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Abstrac:t 

In the study of pairwise sequence alignment, a clear relationship between the scoring sys­

tem and assumptions about the occurrence of evolutionary events has been established in 

[BT86], [TKF91], [TKF92] and [TC95] by proposing an evolutionary model. To align two 

given sequences, one need estimate some evolutionary parameters through maximum like­

lihood method, and find an alignment with the maximum probability using the estimated 

parameters. 

In this thesis, Vl'e extend the above model and the maximum likelihood method to star 

alignment of three nolecular sequences along the same line. We overcome the duplications 

of star alignments l'y defining canonical star alignments. Two star alignment algorithms, 

i.e. sum approach atld direct alignment approach, are proposed in this thesis based on two 

different likelihood fl.lllctions. A software system, called MLSAS (Maximum Likelihood Star 

Alignment System), is developed to implement the two algorithms with a friendly graphical 

user interface. Simulation studies show their behaviors are satisfactory for closely related 

sequences. A few re:U examples are also provided. 
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Chapter 1 

Introduction 

With the advent of modern molecular biology, the ability to collect biological sequence data 

has outpaced the abJity to adequately analyze this data. One tool for reducing this surfeit 

of inadequately trea·,;ed data is sequence alignment. A sequence alignment is a hypothesis 

about the evolutionary correspondence between the bases in a pair of sequences. A common 

representation of an ilignment (Figure 1.1) is to exhibit the bases of one sequence on a line 

above those of the other sequence. Corresponding bases appear stacked one above the other. 

When two bases in a column are the same type, the alignment position is termed a match. 

When corresponding bases are different, the alignment position is termed a mismatch and at 

least one substitution event must have occurred. In this "stacked" alignment representation, 

a base that has no corresponding base in the other sequence is said to be opposite a space. 

If we consider sequence A to be ancestral to sequence B, spaces in sequence A are the 

result of insertion ev«mts and spaces in sequence B are the result of deletion events. In a 

pairwise alignment, insertions cannot be distinguished from deletions. Therefore, the term 

indel is used to describe an evolutionary event that may be either an insertion or a deletion. 

1 



2 1. INTRODUCTION 

A T A G A G - T T T G T A C G 
- T A G C G G T T C G T T C G 

Figure 1.1: A common "stacked" representation of a sequence alignment 

Because a single-base indel leads to a single-base space in the alignment and because a 

nucleotide mismatch in the alignment is caused by one or more nucleotide substitutions, 

the alignment in Fi ~ure 1.1 implies that at least three substitutions and two single-base 

indels took place. 

It is possible a:1d, a:mong some researchers, popular to align sequences by eyeballs. 

The eyeball technique is time-consuming, tedious, and irreproducible. In 1970, Needleman 

and Wunsch [NW7o: presented a dynamic programming algorithm for the alignment of two 

biological sequences by computers. Computer-aided sequence alignment does not possess 

these drawbacks of the eyeball technique. In a basic dynamic programming algorithm, a 

weight for each ind,~l and a weight for each mismatch are defined. Then the weight of 

alignment is defined as the sum of the total weight of all the spaces and mismatches in the 

alignment. For example, if the weight of a mismatch is 1 and the weight of an indel is 5, the 

weight associated with the alignment shown in Figure 1.1 is 13 ( =1 + 1 + 1 +5+5). After the 

weights for indels and mismatchs are defined, the dynamic programming algorithm chooses 

the best alignment by finding the alignment with the minimum associated weight. This is 

assumed to be the best of all alignments between the two sequences in question. A complete 

explanation of the dynamic programming algorithm can be found in [SK83]. 

The weakness of the basic dynamic programming method and its subsequent modifi­

cation is the lack of an objective procedure to choose the relative weights of spaces and 

mismatches. The re!:ults of this weakness is that researchers are forced to use either of two 
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flawed approaches to obtain an alignment between two sequences. One approach is to arbi­

trarily choose these weights and then obtain an alignment. If this alignment is aesthetically 

pleasing to the researcher, the process stops. Otherwise, the researcher continues to adjust 

the weights until an aesthetically pleasing alignment is obtained. Obviously, the subjective 

nature of this approach is not ideal. Another approach is to use the same set of weights for 

every pairwise alignment. This approach is less subjective than the former approach - only 

the initial choice of weights is subjective. 

A few objective alignment techniques [RW73) have been proposed. Allison and Y­

ee [AY90] have applied minimum message length (MML)-encoding techniques to solve the 

optimization proble:n. The MML method does allow a statistical comparison of alternative 

scoring schemes [AWY92a) and is promising for the inference of evolutionary trees from non­

aligned sequences [AWY92b). Fitch and Smith [FS83] introduced a Monte Carlo method 

that allows the scores of spaces, matches, and mismatches to be chosen objectively. 

In the above objective alignment techniques, the relationship between the scoring sys­

tem and the assumptions about the occurrence of evolutionary events is not clear. Bishop 

and Thompson [B186) were the first to consider pairwise sequence alignment in a likeli­

hood framework. T:h.ey proposed a Markovian model with explicit assumptions about how 

evolutionary events occur. Estimates of parameters in their model could be obtained and 

subsequently used to find an optimal alignment. The Bishop and Thompson method has 

some limitations. An exact treatment of the likelihood is not feasible and the approxima­

tions used become Jess accurate for comparison of more distantly related sequences. Also 

their model is restrkted to allow only single base insertions and deletions. Thorne, Kishino, 

and Felsenstein [TKF91] introduced a model to overcome some of these limitations. They 
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believe that becauf:e evolution is the force that promotes divergence between biological se­

quences, it is desir:~.ble to view biological sequence alignment algorithms in the context of 

evolution. The weights of evolutionary events should be a function of evolutionary rates 

and divergence tim~s. Under this interpretation, the basic dynamic programming procedure 

assumes that the types of evolutionary events that can change a biological sequence fall into 

three categories. For a DNA sequence, these three possible types of events are insertion of 

exactly one base, dE~letion of exactly one base, and substitution of one base for another. The 

basic dynamic programming procedure assigns an evolutionary weight to each type of evo­

lutionary event. The evolutionary weight should be proportional to the negative logarithm 

of the probability CJf the evolutionary event [Fel81]. Thus the most basic alignment algo­

rithm requires one evolutionary weight for a substitution and another evolutionary weight 

for a single base indel. It is incorrect to use the same set of weights for every pairwise 

alignment because the probabilities of evolutionary events depend on the particular pair of 

sequences to be aligned. In this model, its mathematical tractability eliminates the need 

for approximations. This model forms the basis of the work presented in this thesis. 

To further overcome the limitation of only single base insertions and deletions, Thorne, 

Kishino, and Felsem.tein [TKF92] introduced a model allowing multiple-base insertion and 

deletion events as \'\'ell as regional heterogeneity in the substitution process. For a data 

set of two sequencen, the likelihood is a function of the alignment and the probabilities 

assigned to the diffeJ~ent types of evolutionary events. In [Fel81] and [TKF92], a numerical 

maximization routine, the simplex method [NM65] is employed to maximize the likelihood. 

In 1995, Throne and Churchill [TC95] introduced the EM [DLR77] algorithm to max­

imize the likelihood function for a pair of molecular sequences. In their approach, they 

can calculate and visually display the arc probabilities, which measure the reliability of 
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alignment positions by summing up the probabilities of all alignments that contain the arc. 

In all of the above work, only pairs molecular sequences are considered. Throne and 

Churchill [TC95] expected that some progress will be made to consider more than two 

sequences simultan4!ously along the line of the EM algorithm. In this paper, we develop 

algorithms to generate a star alignment with the maximum likelihood based on the evolu­

tionary model in ['l'KF91]. Given 3 observed molecular sequences, P, Q and R, the star 

alignment problem is to find the unknown ancestral sequence X which evolved into P, Q 

and R. So we should not only find the evolutionary parameters, i.e. the insertion, deletion, 

substitution rates for each descedant sequence P, Q orR, but also the unknown ancestral 

sequence for the sE:t of three sequences. This is the first work in the light of the maxi­

mum likelihood mEthod to estimate a sequence as one of the parameters to maximize the 

likelihood function. 

We will devise two star alignment algorithms,the sum approach and direct alignment 

approach, based on two different likelihood functions to be maximized. In the sum approach, 

we define the likelihood function as the sum of the likelihoods of all alignments with each 

possible unknown ancestral sequence. In the direct alignment approach, we define the 

likelihood function as the the likelihood of a single alignment with a well-chosen ancestral 

sequence which has the largest likelihood among all the likelihoods of the alignments with 

other possible anc·~stors. 

A software s:rstem, called MLSAS (Maximum Likelihood Star Alignment System), 

is developed to inplement the above two algorithms. MLSAS is programmed in C and 

MOTIF. It includes a friendly graphical user interface, an editor to edit input and a file 

browser to view t!1e output. Moreover, it supports multi-tasking so that the users can run 

the program on d1fferent sets of inputs simultaneously. 
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In this thesis, we mainly deal with DNA sequences. RNA sequences are also considered 

in Chapter 5. Withlut much difficulty, the MLSAS could be extended to the alignment of 

other molecular seq·1ences such as proteins. 

The remainder of this paper is organized as follows. Chapter 2 will introduce the 

statistical model for molecular sequence evolution consisting of the substitution process 

and the insertion and deletion process. The auxiliary functions to derive the likelihood 

of pairwise alignme rtt are also given. Chapter 3 will define the concept of canonical star 

alignments in ordEr to avoid duplicate alignments and then define two likelihood functions 

for star alignments, which are used in the sum approach and the direct alignment approach 

respectively. 

Chapter 4 wiU illustrate how the software, MLSAS, is developed, how the code is 

organized, and how to use the MLSAS. Chapter 5 will describe simulation results and 

provide some real life examples. A brief discussion of the future study relevant to this work 

is included in Chapter 6. 



Chapter 2 

The Stcltistical Model of DNA 

Sequen~ce Evolution 

Suppose we have observed three DNA sequences P, Q; R, which independently evolved 

from an unknown c:ommon ancestor X. 

The probability of observing P, Q and R can be expressed as 

Pr(P,Q,R) 2:Pr(X) · Pr(P, Q, R IX) 
X 

2:Pr(X)Pr(P IX)· Pr(Q IX)· Pr(R IX), 
X 

where Pr(X) is the equilibrium probability of sequence X and the summation runs through 

all possible ancestral sequences X. 

The model fo1· evolution of one sequence from another sequence is composed of two 

independent proce!:ses, a substitution process and an insertion-deletion process. This model 

is a Markov process: the probability of a transition from the current state of a sequence is 

independent of previous states of the sequence. Hence our model allows only substitutions, 

7 



2. THE STATISTICAL MODEL OF DNA SEQUENCE EVOLUTION 8 

single-base insertiotls and single-base deletions. 

Section 2.1 will illustrate what the substitution process is. Section 2.2 will explain what 

the insertion-deletion process is in detail. The description of these two processes can also 

be found in [TC9f, TKF91, TKF92]. 

Section 2.3 will elaborate on how to calculate the likelihood of two DNA sequences 

under our model. The calculation will then be extended to calculate the likelihood of 

multiple DNA sequences in Chapter 3. 

2.1 The Substitution Process 

The substitution process of the evolutionary model was defined by Churchill [TC95] and 

Thome, Kishino and Felsenstein [TKF91]. 

Let /i;(t), where i and j take on values 0, 1, 2 and 3 corresponding to the four nu­

cleotides A, C, G, and T, denote the probability that a lineage which is initially in state i 

will be in state j after t units of time have elapsed. Now let us compute /i;(t). We assume 

that in a small interval of time of length dt, there is a probability of s · dt with which the 

current nucleotide at a site is replaced. The quantity s is the rate of nucleotide substitution 

per unit time. When a nucleotide is ·replaced, its substitute is A, C, G, or T with proba­

bilities 7rA, 7rG, 1rc, or 7rT (or 7ro, 1r17 1r2, or 1r3 ). Note that this means that a nucleotide 

could be replaced by the same nucleotide, so that not all substitutions are observable even 

in principle. 

Let 8ij be 0 if i 'I j and 1 if i = j (the Kronecker delta function), then we have 

/i;(dt) = (1- s(dt))8ij + s(dt)1r;. 
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By solving the diffErential equation, we get 

That is: 

e-•t + 1r"j{l - e-•t) if i = j 
/;;(t); { 

1r;(l- e-•t) otherwise 

2.2 The In~:ertion-Deletion Process 

The insertion-delet[on process is, for the sake of clarity, presented not in terms of nucleotides 

but in terms of imaginary links that separate the DNA nucleotides of a sequence. In our 

model, there are N normal links and one immortal link in a sequence of N nucleotides. 

Specifically, there is a normal link to the right of each nucleotide. In addition, the leftmost 

nucleotide in the s1~quence can be considered to have an.immortallink to its left. 

For example, if 0 represents a normal link and • represents the immortal link then the 

DNA sequence AGCTATATATAT can be depicted as 

•'A 0 G 0 C 0 T 0 A 0 T 0 A 0 T 0 A 0 T 0 A 0 T0, 

or, if the presence of nucleotides is considered without regard to the actual type ofnucleotide 

then the same DNA sequence could be depicted as 

•000000000000 

The insertion-deletion process is framed in terms of a birth-death process of these links. 

Each link evolves :ndependently from all other links; a birth or death of one link does not 

affect the probability of a birth or death of any other link. Both types of links can be 
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associated with birt tl.s. The birth rate per normal link (denoted as A) is equal to the birth 

rate per immortal link. A newborn link is always a normal link. We adopt the convention 

that a new born llilk appears immediately to the right of its parent link. Accompanying 

the birth of a normal link is the birth of a DNA nucleotide immediately to the left of the 

newborn link. The }robabilities that a newborn DNA nucleotide will be A, G, C, or Tare 

7rA, 7rG, 1rc, or 7rT, :respectively. Normal links are subject to death (J.L is the death rate per 

normal link) but immortal links are not. 

Because of the chance of more than one birth or death taking place on a sequence at 

the same instant is small enough to be neglected, a sequence will either increase its length 

by a single nucleotide, decrease its length by a single nucleotide, or stay in the same length 

at a given instant. A sequence of n nucleotides will increase its length to n +1 nucleotides 

at rate (n + 1)A because it has n + 1 links. A sequence of n nucleotides will decrease its 

length ton- 1 nudeotides (assuming n > 0) at rate nJ.L because it has n normal links and 

only normal links :an die. This birth-death process is related to the more general linear 

birth-death procesB [Fell68). The relationship between these two birth-death processes can 

also be seen by examining the form of the transition probabilities associated with each 

process. 

The presence of immortal links in this model is necessary for the existence of a realistic 

equilibrium distribution of sequence lengths. Without immortal links, sequences would tend 

over time to have length either 0 or toward infinity. With immortal links and a death rate 

per normal link t:hat exceeds the birth rate per link, a realistic equilibrium distribution of 

sequence lengths can exist. H 'Yn is the equilibrium probability of sequences n nucleotides in 

length, then the distribution of 'Yn obtained under the birth-death model is the geometric 
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distribution 

where 0 < A < p.. 

2.3 The Likelihood of a Pair of DNA Sequences 

The likelihood of three descendant DNA sequences evolving from a common ancestral se­

quence is the produ :t of the likelihood of each descendant DNA sequence evolving from the 

ancestral sequence. So the calculation of likelihood of a pair of DNA sequences becomes 

the basic step to cdculate the likelihood of multiple DNA sequences. In this section, we 

will explain in prindple how to compute the likelihood of a pair of DNA sequences, which 

was proposed in [TKF91]. 

Let us considet two DNA sequences. The first, sequence A, is TGTC. The second, 

sequence B, is GCA.CA. Various paths are possible for a transition from sequence A to 

sequence B. The transition probability from A to B is the sum of probabilities of all 

possible paths connecting the two sequences. The particular path of a transition from A to 

B can be expressed well by an alignment. As an example, consider the following artificial 

alignment which will be denoted as a : 

- T G T - C ­

G - C - A C A 

The informatio:1 on the presence and absence of nucleotides in alignment a will be 

denoted as a'. In te1·ms of links, a' can be represented as: 
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•-000-0­

•0-0-000 

The probability oft tJ.e specific transition path represented by alignment a denoted as P(a I 

9) where 9 is the collection ofparameters p.t, At, st, 1rA, 1rc, 1rc, 1rT, can be decomposed into 

two components, P( a' I9) (the transition probability of insertion-deletion) and P(a I a', 9). 

This decompositio11. is possible because a contains all of the information of a'. In other 

words, 

P(a 19) = P(a,a'l9) = P(a Ia',9)P(a' 19). 

P{a I a', 9) can be expressed easily. In the above example, we have 

P(a Ia', 9) = 1rG/cc(t)7rAfcc(t)1rA 

P(a' I 9) wiU be the product of n + 2 terms in general when n is the number of 

nucleotides in the ancestral sequence. The first term of it is the equilibrium probability 

of the ancestral sEquence. The second term is a transition probability for the immortal 

lin1c The remainder of the terms in P{a' I 9) are transition probabilities for normal links. 

The specific transition probability for each link depends on its type, i.e. whether the 

link has survived and the number of descendant links. The number of descendant links 

for a particular aClcestral link is easily determined by depicting the information on the 

presence and abse:Clce of nucleotides in terms of links. The number of descendant links of a 

particular survived ancestral link is one plus the number of descendant links to the right of 

the particular ancestral link and to the left of this ancestral link's right neighbor. 

There are tluee categories of transition probabilities in the insertion-deletion process: 

Pn(t) is the probability that after a time of duration t, n links have descended from a normal 
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link and one of them is the original link; p~(t) is the probability that after a time of duration 

t, n links have descended from a normal link and the original link has died; and p~(t) is the 

probability that aft~~r a time of duration t, the immortal link has n descendants including 

itself. In the above example 

By definition, Po(t) = p"(t) = 0. The remainder of the transition probabilities can 

be obtained by solving the differential equations governing this birth-death process. These 

differential equations can be formally expressed as: 

dpn(t) 
= 

dt 
dp~(t) = 

dt A(n- 1)p~_1 (t)- (A+ JL)np~(t) + JL(n + 1)p~+l(t) + JLPn+l(t), n > 0; 

dpri(t) = 
ILP'L(t) + ILPl(t);dt 

dp~(t) 
A(n- 1)p~_1 (t)- [An+ JL(n- 1))p~(t) + JLnp~+l(t), n > 0;

dt 

where the initial conditions are 

P1(0) p~(O) = 1; 


Pn(O) = p~(O) =O, n = 2, 3, · · ·; 


p~(O) O, n = 0, 1, · • ·. 


By solving tl.e differential equations, we get 

p,(t) = e-~t[1- A,B(t)][A,B(t)t-\ n > 0; 

P:t(t) [1- e-~t - ~t,B(t)][1- A,B(t)][A,B(t)t-1 , n > 0; 
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p~(t; = p./3(t); 

where 

Note that fork > 1 we have 

Let SA be the length of sequence A, and SB the length of sequence B. The likelihood 

of the pair of A and B is 

where r A' rG, rc, 1'T are the number of occurrences of each type of nucleotide in sequence 

A. 

A pairwise ali~;nment can be represented as a matrix of two rows with columns recording 

the process of evolution. For example, 

Sequence 1: G - C - 1 C 1 - T G T - C ­

Sequence B: - T G T - C - G - C - 1 C 1 

A space ( - ) in sequence A means that an insertion took place, while a space in 

sequence B meanf that a deletion took place. In other cases, a substitution took place. 
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Because of the 4:onvention that newborn links are inserted to the right of their parental 

link, the following two alignments represent two distinct evolutionary histories 

(I) A - C 

A G ­

(II) A C ­

A - G 

In alignment ( [), the A link is the parent of the G link whereas in alignment (II) the 

C link is the parent of the G link. Alignment (II) implies that the G link was inserted 

before the C link was deleted. Alignment (I) does not specify any chronological ordering 

of the two events. The difference in the interpretation of the two alignments results in 

the alignments ha'ring distinct probabilities. It is convenient for computational reasons 

to consider each case of a deletion immediately to the left of an insertion as a "special 

substitution". A substitution column that indicates a match or a mismatch will be termed 

a "normal substitution". 

Therefore, in an alignment of a pair of DNA sequences, there are four types of columns, 

the deletion colum:1s, the insertion columns, the special substitution columns and the normal 

substitution columns. 

At this point, we can calculate the likelihood of a pair of DNA sequences by induction 

on the lengths ofS4!quences and the types of columns. We will not show these inductive steps 

here since we will give the inductive steps and likelihood expressions in detail for multiple 

sequences in Chapter 3. The reader could refer to [TC95, TKF91] for the likelihood 

calculation in the case of a pair of DNA sequences. 



Chapter .3 

The Lik~elihood of Three DNA 

Sequen<~es 

In the previous chapter, we defined the statistical model for DNA sequence evolution and 

derived various auxiliary functions to compute the likelihood of a DNA sequence pair. In 

this chapter, we will show how to calculate the likelihood of three observed DNA sequences 

P, Q, R, evolving fr)m an unknown ancestral sequence X. 

We know that th.e likelihood of observing P, Q and R is 

Pr(P,Q,R) = L:Pr(X)Pr(P IX)·Pr(Q I X)·Pr(R IX) 
X 

where Pr(X) is the equilibrium probability of sequence X and the summation runs through 

all possible ancestral sequences. 

The calculation of Pr(P, Q, R) is obviously an intractable problem because the number 

of possible X's is inlinite. So throughout the paper we assume that the length of X is no 

more than the sumo f lengths of P, Q, R. That is, we do not allow a base in X to be deleted 

16 
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in all the three evolutionary processes toP, Q and R. Even though we limit the length of 

the unknown sequence, the calculation is still very time-consuming because we should add 

up all the likelihooc.s of each alignment with every possible unknown sequence X using four 

layers of loops. 

In this chapter, we define two kinds of the objective likelihood functions each of which 

simplifies the complexity of computation and meanwhile maintains a reasonable accuracy. 

In section 3.1, we define canonical star alignments and 33 types of columns (or evolution 

processes) for a nu<leotide in the ancestral DNA sequence to evolve into another nucleotide 

or to be deleted (<'r to be inserted) in the resulting sequence, either P or Q or R. The 

33 types of columns will be frequently used in the calculation of the likelihood and the 

alignment of the sequences in the whole system. 

In section 3.2~ we define the likelihood function as the summation of all alignments 

with each possible unknown ancestral sequence. 

In section 3.3, we define the likelihood function as the likelihood of a single alignment 

with a well-chosen ancestral sequence which has the largest likelihood among the likelihoods 

of all possible alignments. 

The two likel.hood functions will be maximized by the simplex method to find the 

evolutionary parameters. The simplex method was well-studied in [NM65] and has been 

coded in many programming languages. The C code for this optimization routine can be 

found in (PFTV88]. 
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3.1 	 The Canonical Star Alignment with Column Represen­

tation 

In this section, we will define canonical star alignments with column representation, the 

33 types of columns in a star alignment, and illustrate how to avoid non-canonical star 

alignments during ·;he enumeration of all star alignments. 

Suppose that we observed three DNA sequences P, Q, R which are believed to have 

evolved from a common unknown ancestral DNA sequence X under the evolutionary model 

introduced in Chapter 2. A set of evolutionary parameters is denoted as()= (.X1t, JL1t, s1t, 

.X2t, JL2t, s2t, .Xat, JLat, sat), where .X1 is the birth rate per normal or immortal link, p,1 is the 

death rate per normal link and s1 is the substitution rate in the evolution from X toP. .X2, 

JL2, s2 and .Xa, JLa, sa are defined similarly for the evolutionary processes from X to Qand 

R; t is the time tha.t the evolutions have taken. 

We assume that the evolutionary parameters () is estimated by the maximum likelihood 

method based on some kind of likelihood function. Based on these parameters, the star 

alignment is to find the the ancestral DNA sequence X and to align it with P, Q and R 

with the maximum probability. 

As in the ca~e of pairwise DNA sequence alignment, a star alignment can also be 

represented as a matrix of four rows with the columns recording the history of evolution. 

The first row is the unknown common ancestral DNA sequence X, while the second, the 

third and the fomth rows are the observed sequences P, Q, R, respectively. Figure 3.1 is 

an example of an .ubitary star alignment 

However, after carefully checking the first five columns in the Figure 3.1, we know the 
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Sequence I: - - G ­ - C A - T C T A C ­
Sequence P: G ­ G T A C - G T C - A C A 
Sequence Q: G - G ­ A C A G ­ C - A C A 
Sequence R: - G G T - C - G - C T A C A 

l'igure 3.1: An example of an arbitary star alignment 

Sequence I: G - - - C A - T C T A C ­
Sequence P: G G T A C - G T C - A C A 
Sequence Q: G G A - C A G - C - A C A 
Sequence R: G G T - C - G - C T A C A 

F:.gure 3.2: The cannonical star alignment of Figure 3.1 

alignment in Figure 3.2 describes the exactly same evolutionary process under the birth-

death model. 

This is because the substitution "space --+ space" means nothing has happened. So 

we can move "space --+ space" forward or backward without changing the history of evo­

lution. We should eliminate the duplicated alignment because we cannot take the same 

evolution event into consideration more than once. The duplication can be avoided by 

defining canonical! star alignments. 

A star alignm,~nt is canonical in a column representation if each "spacep --+ space" 

(if any) from X to P (or Q, or R) cannot be moved to the right without changing the 

history of evolution under the model we defined in Chapter 2. 

As we discussed in chapter 2, in a pairwise DNA sequence alignment, there are four 

types of columns, vrhich are insertion, deletion, normal substitution and special substitution. 

In the case of star clignment, there are 33 possible types of columns listed below ifwe assume 

that no nucleotide in X is deleted in all descendant sequences P, Q, R. 
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The 33 types of columns recording the evolution history for each sequence will be used 

intensively in the c,uculation of likelihoods and the alignment of sequences. So we single 

them out and defin~ them as follows. The first 7 types are related to insertions. The last 

26 types are related. to deletions and substitution. 

1. 	Column type 0: Insertion occurs in P. Denote it as "ins-P". 

2. 	Column type 1: Insertion occurs in Q. Denote it as "ins-Q". 

3. Column type 2: Insertion occurs in R. Denote it as "ins-R". 

4. Column type 3: Insertion occur in Q, R. Denote it as "ins-P; ins-Q". 

5. 	Column type 4: Insertions occur in P, R. Denote it as "ins-P; ins-R". 

6. 	 Column type 5: Insertions occur in P, Q. Denote it as "ins-P; ins-Q". 

7. 	 Column type 6: Insertions occur in P, Q, R. Denote it as "ins-P; ins-Q; ins-R". 

8. Column type 	 7: Deletions occur in P, Q and a normal substitution occurs in R. 

Denote it as "del-P; del-Q; nor-R". 

9. 	 Column type 8: Deletions occur in P, Q and a special substitution occurs in R. 

Denote it as "del-P; del-Q; spe-R". 

10. 	Column typ«~ 9: Deletions occur in P, R and a normal substitution occurs in Q. 

Denote it as "del-P; nor-Q; del-R; ". 

11. 	Column type 10: Deletions occur in P, R and a special substitution occurs in Q. 

Denote it as "del-P; spe-Q; del-R". 

12. Column typ,~ 11: Deletions occur in Q, R and a normal substitution occurs in P. 

Denote it as "nor-P; del-Q; del-R". 
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13. 	Column type 12: Deletions occur in Q, R and a special substitution occurs in P. 

Denote it as "spe-P; del-Q; del-R". 

14. 	Column type 13: A deletion occurs in P, normal substitutions occur in Q and R. 

Denote it as '·del-P; nor-Q; nor-R". 

15. 	Column type 14: A deletion occurs in P, a normal substitution occurs in Q and a 

special substitution occurs in R. Denote it as "del-P; nor-Q; spe-R". 

16. 	Column type 15: A deletion occurs in P, a special substitution occurs in Q and a 

normal substitution occurs in R. Denote it as "del-P; spe-Q; nor-R". 

17. 	Column type 16: A deletion occurs in P, special substitutions occur in Q and R. 

Denote it as ·'del-P; spe-Q; spe-R". 

18. 	Column type 17: Normal substitutions occur in P and R, a deletion occurs in Q. 

Denote it as ~'nor-P; del-Q; nor-R". 

19. 	Column typ.: 18: A normal substitution occurs in P, a deletion occurs in Q and a 

special subst[tution occurs in R. Denote it as "nor-P; del-Q; spe-R". 

20. 	Column typE: 19: A special substitution occurs in P, a deletion occurs in Q and a 

normal substitution occurs in R. Denote it as "spe-P; del-Q; nor-R". 

21. 	Column typ·~ 20: Special substitutions occur in P and R, a deletion occurs in Q. 

Denote it as "spe-P; del-Q; spe-R". 

22. 	Column typ~ 21: Normal substitutions occur in P and Q, a deletion occurs in R. 

Denote it as "nor-P; nor-Q; del-R". 

23. 	Column typ ~ 22: A normal substitution occurs in P, a special substitution occurs in 

Q and a del·~tion occurs in R. Denote it as "nor-P; spe-Q; del-R". 
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24. Column type 23: A special substitution occurs in P, a normal substitution occurs in 

Q and a deletion occurs in R. Denote it as "spe-P; nor-Q; del-R". 

25. 	Column type 24: Special substitutions occur in P and Q, a deletion occurs in R. 

Denote it as ':spe-P; spe-Q; del-R". 

26. 	Column type 25: Normal substitutions occur in P, Q and R. Denote it as "nor-P; 

nor-Q; nor-..li:". 

27. 	Column type 26: Normal substitutions occur in P and Q, and a special substitution 

occurs in R. Denote it as "nor-P; nor-Q; spe-R". 

28. 	Column type 27: Normal substitutions occur in P and R, and a special substitution 

occurs in Q. Denote it as ''nor-P; spe-Q; nor-R". 

29. 	Column type 28: Normal substitutions occur in Q and R, and a special substitution 

occurs in P. Denote it as "spe-P; nor-Q; nor-R".. 

30. 	Column type 29: Normal substitution occurs in P, and special substitutions occur in 

Q and R. DE:note it as "nor-P; spe-Q; spe-R". 

31. 	Column typE 30: Normal substitution occurs in Q, and special substitutions occur in 

P and R. Denote it as "spe-P; nor-Q; spe-R". 

32. 	Column type 31: Special substitutions occur in P and Q, and normal substitution 

occurs in R. Denote it as "spe-P; spe-Q; nor-R". 

33. 	Column typ'~ 32: Special substitutions occur in P, Q and R. Denote it as "spe-P; 

spe-Q; spe-Jl". 

Next, we will discuss how to avoid non-canonical alignments when enumerating all star 

alignments by induction. 

http:nor-..li
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Table 3.1: Right-Offensive Columns 

Table 3.2: Left-Offensive Columns 

6 

0,1,2,3,4,5 

Suppose we hc.ve a canonical star alignment of length n with type j as the type of 

the last column. We will add a column of type i to the right of this alignment to form a 

canonical star alignment of length n + 1. The question is: what kind of column, i.e. the 

value of i, cannot l:e selected in order to have a canonical star alignment? 

First, we note that if the nucleotide of X (the ancestral sequence) in the last column 

is not a space, i.e. 7 ~ j ~ 32, or an insertion took place in each descendant sequence, i.e. 

j = 6, then it is safe to add any kind of column to the right of the alignment. 

Second, if 0 ~ j ~ 5, by checking each value of j, we find the types of columns (the 

values of i) that c!Ulllot be added to the right of the alignment because there is at least 

one pair of gaps that can be shifted to the right without changing the history of evolution. 

Such a column with type i is called a right-offensive column of i. For each j, 0 ~ j ~ 5, 

its right-offensive column type i's are shown in Table 3.1. 

Conversely, if we know the type of the newly added column is i, then we can easily 

find the value (more than one) of j with which type the column cannot be to the left of the 

newly added column. Such a column with type j is called a left-offensive column of i. 

For each i, 0 ~ i ~; 6, the left-offensive column type, j's are shown in Table 3.2. 
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In a word, in a canonical alignment, a column of type j cannot be the left neighbor 

of a column of type i and conversely, a column of type i cannot be the right neighbor of a 

column of type j, wh.ere i and j are the values in Table 3.1 or Table 3.2. 

3.2 The Su1n Approach 

In this section, we vrill define the likelihood function, Lf(IPI, IQI, IRI), as the summation of 

the likelihood of ea:h possible canonical star alignment with each possible ancestral DNA 

sequence by induction on the lengths of P, Q and R, where IPI, IQI, IRI are the lengths of 

P, Q and R respectively and(} is defined as in Section 3.1. 

Let us define some auxiliary functions for each sequence. In the evolutionary process 

from X toP, defiu~ 

!t,;;(t) = { 
otherwise 

where i, j are nudE otides, and 

Pl,n(t) 

p"l,n(t) 

where 

Similarly, we :an define h,i;(t), P2,n(t), P~,n(t), P~,0 (t), and P~,n(t) for sequence Q and 

fa,i;(t), P3,n(t), P~,n(t), P~,0(t) and PKn(t) for sequenceR. 
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The notations not defined in this section can be found in Chapter 2. 

Now we define Li(IPI, IQI, jRI) by induction on the lengths of P, Qand R. In order to 

avoid adding the likdihood of non-canonical alignment into the sum, during the induction, 

for each l, m, n, where 0 $ l $ !PI, 0 $ m $ IQI, 0 $ n $ IRI, we have to define another 

six likelihood functi,ms: Li(i, l, m, n), 0 $ i $ 6, which is the same as Li(l, m, n) except 

that every canonical. star alignment considered in the sum should have a column of type i 

as its rightmost column. 

Initially, i.e. l = m = n = 0, we have one immortal link for each sequence and the 

number of links in each sequence is one. So we get 

L6
5 (0, O, 0) = p~' 1(t)(l- ~) · p'2' 1 (t)(l- ~) · p'3' 1(t)(l- ~),

I ~ I N I ~ 

Li(O, O, O, 0) = O, Li(l, 0, 0, 0) = 0, Li(2, 0, 0, 0) = 0, 

Li(3,0,0,0)= O, Li(4,0,0,0)= O, Li(5,0,0,0)= 0. 

Define Li(l,m,n) = O, Li(i,l,m,n) = 0, 0$ i $5, for l < 0, or m < 0, or n < 0. For 

0 $ l $ IPI, 0 $ m $ IQI, 0 $ n $ IRI, define 

Li(o,o,m,n) = Li(l,l,O,n) = Li(2,l,m,O) = O, 

and 

Li(3,1,m,O) = Li(3,l,O,n) = O, 

Li(4,0,m,n) = Li(4,1,m,O) = 0, 

Li(5,o,m,n) = Li(5,l,O,n) = o. 

Let Pz denot·~ the zth nucleotide in sequence P. Similarly Qm denotes mth nucleotide 

in sequence Q, and Rn denotes nth nucleotide in sequence R. So sequence P can also be 

expressed as P1 • · • .PjPI· 
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Let i, 7 ~ i ~; 32, be a column type. Li(i, A, l, m, n) denotes the swnmation of 

the likelihoods of all possible canonical star alignments of sequences P1 • • • Pz, Q1 • · · Qm, 

R 1 · • · Rn with the l<~st column having type i and the nucleotide of the ancestral sequence in 

the last column being A. Li(i, G, l, m,n), Li(i, C, l, m, n) and Li(i, T, l,m,n) are similarly 

defined. 

By induction, nppose that we have computed the values of Li(p, q, r), and Li(O,p, q,r), 

Li(1,p, q, r), Li(2, p, q, r), Li(3,p, q, r), Li(4,p, q, r), Li(S,p, q, r) where p ~ l, q ~ m, r ~ 

n and (p, q, r) "# (l, :n, n). In the rest of this section, we will compute Li(i, l, m, n ), 0 ~ i ~ 6, 

and Li(i, Y, l, m, n> where 7 ~ i ~ 32 andY E {A, G, C, T}. Thus Li(l, m, n) will be the 

swnmation of all these likelihoods. 

Now let us fir1:t consider the insertion cases, which need extra attention because the 

last column in the current alignment could be a left offensive column of the new insertion 

column, thus causir1g duplicate alignments. 

We will define first the values of T M Pi for each i, 0 ~ i ~ 6. T M Pi will then be used 

to define Le( i, l, m, n) for each i, 0 ~ i ~ 6. 

If i = 0, the left offensive column types of i are 1, 2, 3. Define 

TMPo 	 Li(l- 1,m,n)- Li(1,l-1,m,n)­

Li(2, l- 1, m, n)- Li(3, l- 1, m, n). 

If i = 1, the left offensive column types of i are 0,2,4. Define 

Li(l,m-1,n)- Li(O,l,m-1,n)­

Li(2,l,m-1,n)- Li(4,l,m-1,n). 
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Hi= 2, the left offensive column types of i are 0,1,5. Define 

TMP2 = L:(l,m,n-1)- L:(o,l,m,n-1)­

L:(1,1,m,n-1)- L:(5,1,m,n-1). 

IT i = 3, the left offEnsive column types of i are 0, 1, 2, 4, 5. Define 

TMP3 = 	 L:(z,m- 1,n- 1)- L:(o, l,m- 1,n- 1)­

L:(1,1,m-1,n-1)- L:(2,1,m-1,n-1)­

£:(4, l, m- 1, n- 1)- £:(5, l, m- 1, n- 1). 

IT i = 4, the left offimsive column types of i are 0, 1, 2, 3, 5. Define 

TMP4 = 	 L:(l- 1,m,n-1)- L:(o,l-1,m,n-1)­

L:(1,1-1,m,n-1)- L:(2,1-1,m,n-1)­

£:(3, 1- 1,m,n- 1)- L:(5,l- 1,m,n- 1). 

Hi = 5, the left offensive column types of i are 0, 1, 2, 3, 4. Define 

TMP5 = 	L:(l- 1,m -1,n)- L:(o,l- 1,m -1,n)­

£:(1, l- 1, m- 1, n)- L:(2, 1- 1, m- 1, n)­

L:(3,l-1,m-1,n)- L:(4,l-1,m-1,n). 

IT i = 6, the left ofl'ensive column types of i are 0, 1, 2, 3, 4, 5. Define 

TMP6 = L:(l-1,m-1,n-1)-L:(o,l-1,m-1,n-1)­

L:(1,1-1,m-1,n-1)- L:(2,1-1,m-1,n-1)­

£:(3, 1- 1, m- 1, n- 1)- £:(4, 1- 1, m- 1, n- 1)­

L:(5,1-1,m-1,n-1) 

Then L9(i, l, m, n) for each i, 0 ::; i ::; 6 can be easily computed as follows. 
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i = 0: "ins-P" 

i = 1: "ins-Q" 

i = 2: "ins-R" 


Lf(2,l,m,n) = 1rR..Aa.Ba(t) · TMP2. 


i = 3: "ins-Q, ins-R" 

i = 4: "ins-P, ins-R" 

i = 5: "ins-P, ins-Q" 

i = 6: "ins-P, ins-Q, ins-R" 

Now, let us dE~al with the deletion-substitution columns, which are much easier because 

these columns cannot generate non-canonical alignments. Lf(i, A, 1, m, n), 7 ::; i ::; 33, can 

be calculated by the usual recurrence equations below. 

i = 7: "del-P; del-Q; nor-R" 
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S A1 I A2 I Aa S
L6 (7, A, l, m, n) = -1rAP1 0(t) · -1rAP20(t) • -1rAf3AR..(t)pa,1(t) • Le (l, m, n- 1), 

~1 ' ~2 ' ~a 

i = 8: "del-P; del-Q; spe-R" 


Li(B, A, l, m, r1.) = ).1 1rAP~ 0(t) · ).2 1rAP~ 0(t) · >.a1rA1rR..P~ 1 (t) · Li(l, m, n- 1), 

~1 ' ~2 ' ~a ' 

i = 9: "del-P; nor-Q; del-R; " 


S A1 I Aa I A2 S

L8 (9, A, l, m, n) = -1rAP1 0(t) • -1rAPa 0(t) • -1rA/2AQ,. (t)p2,1(t) · Lg (l, m- 1, n), 

~1 ' ~a ' ~2 

i = 10: "del-P; spe-Q; del-R" 


s( >.1 1 ) >.a 1 ) >.2 1 ( s( )
Le 10, A, l, m, n) = -1rAP10(t · -1rAPa 0(t · -1rA1rQ,.P21 t) · L 8 l, m- 1, n , 
~1 ' ~a ' ~2 ' 

i = 11: "nor-P; del-Q; del-R" 


S A2 I Aa I A1 S

L 8{11, A, l, m, n) = -1rAP2 0(t) · -1rAPa 0(t) · -1rAfup1(t)P1,1(t) • L 8(l- 1, m, n), 

~2 ' ~a ' ~1 

i = 12: "spe-P; del-Q; del-R" 


S( ) A2 I ( ) Aa I ( ) A1 I ( ) S ( )
L 8 12, A, l, m, n = -1rAp2 0 t · -1rAPa 0 t · -1rA1rp1p11 t • L 8 l- 1, m, n , 
~2 ' ~a ' ~1 ' 

i = 13: "del-P; nor-Q; nor-R" 

Li{13, A, l, m, n) 

i = 14: "del-P; nor-Q; spe-R" 
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i = 15: "del-P; spe-Q; nor-R" 

s ~1 1 ~2 1 .\a s
L6 (15, A, l, m, n) = -1rAP10(t) · -1r'A1r'Q.,.p21(t) · -?rA/3AR..(t)pa,1(t) · L6 (1, m -1, n -1), 

~1 ' J.L2 ' J.La 

i = 16: "del-P; spe-Q; spe-R" 

L~(16, A, l, m, n) = ..\1 1rAP~ 0(t) · ~2 1rA1rQ.,.(t)p~ 1(t) · ..\3 1rA1rR..P; 1(t) · L~(l, m- 1,n- 1),
J.L1 ' J.L2 ' J.La ' 

i = 17: "nor-P; del-Q; nor-R" 


s ..\2 I ..\1 ~3 s

Ls (17, A, l, m, n) = -?rAP2 0(t)·-1r'Afup1(t)P1,1(t)·-1r'AfaAR,.(t)pa,1(t)·Ls (l-1, m, n-1),

J.L2 ' J.L1 J.La 

i = 18: "nor-P; del-Q; spe-R" 


s( ) a ..\2 1 ( ) ..\1 ) ( .\a 1 ) s( )
L6 ll,A,l,m,n =1rA-p20 t ·-fup1(tP1,1 t)·-1r'R,.P31(t ·L6 l-1,m,n-1, 
J.L2 ' J.L1 J.La ' 

i = 19: "spe-P; del-Q; nor-R" 


s a ..\2 1 ..\1 1 .\a s

L6 (19, A, l, m, n) = 1rA-P2,0 (t) · -?rp1p11(t) · -faAR,.(t)pa,1(t) · L6 (l- 1, m, n- 1),

J.L2 J.L1 ' J.La 

i = 20: "spe-P; del-Q; spe-R" 

i = 21: "nor-P; nor-Q; del-R" 


s a .\a 1 ..\1 ..\2 s

L6 (22, A, l, m, n) = 1rA-p3 0(t) · -!IAP1(t)P1,1(t) · -hAQ.,.(t)P2,1(t) · L6 (l- 1, m- 1, n),

J.L3 • J.L1 J.L2 

i = 22: "nor-P; spe-Q; del-R" 


s a .\a , ..\1 ..\2 1 s

L6 (22, A, l, m, n I= 1rA-p3 0(t) · -!IAP1(t)P1,1(t) · -1r'Q.,.p21(t) · L6 (l- 1, m- 1, n),

J.L3 • J.L1 J.L2 • 

i = 23: "spe-P; nor-Q; del-R" 
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s ) 3 A3 1 Al 1 ( ) A2 ) ( ) s( )L8 (23, A, l, m, n = 1rA-p3 0(t) · -7rp1p11 t · -/2AQ.,.(t P2,1 t • Le 1- 1, m- 1, n , 
Jla ' JL1 ' JL2 

i = 24: "spe-P; spe-Q; del-R" 

5 ( ) 3 Aa 1 ( ) A1 1 ( ) A2 1 ( ) s(z )L8 24, A, l, m, n = 1rA-p3 0 t • -7rp1p11 t · -1rQ.,.P2 1 t · L 8 - 1, m- 1, n , 
Jl3 • Jll • Jl2 • 

i = 25: "nor-P; nor-Q; nor-R" 

Lt(25, .4., l, m, n) 

i = 26: "nor-P; nor-Q; spe-R" 

Lt(26, A, I, m, n) 

i = 27: "nor-P; spe-Q; nor-R" 

Lt(27, A, I, m, n) 

i = 28: "spe-P; nor-Q; nor-R" 

Lt(28, A., I, m, n) 

i = 29: "nor-P; spe-Q; spe-R" 

http:1rQ.,.P2
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3 ~1 ~2 I ( )
7rAJ.£ P111(t)fup,(t) • J.£ P211 t 11'"Q.,. •

1 2 

.).
3p~ 1(t)7rR.. • Li(l- 1,m- 1, n- 1).

J.£3 I 

i = 30: "spe-P; nor-Q; spe-R" 

3 ~1 I ~2 ( )
7rAJ.£ P111(t)7rp1 • J.£ P211(t)/2AQ.,. t · 

1 2 

~3p~ 1(t)7rR,. • Li(l- 1,m- 1, n- 1),
J.£3 I 

i = 31: "spe-P; spe-Q; nor-R" 

3 ~1 I ( ) ~2 I ( )Li(31,A,1,m,n) 7rA-P11 t 1rp, • -P21 t 11'"Q.,. •
J.£1 1'2I I 

~3 s
J.£ P311(t)f3AR..(t) • L 6 (1- 1, m- 1, n- 1),

3 

i = 32: "spe-P; spe-Q; spe-R" 

Li(:l2, A, 1,m,n) 

Then, we com:ider G, C, T as the ancestral nucleotide in X, respectively and get 

L5 (i, G, 1, m, n), Lt (i, C, 1, m, n), L 5 (i, T, 1, m, n), where 7 ::; i::; 32. Now we define 

Li(1,m,n)= 2: LB(i,1,m,n)+ 2: 2: Li(i,Y,1,m,n) 
O~i~6 79~32 YE{A1G1C1T} 

Thus Li(IPI, IQI, IRI) is the summation of all likelihoods of all possible canonical s­

tar alignments of the three observed sequences P, Q, R with all possible ancestral DNA 

sequences (see [Wat84]). 
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The sum approach will estimate the evolutionary parameter (} = (.\1t, JLt t, s1 t, 

>.2t,JL2t,s2t,>.3t,JL3I,s3t) by maximizing the likelihood function LZ(IPI, IQI, IRI) using the 

simplex method. T:1e simplex method will not be described here. The C code for this maxi­

mization routine was published in [PFTV88]. The simplex method is often used to estimate 

the maximum (or minimum) value of a function when the maximum (or minimum) cannot 

be found exactly. i:n our case, the simplex method searches the surface of the likelihood 

function LZ(IPI, IQ I, IRI) for the value of(} that maximizes the likelihood. At the beginning, 

the simplex method requires 10 initial values of 0. Then it will climb the likelihood function 

surface toward the maximum value of the likelihood untill a predefined tolerance is reached. 

A single evaluation of LZ(IPI, IQI, IRI) is called an iteration. HI is the number of iterations 

required by the simplex method, then the computational complexity for the sum approach 

is O(I ·IPI·IQI·IR 1). 

At last, the estimated evolutionary parameter(} is used to find a star alignment with 

the maximum likelihood by the usual dynamic programming method. The time and space 

complexity of the dynamic programming is O(IPI·IQI·IRI)· 

3.3 The Direct Alignment Approach 

In this section, we will define the likelihood function, Lf(IPI, IQI, IRI), to be maximized in 

the direct alignment approach. 

Given a set of evolutionary parameters 0, we define Lf(IPI, IQI, IRI) to be the likelihood 

of a star alignment offour DNA sequences, X, P, Q, R, with the maximum likelihood among 

all other possible alignments with all possible X's. As in the sum approach, Lf(IPJ, JQJ, JRI) 

can also be defined inductively. 
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Initially, Lf(o, o, o) = P~.1 (t)(l- ~) · P~,1(t)(l- ~) · PK1(t)(l- ~ ). 

Define Lf(l,m,n) = 0 for l < 0, or m < 0, or n < 0. 

Let i, 0 ~ i ~ 6, be a column type. Lf (i, l, m, n) denotes the maximum likelihood 

of any canonical star alignment with the last column having type i of the sequences, 

P1 · · ·P,., Ql · · ·Qm, R1· · ·Rn. Lf(i, A, l,m, n) denotes the maximum likelihood of all pos­

sible canonical star alignments of sequences P1· · · Pz, Q1 · · · Qm, R1 · · · Rn with the last 

column having type i, and the nucleotide of the ancestral sequence in the last column being 

A. L~(i,G,l,m,n), Lf(i,C,l,m,n) and Lf(i,T,l,m,n) can be similarly defined. 

Then Lf(l, m, ~l)is defined to be the maximum value of Lf(i, l, m, n) and Lf(j, Y, l, m, n) 

where 0 ~ i ~ 7, 7 :; j ~ 32 andY E {A, G, C, T}. Moreover, specially for the direct align­

ment approach, define T(l,m,n) to be the i such that either Lf(i,l,m,n) = Lf(l,m,n) or 

Lf(i,Y,l,m,n) = Lf(l,m,n) where Y E {A,G,C,T}. Initially set T(l,m,n) = -1 for all 

l,m,n. 

It is easy to see that Lf(IPI, IQI, IRI) is the maximum likelihood among the likelihoods 

of all possible canonical star alignments of sequences P, Q, R. 

Suppose that we we have computed the values of Lf(p, q, r) and T(p, q, r) for p < 

l, q ~ m, r ~ n and (p, q, r) =F (l, m, n). Then we will inductively compute Lf(l, m, n) 

and T(l,m,n) by computing Lf(i,l,m,n) where 0 ~ i ~ 6 and Lf(j,Y,l,m,n) where 

7 ~ j ~ 32 andY E {A,G,C,T}. 

First, let's con>ider Lf(i, l, m, n) where 0 ~ i ~ 6. The important idea is that if the 

next to last columtl. is a left-offensive column of i, the likelihood, Lf (i, l, m, n ), is zero 

because the alignment is a duplicate. 
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if T(1- 1, m, n) E {1, 2, 3}, 
LD9 (0, 1, m, r..) = { 	 0 

?rp1A1.81(t) · Lf(1- 1, m, n) otherwise. 

if T(1, m- 1, n) E {0, 2, 4}, 
L 9D (1,1,m,n) = { 	 0 

1rQ.,.A2.82(t) •Lf(1, m- 1, n) otherwise. 

ifT(1,m,n-1) E {0,1,5},
L6

D (2,1,m,n) = { 	 0 

1rR,.Aa.8a(t) · Lf(1, m, n- 1) otherwise. 

D { 0 ifT(1,m-1,n-1) E {0,1,2,4,5},
L 6 (3, 1, m, n) == 

1rQ.,.A2.82(t) · 1rR,.Aa.8a(t) · Lf(1, m- 1, n- 1) otherwise. 

D { 0 	 if T(1- 1, m, n- 1) E {0, 1, 2, 3, 5}, 
L6 (4,1,m,n) = 

1rp1A1.81(t) · 1rR,.Aa.8a(t) · Lf(1- 1, m, n- 1) otherwise. 

D { 0 ifT(1-1,m-1,n)E{0,1,2,3,4},
L6 (5,1,m,n) = 

1rp1A1.81 (t) · 1rQ.,.A2.82(t) · Lf(1- 1, m- 1, n) otherwise. 

( 0 if T(1- 1, m- 1, n- 1) E {0, 1, 2, 3, 4, 5}, 
Lf(6, 1, m, n) = ~ 

Secondly, we consider the deletion-substitution columns. As we mentioned in Sec­

tion 3.1, the deletion-substitution columns will not give rise to non-canonical star align­

ment. Therefore Lf(i, A, 1, m, n), LD(i, G, 1, m, n), LD(i, C, 1, m,n), LD(i, T, 1, m, n), where 

http:1rp1A1.81
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7 :::; i :::; 32, can hE calculated in the same way as computing Lf(i, A, I, m, n) except that 

we should replace Ef(i,A,I,m,n) with Lf(i,A,I,m,n) (see Section 3.2). 

Finally, define Lf(l, m, n) to be the maximum likelihood among all the likelihoods 

defined above. That is, 

Lf(l, m, n) =max{ m!U Lf(i, I, m, n), m.ax max Lf(j, Y, I, m, n)};
O$t$6 7$J$32Ye{A,G,C,T} 

and define 

I= {i ILf(i,l,m,n) = Lf(l,m,n)v 3Ye{A,G,c,T}(Lf(i,Y,I,m,n) = Lf(l,m,n))} 

and 

T(l, m, n) = min{i I i E I}. 

Thus, we obtain Lf (IPI, IQI, IRI) which is the objective function to be maximized in the 

direct alignment approach. 

Simplex metho1L is again used here to estimate the evolutionary parameter (} which 

maximumizes the value of Lf(IPI, IQI, IRI) in the same way as in the sum approach. Then 

a star alignment with maximum likelihood is found by dynamic programming using the 

estimated parameter (}. 



Chapter 4 

The M1~SAS System Development 

The programs in MLSAS are divided into two parts. The first part deals with input from 

a file containing three observed molecular sequences, calculates the likelihood functions, 

estimates the evolu~ionary parameters by maximizing the likelihood functions, and aligns 

the three sequence vrith their ancestral sequences. This part is written in C. The second part 

of MLSAS generates a graphical user interface featuring multi-tasking. It makes MLSAS 

easy to use. The second part is written inC and MOTIF. 

The first part is independent of the second part. So MLSAS can also be used on 

computers without graphical facilities as a command-driven system. 

In this chapter, we will briefly explain how the C files are organized in MLSAS. Hope­

fully, it will be helpful for interested readers to further develop the system. For the details 

of the programs, please contact the author for the code which is well-commented. 

37 
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4.1 The Code Organization of the Algorithms 

The first part of the programs in MLSAS consists of 9 files. 

"global_var.h" ieclares the global variables in the whole system. They are four point­

ers to and the len~ths of the four sequences involved in the star alignment and the four 

equilibrium base frequencies. 

"arrayutil.c" prepares some useful routines to allocate and deallocate one-dimensional, 

two-dimensional, thee-dimensional and four dimensional arrays. These routines are fre­

quently used in the system to allocate and deallocate memory. 

"Get_input.c" <1llocates memory for the three input sequences, converts the characters 

A, G, C, T or A, G, C, U into 0, 1, 2, 3 respectively. It calculates the equilibrium base 

frequencies by dividing the number ofeach nucleotide appearing in the three input sequences 

by the total length o::the sequences. It defines 10 groups of initial values ofthe 9 evolutionary 

parameters. The choice of the initial values is sometimes important for the optimization 

results when the iterations of the optimization routines are limited due to the computer 

speed. 

"Sum. c" calculates the likelihood for the sum approach. It has 6 extra 4-dimensional ar­

rays to hold the likelihoods related to insertions in order to guarantee that all alignment tak­

en into account are canonical. It then maximizes the likelihood by calling the maximization 

routine "double sin.plex_max(double [] []. double. double (•obj..func)(double []). 

int *)" (defined in "simplex_max.c ") and outputs the evolutionary parameters reaching 

the maximum point. Finally it finds the canonical star alignment with the maximum like­

lihood for these evolutionary parameters. The routine for constructing a star alignment 

"star_align(doublEI •)" is defined in the file "Align.c" 
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"Direct.c" calculates the -log likelihood1 for the direct approach. It then minimizes the 

likelihood by calling minimization routine "double simplex...min(double [] [] , double, 

double (•obj_fun,:)(double []), int •)" (defined in "simplez_min.c") and outputs the 

evolutionary paran:eters reaching the minimum point. Finally it finds the canonical star 

alignment with the maximum likelihood using the evolutionary parameters. It uses the star 

alignment routine "star_align(double •)" 

"Align.c" finds a canonical star alignment with the maximumlikelihood. The unknown 

ancestral sequence is inferred during the alignment. It also converts 0, 1, 2, 3, 4 into A, G, 

C, T, space(-) or .A., G, C, U, space(-), respectively, and prints out the alignment. 

"simplez_maz.d' and "simplez_min.c" implement the simplex method to maximize and 

minimize a non-diffi!rential function. The maximum number of iterations for these opti­

mization routine is set to bes 100 at the moment. The user could change it to a larger 

number to get betteJ~ results if the computer speed permits. 

"main.c" is the main program for the two algorithms. From it, two executable files 

"sum" and "direct" c:an be generated to fully implement the sum approach and the direct 

alignment approach. 

4.2 The Graphical User Interface 

The second part dealing with the graphical user interface consists of 10 files. 

"mlsas.c" generates the main window of the user interface. The main window belongs 

1 Taking -log of the likelihood for the direct alignment approach is possible since L~(IPI, IQI, IRI) has 
the form of product of L?(l,m,n) for 0 ~ l ~ IPI,O ~ m ~ IQI,O ~ n ~ IRI. If P, Q, R become longer, 
the value of L~(IPI, IQI, Rl) becomes smaller and may be smaller than the smallest floating number the 
computer can store. This problem can be avoided by taking -log of L~(IPI, IQI, IRI). 



40 4 . THE MLSAS SYSTEM DEVELOPMENT 

Figure 4.1: The main window of MLSAS 
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to "Form Class". lt has 9 children eight of which are labels of either text or bitmap and 

one of which is "Dialog Class" letting the user exit from MLSAS after she/he is sure to 

quit. The layout, background and foreground colors, and the types of fonts of its children 

are specified in the file ".fapp-defaults/Mlsas". Figure 4.1 shows what the main window 

looks like after the MLSAS is started. 

When the left !mtton of the mouse is pressed on one of the 4 numbered lines, a popup 

menu is popped up and the user can choose relevant item to either get help or edit a input 

file or start a process or browse the output. 

"GuidePanel.c'' creates a popup menu on the line of "User's Guide" containing four 

items, which are get1eral information about MLSAS, the format of the input file (delimiting 

each molecular sequence with a pair of "*"'s), a brief description about the two approaches 

on the maximum likelihood star alignment, and how to read the running results within 

MLSAS. Figure 4.2 shows how the interface looks like when the left button of the mouse is 

pressed. Figure 4.3 shows the interface when the item "General Information" in the popup 

menu is chosen. 

"InputPanel.c'' creates a popup menu on the line of "Input Three Sequences", which 

consists of two items for the user to choose concerning an input method. The user can 

either type the name of the input file containing the three sequences in the dialog box (see 

Figure 4.4) or edit the input file within MLSAS. 

"AlgSelection.c" creates a popup menu on the line of "Select an Algorithm". From this 

menu, the user could choose either the sum approach or the direct alignment approach to 

run on the current input (see Figure 4.5). 

Once an algor.ithm is selected, a confirmation dialog box is popped up. If the user 
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Figure 4.2: A popup menu on the line of "User's Guide" 
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Figure 4.3: General information is displayed through the popup menu 
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Figure 4.4: Prompt for input file name 
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Figure 4.5: A Popup menu on the line of "Select an Algorithm" 
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Figure 4.6: A confirmation dialog for the choice of algorithm 

is sure about her/his choice, just press the "RUN" button. Otherwise press the "QUIT" 

button to abandon the choice (see Figure 4.6). Note that MLSAS will fork a child process to 

execute the program in order to run multiple programs simultaneously within the MLSAS. 

Once the "RUN" button is pressed, and an information dialog box is popped up to 

notify the user that the program is running in background. If the user changes his/her 

mind to stop the program, just press the "STOP" button. Press "QUIT" to remove the 

dialog box from the screen (see Figure 4. 7). 

As soon as a dispatched process terminates, a real-time notification window is popped 

up which shows how much time has elapsed since the process was started. "Direct_Report.c" 

and "Sum_Report.c" fulfill the notification task by creating a "Form" window as soon as 

the running process terminates. Figure 4.8 shows a notification window pops up when the 

sum program terminates. 

The running results are stored in file "OutputDirect" for the direct alignment approach 
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Figure 4. 7: A dialog box to stop the running process 

Figure 4.8: A notification window when a running process terminates 
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Figure 4.9: A popup menu on the line of "Browse the Output" 
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Figure 4.10: Exit MLSAS 

and file "OutputSum" for the sum approach. "BrowsePanel.c" creates a popup menu on 

the line of "Browse the Output" (see Figure 4.9). The menu contains two items for the user 

to choose the file to be read. Once a file is chosen, the content of the file will be displayed 

in a read-only text widget in which the name of the file can be changed in order to avoid 

being over-written by MLSAS if it is running the same program. 

To exit MLSAS, press the "Bye" button in the MLSAS main window (See Figure 4.10). 
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The callback fimctions used in the popup menu are defined in the following C files. 

"Editor.c" creates an editor called in "InputPanel.c" for the user to edit an input file 

containing three molecular sequences. Its resource file is ".fapp-defaults/Editor". 

"File_Browser. c" creates a read-only text widget to display running results. It is called 

in "BrowsePanel.c':. Its resource file is ".fapp-defaults/File_browser". 

"Read_help.c" ·luilds a browser to display help information. It is called in "GuidePan­

el.c". Its resource file is ". / app-defaults /Read.help". 



Chapter 5 

Simulations and Testing 

In this chapter, we will approximately simulate the evolutionary process with pre-assigned 

parameters from a chosen ancestor to three descendants and then let MLSAS run on the 

three evolved sequ,~nces to see how precise and reliable MLSAS is. 

Finally, we wi:l provide a real example to find the ancestral sequence of three observed 

sequences. 

We know that the sum approach is more unbiased than the direct alignment approach 

because its estims.tion of parameters is based on the summation of the likelihoods of all 

alignments rather than a single aliment with maximum likelihood although the direct align­

ment approach is faster. From the simulation results, we will see that the two approaches 

give very accurate parameter estimation as shown in Case Study 1 where the evolutionary 

distance is small. Also, we will see that the sum approach is more accurate (the smaller 

standard error) than the direct alignment approach when the evolutionary distance becomes 

larger (See Table 5.5 and Table 5.6). 
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5.1 Simulation Study 

Suppose that we are given a DNA sequence X and a set of evolutionary parameters (} = 

(>.t, J.tt, st), where>. is the birth rate per normal or immortal link during the evolution from 

X to a descendant sequence Y, J.t is the death rate per normal link during that evolution, 

s is the substitutio:1 rate during that evolution. We will simulate the evolutionary process 

to obtain the descendant sequence Y according to the model defined in Chapter 2. 

Let i, j be two nucleotides. Let LD = ~p~(t)(= >.,B(t)), Lf,; = ~fi.j{t)Pt(t), Lj 

*1rjp~(t), and LJ = 1r;>.,B(t). 

For each nucleotide i in X, define 

LT = LD + L: (LJ +Lj +Lf,;). 
O$j9 

Therefore the probability of a deletion of a nucleotide i in X is pD = ~- The probability of 
' 

the normal substit-Ition of i with j is Pf,; = :;!f. The probability of the special substitution 
' 

of i with j is Pf =: ~- The probability of the insertion of nucleotide j is PJ = ~-
' ' 

So for each ntLcleotide in X, there are 13 possible evolutionary events to happen. The 

13 possible events are four normal substitutions, four special substitutions, four insertions 

and one deletion. We divide the interval [0, 1] into 13 subintervals according to the prob­

abilities of the 13 events such that the length of each interval equals the probability of 

the corresponding event. In this way a one-to-one relationship between the 13 subintervals 

and the 13 evolutionary events is established. During the simulation, we call a C routine 

"drand()" which generates a double precision real number in [0, 1] uniformly. If the value of 

"drand()" falls in a subinterval, then we assume that an evolutionary event corresponding 

to the subinterval happens and create a column of the alignment. Keep calling "drand()" 

until the last nuc:.eotide in X is considered. At the end, we get a descendant sequence Y 
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and an alignment with X. 

In the simulati:m study, we fix 6 sets of the values of the parameters (J = ().t, p,t, st) 

with smaller values :n first 3 sets and larger values in the last 3 sets. For each (J we generate 

10 descendant sequt~nces of around 50 nucleotides each. We group the 60 descendants into 

two cases. In Case 1, we study the 30 descendant sequences in 10 triples generated from 

the first 3 sets of parameters. In Case 2, we study the other 30 descendant sequences in 10 

triples generated from the last 3 sets of parameters. 

Case Study 1: Descendant sequences with small evolutionary distance 

In this study, 'l'le choose 3 fixed sets of parameters of small values as shown in the 

row "Simulation" of Table 5.1 and Table 5.2 and a fixed ancestral sequence as shown in 

Table 5.3, and TablE~ 5.4 and simulate the evolutionary process as described in the beginning 

of this section to ge~ 30 descendant sequences and group them in 10 triples. 

Table 5.1 and Table 5.2 list the estimated parameters for each sequence by the direct 

alignment algorithm and the sum algorithm respectively. 

Table 5.1 and Table 5.2 also give the average values of all9 estimated parameters and 

the standard errors. 

Standard error is a measure of precision of an estimate (see [Blo80]). The smaller the 

standard error is, the more satisfactory the estimate is. Usually there is many ways to 

choose a satisfactory standard error. In this paper we choose the variance, V(8*), as the 

standard error, where(}* is an estimated unknown parameter and 

V(8*) = 
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Table 5.1: Case ~:tudy 1: Evolutionary Parameters Estimated by the direct algorithm 

sample seq. ~ 
JJ. 

p,t st -log likelihood 
p 0.9789 0.0175 0.0217 

1 Q 0.9796 0.0175 0.0542 251.407 
R 0.9787 0.0542 0.1042 
p 0.9783 0.0170 0.0209 

2 Q 0.9783 0.0170 0.0539 263.812 
R 0.9780 0.0539 0.1039 
p 0.9789 0.0100 0.0100 

3 Q 0.9792 0.0100 0.0500 257.201 
R 0.9785 0.0500 0.1000 
p 0.9781 0.0153 0.0181 

4 Q 0.9781 0.0153 0.0528 259.354 
R 0.9767 0.0530 0.1028 
p 0.9787 0.0100 0.0100 

5 Q 0.9792 0.0100 0.0500 248.092 
R 0.9792 0.0500 0.1000 
p 0.9789 0.0213 0.0275 

6 Q 0.9787 0.0213 0.0563 270.258 
R 0.9796 0.0563 0.1063 
p 0.9777 0.0102 0.0104 

7 Q 0.9774 0.0106 0.0508 278.06 
R 0.9785 0.0504 0.0998 
p 0.9789 0.0133 0.0151 

8 Q 0.9792 0.0133 0.0518 268.399 
R 0.9785 0.0518 0.1018 
p 0.9796 0.0138 0.0138 

9 Q 0.9794 0.0096 0.0538 255.135 
R 0.9789 0.0481 0.1188 
p 0.9783 0.0102 0.0100 

10 Q 0.9783 0.0100 0.0498 256.853 
R 0.9783 0.0501 0.0998 
p 0.9950 0.0100 0.0100 

Simulation Q 0.9950 0.0100 0.0500 
R 0.9950 0.0500 0.1000 

0.9786 0.0139 0.0158 
p ±0.0005 ±0.0037 ±0.0058 

Standard 0.9787 0.0135 0.0523 
error Q ± 0.0007 ±0.0039 ±0.0021 

0.9785 0.0518 0.1037 
R ± 0.0007 ±0.0024 ± 0.0055 
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Table 5.2: Case Study 1: Evolutionary Parameters Estimated by the sum algorithm 

sample seq. ~ p.t st -log likelihood 
J.S 

p 0.9748 0.0224 0.0281 
1 Q 0.9754 0.0225 0.0563 247.379 

R 0.9745 0.0561 0.1059 
p 0.9721 0.0305 0.0272 

2 Q 0.9721 0.0289 0.0547 258.121 
R 0.9719 0.0640 0.1031 
p 0.9766 0.0116 0.0140 

3 Q 0.9768 0.0147 0.0550 252.66 
R 0.9761 0.0511 0.1027 
p 0.9622 0.0233 0.0093 

4 Q 0.9622 0.0194 0.0463 251.398 
R 0.9608 0.0672 0.0926 
p 0.9787 0.0100 0.0100 

5 Q 0.9792 0.0100 0.0500 245.879 
R 0.9792 0.0500 0.1000 
p 0.9718 0.0321 0.0271 

6 Q 0.9716 0.0302 0.0544 264.103 
R 0.9724 0.0654 0.1026 
p 0.9656 0.0190 0.0138 

7 Q 0.9654 0.0101 0.0497 270.883 
R 0.9664 0.0632 0.1034 
p 0.9756 0.0176 0.0205 

8 Q 0.9758 0.0191 0.0550 265.267 
R 0.9752 0.0561 0.1045 
p 0.9791 0.0126 0.0124 

9 Q 0.9789 0.0100 0.0521 252.625 
R 0.9785 0.0488 0.1110 
p 0.9788 0.0101 0.0100 

10 Q 0.9788 0.0100 0.0500 252.513 
R 0.9788 0.0501 0.0999 
p 0.9950 0.0100 0.0100 

Simulation Q 0.9950 0.0100 0.0500 
R 0.9950 0.0500 0.1000 

0.9735 0.0189 0.0172 
p ±0.0055 ±0.0077 ±0.0073 

Standard 0.9736 0.0175 0.0524 
' error Q ±0.0056 ±0.0074 ± 0.0031 

0.9734 0.0572 0.1026 
R ± 0.0056 ±0.0068 ±0.0045 
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Table 5.3: Case Study 1: The ancestral DNA sequences estimated by the direct algorithm 

II Sample I Ancestor 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

X CCTAACACGCCCCCTCTCTCATCCTAACAGGCTCTTCTAGCGAGTC
r-x• -CTAACACGCCCCCTCTCTCATCCTAACAGGCTCTTCTAGCGAGTC 

X CCTAACACGCCCCCTCTCTCATCCTAACAGGCTCTTCTAGCGAGTC
r-x• CCTAACACGCCCCCTCTCTCATCCTAACAGGCTC-TCTAGCGAGTC 

X CCTAACACGCCCCCTCTCTCATCCTAACAGGCTCTTCTAGCGAGTC
r-x• CCTAACACGCCCCCTCTCTCATCCTAACAGGCTCTTCTAGCGAGTC 

X CCTAACACGCCCCCTCTCTCATCCTAACAGGCTCTTCTAGCGAGTC
r-x• CCTAACACGCCCC-TCTCTCATCCTAACAGGCTCTTCTAGCGAGTC 

X CCTAACACGCCCCCTCTCTCATCCTAACAGGCTCTTCTAGCGAGTC
r-x• CCTAACACGCCCCCTCTCTCATCCTAACAGGCTCTTCTAGCGAGTC 

X CCTAACACGCCCCCTCTCTCATCCTAACAGGCTCTTCTAGCGAGTC
rx• CCTAACACGCCCCCTCTCTCATCCTAACAGGCTCTT-TAGCGAGTC 

X CCTAACACGCCCCCTCTCTCATCCTAACAGGCTCTTCTAGCGAGTC
r-x• CCTAACACGCCCCCTCTCTCATCCTAACAGGCTCTTCTAGCGAGTC 

X CCTAACACGCCCCCTCTCTCATCCTAACAGGCTCTTCTAGCGAGTC 
7• CC-AACACGCCCCCTCTCTCATCCTAACAGGCTCTTCTAGCGAGTC 

X CCTAACACGCCCCC-TCTCTCATCCTAACAGGCTCTTCTAGCGAGTC
e-x• CCTAACACGCCCCCCTCTCTCATCCTAACAGGCTCTTCTAGCGAGTC 

X CCTAACACGCCCCCTCTCTCATCCTAACAGGCTCTTCTAGCGAGTC
rx• CCTAACACGCCCCCTCTCTCATCCTAACAGGCTCTTCTAGCGAGTC 

1 

1 

0 

1 

0 

1 

0 

1 

1 

0 
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Table 5.4: Case Study 1: The ancestral DNA sequences estimated by the sum algorithm 

II Sample I Ancestor Imil 

1 
X

x• 
CCTAACACGCCCCCTCTCTCATCCTAACAGGCTCTTCTAGCGAGTC 
C-TAACACGCCCCCTCTCTCATCCTAACAGGCTCTTCTAGCGAGTC 1 

2 
X

r-:x• 
CCTAACACGCCCCCTCTCTCATCCTAACAGGCTCTTCTAGCGAGTC 
CCTAACACGCCCCCTCTCTCATCCTAACAGGCTCT-CTAGCGAG-C 1 

X CCTAACACGCCCCCTCTCTCATCCTAACAGGCTCTTCTAGCGAGTC 
3 'X* CCTAACACGCCCCCTCTCTCA-CCTAACAGGCTCTTCTAGCGAGTC 1 

4 
X

r-:x• 
CCTAACACGCCCCCTCTCTCATCCTAACAGGCTCTTCTAGCGAGTC 
CCTAACACG-CCCCTCTCTCATCCTAACAGGCTCTTCTAGCGAGTC 1 

X CCTAACACGCCCCCTCTCTCATCCTAACAGGCTCTTCTAGCGAGTC 
5 'X* CCTAACACGCCCCCTCTCTCATCCTAACAGGCTCTTCTAGCGAGTC 0 

6 
X

r-x• 
CCTAACACGCCCCCTCTCTCATCCTAACAGGCTCTTCTAGCGAGTC 
CCTAACACGCCCCCTCTCTCATCCTAACAGGCTCTT-TAGCGAGTC 1 

X CCTAACACGCCCCCTCTCTCATCCTAACAGGCTCTTCTAGCGAGTC 
7 ~· CCTAACACGCCCCCTCTCTCATCCT-ACAGGCTCTTCTAGCGAGTC 1 

8 
X

rx• 
CCTAACACGCCCCCTCTCTCATCCTAACAGGCTCTTCTAGCGAGTC 
CC-AACACGCCCCCTCTCTCATCCTAACAGGCTCTTCTAGCGAGTC 1 

9 
X

r-x• 
CCTAACACGCCCCC-TCTCTCATCCTAACAGGCTCTTCTAGCGAGTC 
CCTAACACGCCCCCCTCTCTCATCCTAACAGGCTCTTCTAGCGAGTC 1 

10 
X

rx• 
CCTAACACGCCCCCTCTCTCATCCTAACAGGCTCTTCTAGCGAGTC 
CCTAACACGCCCCCTCTCTCATCCTAACAGGCTCTTCTAGCGAGTC 0 
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Table 5.3 and Table 5.4 show the estimated ancestral sequence for each group compared 

with the prefixed ancestral sequence. In the tables, X stands for the prefixed ancestral 

sequence, while x• stands for the estimated ancestral sequence. The value of m stands for 

the number of mismatches between X and x•. 

Case Study 2: Descendant sequences with large evolutionary distance 

In this study, we choose 3 fixed sets of parameters of not-so-small larger values as 

shown in the row ':Simulation" of Table 5.5 and Table 5.6 and a fixed ancestral sequence 

as shown in Table !).7 and Table 5.8, and simulate the evolutionary process as described in 

the beginning of this section to get 30 descendant sequences and group them in 10 triples. 

Table 5.5 and Table 5.6 list the estimated parameters for each sequence by the direct 

alignment algorithm and the sum algorithm respectively. 

Table 5.5 and Table 5.6 also give the average values of all 9 estimated parameters and 

the standard errors. 

Table 5. 7 and Table 5.8 show the estimated ancestral sequence for each group compared 

with the prefixed ancestral sequence. In the tables, again X stands for the prefixed ancestral 

sequence, X* stands for the estimated ancestral sequence, and m stands for the number of 

mismatches between X and X*. 

5.2 Testing on Some Real DNA Sequences 

In this section, we run MLSAS on two sets of real DNA sequences. In the first example, 

we compare the altgnment obtained by the direct alignment algorithm of MLSAS, with 

the alignment obta[ned by a popular program called CLUSTAL V [HBF92]. In the second 
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Table 5.5: Case Study 2: Evolutionary Parameters Estimated by the direct algorithm 

sample 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Simulatio:1 

Standard 
error 

seq. 
p 

Q 
R 
p 

Q 
R 
p 

Q 
R 
p 

Q 
R 
p 

Q 
R 
p 

Q 
R 
p 

Q 
R 
p 

Q 
R 
p 

Q 
R 
p 

Q 
R 
p 

Q 
R 

p 

Q 

R 

a. 
"' 0.9804 

0.9808 
0.9796 
0.9776 
0.9776 
0.9784 
0.9804 
0.9808 
0.9798 
0.9672 
0.9661 
0.9646 
0.9796 
0.9787 
0.9792 
0.9744 
0.9724 
0.9742 
0.9808 
0.9808 
0.9818 
0.9796 
0.9794 
0.9794 
0.9788 
0.9792 
0.9797 
0.9796 
0.9794 
0.9792 
0.9950 
0.9950 
0.9950 
0.9778 
±0.0040 
0.9775 
± 0.0045 
0.9776 
± 0.0047 

J.Lt 

0.1250 
0.1643 
0.1250 
0.0841 
0.0891 
0.0993 
0.0694 
0.0745 
0.0694 
0.2120 
0.1090 
0.1078 
0.0850 
0.0875 
0.0850 
0.2044 
0.1024 
0.2056 
0.1877 
0.1500 
0.1877 
0.0850 
0.0875 
0.0850 
0.1066 
0.1157 
0.1662 
0.1125 
0.1383 
0.1125 
0.0100 
0.1000 
0.5000 
0.1272 
±0.0512 
0.1118 
±0.0285 
0.1243 
±0.0442 

st 

0.2464 
0.2178 
0.2464 
0.3559 
0.3286 
0.3891 
0.5325 
0.5233 
0.5682 
0.2566 
0.1957 
0.2310 
0.3375 
0.3075 
0.3550 
0.2348 
0.1732 
0.2599 
0.2924 
0.2470 
0.3080 
0.3375 
0.3075 
0.3550 
0.1972 
0.1838 
0.2293 
0.2021 
0.1666 
0.2021 
0.5000 
0.500 

1.0000 
0.2993 
±0.0944 
0.2651 
±0.1032 
0.3144 
± 0.1038 

-log likelihood 

378.768 

389.152 

388.719 

333.736 

358.233 

354.076 

396.969 

371.497 

388.461 

362.048 
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Table 5.6: Case Study 2: Evolutionary Parameters Estimated by the sum algorithm 

sample seq. ~ 
IJ. 

JLt st -log likelihood 
p 0.9738 0.3680 0.4519 

1 Q 0.9742 0.2312 0.4493 316.577 
R 0.9730 0.3746 0.5225 
p 0.9790 0.4168 0.4781 

2 Q 0.9790 0.1823 0.4397 321.281 
R 0.9798 0.4182 0.5583 
p 0.9792 0.3827 0.4698 

3 Q 0.9796 0.2166 0.4571 319.248 
R 0.9786 0.3837 0.5411 
p 0.9732 0.3944 0.4594 

4 Q 0.9721 0.2055 0.4375 280.608 
R 0.9706 0.3991 0.5349 
p 0.9726 0.4323 0.4670 

5 Q 0.9717 0.1669 0.4161 298.489 
R 0.9722 0.4393 0.5539 
p 0.9735 0.4814 0.4813 

6 Q 0.9714 0.1179 0.3938 290.013 
R 0.9733 0.4875 0.5800 
p 0.9794 0.4279 0.4810 

7 Q 0.9794 0.1712 0.4343 326.263 
R 0.9805 0.4292 0.5638 
p 0.9791 0.3993 0.4744 

8 Q 0.9789 0.2004 0.4497 309.529 
R 0.9789 0.3997 0.5495 
p 0.9739 0.3933 0.4578 

9 Q 0.9742 0.2059 0.4363 327.389 
R 0.9747 0.4000 0.5349 
p 0.9723 0.3927 0.4565 

10 Q 0.9721 0.2064 0.4352 305.945 
R 0.9719 0.4000 0.5337 
p 0.9950 0.0100 0.5000 

Simulation Q 0.9950 0.1000 0.500 
R 0.9950 0.5000 1.0000 

0.9756 0.4089 0.4677 
p ±0.0030 ±0.0307 ±0.0103 

Standard 0.9753 0.1904 0.4349 
error Q ± 0.0034 ±0.0307 ±0.0173 

0.9754 0.4131 0.5473 
R ± 0.0035 ±0.0309 ± 0.0163 
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Table 5.7: Case Study 2: The ancestral DNA sequences estimated by the direct algorithm 

II Sample I Ancestor I mil 
GCAGAAAGTGGTCATTGTGGATGATCT-CCTGGCCACTGGAGGTAAGGA 

1 
X 

22X* --A-A-CGTG-TG-TTG-GGCT-ACATACCCGGC-AATGTAG-T-AG-­
GCAGAAAGTGGTCATTGTGGATGATCTCCTGGCCACTGGA-GGTAAGGA 

2 
X 

15GGTGC---TGGTAATTG-GGACGATCTCC-GACCA--GGCCGGTAAGGAX* 
GCAGAAAG-TGGTCATTGTGGATGATCTCCTGGCCACTGGAGGTAAGGAX 

3 -r· GCAGT-AGCTGTTCGTTTTGGGTGATTCCCCGGCATCTG-AGG-AAGGG 15 
X GCAGAAAGTGGTCATTGTGGATGATCTCCTGGCCACTGGAGGTAAGGA 

GCAG---G-GG-C-GCGT-GAT---CTACT--CC---GCCGGATAGG­ 254 X* 
X GCAGAAAGTGGTCATTGTGGATGATCTCCTGGCCACTGGAGGTAAGGA ----r­ -CA-AAAG-GGT--TTATGGAATTGCTTCTCG-CGCTGGGAGGAAATA 195 
X GCAGAAAGTGGTCATTGTGGATGATCTCCTGGCCACTGGAGGTAAGGA 

6 21X* GC--AACGAGCT-GTTGTGG-TC-TCT---GGCC--T--AG-T--GGC 
X GCAGAAAGTGGTCATTGTGGATGATCTCCTGGCCACTGGAGGTAAGGA 

7 ---r- ACACAAA-T--TCATT-T-GAT--TCTA--GTC----GGCTGTCA-GA 19 
X GCAGAAAGTGGTCATTGTGGATGATCTCCTGGCCACTGGAGGTAAGGA 

X'*­ 15CAAGAA-GCCG-CATT-TGACTGA-CTCCTAGGCAATGCAGCTAA-GA8 
X GCAGAAAGTGGTCATTGTGGATGATCTCCTGGCCACTGGAGGTAAGGA 

X'*­ 199 G-TGA-AGTG-TCC-CG-A-ATG-T-GC-TGTCCCCAGGAGTTATGGA 
X GCAGAAAGTGGTCATTGTGGATGATCTCCTGGCCACTGGAGGTAAGGA 
~- 18GCCCAAAGT-GT--T-AA-AAGGATCTCCTT-CCAC-GG-CGTA-GG­10 
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Table 5.8: Case Study 2: The ancestral DNA sequences estimated by the sum algorithm 

II Sample I Ancestor 

X GCAGAAAGTGGTCATTGTGGATGATCTCCTGGCCACTGGAGGTAAGGA 
1 ~ --A-A---TG-T-GTTG--G-T-A-C-CCCGG--AATT---GT-AG-­ 24 

X GCAGAAAGTGGTCATTGTGGATGATCTCCTGGCCACTGGAGGTAAGGA 
2 r-r G--G---GT--TGA----GG--GA-CTCC-G-CC---G-C--CA-GG­ 25 

X GCAGAAAGTGGTCATTGTGGATGATCTCCTGGCCACTGGAGGTAAGGA 
3 --:¥* -CAG--A--C-G--TTGTGG--GAT---A-G---A-T--AGG-----­ 27 

X GCAGAAAGTGGTCATTGTGGATGATCTCCTGGCCACTGGAGGTAAGGA 
4 --:¥* G--G---G-GG-C---GC-G-TG--CTCCCGGC---T--A-G----­ 27 

X GCAGAAAGTGGTCATTGTGGATGATCTCCTGGCCACTGGAGGTAAGGA 
5 --:¥* --A-A-AG--GT-A-T----AT--TCTC--G-CC---G-AGG-AAT-­ 25 

X , GCAGAAAGTGGTCATTGTGGATGATCTCCTGGCCACTGGAGGTAAGGA 
6 ~ -C-G-A------CATT-T---TG-T-T--T--CC---GG--GTAA--­ 27 

X GCAGAAAGTGGTCATTGTGGATGATCTCCTGGCCACTGGAGGTAAGGA 
7 ~ -CA-AAA-----C-TTG---AT---CTCCTGGTCA-----------GA 26 

X GCAGAAAGTGGTCATTGTGGATGATCTCCTGGCCACTGGAGGTAAGGA 
8 ~ -C-G--AG-CC-CCTT-TG--T---CT---G---ACTG-C---A--GA 28 

X GCAGAAAGTGGTCATTGTGGATGATCTCCTGGCCACTGGAGGTAAGGA 
9 ~ G--GAA--TC-TGATTG-C--TG--C-C-AG---AGT-----TT-G-­ 27 

X . GCAGAAAGTGGTCATTGTGGATGATCTCCTGGCCACTGGAGGTAAGGA 
10 ~ GC-CA-AGT--TAA--A---A--A-C-CCTTG-----GGA-G---G-­ 28 
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example, we compare the ancestral sequence and alignment estimated by MLSAS with 

the ancestral sequmce and alignment found by a star alignment program provided by the 

software SAT (see :che94]). 

Case Study 1: Comparison of alignment construction with CLUSTAL V 

We choose par1s of three APRT (adenine phosphoribosyltransferase) genes from rodents 

Gc, Rn, and Ma. The names Gc, Rn and Ma stand for Gerbillus campestris, Rattus 

norvegicus and Me:;ocricetus auratus. 

Figure 5.1 shows the alignment of the three DNA sequences given by CLUSTAL V. 

Figure 5.2 shows the alignment of the three DNA sequences done by MLSAS with the 

estimated ancestral sequence x·. 

Note that gap penalties for opening and extending gaps are considered by CLUSTAL 

V while MLSAS do,~s not introduce the gap penalty. This explains why spaces tend to stick 

together in Figure !i.l while the spaces tend to scatter among the alignment in Figure 5.2. 

Case Study 2: Comparison of ancestor and alignment estimate with SAT 

SAT is a sequeace analysist tool {[Che94]), which implements the approximation algo­

rithm proposed in [JLW94] to solve the tree alignment problem for a given phylogeny with 

a good approximation ratio. In [SCL76] and [Che94], a phylogeny about nine organisms 

is shown in Figure !i.3. The 5S RNA sequences for all the nine organisms are known. SAT 

finds the 5S RNA sequences for the internal nodes, the ancestral species, by dividing the 

tree into seven 3-components as also shown in Figure 5.3 and then minimizing the cost of 

each 3-component repeatedly. 

Figure 5.4 shows the ancestral5S RNA sequences for E.coli, P.fl.uorescens and organism 
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Rn: 11-GCTTGTGC~r111C1---TGTGC1C1CC1GGCTCTGTG1CTG1G1TTC1G111C 

Gc: 11-GCT-----··----------------CC1GGCTCC1TGCGTG1GTTTCTG111C 
Ma: 11TTCTTGTGC~r111T11CTTTC1CTT1CC1GTG-CC11GC1CGGGCTTC1G111C 

Rn: 1CCCTGGGGT1GCTG11TGTCC1CC1GG1GTGTCC1G1------GGG1GG-TG11C 
Gc: 1CGCT1GGGT1(~CTG11TGTCC1CC1GGGG1GGCC1G1------GGG1GGGTGGGC 

Ma: 1CCCT1GGGTCGCTG11TGTCC1CC1GGGG1GTC-1G1C1TGTCC1G1GGGTG1G1 

Rn: 1CCCC1G1G11G1G1GTGGCCCTC1C11GTGCTC1GGG1CC1C1GT-CCTTTTGCC 
Gc: 1CCCC1-----·--GGGTGGCCCTGGG111TGCTC1GGGGCC1G1GT-1CTCGTGCC 
Ma: 1CCCC1G1G11TTCGGT1GCCCTG1C1TGTGCT--------1CA1TT1CTG1TGCC 

Rn: C1CTTC1CTTC 1~T1TTGGT1CCCCCTG1CC1TGCTGT1G111TT1GGG-------­

Gc: C1CTTG1CTTC,~TGTTGG11CCCCCTGGCC1TGCTCC1G111TG1GGGT1TGT1TG 

Ma: C1CTT-----c~~T1CTGGTTCCTCCTGGCC1T1CCTC1GG11TTAGGGC1TGCTTT 

Rn: -------------
Gc: C1TCTTTCC1CTT 
Ma: CTGCCTGCTAClG 

Figure 5.1: Star alignment of APRT genes from Rn, Gc, Ma produced by CLUSTAL V 
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X•: AA-GCTTGTGC'r--A-AAC-T-T-CAC--ACCAG-GC-C-GTG-AC-G-G-TTCAG 
Rn: AA-GCTTGTGC'r--A-AACATGTGCAC--ACCAG-GCTCTGTG-ACTGAGATTCAG 
Gc: AA-GCTC---C·---A-GGC-T---C-C--A--TG--C---GTG-A--G-T-TTCTG 
Ma: AATTCTTGTGCTAAATAACTT-T-CACTTACCAGTGC-C-AAGCACGG-GCTTCAG 

X•: AAACACCCTAGHGTAGCTGAATGTCCACCAGGGGAGTC-CAGA-G---GGAGGGTG 
Rn: AAACACCCTGGHGTAGCTGAATGTCCACCAGGAGTGTC-CAGA-G---GGAGG-TG 
Gc: AAACACGCTAG<:GTAGCTGAATGTCCACCAGGGGAGGC-CAGA-G---GGAGGGTG 
Ma: AAACACCCTAG<:GTCGCTGAATGTCCACCAGGGGAGTCAGACATGTCCAGAGGGTG 

X*: AGCACCCCAGAHAA--C-G-GTGGCCCT--GAC-A-TGCTC--GGG-CCA-AGTAC 
Rn: AACACCCCAGAHAA--CAGAGTGGCCCT--CACAAGTGCTCA-GGGACCACAGTCC 
Gc: GGCACCCCA-G··-----G-GTGGCCCTGGGAA-A-TGCTCAGGGG-CCAGAGTAC­
Ma: AGAACCCCAGAC:AATTC-G-GTAGCCCT--GAC-A-TG-T-..,.-GCT-ACA-ATTAC 

X*: T-G-TGCCCAC1~T-C-AC---TTCCT-TTGG--A-ACC-C----CCT-GGCCATGC 

Rn: T-TTTGCCCACJ'T-C-AC---TTCCTATTGG--T-ACC-C----CCT-GACCATGC 
Gc: TCG-TGCCCACTT-G-AC---TTCCTGTTGG--A-ACC-C----CCT-GGCCATGC 
Ma: T-GATGCCCACTTCCTACTGGTTCCTCCTGGCCATACCTCAGGAATTAGGGCATGC 

X•: T---G---T-A--G-ATGT-T--A------CA--G 
Rn: T---G---T-A--G-AAAT-T--A------GG--G 
Gc: TCCAGAAATGAG·GGTATGTATGCATCTTTCCACTT 
Ma: T---T---TCT--GCCTGC-T--A------CA--G 

Figure 5.2: Star alignment of APRT genes from Rn, Gc, Ma produced by MLSAS 
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Figure 5.3: Phylogenetic relationship of nine organisms 

10 : UG<:UUGCGGCCAUAGCAGCAGUGGAACACCUGACCCCAUCCCGAACUCAGAA 
10•: UG<:UUGCGGCCGUAGC-GC--UGGAACACCUGACCCCAUCCCGAACUCAGAA 

10 : GUOAAACGCCGCAGCGCCGAUGGUAGUGUGGGGUCUCCCCAUGCGAGAGUAGG 
10•: GUOAAACGCCGCAGCGCCGAUGGUAGUGUGGGGUCUCCCCAUGCGAGAGUAGG 

10 : GA.I.CCGCUAGGCAU 

10•: GA-CC-CUAGGCAU 


Figure 5.4: The ancetral 5S RNAs for E.coli, P.:fluorescens and organism 11 estimated by 
SAT and MLSAS 

11 estimated by SAT and MLSAS. Sequence 10 is estimated by SAT and sequence 10* is 

estimated by MLSA;;;. The number of mismatches of the two estimated ancestral sequences 

is 6. 

Figure 5.5 shows the alignment of E.coli, P.:fluorescens and organism 11 estimated by 

MLSAS, and Figure 5.6 the alignment of E.coli, P.:fluorescens and organism 11 estimated 

by SAT. 
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E.coli: UG--C-CUGGCG-GCCGUAGC-GCGGUG-GUCCCACCUGACCCCAUGCCGAAC 
P.fluo: UG"JOCUUUGACGAGUAGUAGC-AU--UG-G-AACACCUGAUCCCAUCCCGAAC 
Org.11: -G--C-UUG-CG-GCCAUAGCAGC--AGAGAAACACCCGACCCCAUCCCGAAC 

E.coli: UClGAAGUGAUCGCCGUAGCGCCGAUGGUAGUGUGGGGUCUCCCCAUG-CGA 
P.fluo: UClGAGGUGAAACGAUGCAUCGCCGAUGGUAGUGUGGGGUUUCCCCAUGUCAA 
Org.11: UC~GAAGUUAAGCUCCCCAGCGCCGAUGGUAGUGUGGGGUCACCCCCUG-CGA 

E. coli: GA,~UAGGGAACUGC-C-AG-GCAU 


P.fluo: GA-UCUCG-AC--C-AUAGAGCAU 

Org .11: GA~~UAGGGUGC--CGCUAG-GC-U 


Figure 5.5: Alignment of E.coli, P.fluorescens and organism 11 estimated by MLSAS 

E.coli: UG,:C-UGGCGGCCG-UAGC-GCGGUGGUCCCACCUGACCCCAUGCCGAACUCAGAA 
P. fluo: UG1JUCUU-UGACGAGUAGUAGCAUUGGAA-CACCUGAUCCCAUCCCGAACUCAGAG 
Org .11: -G,:U-UG-CGGCCA-UAGCAGCAGAGUAC-ACCCGACCCCAUCCCGAACUCGGAA 

E.coli: GU,~AAACGCCGUAGCGCCGAUGGUAGUGUGGGGUCUCCCCAUG-CGAGAGUAGGGA 
P.fluo: GU,;AAACGAUGCAUCGCCGAUGGUAGUGUGGGGUUUCCCCAUGUCAAGA-UCUCGA 
Org.11: GUJAAGCUCCCCAGCGCCGAUGGUAGUGUGGGGUCACCCCCUG-CGAGAGUAGGGU 

E. coli: AC1JGCCAG-GCAU 
P. fluo: -C,:A-UAGAGCAU 

Org .11: GC,:GCUAG-GC-U 


Figure 5.6: Ali ~nment of E.coli, P.fluorescens and organism 11 estimated by SAT 



Chapter 6 

Conclu(iing Remarks 

The maximum likelihood star alignment system, MLSAS, which is designed, implemented 

and tested in this thesis, is to alignment three molecualr sequences under an evolutionary 

model. MLSAS also estiamtes the evolutionary parameters and ancestral sequence. Chap­

ter 5 demonstrates that MLSAS has a good performance when the three observed sequences 

are closely related. However, when the sequences are far related, the optimization routine 

for the maximum likelihood becomes inefficient and inaccurate to find the optimal points. 

One way to overcone this drawback is to reduce the number of estimated parameters from 

9 to 6 by fixing the value of "A/p.'s just as in the pairwise alignment case where ~ is fixed as 
IJ 

MLSAS will demand high-speed computers with large memory when the input se­

quences are longer than 100 bases to maintain a good performance. J. Thorne [TC95] 

expects that one might be able to extend the EM method to multiple alignment after the 

parallel computing and the statistical resampling techniques are introduced. 
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