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Abstract 

DNA Microarray is an innovative tool for gene studies in biomedical research. It is 

capable of testing and extracting the expression of large number of genes in parallel. 

Its applications can vary from cancer diagnosis to human identification. A DNA 

microarray experiment generates an image which has the genetic data embedded in 

it. Fast, accurate, and automatic routines for processing and compression of these 

images do not exist. 

For processir;g and modelling of micoarray images, we introduce a new, fast and 

accurate approach in this thesis. A new lossless compression method for microarray 

images is introd·1ced that provides an average compression ratio of 1.89:1, and that 

outperforms other lossless compression schemes and the work of other researchers 

in this field. For the lossy compression, our new method has overcome the rate­

distortion curve of JPEG. A new scanning method called spiral path, and a new spatial 

transform called C2S are introduced in this thesis for lossless and lossy compression 

of microarray irr.ages. 
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Chapter 1 

Introd11ction 

1.1 Background 

Deoxyribonuclek acid or DNA, is the hereditary material in humans and all living 

organisms. Nearly every cell in a person's body has the same DNA. Most DNA is 

located in the c~ll nucleus where it is called nuclear DNA, but a small amount of 

DNA can also bo found in the mitochondria where it is called mitochondrial DNA or 

mtDNA (1]. 

The informa·;ion in DNA is stored as a code made up of four chemical bases: 

adenine (A), guanine (G), cytosine (C), and thymine (T). Human DNA consists of 

about 3 billion bases, and more than 99 percent of those bases are the same in all 

people. The orc.er or sequence of these bases determines the information available 

for building and maintaining an organism, similar to the way in which letters of the 

alphabet appear in a certain order to form words and sentences. A model of DNA is 

shown in Fig. 1.1. 

DNA bases pair up with each other, A with T and C with G, to form units called 

base pairs. Each base is also attached to a sugar molecule and a phosphate molecule. 

Together, a bas,~, sugar, and phosphate are called a nucleotide. Nucleotides are 
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CHAPTER 1. INTRODUCTION 

arranged in two long strands that form a spiral called a double helix. The structure 

of the double helix is somewhat like a ladder, with the base pairs forming the rungs 

of the ladder and the sugar and phosphate molecules forming the vertical sidepieces 

of the ladder. 

An important property of DNA is that it can replicate, or make copies of itself. 

Each strand of DNA in the double helix can serve as a pattern for duplicating the 

sequence of bases. This is critical when cells divide because each new cell needs to 

have an exact copy of the DNA present in the old cell [16]. 

~- ~tl: , b 
Adenine Thymine 

Guanine Cytosine 

Sugar phosphate 

Figure 1.1: DNA structure {3}. 

A gene is the basic physical and functional unit of heredity. Genes, which are 

made up of DNA, act as instructions to make molecules called proteins. In humans, 
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genes vary in size from a few hundred DNA bases to more than 2 million bases. The 

Human Genome Project has estimated that humans have between 30,000 and 40,000 

genes (Fig. 1.2). 

Every person has two copies of each gene, one inherited from each parent. Most 

genes are the same in all people, but a small number of genes (less than 1 percent 

of the total) are slightly different in each individual. Alleles are forms of the same 

gene with small differences in their sequence of DNA bases. These small differences 

contribute to each person's unique physical features [5]. 

Figure 1.2: Gene in a DNA sequence (3}. 

Most genes contain the information needed to make functional molecules called 

proteins. A few genes produce other molecules that help the cell assemble proteins. 

The journey from gene to protein is complex and tightly controlled within each cell. 

It consists of two major steps: transcription and translation. Together, transcription 

and translation are known as gene expression. 

During the process of transcription, the information stored in a gene's DNA is 

transferred to a similar molecule called ribonucleic acid (RNA) in the cell's nucleus. 



4 CHAPTER 1. jNTRODUCTION 

Both RNA and DNA are made up of a chain of nucleotide bases, but they have slightly 

different chemical properties. The type of RNA that contains the information for 

making a protein is called messenger RNA (mRNA) because it carries the information, 

or message, frorr the DNA out of the nucleus into the cytoplasm. 

Translation i:; the second step in getting from a gene to a protein. In eukaryotes 

translation takef: place in the cytoplasm. The mRNA interacts with a specialized 

complex called a ribosome, which reads the sequence of mRNA bases. Each sequence 

of three bases, C;::tlled a codon, usually codes for one particular amino acid. (Amino 

acids are the building blocks of proteins.) A type of RNA called transfer RNA (tRNA) 

assembles the protein, one amino acid at a time. Protein assembly continues until 

the ribosome encounters a stop codon that is a sequence of three bases that does not 

code for an amino acid. 

The flow of ilformation from DNA to RNA to proteins is illustrated in Fig 1.3. 

This flow is one of the fundamental principles of molecular biology. It is so important 

that it is sometimes called the central dogma [2). 

1.2 Motivation towards microarrays 

Though most cells in our bodies contain the same genes, not all of the genes are 

used in each cell. Some genes are turned on, or expressed when needed. Many genes 

are used to specify features unique to each type of cell. Liver cells, for example, 

express genes fm enzymes that detoxify poisons, while pancreas cells express genes 

for making insulin. To know how cells achieve such specialization, scientists need a 

way to identify which genes each type of cell expresses. 

Before, scientist had to study genes in a single cell once at a time. Microar­

ray technology now allows scientists to look at many genes simultaneously and to 

determine which are expressed in a particular cell type [47, 48). DNA molecules 
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Figure 1.3: Production of protein in a cell {3). 

representing many genes are placed in discrete spots on a microscope slide. This is 

called a microarray, like the one shown in Fig. 1.4. Thousands of individual genes can 

be spotted on a single square inch slide. Each gene is single stranded, amplified in 

number, and put on the slide to form a spot. Sample solution has to be prepared as 

well. Messenger RNA, the working copies of genes within cells and thus an indicator 

of which genes are being used in these cells, is purified from cells of a particular type. 

The RNA molecules are then labelled by attaching a fluorescent dye that allows us to 

detect them later, and added to the DNA dots on the microarray. 

Due to a phenomenon termed base-pairing, RNA will stick to the gene it came 

from. This process is called hybridization and is shown in Fig. 1.5. After washing 

away all of the unstuck RNA, light is shone over the microarray and it is scanned by 

optical detector devices to get a fluorescent image. We can look at the microarray 



6 CHAPTER 1. INTRODUCTION 

Figure 1.4: DNA microarray (4]. 

image and see which RNA remains stuck to the DNA spots. Since we know which 

gene each spot represents, and the RNA only sticks to the gene that encoded it, we 

can determine which genes are turned on in the cells. Some researchers are using 

this powerful technology to learn which genes are turned on or off in diseased versus 

healthy human tissues. The genes that are expressed differently in the two tissues 

may be involved in causing the disease [21]. 

1.3 Microarray technologies 

There are many companies involved in making microarrays, each having its own 

manufacturing technology [20]. Depending on the manufacturer, microarrays can have 

different shapes, sizes, and be used for different applications. Most of the microarray 

manufacturing technologies fall into one of two categories: printing, and in situ. 

Perhaps the most straightforward array-making method is by contact printing. A 
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......,.. .. ~\. l 
~ ~~ I 

.. ~':-_:.f .. i~ .r .~ 
Tn.ted cell 

(a) (b) 

Figure 1. 5: (a) Sample preparation and {b) hybridization in a microarray experiment 
{20}. 

pin is first dipped into a solution containing pieces of DNA of uniform sequence that 

have been synthesized in the lab. The pin is then pressed to the array surface leaving 

behind a droplet of solution. The pin can be rewetted after each deposition, or can 

have a small reservoir of fluid. 

In an in situ fabrication, DNA sequences are made during the process of manu­

facturing the microarray and not before. Photolithography is used as an example of 

in situ fabrication. In photolithography, light at 365 nm is shone through a mask to 

illuminate a subset of regions on a substrate, which is coated with a photosensitive 

capping chemical. The light releases the capping chemical, exposing parts of the sub­

strate. A solution containing a single type of nucleotide attached to a photosensitive 

chemical is then washed over the substrate. The nucleotides attach to the unprotected 

sites, adding their own capping layer. The process is repeated, building up sequences 

of DNA, as shown in Fig. 1.6. 

Another in situ method is inkjet technology used in the Santa Clara plant. It 

is essentially the same as that found in a desktop printer. Jets of fluid are pressed 

through nozzles and broken into uniform droplets by the print head. In the in situ 

synthesis, the four colors of ink are replaced with the four nucleotides of DNA. This 
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Figure 1. 6: Photolithography method ( 6}. 

system can build lengths of DNA up to to 60 nucleotides long. 

Some producers of microarrays, biochips, and lab-on-a-chip devices [18] are listed 

alphabetically below. For each company, a short description of the technology applied 

is described. 

ACLARA Bio Sciences, Inc. (Mountain view, CA) - LabCard: Device 

uses electric fields to move fluids through capillaries on chips for the miniaturization 

and integration of complex, multi-step biochemistry processes [7, 8]. 

Affymetrix, Inc. (Santa Clara, CA) - GeneChip: High-density arrays pro­

duced by photolithographic process for gene expression and gena-typing [9, 10]. 

Caliper Technologies Corp. (Mountain view, CA)- LabChip: Micro-fluidic 

devices with active fluid control and parallel processing for variety of genome analysis 

procedures including molecular purification and high-speed DNA separations [11]. 

Clinical Micro Sensors (Pasadena, CA) - Low density array with electro­

chemical sensing for point-of-care diagnostic applications. This company was bought 

by Motorola later. 

Hewlett Packard Company (Palo Alto, CA)- A thermal jet spotting system 

to produce eDNA microarrays. 

Hysep, Inc. (Sunnyvale, CA) - Hyseq HyChip: A universal sequencing chip 

based on sequencing by hybridization technology [12, 13]. 

Illumina, Inc. (San Diego, CA) - BeadArray: Fiber-optic self-assembled 
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addressable arrays are filled with optically encoded libraries of 3 - 5J.-Lm diameter 

beads to simultEmeously process millions of assays [14]. 

Orchid BioSciences, Inc. (Princeton, NJ) - Developing micro-fluidic glass 

chips to enable high-throughput chemical synthesis, genomics, DNA analysis, screen­

ing, and diagnm:tics [15]. 

Packard Irmtrument Company (Meriden, CT) - BioChip Arrayer with four 

PiexoTip piezoelectric drop-on-demand tips that provide non-contact dispensing for 

arraying onto gLtss, filters, and HydroGel substrates. 

Rosetta Inpharmatics, Inc. (Kirkland, WA)- FlexJet inkjet-based microar­

rays available only through scientific collaborations [16]. 

Sequnome <San Diego, CA)- High-throughput resequencing array that uses a 

MALDI-TOF mess spectrometer for subsequent detection and identification of DNA 

fragments, used for SNP and geno-typing [17]. 

Vysis, Inc. (Downers grove, IL) - GenoSensor: a genomic array system for 

addressing gene copy number. 

1.4 Outline of thesis 

This thesis is divided into four main chapters, plus two chapters for the introduction 

and the conclusi::ms. 

1. The first ~hapter introduces DNA microarrays. It gives a minimum required 

background about DNAs and genomics for this thesis. Then it discusses the motiva­

tion behind microarrays, and presents different technologies used for manufacturing 

them. 

2. The second chapter is on the processing of DNA microarray images. It starts 

with an introduction of the basics of processing microarray images. Three basic 

steps of gridding, segmentation, and quantification are discussed. Then, more specific 
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aspects of microarray imaging are presented. 

3. The third chapter is on modelling of spots in a microarray image. In that 

chapter, we discuss different aspects of mathematical modelling of spots, and how 

model parameters should be extracted from a microarray image. 

4. The fourth chapter of this thesis is about lossless compression of microarray 

images. It concentrates on the method introduced by the author for lossless com­

pression of microarray images, and it will describe in detail, different parts of the 

algorithm implemented for this purpose. Spot extraction, spiral path fitting, pixel 

prediction, and :;;equence coding are the four major parts of the proposed algorithm 

that are discussed. Results obtained from this method will also be presented and 

compared with the results of other compression schemes. 

5. The fifth chapter is on lossy compression of microarray images. The method 

of the authors for lossy compressing microarray images will be introduced in this 

chapter. Four nain parts of the algorithm are: spot extraction, model parameter 

extraction, C2S transform, and DCT, quantization, and encoding are presented. The 

results using the new lossy compression algorithm will be presented and compared 

with JPEG. 

6. Chapter six presents the conclusions and recommendations for future research. 



Chapter 2 

Processing 

2.1 Introduction 

After a microarray experiment is performed, its results are embedded in a microarray 

image. Genetic information in a microarray experiment has to be extracted from 

the microarray i:nage. Processing of a DNA microarray image is a critical step in a 

microarray experiment [22]. As briefly mentioned in previous chapter, every spot in a 

microarray image represents information about the abundance of the corresponding 

gene in the solutions of two test cells (Fig. 1.5). The relative abundance of the 

mRNAs in the two test samples is approximated with the relative intensity of spots 

in the red and green images. This number will be handed to the data mining step for 

further processing. So the task of the microarray image processing unit is to extract 

the intensity of E:ach spot in the microarray image. A real microarray image consists 

of two components, red and green. Every one of these images will be processed 

independently Sf: a monochrome image. As the image processing is the same for red 

and green image::;, from now on, we will assume that the images are monochrome. 

Fig. 2.1 shows a microarray. It is compared in size with an American quarter. 

On the right, you can see the original microarray image obtained after laser scanning 

11 
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the microarray. The obtained image is usually huge in size. The microarray of 

Fig. 2.1 consistn of 4 x 8 grids. Each grid is approximately made up of 24 x 26 

spots. Now, assume that each spot is scanned into a square region of a minimum of 

10 x 10 pixels. This means that our image consists of approximately 20,000 spots, 

and the corresponding color image has a size of at least 12 Mbytes. This is excluding 

the background and margin areas of the image. This image is handed over to the 

processing unit t.1at is supposed to construct two sets of matrices for red and green 

colors. For every color, there should be a set of 4 x 8 matrices, each matrix with a 

size of 24 x 26. The entry of these matrices are preferred to be 16-bits numbers. So 

the output data will have a size of approximately 80 Kbytes. 

Different kinds of noise and artifacts [23] can be seen in the microarray image of 

Fig. 2.1. There are black regions around the image, which means that some of the 

spots have been lost during the scanning. There are dust particles all around the 

image, which are ~een as bright, irregular points around the image. In Fig. 2.1, there 

are regions with '1 high level of background illumination, for example on the right 

side of the image, and there are problems with the focusing on left side of the image. 

These are some of the factors that the image processor unit should consider during 

the process of extracting spot intensities of a microarray image. 

This chapter E:tarts with the basics of processing a microarray image: gridding, 

segmentation, anc. quantization. These fundamental steps will be explained in detail. 

Then, deviations from the ideal cases assumed in the fundamental steps will be in­

troduced and solutions for them will be presented. These deviations are introduced 

in section 2.2 und·~r the title of non-ideal effects. 
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Figure 2.1: A microarray compared to a coin, and a two color microarray image for 
the corresponding microarray {19}. 

2.2 Basics of processing microarray images 

There are some basic steps in the processing of a microarray image [24] . Every 

microarray, independent of its manufacturing technology, should be subject to three 

steps in its image processing [26]. The first step, gridding, is to assign coordinates 

to every element of the spot array. The second step, segmentation, is to classify a 

group of pixels as spot pixels. The third step, quantification, deals with measuring 

the intensity of the spot signal and the background. These steps are described in 

more detail in the following subsections. 
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2.2.1 Gridding 

Gridding is to localize each spot in a microarray image. It is a geometric process 

that deals with the relative array spacing of the spots in an image. There are many 

approaches for localizing spots in a microarray image. The simplest method is to 

sweep a template over the image, and then to scan for the similarity of the template 

and the underlybg part of the image. The template can be either one of the spots of 

the microarray it:;elf, or the average of some of the spots throughout the microarray. A 

measure of the similarity can be the autocorrelation function, the mean square error, 

or the absolute value error. One application of this type of gridding is introduced in 

the third chapter of this thesis. 

One widely used method for microarray gridding starts with integrating the mi­

croarray image along its axis. The integrals obtained will have maxima along the 

spot coordinates and minima along the background regions. These points can help in 

extracting the grid structure. This method is explained in more detail in chapter 4. 

A method bHsed on discrete Fourier transform (DFT) exists for gridding. The 

motivation for tl.is method lies in the fact that spots are expected to be evenly spaced 

along rows and columns. However, they can vary from experiment to experiment. 

The DFT allows us to compute the spacings of the spots from an image. If we sum 

the pixel intensLies along rows and columns, then we obtain two vectors Xv and Xh 

of real numbers. A visualization of these vectors show peaks which are spaced by 

some periods. In the frequency domain, this regular spacing should result in a local 

maximum M at the frequency fM· The DFTs Xv and Xh may have many local 

maxima. However, M should be in a band-limited frequency domain [!min, !max]· 

The band limits are corresponding to two extreme cases of distribution of the spots. 

In the first case, the targets are spaced in a regular but maximum spacing. This 

case correspondfi to a minimum frequency limit !min· In the second case, spots are 

juxtaposed and a maximum frequency limit !max is deduced. Once JM has been 
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determined, the period PM can be computed. This period will be used to find the 

grid parameters )f the image. In another similar approach, a two dimensional DFT 

can be used. ThE~ peak of the 2D DFT will correspond to the two dimensional period 

of the spots in tl: e image, which can be used to localize them. 

Another method is based on the Hough transform (HT) [29] that is an image 

processing technique originally used to detect lines and circles. However, the method 

has been generalized so that it can detect objects of arbitrary shapes of a reasonable 

size [28]. In our context, we are interested in the method to find circles, the circular 

Hough transform (CHT). The first step in the HT is to compute an intensity gradient 

image at all pixd locations. A gradient image is an image of the first intensity 

derivative of each pixel with its neighboring pixels. It is obtained by convolution of 

a small operator with the image and the goal is to detect the edges in an image. A 

large number of operators exist for this purpose, including those by Sobel, Roberts, 

Prewitt [30]. The gradient image is then thresholded to keep the significant edge 

points. In the second step, a parameter space is computed. In the case of the linear 

Hough transform. LHT, for each edge pixel (x, y), all the lines going through this 

point in the (m, c) space with y = mx + c are plotted. The polar ( r, 0) space with 

r = x x cos(O) + y x sin(O), where r is the length of a normal from the origin to 

this line and 0 is Ghe orientation of r with respect to the X-axis, is more often used. 

The highest accumulator points in (r, 0) space correspond to the strongest line edges 

in the image. In the circular Hough transform, for each edge point, all the possible 

center locations at a distance R are accumulated in a parameter space R where R 

is an anticipated radius for our circles. A pixel that has been accumulated a large 

number of times is most probably a spot center. Even though this method is the 

most precise one, .t is computationally expensive and is not usually used in practice. 
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2.2.2 Segmentation 

After applying the gridding step, we have each spot approximately localized. Ap­

proximately, because a spot is not a single pixel, or a perfect circle, to be exactly 

localized. Depending on the method we have used for griding, we either have a center 

for the spot, or a region (usually a square) in which the spot is located. It is yet to 

be decided where the actual location of the spot is, and which pixels are inside the 

spot, rather than in the background. To have a better idea about this problem, some 

sample spots from different microarrays are shown in Fig. 2.2. 

(a) (b) (c) (d) 

Figure 2.2: Spot samples from different microarrays. (a) Low resolution irregular 
spot. (b) Spot with smooth variation in boundaries. (c) Sharp varying spot with high 
intensity edges. (d) Sharp, high resolution, disk-shaped spot which is the closest to 
the ideal case. 

Fig. 2.2 shows that spots can vary significantly from one microarray to another. 

They can vary in resolution, which is the number of pixels allocated to each spot. They 

can vary in shape, from a full disk in the ideal case to a number of connected pixels in 

some other cases. They can also vary in their relative size to the corresponding sub­

image. The relative space each spot takes in a microarray sub-image is determined by 

how close spots are put on the microarray during the manufacturing process, and also 

the original volume of droplets which make each spot during the printing processes 

of manufacture. 

The segmentation unit should be able to automatically determine the spot region 
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in sub-images like the ones in Fig. 2.2. It should be able to perform independently 

of the variations in the manufacturing technologies. There are many methods to do 

this, like calculating the mean of the pixel values, edge detection, fitting circles, or 

parametric model fitting. 

The simplest solution to segmentation is not to do segmentation. By assuming 

that the spot sub-image is presenting the spot, one can simply take the mean of the 

pixel values in the sub-image. This method is very preliminary and is not recom­

mended any more. 

A more realistic method is feature extraction, which is applying image processing 

methods to extract the feature (spot) in the sub-image. The most popular method in 

feature extraction is based on finding edges of the object in the image. For example, 

for the spot in fig 2.3a which has sharp edges, one can first calculate the gradient 

function for all pixels in the image, as shown in Fig 2.3b. 

(a) (b) 

Figure 2.3: (a) A microarray spot and (b) its gradient image. 

Then, a routine removes the isolated points in the gradient image to achieve a 

cleaner image which will approximately describe the borders of the microarray spot. 

Even though this method is well-known and commonly used for many applications, 

it is not considered appropriate for segmentation of microarray spots. Also, not all 

spots have distinguishable borders. An example is the spot shown in Fig. 2.2a. Also 

some spots vary very smoothly from the internal region to the b?-ckground region, 
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like the one in Fig 2.2b. In these cases the edge extraction usually fails. 

The other commonly used method is to fit a circle to each spot, and use the 

pixels inside the matched circle as spot pixels in the next quantification step. This 

method is better than the previous two methods, and it is applied in this research 

work in chapter 5of the thesis for lossy compression of microarray images. A detailed 

explanation of tlle circle fitting method is presented in section 5.2.2. The idea is as 

follows. First, find the initial values for spot center and radius using mathematical 

approaches. Thm, optimize them for the best circle matching. In this case, matching 

is quantified by ·;he difference between the average pixel values inside and outside the 

circle. A larger difference will result in a better matching. 

Finally one can use the model fitting method for segmentation. Model fitting is 

simply a generalization of circle fitting, in which the spot is modelled by a circle. The 

modelling of spc,ts is described in detail in chapter 3 of this thesis. 

2.2.3 Quantification 

Quantification i:; the process which deals with measuring the spot signal and back­

ground intensity values. Under idealized conditions, the relative total florescent inten­

sities from two images of a spot is proportional to the corresponding gene expression 

[31]. These idealized conditions are now listed. 

1- The probe DNA concentration in the solution is proportional to that of the cell. 

2- The hybridization is done appropriately so that the amount of DNA binding 

on the spots is proportional to the DNA in the solution. 

3- The amount of DNA deposited on each spot during fabrication is constant. 

4- There is no contamination in the spots. 

5- The signal pixels are correctly scanned and analyzed by software. 

There are different methods for spot quantification, including total, mean, median, 

and volume. In the total method, it is the total signal intensity of the pixels in a spot 
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that is assigned to each spot. The existence of contamination and variations in the 

size of spots make this method inaccurate for most applications. 

The mean signal intensity is the average intensity of the spot pixels. This pa­

rameter has certain advantages over the total, such as making it independent of the 

spot size. The problem with this method lies in differences in the fabrication meth­

ods of microarrays, which make spots vary in shape and content. You can see that 

in the spot in Fig 2.2a, there are black regions inside the spot. It may make the 

quantification process more accurate if these pixels are not included in the averaging. 

The median of the signal intensity is the intensity value that splits the sorted 

intensity of the signal pixels in halves. This method has problems similar to the ones 

for the mean approach. 

The volume approach deals with the volume of the model which is matched to 

the spot. This method is applied in the approach proposed in this thesis and it 

is described in chapter 3. We strongly believe that this method is one of the best 

methods for quantification, considering the fact that the DNA abundance over each 

spot in reality has a 3D description. 

2.3 Non-ideal effects 

There are deviations from the ideal assumptions we have made so far for processing 

microarray images. In this section, these cases will be introduced, and solutions, 

when they exist, will be provided. 

2.3.1 Uneven background illumination 

During the scanning step of a microarray experiment, The microarray is exposed to 

light. In addition to the spots, glass substrate of the microarray can fluoresce. This 

is one of the ma,ior sources of noise in microarray images. Fluorescing is a property 
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of glass and is a systematic error in microarray imaging systems. The main issue 

with this noise is that it can have a relatively high variation throughout the image. 

An example of a full microarray image is shown in Fig. 2.4a. You can see that the 

background noise on the right side of the image is higher than the same noise on the 

left side. This property makes the background noise different from other white noise 

sources in the image. 

(a) (b) 

Figure 2.4: (a) A microarray with uneven background noise. {b) Background noise 
detected by our routine shown in the white regions. 

There are well-known methods to eliminate uneven background noise. The fact 

is that this noise varies very slowly throughout the image. This means that other 

features of the image have a relatively higher frequency (in the spatial domain) than 

this noise. Therefore, one can use a high pass filter to eliminate this noise. The 

band-width should be carefully chosen to avoid loosing information about the spots, 

especially the region inside the spot which can have slow variations. as well. Another 
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similar method is to first low-pass filter the image and obtain an image similar to 

Fig. 2.4b. Then one can subtract this image from the original image to get rid of the 

background. Af: mentioned before, none of these methods can guarantee that there 

would be no losa in spot data. 

Another method [27] uses a recursive approach to eliminate the background. The 

gridding provid~s us with the locations of spots. As a first approximation of the 

background, we can subtract the pixels belonging to the spots from the microarray 

image. Then, we use a hierarchical interpolation method based on Gaussian image 

pyramids to find a better estimate of the background. This method consists of two 

steps. 

First step is performed after segmentation and before quantification. A pyramid 

of the microarray image S[l], and a pyramid of the synthetic spot image G[l] are built. 

Each level of thE pyramid is made by transforming the image of the previous level into 

a lower resolution image, which represents the same data. One simple example can 

be replacing eac:1 block of four pixels by one pixel, so every level will have a size 1/4th 

of the lower level. At the levellmax, the resolution of the images is so low that the 

guide spot grid :3tructure is no longer present in the images, meaning that the guide 

spots are merged. In this level, we subtract G[lmax] from S[lmax] which means that 

the spot intensities are approximately removed from the total image. A subsequent 

smoothing with a median filter is applied and this results in the background image 

B[lmax]· The le·vel of the background is then decreased to get back to the original 

resolution. This can be done by an interpolation method. This process is illustrated 

in Fig. 2.5. 

In the second step, knowing an estimate of the background, spots in G are calcu­

lated with a bet1;er approximation. Having an updated G, we repeat the calculations 

for a new B. 
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Figure 2. 5: Bac1•ground estimation using Gaussian pyramids. S is the pyramid based 
on the original 1mage, G is based on a synthesized image which consists of the esti­
mated spots. B ·is the difference between Sand G which converges to the background 
noise image {27j. 

After two or three iterations, B will be a very accurate estimation of the back­

ground noise. The frequency range of the background noise achieved is determined 

by the median filter used in the method. 

2.3.2 Dust and artifacts 

Although microarrays are manufactured and used with a great amount of care, dust 

and other partides are always present on the microarray. These artifacts usually 

appear in the m [croarray image in the form of dots, or very small bright areas. Fig. 

2.6 shows a microarray image with some of artifacts highlighted. 

Removing th~se artifacts is a difficult task. Dust particles can have various shapes 
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Figure 2. 6: A microarray with its artifacts shown inside circles. 

and their distribution is also completely random throughout the image. As these 

artifacts can be located inside a spot area, removing it requires special care in order 

to avoid data loss in the spot. 

One straightforward approach for removing these artifacts is simply searching for 

small bright features in the image. There can be a threshold defined for the radius 

of spots in the image. Any feature with a smaller size can be considered as a dust . 

Since we may have dust particles of varying sizes, then this approach may not always 

work. 

Another approach is to take into account the regular array structure of the spots, 

and then to consider that any feature that does not fit into that structure has to be 

an artifact. This is a good approach if there is a well defined model for spots that 

help us extract artifacts within the spots. 

A solution similar to what we did for uneven background removal can also be 
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considered. This time we are dealing with features that have a high frequency in the 

spatial domain. So a well defined low pass filter can help to remove them. Or we can 

have a high pass filter to extract the noise features, and then subtract it from the 

original image. 

2.3.3 Hexagonal grids 

Fig. 2.7a shows a microarray in which spots are located on a hexagonal grid. Some 

microarrays are made in this manner because of its better surface area efficiency. 

(a) 

'''''' 
''' '' 
'''''' 
''' '' 
'''''' 
''' '' 
'''''' 

(b) 

Figure 2. 7: (a) A microarray image with hexagonal grid. (b) Computed integrals for 
a perfect hexagonal grid. 

There can be automated routines for detecting this type of grid structure. In 

one approach, the image can be integrated along its rows and columns to obtain 

two sequences. The periods of these sequences can then be analyzed to detect the 

grid type. Fig. 2. 7b shows a sample hexagonal array. Assuming that Thorizontal and 
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Tvertical are the 1= eriods of horizontal and vertical sequences, the type of the grid can 

be detected as fellows: 

H exagonalhorizontal Thorizontal/Tverticn.l > 1.32 

GridType = H exagonalverticn.l ThorizontadTverticn.l < 0. 76 (2.1) 

Square Otherwise 

In the proposed formula, a judgement on the shape of the grid is made based on the 

relative periods of the integrated sequences. For the case of the perfect square array, 

ThorizontadTverticd will be equal to 1. For the case of perfect horizontal hexagonal, it 

will be v'3 = l.'i'3, and for the case of perfect vertical hexagonal, it will be 1/v'3 = 

0.58. The ranges used in the mentioned formula are the average values of these 

numbers. The proposed formula is valid only for non-rotated grids. 

2.3.4 Grid rotation 

Microarrays can be very small in size. The process of manufacturing microarrays 

involves several steps, some of which may not be geometrically perfect. Therefore, 

it is highly probable, especially in older technologies, to have grids that are slightly 

rotated. Fig. 2.B shows a microarray grid which is rotated relative to the axis of its 

scanner. 

A rotation such as that shown in Fig. 2.8 is enough to make the basic gridding 

approach introduced before ineffective. As we calculate the projection of spots on the 

x and y axes, tlce rotated spots from different rows overlap and interfere with each 

other. This resdts in a projection in which the pattern of local minima cannot be 

seen anymore. Fig. 2.9 shows the projection of a rotated microarray on its y-axis 

One of the methods to detect this rotation is to use a standard two dimensional 

FFT routine (241. Any global rotation of the spots can be detected by looking at the 

maximum of thE radially integrated spectrum given by 
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Figure 2.8: A rotated microarray image [27}. 

S(B) = JIF(k, B)ldk (2.2) 

where F is the Fourier transform of the image. This function of ewill be maximized 

when e corresponds to the angle that the lines of spots make with the coordinates 

axes. This method suggests that the image be rotated by the value of angle obtained 

to retrieve the original image. 

Another approach uses the discrete Radon transform [27]. This method does a 

spot amplification step before estimating the rotation angle of the image. It uses a 

matched filter (MF). A MF is a filter whose shape matches the shape of the signal one 

is trying to find. Having the matched filter M, the image S is amplified as follows: 

if s[m, n] denotes an image patch around a pixel S[m, n] in the image, then s[m, n] 
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Figure 2.9: Projection of a rotated microarray image. Maximum and minimum pat­
terns for spot lo~~alization can no longer be seen. 

is first normalizE~d to the local intensity mean, to obtain e[m, n]. Then the matched 

filter response value is equal to the dot product e and M: 

RM[m,n] = e[m,n].M {2.3) 

This corresponds to the similarity or statistical covariance between the image 

patch and the matched filter. RM will be a zero mean image with features similar to 

the original mic:~oarray image. Then, the global rotation angle 89 can be estimated 

with projectiom of the spot amplification response image RM. Fig. 2.10 shows a 

projection P(Ru, 89 ) {discrete Radon transform) through the grid columns at the 

correct angle. The correct rotation angle corresponds to the index for which the 

maximum median value of the projection sequences is achieved. 
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Figure 2.10: Projection of a rotated amplified microarray at the correct angle. 

2.3.5 Other sources of noise 

A DNA microarray experiment is a complicated multi-step process. Sources of noise in 

a microarray process are also varied and complicated (32]. From the many sources of 

noise affecting the final result of a microarray process, below are listed some important 

ones that are categorized by their source. 

Test sampk~ preparation: To start a microarray experiment, geneticists isolate 

two samples of nRNAs- a control (reference) and a test (experimental) sample. Sam­

ples are obtained from cells under different conditions. The mRNA samples are reverse 

transcribed into eDNA samples. The process of extraction can always have variations. 

There can also be systematic errors in the chemical processes involved. Therefore, 

uncertainties begin to show up from the first step of the experiment. However it 

should be mentioned that there are scientists performing this step with considerably 
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high standards to minimize the uncertainties. 

PCR amplification: eDNA samples obtained from cells are not enough in num­

ber to start the hybridization. They have to be amplified by orders of magnitude. 

Amplification is performed via a process called polymer chain reaction (PCR). Fig. 

2.11 explains some of the details of PCR. 

DNA Amplification Using Polymerase Chain Reaction 

AHc~ mbCIURI caUins laiUOI TARGET DNA
DNA r.aquanaa 10 bel ampllllad, 
twoprlmilra IP1, P2) and lllllllllllllllill!l ,.,;~ 
haat·llabl& Taq~ 
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Figure 2.11: Polymer chain reaction {25}. 

There is a hi;~h amount of inconsistency in the gain of PCR. Variations in the gain 

of amplification of cDNAs will result in uncertain relative amplitude detection of the 

spot samples. 

http:1'"11'"11.,.11
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Fluorescent labelling: Samples from two cells are tagged in different colors. Cy­

3 and Cy-5 are ;he typical fluorescent tags used. The tagging process is a chemical 

one that involves systematic errors and environmental uncertainties. There may be 

sequences that get labelled twice and some may not be labelled. Yet from a statistical 

point of view, the population of samples is high enough to have a consistent behavior. 

Variations in pin geometry: Pins of an array spotter are made in tiny sizes. 

It is very difficult to keep strict measures in such tiny sizes. Also the shape of the 

head of the pin can vary and this contributes significantly to the shape of microarray 

spots. 

Random fluctuations in target volume and shape: Even among spots which 

are put with thE:: same pin, there are fluctuations in some physical aspects. The two 

most important ones are the volume and shape of the spot. The volume of the spot 

left by the pin <)n the slide depends on many factors and usually varies randomly 

around an average value. The number of cDNAs spotted on the array is directly 

proportional to the volume of the spot. On the other hand, the image processing 

routine of a microarray process has a limited tolerance for variations in the shape of 

the spot. Therefore, if the shape of the spot varies, then the intensity values read by 

the image proce:)Sing unit may also vary. 

Slide inhomogeneities: The slide over which a microarray is made is not per­

fectly smooth. His not perfectly flat either. This can affect the shape and volume of 

spots in different regions. It can affect the amount of background noise in different 

regions of the microarray. It may also introduce focusing problems for the image 

grabber, as its lens is focused for a certain depth. 

Hybridizat:lon parameters: Hybridization is a chemical process. Hybridization 

is performed for several hours in special chambers. The time spent for hybridization 

is just one of the factors involved in the process. The pressure in the chamber, the 

temperature and humidity, and the pH level are some of the deciding factors of the 
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quality of hybridization inside a chamber. 

Over-shining and saturation effects: There can be points on the microarray 

with a high density of fluorescent tags. These points can be unwanted jammed pieces 

of eDNA sequences, or simply highly hybridized and shiny spots. In either case, the 

photo detector can become saturated in the corresponding spots and non-linearity 

can be introduced into the image. 

Non-linear transmission characteristics: Fluorescent transmission is not lin­

early proportional to the density of fluorescent tags. This can cause problems in 

processing of spots, considering the fact that red and green intensities are measured 

relatively for eaeh spot. This effect can be reduced by careful studying of the non­

linear behavior c,f spot illumination and cancelling it in software, similar to a channel 

equalizer. 

Scanner noises: The image scanner consists of a photo detecting device like a 

CCD (charge coupled device) or a CMOS image detector. There are many types of 

noises which are introduced into the image during the photo detection. Some of them 

are: shot noise, :~mear, blooming, fixed pattern noise, dark current noise, reset noise, 

and internal amplifier noise. These are just some of many noises in a photo detector. 

It should be clarified here that there exists many excellent photo detectors with great 

performance with respect to the mentioned noises. However there is still room for 

custom made photo detectors suitable for this application. 

Processing imperfections: In the final stage of a microarray experiment, the 

microarray image is handed over to the image processor. The processing unit has to 

extract spot intEnsities. Due to variations in spot shape and spacing, it is impossible 

for the processing unit to perfectly describe the spot. Therefore, there can always be 

errors introduced in the results just because of the imperfect modelling of the spots 

in the processing unit, or inaccurate gridding and quantification of the microarray 

image. 



ChaptE~r 3 

Modelling 

3.1 Introduction 

The final goal irL processing a microarray image is to assign every spot in the array a 

number representing its illumination level. There have been some routines that do so, 

all of them relying on some simplifying assumptions about the image. For example, 

spots are perfect circles, or they are perfectly aligned (24]. In these methods, noise 

effects are eithEr neglected or assumed to be in very special forms, like substrate 

defects or dust particles (34, 35]. Moreover, in all existing methods spot densities 

are calculated regardless of the underlying technology and physical properties of the 

spots, for example by simply taking the mean in a square region around a spot. None 

of these methods is accurate or reliable. 

In this chapter we propose a new and general method for detecting and assigning 

illumination lev,~ls to spots in a microarray image without making any assumptions 

about the geometry of the spots. We introduce a model for DNA spots and employ 

image recognition methods. Relying on some hidden convex behavior in the process 

of spot identification, we use convex optimization algorithms which lead to very fast 

and accurate renults. 

32 
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3.2 Method 

The process of making microarrays involves wetting a printing pin with the solution 

containing many copies of a DNA sequence and ejecting the droplet onto a solid 

substrate [33] as shown in Fig. 3.1. 

Figure 3.1: BioChip manufacturing process. A liquid droplet with volume of 300pL is 
ejected at 2m/sec velocity on a solid substrate (33}. 

We found that a spot made in such a way has a predictable shape which is a 

function of droplet volume velocity, and density. Trying many possible mathematical 

models, the best model that could simulate the shape of the spot is 

(3.1) 

where r is the distance from the center of the spot, and Tin and t are shape parameters 

that define the diameter of the spot and the thickness of its lobe. Fig. 3.2 shows how 

we can have different spot shapes by adjusting these parameters. 

In any microarray manufacturing process, the volume of the droplet is constant. 
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Figure 3.2: Volume normalized spot models with different shape variables. 

So the model we propose should have a constant volume. For our model, the volume 

can be formulated as follows: 

V(rin, t) = 100 (e-(r-T;n)2jt2 + e-(r+r;n)2jt2)27rrdr. (3.2) 

So the normalized model based on rin and t (Fig. 3.2) will be: 

(3.3) 

Fig. 3.3a shows a typical DNA microarray image after hybridization and laser 

scanning. What we should do with this image is to extract a matrix (in this example, 

a 11 x 12 matrix) whose entries represent the illumination levels of the corresponding 

spots. These numbers will also be directly referred to as the density of the corre­

sponding spots' DNA sequences in the solution under test. 

In order to extract this illumination level, we try to match every spot in the 

original image with the model spot we have proposed. This model has five variables: 

x and y which are the coordinates of the center of the model, rin and t which are the 

shape parameters, and c which is the amplitude factor of the normalized model spot, 

and is the output of our image processor. To find the best matching, we minimize 

the least square image difference of our original spot and our model spot. Fig. 3.3b 

compares an original spot with its corresponding model spot. 
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(a) (b) 

Figure 3.3: (a) A sample microarray image. (b) One of the spots and its corresponding 
model. 

Our objective function to minimize should somehow represent the difference be­

tween our original spot and our model spot. We use the least square difference for 

this minimization and sample our smooth model to build a sum of differences of our 

sample values and our input image pixels. 

Fobj(x, y, rin, t, c)= L)cfnorm( V(i- x)2 + (j- y)2, rin, t)- Jm(i,j)]2 (3.4) 
i,j 

where I m(i, j) is the gray scale intensity level of a pixel of the original image. As 

mentioned before, x and y are coordinates of the center of the model spot and the 

summation on i's and j's is performed in a region around x andy which contains the 

spot we are estimating. 

From this formulation, it is obvious that x and y do not need to be integers and 

a spot can be coordinated with infinite precision. Considering the fact that laser 

scanning is usually done with low resolution, this is a valuable feature (Fig. 3.3b) . 

So our problem can be summarized as follows: 
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Minimize Fobj(x, y, Tin, t, c) 

s.t. 	 0 < x, y < Image size 

Tin, t, C > 0. 

For the case of a single spot image, there is only one local minimum for Fobi which 

is also a global ninimum. On the other hand, for a multiple spot image, such as the 

one in Fig. 3.3a, we are looking for all local minima of Fobi· For example in this 

case there are 1 Lx12 local minima. It is not practical to run a complete search on 

all the variables because the input image is usually large and the range of the other 

variables is usually image dependent. Examining the Fobi, we find an interesting 

convex behavior for it around its local minima (Fig. 3.4). Keeping Tin, t, and c 

constant, Fobi shows a quasi-convex behavior around its minima (Fig. 3.4d). The 

other variables also have the same property. 

It is possible to apply convex optimization algorithms to solve this problem. To 

do so, good initial values for variables are needed that are close enough to the local 

minimum. For initializing coordinates, which is probably the most challenging one, 

we use a simple image recognition method. We extract one of the spots of image as 

a template and Bweep it all over the original image. At any point in the process, we 

calculate the least square difference of the template and the underlying part of the 

image. As a rest.lt, we will have a 2D function which its local minima can be used to 

extract the initial values for the coordinates, as shown in Fig. 3.6. 

Having initial values for the coordinates, then the initial values for c can be cal­

culated by taking mean of the image pixels intensity levels in proximity of the initial 

coordinates. The initial values for Tin and t are less critical and can be assumed 

constant. 

Fobi is a complicated function and its derivatives are not easily available. So the 
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Figure 3.4: Fobj due to variation of (a) t, (b) c, (c) rin, (d) x, y. 

convex optimization algorithm chosen here has to be a derivative free one. We have 

chosen the pattern search method [37]. For this application eight search direction 

vectors are chosen which are: 

D(x, y, rin, t, c) = (0, 1, 0, 0, 0), 

( ../3/2, -0.5, 0, 0, 0), 

(-../3/2, -0.5, 0, 0, 0), 

(0, 0, 0, 1, 0), 

(0, 0, ../3/2, -0.5, 0), 

(0, 0, -../3/2, -0.5, 0), 

(0, 0, 0, 0, 1), 

(0, 0, 0, 0, -1). 

Function ofT 
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Searching with even less number of direction vectors (down to 6) is possible, but 

it doesn't necessarily guarantee a faster approach. After any successful iteration, the 

step size is increased by a factor of 1.1 and if no direction decreases Fobj, then the 

step size is divided by 2. Searching is repeated until the step size is less than or equal 

to 0.003. 

3.3 Results 

First, we report the results of employing our pattern search method on single spot 

images. We compare our pattern search approach with a simple full search approach. 

The full search method simply checks all possible values in a discrete manner for the 

Fobj 's variables, and then extracts its minimum. This method is too slow for the full 

size image case. We initialize our pattern search method with the coordinates of the 

center of the image. We have tried 4 different spots with different illumination levels 

(Fig 3.5) . 

(a) (b) (c) (d) 

Figure 3. 5: Sample single spot images. 

In Table 3.1, which shows the results, C.S. is for Complete Search and P.S. rep­

resents Pattern Search. In the first five rows, we have the optimization variables and 
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Sample (a) (b) (c) (d) 
Search C. S. P. S. c. s. P. S. c. s. P. S. C. S. P. S. 

c 110 110.0 167 166.4 199 199.2 325 324.9 
X 8 7.73 8 8.36 8 8.19 8 8.27 
y 8 7.93 8 7.68 8 8.22 8 8.28 

Tin 32 32.85 34 34.38 33 32.16 33 32.89 
t 300 291.58 274 265.39 279 284.80 339 338.53 

Fobj 60K 57.0K 126K 99.1K 117K 105.9K 103K 70.7K 

Table 3.1: Results for single spot images of Fig. 3.5. 

their optimum values. The first row, c, shows the illumination levels of the spots. 

The optimum values for Fobj are given in the last row. Surprisingly, the results of 

C.S. are even worse (greater values for Fobj) because of the finite precision nature of 

the discrete search. 
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(a) (b) (c) 

Figure 3. 6: (a) Original image, (b) least square difference for a constant template, 
and (c) its local minima used as initial coordinates. 

Next, we report the results of our approach for a full image with multiple spots. 

First, the initial values for the coordinates of the spots are extracted from the image 

as explained in section 3.2. Fig. 3.6c shows the initial coordinate values. We assign 

initial values for other variables as mentioned in section 3.2. Then we run the pattern 

search algorithm, once for every initial point we have. Converging to local minima in 

their proximity, the pattern search approach produces precise values for the optimum 

points x*, y*, r;n, c*, and t*. The optimum values for c form a m.atrix for all spots 
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which will be the output of our process. Table 3.2 shows this matrix for the image of 

Fig. 3.3a. 

318.81 134.8:! 289.54 89.54 145.12 73.19 33.95 12.76 14.98 186.82 25.09 69.99 
199.94 260.7<) 97.57 23.02 141.46 191.19 70.16 23.93 10.40 52.67 29.49 17.38 
166.96 64.9.! 207.54 18.17 165.91 63.76 41.69 25.23 14.27 7.15 16.49 15.99 
294.77 74.7·1 179.57 48.32 177.66 120.11 60.66 66.55 43.55 8.46 62.53 24.90 
225.60 105.9•) 201.14 138.92 78.57 32.92 44.71 21.66 19.42 16.62 29.04 72.56 

91.77 104.9•) 296.24 84.66 49.47 98.42 85.15 56.37 10.31 12.91 27.54 31.38 
92.68 138.61 253.93 162.38 145.78 25.36 81.12 25.72 21.87 119.96 38.63 50.85 

106.64 231.5.) 318.84 37.42 100.00 36.41 198.34 32.94 28.11 15.22 51.60 28.91 
129.26 280.4! 166.47 51.42 94.93 143.40 46.08 35.89 10.23 34.19 50.82 37.29 
127.71 163.9·! 151.28 61.00 114.16 61.62 61.53 46.03 29.02 4.48 12.19 32.01 
191.11 105.l.i 277.82 47.14 54.14 57.54 36.68 23.20 18.27 7.56 236.43 36.28 

Table 3.2: Results for original image of Fig. 3.3a. 

The values in table 3.2 were rounded because of lack of space. Another interest­

ing feature of this method is its very high sensitivity. For the image of Fig. 3.3a, 

for example, we have a spot with illumination level of 319 and another spot with 

illumination levd of 4. This property is a result of our model and its noise cancelling 

properties. As in Fig 3.2, the exponential decrease in the amplitude of our model 

cancels noise eff3cts in the outer regions. However, in ordinary methods where the 

illumination levd is extracted by taking mean in a square region containing the spot, 

the noise effects are accumulated constantly. 

Figures 3.7, :~.8, and 3.9 show that our model is very good in describing different 

spots in different microarrays. They illustrate microarray images made with spots 

that are defined with our proposed models, and compare them to the original images. 
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Figure 3. 7: (a) Original image and (b) model image. 

(a) (b) 

Figure 3. 8: (a) Original image and (b) model image. 
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Figure 3.g: (a) Original image and {b) model image. 



Chapter 4 

Lossless Compression 

4.1 Introduction 

Microarray images are usually massive in size. Assume that a microarray that consists 

of 20,000 spots. Now assume that each spot has a size of at least 8 x 8 pixels, which 

means a spot sub-image of about 12 x 12 pixels. Therefore, color image with 16-bits 

per color will have a size of at least 17.3MBytes. If we add the size of background 

and margins, then we will have an image of 20MBytes. As various organizations are 

establishing databases for sharing microarray images [20], image data compression 

seems to be essential. 

In this chapter, we propose a new technique for lossless compression of DNA 

microarray images. We first introduce the spiral path that is a scanning technique 

designed for this application. Then, we explain the algorithm we have implemented for 

lossless compres,:;ion of microarray images. A detailed overview of the steps involved in 

the algorithm is then described. Some mathematical concepts including interpolation, 

entropy analysi:,, and convex optimization methods are applied in the algorithm. 

Finally the results are compared with other conventional compression schemes and 

with the work of other groups in this area. 

43 
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4.2 Spiral path method 

Spiral path is a new scanning method. It can be used for spatial scanning of any 

image, but it is more useful for disk-shaped or ring-shaped images. The idea is to 

convert a 2D image into a highly correlated lD sequence to be coded subsequently. 

If we scan the image of a circle in the conventional raster scheme, we enter and exit 

the circle several times during the process. One way to avoid this is to extract the 

boundary of the circle and scan along it [36]. Another approach used in our spiral 

path method is to start scanning at the center of the circle, scan the entire area inside 

it, get out of it once and scan the remaining area outside the circle. 

Fig. 4.1a shows a typical spiral path superimposed over a microarray spot image. 

Fig. 4.1 b shows the pixel values if we scan the image along the spiral path. The 

spot area and the background area can easily be distinguished in this sequence. The 

sequence is highly compressible due to small changes in its consecutive values. 

(a) 

\ ® n m G ~ m ~ m 
Index 

(b) 

Index 

(c) 

Figure 4.1.· (a) Spiral path superimposed on a spot; (b) spiral sequence and (c) its 
differential sequence. 

A continuous spiral (with polar representation of r = kO) does not match the 

Cartesian discrete system. Finding an image scanning method which has a spiral 
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shape and prese~ves the spatial continuity so that it covers all image pixels is a rather 

big challenge. Cur method for building a spiral path is as follows. First, a center for 

the path, with eoordinates Xcenter and Ycenten is chosen. Our method for building 

a spiral path can accept real values for its center coordinates, which provides great 

flexibility to the shape of the spiral as can be seen in the difference between images in 

Figures 4.1a and 4.2a. This fact will also be helpful later during the optimization of 

the center of the spiral path. After choosing the center, a matrix Pis formed, which 

consists of rounded values of the Euclidian distances of each of the image pixels to 

the center. Tab.e 4.1 shows the matrix P for a 18 x 19 pixels image. The values of 

elements of P a1 e calculated using 

P[i,j] =Round( J(i- Xcenter) 2 + (j- YCenter) 2
). (4.1) 

The procedure of building a path starts with initializing a distance parameter, d, 

to 0. In each step, pixels with coordinates (i, j) for which P[i, j) = d are scanned in a 

counterclockwis(~ direction starting at the right most pixel. After a full circle is made, 

d is increased by 1. This will continue until the entire image area is covered. As 

seen in Fig. 4.1E., the spiral path will inevitably break near the borders of the image. 

Since this alwa) -s happens in the background area, it will not affect the quality of 

compression of microarray images. 

As illustrated in Fig. 4.2, if the center of a spiral path is not chosen carefully, 

when the path reaches the boundary of the spot, it swings several times inside and 

outside of the spot until it gets completely outside of the spot. This phenomenon, 

that we will call edge effect, drastically decreases the compressibility of a spot image. 

In section 4.2.2, we will explain our method for extracting the center of a spot to 

minimize the ed?;e effect. 

Fig. 4.3 shows the flow-chart of the algorithm proposed in this thesis for lossless 

compression of microarray images. Four main steps are involved in this algorithm. 
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Tablf 4.1: Matrix P calculated in (4.1) for an 18 x 19 image. 

13 12 11 11 10 10 9 9 9 9 9 9 9 10 10 11 11 12 13 
12 11 11 10 9 9 9 8 8 8 8 8 9 9 9 10 11 11 12 
11 11 10 9 9 8 8 7 7 7 7 7 8 8 9 9 10 11 11 
11 10 9 8 8 7 7 6 6 6 6 6 7 7 8 8 9 10 11 
10 9 9 8 7 6 6 5 5 5 5 5 6 6 7 8 9 9 10 
10 9 8 7 6 6 5 4 4 4 4 4 5 6 6 7 8 9 10 
9 9 8 7 6 5 4 4 3 3 3 4 4 5 6 7 8 9 9 
9 8 7 6 5 4 4 3 2 2 2 3 4 4 5 6 7 8 9 
9 8 7 6 5 4 3 2 1 1 1 2 3 4 5 6 7 8 9 
9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 
9 8 7 6 5 4 3 2 1 1 1 2 3 4 5 6 7 8 9 
9 8 7 6 5 4 4 3 2 2 2 3 4 4 5 6 7 8 9 
9 9 8 7 6 5 4 4 3 3 3 4 4 5 6 7 8 9 9 

10 9 8 7 6 6 5 4 4 4 4 4 5 6 6 7 8 9 10 
10 9 9 8 7 6 6 5 5 5 5 5 6 6 7 8 9 .9 10 
11 10 9 8 8 7 7 6 6 6 6 6 7 7 8 8 9 10 11 
11 11 10 9 9 8 8 7 7 7 7 7 8 8 9 9 10 11 11 
12 11 11 10 9 9 9 8 8 8 8 8 9 9 9 10 11 11 12 

First, spots in the image are located and extracted in rectangular regions which we 

will call spot su,)-image. Second, a spiral path is matched to each individual spot 

sub-image and the sub-image is scanned into a 1D sequence of pixel values. Third, 

each sequence is differentially encoded using prediction techniques developed for this 

application. ThE second and third steps cooperatively minimize the entropy of resid­

ual sequence obtained from differential coding. Finally, all residual sequences from 

all spot sub-images are concatenated after being divided into spot and background 

parts. The spot and background parts are coded independently using a variable length 

coding scheme. ::n the following, we explain each of these four steps in more detail. 

4.2.1 Spot extraction 

In our proposed method for lossless DNA microarray image compression, spots in the 

microarray image should be processed individually. Therefore, the first step in our 

method is to localize and extract microarray spots. Gridding is described in detail 

in chapter 2 of this thesis. We use the same idea in here. The array arrangement of 
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spots in a microarray image can help us to do the gridding. The microarray image is 

integrated along its rows and columns using 

n 

Intx[i] = l::Im[i,j] 
j=l 

m 

Inty[j] = l::Im[i,j] (4.2) 
i=l 

where Im[i,j] is the image pixel value. Figures 4.4a and 4.4b show the corresponding 

integrals for the microarray image of Fig. 4.4c. Discrete Fourier transforms of I ntx 

and I nty are then calculated. Spatial frequencies corresponding to the non-de peaks 

of these DFT sequences give us estimates for periods of I ntx and I nty sequences. I ntx 

and I nty are then divided into intervals of corresponding periods and minimum points 

are found in each interval. These local minima will then form two vectors which will 

become the coordinates of rectangular regions in which the spots are located. ·It is 

worth mentioning that as coordinate calculations are based on integrated pixel values, 

then the effects of noisy spots and other artifacts like dust, will be filtered. Fig. 4.4c 
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Figure 4.3: Flow-chart of our algorithm for lossless DNA microarray image compres­
sion. 

shows a typical extracted spot sub-image. 

4.2.2 Spiral path fitting 

The property that spots are more or less circular is what makes the spiral path 

scanning method suitable for microarray image compression. In fact, this is the 

property which makes microarray images more compressible compared to ordinary 

images. The splral path we consider is uniquely defined by its center coordinates. 
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Figure 4.4: (a) Intx and (b) Inty calculated for the microarray image shown in (c) . 
White lines show how spot sub-images are extracted. 

The center of the path should be carefully chosen in order to avoid edge effect. 

Our method locates the center of a spiral path in a spot in two steps. First , the 

initial coordinates are calculated using the geometric properties of the image. Second, 

the coordinates are locally tuned to optimize the path location. In the following, we 

explain these two steps in detail. 

The initial coordinates are found by integrating the spot sub-image along its rows 

and columns and calculating their mean values using 

L~~ub Sub!ntx [i]i 
Centerx = "'msub S bl [ .1wi=l U ntx Z 

L~~~b Sublnty[i]i 
(4.3)Centery = Lnsub S bl ["]

i=l u nty z 

where msub and nsub are the size of extracted spot sub-image. Sublntx and Sublnty 

are calculated for the sub-image in the same way that Intx and Inty were calculated 

in (4.2). The initial coordinates found in (4.3) are usually close to the optimum 

ones. We are searching for coordinates as close to the geometric center of the spot 

as possible, in order to form a highly correlated sequence of pixel values. So an 
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optimization is performed on the the center of the spiral to minimize the entropy 

of residual seqwmce obtained after the prediction coding. We have employed the 

2D pattern sear::h method [37] to perform this real-valued optimization. As will 

be explained in section 4.2.4, the residual sequences of spots will be concatenated 

together. Minimizing the entropy of each of these sequences individually will not 

necessarily minimize the entropy of the concatenated sequence. Nevertheless, the 

concatenated sequence will be highly compressible because of the fact that spots in 

a microarray image have similar statistical behavior. 

4.2.3 Pixe] prediction and differential coding 

A special form cf prediction is developed for our compression method. We start by 

moving along the spiral path found in the previous step. A prediction for a pixel 

value is made based on the previous pixel value(s) which is (are) available to both 

encoder and decoder. Differences between the predicted values and the pixel values 

form a residual sequence which will be subsequently variable length coded. Better 

prediction results in residues with smaller values, which are more compressible. 

The simplest prediction for a pixel's value is the value of the previous pixel on the 

spiral path. Fig. 4.1c shows the residual sequence of this simple prediction scheme for 

the sequence of Pig. 4.1b. Although slow variation of pixel values on the spiral path 

results in small cifferences in adjacent pixel values along the path, higher compression 

ratios can be acrrieved by performing a more advanced prediction. In fact, without 

the prediction scheme we will introduce in the next paragraph, spiral path scanning 

by itself cannot outperform competing compression methods. 

When we are coding a pixel's value, all the pixels' values on the spiral path up 

to that pixel are already coded. This means that we can use more neighbors to 

predict the value of pixel being coded. Fig. 4.5 shows two typical pixels on the spiral 

path with their neighbors, with spatial distances up to 2 that have already been 
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Figure 4.5: White pixels are neighbors with a spatial distance up to 2 inside the spiral 
for two points on different locations along the path. Black pixels inside the spot area 
are pixels along the spiral path that have already been coded. 

coded. Unlike ordinary prediction coding methods, the number and arrangement 

of the neighbors used in the prediction of a pixel's value changes depending on the 

position of the pixel on the spiral path. An effective prediction method should also 

take into account the radial behavior of a spot. We expect pixels with the same 

distance from the center to have similar pixel values. Also if in a neighborhood, the 

values of pixels are decreasing (or increasing) with the distance from the center, then 

the predictor should be able to capture this trend and generate a suitable prediction. 

Therefore, we approximate the behavior of pixels in a small neighborhood to be 

linear with respect to their distances from the center. We gather previously encoded 

neighbors with spatial distances up to 2 from pixel being coded. We form (yi, ri) 

pairs for these neighbors, YiS being their pixel values and ris being their real-valued 

Euclidian distances from the center of spiral. Then we find their linear interpolation 

function: 
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f; = Yo + aro + f3 (4.4) 

and use f; to predict the intensity of our pixel based on r0 , its distance to the center. 

Equation (4.4) h: a linear interpolation formulation and the parameters in (4.4) can 

be calculated from 

L:nN L:nN 
i=l Yi i=l ri 

L:nN L:~N r~i=l YiTi ,=1 ' 
Yo= L:nNnN i=l ri 

2L:nN L:nN
i=l ri i=l ri 

a= 

nN L:nN
i=l Yi 

L:nN L:nN
i=l Ti i=l YiTi 

(4.5)
L:nNnN i=l ri 

2L:nN L:nN 
i=l Ti i=l ri 

where 1-·1 is the determinant, nN is the number of (yi, ri) pairs, and {3 is an exper­

imentally determined offset, equal to -0.4. Pairs corresponding to neighbors with 

spatial distance of 1 are duplicated prior to calculating (4.4) and (4.5). Numerical 

experiment shows that putting emphasis on immediate neighbors in this way improves 

final results. 

4.2.4 Sequence coding 

After performing the above explained steps we will have a residual sequence with the 

length msoonsub- 1 (which we will call L) for a msub x nsub spot sub-image. The 

pixel value of the center of the spiral path will be sent separately in the header part 

of the compressed file. Fig. 4.6a shows a typical spiral path sequence and Fig. 4.6b 

shows its predic1;ive residual sequence. 

It can bee seen in Fig. 4.6b that the residual sequence can be divided into two 

parts. Inside or 3pot part, and outside or background part. The statistical character­

istics of the spot and background parts are very different. For example, the spot part 

usually has a larger mean and an approximately uniform distribution. On the other 

hand, the background part has a smaller mean and a more skewed distribution. By 
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coding these parts separately, we will improve the performance of our compression 

method. Fig 4.6c and 4.6d show extracted spot and background parts of the sequence 

in Fig. 4.6b. To divide the residual sequence into spot and background parts, the 

difference in the distribution of two regions is used. The expected cumulative length 

of the coded sequences, F, is minimized based on where the residual sequence might 

be cut: 

F(i) = Ent(RList[l..i])i + Ent(RList[i + l..L])(L- i) (4.6) 

where RList is the residual sequence, and Ent() is the entropy function of a given 

sequence. We perform a semi-Newton optimization on F(i) to find i* which will be 

where the sequenee should be divided. The minimization algorithm is initialized with: 

2:~=1 List[i]i2
) (4.7)itnitial = Round(o: 

2:~1 List[i] 
where List is the lD sequence of pixel values along the spiral path. o: is a correction 

factor obtained b:r experiment, and it is 1.3 in our implementation. 

The spot and background parts of all spot sub-images of the microarray image 

are concatenated to form two sequences. These sequences are then variable length 

coded independeiJtly using adaptive Huffman coding. The coded sequences, added 

with a header induding information about spot coordinates, spiral path centers, 

spot/background division points in the spiral sequence, and intensity values of center 

pixels of spots form the lossless compressed file. 

4.3 Results 

Here, we show the results obtained for compression of microarray images with our 

algorithm. Table 3.2 shows the results obtained for compression of two eDNA mi­

croarray images. lt shows the sizes of different parts of the compressed bitstreams 
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obtained using our method and how they compare to the original sizes. It also shows 

that our algorithm works independent of the image size or its precision, as the first 

row in the table [s for an 8bit microarray image with an original size of 187K and the 

second row corrEsponds to a 16bit image with an original size of 28.7M. The size of 

the header is proportional to the number of spots in the images and it is usually less 

than 2% of the c:>mpressed bit stream. 

Table 4-2: Size of components of two compressed files in bytes. 

IOriginal 

1 

Header Spot reg. Background reg. Comp-1
ressedOriginal Coded Original Coded 

187,702 1,440 59,462 42,798 126,922 44,056 88,294 
28.7M 252K 9.3M 6.4M 19.4M 6.9M 13.5M I 

We also com:~= are our method with conventional compression schemes and with 

the results of other published works on microarray image compression. We used a 

set of microarray images from different companies with different sizes and different 

precisions. Depending on the level of purity and noisy-ness of the image, we get com­

pression ratios in the range of 1.45:1 to 2.15:1. The average compression ratio achieved 

by our algorithm is compared with the compression ratios of some conventional image 

and non-image co:npression algorithms in Table 4.3 (38]. One of the latest and most 

advanced implementations of JPEG-LS is used in this experiment1 . As can be seen in 

Table 4.3, our proposed method outperforms all conventional compression schemes. 

Table 4.3: Averaged compression ratio of our method compared to some other methods 

I Method II ZIP I GIF I TIFF I JPEG-2000 I JPEG-LS I Our I 
I Comp. ratic' II 1.47:1 I 1.35:1 I 1.35:1 I 1.54:1 I 1.80: 1 I 1.89:1 I 

1Apollo, PICTools version 2, Pegasus imaging corporation, April 2003 
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Our approach also outperforms the recent work of other groups on microarray 

image compression. Here we compare ours with two of the latest compression schemes. 

The first method proposed in [39] uses a LOCO compression method. The second uses 

object-based EBCOT coding [40]. The first method achieves an average compression 

ratio of 1.83:1, compared to 1.89:1 for our method. The second approach claims a 

1.3% improvement with respect to JPEG-LS. For our approach, this improvement is 

5.0% for a more advanced JPEG-LS implementation. 
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70 

(c) (d) 

Figure 4.6: (a) Spiral path sequence, (b) residual sequence, (c) spot part, and (d) 
background part of residual sequence. 



Chapter 5 

Lossy (~ompression 

5.1 Introduction 

We mentioned in chapter 4 that microarray images are usually massive in size. An 

example of a typical DNA microarray image with a size of about 20MBytes was 

mentioned. Fig. 5.1 shows an example of a full size microarray image. One can choose 

either a lossless <)r a lossy method for compressing these images. Lossless compression 

methods, as their name says, do not change the image pixel values. For biomedical 

applications in which the pixel values can have critical information, this can be a 

good option. Eowever, an important limitation of lossless compression is the low 

compression ratio that can be achieved for example 2.2:1 in good implementations [41]. 

On the other hand, using a lossy compression method, depending on the distortion 

introduced in the image, the desired compression can be achieved. In this work, we 

introduce an al~;orithm for lossy compression of microarray images. 

57 
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5.2 Method 

Fig. 5.2 shows Ghe flow-graph of our proposed algorithm for lossy compression of 

DNA microarray images [42). The first step is to localize and extract individual spots 

in the microarra? image. This is necessary as some parts of our method work on each 

spot independenUy. Then, we match a circle to each of the spots. To do so, initial 

values for the cmter and the radius of such a circle is calculated by mathematical 

means. Then, tl:ese parameters are optimized for the best matching with the shape 

of spot. After having proper circle parameters matched to each spot, we perform a 

circle-to-square transform, C2S, to transform the area inside the circle for each spot to 

a corresponding 3quare shaped image. The transform is designed for this application. 

Then, the resultant square images are put together, and are lossy compressed by 

means of the dis ~rete cosine transform (DCT), quantization, and entropy coding. 

5.2.1 Spot extraction 

In our proposed method, the spots in the microarray image should be processed indi­

vidually. Therefore, the first step of our method is to localize and extract microarray 

spots. The method used here is the same as the one used for lossless compression. 

Then, the spots are extracted into sub-images, and are processed later. 

5.2.2 ParaJLn.eters extraction 

In order to apply our C2S transform to individual spots, the coordinates of the center 

of each spot and its radius should be extracted. To do so, we first find the initial 

approximations J:or the spot coordinates and radius, and then optimize them to best 

fit the spot. ThE initial coordinates are calculated as: 

E~~ub Sub!ntx [i)i 
Centerx = '"'msub S bl [")

L...ii=l u ntx t 
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(5.1) 

where msub and nsub give the size of the spot sub-image. Sublntx and Sublnty are 

calculated in th~~ same way as in (5.1), with the difference that they are calculated 

for each spot sub-image rather than the whole image. In (5.1), we are approximating 

the coordinates of the center of the spot with the 2D mean of the pixel values of the 

image. Experiment shows that (5.1) generates a good approximation. The initial 

value for the radius is given by: 

(5.2) 

where 1 has a value between 7 and 8. Calculation of 1 is based on both theoretical 

and experimentd facts. First, it is obvious that 1 = 2 will give an Rp equal to the 

average of the lengths of the spot sub-image's sides. As the shape of a spot sub-image 

is usually close to a square, this average is very close to either msub or nsub· Second, 

as the radius of a spot is usually between 1/3 and 1/4 of the length of the sides of its 

sub-image, then the mentioned range for 1 is obtained. The cost function used in our 

optimization is t b.e difference between the mean values of the pixel intensities outside, 

and the pixel intensities inside the circle defined with parameters Centerx, Centery, 

and Rp. The optimum choice of the circle parameters will result in an optimum 

separation of the pixels in the spot and background regions which will minimize the 

cost function. VIe have used a 2D pattern search method [37] for this optimization. 

As our initial values for optimization are usually close to the local optimum points, 

the pattern sear<:h method usually converges in 4 or 5 iterations. This optimization 

is done once for every spot in a microarray image. The cost function calculation 

has a run time in the order of the size of spot sub-image. So we conclude that the 

parameter generation has a run time in the order of image size, which is the order 

of the input of cur algorithm. This maintains the fact that our method is relatively 
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fast, despite having an optimization stage. 

5.2.3 C2S transform 

Most powerful transforms like DCT and wavelet are defined on rectangular shaped 

images, or matrices. In order to optimize their effect on our microarray images, we 

can transform spots into square shapes. This idea is implemented by designing a C2S 

transform to map the circular regions found in the previous step into square regions. 

Fig. 5.3 shows .:lOW our transform maps a circular area with radius Rp to a square 

with sides of length a. First, r and e are calculated for every pixel belonging to the 

square. Then we have: 

(a-Yt) 
cose e E [7r/4,37r/4] 

..lSL e E [311"/4, 571"/4]
sine (5.3)
..JL e E [511"/4, 771"/4] 

L= 
cose 


(a-Xt) 
 Otherwisesine 

where (Xt, Yt) i::; the center of the square. Then: 

r
X=-Rp (5.4)

L 

is calculated and this gives us the distance of the point from the center we should be 

reading the desired value from. xis expected to have a value in the range of [0, Rp]. 

Having ( x, e), vre calculate the Cartesian coordinates of the pixels in the spot image 

whose intensity is assigned to the (r, 8) pixel in the square image. Finally, these 

squares are arranged together to form an image. Fig. 5.4b shows how the transform 

works on a sample DNA microarray image. 
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To decode images which are compressed in this way, we need a S2C (Square to 

Circle) transform. The basics of this S2C transform are very similar to the C2S 

transform we introduced above. This time, we have the (lip, 8) pixel coordinates 

whose value should be read from the square image. Then Lis calculated for the spot 

image and the calculation for r follows. 

The joint application of C2S and S2C transforms can introduce losses into the 

microarray imago which are independent from the losses resulting from subsequent 

quantization step. Assume that the square image that the spot image was trans­

formed into has a small size. Obviously, some data corresponding to the spot image 

will be lost after the transform. The S2C transform will not perfectly reconstruct 

the spot image. An effect similar to spatial low-pass filtering will be observed af­

ter reconstructio rr. We will use this phenomenon for obtaining the rate-distortion 

characteristic of I)Uf algorithm. 

5.2.4 DCT: quantization, and encoding 

The image constructed by tiling the C2S transformed images together goes through 

the following stages. First, similar to JPEG, the image is divided into 8 x 8 blocks. 

These blocks are then DCT transformed. In order to reduce the blocking effect and 

improve the overall quality of compression, a in the C2S transform should preferably 

be set to a multiple of 8. After DCT is applied to each block, the transformed blocks 

are quantized and the whole image is variable length coded. Arithmetic coding is 

used for this application. 

5.3 Results 

Fig. 5.5 compare3 our results for lossy compression of a microarray image with lossy 

JPEG [38]. We have obtained this curve by fixing the quantization and coding parts 
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of our method a1d changing the size of the C2S transform. This size is the parameter 

a in (5.4) and changing it subsequently changes Xt and yt. A larger value for a results 

in a larger size for the compressed image and a better quality for the decompressed 

image. We have chosen the mean square error for the measure of the distortion of 

images. The curve we obtain in this way is not very smooth and bumps can be seen in 

it in Fig. 5.6. The reason, as we also mentioned in the previous section, is whenever 

the parameter a is a multiple of 8, we get slightly better quality due to the reduced 

blocking effects of the coding steps. The rate distortion point corresponding to a = 8 

can be found on the curve at the distortion value of 5000. The same is for a= 16 at 

the distortion value around 3300, and so on. All points of our results are positioned 

well below the r ~te distortion curve of JPEG. 
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Figure 5.1: A full microarray image {46}. 
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Optimize spot 
coordinates 
and radius 

Calculate initial 
spot coordinates 

and radius 

OCT. quantize, 
and encode 

FiglLre 5.2: Flow-chart of our lossy compression algorithm. 
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a 

Figure 5.3: Geometric representation of C2S transform. 

(a) (b) 

Figure 5.4: (a) A microarray image before, and (b) after applying the C2S transform 
to each of its spots. 
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Figure 5.5: The rate distortion curve achieved by JPEG compared to curve achieved 
by our lossy compression method for the same test image. 



Chapter 6 

Conclusion and Recommendations 

DNA microarray is a new and effective tool for studying of genes in biomedical sci­

ence. In the work presented in this thesis, new ideas and algorithms for processing, 

modelling, and compression of microarray images have been introduced. For process­

ing, this includeE: our routines for extracting red and green intensities of the spots and 

also their ratios removing background noises, dealing with dust and artifacts, and 

automatic detection of the grid type of the microarray. The routine introduced for 

background rem)val can be applied to any similar application in which data is stored 

in features of th':l image with spatially high frequencies. 

For the moddling of spots in the microarray, the radially exponential model was 

introduced. It i!: a three dimensional mathematical model capable of describing the 

physical shape of the spot, according to the knowledge about its manufacturing pro­

cess. The model is suitable for describing the behavior of the shape of droplets put on 

any flat surface. It can also be generalized to meet other existing physical constraints. 

A new routine for lossless compression of microarray images has been introduced 

in this thesis. The idea of spiral path has been developed for the first time in this 

work. It is used for spatial scanning of the spots in the microarray, and it can be 

used for compre.3sion of any image which consists of circular features. It can also be 

67 
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upgraded to match virtually any geometric shape, with a good mathematical model. 

Spirals for ellipmids and squares have already been developed. The routine also 

includes the new neighbor prediction feature, developed to work with the spiral path. 

It also uses the Entropy optimization idea to divide data sequence into smaller pieces 

to get a better overall compression gain. 

Lossy compression of microarray images has also been implemented. C2S trans­

form is introduced for this application, to spatially transform the circle region, in 

which spot lies, into a square region prior to block codings. Experiment shows that 

a great improvement in the overall rate-distortion curve of the compression can be 

achieved by applying C2S. 

There are m~:,ny subjects mentioned in this thesis for which more research can be 

done. Some of the major subjects are listed now. 

- The image processor presented in this thesis has covered many major and minor 

aspects of DNA image processing. For the gridding, more cases of irregular arrays can 

be added to the processor depending on the application. Shape recognition methods 

were not used in this implementation. One can try pattern recognition methods and 

transforms like Hough or Radon that may outperform this implementation. 

- The model introduced in this thesis for microarray spots in chapter 3 is relatively 

fast and accurate, but it still has room for some improvement. One can expand it for 

asymmetric spot shapes. It can also be upgraded to cover not normalized volumes 

for applications in which the volume of the droplet in the process can be variable. 

-In some microarray experiments, time variations of the intensities of the spots are 

important. Our approach can easily be upgraded to cover this type of experiments. 

As soon as our model parameters are extracted for the first image, they will remain 

constant and it will only be the parameter c which should be updated every time. 

The output curve which is the variation of c in time can also be easily extracted. 

-When the spiral sequence for an image is extracted, the sample values on it are 
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non-uniform samples of the original image. This is an immediate consequence of the 

discrete shape of the spiral path proposed in this work. Ordinary Fourier or DCT 

analysis of this :>equence theoretically fails. For the best performance, non-uniform 

sampling theory can be added to the work, especially in the prediction and coding 

part. 

- It is possible to upgrade the residual sequence division routine of our lossless ap­

proach, to produce three regions instead of two. The regions will be inside, boundary, 

and outside the :;pot. This may cause some improvements in the compression ratio of 

our routine. Though we don't promise much, as there will also be a new parameter 

for each spot wl:ich should be added to the header part. 

- C2S transform can be generalized to fit the applications in which the data out­

side of the circle shouldn't be neglected. This can be done either by designing another 

function to tram:form the area outside of the circle into another square, or by upgrad­

ing C2S to a Square to Square (S2S) transform in which a circular area within the 

square is empha3ized in the output. 

- For lossy compression of circular shapes, another interesting approach which is 

not implemented yet is to design a transform coding scheme, like DCT or Wavelet, 

that can consider the radial behavior of the feature being coded. This will cancel the 

need for a C2S transform. Gabor and Zak transforms can be examples. 

- The routines introduced in this thesis can be adjusted and simplified for hardware 

implementation [45]. Hardware implementation is specially important for remote 

biosensor applications, or lab-on-a-chip projects. 
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