or in other words in state (i, j+ 1,m) it is

optimal to turn on the (i+m+ 1)th server. Furthermore, the same arguments can be

used for a interruptible energy-aware system with a two dimensional state space.

A.3 Proof of Theorem 5.3

For simplicity of navigation Theorem 5.3 is restated.

Theorem 5.3. For all non-interruptible energy-aware systems, if while in the state

(i− 1, j,m) it is optimal to begin turning a server on, then in state (i, j,m) it is sub-

optimal to turn a server off. Furthermore, for all interruptible energy-aware systems

if while in the state (i− 1, j) it is optimal to begin turning a server on, then in state

(i, j) it is suboptimal to turn a server off.

Proof. This proof is done via contradiction. Consider an energy-aware system where

it is assumed 1) that in state (i + 1, j,m + a − 1) it is optimal to turn a server

off and 2) that in state (i, j,m) the optimal action is to turn a servers on, where

0 < a ≤ C − i−m. If it is shown that these two assumptions are inconsistent, then

the theorem must hold. The second assumption implies that in state (i, j,m+ a− 1)

it is optimal to begin turning exactly one server on. Now consider the same system

in state (i+ 1, j,m+ a− 1). From the first assumption, this would immediately bring

the system to state (i, j,m + a − 1), and since in this state the optimal action is

153

Thesis - Vincent Maccio McMaster - Software Engineering

to turn a server on (as previously seen), a server would immediately be switched on

bringing the system to state (i, j,m + a). However, during that decision epoch the

optimal policy was not a pure policy (servers were switched off and put into setup at

the same time), which violates Theorem 5.1. Therefore, the optimal action in state

(i, j,m + a − 1) must be to do nothing, which implies that in state (i, j,m) turning

a servers on is suboptimal, which violates the assumption. Furthermore, the same

arguments can be applied to a two state interruptible energy-aware server.

A.4 Proof of Theorem 5.4

For simplicity of navigation Theorem 5.4 is restated.

Theorem 5.4. For all 0 ≤ i < (C − 1) and 0 ≤ j < (C − i− 1), k+
m+1,i ≤ k+

m,i+1, and

0 < i < C and 0 ≤ j ≤ (C − i), k−i,m+1 ≤ k−i+1,m and k−i,m ≤ k−i,m+1.

This proof shows each inequality, i.e. k+
m,i ≤ k+

m+1,i−1, k−i,m−1 ≤ k−i,m and k−i+1,m−1 ≤ k−i,m

for all valid m and i, by three individual lemmas. Before this is done however, a lemma

regarding optimal turn on decision timing is firstly shown.

Lemma A.1. It is optimal to begin turning on a server only at job arrival times.

Proof. Due to the Markovian nature of the system it is known that decisions are only

made the moment an event occurs. Events which can occur in the system are arrivals,

departures, a server turning on or a server turning off. Choosing to turn a server on

when another is turned off violates Theorem 5.1. Choosing to turn a server on at a

departure violates Theorem 5.2. Therefore to show the lemma, all that is required is

to show that it is suboptimal to turn a server on the moment another completes its

setup. Consider a system in some valid state (i, j,m) where j > 0 and i + m < C.

154

Thesis - Vincent Maccio McMaster - Software Engineering

Now assume that it just moved to state (i+ 1, j,m− 1) and the system immediately

starts a setup moving it to state (i+ 1, j,m). Also assume that this is a better choice

than doing nothing. If this were not a better choice, then this case would not need

to be considered. Now consider the system a moment before the server turned on (in

state (i, j,m)). If the server were employing a policy which turned on the next server

once the next setup completes, the energy cost the system incurs for the next two

setups is expected to be

(mESetup)/(mγ) + (mESetup)/(mγ) = 2ESetup/γ.

However, now consider the case (during the same moment before the setup completes)

where the system now decides to begin turning the next server on immediately. The

cost until the next two setups completes is now:

(m+ 1)ESetup
(m+ 1)γ

+
mESetup
mγ

=
2ESetup
γ

.

Therefore, the setup cost of the next two servers to turn on (which is assumed to be

beneficial to the system) is equal if the choice is made the moment before or after the

first setup completes. However, the expected time for the servers to complete their

setup is now less since the expected time for the first server to complete its setup is

reduced by:

1

mγ
− 1

(m+ 1)γ
.

Therefore the total cost is less when choosing to turn a server on before the setup

155

Thesis - Vincent Maccio McMaster - Software Engineering

completes. Due to the Markovian nature of the system, this implies that it would

have been better to make this decision at the most recent event. But due to the pre-

vious observations regarding the suboptimal nature of making setup decisions during

departures and server turn offs, it is known it would have been better to begin turning

the server on at the last arrival.

Lemma A.2. For all i,m such that 0 ≤ i < (m+ 1) ≤ C, k+
m+1,i ≤ k+

m,i+1.

Proof. This is proven via contradiction. Assume k+
m,i+1 > k+

m+1,i. This would create

a case where in state (i, k+
m,i,m− i) a server could complete its setup, and move the

system to state (i+ 1, k+
m,i,m− i− 1). Hence, because it is assumed k+

m,i+1 > k+
m+1,i,

another server will begin its setup. However, this violates Lemma A.1, therefore, the

assumption is false.

Lemma A.3. For all 0 < i < C and 0 ≤ m < (C − i), k−i,m+1 ≤ k−i+1,m.

Proof. Consider two systems S1 and S2 in valid states (i, j,m + 1) and (i + 1, j,m),

respectively. Now assume that in S1 it is optimal turn a server off. That is, the cost

of having the ith server on (energy, future state of other servers, etc.), is greater than

the cost of turning it off (holding cost, future state of other servers, etc.). Due to

this assumption, if it can be shown that: if by turning off a server in S2 it can incur

a lesser cost than S1, then it must also hold that it is optimal to turn a server off

in S2. Notice that S2 can mimic S1’s behaviour by doing the following. S2 turns off

the ith server and lets the (i + 1)th server idle. For the remainder of the proof, the

(i+1)th server in S1 is referred to as s1, and the (i+1)th server in S2 is referred to as s2.

Notice that there is exactly one more server in setup in S1 than in S2. Due to the

server homogeneity, this extra server in setup can be thought of as s1. From here

156

Thesis - Vincent Maccio McMaster - Software Engineering

one of two things can happen: s1 either completes its setup process, or has its setup

cancelled. When s1 completes its setup, S2 forces s2 to mimic the behaviour of s1

(idling, busy, etc.) and S1 and S2 are synchronized. Moreover, until S1 and S2 become

synchronized, the only difference in costs are those contributed by s1 and s2 (all other

servers are synchronized and no extra jobs arrive or depart). Therefore, because the

cost of idling s2 is less than the cost of having s1 in setup (ESetup > EIdle), by turning

the initial ith server off in S2, it can save even more cost than S1 does by turning off

the same server. And because it is assumed turning off a server is optimal in S1, it is

also optimal to turn a server off in S2. In others words, k−i,m+1 ≤ k−i+1,m.

Lemma A.4. For all 0 < i ≤ C and 0 ≤ j < C− i, and i+ j ≤ (C−1), k−i,j ≤ k−i,j+1.

Proof. The proof of this lemma is similar to that of Lemma A.3. That is, if it is optimal

to turn a server off in valid state (i, j,m), a system in valid state (i, j,m + 1) could

mimic the behaviour while incurring a lesser cost. Furthermore, since turning a server

off in (i, j,m) is optimal, it is also optimal in (i, j,m+1). Therefore k−i,m ≤ k−i,m+1.

Taking Lemma A.2, Lemma A.3, and Lemma A.4 together, Theorem 5.4 follows

immediately.

A.5 Proof of Theorem 5.5

For simplicity of navigation Theorem 5.5 is restated.

Theorem 5.5. For all energy-aware systems, for all linear well-formed cost functions,

if the number of jobs in the system is greater than or equal to the number of servers

currently turned on, it is always suboptimal to turn a server off, which is already on.

157

Thesis - Vincent Maccio McMaster - Software Engineering

Proof. The proof of this theorem is achieved via noting a contradiction in the opti-

mality equations of the MDP if the negation of the theorem is assumed to be true.

Note, that a linear well-formed cost function, i.e. E[R] + βE[E], is minimized when

one employs the optimal policy determined by the immediate cost function

w((i, j), a) = j + β[max(0, (i− j + min(0, a)))EIdle + max(0, a)ESetup].

As such, the above immediate cost function is assumed to be used for the remainder

of this proof. Assume that j ≥ i (there are at least as many jobs in the system as

there are servers on), and that it is optimal to turn a server off. From the optimality

equations, that is true if and only if u(i, j,−1) ≤ u(i, j, 0).

u(i, j,−1) ≤ u(i, j, 0)

⇔ w((i, j),−1)

+ λu(i− 1, j + 1) + (i− 1)µu(i− 1, j − 1) + [1− λ− (i− 1)µ]u(i− 1, j)

≤ w((i, j), 0) + λu(i, j + 1) + iµu(i, j − 1) + [1− λ− iµ]u(i, j)

⇔ j + λu(i− 1, j + 1) + (i− 1)µu(i− 1, j − 1) + [1− λ− (i− 1)µ]u(i− 1, j)

≤ j + λu(i, j + 1) + iµu(i, j − 1) + [1− λ− iµ]u(i, j)

⇔ λu(i− 1, j + 1) + (i− 1)µu(i− 1, j − 1) + [1− λ− (i− 1)µ]u(i− 1, j)

≤ λu(i, j + 1) + iµu(i, j − 1) + [1− λ− iµ]u(i, j) (3)

158

Thesis - Vincent Maccio McMaster - Software Engineering

It is noted that for all n and m, u(n,m) ≤ u(n− 1,m). This follows from noting that

in state (n,m) the system could always immediately turn a server off bringing it to

state (n− 1,m) without additional cost. Therefore, (3) implies

[1− λ− (i− 1)µ]u(i− 1, j) ≤ [1− λ− iµ]u(i, j) + µu(i, j − 1). (4)

While it is true that for all n and m, u(n,m) ≤ u(n− 1,m) something even stronger

can be said regarding u(i, j) and u(i − 1, j). Because it is assumed that it is better

to turn a server off in state (i, j) and that servers can turn off instantly it is known

u(i, j) = u(i− 1, j). Therefore, (4) implies

[1− λ− (i− 1)µ]u(i, j) ≤ [1− λ− iµ]u(i, j) + µu(i, j − 1)

−(i− 1)µu(i, j) ≤ −iµu(i, j) + µu(i, j − 1)

µu(i, j) ≤ µu(i, j − 1)

u(i, j) ≤ u(i, j − 1).

But this is a clear contradiction since it cannot be the case that a system with more

jobs in it can do just as well as a system with less jobs given all other things are equal.

For example, consider the sample path of the ith server idling with j − 1 jobs in one

system, while the ith server processes the jth job in the other.

A.6 Proof of Theorem 5.6

For ease of reading Theorem 5.6 is restated.

159

Thesis - Vincent Maccio McMaster - Software Engineering

Theorem 5.6. For all energy-aware systems, for all linear well-formed cost functions,

the optimal policy turns servers on following a bulk setup scheme.

Proof. As noted previously, a linear well-formed cost function, i.e. E[R] + βE[E], is

minimized when one employs the optimal policy determined by the immediate cost

function

w((i, j), a) = j + β[max(0, (i− j + min(0, a)))EIdle + max(0, a)ESetup].

As such, the above immediate cost function is assumed to be used for the remainder

of this proof. The strategy is to leverage the optimality equations of the MDP to

show the bulk setup nature of the optimal policy. It is assumed that in state (i, j) it

is better to have a servers in setup, where a > 0, rather than choose to do nothing.

The following inequality is then known from the optimality equations.

u(i, j, a) ≤ u(i, j, 0)

⇔ w((i, j), a) + λu(i, j + 1) + aγu(i+ 1, j) + min(i, j)µu(i, j − 1)

+ [1− λ− aγ −min(i, j)µ]u(i, j)

≤ w((i, j), 0) + λu(i, j + 1) + min(i, j)µu(i, j − 1) + [1− λ−min(i, j)µ]u(i, j)

⇔ aβESetup + aγu(i+ 1, j)− aγu(i, j) ≤ 0

⇔ βESetup

γ
≤ u(i, j)− u(i+ 1, j)

160

Thesis - Vincent Maccio McMaster - Software Engineering

This derivation can be expressed more succinctly as

u(i, j, a) ≤ u(i, j, 0) ⇔ βESetup

γ
≤ [u(i, j)− u(i+ 1, j)], (5)

for all valid actions a ≥ 0. Now consider the action of turning on all available servers.

If it can be shown that this option is at least as good as turning on an arbitrary choice

of a (when a ≥ 0), then the proof is complete. This is expressed mathematically as

follows.

u(i, j, C − i) ≤ u(i, j, a)

⇔ w(i, j, C − i) + λu(i, j + 1) + (C − i)γu(i+ 1, j) + min(i, j)µu(i, j − 1)

+ [1− λ− (C − i)γ −min(i, j)µ]u(i, j)

≤ w(i, j, a) + λu(i, j + 1) + aγu(i+ 1, j) + min(i, j)µu(i, j − 1)

+ [1− λ− aγ −min(i, j)µ]u(i, j)

⇔ (C − i− a)βESetup + (C − i− a)γu(i+ 1, j) ≤ (C − i− a)γu(i, j)

⇔ βESetup

γ
≤ u(i, j)− u(i+ 1, j)

This derivation can be expressed more succinctly as

u(i, j, C − i) ≤ u(i, j, a) ⇔ βESetup

γ
≤ [u(i, j)− u(i+ 1, j)],

161

Thesis - Vincent Maccio McMaster - Software Engineering

for all valid actions a. Then from (5)

u(i, j, C − i) ≤ u(i, j, a) ⇔ u(i, j, a) ≤ u(i, j, 0),

for all valid actions a ≥ 0. In other words, if it is optimal to turn at least one server

on, then it is optimal to turn all available servers on. Hence it is optimal to turn

servers on following a bulk setup scheme.

B Unused Formulations and Lemmas

As is often the case with research, some results although interesting, become less valu-

able as later observations are made. Here this work presents results which were used

in previous versions of the proofs found in Appendix A, but are no longer. However,

the reader or future researcher may find them valuable. As such, they are given in

full detail.

In addition to the traditional optimality equations (1) and (4), it is useful to also

define a set of constrained optimality equations defined as

w∗ + u(i, j,m, a) = C(i, j,m, a) + λu(i+ min(0, a), j + 1,m+ max(0, a))

+ (m+ max(0, a))γu(i+ min(0, a) + 1, j,m+ max(0, a)− 1)

+ min(j, (i+ min(0, a+m)))µu(i+ min(0, a), j − 1,m+ max(0, a))

+ [1− λ− (m+ max(0, a))γ − (i+ min(0, a))µ]

· u(i+ min(0, a), j,m+ max(0, a)),

162

Thesis - Vincent Maccio McMaster - Software Engineering

for the MDP given in (5.3), and

w∗ + u(i, j, a) = w((i, j), a) + λu(i+ min(0, a), j + 1) + max(0, a)γu(i+ 1, j)

+ min(j, (i+ min(0, a)))µu(i+ min(0, a), j − 1)

+ (1− λ−max(0, a)γ − (i+ min(0, a))µ)u(i+ min(0, a), j).

These equations follow the optimal actions (determined by the traditional optimality

equations), except at the first decision epoch, where the action is explicitly specified

as a. It will be seen that a proof of one of the lemmas aided through the use of these

equations.

While the above formulations are powerful in their own right, they deal with infinite

recursions and can be cumbersome for certain properties. Another tool can be em-

ployed however, which allows for reasoning about policies over finite time horizons

(and finite cost), while still retaining the optimal policy of the infinite time horizon

case. These corresponding finite costs are built around the renewal reward argument.

Let c(s) be the minimum ratio over all possible policies of the expected cost incurred

during a cycle of leaving and returning to state s and the expected time it takes to

complete that cycle. Formally this is defined as follows. Let Rπ,s be a random vari-

able denoting the reward (or cost) earned over a single cycle of state s under policy

π. A cycle of state s refers to the interval of time where the system begins in state s,

leaves that state, and then returns to it at some point in the future, which completes

the cycle. Furthermore, let Tπ,s be a random variable denoting the amount of time it

163

Thesis - Vincent Maccio McMaster - Software Engineering

takes to complete a cycle of s under policy π. Given the set of all policies Π, along

with these two random variables, c(s) can be defined as

c(s) = min
π∈Π

{
E[Rπ,s]

E[Tπ,s]

}
.

Here Rπ,s is interpreted as a cost, since the minimum is used. This is a convenient

definition since the renewal reward theorem can be applied. That is, if Rπ(t) denotes

the total reward/cost earned by time t under policy π, then for all states s

lim
t→∞

Rπ(t)

t
=

E[Rπ,s]

E[Tπ,s]
.

This gives the interpretation that c(s) is the rate at which the system gains reward/cost

under the optimal policy. This is true no matter which state s is chosen as the cycle

reference, or as it is referred to in the literature, as the renewal process [28]. Therefore

c(s) is independent from s, in other words, c(s) is a constant, and will be denoted

by c∗. Likewise, the ratio E[Rπ,s]/E[Tπ,s] is also independent from s and an arbitrary

state, say s = (CS, 0, 0) can be chosen as the cycle reference. It should be noted that

this does not say E[Rπ,s] and E[Tπ,s] do not depend on s, since they clearly do, but

rather that their ratio is independent of s. Therefore for all s and some specific policy

π, E[Rπ,s]/E[Tπ,s] equals a constant, denoted by cπ.

Similar to the constrained optimality equations, an extension c(s, a) is made to c∗.

The quantity c(s, a) is no longer the minimum ratio of the expected cost incurred and

expected cycle time over all policies, but rather the minimum ratio over all policies

which choose action a in state s. Formally, given the set of all stable policies which

164

Thesis - Vincent Maccio McMaster - Software Engineering

choose action a in state s, denoted by Πs,a,

c(s, a) = min
π∈Πs,a

{cπ}.

The values c(s, a) are referred to as the constrained cycle costs. Such a construction

is useful for several reasons, but perhaps the most important is that this construct

allows one to reason about cost functions which would not be feasible within the

MDP framework. For example, a popular cost function is the ERP, i.e. E[E]E[R].

This cost function cannot be used in an MDP, since the MDP is constrained to linear

cost functions, i.e. E[R] + βE[E]. However, from renewal analysis, it is known that

there must exist a random variable Rπ,s which denotes some reward gained over a

renewal cycle of state s under policy π, such that:

min
π∈Π

{
E[Eπ]E[Rπ]

}
= min

π∈Π

{
E[Rπ,s]

E[Tπ,s]

}
,

where Eπ and Rπ are random variables which denote the energy consumed and re-

sponse time under policy π, respectively.

Lemma B.1. For all valid states s and for all actions a ∈ As, a is an optimal action

in state s if and only if c(s, a) = c∗.

Proof. This result is proven via contradiction. Assume c(s, a) = c∗, but a is a subop-

timal action. That is, for all optimal policies π∗, π∗ is not present in the constrained

set of policies Πs,a. Therefore,

c(s, a) = min
π∈Πs,a

{cπ} > cπ∗ = c∗

165

Thesis - Vincent Maccio McMaster - Software Engineering

which implies c(s, a) > c∗ and contradicts the initial assumption.

Lemma B.2. Let S1 = (C, λ, µ, γ1) and S2 = (C, λ, µ, γ2) be such that γ1 > γ2 and

c1(·) and c2(·) denote the constrained cycle costs for S1 and S2 respectively. Then for

all valid states s and actions a, c1(s, a) < c2(s, a) for all well-formed cost functions.

Proof. Let S̃1 = (C, λ, µ, γ1) and S̃2 = (C, λ, µ, γ2) with the condition that they

also have identical probability spaces. That is, all interarrival and service times are

equal, and the setup times are generated from the same random variable. In other

words, letting random variables Γ1,i and Γ2,i denote the ith setup time in S̃1 and

S̃2 respectively, Γ1,i = Xi/γ1 and Γ2,i = Xi/γ2, where Xi ∼ exp(1). Using the

methodology in [62], and noting that Si and S̃i have the same underlying distributions,

if it can be shown that for any policy S̃2 employs, S̃1 can always do better with regards

to the metrics E[R] and E[E], then c1(s, a) < c2(s, a) for all well-formed cost functions.

Showing that S̃1 can always do better than S̃2 is straightforward. Assume S̃1 mimics

the behaviour of S̃2 in every way with the following exception: when the ith server

in S̃1 completes its setup before the ith server in S̃2 (which it is guaranteed to do),

it remains idle until the setup of the ith server in S̃2 either completes its setup or is

cancelled, at which point the ith server in S̃1 again begins to mimic its behaviour (by

either turning off, processing a job, or remaining idle). During this interval where

the servers are unsynchronized S̃1 incurs a lesser energy cost since EIdle < ESetup.

Therefore for all well-formed cost functions c1(s, a) < c2(s, a).

Lemma B.3. Given an energy-aware system, S = (C, λ, µ,−), where the absence

of a setup rate denotes instant setup times, for all well-formed cost functions, it is

optimal to have the number of servers on be equal to the number of jobs in the system,

whenever possible. Formally, in state (i, j), a = min(C, j)− i.

166

Thesis - Vincent Maccio McMaster - Software Engineering

Proof. This policy is shown to simultaneously minimize the expected energy cost and

the expected response time. The lowest energy cost which can be incurred is the

energy required to process all the jobs. This is the energy cost incurred in the policy

where a = min(C, j)− i, since here a server is never idle, or in setup (as setup times

are 0). Therefore, under the proposed policy, the expected energy costs are minimized.

It is a similar story with the expected response time. It is known that the mean

response time is minimized when jobs are either served immediately if the number of

jobs in the system is less than C, and a job is waiting in the queue if and only if all C

servers are busy processing other jobs. This is also true for the action a = min(C, j)−i,

since due to the instant turn on times, jobs never wait in the queue, unless all servers

are currently busy.

Lemma B.4. Given two energy-aware systems S1 = (C, λ, µ, γ) and S2 = (C, λ, µ,−),

where the absence of a setup rate denotes instant setup times, and where π∗ is an

optimal policy for S2, if Cπi denotes some cost for Si employing policy π, then as

γ →∞, Cπ∗1 → Cπ
∗

2 .

Proof. Consider two energy-aware systems S1 = (C, λ, µ, γ1), where 1/γ1 = ε and

S2 = (C, λ, µ,−), where the absence of a setup rate denotes instant setup times. Let

π∗ be the policy described in Lemma B.3. From Lemma B.3 it is known that π∗ is an

optimal policy for S2. It will be shown that as ε→ 0, π∗ is also an optimal policy for

S1.

Firstly, it must be shown that the metrics which make up the cost function, holding

167

Thesis - Vincent Maccio McMaster - Software Engineering

costs and energy costs, are continuous in ε, specifically around 0. This is done by

looking directly at the expected reward/cost and cycle time for the cycle equations of

S1 under π∗ and how they compare to the corresponding values in S2.

Since at the moment, individual metrics are of concern, the reward/cost function

will be defined as one of these metrics. Firstly the rate of energy consumption is

considered. Letting the cost function simply be the energy metric, by definition:

c∗2 =
E[E2,π∗,s]

E[T2,π∗,s]
,

where the subscript 2 denotes the values corresponding to S2, E is a random variable

denoting the total energy cost across the cycle of s, s = (0, CS, 0) and CS denotes the

number of servers which always remain on. Now if it can be shown that as ε → 0,

E[E1,π∗,s] → E[E2,π∗,s] and E[T1,π∗,s] → E[T2,π∗,s] then the expected rate of energy

consumption is continuous in the expected setup time around 0. Looking at the

energy consumed over a single cycle one can bound the expected energy consumed by

S1 below and above.

E[E2,π∗,s] ≤ E[E1,π∗,s] ≤

E[E2,π∗,s] + εE[Ns]Esetup + (1− E[P (Ns)])E[CE(Ns)|X = 1]

+ E[P (Ns)]E[CE(Ns)|X = 0], (6)

where Ns is a random variable denoting the number of server setups before completing

a cycle of state s in S2. The third and fourth terms require a little more explanation.

Because there are turn on times in S1, the expected extra amount of time it takes to

168

Thesis - Vincent Maccio McMaster - Software Engineering

turn the servers on not only adds directly, but could cause another job to arrive to

the system before it returns to state (0, CS, 0). These terms represent the additional

cost incurred in this case. While there could be servers setting up concurrently, in

the worst case the cycle time is increased by Ns consecutive setups. However, if the

Ns setups were all able to complete before a new job arrives to the system, this case

of causing a potential new cycle to start would be avoided. The random variable X is

an indicator variable which equals one if no new cycle is caused, and zero otherwise.

P (n) is a function which equals the probability of n consecutive server setups finishing

before a new job arrives. Explicitly,

P (n) =

(
1/ε

1/ε+ λ

)n
.

One minus P (n) represents the probability that a job would arrive before these setups

finish. In other words, S1 does not complete the cycle where S2 would have. CE(Ns)

denotes all the added energy costs that starting a new cycle would add given there

were Ns setups, including any consequent cycles which the new cycle may cause to

occur. However, since the change in setup times has no impact on stability, CE(Ns)

must be finite.

There are a few things to note about (6). Firstly, given that no extra cycles occur,

clearly the expected additional extra energy cost is equal to zero, i.e.

E[P (Ns)]E[CE(Ns)|X = 0] = 0.

Secondly, P (n) is convex in n. Therefore, when applied to a random variable such as

169

Thesis - Vincent Maccio McMaster - Software Engineering

Ns, from Jensen’s inequality it is known that,

P (E[Ns]) ≤ E[P (Ns)]⇒ (1− E[P (Ns)]) ≤ (1− P (E[Ns]))

Due to this inequality, (6) becomes,

E[E2,π∗,s] ≤ E[E1,π∗,s] ≤ E[E2,π∗,s] + εE[Ns]ESetup +

(
1− 1/ε

1/ε+ λ

)E[Ns]

E[CE(Ns)].

(7)

From inspection of (7) it can be seen that as ε→ 0, E[E1,π∗,s]→ E[E2,π∗,s].

To show that the expected rate of energy consumption is continuous in the expected

setup times around 0, it remains to show that as ε → 0, E[T1,π∗,s] → E[T2,π∗,s]. The

argument for this is very similar to that used when dealing with the expected energy

consumption rate. Again bounds are developed, with the previous observations on

(6) already applied.

E[T2,π∗,s] ≤ E[T1,π∗,s] ≤ E[T2,π∗,s] + εE[Ns] +

(
1− 1/ε

1/ε+ λ

)E[Ns]

E[CT (Ns)], (8)

where CT (Ns) denotes the extra time added if S1 were to fail completing a cycle due

to the added setup times, where S2 would not, given Ns setups occurred. Again this

term is finite due to the stability of the system. From inspection of (8), as ε → 0,

E[T1,π∗,s] → E[T2,π∗,s]. Therefore, if the cost function is total energy cost, then as

ε→ 0, c∗1 → c∗2, and π∗ is the optimal policy for S1.

170

Thesis - Vincent Maccio McMaster - Software Engineering

Since all well-formed cost functions are composed of the expected response time, as

well as expected energy cost, to show that all cost functions are continuous in ε around

0, all that remains to show is that the holding costs are also continuous in ε around

0. The holding cost being continuous implies the mean number of jobs is continuous,

which implies the mean response time is continuous. Here it is assumed that the cost

function is simply the holding cost. Then by definition:

c∗2 =
E[H2,π∗,s]

E[T2,π∗,s]
,

where H is a random variable denoting the holding cost incurred over a cycle of s.

Using the previous observation on (6), bounds for the expected holding costs can be

developed.

E[H2,π∗,s] ≤ E[H1,π∗,s]

≤ E[H2,π∗,s] + εE[Na] +

(
1− 1/ε

1/ε+ λ

)E[Ns]

E[CH(Ns)], (9)

where Na is a random variable denoting the number of jobs which arrive during a cycle,

and CH(Ns) denotes the amount of holding cost incurred if a cycle is not completed in

S1 where it otherwise would have been in S2, given Ns setups occurred. Similar to pre-

vious arguments, CH is finite. From inspection of (9), as ε→ 0, E[H1,π∗,s]→ E[H2,π∗,s].

Therefore, if the cost function is the rate at which holding costs are incurred, then

as ε → 0, c∗1 → c∗2, and π∗ is the optimal policy for S1. Putting this together with

the previous result that π∗ is the optimal policy for the expected energy cost, it can

be concluded that for S1, as ε → 0, π∗ is the optimal policy for all well-formed cost

functions.

171

Thesis - Vincent Maccio McMaster - Software Engineering

C Proofs of Theorems of Chapter 7

Here the proofs of Theorems 7.1 and 7.2 are presented in detail. Before this can be

done however, some preliminary material, which is used throughout the proofs, must

first be defined and presented. Consider the following three sequences of systems with

0 < ρ < 1:

1. Let S1 be a sequence of n energy-aware queueing systems, where the ith energy-

aware queueing system is given by S1,i = (C1,i, λ1,i, µ1,i, γ1,i), which employs

some policy πi ∈ ΠA, where (∀i s.t. 0 < i ≤ n : µ1,i = 1, C1,i = i, and

λ1,i/C1,i = ρ), and as n→∞, λ1,n →∞.

2. Let S2 be a sequence of n M/M/C queues, where the ith M/M/C queue is

denoted by S2,i = (C2,i, λ2,i, µ2,i), where (∀i s.t. 0 < i ≤ n : µ2,i = 1, C2,i = i,

and λ2,i/C2,i = ρ), and as n→∞, λ2,n →∞.

3. Let S3 be a sequence of n M/M/C queues, where the ith M/M/C queue is

denoted by S3,i = (C3,i, λ3,i, µ3,i), where (∀i s.t. 0 < i ≤ n : µ3,i = 1 and

C3,i = λ3,i + (λ3,i)
0.5+ε), where 0 < ε < 0.5, and as n→∞, λ3,n →∞.

In order to compare and reason about these systems, let it also hold that: (∀i s.t. 0 <

i ≤ n : λ1,i = λ2,i = λ3,i = λi). Note that imposing such a constraint implies that

(∀i s.t. 0 < i ≤ n : C1,i = C2,i = Ci). In other words, the arrival rates of the systems

across all three sequences are equal, and the total number of servers in the systems

of sequences 1 and 2 are also equal.

Let B1,i, B2,i, and B3,i denote the number of always busy servers in the ith system of

sequence S1, S2, and S3 respectively. This work now provides a Lemma which is key

172

Thesis - Vincent Maccio McMaster - Software Engineering

to understanding the behaviours of these energy-aware systems under the asymptotic

regime.

Lemma C.1. Given a sequence of energy-aware systems where each system employs a

policy π ∈ ΠA, Cn, λn, and µn denote the number of servers, arrival rate, and service

rate of the nth system respectively, and as n → ∞, λn, Cn → ∞ while λn/(µnCn) is

fixed to some ρ, where 0 < ρ < 1, it holds that for the number of always busy servers

in the nth system denoted by Bn,

lim
n→∞

Bn

λ
=

1

µ
.

Proof. Without loss of generality one can set µ = 1. Therefore, to show Lemma C.1,

it is equivalent to prove

lim
n→∞

B1,n

λn
= 1.

This is done via a sample path argument regarding the sequences S1 and S2. Consider

the systems S1,n and S2,n as n → ∞. At any point in time the number of servers

currently available (on and idle) in S1,n is less than or equal to the number of servers

available in S2,n. This follows from the fact that S1,n may have some of its Cn servers

off or in setup, while S2,n has Cn servers on at all times. Therefore, taking the same

arrival stream and job sizes for both systems, the number of jobs in S2,n is less than or

equal to the number of jobs in S1,n. Therefore, if s is busy in S2,n, then s has enough

workload to also be busy in S1,n, but may not be busy due to it being switched off or

in setup. Therefore, if s is an always busy server in S2,n, then s has enough workload

to be always busy in S1,n. However, as S1,n is employing a policy from ΠA, specifically,

from the second condition in the definition of Class A policies it is known a server

173

Thesis - Vincent Maccio McMaster - Software Engineering

will never turn off if there is work to do, and from the first condition a server will

eventually turn on from the threshold scheme, it follows that almost surely the servers

which can be always busy, will be always busy. That is to say, if s is an always busy

server in S2,n, then s is an always busy server in S1,n. Therefore,

lim
n→∞

B1,n ≥ lim
n→∞

B2,n. (10)

Furthermore, it is known that

lim
n→∞

B2,n

λn
= 1.

This is shown via the following argument. Let N2,i(t) denote the number of jobs in

the system S2,i at time t, and let a corresponding diffusion-scaled process be denoted

by N̂2,n(t), where

N̂2,n(t) =
N2,n(t)− nρ
√
nρ

.

From Theorem 4.1 in [35] it can be seen that as n→∞, N̂2,n(t) weakly converges to

an Ornstein-Uhlenbeck process, and therefore, at each time point t as n→∞, N̂2,n(t)

is normally distributed. After some elementary algebra,

N2,n(t) = N̂2,n(t)
√
λn + λn ⇒ N2,n(t)

λn
=
N̂2,n(t)√

λn
+ 1.

Because as n → ∞, N̂2,n(t) is normally distributed with finite mean and variance,

limn→∞ N̂2,n(t)/
√
λn = 0. This immediately implies,

N2,n(t)

λn
= 1.

Moreover, one can say that as n→∞ if there are almost surely at least x jobs in the

174

Thesis - Vincent Maccio McMaster - Software Engineering

system at all time points t, then as n → ∞ there are at least x always busy servers

at all time points t. Therefore,

lim
n→∞

Nn(t)

λn
= 1 ⇒ lim

n→∞

B2,n

λn
≥ 1.

After realizing this property of S2, one can begin examining the implication on the

behaviour of S1. Specifically, from (10) it is known,

lim
n→∞

B2,n

λn
≥ 1 ⇒ lim

n→∞

B1,n

λn
≥ 1.

Hence all that remains to show Lemma C.1 is to prove

lim
n→∞

B1,n

λn
≤ 1.

This follows immediately however, after the observation that

lim
n→∞

B1,n

λn
> 1

is true only if the arrival rate of the system is greater than λn, which is a direct

contradiction to the system definition. Therefore,

lim
n→∞

B1,n

λn
≥ 1, alongside lim

n→∞

B1,n

λn
≤ 1

implies

lim
n→∞

B1,n

λn
= 1.

175

Thesis - Vincent Maccio McMaster - Software Engineering

C.1 Proof of Theorem 7.1

For simplicity of navigation, Theorem 7.1 is restated.

Theorem 7.1. All policies in ΠA are asymptotically optimal with regards to expected

response time. In other words, given an energy-aware system, for any πa ∈ ΠA, as

λ,C →∞ and λ/µC is fixed to be ρ, where 0 < ρ < 1, E[Rπa]→ 1/µ.

A high-level description of the proof is as follows. It is determined that if a job J

is served by an always busy server in the system S3,n as n → ∞, then the expected

response time of job J approaches its expected service time. With this in mind,

the system S1,n is compared to S3,n as n → ∞. It becomes clear that the expected

response time of these systems is dominated by jobs which are served by always busy

servers. Moreover, the limits of the expected response time of these two systems are

equal. Therefore, the expected response time of S1,n approaches the expected service

time, as n→∞.

Proof. As with the proof of Lemma C.1, without loss of generality one can set µ = 1.

Therefore, to prove the theorem it is enough to show that limn→∞ E[R1,n] = 1, where

E[Ri,j] denotes the expected response time corresponding to the system at the jth

index of the ith sequence of systems. The equality of this limit is shown via a sample

path argument regarding S1 and S3. Before this argument is made however, some

properties of S3 must be shown.

Consider the system S3,n. From the square root staffing rule, Theorem 15.2 of [28], it

is known that for a system with C servers, where C = λn + c
√
λn, the probability of

queueing gets arbitrarily close to 0 as c gets large. Keeping in mind the definition of

176

Thesis - Vincent Maccio McMaster - Software Engineering

S3, specifically that C3,i = λi + (λi)
0.5+ε, it can be said that for all finite c,

lim
n→∞

c
√
λn

λ0.5+ε
n

=
c

λεn
= 0,

and therefore in the system S3,n as n→∞, P (N3,n > C)→ 0, where N3,n is a random

variable denoting the number of jobs in S3,n, which implies,

lim
n→∞

E[R3,n] =
1

µ3,n

= 1. (11)

Moreover, identical to the reasoning presented in Lemma C.1, one can conclude

lim
n→∞

B3,n

λn
= 1. (12)

From here the server pool is split into two distinct conceptual sets. The first set

consists of the always busy servers, and the second set consists of all remaining servers,

i.e. the servers which spend some of their time idle. Let these two sets of servers

be denoted by A3,i and I3,i, respectively. Then the expected response time can be

expressed as a sum of terms,

E[R3,n] = PA3,nE[RA
3,n] + PI3,nE[RI

3,n], (13)

where PA3,n and PI3,n denote the probability of a job being served from set A3,n or I3,n,

respectively, and E[RA
3,n] and E[RI

3,n] denote the expected response times given that a

job is served by a server from set A3,n or I3,n, respectively. Due to the homogeneity

of the servers, it is assumed that if there are c servers currently on and i ≤ c jobs

in the system, then servers one through i will be the servers which are busy. From

177

Thesis - Vincent Maccio McMaster - Software Engineering

this it can be noted that always busy servers, i.e. servers from set A3,n, have serving

priority over the others when jobs arrive. That is, it is known that the probability

of a particular job being served by an always busy server is greater than or equal to

choosing it randomly and uniformly from the entire pool. In other words,

PA3,n ≥
|A3,n|
C3,n

=
|A3,n|

λn + λ0.5+ε
n

.

Furthermore, from the definition of A3,n it is known that |A3,n| = B3,n, which implies,

lim
n→∞

PA3,n ≥ lim
n→∞

B3,n

λn + λ0.5+ε
n

= lim
n→∞

B3,n

λn
= 1.

Noting PI3,n = 1− PA3,n alongside (11) and (13) it becomes clear that,

lim
n→∞

E[R3,n] = lim
n→∞

E[RA
3,n] = 1.

With the limit of E[RA
3,n] explicitly solved, the proof proceeds with a sample path

argument involving S1 and S3. As A3,n and I3,n denote the sets of always busy and

sometimes idle servers respectively for S3,n, let A1,n and I1,n denote the corresponding

always busy and sometimes idle sets for S1,n.

It is worth noting that while calling I3,n a set of sometimes idle servers is apt, applying

the same notion to I1,n is somewhat inappropriate. I1,n is the set of servers which

are not always busy. These servers potentially could spend zero time idling, i.e. they

immediately switch off when they complete a job and the queue is empty. However,

for the purposes of the proof it is only required that these servers spend some portion

178

Thesis - Vincent Maccio McMaster - Software Engineering

of time not busy.

Continuing with the sample path argument, consider systems S1,n and S3,n, as n→∞,

with identical arrival processes. Jobs are viewed as being marked to be served by a

server belonging to the sets A1,n and A3,n, or I1,n and I3,n, without loss of generality.

If a job arrives to S3,n and is served from the set A3,n, then the corresponding job in

S1,n will almost surely be served from the set A1,n. This is the case by noting from

(12) and Lemma C.1 that

lim
n→∞

B1,n

B3,n

= 1. (14)

Moreover, if a job arrives to S3,n and is served from the set I3,n, then the corresponding

job in S1,n will almost surely be served from the set I1,n. Firstly, it must be seen that

I1,n has the capacity to handle the load which I3,n has the capacity to handle. This

follows immediately by noting that

lim
n→∞

|I3,n|
λn

= 0 while lim
n→∞

|I1,n|
C

= (1− ρ),

which implies,

lim
n→∞

|I3,n|
|I1,n|

= 0.

As was done with S3,n, one can decompose the expected response time of S1,n into

two distinct components as follows,

E[R1,n] = PA1,nE[RA
1,n] + PI1,nE[RI

1,n].

179

Thesis - Vincent Maccio McMaster - Software Engineering

From here two important observations are made. Firstly because S1,n is a stable

system E[RI
1,n] is known to be finite. Secondly, because S1,n and S3,n have identical

arrival processes, it can be said

lim
n→∞

PA1,n = lim
n→∞

PA3,n = 1

which alongside (14) implies,

lim
n→∞

E[RA
1,n] = lim

n→∞
E[RA

3,n] = 1.

Therefore,

lim
n→∞

E[R1,n] = lim
n→∞

E[RA
1,n] = 1.

C.2 Proof of Theorem 7.2

For simplicity of navigation, Theorem 7.2 is restated.

Theorem 7.2. All policies in ΠB are asymptotically optimal with regards to expected

energy cost. In other words, given an energy-aware system, for any πb ∈ ΠB, as

λ,C → ∞ and λ/µC is fixed to be ρ, where 0 < ρ < 1, E[Eπb]/λ → E[EJ,πb] →

EBusy/µ.

A high-level description of the proof is as follows. The notion of the energy cost

contributed by a single job is examined. Specifically, the energy cost of a single job

is examined based on the criterion of it being served by an always busy server or not.

Lemma C.2 gives an exact value of the energy cost of a single job assuming it was

180

Thesis - Vincent Maccio McMaster - Software Engineering

served by an always busy server. Moreover, this is a minimum value. On the other

hand, Lemma C.3 shows if a job is not served by an always busy server, the energy

cost is finite. From there, similar to the procedure in the proof of Theorem 7.1, it

becomes clear that the total expected energy cost is dominated by jobs which are

served by always busy servers, and therefore is minimized.

Definition C.1. Energy Cost of a Job: Let EJ be a random variable which

denotes the energy cost contributed by a randomly chosen job J . There are four

contributing factors to consider when determining EJ for some job J .

1. Each job J is responsible for the energy required to process it.

2. If a job J is the first job which server s serves after completing its setup process,

then J is responsible for the entire cost of the setup process of s, as well as any

idling costs of s until the next time s is switched off.

3. If a job J is responsible for causing a server setup which is canceled due to that

job entering service before the setup process completes, then J is also responsible

for the energy cost incurred by that setup.

4. The idling cost of servers which never turn off is divided evenly among all jobs

that pass through the system. Furthermore, a special case is added to this fac-

tor, which is if some of the servers are always busy servers, i.e. some of the

system parameters are approaching infinity, then the aforementioned idling cost

is evenly distributed only across jobs which are served by always busy servers,

rather than across all jobs which pass through the system.

181

Thesis - Vincent Maccio McMaster - Software Engineering

As mentioned in Section 6.5 and from the definition of EJ , it is clear that

E[E] = λE[EJ]. (15)

Therefore, when E[EJ] is minimized, E[E] is minimized.

Lemma C.2. In an energy-aware queueing system employing a Class B policy, if a

job J is served by an always busy server, then E[EJ] = EBusy/µ.

Proof. The proof of this Lemma is argued after several key observations. To prove

the Lemma, it is equivalent to show that if J is served by an always busy server,

then limn→∞ E[EJ
1,n] = EBusy (recall µ1,n = 1 for all n). Moreover, for there to be any

always busy servers present in the system, it is required that n → ∞. Therefore, it

will be argued that

lim
n→∞

E[EJ
1,n | J was served by an always busy server] = EBusy.

To show the above equality, the four contributing factors to E[EJ
1,n], from Defini-

tion C.1, are addressed individually and summed.

1. It is known that each job J will eventually be served, by an always busy server

or otherwise, and therefore J incurs an expected cost of EBusy/µ1,i = EBusy, for

all i.

2. If it is known that J is served by an always busy server, then it is trivially known

that it is not the first job to be processed after a server completes its setup

process. Therefore it can be said that J incurs no cost from this contributing

factor.

182

Thesis - Vincent Maccio McMaster - Software Engineering

3. The third contributing factor takes a little more care, but can be shown to

also incur no cost via a contradiction argument. Assume that some job J is

responsible for causing a server to start its setup process. If this is the case

however, it is known that such a server will almost surely never cancel its setup

nor turn off from the structural property given in Theorem 5.3, which Class

B policies adhere to. Therefore, it cannot be the case that J caused a setup

which was then canceled. Moreover, if J did cause some server s to start a setup

process, then s would be idle an infinite amount of time before turning off, a

direct violation of Class B policies. Taking this all into account, it is clear that

if J is served by an always busy server, then it incurs no cost from starting an

eventually canceled setup.

4. Because n → ∞, the special case of this factor is invoked, i.e. jobs which are

served by always busy servers are responsible for the full cost of the always idle

servers. From the definition of Class B policies it is known that the number of

always idle servers is less than (1− λ1,n/C1,n)Cα
1,n, where 0 ≤ α < 1. Therefore,

costs from these idle servers are incurred at some rate less than (1−ρ)Cα
1,nEIdle.

Moreover, from the proof of Theorem 1, it is known that as n → ∞, the prob-

ability of being served by an always busy server approaches 1. It then follows

that the rate at which jobs are served by always busy servers approaches the

arrival rate, λ1,n, as n → ∞. Therefore, letting the expected contributing cost

from these idle servers per job be denoted by E[EJ,I] and from the definition of

S1 knowing that λ1,n = C1,n/ρ:

E[EJ,I
1,n] = lim

n→∞

(1− ρ)Cα
1,nEIdle

λ1,n

= lim
n→∞

ρ(1− ρ)EIdle

Cα
1,n

C1,n

183

Thesis - Vincent Maccio McMaster - Software Engineering

= lim
n→∞

ρ(1− ρ)EIdle
1

C
(1−α)
1,n

= 0.

Therefore, the only contributing factor to E[EJ
1,n] given that J has been served by an

always busy server, is the cost of processing it, which implies

lim
n→∞

E[EJ
1,n | J is served by an always busy server] = EBusy.

Lemma C.3. In an energy-aware queueing system employing a Class B policy, if a

job J is not served by an always busy server, then E[EJ] is finite.

Proof. Similar to the proof of Lemma C.2, this proof iterates through the contributing

factors of Definition C.1 to show that the expectation of each factor is finite, and

therefore, the expectation of their sum is finite, i.e. E[EJ] is finite.

1. The cost directly incurred from processing a job is trivially known to be finite,

since it is directly proportional to the service time of the job.

2. If it is known that a job J has been served by a server s which regularly completes

its setup process, i.e. as t → ∞, 0 < E[XSetup(s, t)] < 1, two cases must be

considered due to Definition 3. The first and simpler case being that J is not

the first job to be served by s, after s completes a setup process. Here no costs

will be incurred and are trivially finite. The second and more interesting case

is that J is the first job to be served by s following a setup process. Here J is

responsible for the setup costs incurred by s alongside the idling costs incurred

by s until the next time it shuts off. From the definition of Class B policies it is

184

Thesis - Vincent Maccio McMaster - Software Engineering

immediately known that the cost incurred by s from idling is finite. So all that

remains is to show that the setup cost associated with s is also finite. While at

first glance this may seem trivial since it is known that the expected setup time

of a server is finite, this is not quite the case. The policy could be such that

when a threshold is reached not only does the setup process of one server begin,

but many, potentially even all servers begin their setup process, and the next

one to complete its setup is chosen as the server to use, while the remainder of

the servers terminate or cancel their setups. If s was the only server used in the

setup process, then the expected cost is simply ESetup/γ, which is finite. But

since the setup times are exponentially distributed, for all m, where m is the

number of servers used in the setup process of s, the cost incurred is expected to

be mESetup/mγ = ESetup/γ, which is finite. Therefore, the expected energy cost

incurred from the contributing factor of being the first job to be served after a

completed setup process is finite.

3. The last contributing factor to consider is the case of job J causing servers to

start their setup processes, but have them be cancelled before they complete.

This is similar to the previous case of the server(s) completing its setup process.

If it is known that a server’s setup process is interrupted before it completes, due

to the underlying exponential distribution, it can be said that the expected cost

incurred is less than ESetup/γ. Moreover, if it is known that the setup processes

of m servers are interrupted before any of them complete, due to the underlying

exponential distribution it can be said that the total cost incurred is less than

mESetup/mγ = ESetup/γ. Therefore, the cost incurred by J from causing server

setups which are eventually interrupted is finite.

185

Thesis - Vincent Maccio McMaster - Software Engineering

4. Because there are always busy servers present in the system, from the definition

of EJ it is trivially known that zero costs are incurred by this factor, which is

finite.

All of the contributing terms of E[EJ] are finite, therefore E[EJ] is also finite.

With the proof of the Lemmas complete, the proof of Theorem 7.2 is now provided.

Proof. To prove the theorem, it is equivalent to show limn→∞ E[E1,n]/λn = EBusy

under the assumption that the systems of S1 are employing Class B policies. From

the definition of E[EJ], it is known E[E] = λE[EJ]. Therefore,

lim
n→∞

E[E1,n]/λn = lim
n→∞

E[EJ
1,n].

Furthermore, using the notation introduced in the proof of Theorem 7.1, it is also

known that,

lim
n→∞

E[EJ
1,n] = lim

n→∞
PA1,n [EJ

1,n | J is served from A1,n]

+ PI1,n [EJ
1,n | J is served from I1,n].

Leveraging past equalities allows one to simplify the above equation. From Lemma C.2

it is known

lim
n→∞

[EJ
1,n | J is served from A1,n] = EBusy.

From Lemma C.2, [EJ
1,n | J is served from I1,n] is finite, i.e. for some Ln > 0

lim
n→∞

[EJ
1,n | J is served from I1,n] = Ln

186

Thesis - Vincent Maccio McMaster - Software Engineering

From the proof of Theorem 7.1, it is known,

lim
n→∞

PA1,n = 1 and lim
n→∞

PI1,n = 0.

Therefore,

lim
n→∞

E[EJ
1,n] = EBusy. (16)

It is worth noting that EBusy is a lower bound for E[EJ
1,n] since for the system to be

stable the job must be processed. In other words, as n → ∞, E[EJ
1,n] approaches its

minimum value. Returning to (15),

lim
n→∞

E[E1,n]/λn = lim
n→∞

E[EJ
1,n],

it becomes clear from (16) that,

lim
n→∞

E[E1,n]/λn = EBusy.

Moreover, in system S1,i, λiEBusy is a trivial lower bound for the expected energy

cost, implying that as n → ∞, E[E1,n] is minimized. That is, the policy which

S1,n is employing, which is a Class B policy, minimizes the expected energy cost as

n→∞.

187

