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Lay Abstract

Automation is the key to increase efficiency and profitability of the processes.

However, as the level of automation increases, major control equipment are more

prone to faults. Thus, fault detection and isolation (FDI) and fault tolerant control

(FTC) frameworks are required for fault handling. Fault handling, however, can

only be efficiently achieved if the designed FDI and FTC frameworks are able to

deal with complexities arising in process systems such as nonlinearity, uncertainty,

high dimensionality and the resulting effects of the existence of complexity in system

structure such as faults that cannot be isolated.

This motivates design of FDI and FTC frameworks for complex process systems.

First, FDI frameworks are presented that can diagnose faults in the presence of com-

plexities mentioned above. Then, an integrated framework is designed for diagnosing

and handling faults of heating, ventilation and air conditioning (HVAC) systems as

an industrial case study of complex process systems.
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Abstract

Automatic control techniques have been widely employed in industry to increase

efficiency and profitability of the processes. However, reliability on automation in-

creases the susceptibility of the system to faults in major control equipment such as

actuators and sensors. This realization has motivated design of frameworks for fault

detection and isolation (FDI) and fault tolerant control (FTC). The success of these

FDI and FTC mechanisms is contingent on their ability to handle complexities associ-

ated with process systems such as nonlinearity, uncertainty, high dimensionality and

the resulting effects of the existence of complexity in system structure such as faults

that cannot be isolated. Motivated by the above considerations, this thesis considers

the problem of fault diagnosis and fault tolerant control for complex process systems.

First, an FDI framework is designed that can detect and confine possible locations

for faults that cannot be isolated. Next, the problem of simultaneous actuator and

sensor fault diagnosis for nonlinear uncertain systems. The key idea is to design

FDI filters in a way they account for the impact of uncertainty explicitly. This work

then considers the problem of simultaneous fault diagnosis in nonlinear uncertain

networked systems. FDI is achieved using a distributed architecture, comprised of a

bank of local FDI (LFDI) schemes that communicate with each other. The efficacy

of the proposed FDI methodologies is shown via application to a number of chemical
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process examples.

Finally, an integrated framework is proposed for fault diagnosis and fault tolerant

control of variable air volume (VAV) boxes, a common component of heating, venti-

lation and air conditioning (HVAC) systems as an industrial case study of complex

systems. The advantages of the proposed framework are diagnosing multiple faults

and handling faults in stuck dampers using a safe parking strategy with energy saving

capability.
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Notation and abbreviations

Notation

n vector size

∀ for all

∈ belongs to

‖x‖ the Euclidean norm of vector x

Lfh the Lie derivative of h with respect to the vector field f

x vector of state variables

Rn the n-dimensional Euclidean space

u vector of inputs

y vector of outputs

ỹi vector of outputs shared with the ith subsystem

x̃i vector of state variables shared with the ith subsystem

x̂ vector of state estimates

tf time of fault occurrence

td time of fault detection

uf actuator faults

yf sensor faults
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r residual

δ threshold

V Lyapunov function

Ω Stability region

Π Feasibility region

Abbreviations

AF air flow

AHU air handling unit

CLF control Lyapunov function

CSTR continuous-stirred tank reactor

DAT discharge air temperature

DFO damper fractional opening

EV O effective valve opening

FDI fault detection and isolation

HV AC heating, ventilation and air conditioning

LFDI local fault detection and isolation

MMA methyl methacrylate

MPC model predictive control

PCA principal component analysis

PLS partial least square
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SAT supply air temperature

SFP supply fan pressure

SPE squared prediction error

V Ac vinyl acetate

V AV variable air volume
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Chapter 1

Introduction

1.1 Motivation

The last decades have witnessed significant improvements in technology, pushing

the design and operation envelope to create more complex dynamical systems. The

complexity can be due to nonlinearities, uncertainties, high dimensionality with strong

interconnections between subsystems of a network. Aided by the advances in sensing,

communicating and computing technologies, operation of complex systems is relying

extensively on automated control systems to satisfy simultaneously the (sometimes

conflicting) requirements of safety, reliability and profitability. Increased automation,

however, also makes the plant susceptible to faults (with incorrect measurements/loss

of measurements by sensors and errors or total failures in implementation of the

prescribed control action by the actuators being the source of a large number of faults)

that can result in substantial financial losses and/or safety hazards if not detected

and addressed within a time appropriate to the context of the system dynamics.

For instance, the U.S. petrochemical industry loses an estimated 20 $ billion per year

1



Ph.D. Thesis - Hadi Shahnazari McMaster - Chemical Engineering

because of abnormalities at oil refineries and chemical plants (see e.g., Nimmo (1995)).

The above considerations provide a strong motivation for the development of methods

and strategies for the design of novel control and fault-detection and isolation and

fault-tolerant control (FTC) algorithms that account for system complexities such as

nonlinearity, uncertainty, high dimensionality and the resulting effects of the existence

of complexity in system structure such as faults that cannot be isolated. Motivated

by the above, the objective of this thesis is to develop a comprehensive and dedicated

framework for fault diagnosis and fault handling of complex process systems with an

emphasis on industrial applicability of the developed results.

1.2 Background

Fault is an unpermitted deviation of inputs, outputs or process parameters from

usual conditions (see e.g., Du (2012)). Base on the fault location, faults are classified

in three categories: actuator faults, sensor faults and process faults. Actuator faults

can be due to mechanical failures and power losses and result in malfunction of control

equipment such as pumps and valves due to mismatch between the prescribed and

the implemented control actions (see e.g., Du (2012)). In the presence of faulty

actuators, control performance can be jeopardized. Sensor faults are usually caused

by discalibration of sensors, degradation of sensing component and short circuits (Du

(2012)). If a faulty sensor is utilized for feedback in a control loop, the controller will

calculate incorrect control actions. As a result of this, the setpoint cannot be met

and the produced material will not have the desired quality. The third type of fault

is process fault which includes significant changes in process parameters and large

disturbance in the process. Process faults can be due to changes in mode of operation

2
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caused by the other parts of the plant or degradation of the process equipments (see

e.g., Du (2012)).

The first step in handling of a fault is fault diagnosis that is defined as determi-

nation of kind, size, location and time of occurrence of a fault (see e.g., Blanke et al.

(2006)). Fault diagnosis includes fault detection, isolation and estimation. Fault de-

tection is determination of the faults present in a system and the time of detection

(see e.g., Blanke et al. (2006)). Fault isolation is determination of the kind, location

and time of detection of a fault and follows fault detection (see e.g., Blanke et al.

(2006)). Fault detection and isolation is termed FDI. The second step in handling a

fault is fault tolerant control (FTC). FTC is controlling the process to achieve desired

performance in the presence of faults (see e.g., Blanke et al. (2006)) and is usually

carried out using a robust control law or modified control law followed by controller

reconfiguration.

FDI normally requires a reference model to estimate or predict the state or out-

puts of a system. A fault is detected when there is discrepancy between the expected

values and measurements of a variable. The existing results in the literature on

FDI can be classified to causal and non-causal methods based on the type of the

model that is being utilized for FDI. The causal models are obtained using the de-

tailed knowledge of the process and its underlying physical principles (see e.g., Afram

and Janabi-Sharifi (2014)) or identification techniques (see e.g., Van Overschee and

De Moor (2012)). The non-causal models are the models that do not describe the

existing causal mechanisms in a system and usually are obtained using statistical

methods, artificial intelligence methods, etc. The non-causal FDI approaches have
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been successfully applied to industrial system (see e.g., House et al. (2001), Mahade-

van and Shah (2009) and Tayarani-Bathaie et al. (2014)). However, they are mainly

able to diagnose simple faults i.e., faults that only affect one variable ( see e.g., Yoon

and MacGregor (2000)). Causal FDI approaches take advantage of existing analyti-

cal redundancies in the process model that provide unique relations between a fault

and its symptoms. As a result of this, causal FDI approaches are able to detect and

isolate both simple and complex faults (faults that their effect propagates through

the system and it affects more than one variable or their effect gets hidden by the

controller). Prior to the development of modern system identification techniques, the

main shortcoming of causal FDI approaches was their high reliability on first principle

models. However, this limitation has been fading due to recent advancements in the

area of linear and nonlinear system identification using analytical methods (see e.g.,

Ljung (1998), Sánchez-Peña et al. (2007), Van Overschee and De Moor (2012), Schön

et al. (2011), Alanqar et al. (2015) and Schoukens and Tiels (2017)). Thus, in the

rest of this text, the focus is on using causal model based FDI 1 approaches to design

FDI frameworks that account for complexities arising in process systems.

The model based methods are based on employing information from the system

model to diagnose faults. This approach is based on generating residuals, which are

in some sense the difference between the expected and observed process behavior,

by utilizing the analytical redundancy provided by the process model to determine

expected process behavior. Additionally, thresholds are put in place to account for

plant model mismatch and measurement noise with an intent to avoid false alarms.

There exists a plethora of results on FDI assuming linear process models dynamics

1Note that in the literature, causal and model based FDI are often used interchangeably, as long
as it does not cause any ambiguity. The same pattern has been followed in this work.
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(see, e.g., Frank (1990), Edwards et al. (2000), Venkatasubramanian et al. (2003) and

Tong et al. (2014)). However, these results may not remain effective for nonlinear

systems due to strong nonlinear characteristics of the system that behavior of the

some of the complex systems exhibit as well.

The FDI problem for nonlinear dynamic models has been considered widely in

the literature during the past decade (see, e.g., De Persis and Isidori (2001), Mhaskar

et al. (2008), Mattei et al. (2005), Findeisen et al. (2003) and Du and Mhaskar

(2014)). Most of the existing results, however, focused on isolation of single actuator

or single sensor faults by defining residuals simply as estimation error or its other

equivalents (see e.g., Mhaskar et al. (2008), Du and Mhaskar (2014)). Recently,

results have enabled distinguishing between simultaneous sensor and actuator faults,

where a system structure was assumed that enabled detection and isolation of all

actuator and sensor faults (see e.g., Du et al. (2013)). However, the results in Du

et al. (2013) are derived while assuming no uncertainty.

Existence of uncertainties is another source of complexity in process systems. The

problem of FDI has also been studied for nonlinear systems subject to uncertainty.

In Du and Mhaskar (2013), the problem of isolation of complex actuator faults (oc-

currence of several actuator faults in same order of differentiation) in the presence of

uncertainty is handled by explicitly characterizing the way the faults affect the non-

linear process system, and driving the system to a point that enables fault isolation.

In Floquet et al. (2004), a geometric approach is employed for a class of nonlinear sys-

tems to decouple effect of uncertainty and fault (only actuator faults are considered)

using sliding mode observers. In Yan and Edwards (2007), under certain matching

conditions sliding mode observers are designed to reconstruct the fault signal, while

5



Ph.D. Thesis - Hadi Shahnazari McMaster - Chemical Engineering

only considering actuator faults. The problem of FDI in the presence of unstructured

uncertainty has also been studied (see e.g., Vemuri and Polycarpou (1997), Zhang

et al. (2002), Zhang et al. (2005), Zhang et al. (2010b), Zhang et al. (2010a) , Zhang

(2011) and Zhang et al. (2011)) using adaptive estimation techniques. First, a fault

detection scheme is designed which simply uses output estimation error as residual.

Then, a bank of fault isolation estimators is designed using adaptive estimation tech-

niques.

Another common property of complex systems is being composed of subsystems

that results in the high dimensionality of the system. If the interconnections are

weak, a decentralized FDI scheme composed of independent LFDI schemes for each

subsystem can be a solution to this problem. In Yan and Edwards (2008), a robust

decentralized FDI scheme is designed for actuator fault detection and estimation

in large scale systems using sliding mode observers. In Du et al. (2011), a robust

decentralized FDI scheme is designed for actuator faults diagnosis in network systems.

However, there are cases that interconnections between subsystems are not negligible,

and would result in poor performance of a decentralized FDI scheme (resulting in false

alarms or missed faults). In this case, an alternative solution can be designing an FDI

scheme with distributed architecture. In the distributed architecture, a LFDI scheme

is designed for each subsystem while the LFDI schemes can communicate to exchange

information. The information exchanged can be about recently diagnosed faults in the

other subsystems or any other information required by the other LFDI schemes. These

realizations have motivated the design of FDI schemes with distributed architecture

for networked systems.

In Zhang and Zhang (2012), a distributed actuators FDI scheme is proposed for
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a class of interconnected uncertain nonlinear systems using adaptive estimation tech-

niques. In Ferrari et al. (2012), a distributed framework is presented for diagnosing

single actuator and process faults in nonlinear uncertain large-scale discrete-time sys-

tems. In Peng et al. (2015), a distributed data based actuator fault identification

scheme is presented for linear networked process systems. In Keliris et al. (2015),

an integrated distributed FD scheme is proposed for detection of sensor and process

faults in nonlinear uncertain discrete systems. In Reppa et al. (2015), a distributed

sensor fault diagnosis for a network of interconnected cyber-physical system (CPS)s

presented. In Yin and Liu (2017), a distributed FDI scheme is proposed for cascade

networked systems in the absence of uncertainty.

In addition to FDI, there exist a plethora of results in the literature on FTC

design. The existing methodologies for FTC are divided in two categories: passive

and active methods. Passive fault tolerant control systems refer to the condition

where the controller is designed in a way that it is insensitive to a certain restricted

set of faults (see e.g., Blanke et al. (2006)). Active fault tolerant control systems refer

to the case where control reconfiguration is used as fall back plan to recover plant in

the faulty situation. In system reconfiguration the faulty components are no longer

employed and control law is changed accordingly (see e.g., Blanke et al. (2006)).

In Mhaskar et al. (2008) and Benosman and Lum (2010) active and passive FTC

methodologies are presented for handling actuator faults in nonlinear systems using

Lyapunov based controllers, respectively. In Mhaskar (2006) and Zhang et al. (2010a),

active FTC frameworks are presented for handling actuator faults in nonlinear uncer-

tain systems. For large scale and networked systems, a local FTC scheme is designed

for each subsystem to handle actuator faults (see e.g., Peng et al. (2015) and Khalili
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(2017)). However, these methods are based on the assumption that the process can

be continued to operated at the nominal operating point.

In 2008, Gandhi and Mhaskar proposed a safe parking framework for nonlinear

systems to handle actuator faults that preclude the possibility of continued operating

at the nominal operating point (see e.g., Gandhi and Mhaskar (2008)). The proposed

safe-parking framework provides solution for safe operation of the plant under faulty

condition until the fault is being repaired and enables effective resumption of the

nominal operation upon fault-recovery. In Mahmood et al. (2008a), safe-parking

problem of nonlinear systems in the presence of uncertainty and lack of measurement

has been addressed. In Gandhi and Mhaskar (2009), a safe-parking framework for

plant-wide fault tolerant control is presented. In Du and Mhaskar (2011), a safe

parking framework has been proposed for switched nonlinear systems with fixed and

flexible modes. In Du et al. (2012), the existing results for safe parking of nonlinear

uncertain systems has been extended to the case where an actuator seizes in an

arbitrary value. In Du et al. (2011), an integrated framework is presented for fault

diagnosis and safe parking of networked systems subject to actuator faults.

In comparison to actuator faults, there exits fewer results on FTC for sensor faults

(see e.g., Mhaskar et al. (2007) and Du and Mhaskar (2014)). In Du and Mhaskar

(2014), a framework for handling sensor faults has been proposed that utilizes the

healthy estimates of faulty sensors in the closed loop to maintain nominal operation.

For handling sensor faults in nonlinear uncertain systems and networked systems, the

proposed methodology in Du and Mhaskar (2014) can be adapted by using the robust

estimation filters available in the literatures (see e.g., Tan and Edwards (2003), Yang

and Zhu (2015), Yang et al. (2015) and Shahnazari and Mhaskar (2016)) and designing
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a local FTC scheme for each subsystem, respectively. To handle actuator and sensor

faults simultaneously, both sensor and actuator handling approaches would have to

be implemented simultaneously (see e.g., Shahnazari et al. (2016)). However, the

successful handling of simultaneous actuators and sensor faults relies on the ability

of FDI schemes to diagnose simultaneous actuator and sensor faults.

1.3 Objectives and outline

A close examination of the literature shows a lack of results for simultaneous

actuator and sensor fault diagnosis for a generalized class of nonlinear systems subject

to uncertainty in the absence of full state measurements. Also, there is a lack of results

in the literature for simultaneous actuator and sensor fault diagnosis in networked

systems. In addition, the literature does not provide any insights regarding analysis

and classification of faults that cannot be isolated due to lack of existence of enough

analytical redundancy in the system structure when it comes to nonlinear systems.

Furthermore, while there are some results for isolation of multiple faults and safe

parking design applied to simulation case studies (Du and Mhaskar (2014) and Gandhi

and Mhaskar (2008)), the literature still lacks from an integrated fault diagnosis and

fault handling design with such capabilities that can be applied to industrial case

studies. Motivated by the above, the objectives of this thesis are as follows:

1. To explore what are the necessary and sufficient conditions for isolation of faults

in nonlinear systems.

2. To develop a framework for simultaneous actuator and sensor fault diagnosis
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that explicitly accounts for process nonlinearities, uncertainties and the unavail-

ability of full state measurements.

3. To develop a framework for simultaneous actuator and sensor fault diagnosis in

networked system while explicitly accounting for high dimensionality, process

nonlinearities, uncertainties, the unavailability of full state measurements and

fault in the shared interconnections of the network.

4. To develop an integrated framework for fault diagnosis and fault handling of

variable air volume (VAV) of heating, ventilation and air conditioning (HVAC)

systems as an industrial case study of complex systems.

The rest of the thesis is organized as follows:

In Chapter 2, the problem of detecting and isolating distinguishable actuator

and sensor faults in the solution copolymerization of methyl methacrylate and vinyl

acetate monomers is addressed. To this end, first state estimates are generated us-

ing a bank of high-gain observers, and nonlinear fault detection and isolation (FDI)

residuals are defined. The process dynamics are further analyzed to categorize fault

scenarios as distinguishable and indistinguishable, and the necessary and sufficient

conditions for the classification are presented. Subsequently, filters are designed that

enable FDI for the distinguishable fault scenarios, with the advantage of detecting

and confining possible locations for indistinguishable faults. The FDI filters are im-

plemented on the copolymerization process, and the results compared with a linear

model based filter design.

In Chapter 3, the problem of simultaneous actuator and sensor fault detection

and isolation (FDI) is addressed for control affine nonlinear uncertain systems in the
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absence of measurement noise. FDI is achieved by using a bank of filters which utilize

a subset of the measurements along with prescribed values of the control actuators to

estimate states and compute expected process behavior. Residuals are next defined as

the difference between the observed and expected behavior. Detectability conditions

are developed which, upon satisfaction, ensure that each residual remains sensitive

to a subset of fault scenarios in the presence of uncertainty. To this end, first the

ability of observers in providing bounded estimation error for a generalized class of

nonlinear uncertain systems is rigorously established. These bounds allow determin-

ing thresholds that account for the impact of uncertainty on each residual. Finally,

the ability of the proposed framework to achieve fault detection and isolation (FDI)

by ensuring a unique residual breaching pattern for each fault scenario is established.

The efficacy of the fault detection and isolation framework subject to uncertainty and

measurement noise is illustrated using a chemical reactor example.

In Chapter 4, the problem of simultaneous fault diagnosis for nonlinear uncertain

networked systems is addressed utilizing a distributed fault detection and isolation

(FDI) strategy. The idea is to design a bank of local FDI (LFDI) schemes that

communicate with each other. The proposed distributed FDI scheme is shown to be

able to handle local faults as well as those that affect more than one subsystem. This is

achieved via appropriate adaptation of the LFDI filter based on information exchange

with other subsystems and introducing a new concept called detectability index. The

detectability and isoability conditions are rigorously derived for the distributed FDI

scheme. Effectiveness of the proposed methodology is shown via application to a

reactor-separator process subject to uncertainty and measurement noise.

In Chapter 5, an integrated framework for fault detection and isolation (FDI)

11



Ph.D. Thesis - Hadi Shahnazari McMaster - Chemical Engineering

and fault tolerant control (FTC) of variable air volume (VAV) boxes, a common

component of heating, ventilation and air conditioning (HVAC) systems is presented.

To this end, first a statistical model based FDI framework is designed using existing

techniques such as principal component analysis (PCA) and joint angle analysis as

a benchmark for comparison. Then a novel linear causal model based framework for

FDI of multiple actuator and multiple sensor faults is designed and implemented and

shown to possess superior FDI capabilities compared to the statistical model based

framework. Finally, a safe parking strategy is designed and the ensuing energy savings

for the case of stuck dampers demonstrated.
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Chapter 2

Fault detection and isolation

analysis and design for solution

copolymerization of MMA and

VAc process

The contributions of this chapter have been published in:

Journal Papers:

Shahnazari, H., Mhaskar, P., et al. (2016). Fault detection and isolation analysis

and design for solution copolymerization of MMA and VAc process. AIChE Journal,

62(4), 1054–1064.

Refereed Conference Proceedings:

Hadi Shahnazari and Prashant Mhaskar. Detecting and isolating sensor and actuator

faults in solution copolymerization of MMA and VAc process. In American Control
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Conference (ACC), 2015, pages 1617–1622. IEEE, 2015.
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2.1 Introduction

Polymerization processes play an important role in chemical industries. The in-

creasing demand for high quality polymers has motivated significant automation to

provide the desired quality in the polymer products. However, as the level of au-

tomation increases, the process needs to be safeguarded against actuator and sensor

faults. If not properly handled, they may cause issues such as off-spec product, plant

shutdowns, economic losses, or even safety hazards. Fault-handling, however, can

only be efficiently achieved subsequent to fault detection and isolation (FDI). This

realization has driven significant effort in the area of fault detection and isolation.

There exists a plethora of results on FDI assuming linear process dynamics (see,

e.g., Frank (1990), Edwards et al. (2000), Venkatasubramanian et al. (2003) and Tong

et al. (2014)). However, these results may not remain effective for the copolymeriza-

tion processes owing to the strong nonlinear characteristics of the process.

The FDI problem has also been considered for nonlinear systems subject to ac-

tuator and sensor faults, including approaches that utilize data-driven methods and

those that generalize the problem to handle hybrid systems (see, e.g., De Persis and

Isidori (2001), Doymaz et al. (2001a), Doymaz et al. (2001b), Mhaskar et al. (2008),

Zhang et al. (2010b), Chilin et al. (2010), Hu and El-Farra (2011), Du and Mhaskar

(2013) and Du et al. (2013)). However, in some cases, as with the copolymerization

process under consideration, the system structure does not allow the isolation of all

possible fault scenarios.

Motivated by the above considerations, this chapter considers the copolymeriza-

tion process and presents an FDI mechanism cognizant of the fact that the system

structure permits detection and isolation of only a subset of the faults. Then it is
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established that the designed scheme is able to detect all possible fault scenarios and

confine possible locations for the fault scenarios that cannot be isolated (indistin-

guishable) to a subset of the possible fault scenarios.

The rest of this chapter is organized as follows: In Section 2.2 the polymerization

process is described and a mathematical model for the process is presented. The

control objectives for the polymerization reactor are described in 2.3. Then, for

the copolymerization process, a nonlinear actuator and sensor fault detection and

isolation framework for the fault scenarios that can be isolated (distinguishable faults)

is designed with the advantage of recognizing the distinction between distinguishable

fault scenarios and indistinguishable fault scenarios in Section 2.4. As a basis of

comparison with existing approaches, linear FDI filters are designed by utilizing a

linearized model for the process in Section 2.5. The designed linear and nonlinear

FDI frameworks are applied to the copolymerization process in Section 2.6. Finally,

the results are summarized in Section 2.7.

2.2 Process Description and Model

In this section, the MMA and VAc solution copolymerization process is described,

where monomers A (MMA) and B (VAc) are continuously fed to a continuous-stirred

tank reactor (CSTR) with initiator (azobisisobutyronitrile, AIBN), solvent (benzene),

and chain transfer agent (acetaldehyde). A cooling jacket is equipped to remove the

heat of the copolymerization reaction. The mathematical model for this reactor (in

the absence of recycle streams and inhibitors) is of the following form (see Du and
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Mhaskar (2013) and Congalidis et al. (1989) ):

Ċj =

(
Qj

Mj

−
Cj
∑

j Qj

ρ

)
1

V
−Rj, j = a, b, i, s, t

ṪR = (T0 − TR)

∑
j Qj

ρV
+ [(−∆Hpaa)kpaaCaCa· + (−∆Hpba)kpbaCaCb·

(−∆Hpab)kpabCbCa· + (−∆Hpbb)kpbbCbCb·]
1

ρcp
− UA(TR − Tc)

ρcpV

(2.1)

where Cj is the concentration of species j, with subscript a, b, i, s, and t denoting

monomer A, monomer B, initiator, solvent, and chain transfer agent, respectively,

TR is the temperature in the reactor, Qj is the mass flow rate of species j, Tc is the

temperature in the cooling jacket, Mj is the molar mass of species j, V is the volume

of the reactor, ∆H is the enthalpy of the reaction, ρ and cp are the density and the

heat capacity of the fluid in the reactor, respectively, U is the overall heat transfer
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coefficient, A is the heat transfer area of the reactor, and

Ra = [(kpaa + kxaa)Ca· + (kpba + kxba)Cb·]Ca

Rb = [(kpbb + kxbb)Cb· + (kpab + kxab)Ca·]Cb

Ri = kiCi

Rs = (kxasCa· + kxbsCb·)Cs

Rt = (kxatCa· + kxbtCb·)Ct

Ca· =
−l2 +

√
l22 − 4l1l3

2l1

Cb· = βCa·

l1 = kcaa + kdaa + 2β(kcab + kdab) + β2(kcbb + kdbb)

l2 = 0

l3 = −2kiCiε

β =
(kpab + kxab)Cb
(kpba + kxba)Ca

(2.2)

where Ca. and Cb. denote the total reactor concentrations of free radicals terminating

in A and B, respectively. Each of the rate constants follows Arrhenius dependence

on temperature. Thus, for instance:

kpaa = Apaae
−Epaa/RTR (2.3)

where Apaa and Epaa are the preexponential constant and activation energy, respec-

tively, and R is the ideal gas constant. The values of the other preexponential con-

stants and activation energies as well as the rest of the process parameters can be

found in Table 2.1 (see also Du and Mhaskar (2013) and Congalidis et al. (1989)).
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2.3 Control Objective

The control objective under normal conditions is to operate the process at the

nominal steady state operating point, Ca,n = 2.5 × 10−1 kmol/m3, Cb,n = 5.84

kmol/m3, Ci,n = 2.0 × 10−3 kmol/m3, Cs,n = 2.75 kmol/m3, Ct,n = 3.7 × 10−1

kmol/m3, and TR,n = 350.5 K, where the subscript n refers to the nominal value of

states. It is assumed that all the state measurements are available, and the flow rates

Qj, j = a, b, i, s, t, and Tc are chosen as manipulated input variables. The inputs

are bounded as 0 ≤ Qa ≤ 50 kg/hr, 0 ≤ Qb ≤ 120 kg/hr, 0 ≤ Qi ≤ 0.5 kg/hr,

0 ≤ Qs ≤ 100 kg/hr, 0 ≤ Qt ≤ 10 kg/hr, and 320 ≤ Tc ≤ 350 K. The steady state

values of the inputs corresponding to the nominal operating point are Qa = 18 kg/h,

Qb = 90 kg/h, Qi = 0.18 kg/h, Qs = 36 kg/h, Qt = 2.7 kg/h, and Tc = 336.15 K.

The Lyapunov based nonlinear model predictive control design of Mahmood and

Mhaskar (2008) is implemented on the process. The key feature of the MPC design is

the implementation of a Lyapunov function decay constraint to achieve stabilization

(the formulation is reproduced in the Appendix). The hold-time for the control

action is chosen as ∆ = 6 min, control horizon Tc = 2∆, and the prediction horizon

Tp = 10∆. In the objective function, the states are normalized against ranges [0,

1], [0, 8], [0, 5×10−3], [0, 10], [0, 1], and [340, 355], respectively, and the inputs are

normalized using the magnitude of constraints. The matrices used to penalize the

deviations of the normalized states from the steady state values and the increments

of the inputs are chosen as Qw and Rw, respectively. Qw is a diagonal matrix with

all diagonal arrays equal to 1 and Rw is a diagonal matrix with diagonal arrays equal

to 1, 1, 50, 0.5, 1, 1. The Lyapunov function is chosen to be a quadratic function of

the form V (x) = x′Px, with
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P =


22.9 3.60 3.99×103 0.01 5×10−3 2.08
3.60 3.41 5.3×102 5×10−3 5×10−3 0.28

3.99×103 5.3×102 7.98×105 1.24 0.28 4.49×102

0.01 5×10−3 1.24 2.98 2×10−3 3×10−4

5×10−3 5×10−3 0.28 2×10−3 2.97 10−4

2.08 0.28 4.49×102 3×10−4 10−4 0.52


where the matrix P is obtained by solving the Riccati equation for the linearized

system. Note that with the Lyapunov constraint implemented, the other parame-

ters in the MPC can be chosen to reflect relative importance of variables, scale, or

other considerations without facing instability. In the present example, the values of

parameters Qw, Rw, Tc and Tp were chosen to achieve reasonable control performance.

Table 2.1: Process parameters for the solution copoly-

merization example.

Parameter Value Unit Parameter Value Unit

V 1 m3 Axba 5.257× 104 m3/kmol·s

R 8.314 kJ/kmol·K Axbb 1577 m3/kmol·s

ρ 8.79× 102 kg/m3 Axbs 1514 m3/kmol·s

cp 2.01 kJ/kg·K Axbt 4.163× 105 m3/kmol·s

U 6.0× 10−2 kJ/m2·s·K Ei 1.25× 105 kJ/kmol

A 4.6 m2 Ecaa 2.69× 104 kJ/kmol

T0 353.15 K Ecbb 4.00× 103 kJ/kmol

ε 1 Edaa 0.0 kJ/kmol

Ma 100.12 kg/kmol Edbb 0.0 kJ/kmol

Mb 86.09 kg/kmol Epaa 2.42× 104 kJ/kmol

Mi 164.21 kg/kmol Epab 2.42× 104 kJ/kmol

Ms 78.11 kg/kmol Epba 1.80× 104 kJ/kmol
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Mt 44.05 kg/kmol Epbb 2.42× 104 kJ/kmol

Ai 4.5× 1014 s−1 Exaa 2.42× 104 kJ/kmol

Acaa 4.209× 1011 m3/kmol·s Exab 2.42× 104 kJ/kmol

Acbb 1.61× 109 m3/kmol·s Exas 2.42× 104 kJ/kmol

Adaa 0 m3/kmol·s Exat 2.42× 104 kJ/kmol

Adbb 0 m3/kmol·s Exba 1.80× 104 kJ/kmol

Apaa 3.207× 106 m3/kmol·s Exbb 1.80× 104 kJ/kmol

Apab 1.233× 105 m3/kmol·s Exbs 1.80× 104 kJ/kmol

Apba 2.103× 108 m3/kmol·s Exbt 2.42× 104 kJ/kmol

Apbb 6.308× 106 m3/kmol·s −∆Hpaa 54.0× 103 kJ/kmol

Axaa 32.08 m3/kmol·s −∆Hpba 54.0× 103 kJ/kmol

Axab 1.234 m3/kmol·s −∆Hpab 86.0× 103 kJ/kmol

Axas 86.6 m3/kmol·s −∆Hpbb 86.0× 103 kJ/kmol

Axat 2085.0 m3/kmol·s

2.4 Fault detection and isolation framework for

distinguishable faults in the copolymerization

process

In this section, we design a nonlinear actuator and sensor fault detection and

isolation framework for the distinguishable faults in copolymerization process. Also,

we show the designed framework is able to detect and confine possible locations for

indistinguishable faults. For comparison, we also design linear model based FDI filters
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by considering a linearized model of the process dynamics.

2.4.1 Nonlinear actuator and sensor fault detection and iso-

lation framework for distinguishable faults in the copoly-

merization process

The key idea is to exploit the analytical redundancy in the copolymerization pro-

cess to compute the expected process behavior (see e.g., Du et al. (2013)). To achieve

this, first state estimates are generated using a bank of high-gain observers Du and

Mhaskar (2014). To this end, consider the description of the copolymerization process

in the following form:

ẋ = f(x) +G(x)(u+ uf )

y = h(x) + yf

(2.4)

where x ∈ X ⊂ Rn denotes the vector of state variables, with X being a compact set of

the admissible state values, u = [u1, . . ., um]T ∈ Rm denotes the vector of prescribed

control inputs, taking values in a nonempty compact convex set U ⊆ Rm, uf = [uf1 ,

. . ., ufm ]T ∈ Rm denotes the unknown fault vector for the actuators, y = [y1, . . .,

yp]
T ∈ Rp denotes the vector of output variables, yf = [yf1 , . . ., yfp ]

T ∈ Rp denotes

the unknown fault vector for the sensors, and G(x) = [g1(x), . . . , gm(x)]. Due to the

presence of physical constraints, the actual input u + uf implemented to the system

takes values from the set U as well.

The design of the high gain observer requires the satisfaction of Assumption 2.1

below (and exploits the fact that the control action is computed using MPC and held

constant over a sampling time):
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Assumption 2.1. Findeisen et al. (2003) There exist integers ωi, i = 1, . . ., p, with∑p
i=1 ωi = n, and a coordinate transformation ζ = T (x, u) such that if u = ū, where

ū ∈ U is a constant vector, then the representation of the system of Eq. 2.4 in the ζ

coordinate takes the following form:

ζ̇ = Aζ +Bφ(ζ, ū)

y = Cζ

(2.5)

where ζ = [ζ1, . . . , ζp]
T ∈ Rn, A = blockdiag[A1, . . ., Ap], B = blockdiag[B1, . . ., Bp],

C = blockdiag[C1, . . ., Cp], φ = [φ1, . . . , φp]
T, ζi = [ζi,1, . . . , ζi,ωi ]

T, Ai =

0 Iωi−1

0 0

,

with Iωi−1 being a (ωi−1)×(ωi−1) identity matrix, Bi = [0T
ωi−1, 1]T, with 0ωi−1 being

a vector of zeros of dimension ωi − 1, Ci = [1, 0T
ωi−1], and φi(x, ū) = φi,ωi(x, ū), with

φi,ωi(x, ū) defined through the successive differentiation of hi(x): φi,1(x, ū) = hi(x)

and φi,j(x, ū) =
∂φi,j−1

∂x
[f(x) + g(x)ū], j = 2, . . . , ωi. Furthermore, T : Rn × U → Rn

and T−1 : Rn × U → Rn are C1 functions on their domains of definition.

Assumption 2.1 describes the condition that the nonlinear system of Eq. 2.4 is

observable from a given set of measured outputs. The bank of high gain observers is

designed by leaving out subsets of the measured variables, subject to the satisfaction

of Assumption 2.1 for the remaining measured variables (i.e., verifying whether the

states can be estimated using the remaining measured variables). Assumption 2.1

does not hold when either Cs or Ct (or both) are not measured. Note that since

Cs and Ct do not appear on the right hand side of any state derivative except Ċs

and Ċt, respectively, they are not observable unless directly measured. Thus the

transformation required in Assumption 2.1 only holds for subsets of sensors that
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includes both Cs and Ct.

For a particular acceptable choice of a subset of sensors, y, for t ∈ [tk, tk+1), where

tk = k∆, k = 0, . . . ,∞, the observer is formulated as follows:

˙̂
ζ = Aζ̂ +Bφ0(ζ̂ , u(tk)) +H(y − Cζ̂)

ζ̂(tk) = T (x̂(tk), u(tk))

(2.6)

where x̂ and ζ̂ denote the estimates of x and ζ, respectively, H = blockdiag[H1, . . .,

Hp] is the observer gain, Hi =
[ai,1
ε
, . . . ,

ai,ωi
εωi

]T
, with sωi + ai,1s

ωi−1 + · · · + ai,ωi = 0

being a Hurwitz polynomial and ε being a positive constant to be specified, x̂(tk) =

T−1(ζ̂(t−k ), u(tk−1)) for k = 1, . . . ,∞, and φ0 is the nominal model of φ. The state

observer requires the global boundedness of φ0 as it is presented in Assumption 2.2.

Assumption 2.2. Du et al. (2013) φ0(ζ, u) is a C0 function on its domain of definition

and globally bounded in x.

In this work, we consider each fault scenario comprising at most two simultaneous

faults. Thus with m actuators and p sensors, the total number of possible fault

scenarios nf is

nf = Cm
1 C

p
0 +Cm

0 C
p
1 +Cm

1 C
p
1 +Cm

2 C
p
0 +Cm

0 C
p
2 = m+ p+mp+

m(m− 1)

2
+
p(p− 1)

2

(2.7)

where Cn
k presents the binomial coefficients which is equal to

(
n
k

)
= n

k!(n−k)!
. For

the copolymerization process, given that there are six actuators and six sensors, and

considering at most two simultaneous faults, there exist a total 2× C6
0C

6
1 + C6

1C
6
1 +

2× C6
0C

6
2 = 78 possible scenarios.

For each fault scenario, the objective is to define a residual as the norm of the
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difference between the state prediction and the state estimate for the subsystem

(appropriately defined) corresponding to the fault scenario. For a particular fault

scenario, the expected process trajectory is computed using the subsystem of the

process model that is independent of the specific actuator fault and the state estimates

generated by the observer that does not require measurements from that particular

faulty sensor, or knowledge of the implemented value of that actuator. This expected

trajectory when compared with the observed trajectory to generate residuals results

in each residual being sensitive to a unique subset of faults.

Remark 2.1. Note that the proposed FDI scheme in Du et al. (2013) does not need

any priory knowledge about fault occurrence or location and is based on designing a

residual for each fault scenario, i.e., based on a bank of residuals, with unique breach-

ing patterns. Thus, when a particular breaching pattern is observed that matches

with a known breaching pattern, that particular fault scenario is deemed to have

occurred.

The system structure prerequisite for generating such state estimates is presented

in Assumption 2.3 for fault scenarios that are distinguishable. To this end, let θf,i

denote the fault vector (sensor and/or actuator) for the ith fault scenario with di-

mension of 1 × 1 in the case of single fault and 1 × 2 in the case of a scenario that

includes multiple faults, and θ̄f,i the remaining fault variable vector (the remaining

uf and yf variables). For example, for a two-input-one-output system (where at most

six fault scenarios are possible when under the assumption of no more than two si-

multaneous faults), θf,i, i = 1, . . . , 6, can be defined as follows: θf,1 = uf1 , θf,2 = uf2 ,

θf,3 = yf1 , θf,4 = [uf1 , uf2 ]T, θf,5 = [uf1 , yf1 ]T, and θf,6 = [uf2 , yf1 ]T. The vectors

θ̄f,i, i = 1, . . . , 6, can be defined accordingly. For example, θ̄f,1 = [uf2 , yf1 ]T and
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θ̄f,2 = [uf1 , yf1 ]T. Specifically, let uf,i and yf,i denote the vectors of input and output

variables subject to faults θf,i in the ith fault scenario. Let ūf,i and ȳf,i denote the

vectors of the rest of the input and output variables in that fault scenario.

Assumption 2.3. Du et al. (2013) Consider a particular fault scenario, say the ith.

Then assumptions 2.1 and 2.2 hold for the system of Eq. (2.4), with ūf,i and ȳf,i

being the vectors of the rest of the input and output variables, respectively.

Under Assumption 2.3, the jth state observer for the ith fault scenario is designed

as follow:
˙̂
ζj = Aj ζ̂j +Hj(ȳf,i − Cj ζ̂j)

ζ̂j(tk) = T j(x̂j(tk), ūf,i(tk))

(2.8)

where j = 1, . . . , pob + pob(pob−1)
2

where pob is the total number single system outputs

that are observable (i.e., the single system outputs that can be estimated from the

rest of measured outputs) and pob+
pob(pob−1)

2
is the total number of designed observers.

Remark 2.2. Note that in the present manuscript, the high gain observers are only

used for the purpose of illustration. Any other estimation scheme such as moving

horizon estimation (MHE) could also be used as long as they guaranty fast enough

convergence rate. Note that the critical requirement for a successful FDI design is the

ability of the state estimates to converge at a sufficiently fast rate, since otherwise

the FDI filters will lead to either missed faults or false alarms.
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2.4.2 Defining residuals for the copolymerization process

Residual definition for single actuator fault in Tc

We now describe how residuals are generated for the copolymerization process

for the fault scenarios for which Assumption 2.3 is satisfied. For example, consider a

single actuator fault defined by θf,11 = uf6 (corresponding to faults in the actuator for

Tc), the corresponding state prediction is computed by first considering the subsystem

for which u6 = Tc does not appear on the right-hand side of the corresponding ordinary

differential equations (ODE’s):

Ċa =

(
Qa

Ma

−
Ca
∑

j Qj

ρ

)
1

V
−Ra(Ca, Cb, Ci, TR)

Ċb =

(
Qb

Mb

−
Cb
∑

j Qj

ρ

)
1

V
−Rb(Ca, Cb, Ci, TR)

Ċi =

(
Qi

Mi

−
Ci
∑

j Qj

ρ

)
1

V
−Ri(Ci, TR)

Ċs =

(
Qs

Ms

−
Cs
∑

j Qj

ρ

)
1

V
−Rs(Ca, Cb, Ci, TR)

Ċt =

(
Qt

Mt

−
Ct
∑

j Qj

ρ

)
1

V
−Rt(Ca, Cb, Ci, TR)

(2.9)

The above subsystem is the one that (with appropriate modification) needs to be

used in defining the residual. Note that when plant is subject to an actuator fault,

the implemented input is the summation of the prescribed input and the faulty input.

Thus when an actuator fault takes places, the prescribed input differs from the im-

plemented input. The idea behind the actuator fault isolation is to have a subsystem

for which the states continues to match the plant trajectories even when the fault

occurs. If this subsystem contained TR as one of the states, it would have to use Tc

(the prescribed value), in the computation which would make the predictions deviate
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from the plant behavior. Therefore the subsystem model does not include TR as one

of its states. The prediction model is based on this subsystem, however, wherever TR

appears on the right hand side of corresponding ODE’s (which affects the dynamics

of the other prediction states), its estimated value, T̄R is used. Therefore, the model

used to generate predictions for this filter takes the following form:

˙̃Ca =

(
Qa

Ma

−
C̃a
∑

j Qj

ρ

)
1

V
−Ra(C̃a, C̃b, C̃i, T̄R)

˙̃Cb =

(
Qb

Mb

−
C̃b
∑

j Qj

ρ

)
1

V
−Rb(C̃a, C̃b, C̃i, T̄R)

˙̃Ci =

(
Qi

Mi

−
C̃i
∑

j Qj

ρ

)
1

V
−Ri(C̃i, T̄R)

˙̃Cs =

(
Qs

Ms

−
C̃s
∑

j Qj

ρ

)
1

V
−Rs(C̃a, C̃b, C̃i, T̄R)

˙̃Ct =

(
Qt

Mt

−
C̃t
∑

j Qj

ρ

)
1

V
−Rt(C̃a, C̃b, C̃i, T̄R)

(2.10)

where (̃·) denotes the predicted value for a particular variable and (̄·) denotes the

corresponding estimate.

In Eq. 2.10, the predicted values (C̃j, where j = a, b, i, s, t) are the expected

trajectories of states computed using the prediction model presented as Eq. 2.10.

The estimate T̄R for use in the above prediction is generated by designing a high gain

observer that uses measurements of y1 = Ca, y2 = Cb, y3 = Ci, y4 = Cs and y5 = Ct,

and computes the state estimates, without requiring knowledge of the true value of

Tc. The coordinate transformation for this observer is as follows: ζ4
1,1 = Ca, ζ

4
2,1 = Cb,

ζ4
2,2 = Ċb, ζ4

3,1 = Ci, ζ
4
4,1 = Cs, and ζ4

5,1 = Ct where the superscript refers to the

observer number, and uses the fact that the input action is computed in a discrete

28



Ph.D. Thesis - Hadi Shahnazari McMaster - Chemical Engineering

fashion (see Du and Mhaskar (2014) for further details). The observer design is as

follows:
˙̂
ζ4

1,1 =
a1,1

ε
(y1 − ζ̂4

1,1)

˙̂
ζ4

2,1 = ζ̂4
2,2 +

a2,1

ε
(y2 − ζ̂4

2,1)

˙̂
ζ4

2,2 =
a2,2

ε2
(y2 − ζ̂4

2,1)

˙̂
ζ4

3,1 =
a3,1

ε
(y3 − ζ̂4

3,1)

˙̂
ζ4

4,1 =
a4,1

ε
(y4 − ζ̂4

4,1)

˙̂
ζ4

5,1 =
a5,1

ε
(y5 − ζ̂4

5,1)

(2.11)

with ε = 0.04, ai,1 = 5, and ai,2 = 100, i =1, 2, 3, 4. The values of ai,1, ai,2 are

selected in a way that they form a Hurwitz polynomial for each subsystem and ε is

selected small enough to guaranty fast convergence. The other observers required for

the implementation of the rest of the filters are also designed in a similar fashion with

the same values of the observer parameters. Among these observers, four are designed

using five outputs corresponding to single or multiple fault scenarios (single sensor,

single actuators faults, or simultaneous sensor and actuator faults), and six using

four outputs, corresponding to multiple fault scenarios (two sensors, or simultaneous

sensor and actuator faults).

The dedicated residual for a fault in u6 = Tc (with θf,i = uf6) is then defined as

r11 =

√
(C̃a − C̄a)2 + (C̃b − C̄b)2 + (C̃i − C̄i)2 + (C̃s − C̄s)2 + (C̃t − C̄t)2

For each dedicated residual, the breaching pattern can be inferred uniquely. Thus

When a fault takes place in Tc only, the estimates of the states (utilized in the present

filter) stay accurate, because the prescribed value of Tc is not utilized to generate the
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estimates. Furthermore, the subsystem used for prediction has been chosen to be

independent of Tc, therefore the predicted values stay the same as the true values,

which are in turn being correctly estimated. Thus, this residual stays close to zero.

On the other hand, for faults in other actuators and sensors, this residual becomes

non-zero. To understand the unique breaching pattern better, consider the residual

definition for fault in Ca sensor described next.

Residual definition for single sensor fault in Ca

Consider θf,1 = yf1 , i.e., a scenario where a single fault in y1 = Ca occurs, for

which a residual r1 needs to be designed. The subsystem appropriate for this filter

takes the form:

˙̃Ca =

(
Qa

Ma

−
C̃a
∑

j Qj

ρ

)
1

V
−Ra(C̃a, C̃b, C̃i, T̃R)

˙̃Cb =

(
Qb

Mb

−
C̃b
∑

j Qj

ρ

)
1

V
−Rb(C̃a, C̃b, C̃i, T̃R)

˙̃Ci =

(
Qi

Mi

−
C̃i
∑

j Qj

ρ

)
1

V
−Ri(C̃i, T̃R)

˙̃Cs =

(
Qs

Ms

−
C̃s
∑

j Qj

ρ

)
1

V
−Rs(C̃a, C̃b, C̃i, T̃R)

˙̃Ct =

(
Qt

Mt

−
C̃t
∑

j Qj

ρ

)
1

V
−Rt(C̃a, C̃b, C̃i, T̃R)

˙̃TR = (T0 − T̃R)

∑
j Qj

ρV
+ [(−∆Hpaa)kpaaC̃aCa· + (−∆Hpba)kpbaC̃aCb·

(−∆Hpab)kpabC̃bCa· + (−∆Hpbb)kpbbC̃bCb·]
1

ρcp
− UA(T̃R − Tc)

ρcpV

(2.12)
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However, for the purpose of prediction (as before), we need estimates of C̄a (so

we are not forced to use possibly incorrect values of C̄a), a high gain observer is

designed that uses measurements of y2 = Cb, y3 = Ci, y4 = Cs, y5 = Ct, y6 = TR.

The coordinate transformation for this observer is as follows: ζ1
1,1 = Cb, ζ

1
1,2 = Ċb,

ζ1
2,1 = Ci, ζ

1
3,1 = Cs, ζ

1
4,1 = Ct, and ζ1

5,1 = TR where the superscript refers to the

observer number. The observer design is as follows:

˙̂
ζ1

1,1 = ζ̂1
1,2 +

a1,1

ε
(y2 − ζ̂1

1,1)

˙̂
ζ1

1,2 =
a1,2

ε2
(y2 − ζ̂1

1,1)

˙̂
ζ1

2,1 =
a2,1

ε
(y3 − ζ̂1

2,1)

˙̂
ζ1

3,1 =
a3,1

ε
(y4 − ζ̂1

3,1)

˙̂
ζ1

4,1 =
a4,1

ε
(y5 − ζ̂1

4,1)

˙̂
ζ1

5,1 =
a5,1

ε
(y6 − ζ̂1

5,1)

(2.13)

The residual for r1 is defined as follows:

r1 =

√
(C̃a − C̄a)2 + (C̃b − C̄b)2 + (C̃i − C̄i)2 + (C̃s − C̄s)2 + (C̃t − C̄t)2 + (T̃R − T̄R)2

Following the same lines of arguments as earlier, this residual stays close to zero when

the fault scenario involving only a fault in the sensor for Ca takes place.

To recognize that this residual will become non-zero when a fault in say the

actuator Tc takes place, first note that the evolution of TR is directly affected by Tc

(and any faults in this actuator). Thus the estimated value of TR being accurate, it

will therefore also be affected by the fault in Tc. However, in the filter, the prediction
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model uses the expected or computed value of Tc, therefore the evolution of the states

in the prediction model ends up being different from the true evolution. Thus, r1

becomes non zero and breaches its threshold. The rest of the residuals are designed

in a similar fashion, and every filter that uses the computed values of Tc ends up

breaching the threshold. In particular, all the residuals breach their thresholds except

for r11 (the dedicated filter for Tc), r12, r13, r14 and r15 (filters dedicated for Tc, and

a sensor fault). By looking at these residuals, one can deduce that either a fault in

Tc, or a fault in Tc and one of the sensors must have taken place. However, since

breaching all the dedicated residuals for the sensor faults indicate no fault in any of

the sensors, by the process of elimination it can be concluded that a single actuator

fault in Tc must have taken place. The rest of the fault detection and isolation logic

and uniqueness of the breaching pattern is established in a similar fashion.

Remark 2.3. The system structure does not satisfy the standard assumptions for

high gain observer design (e.g., Khalil (1999), Mahmood et al. (2008b)). However,

the recognition that the control action is implemented in a discrete fashion allows

invoking the relaxation on the system structure, as presented in Du and Mhaskar

(2014). This in turn enables the design of the high-gain observers required for the

purpose of building the bank of observers that constitute the FDI filters.

2.4.3 Indistinguishable faults

Now consider θf,i = yf4 , i.e., a fault scenario where a fault in y4 = Cs occurs.

Since θf,i = yf4 does not include any input fault, the corresponding prediction model

takes the same form as it is described in Eq. 2.12. To estimate C̄s, a high gain

observer needs to be designed that uses measurements of y2 = Cb, y3 = Ci, y4 = Cs,
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y5 = Ct, y6 = TR. To design the corresponding observer, the required transformation

in Assumption 2.1 must exist. However, since Cs is fundamentally unobservable, the

required transformation in Assumption 2.1 does not exist and the corresponding high

gain observer which is insensitive to fault in y4 = Cs can not be designed. Note that

we are considering the scenario where the sensor for Cs continues to report values.

The objective is to design a mechanism to determine whether or not these values are

correct. To this end, we need to be able to design residuals in a way mentioned in

the manuscript and achieve FDI for sensor faults in y4 = Cs. However, the residual

for θf,i = yf4 is undefined. When fault in y4 = Cs takes place, all of the existing

residuals (designed for other fault scenarios) breach their thresholds. Similarly, all

the residuals breach thresholds when say a fault in y5 = Ct (another variable that

is unobservable) takes place. Thus, just by looking at the residuals, and noting that

all of them have breached the threshold, it is not possible to distinguish whether a

fault (scenario) has taken place that includes y4 = Cs or y5 = Ct, or both. Lets

consider another fault scenario, denoted by θf,i = uf1 with a fault in u1 = Qa. To

define the corresponding prediction model, the subsystem which is not subject to fault

input must be used. However, since u1 = Qa appears in all of the state equations

(see Eq. 2.1), the corresponding prediction model does not exist and as a result the

corresponding residual for θf,i = uf1 is undefined. Thus also when a fault in u1 = Q1

takes places, all of the existing residuals breach their thresholds leading to a similar

predicament.

In designing the FDI scheme, therefore, it is also important to analyze the pos-

sibility of achieving FDI for all possible fault scenarios. To do this rigorously (and
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to enable generalization to other systems), we first define distinguishable fault sce-

narios as those for which if that particular fault scenario occurs, there exists an FDI

mechanism that can be used to determine uniquely (based on the evolution of the

measurements), the occurrence of that (and only that) fault scenario. Corollary 2.1

presents the necessary and sufficient conditions for a fault scenario to be distinguish-

able. The proof is omitted here since it follows the same line of arguments as the

proof of Proposition 1 and Theorem 1 in Du et al. (2013). To this end, let ri,ins denote

the vector of corresponding insensitive residuals to the ith fault scenario, as defined

in Du et al. (2013).

Corollary 2.1. Consider the system of Eq. 2.4, for which Assumptions 2.1-2.3 hold.

A fault scenario θf,i, where θf,i = yf or θf,i = uf is distinguishable if and only

if there exists a one-to-one mapping between every fault scenario and ri,ins, where

i ∈ {1, . . . , nf}. Furthermore, any θf,i that comprises combinations of distinguish-

able fault scenarios is distinguishable and combination of an indistinguishable fault

scenario with any fault scenario is indistinguishable.

Corollary 2.1 classifies faults in two categories; distinguishable (θf,dis) and indistin-

guishable (θf,indis) faults. Each fault scenario belongs only to one of these categories.

If mdis of the inputs and pdis of the outputs (when considered in isolation) satisfy the

conditions in Corollary 2.1, the cardinality of set θf,dis is

Cmdis
1 Cpdis

0 + Cmdis
0 Cpdis

1 + Cmdis
1 Cpdis

1 + Cmdis
2 Cpdis

0 + Cmdis
0 Cpdis

2 =

mdis + pdis +mdispdis +
mdis(mdis − 1)

2
+
pdis(pdis − 1)

2

(2.14)

Furthermore, since θf,dis and θf,indis are complement of each other, therefore the

cardinality of set θf,indis is nf − |θf,dis|.
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For the copolymerization process y4 = Cs and y5 = Ct are fundamentally unob-

servable, and u1 = Qa or u2 = Qb or u3 = Qi or u4 = Qs or u5 = Qt appears in all of

the state equations resulting in prediction model to be undefined for them. Thus for

single fault in any of these actuators or sensors, the corresponding insensitive residu-

als are undefined. For the copolymerization process, mdis = 1, and pdis = 4, therefore

only C1
0C

4
1 + C1

1C
4
0 + C1

1C
4
1 + C4

2 = 15 scenarios are distinguishable. The rest of the

63 fault scenarios belong to θf,indis.

With the recognition that some of fault scenarios are indistinguishable, the FDI

scheme is still able to detect the indistinguishable faults and confine the possible

scenarios for fault location to all possible combinations of indistinguishable actuators

and sensors. Theorem 2.1 presents the mechanism for detecting and limiting the

possible locations for indistinguishable actuators and sensors. To this end, consider

the system of Eq. 2.4, where at most two simultaneous faults can occur and let δi

denote the threshold for the ith fault scenario.

Theorem 2.1. Consider the system of Eq. 2.4, for which Assumption 2.1-2.3 hold

and tk′ be the time (if exists) by which all of the residuals have breached their threshold

i.e., ri,k > δi ∀i ∈ {1, . . . , |θf,dis|}. Consider a time tk ≥ tk′ then θf,indis(t) 6= 0 for

some t ∈ [tk′ , tk).

Proof. First, note that ri,k > δi ∀i ∈ {1, . . . , |θf,dis|}, we know that some θfi > 0.

We then show that some fault scenario θf,indis take place by contradiction argument.

To this end, lets assume that θf,dis take place. Therefore ri,k ≤ δi for at least one

i ∈ {1, . . . , |θf,dis|} (Theorem 1 in Du et al. (2013)). However, this is in contradiction

with ri,k > δi for all i ∈ {1, . . . , |θf,dis|}. Thus θf,indis(t) 6= 0 for some t ∈ [tk′ , tk).

This concludes the proof of Theorem 2.1.
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As a result of Theorem 2.1, the design acts as a fault detection mechanism for

indistinguishable faults with the ability of confining possible locations for them to

a subset of all the fault scenarios. In particular, all of the residuals breaching their

thresholds results in detection of an indistinguishable fault. Note that even though

precise isolation of the fault is not achieved, the design guarantees determining that

one of the indistinguishable sensors and/or actuators i.e., faults in y4 = Cs, y5 = Ct,

u1 = Qa, u2 = Qb, u3 = Qi, u4 = Qs, u5 = Qt or any combination of them (including

possibly the other sensor and actuators), must have experienced a fault. Note this is

a fundamental limitation of the process, and not of the FDI framework.

For instances where it is necessary to isolate all the faults, hardware redundancy

i.e., smart sensors can be utilized. Note that the smart sensors and actuators are in-

herently based on the principle of physical redundancy. For instance, a smart actuator

for a valve would have an additional means of ‘measuring’ the valve opening which

can then be compared to the prescribed value to detect and isolate the fault. The

proposed FDI approach is not intended to replace the smart sensors and actuators,

but instead to complement these, and also point to where such devices are required

for the purpose of FDI. In particular, the proposed FDI approach can be utilized,

where possible, to achieve FDI for number of sensors and actuators to mitigate the

high installation and maintenance cost of smart sensors. Note that a rigorous FDI

design points, as with the copolymerization process, to the requirement of smart de-

vices for certain subsets of sensors and actuators where fault isolation is not possible

otherwise. Thus, we only use smart sensors for those fault scenarios that can not

be isolated using analytical redundancy. This enables us to achieve fault isolation
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for each fault scenario, while not requiring smart devices for every sensor and actua-

tor. For more safety critical sensors and actuators, the model based approach can be

utilized to provide an additional layer of redundancy to the smart devices.

2.5 Linear FDI filters for the copolymerization pro-

cess

In this section, we design linear FDI filters for the copolymerization process to

compare results obtained from the proposed nonlinear FDI filters. Note that while

there exist filters that achieve fault detection (see e.g., Frank (1990), Clark (1978a),

Clark (1978b) and Frank (1987)), there is a lack of result in the literature on simulta-

neous actuator and sensor fault detection and isolation designs. Thus the linear FDI

filters are also designed based on Du et al. (2013) by considering a linearized model

for the copolymerization process. The residuals are defined as norm of difference

between prediction model and state estimates in the same fashion as the nonlinear

FDI filters. A fault is detected and isolated when the corresponding residuals do not

breach their thresholds. As with the nonlinear FDI filters, because of existence of

unobservable outputs (Cs and Ct) and appearance of five of the six inputs (Qa, Qb,

Qi, Qs and Qt) in all of the model equations, we can only design 15 residuals.

37



Ph.D. Thesis - Hadi Shahnazari McMaster - Chemical Engineering

2.6 Application of fault detection and isolation frame-

work

In this section, we apply the proposed FDI filters to the process. Practical issues

such as parametric uncertainty, time-varying disturbances, and measurement noise are

considered in the simulations. Specifically, the values of Apbb, Axas, Axbs, Axat, and

Axbt are 10% smaller than their nominal values and Axbb is 10% larger. The bounds

on these uncertainty are ±10% of their nominal values. The inlet streams of monomer

B and solvent contain small amounts of the other. The mass fraction of monomer

B in the flow of solvent varies according to 0.02 + 0.02 sin(t), and the mass fraction

of solvent in the flow of monomer B varies as 0.01 + 0.01 sin(2t). The concentration

and temperature measurements have combinations of 5 Hz sinusoidal noises. The

measurement noise has a normal distribution of variance 0.02, 0.2, 0.0005, 0.2, 0.02,

and 0.5 in Ca, Cb, Ci, Cs, Ct, and TR, respectively. It is assumed that measurements

are sampled 10 times evenly between two successive times when control action is

implemented. The noisy measurement are processed through a first order low pass

filter with time constant equal to 3 min.

To account for the presence of disturbances and measurement noise, thresholds for

each filter were determined based on normal operation, and are reported in Tables 2.2

and 2.3. In particular, the maximum observed value of each residual when operating

at steady state, under healthy condition, is selected as the corresponding threshold.

It should be noted that threshold values for the linear filters are relatively higher

than the nonlinear filters. This is because the estimation error when using the linear

model based state observer converges to larger values even in the absence of faults.
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Table 2.2: Faults to which the residuals are designed to be insensitive and thresholds
for the linear FDI filters.

Residual Faults Threshold Residual Faults Threshold

r1 yf1 0.3 r2 yf2 0.16
r3 yf3 0.16 r4 yf6 0.17
r5 yf1 , yf2 0.16 r6 yf1 , yf3 0.16
r7 yf1 , yf6 0.002 r8 yf2 , yf3 0.16
r9 yf2 , yf6 0.002 r10 yf3 , yf6 0.012
r11 uf6 0.012 r12 uf6 , yf6 0.012
r13 uf6 , yf1 0.012 r14 uf6 , yf2 0.02
r15 uf6 , yf3 0.002

Table 2.3: Faults to which the residuals are designed to be insensitive and thresholds
for the nonlinear FDI filters.

Residual Faults Threshold Residual Faults Threshold

r1 yf1 0.27 r2 yf2 0.2
r3 yf3 0.07 r4 yf6 0.07
r5 yf1 , yf2 0.07 r6 yf1 , yf3 0.068
r7 yf1 , yf6 0.06 r8 yf2 , yf3 0.06
r9 yf2 , yf6 0.06 r10 yf3 , yf6 0.06
r11 uf6 0.01 r12 uf6 , yf6 0.01
r13 uf6 , yf1 0.06 r14 uf6 , yf2 0.01
r15 uf6 , yf3 0.01

We first consider two case where a small and a large abrupt, constant bias fault of

magnitudes of 0.5 kmol/m3 and 0.05 kmol/m3 in y1 = Ca (single sensor fault) takes

place, respectively, at time tf = 1.5 hr. The evolution of residual profiles is shown

in Figure 2.1. It can be seen that some of the filters breach their thresholds for the

linear FDI design. In essence, the fault is successfully detected but is not isolated

since the residual breaching profiles do not follow any of the expected patterns. For

the large abrupt fault, after the fault occurrence, for the first one hour the breaching

pattern matches with fault occurrence in y1 = Ca and after that for one hour and half,
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none of the residuals breach their thresholds, (incorrectly) indicating that no fault has

occurred. For the small abrupt fault, the breaching pattern does not match with any

faulty scenario at any time period. Thus, the linear FDI filters are only able to achieve

fault detection regardless of fault magnitude. In contrast, the nonlinear FDI design

successfully detects and isolates the fault (see Remark 2.4 for more discussion on

this). The evolution of the measurements of the output variables, the state estimates

provided by the observer that uses measurements of Cb, Ci, Cs, Ct and TR, and the

true values of the state variables are depicted by solid, dashed, and dashed-dotted

lines in Figure 2.2, respectively.

Remark 2.4. Note that the isolation mechanism is based on some of the residuals

being insensitive to each specific fault scenario and some of them not, i.e., based on

the existence of a unique breaching pattern for each fault scenario (discussed in Du

et al. (2013) in more detail). If a residual breaches its threshold, it means a fault has

occurred. Fault isolation is achieved by comparing the residuals breaching pattern

with patterns of residuals breaching for the different types of faulty scenarios (single

sensor, single actuator, two sensor, two actuator, and simultaneous actuator and

sensor). For example, in Figure 1 for nonlinear FDI filters, since all of the residuals

corresponding to a single sensor except r1 have breached their thresholds, it can be

concluded that a fault in the corresponding sensor to r1, y1 = Ca has occurred. Note

that r5, r6, r7 and r13 also do not breach their thresholds, while the others residuals

do. This set of breaching patterns uniquely matches with the breaching pattern for a

single fault in the Ca sensor. To understand this better, note that, for instance, r5 is

designed to not breach the threshold when a fault in either the Ca or Cb sensor has

taken place. But by also noticing that the dedicated residual for Cb (r2) has breached
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Figure 2.1: Evolution of the residuals for large (solid lines) and small (dashed lines)
magnitude constant sensor fault. The thresholds are depicted by the dashed-dotted
lines. Top: Using linear FDI filters enables only fault detection for the large and small
sensor faults. Bottom: Using nonlinear FDI filters enables FDI for both cases.
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the threshold, it is concluded that fault in Cb sensor has not taken place, and thus

only a fault in the Ca sensor has occurred (see Du et al. (2013) for further discussed

along these lines).

We next consider a case where incipient faults in y1 = Ca and u6 = Tc (one

actuator fault and one sensor fault) take place, starting at time tf = 1.5 hr. The

faults are simulated as follows:

yf1 =

 0, 0 ≤ t < tf

(0.05 + 0.05 sin 5t)(2− e5tf−5t), t ≥ tf

uf6 =

 0, 0 ≤ t < tf

(5 + 5 sin 5t)(2− e5tf−5t), t ≥ tf

(2.15)

The evolution of residual profiles is shown in Figure 2.3. Like the previous case, using

the linear FDI method, some of the residuals breach their thresholds and therefore

the fault is successfully detected. However, the fault is not isolated since residual

profiles do not follow any of expected patterns. In contrast, by using the proposed

method, the fault in y1 and u6 is successfully isolated.

The FDI results for other distinguishable faults scenarios were also considered

and are not presented here for sake of brevity. Finally, we demonstrate the ability

to detect the indistinguishable faults. In particular, we consider a case where faults
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take place in y4 = Cs and u1 = Qa at time tf = 1.5hr, simulated as follows:

yf4 =

 0, 0 ≤ t < tf

(0.55 + 0.55 sin 5t)(2− e5tf−5t), t ≥ tf

uf1 =

 0, 0 ≤ t < tf

(3.5 + 3.5 sin 5t)(2− e5tf−5t), t ≥ tf

(2.16)

The evolution of residual profiles is shown in Figure 2.4. Following Theorem

2.1, since all the residuals breach their thresholds, the fault is successfully detected.

However, the fault can not be in any of considered fault scenarios in FDI filters design,

since all of the residual have breached their thresholds. Therefore according to the

Theorem 2.1, any of the other (indistinguishable) fault scenario must have occurred.

Remark 2.5. In essence, the linear FDI method is only able to detect, but not

isolate faults in the copolymerization process. This is primarily due to the estimation

and prediction errors associated with using a linear model in the observer, prediction

model and filter design. The observer can readily be replaced by other observers

(such as the Kalman filter, extended Kalman filter, or the moving horizon observer),

to possibly improve the estimation accuracy of the observer; however, the errors

associated with prediction using a linear model will still limit the effectiveness of

linear model based FDI designs.

Remark 2.6. Note that the presence of the FDI mechanism enables FDI in the

closed-loop system thereby allowing the operator to determine the appropriate course

of action following a fault. For instance, in the case of a single actuator fault, if the
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fault is simply a constant bias fault, then a robust/offset free controller would still

keep the process operating at the desired operating point. Knowing through the FDI

mechanism that a sensor fault has not taken place can help the operator schedule

the correction of such an actuator at a later stage. On the other hand, with the

FDI determining a single actuator fault, if the functioning sensors reveal that the

process is moving off-spec, or the control action starts chattering (perhaps because

the existing robust/offset free controller is not able to handle the particular kind of

actuator fault), the operator can then trigger reconfiguration (e.g., Mhaskar et al.

(2008)) and actuator repair on a more urgent basis. For sensor faults, on the other

hand, even if its a constant bias fault, there exists no control law that can drive the

process to the desired set-point for the variable in question. The FDI information then

becomes critical in taking that sensor out of the loop (where possible), or triggering

immediate rectification of the sensor to preserve on-spec production.

Remark 2.7. From fault handling perspective, sensor faults can be handled by using

estimation of states that are verified to be accurate, instead of using a faulty sensor

reading (as it is done in the simulation results corresponding to Figure 2.2 or see

e.g., Du and Mhaskar (2014)). The actuator faults on the other hand directly impact

the control action implemented on the plant, and if not handled, could result in the

states deviating from nominal operating point. In this case, once such a fault has been

detected, robust control methods, or control reconfiguration methods can be used to

achieve fault-tolerant control (see, e.g., Mhaskar et al. (2008)). To handle actuator

and sensor faults simultaneously, both sensor and actuator handling approaches would

have to be implemented simultaneously.

44



Ph.D. Thesis - Hadi Shahnazari McMaster - Chemical Engineering

2.7 Conclusions

This work considered the problem of isolating distinguishable actuator and sensor

faults in the solution copolymerization of MMA and VAc. To achieve fault detection

and isolation for the distinguishable faults in copolymerization reactor, an actuator

and sensor fault detection and isolation framework was designed. To this end, first

state estimates were generated using a bank of high-gain observers and then nonlinear

fault detection and isolation (FDI) residuals were defined. The ability of the proposed

framework in detecting and narrowing the possible locations for indistinguishable fault

scenarios to a subset of possible scenarios was proved and verified through simulations.

Illustrative linear FDI filters were also designed for the purpose of comparison. While

linear model based FDI only achieved fault detection, the application of the proposed

FDI mechanism was found to also successfully isolate distinguishable faults even in

the presence of plant-model mismatch and measurement noise.
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Figure 2.2: Evolution of the closed-loop measurements (solid lines), the state esti-
mates (dashed lines), and the true values of the process states (dashed-dotted lines).
A fault takes place in Ca sensor at time tr = 1.5 hr and is handled. Since the observer
does not use measurements of Ca, the state estimates stay close to their true values
even after the fault takes place.
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Figure 2.3: Evolution of the residuals (solid lines) and thresholds (dashed lines). Top:
Using linear FDI filters: Since all of the residuals breach their thresholds, the fault
is detected but is not isolated. Bottom: Using nonlinear FDI filters: Since all the
residuals breach their thresholds except for r13, which is insensitive to yf1 and uf6

(see Table 2.3), faults in y1 and u6 are isolated.
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Figure 2.4: Evolution of the residuals (solid lines) and thresholds (dashed lines). Top:
Using linear FDI filters, Bottom:Using nonlinear FDI filters. In both cases, since all
the residuals breach their thresholds, the fault is detected but is not isolated.
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Chapter 3

Actuator and sensor fault detection

and isolation for nonlinear systems

subject to uncertainty

The contributions of this chapter have been submitted to/published in:

Journal Papers:

Shahnazari, H. and Mhaskar, P. Actuator and sensor fault detection and isolation

for nonlinear systems subject to uncertainty, International Journal of Robust and

Nonlinear Control, Accepted, In press.

Refereed Conference Proceedings:

Shahnazari, H. and Mhaskar, P. (2016). Simultaneous actuator and sensor fault

isolation of nonlinear systems subject to uncertainty. In American Control Conference

(ACC), 2016, pages 6857–6862. IEEE.
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3.1 Introduction

Fault detection and isolation (FDI) are critical components of a fault tolerant

control system, and are becoming increasingly important given the ubiquitousness of

automation- from process industries to self-driven vehicles. The FDI problem explic-

itly accounting for system nonlinearity has been considered widely in the literature

during the past decade, with results often focusing only on actuator or sensor faults

(see, e.g., Kaboré et al. (2000), De Persis and Isidori (2001), Kabore and Wang (2001),

Mhaskar et al. (2008), Mattei et al. (2005), Ma and Yang (2012), Du et al. (2013),

Du and Mhaskar (2014), Peng et al. (2015) and Shahnazari et al. (2016)). In more

recent results Du et al. (2013) the problem of distinguishing between sensor and actu-

ator faults (albeit in the absence of uncertainty), is addressed. However, the success

of FDI mechanisms is contingent on their ability to handle system nonlinearity and

uncertainty in a unified framework.

There is a plethora of results in the literature for fault diagnosis of nonlinear

uncertain systems (see e.g., Du and Mhaskar (2013), Yan and Edwards (2007), Ma

and Yang (2013), Zhu and Yang (2013), Fekih (2014), Zhang et al. (2010b), Zhang

(2011)). However, the results mentioned in the above only consider single actuator

and sensor faults for specific classes of nonlinear uncertain systems. There also exist

results in the literature for simultaneous actuator and sensor fault identification for

nonlinear uncertain systems (see e.g., Yang and Zhu (2015) and Yang et al. (2015)),

however they only consider nonlinearities that can be bounded everywhere using the

same Lipschitz constant, and the results also only hold for bounded actuator faults. In

summary, there is a lack of results for nonlinear systems subject to uncertainty where

the problem of fault detection and isolation for simultaneous actuator and sensor
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faults is addressed for a general class of fault functionality and system nonlinearity.

Motivated by the above considerations, this chapter considers the problem of

actuator and sensor fault detection and isolation for control affine nonlinear systems

in the presence of uncertainty. This is achieved by building a bank of residuals,

each using an appropriate subset of the available measurements (and associated state

observers), to determine the expected behavior of the system and compare with the

observed evolution. The residuals are designed to be sensitive to a subset of faults and

insensitive to the rest in the absence of uncertainty. To achieve FDI in the presence

of uncertainty, thresholds are defined in a way that they account for the impact of

the uncertainty on the estimation error and the prediction of the expected system

behavior. In this way, each residual is still insensitive to a subset of faults in the

presence of uncertainty and sensitive to the rest if the fault functionality satisfies a

rigorously derived detectability condition.

The rest of this chapter is organized as follows: the system description is presented

in Section 3.2. In Section 3.3, the boundedness of estimation error in the presence

of uncertainty using high gain observers is rigorously established. In Section 3.4,

the FDI mechanism is presented. In particular, thresholds are defined in a way

they utilize the bound determined in Section 3.3 to ensure that there is no false

alarms and the residuals retain their property of being insensitive to a subset of

faults in the presence of uncertainty. Then the detectability and isolability conditions

for single and simultaneous faults are presented, where the detectability analysis

establishes that the sensitive property of residuals is also retained in the presence of

uncertainty. The efficacy of proposed FDI framework in the presence of uncertainty

and measurement noise is illustrated using a chemical reactor example in Section 3.5.
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Finally, Section 3.6 presents some concluding remarks.

3.2 Preliminaries

Consider a multi-input multi-output nonlinear system described by

ẋ = f(x) +G(x)(u+ uf ) + θ(x, u, t)

y = h(x) + yf

(3.1)

where x ∈ X ⊂ Rn denotes the vector of state variables, with X being a compact

set of the admissible state values, u = [u1, . . . , um]T ∈ Rm denotes the vector of

prescribed control inputs, taking values in a nonempty compact convex set U ⊆ Rm,

uf = [uf1 , . . . , ufm ]T ∈ Rm denotes the unknown fault vector for the actuators, θ

denotes the uncertainty with ‖θ(x, u, t)‖ ≤ θ̄, where θ̄ is a known positive constant,

y = [y1, . . . , yp]
T ∈ Rp denotes the vector of output variables, yf = [yf1 , . . . , yfp ]

T ∈ Rp

denotes the unknown fault vector for the sensors and G(x) = [g1(x), . . . , gm(x)]. The

inputs are implemented in a discrete fashion, with sampling time ∆. Due to the

presence of physical constraints, the actual input u + uf implemented to the system

takes values from the set U as well. ta and ts denote the time of fault occurrence

for actuator and sensor faults, respectively. Note that since the main objective of

this work is the diagnosis of simultaneous actuator and sensor faults, in the rest of

the manuscript, only one time of fault occurrence, tf , is used. However, the FDI

methodology presented in this work is applicable to the cases where actuator and

sensor faults do not take place simultaneously. Throughout the manuscript, Lfh(x)

denotes the standard Lie derivative of a scalar function h(x) with respect to a vector

52



Ph.D. Thesis - Hadi Shahnazari McMaster - Chemical Engineering

function f(x) defined as Lfh(x) = ∂f
∂x
· h(x), and ‖ · ‖ denotes the Euclidean norm for

the vectors.

Remark 3.1. Note that the above system consideration and uncertainty description

accounts for unstructured uncertainty which results from, for instance, fewer num-

ber of states, parameters varying with time, state, modeling errors and plant model

mismatch. Thus, the developed framework enables fault diagnosis for a generalized

class of uncertain systems. Note that while considering parametric (structured) un-

certainty addresses a limited class of uncertain systems, there is no guarantee that

the resulting bounds on the uncertainty will be tighter with respect to the systems

with unstructured uncertainty and this can be different on a case by case basis.

3.3 Boundedness of estimation error under high

gain observers in the presence of uncertainty

We next present certain assumptions that enable state estimation and would be

required for a stabilizing output feedback control design. The subsequent FDI design

invokes these same assumptions to establish the ability of the proposed approach the

achieve FDI. To this end, in this section we first utilize a high gain observer and es-

tablish boundedness of the estimation error in the presence of uncertainty. Consider

the system of Eq. 3.1 under fault free conditions, satisfying Assumptions 3.1-3.3.

Assumption 3.1 simply requires the dynamics system to be well behaved, and is sat-

isfied by almost all systems of practical interest. Assumption 3.2, on the other hand,

relies on an effective control system being in place for the system under consideration,
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again a property naturally satisfied by all systems of practical interest (it is mean-

ingful to design FDI mechanisms only for a system that is otherwise operating under

a well designed control system i.e., in the absence of faults, the controller can meet

the desired control objective including guaranteeing system stability).

Assumption 3.1. The functions f : Rn → Rn, gi : Rn → Rn, i = 1, . . . ,m, θ(x, u, t) :

Rn → Rn and h : Rn → Rp are C1 functions on their domains of definition i.e. their

derivatives exist and are continuous, and f(0) = 0.

Assumption 3.2. For the system of Eq. 3.1, there exists a positive definite C2

function V : Rn → R such that for any x ∈ Ωc := {x ∈ Rn : V (x) ≤ c}, where c is a

positive real number, the following inequality holds:

LfV (x) + LgV (x)u(x) + LθV (x) ≤ −α(V (x)) (3.2)

where LgV (x) = [Lg1V (x), . . . , LgmV (x)], u : Ωc → U is a state feedback control law

and α is a class K function.

Remark 3.2. It is recognized that there exists no general procedure for construction

of robust control Lyapunov functions (RCLFs) for nonlinear uncertain systems of the

form of Eq. 3.1. However, for several classes of nonlinear uncertain systems, such a

procedure exists (see e.g., Freeman and Kokotovic (2008) for further details). Also, if

CLFs are used within an appropriately designed robust control law Mahmood et al.

(2008a) can be verified to be RCLFs. Beside these results, it is more important to

note that Assumption 3.2 simply states that a control design is in place to handle

the uncertainly in the system, and does not require the knowledge of the specific

Lyapunov function for the FDI design.
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Assumption 3.3 below invokes the property that the system must be observable

to enable output feedback stabilization.

Assumption 3.3. There exist integers ωi, i = 1, . . ., p, with
∑p

i=1 ωi = n, and a

coordinate transformation ζ = T (x, u, t) = T ′(x, u) + Tθ(x, u, t) such that if u = ū,

where ū ∈ U is a constant vector, then the representation of the system of Eq. 3.1 in

the ζ coordinate takes the following form:

ζ̇ = Aζ +Bφ(ζ, ū) + η(ζ, ū, t)

y = Cζ

(3.3)

where ζ = [ζ1, . . . , ζp]
T ∈ Rn, A = blockdiag[A1, . . ., Ap], B = blockdiag[B1, . . .,

Bp], C = blockdiag[C1, . . ., Cp], T
′ = φ = [φ1, . . . , φp]

T, Tθ = η = [η1, . . . , ηp]
T,

ζi = [ζi,1, . . . , ζi,ωi ]
T, Ai =

0 Iωi−1

0 0

, with Iωi−1 being a (ωi − 1)× (ωi − 1) identity

matrix, Bi = [0T
ωi−1, 1]T, with 0ωi−1 being a vector of zeros of dimension ωi − 1,

Ci = [1, 0T
ωi−1], φi(ζ, ū) = φi,ωi(ζ, ū), with φi,ωi(ζ, ū) defined through the successive

differentiation of hi(x): φi,1(ζ, ū) = hi(x) and φi,j(ζ, ū) =
∂φi,j−1

∂x
[f(x) + g(x)ū] and

ηi(ζ, ū, t) = ηi,ωi(ζ, ū, t), with ηi,ωi(ζ, ū, t) defined: ηi,1(ζ, ū, t) = 0 and ηi,j(ζ, ū, t) =

∂φi,j−1

∂x
[θ(x, u, t)] . Furthermore, T ′ : X ×U → Rn, Tθ : X ×U → Rn, T ′−1 : X ×U →

Rn, and T−1
θ : X ×U → Rn are C1 functions on their domains of definition, η denotes

the uncertainty in the new coordinate system and ‖η(ζ, u, t)‖ ≤ η̄, where η̄ is a known

positive constant.

We next describe the utilized high-gain observer formulation subject to sample-

and-hold control. In particular, in the closed-loop system, the input is prescribed

at discrete times tk = k∆, k = 0, . . . ,∞, with ∆ being the hold-time of the control
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action. The observer dynamics for t ∈ [tk, tk+1), are designed as follows (Du and

Mhaskar (2014)):

˙̂
ζ(t) = Aζ̂(t) +Bφ0(ζ̂(t), u(tk)) +H(y(t)− Cζ̂(t))

ζ̂(tk) = T ′(x̂(tk), u(tk))

(3.4)

where x̂ and ζ̂ denote the estimates of x and ζ, respectively, H = blockdiag[H1, . . .,

Hp] is the observer gain, Hi =
[ai,1
ε
, . . . ,

ai,ωi
εωi

]T
, with sωi + ai,1s

ωi−1 + · · · + ai,ωi = 0

being a Hurwitz polynomial where where i = 1, . . . , p and ε being a positive constant

to be specified, x̂(tk) = T ′−1(ζ̂(t−k ), u(tk−1))) for k = 1, . . . ,∞, and φ0 is the nominal

model of φ. The initial state of the observer is denoted by ζ̂ := ζ̂(0). ζ̂ is re-initialized

at the discrete times to account for the possible discrete changes in the input and

ensuring that the resulting state estimates remain continuous.

Remark 3.3. In contrast to previous assumptions, the present assumption is specific

to systems under control and hold implementation. This turns the control action into

a fixed parameter. Thus the Assumption 3.3 provides a modified version of input-

output normal form in the presence of uncertainty, and does not require the dynamics

to be affine in the unmeasured states. This, along with existing techniques to handle

measurement noise (see e.g., Du and Mhaskar (2014) and Ahrens and Khalil (2009))

significantly enhances the applicability of the designed observer, and in turn, the FDI

mechanism. Benefiting from these relaxed assumptions on the dynamic system of

Eq. 3.1 the proposed FDI design allow inclusion of a more general class of nonlinear

systems compared to the previous designs (see e.g., Yan and Edwards (2007) and

Zhang et al. (2010b) ). In particular, no specific form for f(x) and g(x) (as in Zhang

et al. (2010b)), nor any additional assumptions on θ(x, u, t) (as in Yan and Edwards
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(2007)) are imposed.

Another requirement is the global boundedness of φ0 formalized in Assumption

3.4 below (with a choice of zero readily satisfying the assumption).

Assumption 3.4. Findeisen et al. (2003) φ0(ζ, u) is a C0 function on its domain of

definition and globally bounded in ζ.

Preparatory to the presentation of results on the convergence of the observer, we

first state an important property of the scaled estimation error. To this end, let

D = blockdiag[D1, . . ., Dp], where Di = diag[εωi−1, . . ., 1], and define the scaled

estimation error e = D−1(ζ − ζ̂) ∈ Rn. For t ∈ [tk, tk+1), the scaled estimation error

evolves as follows:

εė = A0e+ εB[φ(ζ, u(tk))− φ0(ζ̂ , u(tk))] + εη(ζ, u(tk), t)

e(tk) = D−1[T (x(tk), u(tk), t)− T ′(x̂(tk), u(tk), t)]

(3.5)

where A0 = blockdiag[A0,1, . . . , A0,p], A0,i = [ai, bi], ai = [−ai,1, . . . ,−ai,ωi ]T, and

bi = [Iωi−1, 0ωi−1]T.

Applying the change of time variable τ = t
ε

and setting ε = 0, the boundary-layer

system is given by

de

dτ
= A0e (3.6)

Note that Eq. 3.6 corresponds to the boundary layer system, not the actual system.

Thus ε = 0 simply defines the boundary layer system. However, for the observer that

is utilized to estimate the system states, ε must be positive to have a finite gain and

a feasible estimation scheme.

For the boundary-layer system, we define a Lyapunov function W (e) = eTP0e,
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where P0 is the symmetric positive definite solution of the Lyapunov function AT
0 P0 +

P0A0 = −I. Let λmin and λmax denote the minimum and maximum eigenvalues of

P0, respectively. Proposition 3.1 below is similar to Proposition 1 in Du and Mhaskar

(2014) and result obtained in Atassi and Khalil (1999) and hence stated without

proof.

Proposition 3.1. Consider the system of Eq. 3.1, for which Assumptions 3.1, 3.3 and

3.4 hold. If x0 := x(0) ∈ Ωb, where 0 < b < c, then given b′ ∈ (b, c), there exists a finite

time te, independent of ε, such that x(t) ∈ Ωb′ for all t ∈ [0, te]. Furthermore, there

exists σ > 0, independent of ε, such that for any e(t) ∈ Wo := {e ∈ Rn : W (e) ≥ σε2}

and x(t) ∈ Ωc, Ẇ ≤ − 1
2ε
‖e‖2.

Theorem 3.1 formalizes the convergence property of observer design and stability

of closed loop system in the presence of uncertainty.

Theorem 3.1. Consider the system of Eq. 3.1, for which Assumptions 3.1-3.4 hold,

under a stabilizing control law u. Given any 0 < b < c, d > 0, d′ > 0 and θ̄, there

exist ∆∗(θ̄) > 0 and ε∗(θ̄) > 0 such that if ∆ ∈ (0,∆∗(θ̄)], ε ∈ (0, ε∗(θ̄)], and x0 ∈ Ωb,

then 1) there exists an integer k′ > 0 such that ‖x̂(tk) − x(tk)‖ ≤ d′ ∀ tk ≥ tk′, and

2) x(t) ∈ Ωc ∀ t ≥ 0 and lim supt→∞ ‖x(t)‖ ≤ d.

Proof. The proof is divided into two parts. In the first part, we establish that the

scaled estimation error converges to a bounded region in a finite time. To this end,

we show that given eb(θ̄) > 0, which is to be determined in the second part, there

exists ε∗ > 0 such that if ε ∈ (0, ε∗(θ̄)] and ∆ ∈ (0, te], then the scaled estimation

error e(t−k ) enters E := {e ∈ Rn : ‖e‖ ≤ eb(θ̄)} no later than the time te defined

in Proposition 3.1, and stays in E thereafter as long as x(t) remains in Ωc. In the
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Ωδ
Ωc

Ωb' Ωb''

Ωb

x0

Figure 3.1: Schematic of the stability region, the evolution of the closed-loop state
trajectories under fault-free (solid line) and faulty (dashed line) conditions, and the
state estimate converging to its true value (dash-dotted line). The notation Ωc denotes
the stability region obtained under state feedback control (Du and Mhaskar (2014)).

second part of the proof, we show that boundedness of the scaled estimation error, e,

guaranties boundedness of the estimation error, x̂− x. To this end, we establish that

for any d > 0 and d′ > 0, there exists e∗b > 0 and ∆∗(θ̄) > 0 such that if e(t−k′) ∈ E ,

eb ∈ (0,min{e∗b(θ̄), d
′−θ̄∆
L2
}] where L2 is a positive constant to be determined in the

proof, and ∆ ∈ (0,∆∗(θ̄)], then ‖x̂(tk) − x(tk)‖ ≤ d′ ∀ tk ≥ tk′ , x(t) ∈ Ωc ∀ t ≥ tk′ ,

and lim supt→∞ ‖x(t)‖ ≤ d (see the solid line in Figure 3.1)..

Consider ∆ ∈ (0,∆1(θ̄)] and ε ∈ (0, ε1(θ̄)], where ∆1(θ̄) = te and ε1(θ̄) =
√

γ
σ
,

with 0 < γ < min‖e‖=ebW (e). In order to show that e(t−k ) converges to E , we only

need to show that it converges to Wi := {e ∈ Rn : W (e) ≤ σε2}.

Part 1: We first show that e(t−k ) reaches Wi no later than the time te. Let N

be the largest integer such that N∆ ≤ te. It follows from Proposition 3.1 that if

tk+1 ≤ te, k = 0, . . . , N − 1, then for any e ∈ Wo and t ∈ [tk, tk+1), we have

Ẇ ≤ − 1

2λmaxε
W (3.7)
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It follows that

W (e(t−k+1)) ≤ e−
∆

2λmaxεW (e(tk)) (3.8)

Let ωmax = maxi=1,...,p{ωi}. Since T (x, u), T ′(x, u), T−1(ζ, u) and T ′−1(ζ, u) are

locally Lipschitz in x and ζ, respectively, and

e(tk) = D−1[ζ(tk)− ζ̂(tk)] = D−1[T (x(tk), u(tk))− T ′(x̂(tk), u(tk))]

= D−1[T ′(x(tk), u(tk)) + Tθ(x(tk), u(tk))− T ′(x̂(tk), u(tk))]

(3.9)

There exists L1, L2 > 0 such that the following equation holds:

‖e(tk)‖ ≤ L1L2 max{1, ε1−ωmax} ×max{1, εωmax−1}‖e(t−k )‖+ L1 max{1, ε1−ωmax}T̄θ

+ L1 max{1, ε1−ωmax}θ̄∆ = L1L2β1(ε)‖e(t−k )‖+ L1β1(ε)T̄θ + L1β1(ε)θ̄∆

(3.10)

where x(tk) = T ′−1(ζ(tk−1), u(tk−1)) + T−1
dev(ζ(tk−1), T−1

dev(ζ(tk−1), u(tk−1)) =∫ tk
tk−1

θ(x, u, t)dτ denotes the effect of the uncertainty on x, ‖Tθ(x(tk), u(tk))‖ ≤ T̄θ,

and β1(ε) = ε(ωmax−1)sgn(ε−1). Let L̃1 = L1L2. It follows from Eqs. 3.8 and 3.10 that

if e(t) ∈ Wo for all t ∈ [tk, tk+1), then the following equation holds:

W (e(tk+1)) ≤ λmax

λmin

L̃2
1[β1(ε)]2e−

∆
2λmaxεW (e(tk)) + λmaxL

2
1[β1(ε)]2T̄ 2

θ

+ λmaxL
2
1[β1(ε)][θ̄∆]2 + 2λmaxL̃

2
1L1β

2
1(ε)‖e(t−k )‖T̄θ

+ 2λmaxL
3
1β

2
1(ε)‖e(t−k )‖ θ̄∆ + 2λmaxL

2
1β

2
1(ε)T̄θθ̄∆

(3.11)

It follows form Eq. 3.7 that once e(t) reaches Wi, it stays there at least until the end

of the same time interval. Since T (x, u) is continuous, for any x0 ∈ Ωb and x̂0 ∈ Q,
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there exists K1 > 0 such that

‖e(0)‖ ≤ K1β2(ε) (3.12)

where β2(ε) = max{1, ε1−ωmax} and as a result, using Eq. 3.10, we get

‖e(tk)‖ ≤ (L̃1β1(ε))N(K1β2(ε))N + (L̃1β1(ε))N−1(L1β1(ε)T̄θ + L1β1(ε)θ̄∆)

+ (L̃1β1(ε))N−2(L1β1(ε)T̄θ + L1β1(ε)θ̄∆) + . . .

+ (L1β1(ε)T̄θ + L1β1(ε)θ̄∆)

(3.13)

To guarantee that e(t−k ) reaches Wi by the time tN , it is required that the following

equation hold:

λmax

λmin

L̃2
1[β1(ε)]2e−

∆
2λmaxεW (e(tk)) + λmaxL

2
1[β1(ε)]2T̄ 2

θ + λmaxL
2
1[β1(ε)]2[θ̄∆]2

+ 2λmaxL̃
2
1L1β

2
1(ε)‖e(t−k )‖T̄θ + 2λmaxL

3
1β

2
1(ε)‖e(t−k )‖ θ̄∆

+ 2λmaxL
2
1β

2
1(ε)T̄θθ̄∆ ≤ σε2

(3.14)

By using Eq. 3.13, the following inequality holds for the left hand side of Eq.

3.14:

λmax

λmin

L̃2
1[β1(ε)]2e−

∆
2λmaxεW (e(tk)) + λmaxL

2
1[β1(ε)]2T̄ 2

θ + λmaxL
2
1[β1(ε)]2[θ̄∆]2

+ 2λmaxL̃
2
1L1β

2
1(ε)‖e(t−k )‖T̄θ + 2λmaxL

3
1β

2
1(ε)‖e(t−k )‖ θ̄∆

+ 2λmaxL
2
1β

2
1(ε)T̄θθ̄∆ ≤ [

λmax

λmin

L̃2
1[β1(ε)]2e−

∆
2λmaxε ]NλmaxK

2
1 [β2(ε)]2

+ Γ([β1(ε)]N [β2(ε)]N , [β1(ε)]sT̄ qθ , [β1(ε)]n[θ̄∆]z)z)

(3.15)

where Γ is continuous in ε and s ≥ q and n ≥ z. Therefore if the following inequality
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holds, then Eq. 3.14 holds too:

1

ε2

λmax

λmin

L̃2
1[β1(ε)]2e−

∆
2λmaxε ]NλmaxK

2
1 [β2(ε)]2

+
1

ε2
Γ([β1(ε)]N [β2(ε)]N , [β1(ε)]sT̄ qθ , [β1(ε)]n[θ̄∆]z) ≤ σ

(3.16)

Since the left-hand side of the above inequality is continuous in ε and tends to zero

as ε tends to 0, there exists ε2(θ̄) > 0 such that if ε ∈ (0, ε2(θ̄)], then Eq. 3.14 holds.

We then show that after the scaled estimate error e(t−k ) reaches Wi, it stays there

as long as x(t) stays in Ωc. Note that given e(t−k ) ∈ Wi, it is possible that e(tk)

goes outside Wi due to the re-initialization to the system state and its estimate in

the ζ coordinate. It follows from Eq. 3.10 that if e(t−k ) ∈ Wi, then ‖e(tk)‖ ≤

L̃1β1(ε)eb + L1β1(ε)T̄θ + L1β1(ε)θ̄∆.

To guarantee that e(t−k+1) stays in Wi, it is required that the following equation

hold:

e−
∆

2λmaxελmaxL̃
2
1[β1(ε)]2e2

b + L1β1(ε)T̄θ + L1β1(ε)θ̄∆ ≤ σε2 (3.17)

It can be shown that there exists ε3(θ̄) > 0 such that if ε ∈ (0, ε3(θ̄)], then Eq. 3.17

holds.

Part 2: We first show that if the system state resides within a subset of Ωc and

the scaled estimation error is sufficiently small, then the state estimate also resides

within Ωc. It follows from the first part of the proof that we have

‖x− x̂‖ = ‖T−1(ζ, u)− T ′−1(ζ̂ , u)‖ = ‖T ′−1(ζ, u) + T−1
dev(ζ, u)− T ′−1(ζ̂ , u)‖

≤ L2β3(ε)‖e‖+ θ̄∆ ≤ L2β3(ε1)‖e‖+ θ̄∆

(3.18)

where β3(ε) = max{1, εωmax−1}. It can be shown that given 0 < δ1 < δ2, there exists
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ẽ > 0 such that if eb ∈ (0, ẽ], then V (x) ≤ δ1 implies V (x̂) ≤ δ2. It follows from

Proposition 3.1 that given b′ ∈ (b, c), we have that x(tk′) ∈ Ωb′ . Therefore, there

exists eb,1 > 0 such that if eb ∈ (0, eb,1(θ̄)], then x̂(tk′) ∈ Ωc.

We then show the existence of e∗b(θ̄) > 0 and ∆∗(θ̄) > 0 such that if eb ∈ (0, e∗b(θ̄)]

and ∆ ∈ (0,∆∗(θ̄)], then any state trajectory originating in Ωb′ at time tk′ converges

to a closed ball of radius d around the origin. Since V (x) is a continuous function

of the state, one can find a positive real number δ < b′ such that V (x) ≤ δ implies

‖x‖ ≤ d. Let δ̂ be a positive real number such that 0 < δ̂ < δ. If eb ∈ (0, eb,1(θ̄)], the

state estimate at time tk′ can either be such that δ̂ < V (x̂(tk′)) ≤ c or V (x̂(tk′)) ≤ δ̂.

Case 1: Consider x̂(tk) ∈ Ωc\Ωδ̂. Let V̇ (x, u) = LfV (x) + LgV (x)u + LθV (x).

For this case, we have V̇ (x̂(tk), u(tk)) ≤ −α(V (x̂(tk))) < −α(δ̂). It follows from the

continuity properties of f(·), g(·), θ(·) and V (·) that LfV (·), LgV (·) and LθV (·) are

locally Lipschitz on the domain of interest. Therefore, there exists L3 > 0 such that

|V̇ (x(tk), u(tk))− V̇ (x̂(tk), u(tk))| ≤ L3‖x(tk)− x̂(tk)‖ ≤ L2L3β3(ε1)‖e(t−k )‖

+ L3θ̄∆

(3.19)

Since the functions f(·), g(·) and θ(·) are continuous, u is bounded, and Ωb′ is bounded,

one can find K2 > 0 such that ‖x(t)− x(tk)‖ ≤ K2∆ for any ∆ ∈ (0,∆1], x(tk) ∈ Ωb′

and t ∈ [tk, tk + ∆). It follows that ∀ t ∈ [tk, tk + ∆), the following equation holds:

V̇ (x(t)) < −α(δ̂) + L3K2∆ + L2L3β3(ε1(θ̄))‖e(t−k )‖+ L3θ̄∆ (3.20)

Consider ∆ ∈ (0,∆2(θ̄)], where ∆2 = α(δ̂)
3L3K2

, and eb ∈ (0, eb,2(θ̄)], where eb,2(θ̄) =
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α(δ̂)−L3θ̄∆

3L2L3β3(ε1(θ̄))
. Then, we have

V̇ (x(t)) < −1

3
α(δ̂) < 0 (3.21)

Since V̇ (x(t)) remains negative over [tk, tk + ∆), x(t) remains in Ωc over the same

time interval, and V (x(tk + ∆)) < V (x(tk)).

If x̂(tk′) ∈ Ωc\Ωδ̂, we have V̇ (x(t)) < 0 over [tk′ , tk′+∆). It follows that x̂(tk′+1) ∈

Ωc for eb ∈ (0, eb,1(θ̄)]. Similarly, it can be shown that for tk > tk′ , V̇ (x(t)) remains

negative until x̂(tk) reaches Ωδ̂.

Case 2: Consider x̂(tk) ∈ Ωδ̂. For this case, it is established in the proof of the

second part of Theorem 1 in Du and Mhaskar (2014), that there exist eb,3(θ̄) > 0 and

∆3(θ̄) > 0 such that if eb ∈ (0, eb,3(θ̄)] and ∆ ∈ (0,∆3(θ̄)], we have x(tk+1) ∈ Ωδ and

as a result x̂(tk+1) ∈ Ωc for eb ∈ (0, eb,1(θ̄)]).

For eb ∈ (0, e∗b(θ̄)] and ∆ ∈ (0,∆∗(θ̄)], where e∗b = min{eb,1(θ̄), eb,2(θ̄), eb,3(θ̄)}

and ∆∗(θ̄) = min{∆1(θ̄),∆2(θ̄),∆3(θ̄)}, it can be shown by iteration that any state

trajectory originating in Ωb′ at time tk′ converges to the set Ωδ, and hence converges

to the closed ball of radius d around the origin. Furthermore, if eb ≤ d′−θ̄∆
L2

, it follows

from Eq. 3.18 that ‖x̂(tk)− x(tk)‖ ≤ d′ ∀ tk ≥ tk′ .

In summary, it is established that given any 0 < b < c, d > 0 and d′ > 0,

there exist ∆∗(θ̄) > 0 and ε∗(θ̄) > 0 such that if ∆ ∈ (0,∆∗(θ̄)], ε ∈ (0, ε∗(θ̄)], and

x0 ∈ Ωb, then 1) ‖x̂(tk) − x(tk)‖ ≤ d′ ∀ tk ≥ tk′ , and 2) x(t) ∈ Ωc ∀ t ≥ 0 and

lim supt→∞ ‖x(t)‖ ≤ d. This concludes the proof of Theorem 3.1.
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3.4 Fault detection and isolation mechanism

This section presents the proposed fault detection and isolation mechanism that

utilizes the error convergence properties of the observers established in the previous

section. We restrict our attention to scenarios where at most two, actuators and/or

sensors, experiences a fault. By a direct application of the principles of combinatorics,

this leads to nf = m+ m(m−1)
2

+p+ p(p−1)
2

+mp unique scenarios. Residuals (with the

associated high gain observers) are next designed for each fault scenario in the same

fashion as Du et al. (2013).

Before proceeding to present the FDI mechanism, we need to employ the following

assumption:

Assumption 3.5. The systems state vector x remains bounded before and after fault

occurrence i.e., there exist a positive constant dg such that ‖x‖ ≤ dg, ∀t > 0.

Remark 3.4. Note that Assumption 3.5 states that the proposed FDI methodology

remains applicable under any stabilizing output feedback controller implemented in a

discrete fashion as long as the system state evolves within the compact set X before

and after fault occurrence.

Specifically, the residual for a fault scenario is defined as the norm of the difference

between the state prediction and the state estimate for the subsystem model that does

not require the value of the corresponding actuator/sensor in the calculations (see Du

et al. (2013) for more details). A residual dedicated to a particular fault scenario is

designed so it is only insensitive to that particular fault scenario but sensitive to the

other fault scenarios (we thus design so-called generalized residuals). To this end,

let Θf,i denote the fault vector (sensor/and or actuator) for the ith fault scenario,
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and Θ̄f,i the remaining fault variable vector (the remaining uf and yf variables).

Specifically, let uf,i and yf,i denote the vectors of input and output variables subject

to faults Θf,i, respectively. Let ūf,i and ȳf,i denote the vectors of the rest of the input

and output variables, respectively. We next state an assumption that is required

for the ability to detect and isolate sensor and actuator faults. In particular, the

assumption requires that it be possible to ‘observe’ a particular variable (sensor or

actuator) in more ways than one, to in turn be able to detect and isolate faults. This

assumption is therefore necessary to achieve FDI.

Assumption 3.6. Du et al. (2013) Assumptions 3.3 and 3.4 hold for the system of

Eq. 3.1, with ūf,i and ȳf,i being the vectors of input and output variables, respectively,

i = 1, . . . , nf where nf is the number of possible fault scenarios.

Under Assumption 3.6 and by choosing φ0 = 0, the state observer for the ith fault

scenario is designed as follow :

˙̂
ζj = Aj ζ̂j +Hj(ȳf,i − Cj ζ̂j)

˙̂
ζj(tk) = T ′j(x̂j(tk), ūf,i(tk))

(3.22)

where j represents the jth observer with j = 1, . . . , p+ p(p−1)
2

. To define residuals, we

need to compute expected trajectories. To this end, we consider a subsystem of Eq.

3.1 for which the state variables are all of those such that no inputs in ufi appear on

the right-hand side of the corresponding ODE’s. Let xsub denote the vector of state

variables for the subsystem, and x̄sub, the vector of the rest of the state variables.
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Without loss of generality, the model of the subsystem can be described as follows:

ẋsub,i = fsub,i([x
T
sub,i, x̄

T
sub,i]

T) +Gsub,i([x
T
sub,i, x̄

T
sub,i]

T)ūf,i

+ θsub,i([x
T
sub,i, x̄

T
sub,i]

T, ūf,i, t)

(3.23)

where fsub,i(·), Gsub,i(·) and θsub,i(·) are appropriately defined. For each faulty sce-

nario, the expected system trajectory is computed using the known part of the system

model and the state estimates generated by the jth observer that does not require

values of the variables included in the fault vector Θf,i. Specifically, for t ∈ [tk−T , tk),

a prediction model is designed as follows:

˙̃xsub,i,j = fsub,i([x̃
T
sub,i,j, ˆ̄xT

sub,i,j]
T) +Gsub,i([x̃

T
sub,i,j, ˆ̄xT

sub,i,j]
T)ūf,i (3.24)

where x̃sub,i,j is the state of the prediction model, ˆ̄xsub,i,j is the estimate of x̄sub,i

provided by the jth observer, and T is the prediction horizon: T = 1 if 0 < tk ≤ tk′ ;

T = k − k′ if tk′ < tk ≤ tk′+Tp ; and T = Tp if tk > tk′+Tp , with a positive integer Tp

being the prediction horizon after the initialization period. The initial condition for

the prediction model is the state estimate at time tk−T : x̃sub,i,j(tk−T ) = x̂sub,i,j(tk−T ).

Let x̃sub,i,j(tk) denote the prediction for the state vector xsub,i at time tk. By solving

Eq. 3.24, the state prediction at time tk is obtained. The residual for a particular

actuator are defined as the norm of the difference between the state prediction and the

state estimate for the subsystem that is not subject to that particular actuator. For

the ith faulty scenario, the residual (at the time instance tk+1) is defined as follows:

ri,k+1 = ‖x̃sub,i,j(tk+1)− x̂sub,i,j(tk+1)‖ (3.25)
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Remark 3.5. Note that for defining the corresponding residuals insensitive to actua-

tor faults, the prediction model utilizes the state measurements, if they are available.

If not, they must be replaced by state estimates computed by the observer that does

not require knowledge of the prescribed input. For defining the corresponding resid-

uals insensitive to simultaneous actuator and a particular sensor faults, the specific

sensor measurements can no longer be used in the prediction model and they are

replaced by state estimates generated by an observer that does not use the prescribed

input nor the specific sensor measurement. This is the key feature that enables us to

distinguish between actuator faults and simultaneous actuator and sensor faults.

Now we specify how the thresholds for the residuals need to be selected to enable

FDI. Before proceeding to define thresholds corresponding to each residual, we need

the following result, that determines the bounds on the residuals in the presence of

uncertainty:

Lemma 3.1. Consider the system of Eq. 3.1, for which Assumptions 3.1-3.6 hold

and residuals for each sample time are defined as in Eq. 3.25. Then under fault free

condition, for tk ≥ tk′ (see Theorem 3.1 for definition of k′):

ri,k+1 ≤ L2,sub,i,jβ
i
3(εj)Es,sub,i,j + θ̄sub,i∆ + Ei

p
(3.26)

where Es,sub,i,j = e−αsub,i,j∆e∗,ib +Ki
B,sub,i,jK

i
φ,,sub,i,j

1−e−αsub,i,j∆

αsub,i,j
+ 1−e−αsub,i,j∆

αsub,i,j
η̄sub,i,j, sub

and j refer to the corresponding subsystem and observer used for defining ri, respec-

tively, where i refers to ith residual, e∗,ib is the upper bound on ‖eisub,i,j(tk)‖, KBi is

spectrum bound of the matrix ‖Bi‖, αi is the spectrum bound of the matrix
Ai0
ε

and

Ei
p = M i∆+Kẽ, ‖(f̃sub,i−fsub,i([xT

sub,i, x̄
T
sub,i]

T))+(G̃sub,i−Gsub,i([x
T
sub,i, x̄

T
sub,i]

T))ūf,i‖+
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θ̄sub,i ≤M i,

where f̃sub,i = fsub,i([x̃
T
sub,i,j, ˆ̄xT

sub,i,j]
T), G̃sub,i = Gsub,i([x̃

T
sub,i,j, ˆ̄xT

sub,i,j]
T), Kẽ is the up-

per bound on ‖ẽi,k(tk)‖ which is constant, where ẽi,k = x̃sub,i,j − xsub,i and x̃sub,i,j is

state of prediction model defined in Du et al. (2013).

Proof. By using triangular inequality, Eq. 3.25 turns to the following form:

ri,k+1 = ‖x̃sub,i,j(tk+1)− x̂sub,i,j(tk+1)‖

≤ ‖x̃sub,i,j(tk+1)− xsub,i(tk+1)‖+ ‖xsub,i(tk+1)− x̂sub,i,j(tk+1)‖

≤ sup ‖x̃sub,i,j(tk+1)− xsub,i(tk+1)‖+ sup ‖xsub,i(tk+1)− x̂sub,i,j(tk+1)‖

(3.27)

Consider the prediction model corresponding to fault Θfi :

˙̃xsub,i,j = fsub,i([x̃
T
sub,i,j, ˆ̄xT

sub,i,j]
T) +Gsub,i([x̃

T
sub,i,j, ˆ̄xT

sub,i,j]
T)ūf,i (3.28)

where x̃sub,i,j is the state of the prediction model, ˆ̄xsub,i,j is the estimate of x̄sub,i

provided by the corresponding observer.

Defining ẽi,k = x̃sub,i,j − xsub,i, we obtain:

˙̃ei,k = fsub,i([x̃
T
sub,i,j, ˆ̄xT

sub,i,j]
T)− fsub,i([xT

sub,i, x̄
T
sub,i]

T)+

(Gsub,i([x̃
T
sub,i,j, ˆ̄xT

sub,i,j]
T)−Gsub,i([x

T
sub,i, x̄

T
sub,i]

T))ūf,i

− θsub,i([xT
sub,i, x̄

T
sub,i]

T, ūf,i, t)

(3.29)

For sake of brevity, we define f̃sub,i = fsub,i([x̃
T
sub,i,j, ˆ̄xT

sub,i,j]
T), G̃sub,i =
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Gsub,i([x̃
T
sub,i,j, ˆ̄xT

sub,i,j]
T). By integration, we get:

ẽi,k(tk+1) =

∫ tk+1

tk

(f̃sub,i − fsub,i([xT
sub,i, x̄

T
sub,i]

T))dτ

+

∫ tk+1

tk

(G̃sub,i −Gsub,i([x
T
sub,i, x̄

T
sub,i]

T))ūf,i − θsub,i)dτ + ẽi,k(tk)

(3.30)

Under assumptions 3.3 and 3.4 and by applying the triangular inequality, we obtain:

‖ẽi,k(tk+1)‖ ≤
∫ tk+1

tk

‖(f̃sub,i − fsub,i([xT
sub,i, x̄

T
sub,i]

T))‖dτ

+

∫ tk+1

tk

(‖(G̃sub,i −Gsub,i([x
T
sub,i, x̄

T
sub,i]

T))ūf,i‖+ ‖θsub,i‖)dτ + ‖ẽi,k(tk)‖

≤M i∆ +Kẽ

(3.31)

where ‖(f̃sub,i−fsub,i([xT
sub,i, x̄

T
sub,i]

T))‖+‖(G̃sub,i−Gsub,i([x
T
sub,i, x̄

T
sub,i]

T))ūf,i‖+ θ̄sub,i ≤

M i and ‖ẽi,k(tk)‖ ≤ Kẽ.

Now we need to determine the supremum for ‖xsub,i(tk+1) − x̂sub,i,j(tk+1)‖. For

t ∈ [tk, tk+1), the scaled estimation error corresponding to ith residual evolves as

follows:

ėi =
1

εi
Ai0e

i +Bi(φi(ūfi)− φi0(ūfi)) + ηi (3.32)

The solution to the above equation gives

ei(tk+1) =

∫ tk+1

tk

e
Ai0
ε

(tk+1−τ)[Bi(φi(ζ, ūfi , t)− φi0(ζ̂ , ūfi , t)) + ηi(ζ, u, t)]dτ

+ e−
Ai0
ε

(tk−tk+1)ei(tk)

(3.33)
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Under Assumptions 3.3 and 3.4 and by applying the triangular inequality, we obtain:

‖ei(tk+1)‖ ≤ ‖
∫ tk+1

tk

e
Ai0
ε

(tk+1−τ)[Bi(φi(ζ, ūfi , t)− φi0(ζ̂ , ūfi , t)) + ηi(ζ, u, t)]dτ‖

+ ‖e−
Ai0
ε

(tk−tk+1)ei(tk)‖

≤ ‖
∫ tk+1

tk

e
Ai0
ε

(tk+1−τ)[Bi(φi(ζ, ūfi , t)− φi0(ζ̂ , ūfi , t))]dτ‖

+ ‖
∫ tk+1

tk

e
Ai0
ε

(tk+1−τ)ηi(ζ, u, t)]dτ‖+ ‖e−
Ai0
ε

(tk−tk+1)ei(tk)‖

≤
∫ tk+1

tk

e
Ai0
ε

(tk+1−τ)‖Bi‖‖(φi(ζ, ūfi , t)− φi0(ζ̂ , ūfi , t))‖dτ

+

∫ tk+1

tk

e
Ai0
ε

(tk+1−τ)‖ηi(ζ, u, t)‖dτ + e−
Ai0
ε

(tk−tk+1)‖ei(tk)‖

≤ e−α∆e∗,ib +KBiKφi

1− e−αi∆

αi
+

1− e−αi∆

αi
η̄i

(3.34)

where αi, KBi , Kφ are the spectrum bound of the matrices
Ai0
ε

, Bi, (φi(ζ, ūfi , t) −

φi0(ζ̂ , ūfi , t)) respectively, and e∗,ib is the upper bound on ‖ei(tk)‖ . From 3.18, we

have

‖x− x̂‖ = ‖T−1
j (ζ, u)− T ′−1

j (ζ̂ , u)‖ ≤ L2,jβ3(εj)Es,i + θ̄i∆ (3.35)

where β3(εj) = max{1, εωmax−1
j }, L2,j > 0, Es = e−α∆e∗,ib +KBiKφi

1−e−αi∆
αi

+ 1−e−αi∆
αi

η̄i

and as a result,

‖xsub,i − x̂sub,i,j‖ ≤ L2,sub,i,jβ3(εj)Es,sub,i,j + θ̄sub,i∆ (3.36)

where Es,sub,i,j = e−αsub,i,j∆‖eisub,i,j(tk)‖+KB,sub,i,jKφ,,sub,i,j
1−e−αsub,i,j∆

αsub,i,j
+1−e−αsub,i,j∆

αsub,i,j
η̄sub,i,j.
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Using Eq. 3.31 and 3.35, ri,k+1 is bounded as below:

ri,k+1 = ‖x̃sub,i,j(tk+1)− x̂sub,i,j(tk+1)‖

≤ ‖x̃sub,i,j(tk+1)− xsub,i(tk+1)‖+ ‖xsub,i(tk+1)− x̂sub,i,j(tk+1)‖

≤ sup ‖x̃sub,i,j(tk+1)− xsub,i(tk+1)‖+ sup ‖xsub,i(tk+1)− x̂sub,i,j(tk+1)‖

= L2,sub,i,jβ
i
3(εj)Es,sub,i,j + θ̄sub,l∆ + Ei

p

(3.37)

where Ep = M i∆ +Kẽ. This concludes proof of lemma 3.1.

Having determined the bound, the threshold corresponding to each residual are

picked as below:

δi = L2,sub,i,jβ
i
3(εj)Es,sub,i,j + θ̄sub,l∆ + Ei

p
(3.38)

It follows from Lemma 1 then that under fault free condition ri,k+1 ≤ δi.

Remark 3.6. Note that the threshold defined by Eq. 3.38 depends on the observer

gain, H, since αi represents the spectrum bound of
Ai0
ε

which is defined based on the

observer gain. Therefore by changing the observer gain, the threshold value changes.

The threshold values obtained by using Eq. 3.38 are constant since they are defined

based on bound of the estimation error after convergence to stability region and

a constant bound for the uncertainty. In contrast, the time-varying thresholds in

Armaou and Demetriou (2008) and Zhang et al. (2010b) are due to considering the

estimation error present before convergence. Note that the thresholds defined in this

work can be readily made time-varying by considering the estimation error before

convergence. Also in the scenario that time-varying bounds for the uncertainty are

known, the level of conservatism in thresholds can be further reduced.
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Remark 3.7. Note that in the case of systems with relatively low degree of nonlin-

earity like single link robot arm of Zhang et al. (2010b), the parameters in Eq. 3.38

can be specified and as a result, the Eq. 3.38 can be used directly for defining thresh-

olds. However, when it comes to highly nonlinear systems like the CSTR example

used here, it is not possible to find all of the constants in the Eq. 3.38. Instead

we used simulations to determine the suprema of ‖x̃sub,i,j(tk+1) − xsub,i,j(tk+1)‖ and

‖xsub,i,j(tk+1) − x̂sub,i,j(tk+1)‖, to in turn utilize as the threshold values suggested by

Eq. 3.27. Note that the main purpose of deriving a mathematical formula for thresh-

olds (Eq. 3.38) in this work is to rigorously establish the ability of the proposed

scheme to achieve fault detection and isolation in the presence of uncertainty.

A fault is declared when at least one of the residuals breach their threshold i.e.

ri,d > δi for some i, and we denote this time as td. It follows from Lemma 3.1 that there

will be no false alarms in the proposed FDI scheme. Corollary 3.1 establishes that

a residual designed to be insensitive to a specific fault scenario (using the approach

in Du et al. (2013)) will remain insensitive even in the presence of uncertainty when

thresholds are picked using the proposed approach (preserving the unique breaching

pattern necessary for FDI). To this end, let riins denote the vector of residuals designed

to be insensitive to the ith fault scenario Θfi . Corollary 3.1 establishes this property.

Corollary 3.1. Consider the system of Eq. 3.1, for which Assumptions 3.1-3.6 hold

and the fault detection and isolation framework characterized by residuals and thresh-

olds described by Eq. 3.25 and Eq. 3.38, respectively and with Θf,i(t) 6= 0, ro ∈ riins,

ro ≤ δo ∀ t > tf ≥ tk′ holds.

Proof. Consider the system of Eq. 3.1 under fault free conditions and let ro ∈ riins.
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From lemma 1 for t < tf , we have:

ro = ‖x̃sub,o,j − x̂sub,o,j‖ ≤ δo = ropp + roep (3.39)

where

‖x̃sub,o,j − xsub,o,j‖ ≤ ropp = M o∆ +Kẽ (3.40)

and

‖xsub,o,j − x̂sub,o,j‖ ≤ roep = L2,sub,o,jβ3(ε)Es,sub,o,j + θ̄sub,o∆ (3.41)

Now we show that for t > tf ‖x̃sub,o,j −xsub,o,j‖ ≤ ropp(θ̄sub, t) and ‖xsub,o,j − x̂sub,o,j‖ ≤

roep(θ̄sub, t). Since the governing equation of scaled estimation error corresponding to

r0 after fault occurrence is same as fault free condition:

ėo =
1

εo
Ao0e

o +Bo(φo(ūf )− φo0(ūf )) + ηo (3.42)

Thus, for any arbitrarily sampling time after fault occurrence, Eq. 3.41 still holds.

After fault occurrence, x̃sub,o,j evolves as follows:

˙̃xsub,o,j = fsub,o([x̃
T
sub,o,j, ˆ̄xT

sub,o,j]
T) +Gsub,o([x̃

T
sub,i,j, ˆ̄xT

sub,o,j]
T)ūf,i (3.43)

It follows from Eq. 3.43 that the governing equation of ẽo,k = x̃sub,o,j − xsub,o is the

same as fault free condition:

˙̃eo,k = fsub,o([x̃
T
sub,o,j, ˆ̄xT

sub,o,j]
T)− fsub,o([xT

sub,o, x̄
T
sub,i]

T)+

(Gsub,o([x̃
T
sub,o,j, ˆ̄xT

sub,o,j]
T)−Gsub,o([x

T
sub,o, x̄

T
sub,i]

T))ūf,i − θsub,i([xT
sub,o, x̄

T
sub,o]

T, ūf,i, t)

(3.44)
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And as a result, for t > tf , ‖x̃sub,i,j − xsub,i,j‖ ≤ ropp(θ̄sub, t). This concludes the proof

of Corollary 3.1.

3.4.1 Detectability Analysis for Simultaneous Actuator and

Sensor Faults

The success of the FDI scheme relies on some of the residuals not breaching thresh-

olds, while other, dedicated residuals breaching thresholds. Having shown the first

part, in this section we establish the conditions necessary for the residuals designed

to be sensitive to a particular fault to breach their thresholds in the presence of un-

certainty via a detectability analysis (see e.g, Zhang et al. (2010b), Frank (1990),

Polycarpou and Trunov (2000), Chen and Patton (2012), Isermann (2006), Blanke

et al. (2006) and Ding (2008) for similar analysis for their FDI designs). Theorem 3.2

presents the sufficient conditions for simultaneous single actuator and single sensor

faults to be detectable by the proposed FDI framework. To this end, let rūfi ,ȳfi denote

a sensitive residual to simultaneous faults ufi and yfi defined as:

rūfi ,ȳfi ,k+1 = ‖x̃sub,ūfi ,ȳfi (tk+1)− x̂sub,ūfi ,ȳfi (tk+1)‖ (3.45)

Theorem 3.2. Consider the system of Eq. 3.1, for which Assumptions 3.1-3.6 hold

and the fault detection and isolation framework characterized by residual and threshold

described by Eq. 3.25 and Eq. 3.38, respectively, and that a single actuator ufi and

single sensor fault yfi occur simultaneously at time tf : If there exists an interval of

75



Ph.D. Thesis - Hadi Shahnazari McMaster - Chemical Engineering

time [tf , td] where tf ≥ tk′, such that the fault functions ufi and yfi satisfy

‖ 1

L′2,ūfi
β
ūfi ,ȳfi
3 (εj)

‖ϑ(
A0,sub,ūfi ,ȳfi

εj
, Hsub,ūfi ,ȳfi

, yfi)‖

+ ‖Devtf ...td(x̃T
sub,ūfi ,ȳfi

, ūfi , fdj , x
T
sub,ūfi ,ȳfi

, ufi)‖+ ‖fd,ufi‖ − δ
′
ūfi ,ȳfi

− δūfi ,ȳfi‖ > δūfi ,ȳfi
(3.46)

where Devtf ...td(x̃
T
sub,ūfi ,ȳfi

, ūf,i, fdj , x
T
sub,ūfi ,ȳfi

, ufi) =
∫ tf+1

tf
(dev(x̃T

sub,ūfi ,ȳfi
, ūf,i, fdj) −

Gsub,ūfi ,ȳfi
([xT

sub,ūfi ,ȳfi
, x̄T

sub,ūfi ,ȳfi
]T)ufi)dτ + · · ·+

∫ td
td−1

(dev(x̃T
sub,ūfi ,ȳfi

, ūf,i, fdj)

−Gsub,ūfi ,ȳfi
([xT

sub,ūfi ,ȳfi
, x̄T

sub,ūfi ,ȳfi
]T)ufi)dτ , dev(x̃T

sub,ūfi ,ȳfi
, x̃T

sub,ufi ,ȳfi
, usub,i, fdj) =

f̃sub,ūfi ,ȳfi ([x̃
T
sub,ūfi ,ȳfi

, ˆ̄xT
sub,ūfi ,ȳfi

]T) + G̃sub,ūfi ,ȳfi
([x̃T

sub,ūfi ,ȳfi
, ˆ̄xT

sub,ūfi ,ȳfi
]T)usub,i

− f̃sub,ūfi ,ȳfi ([x̃
T
sub,ufi ,yfi

, ˆ̄xT
sub,ufi ,yfi

]T)− G̃sub,ūfi ,ȳfi
([x̃T

sub,ufi ,yfi
, ˆ̄xT

sub,ufi ,yfi
]T)usub,i, where

usub,i is the subset of inputs corresponding to Gsub,ūf ,ȳf , where j refers to the corre-

sponding observer used for defining rūfi ,ȳfi and fdj is the deviation of state estimates

value from system states after fault occurrence:

fdj = x̂ūfi ,ȳfi − x̂ufi ,yfi = T ′−1
j (ζ̂ūfi ,ȳfi , ui)− T

′−1
j (ζ̂faultfree,ūfi ,ȳfi , ufi + ui)

= T ′−1
j (ζ̂ūfi ,ȳfi , ui)− T

′−1
j (ζ̂ūfi ,ȳfi , ufi + ui) + T ′−1

j (ζ̂ūfi ,ȳfi , ufi + ui)

− T ′−1
j (ζ̂faultfree,ūfi ,ȳfi , ufi + ui)

(3.47)

where ζ̂ūfi ,ȳfi = ζ̂faultfree,ūfi ,ȳfi +Hūfi ,ȳfi

∫ tf+1

tf
e

(Ai−Hūfi ,ȳfiCi)(tf+1−τ)
yfidτ + . . .

+Hūfi ,ȳfi

∫ td
td−1

e
(Ai−Hūfi ,ȳfiCi)(td−τ)

yfidτ , ϑ(
A0,sub,i,j

εj
, Hsub,ūfi ,ȳfi

, yfi) =∫ tf+1

tf
e

A0,sub,ūfi
,ȳfi

εj
(tf+1−τ)

[Dsub,ūfi ,ȳfi
]−1Hsub,ūfi ,ȳfi

yfidτ + . . .

+
∫ td
td−1

e

A0,sub,ūfi
,ȳfi

εj
(td−τ)

[Dsub,ūfi ,ȳfi
]−1Hsub,ūfi ,ȳfi

yfidτ ,

fd,ufi = T−1
j (ζūfi ,ūfi , ufi+ui)−T

−1
j (ζūfi ,ūfi , ui) and δ′ūfi ,ȳfi

= E ′s,ūfi ,ȳfi
= ( 1

L′2,ui
β
ūfi

,ȳfi
3 (εj)

−

L2,ūfi
β
ūfi ,ȳfi
3 (εj))Es,ūfi ,ȳfi , then the fault is detected, i.e. rūfi ,ȳfi ,d > δūfi ,ȳfi .
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Proof. After fault occurrence (i.e., t > tf ), the prediction model corresponding to

rūfi ,ȳfi takes the following form:

˙̃xsub,ūfi ,ȳfi = f̃sub,ūfi ,ȳfi ([x̃
T
sub,ufi ,yfi

, ˆ̄xT
sub,ufi ,yfi

]T)

+ G̃sub,ūfi ,ȳfi
([x̃T

sub,ufi ,yfi
, ˆ̄xT

sub,ufi ,yfi
]T)usub,i + dev(x̃T

sub,ūfi ,ȳfi
, ūfi , fdj)

(3.48)

where usub,i is properly defined and dev(x̃T
sub,ūfi ,ȳfi

, usub,i, fdj) =

f̃sub,ūfi ,ȳfi ([x̃
T
sub,ūfi ,ȳfi

, ˆ̄xT
sub,ūfi ,ȳfi

]T) + G̃sub,ūfi ,ȳfi
([x̃T

sub,ūfi ,ȳfi
, ˆ̄xT

sub,ūfi ,ȳfi
]T)usub,i

− f̃sub,ūfi ,ȳfi ([x̃
T
sub,ufi ,yfi

, ˆ̄xT
sub,ufi ,yfi

]T)− G̃sub,ūfi ,ȳfi
([x̃T

sub,ufi ,yfi
, ˆ̄xT

sub,ufi ,yfi
]T)usub,i and fdj

is the deviation of state estimates from system states, after fault occurrence. To

calculate fdj , we consider the corresponding observer to rūfi ,ȳfi , and focus on the

residual that breaches the threshold due to the occurrence of both the sensor and

actuator fault (note that the analysis for residuals that are breached due to say, only

the actuator or only the sensor faults are special cases of the below analysis). We

then have:

˙̂
ζūfi ,ȳfi = Aiζ̂ūfi ,ȳfi +Biφ0 +Hūfi ,ȳfi

(Ciζūfi ,ȳfi + yfi − Ciζ̂ūfi ,ȳfi )

ζ̂ūfi ,ȳfi (tk) = T ′(x̂i(tk), ui(tk))

(3.49)

By integration from tf to td, we get:

ζ̂ūfi ,ȳfi = ζ̂faultfree,ūfi ,ȳfi +Hūfi ,ȳfi

∫ tf+1

tf

e
(Ai−Hūfi ,ȳfiCi)(tf+1−τ)

yfidτ + . . .

+Hūfi ,ȳfi

∫ td

td−1

e
(Ai−Hūfi ,ȳfiCi)(td−τ)

yfidτ

(3.50)

where ζ̂faultfree,ūfi ,ȳfi = ζ̂ūfi ,ȳfi (tf )+
∫ tf+1

tf
e

(Ai−Hūfi ,ȳfiCi)(tf+1−τ)
(Biφ0+Hūfi ,ȳfi

Ciζūfi ,ȳfi )dτ
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+ · · · +
∫ td
td−1

e
(Ai−Hūfi ,ȳfiCi)(td−τ)

(Biφ0 + Hūfi ,ȳfi
Ciζūfi ,ȳfi )dτ . Therefore, fdj is formu-

lated as below:

fdj = x̂ūfi ,ȳfi − x̂ufi ,yfi = T ′−1
j (ζ̂ūfi ,ȳfi , ui)− T

′−1
j (ζ̂faultfree,ūfi ,ȳfi , ufi + ui)

= T ′−1
j (ζ̂ūfi ,ȳfi , ui)− T

′−1
j (ζ̂ūfi ,ȳfi , ufi + ui) + T ′−1

j (ζ̂ūfi ,ȳfi , ufi + ui)

− T ′−1
j (ζ̂faultfree,ūfi ,ȳfi , ufi + ui)

(3.51)

Substituting fdj into Eq. 3.31 gives:

˙̃eūfi ,ȳfi ,k = f̃sub,ūfi ,ȳfi − fsub,ūfi ,ȳfi ([x
T
sub,ūfi ,ȳfi

, x̄T
sub,ūfi ,ȳfi

]T) + (G̃sub,ūfi ,ȳfi

−Gsub,ūfi ,ȳfi
([xT

sub,ūfi ,ȳfi
, x̄T

sub,ūfi ,ȳfi
]T)usub,i + dev(x̃T

sub,ūfi ,ȳfi
, ūf,i, fd)

−Gsub,ūfi ,ȳfi
([xT

sub,ūfi ,ȳfi
, x̄T

sub,ūfi ,ȳfi
]T)ufi

(3.52)

By integration from tf to td, we obtain:

ẽūfi ,ȳfi ,td = ẽūfi ,ȳfi ,faultfree +Devtf ...td(x̃
T
sub,ūfi ,ȳfi

, ūf,i,sub, fdj , x
T
sub,ūfi ,ȳfi

, ufi) (3.53)

where ẽūfi ,ȳfi ,faultfree = ẽūfi ,ȳfi ,tf+
∫ tf+1

tf
(f̃sub,ūfi ,ȳfi−fsub,ūfi ,ȳfi ([x

T
sub,ūfi ,ȳfi

, x̄T
sub,ūfi ,ȳfi

]T)+

(G̃sub,ūfi ,ȳfi
−Gsub,ūfi ,ȳfi

([xT
sub,ūfi ,ȳfi

, x̄T
sub,ūfi ,ȳfi

]T))ui)dτ + . . .

+
∫ td
td−1

(f̃sub,ūfi ,ȳfi − fsub,ūfi ,ȳfi ([x
T
sub,ūfi ,ȳfi

, x̄T
sub,ūfi ,ȳfi

]T)

+ (G̃sub,ūfi ,ȳfi
−Gsub,ūfi ,ȳfi

([xT
sub,ūfi ,ȳfi

, x̄T
sub,ūfi ,ȳfi

]T), ui)dτ ,

Devtf ...td(x̃
T
sub,ūfi ,ȳfi

, ūf,i,sub, fdj , x
T
sub,ūfi ,ȳfi

, ufi) =
∫ tf+1

tf
(dev(x̃T

sub,ūfi ,ȳfi
, ūf,i,sub, fdj)

−Gsub,ūfi ,ȳfi
([xT

sub,ūfi ,ȳfi
, x̄T

sub,ūfi ,ȳfi
]T)ufi)dτ + · · ·+

∫ td
td−1

(dev(x̃T
sub,ūfi ,ȳfi

, ūf,i,sub, fdj)

−Gsub,ūfi ,ȳfi
([xT

sub,ūfi ,ȳfi
, x̄T

sub,ūfi ,ȳfi
]T)ufi)dτ .
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Now by applying the triangular inequality, we get:

‖x̃sub,ūfi ,ȳfi (td)− xsub,ūfi ,ȳfi (td)‖ = ‖ẽūfi ,ȳfi ,k(td)‖

≥ ‖Devtf ...td(x̃T
sub,ūfi ,ȳfi

, ūf,i,sub, fdj , x
T
sub,ūfi ,ȳfi

, ufi)‖

− Eūfi ,ȳfi
p

(3.54)

After fault occurrence the Eq. 3.32 takes the following form:

ėsub,ūfi ,ȳfi ,j =
1

εj
A0,sub,ūfi ,ȳfi

esub,ūfi ,ȳfi +Bsub,ūfi ,ȳfi
(φsub,ūfi ,ȳfi − φ0,sub,ūfi ,ȳfi

)

+ ηi,sub,ūfi ,ȳfi + [Dsub,ūfi ,ȳfi
]−1Hsub,ūfi ,ȳfi

yfi

(3.55)

By integration from tf to td, we obtain:

esub,ūfi ,ȳfi ,j(td) = eūfi ,ȳfi ,j,faultfree + ϑ(
A0,sub,ūfi ,ȳfi

εj
, Hsub,ūfi ,ȳfi

, yfi) (3.56)

where eūfi ,ȳfi ,j,faultfree = esub,ūfi ,ȳfi ,j(tf )+
tf+1∫
tf

e

A0,sub,ūfi
,ȳfi

εj
(tf+1−τ)

(Bsub,ūfi ,ȳfi
(φsub,ūfi ,ȳfi−

φ0,sub,i,j)+ηi,sub,ūfi ,ȳfi )dτ+· · ·+
td∫

td−1

e

A0,sub,ūfi
,ȳfi

εj
(td−τ)

(Bsub,ūfi ,ȳfi
(φsub,ūfi ,ȳfi−φ0,sub,ūfi ,ȳfi

)+

ηi,sub,ūfi ,ȳfi )dτ ,

ϑ(
A0,sub,ūfi

,ȳfi

εj
, Hsub,ūfi ,ȳfi

, yfi) =
∫ tf+1

tf
e

A0,sub,ūfi
,ȳfi

εj
(tf+1−τ)

[Dsub,ūfi ,ȳfi
]−1Hsub,ūfi ,ȳfi

yfidτ+

· · · +
∫ td
td−1

e

A0,sub,ūfi
,ȳfi

εj
(td−τ)

[Dsub,ūfi ,ȳfi
]−1Hsub,ūfi ,ȳfi

yfidτ . By applying the triangular

inequality, we get:

‖eūfi ,ȳfi (tk+1)‖ ≥ Es,ūfi ,ȳfi − ‖ϑ(
A0,sub,ūfi ,ȳfi

εj
, Hsub,ūfi ,ȳfi

, yfi)‖ (3.57)

For the residual that breaches the threshold due to both sensor and actuator fault,
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we have:

xsub,ūfi ,ȳfi (td)− x̂sub,ūfi ,ȳfi (td) = T−1
j (ζūfi ,ūfi , ufi + ui)− T ′−1

j (ζ̂ūfi ,ūfi , ui)

= T−1
j (ζūfi ,ūfi , ufi + ui)− T−1

j (ζūfi ,ūfi , ui)

+ T−1
j (ζūfi ,ūfi , ui)− T

′−1
j (ζ̂ūfi ,ūfi , ui)

(3.58)

By using Lipschitz property of T ′−1
j and Eq. 3.18, after applying the triangular

inequality, we get:

‖xsub,ūfi ,ȳfi (td)− x̂sub,ūfi ,ȳfi (td)‖ ≥ L2,uiβ3(εj)Es,ūfi ,ȳfi + θ̄sub,ūfi ,ȳfi∆ + E ′s,ūfi ,ȳfi

+ ‖fd,ufi‖ −
1

L′2,uiβ
ūfi ,ȳfi
3 (εj)

‖ϑ(
A0,sub,ūfi ,ȳfi

εj
, Hsub,ūfi ,ȳfi

, yfi)‖

(3.59)

where E ′s,ūfi ,ȳfi
= ( 1

L′2,ui
β
ūfi

,ȳfi
3 (εj)

− L2,uiβ
ūfi ,ȳfi
3 (εj))Es,ūfi ,ȳfi and

fd,ufi = T−1
j (ζūfi ,ūfi , ufi + ui) − T−1

j (ζūfi ,ūfi , ui). Therefore by using Eqs. 3.54, 3.59

and triangular inequality, we obtain:

ri,d = ‖x̃sub,ūfi ,ȳfi (td)− x̂sub,ūfi ,ȳfi (td)‖ ≥ ‖
1

L′2,uiβ
ūfi ,ȳfi
3 (εj)

‖ϑ(
A0,sub,ūfi ,ȳfi

εj
,

Hsub,ūfi ,ȳfi
, yfi)‖+ ‖fd,ufi‖+ ‖Devtf ...td(x̃T

sub,ūfi ,ȳfi
, ūfi , fdj , x

T
sub,ūfi ,ȳfi

, ufi)‖

− δūfi ,ȳfi − δ
′
ūfi ,ȳfi

‖

(3.60)

where δ′ūfi ,ȳfi
= E ′s,ūfi ,ȳfi

. Therefore it follows that if Eq. 3.46 holds, tf ≥ tk′ ,

rūfi ,ȳfi ,d > δi,ūfi ,ȳfi .
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3.4.2 Isolability Condition

Having presented the detectability condition corresponding to different faulty sce-

narios, Theorem 3.3 presents the fault isolation logic for the identification of faulty

component that also serves as the FDI mechanism. The proof of Theorem 3.3 follows

along similar lines as Theorem 1 in Du et al. (2013), and is omitted here.

Theorem 3.3. Consider the system of Eq. 3.1, for which Assumptions 3.1-3.6 hold.

If t ≥ td and ri,td > δi for all i ∈ {1, . . . , nf}\j, then Θf,j(t) 6= 0 for some t ∈ [td, td+1).

Remark 3.8. Theorem 3.3 states that the proposed FDI framework will result in a

unique breaching pattern for every single fault scenario, leading to FDI (see e.g., Du

et al. (2013) for further details regarding expected breaching patterns corresponding

to single or multiple fault scenarios). The key when dealing with uncertainty, how-

ever, is to ensure that such unique fault signatures continue to exist in the presence

of uncertainty, which is achieved by appropriate choice of the thresholds that are

cognizant of the presence of uncertainty, as done in the present work.

Remark 3.9. Note that while the proposed framework explicitly considers control

actuator faults, it can readily deal with other actuator faults (that are not being

utilized in feedback control). In these instance, if these variables are being prescribed

certain values (constant or otherwise), the proposed method can be directly utilized

to detect and isolate faults in these variables. If the variable values are not measured,

then these are naturally incorporated in the uncertainty term.

Remark 3.10. The proposed approach provides the specific observer and FDI design,

and backs it up with a rigorous analysis that establishes error bounds and thresholds

based on the system characteristics. In practice, the rigorous analysis can be utilized
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Table 3.1: Faults to which the residuals are insensitive and thresholds for the fault
isolation design of the example in Section 3.5 based on the proposed framework in
3.4.

Residual Faults Threshold Residual Faults Threshold

r1 yf1 0.1 r2 yf2 0.1
r3 yf3 0.1 r4 yf4 0.1
r5 yf5 0.5 r6 yf1 , yf2 0.1
r7 yf1 , yf3 0.1 r8 yf1 , yf4 0.1
r9 yf1 , yf5 0.48 r10 yf2 , yf3 0.1
r11 yf2 , yf4 0.1 r12 yf2 , yf5 0.33
r13 yf3 , yf4 0.1 r14 yf3 , yf5 2.8
r15 yf4 , yf5 1.7 r16 uf2 0.002
r17 uf2 , yf5 0.002 r18 uf1 0.1
r19 uf1 , yf1 0.3 r20 uf1 , uf2 0.002
r21 uf1 , yf2 0.12 r22 uf1 , yf3 0.13
r23 uf1 , yf4 0.14 r24 uf1 , yf5 0.5
r25 uf2 , yf1 0.002 r26 uf2 , yf2 0.002
r27 uf2 , yf3 0.003 r28 uf2 , yf4 0.004

to provide confidence in the FDI capabilities of the proposed filters and to guide the

selection of the parameters (as is done in the simulation results).

3.5 Simulation Example

In this section, we consider a continuous-stirred tank reactor (CSTR) example (see

Du et al. (2013) for details regarding process model, process parameters and control

design).

The process is subject to modeling uncertainty and measurement noise. In par-

ticular, the actual values of the reaction rate constants k1A0 and k2A0 are 10% less

than the values in the model used for FDI. Furthermore, the flow rate fluctuates with

time, with the actual flow rate being 1 + 0.05 sin(t) times of its nominal value. The
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known bounds on each uncertainty is 15%, 15% and 5% of the absolute nominal val-

ues. The concentration and temperature measurements have combinations of 5 Hz

sinusoidal noises. The magnitudes of the measurement noise over each 0.5 min follow

a normal distribution with the standard deviations being 0.02 kmol/m3 and 0.5 K for

concentrations and temperatures, respectively. The noisy measurements are passed

through a first-order low-pass filter with the filter time constant being 3 seconds.

Note that Assumption 3.1 holds for the simulation case study, since of all of the

terms in f , g and θ are differentiable and their differentiation is continuous and

f(0) = 0. Also, since the desired set point is met in the presence of uncertainty

and in the absence of fault (see Figure 1 in Du et al. (2013)), by using the converse

Lyapunov theorem (see e.g., Khalil (2002)), it is guaranteed that a robust Lyapunov

function exists that satisfies Assumption 3.2.

Fifteen observers are designed using subsets of the available measurements to be

utilized in the residual generation. Twenty-eight residuals are generated using the

methodology described in Section 3.4. Among these observers, five are defined using

four of the available measurements that are utilized for generation of residuals insen-

sitive to the single sensor faults in one of the outputs or simultaneous single sensor

and single actuator faults. This includes residuals r1 to r5 (corresponding residuals to

single sensor faults) and residuals r17, r19 and r21 to r28 (residuals corresponding to

simultaneous single sensor and single actuator faults). The rest of the observers are

defined using three of the available measurements that are utilized for generation of

residuals insensitive to multiple sensor faults, residuals r6 to r15. Note the residuals

corresponding to single and multiple actuator faults (r16, r18 and r20) are generated
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using the state estimates provided by the observer that are not affected by the cor-

responding input(s). Note that Assumptions 3.3 and 3.6 hold for all of the designed

observers. As an example, consider the case where only measurements of y1 = CA,

y2 = CB and y3 = CC are used for observer design. For this case, one of the possible

transformations is presented below:

T = T ′ + Tθ, T
′ =



CA

ĊA

CB

ĊB

CC

ĊC


, Tθ =



0

0.05Fsin(t)
V

(CA0 − CA)− 0.1r1A, forward − 0.1r2A, forward

0

0.05Fsin(t)
V

(CB0 − CB)− 0.1r1A, forward

0

−0.05Fsin(t)
V

CC) + 0.1r1A, forward − 0.1r2A, forward


For the rest of designed observers the Assumption 5 can be verified in the same

manner. Also, here we consider φ0 = 0 that is always bounded, thus Assumption 4

holds as well.

The thresholds are selected based on Eq. 3.27 via simulations. To this end,

a value slightly larger than the summation of the maximum observed values for

‖x̃sub,i,j(tk+1)−xsub,i,j(tk+1)‖ and ‖xsub,i,j(tk+1)−x̂sub,i,j(tk+1)‖ when the system states

enters the stability region, by considering all possible combinations of the bounds on

uncertainties is selected as the corresponding threshold for each residual, as shown in

Table 3.1.

Remark 3.11. The proposed approach does not make any assumptions on the nature

of the controller. In particular, even if the controller is able to reject the effect of

the fault, the FDI mechanism enables fault detection and isolation subject to the
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corresponding detectability conditions being satisfied. To check the detectability

condition presented in Theorem 2, we simply calculate the infimum of ‖‖xsub,i,j(td)−

x̂sub,i,j(td)‖−‖x̃sub,i,j(td)−xsub,i(td)‖‖ for each residual and we call it the detectability

constant, δ̄. If the detectability constant is more than the value of its corresponding

threshold, then the residual is expected to breach the threshold. As an example, for

the case of small abrupt fault in uf2 presented in the Section 5, since the detectability

constants (see Table 3.2) are less than the threshold values for all of the residuals,

therefore we expect that none of the residual breaches its threshold and the fault can

not be detected. This is verified by the simulations.

Table 3.2: Detectability constants (δ̄) for each residual for a case where abrupt fault
of uf2 = 0.1 in u2 takes place at time tf = 7.5 min

Residual δ̄ Threshold Residual δ̄ Threshold

r1 0.047 0.1 r2 0.056 0.1
r3 0.052 0.1 r4 0.048 0.1
r5 0.22 0.5 r6 0.051 0.1
r7 0.051 0.1 r8 0.051 0.1
r9 0.18 0.48 r10 0.05 0.1
r11 0.05 0.1 r12 0.33 0.33
r13 0.05 0.1 r14 0.824 1.7
r15 0.555 2.8 r16 0 0.002
r17 0 0.002 r18 0.059 0.1
r19 0.059 0.3 r20 0 0.002
r21 0.0745 0.12 r22 0.066 0.13
r23 0.06 0.14 r24 0.22 0.5
r25 0 0.002 r26 0 0.002
r27 0 0.003 r28 0 0.004

We next consider a case where abrupt faults uf2 = 0.1 in u1 = CA0 and yf1 = 0.1

in y1 = CA (one actuator fault and one sensor fault) take place at time tf = 7.5 min.

The evolution of residual profile is shown in Figure 3.2. In this case the expected fault
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signature is breaching of all the residuals except r19. Using the threshold designed

in Du et al. (2013), some of the residuals breach their thresholds, wherein the fault

is successfully detected but is not isolated since the residual breaching profiles do

not match any of the expected breaching patterns presented in Du et al. (2013).

In particular, while we expect only r19 be insensitive to the fault in u1 and y1, the

residuals r4, r6, r7, r8, r9, r10 and r11 are alway below the thresholds suggested in

Du et al. (2013). However, using the proposed threshold selection, only r19 does not

breach its threshold, matching the expected unique breaching pattern, resulting in

successful fault isolation (magnified version of evolution of residual profiles for r7 and

r19 are shown in Figure 3.3).

Remark 3.12. Note that while residuals are defined using the same methodology

as proposed in Du et al. (2013), definition of thresholds is the key difference be-

tween the proposed scheme in this work and Du et al. (2013). In Du et al. (2013),

thresholds are selected by using normal operating data for residuals plus some addi-

tional positive value to avoid possible false alarms due to plant model mismatch and

uncertainty. This results in conservatively large values for thresholds and increased

number of missed faults, along with the inability to achieve FDI (as demonstrated by

the simulation example). However, by selecting thresholds as suggested by Eq. 3.27,

the number of missed faults is reduced by explicitly accounting for the presence of

uncertainty in the design. This is achieved by selecting the smallest possible values

for thresholds while still guaranteeing that no false alarm before fault occurrence are

triggered (see Figure 3.2 for an illustration). Thus, using thresholds values suggested

in Du et al. (2013), the FDI scheme is not able to isolate the fault since the thresh-

olds are selected conservatively large to avoid any false alarm, resulting in missing
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the location of the fault. In contrast, using the threshold values suggested in Table

3.1, the fault is successfully isolated.

We next consider a case where incipient faults of uf2 = (5 + 0.1 sin t)(1 − etf−t)

in u2 = T0 and yf2 = (0.2 + 0.2 sin t)(1 − etf−t) in y2 = CB (one actuator fault and

one sensor fault) take place at time tf = 7.5 min. The evolution of residual profile

is shown in Figure 3.4. The expected unique fault signature in this case is breaching

of all of the residuals except r26. Since all of the residuals breach their thresholds

except r26, which is designed to be insensitive to uf2 and yf2 (see Table 3.1), faults

in u2 and y2 are isolated.

3.6 Conclusions

In this work, we addressed the problem of actuator and sensor fault detection and

isolation of control affine nonlinear systems subject to uncertainty. An FDI frame-

work was proposed and fault detectability and isolability conditions were rigorously

derived. Finally, the efficacy of the fault isolation framework subject to uncertainty

and measurement noise was illustrated using a chemical reactor example.
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Figure 3.2: Evolution of the residuals (solid lines), thresholds (dashed-dotted lines)
and thresholds designed in Du et al. (2013) (dotted lines). Using the thresholds
proposed in Du et al. (2013), the residuals do not follow any of expected breaching
patterns which results only in fault detection. By utilizing the thresholds designed in
this work, all of the residuals breach their thresholds except for r19. This corresponds
to fault signature of fault only in u1 and y1 and as a result, faults in u1 and y1 are
isolated.
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Figure 3.3: Evolution of the residuals for r7 and r19 (solid lines), thresholds (dashed-
dotted lines) and thresholds designed in Du et al. (2013) (dotted lines). Using the
thresholds proposed in Du et al. (2013), both of the residual r7 and r19 do not breach
their thresholds which results only in fault detection. By utilizing the thresholds
designed in this work, only r19 does not breach its threshold, matching a unique fault
signature (see Table 3.1), and as a result, the fault scenario is isolated.
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Figure 3.4: Evolution of the residuals (solid lines), thresholds (dashed-dotted lines).
All the residuals breach their thresholds except for r26 matching the unique fault
signature for a fault in u2 and y2 leading to fault isolation.
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Chapter 4

Distributed fault diagnosis for

networked nonlinear uncertain

systems

The contributions of this chapter have been submitted for publication in:

Journal Papers:

Shahnazari, H. and Mhaskar, P. Distributed fault diagnosis for networked nonlin-

ear uncertain systems, Computers & Chemical Engineering, submitted.
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4.1 Introduction

In the previous chapter, the problem of simultaneous actuator and sensor fault

diagnosis was addressed while explicitly accounting for process nonlinearities and un-

certainties as some of the complexities existing in modern dynamical systems. The

complexity also can be due to high dimensionality with strong interconnections be-

tween subsystems leading to their recognition as networked systems, and the imple-

mentation of extensive automation strategies (see e.g., Yan and Edwards (2008)).

Extensive use of automation, however, coupled with the networked nature of the sys-

tems, also makes the major control equipments such as actuators and sensors more

susceptible to faults. In particular, the faults can propagate in the network and cause

major failures, necessitating fault-detection and isolation (FDI) strategies. This chap-

ter is dedicated to fault diagnosis design for networked systems.

Where possible, designing a centralized FDI scheme is the most intuitive solution

for this problem. There exist a plethora of research in designing centralized fault

detection and isolation frameworks for monitoring of engineering systems (see e.g.,

Frank (1990); De Persis and Isidori (2001); Yan and Edwards (2007); Mhaskar et al.

(2008); Zhang et al. (2010b); Du and Mhaskar (2014); Du et al. (2013); Shahnazari

and Mhaskar (2016)). However, a centralized FDI scheme may fail or be unimple-

mentable due to lack of existence of enough centralized computational capabilities or

communication infrastructure. More importantly, there are reliability issues associ-

ated with utilizing a centralized FDI scheme for a networked system, since a failure in

the FDI scheme with centralized architecture can lead to interruption in monitoring of

all of the subsystems. When the interconnections are weak, using a decentralized FDI

scheme composed of independent LFDI schemes for each subsystem can be a solution
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to this problem (see e.g., Yan and Edwards (2008); Du et al. (2011)). However, when

the interconnections are not negligible, utilizing a decentralized architecture for FDI

design can result in false alarms or missed faults in LFDI schemes. In this case, an

alternative approach can be designing an FDI scheme with a distributed architecture.

In the distributed architecture, a LFDI scheme is designed for each subsystem while

the LFDI schemes can communicate to exchange information.

There are some results that only consider problem of fault detection in networked

and large scale systems using a distributed architecture (see e.g., Boem et al. (2017)).

In Keliris et al. (2015), an integrated distributed fault detection scheme is proposed

for detection of sensor and process faults in nonlinear uncertain discrete systems.

However, fault isolation is not achieved. In Zhang and Zhang (2012), a distributed

actuators FDI scheme is proposed for a class of interconnected uncertain nonlinear

systems using adaptive estimation techniques. In Ferrari et al. (2012), a distributed

framework is presented for diagnosing single actuator and single process faults in

nonlinear uncertain large-scale discrete-time systems using an adaptive approxima-

tion based technique. In Peng et al. (2015), a distributed data based actuator fault

identification scheme is presented for linear networked process systems. In Reppa

et al. (2015), a distributed sensor fault diagnosis for a network of interconnected

cyber-physical system (CPS)s presented. In Yin and Liu (2017), a distributed FDI

scheme is proposed for cascade networked systems in the absence of uncertainty. How-

ever, none of the existing results have addressed the problem of isolation of multiple

actuator faults or simultaneous actuator and sensor faults in uncertain nonlinear net-

worked systems. Also, the results addressing isolation of actuator faults are based

on the assumption that full state measurements are available (see e.g., Ferrari et al.
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(2012)) or only valid for cascade process networks in the absence of uncertainty ( see

e.g., Yin and Liu (2017)). More importantly, the conditions under which the network

structure allows fault isolation in the presence of uncertainty is not discussed in the

existing results available in the literature (see e.g., Zhang and Zhang (2012), Ferrari

et al. (2012), Keliris et al. (2015) and Reppa et al. (2015)).

Motivated by the above considerations, this chapter addresses the problem of si-

multaneous fault diagnosis in nonlinear uncertain networked systems. The rest of this

chapter is organized as follows: In Section 4.2, the system description is presented.

Then, in preparation of subsequent FDI filters that utilize state estimators, bound-

edness of estimation error in the presence of uncertainty and exchange of information

is established in Section 4.3. Next, a distributed fault diagnosis framework is pre-

sented in Section 4.4. The idea is to design a bank of local robust FDI schemes in

a distributed manner with each LFDI scheme corresponding to a subsystem. Time-

varying thresholds are selected by explicitly accounting for the effect of uncertainties

and faults in shared interconnections that cannot be isolated in the corresponding

subsystem. In this way, robustness of the LFDI schemes to false alarms is achieved.

Also, in the case of faults in the shared interconnections, the distributed architecture

of the FDI framework allows the other FDI schemes to function as intended. This is

achieved via utilizing healthy estimation of faulty shared interconnection and intro-

ducing a new concept called detectability index that measures the probability of a

residuals breaching its threshold when it is expected. The detectability and isoability

conditions are rigorously derived for the distributed FDI scheme. Next, effective-

ness of the proposed methodology is shown via application to a reactor-separator

process subject to uncertainty and measurement noise in Section 4.5. Finally, some
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concluding remarks are presented in Section 4.6.

4.2 Preliminaries

Consider a networked uncertain nonlinear system composed of M subsystems with

the ith subsystem described by

ẋi = fi(xi) +Gi(xi)(ui + uf,i) + θi(xi, ui, t)

+ Ii(xi, ui, ỹi) + di(xi, ui, x̃i, ỹi, t)

yi = hi(xi) + yf,i

(4.1)

where xi ∈ Xi ⊂ Rni denotes the vector of state variables corresponding to the

ith subsystem, with Xi being a compact set of the admissible state values, ui =

[u1, . . . , umi ]
T ∈ Rmi denotes the vector of prescribed control inputs corresponding

to the ith subsystem, taking values in a nonempty compact convex set Ui ⊆ Rmi ,

uf,i = [uf1 , . . . , ufmi ]
T ∈ Rmi denotes the unknown fault vector for the actuators cor-

responding to the ith subsystem, θi denotes the unstructured uncertainty (unmod-

eled dynamics) corresponding to the ith subsystem with ‖θi(xi, ui, t)‖ ≤ θ̄i, where

θ̄i is a known positive constant, yi = [y1, . . . , ypi ]
T ∈ Rpi denotes the vector of out-

put variables corresponding to the ith subsystem, yf,i = [yf1 , . . . , yfpi ]
T ∈ Rpi de-

notes the unknown fault vector for the sensors corresponding to the ith subsystem,

Gi(xi) = [gi1(xi), . . . , gimi(xi)]. Furthermore, the vector field Ii(xi, ui, ỹi) represents

the known part of direct interconnection between the ith subsystem and the other

subsystems, di(xi, ui, x̃i, ỹi, t) represents the unknown part of direct interconnection

between the ith subsystem and the other subsystems, with ‖di(xi, ui, x̃i, ỹi, t)‖ ≤ d̄i,
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where d̄i is a known positive constant. Note that x̃i ∈ Rñi and ỹi = [ỹ1, . . . , ỹp̃i ] ∈ Rp̃i

denote the state variables and the output variables of the the neighboring subsystems

that affect the ith subsystem, respectively and ỹf,i = [ỹf1 , . . . , ỹfp̃i ]
T ∈ Rp̃i denotes the

unknown fault vector for the sensors corresponding to the output variables from the

subsystems that affects the ith subsystem (these subsystems are henceforth denoted

as ‘neighboring’ subsystems). In the rest of this manuscript, we refer to ỹi and ỹf,i

as shared interconnections and faulty shared interconnection with the ith subsystem,

respectively.

Due to the presence of physical constraints, the actual input ui+uf,i implemented

to the subsystem takes values from the set Ui as well. The inputs are implemented

in a discrete fashion, with sampling time ∆i. In this work, it is assumed that the

sampling time for all of the subsystems is the same and as a result, the notation ∆ is

used as sampling time of all the subsystems.

Remark 4.1. Note that in this work (as with other existing results in the literature

see e.g., Ferrari et al. (2012); Keliris et al. (2015)) the direct interconnection terms are

not allowed to be a function of neighboring subsystems inputs uj. This follows from

the assumption that each subsystem can be operated with a local controller (possibly

utilizing measurements from the other subsystems).
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4.3 Boundedness of estimation error in the pres-

ence of uncertainty and exchange of informa-

tion for networked systems

State estimates are required for the design of the proposed FDI scheme and as a

result, boundedness of estimation error must first be established. In this section we

use a high gain observer, and establish boundedness of the estimation error in the

presence of uncertainty and exchange of information. To this end, we consider the ith

subsystem described by Eq. 4.1 under fault free conditions, satisfying Assumptions

4.1-4.3:

Assumption 4.1. The functions fi : Rni → Rni , gik : Rni → Rni , k = 1, . . . ,mi,

θi(xi, ui, t) : Rni → Rni , Ii(xi, ui, ỹi) : Rni → Rni , di(xi, ui, x̃,ỹi, t) : Rni → Rni and

hi : Rni → Rpi are smooth on their domains of definition, and fi(0) = 0.

Assumption 4.2. For the ith subsystem of the network presented by Eq. 4.1, there

exists a positive definite C2 function Vi : Rni → R such that for any xi ∈ Ωci := {xi ∈

Rn : Vi(xi) ≤ ci}, where ci is a positive real number, the following inequality holds:

LfiVi(xi) + LgiVi(xi)ui(xi) + LθiVi(xi) + LIiVi(xi) + LdiVi(xi) ≤ −αi(Vi(xi)) (4.2)

where LgiVi(x) = [Lgi1Vi(xi), . . . , LgimVi(xi)], ui : Ωci → Ui is a state feedback control

law and αi is a class K function.

Remark 4.2. Note that there is no general procedure for construction of robust

control Lyapunov functions (RCLFs) for nonlinear uncertain systems of the form of
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Eq. 4.1. However, there are several class of systems for which such procedure exists

(see e.g., Freeman and Kokotovic (2008)). Also, recent results demonstrate the ability

to verify CLFs as RCLFs (see e.g., Mahmood et al. (2008a)). More importantly,

note that Assumption 4.2 simply states that a control design is in place to handle

the uncertainly in the system, and does not require the knowledge of the specific

Lyapunov function for the FDI design.

Assumption 4.3. There exist integers ωik, k = 1, . . ., pi, with
∑pi

i=1 ωik = ni, and

a coordinate transformation ζi = Ti(xi, ui, t) = T ′i (xi, ui) + Tθi(xi, ui, t) such that if

ui = ūi, where ūi ∈ Ui is a constant vector, then the representation of the system of

Eq. 4.1 in the ζi coordinate takes the following form:

ζ̇i = Aiζi +Biφi(ζi, ūi) + ηi(ζi, ūi, t)

yi = Ciζi

(4.3)

where ζi = [ζi1, . . . , ζipi ]
T ∈ Rni , Ai = blockdiag[Ai1, . . ., Aipi ],

Bi = blockdiag[Bi1, . . ., Bipi ], Ci = blockdiag[Ci1, . . ., Cipi ], T
′
i = φi = [φi1, . . . , φipi ]

T,

Tθi = ηi = [ηi1, . . . , ηipi ]
T, ζik = [ζik,1, . . . , ζik,ωik ]

T, Aik =

0 Iωik−1

0 0

, with Iωik−1

being a (ωik − 1) × (ωik − 1) identity matrix, Bik = [0T
ωik−1, 1]T, with 0ωik−1 being a

vector of zeros of dimension ωik − 1, Cik = [1, 0T
ωik−1], φik(ζ, ū) = φik,ωik(ζ, ū), with

φik,ωik(ζi, ūi) defined through the successive differentiation of hi(xi): φik,1(ζi, ūi) =

hi(xi) and φik,j(ζi, ūi) =
∂φik,j−1

∂xi
[fi(xi) + gik(xi)ūi + Ii(xi, ūi, ỹi)] and ηik(ζi, ūi, t) =

ηik,ωik(ζi, ūi, t), with ηik,ωik(ζi, ūi, t) defined: ηik,1(ζi, ūi, t) = 0 and ηik,j(ζi, ūi, t) =

∂φik,j−1

∂x
[θi(xi, ui, t) + di(xi, ui, x̃i, ỹi, t)] . Furthermore, T ′i : Rni × Ui → Rn

i , Tθi :

Rni ×Ui → Rn
i , T ′−1

i : Rni ×Ui → Rni , and T−1
θi

: Rni ×Ui → Rni are C1 functions on
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their domains of definition, ηi,j denotes the uncertainty in the new coordinate system

and ‖ηi,j(ζi, ui, t)‖ ≤ η̄i,j, where η̄i,j is a known positive constant.

Remark 4.3. Note the above assumptions simply state that the assumptions typi-

cally utilized for centralized robust FDI design in Chapter 3 continue to hold in the

networked system. Furthermore, these assumptions can be verified off-line either in

a centralized or a decentralized fashion.

We next describe the utilized high-gain observer formulation, which is coupled

with sample-and-hold control. In the closed-loop system, the input is prescribed at

discrete times tk = k∆, k = 0, . . . ,∞, with ∆ being the hold-time of the control

action. For t ∈ [tk, tk+1), the observer is formulated as follows (see Chapter 3 for

more on this):
˙̂
ζi = Aiζ̂i +Hi(yi − Ciζ̂i)

ζ̂i(tk) = T ′i (x̂i(tk), ui(tk))

(4.4)

where x̂i and ζ̂i denote the estimates of xi and ζi, respectively, Hi = blockdiag[Hi1,

. . ., Hipi ] is the observer gain, Hik =
[aik,1

ε
, . . . ,

aik,ωik
εωik

]T
, with sωik + aik,1s

ωik−1 +

· · · + aik,ωik = 0 being a Hurwitz polynomial and εi being a positive constant to be

specified, x̂i(tk) = T ′−1
i (ζ̂i(t

−
k ), ui(tk−1))) for k = 1, . . . ,∞. Note that Eq. 4.4 results

from choosing φ0i(·, ·), the nominal model of φi, as zero. This choice satisfies the

global boundedness requirement (see Du and Mhaskar (2014) and Shahnazari and

Mhaskar (2016)). The initial state of the observer is denoted by x̂0i := x̂i(0), which

takes values from any compact set Qi ⊆ Rni . In the transformed coordinate, the

state estimate ζ̂i is re-initialized at the discrete times to account for the possible

discrete changes in the input and ensuring that the resulting state estimates remain

continuous.
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Preparatory to the presentation of results on the convergence of the observer, we

first state an important property of the scaled estimation error. To this end, let

Di = blockdiag[Di1, . . ., Dipi ], where Dik = diag[εωik−1, . . ., 1], and define the scaled

estimation error ei = D−1
i (ζi− ζ̂i) ∈ Rni . For t ∈ [tk, tk+1), the scaled estimation error

evolves as follows:

εiėi = A0iei + εiBiφi(ζi, ui(tk)) + εiηi(ζi, ui(tk), t)

ei(tk) = D−1
i [Ti(xi(tk), ui(tk), t)− T ′i (x̂i(tk), ui(tk), t)]

(4.5)

where A0i = blockdiag[A0,i1, . . . , A0,ipi ], A0,ik = [aik, bik], aik = [−aik,1, . . . ,−aik,ωik ]T,

and bik = [Iωik−1, 0ωik−1]T.

Applying the change of time variable τi = t
εi

and setting εi = 0, the boundary-layer

system is given by

dei
dτi

= A0iei (4.6)

For the boundary-layer system, we define a Lyapunov function W (ei) = eT
i P0iei,

where P0i is the symmetric positive definite solution of the Lyapunov function AT
0i
P0i+

P0iA0i = −Ii. Let λmini and λmaxi denote the minimum and maximum eigenvalues of

P0i , respectively. Proposition 4.1 below is similar to a result obtained in the literature

(see e.g., Atassi and Khalil (1999); Du and Mhaskar (2014)), and hence stated without

proof.

Proposition 4.1. Consider the ith subsystem of the network presented by Eq. 4.1,

for which Assumptions 4.1 and 4.3 hold. If x0i := xi(0) ∈ Ωbi , where 0 < bi < ci, then

given b′i ∈ (bi, ci), there exists a finite time tei , independent of εi, such that xi(t) ∈ Ωb′i

for all t ∈ [0, tei ]. Furthermore, there exists σi > 0, independent of εi, such that for

any ei(t) ∈ Woi := {ei ∈ Rni : Wi(ei) ≥ σiε
2
i } and xi(t) ∈ Ωci , Ẇi ≤ − 1

2εi
‖ei‖2.
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Theorem 4.1 formalizes the convergence property of observer design and stability

of the ith closed loop subsystem in the presence of uncertainty. The results below

is similar to the result for a centralized design presented in Chapter 3, and hence is

stated without proof.

Theorem 4.1. Consider the ith subsystem of the network presented by Eq. 4.1, for

which Assumptions 4.1-4.3 hold, under a stabilizing local control law ui. Given any

0 < bi < ci, di > 0, d′i > 0 and θ̄i, there exist ∆∗i (θ̄i) > 0 and ε∗i (θ̄i) > 0 such

that if ∆ ∈ (0,∆∗i (θ̄i)], εi ∈ (0, ε∗i (θ̄i)], and x0i ∈ Ωbi, then 1) there exists an integer

k′i > 0 such that ‖x̂i(tki) − xi(tki)‖ ≤ d′i ∀ tki ≥ tk′i, and 2) xi(t) ∈ Ωci ∀ ti ≥ 0 and

lim supt→∞ ‖xi(t)‖ ≤ di.

4.4 Distributed fault detection and isolation de-

sign

The distributed FDI architecture is composed of M communicating LFDI schemes

with each monitoring one of the network subsystems. The communications are lim-

ited to the LFDI schemes corresponding to the neighboring subsystems. The ith

LFDI scheme requires the prescribed value of inputs, outputs measurements of the

ith subsystem and measurements of only the outputs from the neighbor subsystems

that affect the ith subsystem. Note that the measurements of the outputs from the

neighbor subsystems that affect the ith subsystem are communicated by local infor-

mation transmitter in each subsystem that can be a part of the LFDI schemes if a

model based controller is not in place. The LFDI schemes also communicate to share
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the available information regarding the diagnosed faults in the shared interconnec-

tions with the ith subsystem. Faults are classified into two categories based on the

fault location:

1. Local faults: This type of faults does not take place in the shared sensors with

other subsystems.

2. Distributed faults: This type of faults takes place in the shared sensors with

other subsystems.

The local faults are diagnosed using the corresponding LFDI scheme, if they can

be isolated by the corresponding LFDI scheme, i.e. they are distinguishable and

isolable in their corresponding LFDI scheme (for definition of distinguishable fault

scenarios and isolable faults see e.g., Shahnazari et al. (2016); Zhang et al. (2010b)).

In this work, it is assumed that all of the possible fault scenarios are distinguishable.

The distributed faults are diagnosed using the LFDI schemes corresponding to their

subsystem of origin. The communication between LFDI schemes allows the LFDI

schemes to function as intended, in the presence of distributed faults.

4.4.1 Residual generation

We consider the case where at most two faults take place in the ith subsystem.

By using the principles of combinatorics, the number of possible distinguishable fault

scenarios corresponding to the ith subsystem is nfi = mi+
mi(mi−1)

2
+pi+

pi(pi−1)
2

+mipi,

where, for the ith subsystem, mi and pi denote the number of actuator and sensor

faults originated in the ith subsystem, respectively. Residuals are designed using the
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methodology presented in Du et al. (2013) for centralized design, albeit for the local

subsystem.

Before proceeding to present the FDI mechanism, we need to employ the following

assumption:

Assumption 4.4. The ith subsystem state vector xi remains bounded before and

after fault occurrence i.e., there exist a positive constant dgi such that ‖xi‖ ≤ dgi ,

∀t > 0

Remark 4.4. Note that Assumption 4.4 states that the proposed FDI methodology

remains applicable under any stabilizing output feedback controller implemented in a

discrete fashion as long as each subsystem state evolves within a compact set before

and after fault occurrence.

In particular, the residual for a fault scenario is defined as the norm of the dif-

ference between the state prediction and the state estimate for the component of the

ith subsystem that does not require the value of the corresponding actuator/sensor

in the calculations (see e.g., Du et al. (2013)). A residual dedicated to a particular

fault scenario is designed so it is only insensitive to that particular fault scenario but

sensitive to the other fault scenarios (we thus design so-called generalized residuals).

To this end, let Θf,ji denote the fault vector (sensor/and or actuator) for the jth

fault scenario where j = 1, . . . , nfi , and Θ̄f,ji the remaining fault variable vector (the

remaining uf and yf variables). Specifically, let uf,ji and yf,ji denote the vectors of

input and output variables subject to faults Θf,ji , respectively. Let ūf,ji and ȳf,ji de-

note the vectors of the rest of the input and output variables, respectively. To design

the insensitive residual to Θf,ji , there must exist at least one observer that can be
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designed without using the inputs subject to fault or the faulty measurements that

belong to Θf,ji . Assumption 4.5 establishes this.

Assumption 4.5. Du et al. (2013) Assumption 4.3 holds for the ith subsystem of

networked system described Eq. 4.1, with ūf,ji and ȳf,ji being the vectors of input

and output variables, respectively, j = 1, . . . , nfi where nfi is the number of possible

fault scenarios corresponding to the ith subsystem.

Under Assumption 4.5, the state observer for the jth fault scenario is designed as

follow :
˙̂
ζ l,i = Alζ̂ l,i +H l,i(ȳf,ji − C

l,iζ̂j)

˙̂
ζ l,i(tk) = T ′l,i(x̂j(tk), ūf,ji(tk))

(4.7)

where l represents the lth observer designed for the ith FDI scheme with l = 1, . . . , pi+

pi(pi−1)
2

.

To define residuals, we need to calculate the expected plant trajectories. To

this end, we consider a component of ith subsystem of Eq. 4.1 for which the state

variables are all of those such that no inputs in ufji appear on the right-hand side

of the corresponding ODE’s. Let xsub,j,i denote the vector of state variables for the

component, and x̄sub,i,i the vector of the rest of the state variables. Without loss of

generality, the model of the component can be described as follows:

ẋsub,j,i = fsub,j,i([x
T
sub,j,i, x̄

T
sub,j,i]

T) +Gsub,j,i([x
T
sub,j,i, x̄

T
sub,j]

T)ūf,j,i

+ Isub,j,i([x
T
sub,j,i, x̄

T
sub,j,i]

T, ūf,j,i, ỹsub,j,i) + θsub,j,i([x
T
sub,j,i, x̄

T
sub,j,i]

T, ūf,j,i, t)

+ dsub,j,i([x
T
sub,j,i, x̄

T
sub,j,i]

T, ūf,j,i, x̃sub,j,i, ỹsub,j,i, t)

(4.8)
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where fsub,j,i(·), Gsub,j,i(·), Isub,j,i(·), θsub,j,i(·) and dsub,j,i(·) are appropriately defined.

For each faulty scenario, the expected component trajectory is computed using the

known part of the system model and the state estimates generated by the lth ob-

server that does not require values of the variables included in the fault vector Θf,j,i.

Specifically, for t ∈ [tk−T , tk), a prediction model is designed as follows:

˙̃xsub,j,l,i = fsub,j,i([x̃
T
sub,j,l,i, ˆ̄xT

sub,j,l,i]
T) +Gsub,j,i([x̃

T
sub,j,l,i, ˆ̄xT

sub,j,l,i]
T)ūf,j,i

+ Isub,j,i([[x̃
T
sub,j,l,i, ˆ̄xT

sub,j,l,i]
T, ūf,j,i, ỹsub,j,i)

(4.9)

where x̃sub,j,l,i is the state of the prediction model, ˆ̄xsub,j,l,i is the estimate of x̄sub,j,i

provided by the lth observer, and T is the prediction horizon: T = 1 if 0 < tk ≤ tk′ ;

T = k − k′ if tk′ < tk ≤ tk′+Tp ; and T = Tp if tk > tk′+Tp , with a positive integer Tp

being a chosen prediction horizon. The initial condition for the prediction model is

the state estimate at time tk−T : x̃sub,j,l,i(tk−T ) = x̂sub,j,l,i(tk−T ). Let x̃sub,j,l,i(tk) denote

the prediction for the state vector xsub,j,i at time tk. By solving Eq. 4.9, the state

prediction at time tk is obtained.

For the jth faulty scenario in the ith subsystem, the residual (at the time instance

tk+1) is defined as follows:

rj,k+1,i = ‖x̃sub,j,l,i(tk+1)− x̂sub,j,l,i(tk+1)‖ (4.10)

Note that in this work we assume all of the fault scenarios are distinguishable.

Assumption 4.6 presents this. To this end, let Θj,i and rj,i,ins denote the jth fault

scenario corresponding to the ith subsystem and the set of insensitive residuals cor-

responding to the Θj,i, respectively.
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Assumption 4.6. The conditions presented for centralized FDI Shahnazari et al.

(2016) hold for all of the fault scenarios corresponding to the ith subsystem i.e., Θj,i

is distinguishable if and only if there exists a one-to-one mapping between every fault

scenario and rj,i,ins, where j,∈ {1, . . . , nf,i}.

Remark 4.5. Note that Assumption 4.6 states there exist enough analytical redun-

dancy in the system model that enables isolation of all possible fault scenarios in

the absence of uncertainty regardless of the type of estimation scheme being used

for generating residuals. However, in the presence of uncertainty, satisfying Assump-

tion 4.6 is only a necessary condition for fault isolation and a fault can be diagnosed

only if its effect does not get compensated by uncertainty and as a result, all of the

corresponding sensitive residuals breach their thresholds. This is due to the inherent

trade-off between robustness and uncertainty that is discussed later in the manuscript

(see the existing results in the literature for more discussion on this issue ( see e.g.,

Chapter 3, Zhang et al. (2010b); Zhang (2011))).

4.4.2 Threshold design

In this section, we present the threshold design. For each LFDI scheme, thresholds

are selected by explicitly accounting for the effect of uncertainty and updated upon

isolation of a distributed fault affecting the corresponding LFDI scheme. In this

way, robustness of the LFDI scheme is guaranteed with respect to uncertainty and

distributed faults affecting the corresponding subsystem. To this end, consider the

scenario where a fault in one of the sensors corresponding to the ỹi is isolated by

its corresponding LFDI scheme and let us assume that the origin of the fault in

ỹi is the qth subsystem. In this case, the qth LFDI scheme notifies the ith LFDI
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scheme and sends the healthy estimates of ỹi to the ith LFDI scheme to replace the

faulty measurements. Then thresholds of the ith LFDI scheme are updated using the

provided healthy estimates to make sure the ith LFDI scheme functions as intended.

Thus the detectability and isolability properties of the ith LFDI scheme are retained

in the presence of distributed faults.

Before defining thresholds corresponding to each residual, we need the following

result presented as Lemma 4.1. To this end, let tfk,dis,i denote the time of isolation

of distributed fault Θf,dis,i in ỹi,Θf,dis,i by the corresponding LFDI scheme, where

ỹΘf,dis,i,i denotes the vector of shared outputs affecting the ith subsystem subject to

fault Θf,dis,i, ¯̃yΘf,dis,i,i denotes the shared outputs affecting the ith subsystem that are

not subject to to fault Θf,dis,i and ˆ̃yΘf,dis,i,i denotes the healthy estimate of ỹΘf,dis,i,i

provided by the corresponding LFDI scheme.

Lemma 4.1. Consider the ith subsystem of network presented by Eq. 4.1, for which

Assumptions 4.1-4.6 hold and residuals for each sample time are defined as in Eq.

4.10. Then under fault free condition, for tk′ ≤ tk ≤ tfk,dis,i (see Theorem 4.1 for

definition of k′):

rj,l,i,k+1 ≤ L2,sub,j,l,iβ
j,l,i
3 (ε)Es,sub,j,l,i + θ̄sub,j,l,i∆ + Ej,l,i

p
(4.11)

and for tfk,dis < tk

rj,l,i,k+1 ≤ L2,sub,j,l,iβ
j,l,i
3 (ε)Es,sub,j,l,i + θ̄sub,j,l,i∆ + Êj,l,i

p
(4.12)

where Es,sub,j,l,i = e−αsub,j,l,i∆e∗,j,ib +Kj
B,sub,j,l,iK

j
φ,sub,j,l,i

1−e−αsub,j,l,i∆
αsub,j,l,i

+ 1−e−αsub,j,l,i∆
αsub,j,l,i
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η̄sub,j,l,i, sub and l refer to the corresponding subsystem and observer used for defin-

ing rj,i, respectively, where j refers to jth residual, e∗,jb is the upper bound on

‖ejsub,j,l,i(tk)‖, KBj,i is spectrum bound of the matrix ‖Bj,i‖, αj,i is the spectrum

bound of the matrix
Aj,i0

ε
and Ej,i

p = (M j,i +M ′j,i)∆ +Kj,i
ẽ , where

‖(f̃sub,j,i − fsub,j,i([x
T
sub,j,i, x̄

T
sub,j,i]

T))‖ + ‖(G̃sub,j,i − Gsub,j,i([x
T
sub,j,i, x̄

T
sub,j,i]

T))ūf,j,i‖ +

θ̄sub,j,i ≤ M j,i, ‖Ĩsub,j,i − Isub,j,i([[x
T
sub,j,l,i, x̄

T
sub,j,l,i]

T, ūf,j,i, ỹsub,j,i)‖ + d̄sub,j,i ≤ M ′j,i,

where f̃sub,j,i = fsub,j,i([x̃
T
sub,j,l,i, ˆ̄xT

sub,j,l,i]
T), G̃sub,i = Gsub,i([x̃

T
sub,i,j, ˆ̄xT

sub,i,j]
T),

Ĩsub,i = Isub,i([[x̃
T
sub,j,l,i, ˆ̄xT

sub,j,l,i]
T, ūf,j,i, ỹsub,j,i), Kẽj,i is the upper bound on ‖ẽj,i,k(tk)‖

which is constant, where ẽj,i,k = x̃sub,j,l,i − xsub,j and x̃sub,j,l,i is state of predic-

tion model defined in Du et al. (2013), Êj,i
p = (M j,i + M̂ ′j,i)∆ + K̂j,i

ẽ , ‖Ĩsub,j,i −

Isub,j,i([[x
T
sub,j,l,i, x̄

T
sub,j,l,i]

T, ūf,j,i, ỹsub,j,i)‖+ d̄sub,j,i ≤ M̂ ′j,i where

Ĩsub,j,l,i = Isub,j,l,i([[x̃
T
sub,j,l,i, ˆ̄xT

sub,j,l,i]
T, ūf,j,i, ˆ̃yΘf,dis,i,i,

¯̃yΘf,dis,i,i and ‖ẽj,i,k(tk)‖ ≤ K̂ẽj,i .

Proof. By using triangular inequality, Eq. 4.10 turns to the following form:

ri,k+1 = ‖x̃sub,i,j(tk+1)− x̂sub,i,j(tk+1)‖

≤ ‖x̃sub,i,j(tk+1)− xsub,i(tk+1)‖+ ‖xsub,i(tk+1)− x̂sub,i,j(tk+1)‖

≤ sup ‖x̃sub,i,j(tk+1)− xsub,i(tk+1)‖+ sup ‖xsub,i(tk+1)− x̂sub,i,j(tk+1)‖

(4.13)

Consider the prediction model corresponding to fault Θfi :

˙̃xsub,j,l,i = fsub,j,i([x̃
T
sub,j,l,i, ˆ̄xT

sub,j,l,i]
T) +Gsub,j,i([x̃

T
sub,j,l,i, ˆ̄xT

sub,j,l,i]
T)ūf,j,i

+ Isub,j,i([[x̃
T
sub,j,l,i, ˆ̄xT

sub,j,l,i]
T, ūf,j,i, ỹsub,j,dis,dis,i, ỹsub,j,dis,indis,i)

+ dsub,j,i([x
T
sub,j,i, x̄

T
sub,j,i]

T, ūf,j,i, x̃sub,j,i, ỹsub,j,i, t)

(4.14)

where x̃sub,i,j is the state of the prediction model, ˆ̄xsub,i,j is the estimate of x̄sub,i
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provided by the corresponding observer.

By defining ẽi,k = x̃sub,i,j − xsub,i, for tk′ ≤ tk ≤ tfk,dis, we obtain:

˙̃ei,k = fsub,i([x̃
T
sub,i,j, ˆ̄xT

sub,i,j]
T)− fsub,i([xT

sub,i, x̄
T
sub,i]

T) + (Gsub,i([x̃
T
sub,i,j, ˆ̄xT

sub,i,j]
T)

−Gsub,i([x
T
sub,i, x̄

T
sub,i]

T))ūf,i − θsub,i([xT
sub,i, x̄

T
sub,i]

T, ūf,i, t)

+ Isub,j,i([[x̃
T
sub,j,l,i, ˆ̄xT

sub,j,l,i]
T, ūf,j,i, ỹsub,j,i)

− Isub,j,i([[xT
sub,j,l,i, x̄

T
sub,j,l,i]

T, ūf,j,i, ỹsub,j,i)

− dsub,j,i([xT
sub,j,i, x̄

T
sub,j,i]

T, ūf,j,i, x̃sub,j,i, ỹsub,j,i, t)

(4.15)

For sake of brevity, we define f̃sub,j,l,i = fsub,j,l,i([x̃
T
sub,j,l,i, ˆ̄xT

sub,j,l,i]
T),

G̃sub,j,l,i = Gsub,j,l,i([x̃
T
sub,j,l,i, ˆ̄xT

sub,j,l,i]
T) and Ĩsub,j,l,i

= Isub,j,i([[x̃
T
sub,j,l,i, ˆ̄xT

sub,j,l,i]
T, ūf,j,i, ỹsub,j,i). By integration, we get:

ẽj,i,k(tk+1) =

∫ tk+1

tk

(f̃sub,j,i − fsub,j,i([xT
sub,i, x̄

T
sub,j,i]

T))dτ

+

∫ tk+1

tk

(G̃sub,j,i −Gsub,j,i([x
T
sub,j,i, x̄

T
sub,j,i]

T))ūf,j,i − θsub,j,i + Ĩsub,j,i

− Isub,j,i([[xT
sub,j,l,i, x̄

T
sub,j,l,i]

T, ūf,j,i, ỹsub,j,i)

− dsub,j,i([xT
sub,j,i, x̄

T
sub,j,i]

T, ūf,j,i, x̃sub,j,i, ỹsub,j,i, t)dτ + ẽj,i,k(tk)

(4.16)

Under Assumptions 4.1 and 4.3, and by applying the triangular inequality, we obtain:

‖ẽj,i,k(tk+1)‖ ≤ (M j,i +M ′j,i)∆ +Kẽj,i
(4.17)

where ‖(f̃sub,j,i−fsub,j,i([xT
sub,j,i, x̄

T
sub,j,i]

T))‖+‖(G̃sub,j,i−Gsub,j,i([x
T
sub,j,i, x̄

T
sub,j,i]

T))ūf,j,i‖+

θ̄sub,j,i ≤ M j,i, ‖Ĩsub,j,i − Isub,j,i([[xT
sub,j,l,i, x̄

T
sub,j,l,i]

T, ūf,j,i, ỹsub,j,i)‖+ d̄sub,j,i ≤ M ′j,i and

‖ẽj,i,k(tk)‖ ≤ Kẽj,i . For tk > tfk,dis, by replacing part of ỹsub,j,i that is subject to
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distributed fault Θf,dis,i in Ĩsub,j,i of Eq. 4.15, integration from tk,dis to tk,dis + 1 and

using triangular inequality, we get:

‖ẽj,i,k(tk+1)‖ ≤ (M j,i + M̂ ′j,i)∆ + K̂ẽj,i
(4.18)

where Ĩsub,j,l,i = Isub,j,l,i([x̃
T
sub,j,l,i, ˆ̄xT

sub,j,l,i]
T, ūf,j,i, ˆ̃yΘf,dis,i,i,

¯̃yΘf,dis,i,i) and ‖ẽj,i,k(tk)‖ ≤

K̂ẽj,i .

Now we need to determine the supremum for ‖xsub,j,l,i(tk+1)− x̂sub,j,l,i(tk+1)‖. For

t ∈ [tk, tk+1), the scaled estimation error corresponding to jth residual of the ith

LFDI scheme evolves as follows:

˙ej,i =
1

εj,i
Aj,i0 e

j,i +Bj,i(φj,i(ūfi)− φ
j,i
0 (ūfi)) + ηj,i (4.19)

Using the same line of argument as the proof of Lemma 3.1 in Chapter 3, we get:

‖xsub,j,l,i − x̂sub,j,l,i‖ ≤ L2,sub,,j,l,iβ3(εl,i)Es,sub,j,l,i + θ̄sub,j,i∆ (4.20)

where Es,sub,i,l,j = e−αsub,i,l,j∆‖eisub,j,l,i(tk)‖+KB,sub,j,l,iKφ,,sub,j,l,i
1−e−αsub,j,l,i∆

αsub,j,l,i

+ 1−e−αsub,j,l,i∆
αsub,j,l,i

η̄sub,j,l,i, αj,i, KBj,i , Kφj,i are the spectrum bound of the matrices
Aj,i0

εl,i
,

Bj,i, (φj,i(ζj,i, ūfj,i , t) − φj,i0 (ζ̂j, i, ūfj,i , t)) respectively, e∗,j,ib is the upper bound on

‖ej,i(tk)‖ , β3(εl,i) = max{1, εωmax−1
l,i } and L2,l,i > 0 is Lipschitz constant that sat-

isfies the following inequality:

‖xj,i − x̂j,i‖ = ‖T−1
l,i (ζl,i, u)− T ′−1

l,i (ζ̂l,i, ul,i)‖ ≤ L2,l,iβ3(εl,i)Es,j,l,i + θ̄j,i∆ (4.21)
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Using Eqs. 4.13, 4.18 and 4.20, for t̃k′ ≤ tk ≤ tfk,dis, rj,l,i,k+1 is bounded as below:

rj,l,i,k+1 ≤ L2,sub,j,l,iβ
i
3(εl,i)Es,sub,j,l,i + θ̄sub,j,l,i∆ + Ej,i

p
(4.22)

where Ej,i
p = (M j,i +M ′j,i)∆ +Kj,i

ẽ and for tk > tfk,dis,

rj,l,i,k+1 ≤ L2,sub,j,l,iβ
i
3(εl,i)Es,sub,j,l,i + θ̄sub,j,l,i∆ + Êj,i

p
(4.23)

where Êj,i
p = (M j,i + M̂ ′j,i)∆ + K̂j,i

ẽ . This concludes proof of Lemma 4.1.

We select the threshold corresponding to each residual as below:

δj,i =

 L2,sub,j,l,iβ
j,i
3 (εj,i)Es,sub,j,l,i + θ̄sub,j,i∆ + Ej,i

p , tk′ ≤ tk ≤ tfk,dis,i

L2,sub,j,l,iβ
i
3(εl,i)Es,sub,j,l,i + θ̄sub,j,l,i∆ + Êj,i

p , tk > tfk,dis,i

(4.24)

Thus, it follows from Lemma 1 that under fault free condition rj,i,k+1 ≤ δj,i i.e., there

is no false alarm before occurrence of local faults in the ith subsystem.

Remark 4.6. Note that in the case of network systems with relatively low degree

of nonlinearity like interconnected inverted pendulums mounted on carts of Zhang

and Zhang (2012) or series of tanks of Ferrari et al. (2012) and Boem et al. (2017),

the parameters in Eq. 4.24 can be specified and as a result, the Eq. 4.24 can be

used directly for defining thresholds. However, when it comes to highly nonlinear

networked systems like the reactor-separator example used here, it is not possible to

find all of the constants in the Eq. 4.24. Instead we used simulations to determine

the suprema of ‖x̃sub,j,l,i(tk+1)−xsub,j,l,i(tk+1)‖ and ‖xsub,j,l,i(tk+1)− x̂sub,j,l,i(tk+1)‖, to

in turn utilize as the threshold values suggested by Eq. 4.24. Note that the main
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Figure 4.1: Schematic of the proposed distributed FDI framework for a network with
three subsystems. LFDI schemes communicate to exchange information. This results
in retaining detectability and isolability properties of LFDI schemes in the presence
of fault in the shared interconnections between subsystems of the network.

purpose of deriving a mathematical formula for thresholds (Eq. 4.24) in this work is

to rigorously establish the ability of the proposed distributed framework to achieve

fault detection and isolation in the presence of uncertainty and fault in the shared

interconnections of the network.

Note that the ith FDI filter receives the following information from the neighboring

LFDI schemes:

Zi =

 ỹi, tk′ ≤ tk ≤ tfk,dis,i

ˆ̃yi, tfk,dis,i < tk

(4.25)

where ˆ̃yi = [ˆ̃yΘf,dis,i,i,
¯̃yΘf,dis,i,i]

T .

Figure 4.1 shows a schematic of the proposed distributed FDI framework. A

fault in the ith subsystem is detected when at least one of the residuals in the ith

LFDI scheme breaches its thresholds i.e. rj,i > δj,i for some j in the LFDI scheme.

We denote time of fault detection as td,i. Corollary 4.1 establishes that a residual

designed to be insensitive to a specific fault scenario (using the existing approach in
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Du et al. (2013)) retains its insensitive property even in the presence of uncertainty

when thresholds are chosen using the proposed approach. To this end, let rj,iins denote

the vector of residuals in the ith LFDI scheme designed to be insensitive to the jth

fault scenario Θfj,i in the ith scheme. Note that the proof is omitted here since it

follows the same line of arguments as the results for FDI in the presence of uncertainty

in Chapter 3.

Corollary 4.1. Consider the ith subsystem of networked system described by Eq.

4.1, for which Assumptions 4.1- 4.6 hold and the fault detection and isolation frame-

work characterized by residuals and thresholds described by Eq. 4.10 and Eq. 4.24,

respectively and with Θf,j,i(t) 6= 0, then ro ∈ rj,iins, ro ≤ δj,i ∀ t > tf,i ≥ tk′.

Detectability Analysis for Simultaneous Actuator and Sensor Faults

Fault detection only happens when at least one of the sensitive residuals to a fault

scenario breaches its thresholds. However, in the presence of uncertainty, depending

on fault functionality, the fault effect can be compensated by uncertainty and as

a result, the corresponding sensitive residual does not breach its threshold (see e.g.,

Frank (1990); Chen and Patton (2012); Isermann (2006); Zhang et al. (2010b); Blanke

et al. (2006); Ding (2008)). Thus it is required to establish the conditions necessary

and sufficient for the residuals designed to be sensitive to a particular fault to breach

their thresholds in the presence of uncertainty via a detectability analysis. Theorem

4.2 presents the sufficient conditions for simultaneous single actuator and single sensor

faults to be detectable by the proposed FDI framework. The proof of Theorem 4.2 is

similar to the proof for the centralized FDI methodology presented in Chapter 3 and

hence is omitted here. Let rūfj,i ,ȳfj,i denote a sensitive residual to simultaneous faults
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ufj,i and yfj,i defined as:

rūfj,i ,ȳfj,i ,k+1 = ‖x̃sub,ūfj,i ,ȳfj,i (tk+1)− x̂sub,ūfj,i ,ȳfj,i (tk+1)‖ (4.26)

Theorem 4.2. Consider the ith subsystem of the networked system described by Eq.

4.1, for which Assumptions 4.1-4.6 hold and the fault detection and isolation frame-

work characterized by residual and threshold described by Eq. 4.10 and Eq. 4.24,

respectively, and that a single actuator ufj,i and single sensor fault yfj,i occur simul-

taneously at time tf,i: If there exists an interval of time [tf , td] where tf ≥ tk′, such

that the fault functions ufj,i and yfj,i satisfy

‖ 1

L′2,ūfj,i
β
ūfj,i ,ȳfj,i
3 (εl,i)

‖ϑ(
A0,sub,ūfj,i ,ȳfj,i

εl,i
, Hsub,ūfj,i ,ȳfj,i

, yfj,i)‖

+ ‖Devtf ...td(x̃T
sub,ūfj,i ,ȳfj,i

, ūfj,i , fdl,i , x
T
sub,ūfj,i ,ȳfj,i

, ufj,i)‖

+ ‖fd,ufj,i‖ − δ
′
ūfj,i ,ȳfj,i

− δūfj,i ,ȳfj,i‖ > δūfj,i ,ȳfj,i

(4.27)

where Devtf ...td(x̃
T
sub,ūfj,i ,ȳfj,i

, ūfj,i , fdl,i , x
T
sub,ūfj,i ,ȳfj,i

, ufj,i)

=
∫ tf+1

tf
(dev(x̃T

sub,ūfj,i ,ȳfi
, ūf,i, fdj)−Gsub,ūfi ,ȳfi

([xT
sub,ūfj,i ,ȳfj,i

, x̄T
sub,ūfj,i ,ȳfj,i

]T)ufj,i)dτ+· · ·+∫ td
td−1

(dev(x̃T
sub,ūfj,i ,ȳfj,i

, ūf,i, fdl,i)−Gsub,ūfj,i ,ȳfj,i
([xT

sub,ūfj,i ,ȳfj,i
, x̄T

sub,ūfj,i ,ȳfj,i
]T)ufj,i)dτ ,

dev(x̃T
sub,ūfi ,ȳfj,i

, x̃T
sub,ufj,i ,ȳfj,i

, usub,i, fdl,i) = f̃sub,ūfj,i ,ȳfj,i ([x̃
T
sub,ūfj,i ,ȳfj,i

, ˆ̄xT
sub,ūfj,i ,ȳfj,i

]T) +

G̃sub,ūfj,i ,ȳfj,i
([x̃T

sub,ūfi ,ȳfi
, ˆ̄xT

sub,ūfj,i ,ȳfj,i
]T)usub,j,i

+ Ĩsub,ūfj,i ,ȳfj,i ,t([[x̃
T
sub,ūfj,i ,ȳfj,i

, ˆ̄xT
sub,ūfj,i ,ȳfj,i

]T, ūf,ūfj,i ,ȳfj,i , ỹsub,ūfj,i ,ȳfj,i )

− f̃sub,ūfj,i ,ȳfj,i ([x̃
T
sub,ufj,i ,yfj,i

, ˆ̄xT
sub,ufj,i ,yfj,i

]T)− G̃sub,ūfj,i ,ȳfj,i
([x̃T

sub,ufj,i ,yfj,i
, ˆ̄xT

sub,ufj,i ,yfj,i
]T)

usub,j,i−Ĩsub,ufj,i ,yfj,i ,t([[x̃
T
sub,ufj,i ,yfj,i

, ˆ̄xT
sub,ufj,i ,yfj,i

]T, ūf,ufj,i ,yfj,i , ỹsub,ufj,i ,yfj,i ), where usub,j,i
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is the subset of inputs corresponding to Gsub,ūfi,j ,ȳfi,j
, where l, i refers to the corre-

sponding observer used for defining rūfi,j ,ȳfi,j , where

Ĩsub,ūfj,i ,ȳfj,i ,t =



Ĩsub,ūfj,i ,ȳfj,i ([x̃
T
sub,ūfj,i ,ȳfj,i

, ˆ̄xT
sub,ūfj,i ,ȳfj,i

]T, ūf,ūfj,i ,ȳfj,i ,

ỹsub,ūfj,i ,ȳfj,i ), tf ≤ tfk,dis

Ĩsub,ūfj,i ,ȳfj,i ([x̃
T
sub,ūfj,i ,ȳfj,i

, ˆ̄xT
sub,ūfj,i ,ȳfj,i

]T, ūf,ūfj,i ,ȳfj,i ,
ˆ̃yΘf,dis,i,ūfj,i ,ȳfj,i

,

¯̃yΘf,dis,i,ūfj,i ,ȳfj,i
), tf > tfk,dis

(4.28)

and fdl,i is the deviation of state estimates value from system states after fault occur-

rence:

fdl,i = x̂ūfj,i ,ȳfj,i − x̂ufj,i ,yfj,i = T ′−1
l,i (ζ̂ūfj,i ,ȳfj,i , uj,i)− T

′−1
l,i (ζ̂faultfree,ūfj,i ,ȳfj,i , ufj,i + uj,i)

= T ′−1
l,i (ζ̂ūfj,i ,ȳfj,i , uj,i)− T

′−1
l,i (ζ̂ūfj,i ,ȳfj,i , ufj,i + uj,i) + T ′−1

l,i (ζ̂ūfj,i ,ȳfj,i , ufj,i + uj,i)

− T ′−1
l,i (ζ̂faultfree,ūfj,i ,ȳfj,i , ufj,i + uj,i)

(4.29)

where ζ̂ūfj,i ,ȳfj,i = ζ̂faultfree,ūfj,i ,ȳfj,i+Hūfj,i ,ȳfj,i

∫ tf+1

tf
e

(Aj,i−Hūfj,i ,ȳfj,iC)(tf+1−τ)
yfj,idτ+. . .

+Hūfj,i ,ȳfj,i

∫ td
td−1

e
(Aj,i−Hūfj,i ,ȳfj,iCj,i)(td−τ)

yfj,idτ , ϑ(
A0,sub,j,i

εl,i
, Hsub,ūfj,i ,ȳfj,i

, yfj,i) =∫ tf+1

tf
e

A0,sub,ūfj,i
,ȳfj,i

εl,i
(tf+1−τ)

[Dsub,ūfj,i ,ȳfj,i
]−1Hsub,ūfj,i ,ȳfj,i

yfj,idτ + . . .

+
∫ td
td−1

e

A0,sub,ūfj,i
,ȳfj,i

εl,i
(td−τ)

[Dsub,ūfj,i ,ȳfj,i
]−1Hsub,ūfj,i ,ȳfj,i

yfj,idτ ,

fd,ufj,i = T−1
j (ζūfj,i ,ȳfj,i , ufi + ui) − T−1

j (ζūfj,i ,ȳfj,i , ui) and δ′ūfj,i ,ȳfj,i
= E ′s,ūfj,i ,ȳfj,i

=

( 1

L′2,uj,i
β
ūfj,i

,ȳfj,i
3 (εl,i)

− L2,ūfj,i
β
ūfj,i ,ȳfj,i
3 (εl,i))Es,ūfj,i ,ȳfj,i , then the fault is detected i.e.,

rūfj,i ,ȳfj,i ,d > δūfj,i ,ȳfj,i .

Remark 4.7. Note that to check the detectability condition presented in Theorem

2, we simply calculate the infimum of ‖‖xsub,j,l,i(tdi)− x̂sub,j,l,i(tdi)‖ − ‖x̃sub,j,l,i(tdi)−

xsub,j,l,i(tdi)‖‖ for each residual that is called the detectability constant, δ̄j,i (see the
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results presented in Chapter 3). If the detectability constant is more than the value

of its corresponding threshold then the residual is expected to breach the threshold

(see Chapter 3 for more on this).

Isolability Condition

Having presented the detectability condition corresponding to different faulty sce-

narios in the LFDI scheme corresponding to the ith subsystem, Theorem 4.3 presents

the fault isolation logic for the identification of faulty component in the ith subsystem

that also serves as the FDI mechanism. The proof of Theorem 4.3 follows a similar

line of as results presented in the literature (see e.g., Du et al. (2013); Shahnazari

et al. (2016)) and hence is omitted here.

Theorem 4.3. Consider the ith subsystem of the network presented by Eq. 4.1, for

which Assumptions 4.1-4.6 hold. If rj,i,td > δj,i, for all j ∈ {1, . . . , nf,disi}\w then

 Θf,w,i(t) 6= 0 or Θf,dis,i(t) 6= 0, td ≤ t < tf,k,dis,i

Θf,w,i(t) 6= 0 and Θf,dis,i(t) 6= 0, tf,k,dis,i ≤ td ≤ t
(4.30)

for some t ∈ [td, td+1).

Remark 4.8. Note that Theorem 4.3 presents the conditions under which a fault

can be isolated in networked systems. These conditions are affected by the network

structure and the existing uncertainties in the system model. To understand this bet-

ter, consider the case where the breaching pattern in the ith LFDI schemes matches

the signature of a multiple fault scenario. This means that only one residual does

not breach its threshold. If the corresponding local subsystem is not affected by

any shared interconnection from other subsystems, the fault is successfully isolated.
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However, in the cases where the corresponding subsystem is affected by shared in-

terconnections from other subsystems, there is always the possibility that the shared

interconnections are faulty. If the shared interconnections are local variables in some

other subsystem, and the local FDI scheme for that subsystem (or a smart sensor)

is able to unequivocally provide fault information for the shared variable, then this

issue can be resolved. On the other hand, if clear information about the shared inter-

connection is not available, then no definitive conclusions can be drawn. Theorem 3

imposes a necessary condition on network structure under which each chain of subsys-

tems affecting the ith subsystem must be a cascade to enable the corresponding LFDI

scheme to isolate faults in the ith subsystem. Note that this is a fundamental limi-

tation of the network caused by the inherent trade-off between robustness and fault

sensitivity, not the proposed FDI methodology and this assumption is also utilized

by other FDI frameworks (see e.g., Ferrari et al. (2012); Zhang and Zhang (2012);

Reppa et al. (2015)).

Note that the thresholds are defined using the suprema (lowest upper bound).

Thus, the probability of a sensitive residual breaching its threshold when expected is

maximized. As a result of this, when a breaching pattern matches the signature of a

fault scenario, if thresholds values are relatively small with respect to the acceptable

range for residual values when assuming a uniform distribution for each fault scenario,

the most likely source of fault is the corresponding fault scenario to the observed

beaching pattern. Thus to handle situations where the conditions necessary for FDI

are not satisfied, we present the fault detectability index that measures the probability

of detecting a fault scenario by its corresponding sensitive residuals, defined as below:
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Pj,i =
sup(rj,i)− δj,i
sup(rj,i)

(4.31)

where Pj,i can be understood as the probability of the jth residual of the ith LFDI

scheme breaching its threshold when a fault scenario that belongs to Θ̄j,i occurs,

sup(rj,i) denotes the lowest upper bound possible for the jth residual corresponding

of the ith LFDI scheme when a fault scenario that belongs to Θ̄j,i occurs. Note

that the supremum of rj,i is calculated by finding the maximum possible values for

the rj,i in the presence of each one of the fault scenarios that belongs to Θ̄j,i using

an acceptable range for each fault scenario and selecting the lowest value of these

maximums as supermimum of rj,i. If a residual has detectability index higher than

50 %, we consider the corresponding residual not breaching its threshold trustworthy

for being utilized in decision making.

Remark 4.9. Note that in this work it is assumed that the occurrence of different

fault scenarios and the possible fault functionalities corresponding to each of these

fault scenarios have uniform distributions. Note that this is a fair assumption, since

the proposed framework is designed based on the idea that no prior knowledge is

available regarding plant fault history. However, if such information is available,

the distributions corresponding to the occurrence of fault scenarios and the fault

functionalities can be obtained from the plant fault history data. In this case, the

detectability index can be calculated using the probability density function (PDF)

obtained from the plant data.

Having presented the FDI design for ith LFDI scheme rigorously, Algorithm 4.1

summarizes the calculations and the decision making procedure of the ith LFDI

scheme at kth sampling time.
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Algorithm 4.1. 1. Initialize the state estimators and state predictors using state

estimates at k − 1th sampling time, x̂l,i(k) where l = 1, . . . , pi.

2. If Θf,dis,i 6= 0 i.e., a fault in one of the shared interconnections with the ith

subsystem is diagnosed, then the ith LFDI scheme replaces faulty measure-

ments by the healthy estimations provided by the corresponding LFDI scheme

to ỹi,Θf,dis,i and updates the thresholds corresponding to the ith scheme using

Eq. 4.24 accordingly.

3. Compute values of state estimates x̂l,i(k) where l = 1, . . . , pi, state prediction

x̃j,i(k) where j = 1, . . . , nf,i and residuals rj,i where j = 1, . . . , nf,i.

4. If rj,i > δj,i, a fault in the ith FDI scheme is detected.

5. If rj,i > δj,i for all j ∈ {1, . . . , nfi}\w and Pw,i > 0.5, then the ith LFDI scheme

claims the corresponding fault scenario to Θf,w,i(t) has occurred.

Otherwise, for t < tf,k,dis,i, the ith LFDI scheme notifies that at least one of

the fault scenarios corresponding to Θf,w,i(t) and Θf,dis,i(t) has occurred, and

for tf,k,dis,i ≤ td ≤ t, the ith LFDI scheme declares both of the fault scenarios

corresponding to Θf,w,i(t) and Θf,dis,i(t) have occurred.

Remark 4.10. Note that the main advantage of this work with respect to the existing

results in the literature for networked systems (see e.g., Zhang and Zhang (2012);

Ferrari et al. (2012); Keliris et al. (2015); Peng et al. (2015); Reppa et al. (2015);

Yin and Liu (2017)) is to diagnose simultaneous faults in nonlinear uncertain systems

when the shared interconnections are faulty. Also, the proposed distributed FDI

methodology, unlike some of the existing results in the literature (see e.g.,Ferrari
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et al. (2012); Reppa et al. (2015)) does not require a global fault diagnoser to make

decision in the presence of fault in the shared interconnections of the network. Each

LFDI scheme can make a decision using the available measurements and information

provided by the neighboring LFDI schemes. This results in increased reliability of

the proposed distributed FDI scheme.

4.5 Simulation example

This section illustrates application the proposed FDI methodology to a network

of three vessels, reactor - separator process as shown in Figure 3 (see e.g., Peng et al.

(2015)). The process variables are defined in Table 4.1 ( for information regarding

reactions taking place in the plant, the process model and process parameters see

e.g., Peng et al. (2015)).

The control objective is to stabilize the plant at unstable steady state point y1 =

CA1 = 3.31 kmol/m3, y2 = CB1 = 0.17 kmol/m3, y3 = CC1 = 0.04 kmol/m3, y4 =

T1 = 369.5 K3, y5 = CA2 = 2.75 kmol/m3, y6 = CB2 = 0.45 kmol/m3, y7 = CC2 = 0.11

kmol/m3, y8 = T2 = 435.2 K, y9 = CA3 = 2.88 kmol/m3, y10 = CB3 = 0.5 kmol/m3,

y11 = CC3 = 0.12 kmol/m3, y12 = T3 = 435.2 K. The manipulated input variables

are u = [Q1, Q2, Q3]T, where ‖u1‖ ≤ 5 × 104 kJ/hr, ‖u2‖ ≤ 1.5 × 105 kJ/hr and

‖u3‖ ≤ 2 × 105 kJ/hr. It is assumed that all of the states are measurable. A local

robust Lyapunov based model predictive controller is designed for each subsystem

using the Lyapunov-based MPC design of Mahmood et al. (2008a).

The hold time for control action is selected ∆ = 0.01 hr for all three con-

trollers. The weighting matrices used to penalize the deviations of the state and

input from their nominal values for the ith local controller are chosen as Qwi =
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Table 4.1: Definition of the process variables used for the network of chemical reactor
example used in this work.

Parameter Definition

CAj0 Concentration of A in the feed stream to tank j, j = 1, 2
Cij Concentration of species i, i = A,B,C in tank j, j = 1, 2, 3
Tj0 Temperature of the feed stream to tank j, j = 1, 2
Fj0 Flow rate of the feed stream to tank j, j = 1, 2
Fj Flow rate of the effluent stream from tank

Hvap Heat of vaporization
Qi Heat input to tank j, j = 1, 2, 3

diag[103, 103, 103, 20] and Rwi = 10−12, respectively, where i = 1, ..3. The Lyapunov

function for the ith subsystem is chosen as V (xi) = x̄′iPix̄i where x̄i = xi,n − xi

is the vector of deviation variables, xi,n denotes the vector desired nominal val-

ues of the states of the ith subsystem and P1 = diag[103, 103, 103, 2 × 102], P2 =

diag[103, 103, 103, 2× 104] and P3 = diag[103, 103, 103, 2× 102].

Each subsystem of the network is subject to modeling uncertainty and measure-

ment noise. In particular, the values of CA20 and Hvap are 5% less than their nominal

values. Furthermore, inlet temperature to the tank 1, T10 fluctuates with time, with

the actual flow rate being 1 + 0.05 sin(t) times of its nominal value. The known

bounds on this uncertainties are 10%, 10%, and 5 % of their nominal values. The

concentration and temperature measurements have combinations of 5 Hz sinusoidal

noises. The magnitudes of the measurement noise over each sampling time follow a

normal distribution with the standard deviations being 0.01 kmol/m3 and 0.1 K for

concentrations and temperatures, respectively. The noisy measurements are passed

through a first-order low-pass filter with the filter time constant being 3.6 seconds.

Note that the proposed framework in this work only accounts for fault scenarios
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that are distinguishable locally. Thus it is assumed local indistinguishable fault sce-

narios do not take place. For this sake, it is assumed none of y2 = CB1, y3 = CC1,

y6 = CB2, y7 = CC2 and y12 = T3 are faulty, since these outputs are not observable

and as a result of this, fault in none of the corresponding sensors to this outputs can

be isolated (see the results in Chapter 2 and Shahnazari et al. (2016) for more on

this).

A bank of observers is required for designing LFDI scheme corresponding to each

subsystem. To this end, based on the above explanation, three observers are de-

signed to estimate states of the each subsystem, that results in a total number of

nine observers. For the LFDI schemes corresponding to the first and second subsys-

tems, two observers are designed by using three of the outputs while the third one

is designed using only two of the outputs. For the LFDI scheme corresponding to

the third subsystem, all of the three observers are designed using only three of the

available measurements. Based on the methodology presented in this work, 6, 6 and

7 residuals are generated for the first, second and third LFDI schemes, respectively.

The thresholds are selected based on Eq. 4.13 via simulations. To this end, the

summation of the maximum observed values for ‖x̃sub,j,l,i(tk+1) − xsub,j,l,i(tk+1)‖ and

‖xsub,j,l,i(tk+1)− x̂sub,j,l,i(tk+1)‖ by considering all possible combinations of the bounds

on uncertainties. A value slightly larger is selected as the corresponding threshold

for each residual, and reported in Tables 4.2, 4.3 and 4.4. Also, the thresholds cor-

responding to the second and third LFDI schemes in the case of distributed faults in

y1 = CA1,y4 = T1, y5 = CA2 and y8 = T2 are reported in second column of threshold

tab in Tables 4.3 and 4.4.

We next consider a case where simultaneous faults take place in y1 = CA1 and
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Table 4.2: Faults to which the residuals of the FDI scheme corresponding to the first
subsystem are insensitive and thresholds for the fault isolation design for the case
study based on the proposed framework.

Residual Faults Threshold Residual Faults Threshold

r1,1 yf1 0.2 r1,2 yf4 1.2
r1,3 yf1 , yf4 0.07 r1,4 uf1 0.04
r1,5 yf4 , uf1 0.04 r1,6 yf1 , uf1 0.2

Table 4.3: Faults to which the residuals of the FDI scheme corresponding to the
second subsystem are insensitive and thresholds for the fault isolation design of the
case study based on the proposed framework.

Residual Faults Threshold Residual Faults Threshold

r2,1 yf5 1.03 1.16 r2,2 yf8 1.33 1.46
r2,3 yf5 , yf8 2.62 2.71 r2,4 uf2 0.13 0.13
r2,5 yf8 , uf2 0.13 0.14 r2,6 yf5 , uf2 0.13 0.14

y4 = T1 with functionalities of (−1.44− 0.1 sin t)(1− e10(tf1−t) and −15, respectively,

at time tf1 = 0.5 hr. This is followed by simultaneous faults in u2 = Q2 and y8 = T2

with functionalities of 27500 and 50, respectively, at time tf2 = 1 hr. In the first

LFDI scheme, all of the residuals breach their thresholds except r1,3 that matches

the signature of simultaneous faults in y1 = CA1 and y4 = T1 . But, since the first

subsystem is affected by the shared interconnections from the other subsystems, there

is always the possibility that the shared interconnection is faulty and the insensitive

residual is not breaching its threshold due to trade-off between robustness and un-

certainty. Thus fault isolation can not be achieved. To address this, we compute the

detectability index.

Note that the calculated detectability index values for all of the residuals are

more than 70%, by considering ±50 % of the acceptable range for each variable as

the maximum possible size for faults taking place in the corresponding actuators and
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Table 4.4: Faults to which the residuals of the FDI scheme corresponding to the third
subsystem are insensitive and thresholds for the fault isolation design of the case
study based on the proposed framework.

Residual Faults Threshold Residual Faults Threshold

r3,1 yf9 0.25 0.25 r3,2 yf10 0.04 0.06
r3,3 yf11 0.02 0.05 r3,4 uf3 0.25 0.25
r3,5 yf9 , uf3 0.25 0.25 r3,6 yf10 , uf3 0.05 0.05
r3,7 yf11 , uf3 0.02 0.01

sensors. Thus we assume when a residual does not breach its threshold, it means the

residual is most likely insensitive to that fault scenario. Note that the detectability

index value for each threshold depends on the upper bounds utilized for uncertainties

and the range considered for each fault scenario. Thus, using different values for

the upper bounds of uncertainties or different range for each fault scenario result in

different values for detectability index corresponding to each residual. By using the

detectability index proposed in this work, since all of the residuals have detectability

index higher than 70%, when a residual does not breach its threshold, it can be

considered that not breaching is not due to trade-off with respect to uncertainty.

As a result of this, the residual being insensitive is trustworthy for being utilized in

decision making. Thus simultaneous faults in y1 = CA1 and y4 = T1 are successfully

isolated.

In the second LFDI scheme, by using a decentralized FDI architecture, all of the

residuals breach their thresholds at most in 10 minutes after fault occurrence in the

first subsystem (the residuals profile is not presented here for the sake of brevity).

Thus, the second LFDI issues a fault alarm at t = 0.6 hr. However, since of all the

residuals have breached their thresholds, the second LFDI scheme can only act as

detection scheme and fault isolation is not possible. Figure 4.2 shows the evolution of
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residuals profile corresponding to the second LFDI scheme when using the proposed

distributed FDI framework in this work. In this case, upon isolation of faults in the

first LFDI scheme at t = 0.6 hr, the first LFDI scheme notifies the second LFDI

scheme and transmits the healthy estimation of the y1 = CA1 and y4 = T1 to the

second LFDI scheme. The second LFDI scheme replaces the faulty measurements

of y1 = CA1 and y4 = T1 with the healthy estimation provided and updates the

thresholds accordingly. As a result of this, all of the residuals breach their thresholds

except r2,5 that matches the signature of fault in u2 = Q2 and y8 = T2. Again without

using the concept of detectability index proposed in this work, fault isolation can

not be achieved and there is always the possibility that the shared interconnections

affecting the second subsystems are faulty. However, as described before, since all

of the residuals have detectability index higher than 70 %, when a residual does not

breach its threshold, it can be considered that not breaching is not due to trade-off

with respect to uncertainty. Thus simultaneous faults in u2 = Q2 and y8 = T2 are

successfully isolated.

In the third LFDI scheme, using a decentralized architecture, some of the residu-

als breach their threshold (the results are not presented here for the sake of brevity).

This results in fault detection. However, none of the actuators and sensors of the

third subsystem are subject to fault. Using the distributed architecture proposed in

this work, the second LFDI scheme notifies the third LFDI scheme and transmits

the healthy estimation of the y8 = T2 to the third LFDI scheme, upon isolation of

faults in the second LFDI scheme at t = 1.09 hr. The third LFDI scheme replaces the

faulty measurements of y8 = T2 with the healthy estimation provided and updates

the thresholds accordingly. This results in fast recovery of the third LFDI scheme
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filters and removing the fault alarm by third LFDI scheme in 10 minutes (the results

are not presented here for sake of brevity). Again without utilizing the concept of

detectability index, there is always possibility that a fault has occurred in the third

subsystem, but it cannot be isolated due to the trade-off between robustness and

uncertainty. Figure 4.3 shows evolution of r3,3 using a decentralized FDI framework

and using the proposed distributed FDI methodology in this work. As can be seen,

using the decentralized FDI scheme, r3,3 breaches its thresholds, leading to a false

decision making by the corresponding LFDI. However, utilizing the distributed FDI

scheme, r3,3 only breaches its threshold for a short period of time (less than 10 min-

utes), then recovers quickly as a result of using healthy estimation of the faulty shared

interconnection and the updated value for thresholds. Note that in this case, using

the updated value for threshold corresponding to r3,3 results in quicker recovery of

the FDI filter.

4.6 Conclusions

In this work, we addressed the problem of simultaneous fault diagnosis in non-

linear uncertain networked systems utilizing a distributed fault detection and fault

isolation strategy. The idea is to design a bank of local robust FDI schemes in a dis-

tributed manner with each FDI scheme corresponding to a subsystem. Time-varying

thresholds were selected by explicitly accounting for the effect of uncertainties and

faults in shared interconnections. In this way, robustness of the LFDI schemes to false

alarms is guaranteed. Also, in the case of faults in the shared interconnections that

can be isolated locally, the distributed architecture of the proposed FDI framework

allows the other FDI schemes to function as intended. The detectability and isoability
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conditions were rigorously derived for the distributed FDI scheme. Effectiveness of

the proposed methodology was shown via application to a reactor-separator process

subject to uncertainty and measurement noise.
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Figure 4.2: a) Evolution of the residual corresponding to the second LFDI scheme.
As can be seen, by using the healthy estimates of y1 = CA1 and y4 = T1 upon isolation
of fault in the first LFDI scheme at t = 0.6 hr, all of the residuals remain insensitive
until occurrence of fault in u1 = Q1 and y8 = T2. Then all of the residuals breach their
thresholds except r2,5 that matches the signature of simultaneous faults in u1 = Q1

and y8 = T2 and as a result the fault is successfully isolated.
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Figure 4.3: a) Evolution of the residual r3,3 (solid lines) and thresholds (dashed-
dotted lines) using a decentralized FDI framework. In this case, the residual breaches
its threshold that results in a false decision by the LFDI scheme. b) Evolution of the
residual r3,3 (solid lines) and thresholds (dashed-dotted lines) using the distributed
framework proposed in this work. In this case, the healthy estimations of y8 = T2

provided by the second LFDI scheme upon isolation of the fault at time t = 1.09 are
utilized by the third LFDI scheme and thresholds are updated accordingly. As can
be seen the residual recovers quickly and it does not breach its threshold as expected.
This results in correct decision making by the corresponding LFDI scheme. Note
that in this case, using the updated value for threshold corresponding to r3,3 results
in quicker recovery of the FDI filter.
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Chapter 5

Heating, Ventilation and Air

Conditioning Systems: Fault

Detection and Isolation and Safe

Parking
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ventilation and air conditioning systems: Fault detection and isolation and safe park-

ing. Computers & Chemical Engineering, 108, 139 – 151.

Refereed Conference Proceedings:

Hadi Shahnazari, Prashant Mhaskar, John M House, and Timothy I Salsbury. Fault

diagnosis design for heating, ventilation and air conditioning systems. In American
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5.1 Introduction

In the previous chapters, some theoretical results were presented addressing fault

diagnosis in the presence of nonlinearities, uncertainties, high dimensionality and in

the absence of enough analytical redundancy in the system structure. The efficiency of

the proposed methodologies was shown via simulation case studies. In this chapter,

an integrated fault diagnosis and safe parking framework is presented for HVAC

systems as an industrial complex system composed of at least 10 highly interactive

components.

Government regulations and initiatives have placed a large emphasis on the reduc-

tion of energy consumption and increase in energy efficiency. Heating, ventilation,

and air-conditioning (HVAC) systems are responsible for 40-50% of total building

energy consumption, motivating research on energy efficient building control (see,

e.g., Ma et al. (2012), Mendoza-Serrano and Chmielewski (2012), Mendoza-Serrano

and Chmielewski (2014), Cole et al. (2013), Cole et al. (2014), Touretzky and Baldea

(2014a) and Touretzky and Baldea (2014b)). It is estimated that in the U.S. alone

(see e.g., Schein et al. (2006)), fault detection and isolation (FDI), and fault tolerant

control methods could be capable of saving 10-40% of HVAC energy consumption.

These realizations have motivated significant research effort on devising FDI frame-

works for HVAC systems with many studies focusing on air handling unit (AHUs)

and variable air volume (VAV) boxes. Existing frameworks utilize a statistic based

approach for the purpose of FDI. In House et al. (2001), a fault detection tool is

proposed that uses a set of expert rules derived from mass and energy balances to

detect faults in air handling units (AHUs). A subset of the expert rules which cor-

respond to the current mode of operation are then evaluated to determine whether
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a fault exists. In Chen and Lan (2010), a PCA based approach is used to extract

the correlation of measured variables in a heating/cooling building system and reduce

the dimension of the measured data. Square prediction error (SPE) statistic is then

used to detect sensor faults in the system. Then, a sensor validity index (SVI) is

employed to identify the faulty sensor and a reconstruction algorithm is presented

to recover the correct data for the faulty sensor in accordance with the correlations

among system variables. In Du and Jin (2007), a combination of principal component

analysis (PCA) and joint angle analysis are used to detect and isolate multiple faults

in AHUs with variable air volume (VAV) boxes.

In Schein and House (2003), a fault detection method is developed for application

to variable-air-volume (VAV) boxes using control charts. In Yoshida et al. (2001),

a recursive autoregressive exogenous algorithm is used to develop a dynamic FDD

model that addresses single fault scenarios in VAV boxes. In Wang and Qin (2005),

a strategy using PCA is developed for detecting and validating flow sensor faults.

The fault is detected using both the T 2 statistic and SPE and isolated using the

SPE contribution plot. In Qin and Wang (2005), a hybrid approach utilizing expert

rules, performance indexes and statistical process control models is used to address

single fault scenarios in VAV boxes. In Du et al. (2007), a combination of PCA and

joint angle analysis is used to diagnose sensor faults in VAV boxes. In Wu and Sun

(2011), a cross-level fault detection methodology is proposed based on energy flow

in HVAC systems that detects faulty HVAC units instead of component faults by

comparing the current flow energy consumption in the system with respect to its

normal expected patterns. The existing results in the literature, however, consider

only isolation of single fault scenarios in the VAV boxes and do not consider multiple
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sensor faults or multiple actuator faults in the VAV boxes, in part due to the limitation

of the underlying statistical based approaches (as demonstrated via simulations in the

present work).

In the area of dynamic model based FDI, there is a large body of methods in

the literature utilizing linear model based FDI design, and these approaches can

be categorized into parity relation and diagnostic observer (see e.g., Frank (1990),

Venkatasubramanian et al. (2003) and Magni and Mouyon (1994)). Note that these

methodologies are equivalent when it comes to residuals generation and both use

output estimation error for defining residuals (see e.g., Gertler and Monajemy (1995)

and Yoon and MacGregor (2000)). However, these methods have not been utilized

to detect and isolate actuator faults where the effect of the fault is compensated by

the controller. Thus, the area of FDI using linear models in general, and applications

to HVAC systems in particular, stands to gain from novel linear model based FDI

design that achieve FDI for sensor and actuator faults (including those masked by

the controller).

There also exist results on fault tolerant control (FTC) of HVAC systems. In Seem

(2001), the control design compensates for the effect of faults as much as possible by

switching between different control modes available in the air handling unit design.

In Hao et al. (2005), single sensor faults are diagnosed and handled via sensor redun-

dancy. In Talukdar and Patra (2010), a model based fault tolerant control strategy

is developed for handling multiple stuck dampers in the VAV boxes of HVAC sys-

tems. Fault tolerant control is achieved by modifying the airflow through the healthy

zones. This is based on the assumption that the overall HVAC system maintains a

constant total air flow rate. Under this assumption, changing the amount of air flow
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entering the healthy zones affects the amount of air flow rate entering faulty zones.

This assumption, however breaks down in applications where the static pressure is

held constant. In Bengea et al. (2015), the fault tolerant control design of the HVAC

system is based on real time estimation of the fault magnitude, and determining MPC

constraints (input constraints) based on those values.

These fault-tolerant control approaches, however, are all predicated on the idea

of maintaining nominal operation as the only control objective before and after fault

occurrence, which might simply be impossible, or expensive in case of certain faults.

Recently, safe-parking based approaches for fault-tolerant control have been proposed

(see e.g., Gandhi and Mhaskar (2008) and Du and Mhaskar (2011)) that upon fault

detection, prescribe temporarily operating (or ‘parking’) the process at an appropriate

operating point, instead of trying to maintain nominal operation. Various algorithms

for safe-parking have been proposed focusing on stability/optimality of the overall op-

eration. These ideas, however, have not been applied to HVAC systems. In summary

the area of VAV control stands to benefit from implementations that can handle mul-

tiple actuator and sensor fault detection and isolation, and implement safe parking

based approaches.

Motivated by the above considerations, in this work, we design and implement

an integrated framework for fault diagnosis and safe parking of VAV boxes of HVAC

systems. To compare with existing approaches, first, a statistical model based FDI

scheme is designed using existing PCA and joint angle analysis based techniques.

Then we design linear causal model based frameworks for detection and isolation of

multiple actuators and multiple sensor faults. The linear model is identified using

a subspace identification method applied to data from a detailed Modelica model of
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an AHU with five VAV boxes. The linear model based approach is seen to possess

superior fault-isolation capabilities. Finally, the problem of fault handling in the

context of VAV boxes is addressed, recognizing that while in the present context, the

faults are not safety critical in nature, they do present an opportunity for trading

off between comfort and energy usage. Thus, a safe parking strategy is designed to

handle stuck dampers and the resulting energy reduction demonstrated.

5.2 Preliminaries

In this section, we briefly review the air handling unit (AHU) model first, then

describe the VAV box model.

5.2.1 Air handling unit model

An air handling unit usually comprises fans, heating and cooling coils, and dampers

to achieve the supply air temperature set point. To serve as a simulation test bed,

we use a detailed Modelica model of an AHU with five VAV boxes. The testbed

AHU model has three dampers (outdoor, recirculation, and exhaust), cooling and

heating coils with valves and temperature, pressure and flow sensors for monitoring

and control. Each of the actuators in the AHU model is controlled using a single loop

proportional integrator (PI) controller. The control objective is to provide supply

air with a constant temperature (typically 550F ) at the downstream of the supply

fan. The supply fan is used to maintain the static pressure in the supply duct at a

constant value. Figure 5.1 shows a schematic diagram of a typical AHU.

The testbed AHU system has four modes of operation used for controlling the
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Figure 5.1: Schematic of an AHU

supply air temperature. A sequencing logic determines the mode of operation. In

the heating mode, the heating coil valve is the active actuator and is modulated to

maintain the supply air temperature at set point and the AHU dampers are controlled

to allow the minimum outdoor air needed to satisfy the ventilation requirements.

When the cooling load increases, the system simply mixes outdoor (cold) air and

returns air to achieve the set point with both heating and cooling coil valves being

closed. The mode of operation changes to mechanical cooling when the outdoor air is

too warm to achieve the supply air temperature set points. In this mode, the cooling

coil valve is manipulated to meet the supply air temperature set point. If the outdoor
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air temperature is less than a certain value (typically 65 0F ) the outdoor air damper

is kept fully open. If the the outdoor air temperature is greater than the selected

value, mechanical cooling is continued with the minimum outdoor air required for

ventilation. The conditioned supply air is distributed to the five zones. Each zone

has a variable-air-volume (VAV) box with hydronic reheat. In the next section, we

describe the control structure in the VAV boxes.

VAV boxes

Figure 5.2 shows a schematic diagram of a zone VAV box and the corresponding

sensors in the model. The VAV box uses a damper to modulate the amount of air

entering the zone, and the hydronic coil to reheat the air entering the zone when

necessary. The thermostat and flow sensor measure the air temperature in the zone

and the flow rate of air into the zone. A discharge air temperature sensor measures

the temperature of the air stream entering the zone (see Schein and House (2003) for

more details on the control structure of VAV boxes).

The control structure for VAV boxes is based on two different control loops for

cooling and heating, respectively. In the cooling mode, a cascade control loop is imple-

mented. The outer loop has the zone temperature as the controlled variable and the

set point for air flow rate to the room as the manipulated variable. In the inner loop,

the damper is modulated to reach the desired set point for flow rate. In the heating

mode, the air flow rate to the room model is kept constant at 1.6 m3/s and 0.8 m3/s

for occupied and unoccupied periods, respectively, and the room temperature is main-

tained by modulating the reheat valve. Note that in practice the flow rates depend

on the design loads and ventilation requirements. The flow rates and temperature set
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Figure 5.2: Schematic of a VAV box with hydronic reheat (recreated using the
schematic from Schein and House (2003))

points used here are representative of the system considered. Switches between the

heating and cooling mode are triggered to maintain the zone temperature between 21

0C (heating set point) and 23 0C (cooling set point). During the unoccupied period

the dead band between the heating and cooling set point values is often widened in

an effort to save energy. In our simulations, the unoccupied set points are 18 0C and

26 0C. As long as these conditions are satisfied, the controllers are inactive (i.e. the

actuators remain in the same position), and any time the temperature goes beyond

these values, the appropriate control action ensues.

The present work uses a detailed model for the HVAC systems as a test bed.

In particular, the simulation platform modeled in Modelica is composed of at least

10 components and the interconnection of these components via mass and energy
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balances. These models (and the resulting interconnections) are created using the in-

built Modelica libraries, and results in a model with high dimensions (over 50 states).

The ensuing FDI and safe-parking designs are developed using models identified via

realistic measurements from the test bed (thus not all states are measured, and the

measurements include measurement noise), and then implemented on the detailed

simulation model.

There are several sources of faults in the VAV boxes including dampers or valves

getting stuck, valve leakage and faulty sensor measurements. In this work, we focus

on faults with severe effects on the performance of VAV boxes. Thus stuck dampers,

stuck valves and biased sensor measurements are considered.

5.3 Fault diagnosis and fault handling design

There are several studies describing application of statistical based approaches for

FDI in HVAC systems including single fault isolation in VAV boxes (Wang and Qin

(2005), Qin and Wang (2005) and Du et al. (2007)). Our review did not find any

papers where statistical or causal model based approaches have been used for isolation

of multiple faults in VAV boxes of HVAC systems. In this work, we implement the

combination of PCA and joint angle analysis methods as a basis for comparison with

the proposed method. To this end, we first present a statistical model based FDI

framework using a combination of PCA and joint angle analysis. Then we present

a causal model based FDI scheme based on an identified linear time invariant (LTI)

model and compare the two approaches. Note that statistical FDI design is the most

common tool for diagnosing faults in HVAC systems. Finally, we illustrate a fault

tolerant control design to handle stuck dampers in the zones of AHU model.
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5.3.1 Statistical model based FDI design

In this section, we apply a combination of Hotelling’s T 2 and SPE control charts

for fault detection and a combination of contribution plots and joint angle analysis for

fault isolation (see e.g., Yoon and MacGregor (2000), Yoon and MacGregor (2001) and

Kourti (2005) for more information). The Hotelling’s T 2 is used to detect variations

in the plane of the first A principal components that is greater than what can be

explained by the common cause variations or the so called outliers. In some sense,

this metric evaluates the validity of the model for a particular observation. The

SPE control chart, on the other hand, detects the new observations that can not be

represented using the in-control model. Thus, if the SPE breaches the threshold, a

fault is declared only if the Hotelling’s T 2 values is within the threshold. (see e.g.,

Yoon and MacGregor (2000) and Kourti (2005)). Joint angle analysis is based on

generating a fault library using fault signatures from the plant test or historical fault

data and determining the measure of collinearity between the new measurements and

the fault signatures (see e.g., Yoon and MacGregor (2001)). The cosine value between

the new measurement vector and one of the known fault signatures gives the relative

measure of collinearity between the two. Note that the joint angle analysis also

utilizes PCA as it requires both principle component basis and residual basis to be

determined (see e.g., Yoon and MacGregor (2001) for more on this). For convenience

in the analysis, joint angle plots were introduced in Yoon and MacGregor (2000). The

horizontal and vertical axises of the plot denote residual basis and model basis of the

angle, respectively. A specific fault is declared if the measured angle goes to the top

right corner (+1,+1) or bottom left corner (−1,−1). Note that as with most practical

applications, noisy measurements must be filtered first to remove potentially random
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variations (see e.g., Yoon and MacGregor (2001)).

Remark 5.1. Note that in this work PCA based statistical model based FDI tech-

niques has been selected over partial least square (PLS) statistical model based FDI

techniques owing to the fact that the PLS based statistical model based FDI tech-

niques are only able to detect sensor faults (Negiz and Cinar (1997)) while PCA based

techniques have the potential ability of sensor fault isolation.

Application of statistical model based FDI design

In this section, we apply the statistical model based approach described in Section

5.3.1 to the collected data from the detailed Modelica model for the VAV box of one

of the five zones. To this end, at first we take the data of from the first two days of

simulations with sampling time of one minute under healthy operation to build our

in-control model.

The available data that we utilize includes measurements of effective valve opening

(EVO), damper fractional opening (DVO), supply air temperature (SAT), supply fan

pressure (SFP), air flow (AF) rate to the room and discharge air temperature (DAT),

shown by red lines and red dashed lines in Figures 5.1 and 5.2. To reflect reality,

the measurements are corrupted with white noise. The distribution of noises added

to these measurements is normal with mean µ and standard deviation σ as listed in

Table 5.1.

The noisy measurements are filtered using first order low pass filters before being

fed to the controller. The filter parameters are described in Table 5.2. After normal-

izing the data, a principle component analysis is performed and using cross validation

three principle components are found to be sufficient to represent 95% of the variance
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Table 5.1: Noise distribution parameters

measurement µ σ unit

SAT 0 0.08 0C
SFP 0 2.5 pa
AF 0 0.2 m3/s
DAT 0 0.2 0C

Table 5.2: Filter parameters

measurement Gain Cut-off frequency (Hz)

SAT 1 0.0005
SFP 1 0.001
AF 1 0.001
DAT 1 0.001

in the data.

Next, we study the performance of the PCA based FDI design. To this end, we first

consider the case where the damper gets stuck at 32% open position at 2233 sampling

time (1:13 p.m. of second day of simulations). Note that both damper and valve

positions range from 0 (fully closed) to 1 (fully open). Figure 5.3(a) shows the SPE

control chart along with 99.5 % control limit. Note that the T 2 plot indicates existence

of several outliers in the data with respect to the in-control model (the corresponding

results are not presented here for sake of brevity). The SPE plot indicates the

occurrence of some unusual events right after fault occurrence at 2234 sampling time

(1 : 14 p.m) while a few false alarms are observed before fault occurrence due to the

outliers identified in the T 2 plot. Thus the fault is successfully detected. The SPE

contribution plot (Figure 5.3(b)) indicates both air flow (AF) and damper fractional

opening (DFO) to be equally contributing to the event. The inability to isolate

the fault is due to the model utilized in the the underlying FDI structure. For the
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present fault scenario, a stuck damper causes the relationship between the prescribed

(prescribed value refers to the control signal sent to the actuator) damper position

and air flow to change. Thus both these are identified by the PCA based analysis

as contributing to the unusual behavior, leading to the inability to isolate the fault.

The same result was found when the damper was stuck at DFO = 16% position and

is not presented here for sake of brevity.

We also consider another fault scenario where the valve gets stuck at the fully open

position at 1931 sampling time (8:11 a.m. of day two of the simulation). It turns out

that for the present case, the damper is able to be opened further to eliminate (or

mask) the effect of this fault for some time until eventually the room temperature

increases with respect to the healthy situation. Application of the PCA based analysis

results in delayed detection of fault, but is not able to isolate the fault.

We next consider simultaneous positive bias faults in the flow sensor with mag-

nitude of 2 and discharge air temperature sensor with magnitude of 6 taking place

with at 1975 sampling time (8:55 a.m. of the day two of the simulation test). As

can be seen from Figure 5.3, a fault is successfully detected while several false alarms

are observed before fault occurrence due to outliers in the data. The SPE contri-

bution plot indicates air flow (AF) sensor, damper fractional opening (DFO) and

discharge air temperature (DAT) sensor as the variable contributing the most to the

event, respectively, again indicating the inability to isolate the fault ( the result is

not presented here for sake of brevity). The method performs similarly for the case

of multiple actuator faults.

Next, we apply joint angle analysis in an attempt to achieve fault isolation for

the case studies that using a contribution plots was not successful. Note that the
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Figure 5.3: a) SPE plot for the cases when damper gets stuck at 32% position
(DFO-O) and when air flow (AF) sensor and discharge air temperature (DAT) sensor
are subject to simultaneous bias fault (AF-DAT). b) Contributions to SPE when
the damper gets stuck at 32% position. The time of fault occurrence is indicated by
arrows in both the figures.

application of joint angle analysis requires data subject to the occurrence of faults,

with the faults being known. To this end, we generate a fault library using the

available fault history data as listed in Table 5.3. The joint plots are generated from

the time a fault is detected until five hours later.

For the first case described in Section 5.3.1 (the damper getting stuck at position

32%) the points generated by the pair of cosine values between the fault and the

signatures of damper stuck at 32% position from the fault library are the dominating

points at the top right corner. Thus, the fault is successfully isolated. Joint angle

analysis also does not achieve fault isolation for the case of stuck damper at 16%

position. Results are not presented here for sake of brevity.

We next consider the case when the valve gets stuck at fully open position as
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Table 5.3: Fault library

Fault Abbreviation

Stuck damper 16 % open position DFO-C
Stuck damper 32 % open position DFO-O
Stuck valve at 100% open position EVO-O

Simultaneous stuck damper at 16 % open position
and stuck valve at 100% open position DFO-EVO

Positive bias fault with magnitude of 2 m3/s on flow AF
Positive bias fault with magnitude of 6 0C on discharge air temperature DAT
Simultaneous positive bias fault with magnitude of 2 m3/s on air flow

and positive bias fault with magnitude of 6 0C on discharge air temperature AF-DAT

described in Section 5.3.1. As can be seen in Figure 5.4, the cosine values between

the new fault and fault library signatures for the valve stuck fully open, bias fault

on discharge air temperature sensor, simultaneous bias faults on flow and discharge

air temperature sensors from the fault library are close to (+1,+1). Thus, the joint

angle analysis is not able to successfully isolate the fault.

For the case of bias faults occurring simultaneously on air flow (AF) and discharge

air temperature (DAT) sensors (also described in Section 5.3.1) again, fault isolation

is not achieved. The same results was found for simultaneous actuator faults ( the

results are not presented here for sake of brevity).

In summary, existing (non causal) PCA and joint angle analysis based approaches

result in fault detection and isolation of some single faults, but are unable to isolate

the faults when their effect is being masked by the control structure. As well, fault

isolation is not achieved for the case of multiple actuator or multiple sensor faults.

146



Ph.D. Thesis - Hadi Shahnazari McMaster - Chemical Engineering

(a) (b)

Figure 5.4: a: Joint plot using joint angle analysis for the case where valve gets stuck.
b: Enlarged view of Figure 7(a)

5.3.2 Proposed model based FDI design

In this section, we design novel model based FDI filters for the VAV boxes. In-

trinsic to the approach is the utilization of a causal dynamic model. To this end, first

we utilize the subspace identification method to identify a LTI model for the VAV

box. Next, we use the identified models to build the FDI filters.

Identifying a linear model for a zone

In this section, we identify a linear discrete time dynamic model of one of the

zones (north zone) in the AHU simulation using the subspace identification method

in Matlab (N4SID) (see Wang and Qin (2002) and Qin (2006) for more details on
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this). To this end, a linear stochastic model of the following form is identified:

x(k + 1) = Ax(k) +Bu∗(k) + w(k)

y∗(k) = Cx(k) +Du∗(k)

(5.1)

where u∗(k), y∗(k) and x(k) are noise free inputs, noise free outputs and state variables

and w(k) denotes the process noise. In the identification approach, the available

measurements for identification are assumed to be:

u(k) = u∗(k) + o(k)

y(k) = y∗(k) + v(k)

(5.2)

where o(k) and v(k) denote the input and output white noise. Thus the task is to

determine the order of the system and system matrices from past noisy input-output

data.

The variables included in the identification were effective valve opening (EVO),

damper fractional opening (DFO), supply air temperature (SAT) and supply fan

pressure (SFP) as inputs and air flow (AF) to the room and discharge air temperature

(DAT) to the zone as outputs.

We use data from the first day of the simulation test for identification and data

from the second day of simulation test for validation. Note that in the training phase,

the subspace identification approach determines initial values of the subspace states,

and the system matrices. For a new/validation batch, these initial subspace states

are unknown. Thus during this initial part (first 100 sample points for the present

case), the identified model is used in conjunction with a Kalman filter, and takes the
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(a) (b)

Figure 5.5: Model validation results using data of second day of simulations: Mea-
sured outputs (blue lines) and outputs generated by the identified model (red lines)

following from:

x̂(k + 1) = Ax̂(k) +Bu(k) +Kek

ŷ(k) = Cx̂(k) +Du(k) + ek

(5.3)

where x̂(k) ∈ Rn denotes the vector of estimated subspace states, u(k) ∈ Rm denotes

the vector of prescribed control inputs, ŷ(k) ∈ Rp denotes the vector of estimates of

the output variables, K is the Kalman filter gain and ek = y(k)− Cx̂(k)−Du(k) is

the estimation error.

The order of the identified model is picked to minimize the model identification

error, resulting in a model with seven states. Figure 5.5 shows the model validation

results. As can be seen from Figure 5.5, while there are errors (given that a linear

model is being used to capture the dynamics of the detailed nonlinear model) the

identified model captures zone dynamics reasonably well, making it a viable candidate

for FDI design.
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5.3.3 Fault detection and isolation design

Having identified a linear time invariant (LTI) model for the system, we next

design the FDI filters. To this end, we first recognize that for the kinds of fault being

considered, the evolution of the system subject to faults can be described by:

x(k + 1) = Ax(k) +B(u(k) + ũ(k)) + w(k)

y(k) = Cx(k) +D(u(k) + ũ(k)) + ỹ(k) + v(k)

(5.4)

where ũ(k) ∈ Rm denotes the unknown fault vector for the actuators and ỹ(k) denotes

the vector of unknown sensor faults. Due to the presence of physical constraints, the

actual input implemented on the system, which is the sum of the (known) prescribed

input and the (unmeasured) fault is also constrained. Let tf denotes the time of

fault occurrence and ‖ · ‖ the Euclidean norm for a vector. Note that under healthy

operating conditions Eq. 5.3 is the equivalent innovation form of Eq. 5.4.

Actuator fault detection and isolation

To detect and isolate actuator faults, we estimate the implemented inputs by

utilizing the measurements and the dynamic model, and compare the estimated value

with the prescribed value. For the VAV box, we therefore design a filter that enables

estimation of the effective valve opening and damper fractional opening using the

results presented in Gillijns and De Moor (2007). By rearrangement, Eq. 5.4 becomes:

x(k + 1) = Ax(k) +B′u′(k) +G(d(k) + d̃(k)) + w(k)

y(k) = Cx(k) +D′u′(k) +Hd(k) + v(k)

(5.5)
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where u′(k) ∈ Rm1 denotes the vector of known measurements as fault free inputs,

d(k) ∈ Rm2 denotes the vector of prescribed inputs to be implemented to the plant

by actuators where m = m1 + m2 and d̃(k) ∈ Rm2 denotes the vector of unknown

actuator faults. In utilizing the filter, we need to employ the following assumption:

Assumption 5.1. Gillijns and De Moor (2007) The pair (A, C) is observable.

Assumption 5.2. Gillijns and De Moor (2007) Rank of H is m2 i.e. p ≥ m2.

The filter consists of three steps as follows:

Estimation of unknown input:

R̃(k) = CP x
k|k−1C

T +R(k)

M(k) = (HT R̃−1(k)H)−1HT R̃−1(k)

d̂(k) = M(k)(y(k)− Cx̂k|k−1 −D′u′(k))

P d(k) = (HT R̃−1(k)H)−1

(5.6)

Measurement update:

K(k) = P x
k|k−1C

T R̃−1(k)

x̂k|k = x̂k|k−1 +K(k)(y(k)− Cx̂k|k−1 −D′u′(k)−Hd̂(k))

P x
k|k = P x

k|k−1 −K(k)(R̃k −HP d
kH

T )KT (k)

P xd
k = (P dx

k )T = −K(k)HP d

(5.7)
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Time update:

x̂k+1|k = Ax̂k|k +B′u′(k) +Gkd̂(k)

P x
k+1|k = [A G]

P x
k|k P xd

k

P dx
k P d

k


AT
GT

+Q(k)
(5.8)

where Q(k) = E[w(k)w(k)T ] ≥ 0 and R(k) = E[v(k)vT (k)] > 0.

The filter is initialized as follows:

x̂0 = E[x0]

P x
0 = E[(x0 − x̂0)(x0 − x̂0)T ]

(5.9)

For i = 1 . . .m2, the residuals are defined as below:

ri(k) = ‖di(k)− d̂i(k)‖ (5.10)

The FDI methodology using constant thresholds is presented in Theorem 1:

Theorem 5.1. Consider the system of Eq. 5.5, for which Assumptions 5.1 and 5.2

hold. Then there exists δi such that if ri(k) > δi, then d̃i,k 6= 0.

Proof. Before fault occurrence i.e. d̃i,k = 0, then

ri(k) = ‖di(k)− d̂i(k)‖ = ‖(HT R̃−1(k)H)−1HT R̃−1(k)(Cxk|k−1 − Cx̂k|k−1)‖

=‖(HT R̃−1(k)H)−1HT R̃−1(k)C‖‖x̃k|k−1‖
(5.11)

where x̃k|k−1 = xk|k−1 − x̂k|k−1 Since Assumptions 1 and 2 hold, according to Gillijns

and De Moor (2007), the estimation error is bounded i.e ‖x̃k|k−1‖ ≤ δx where δx

is a positive constant. Thus by selecting δi = ‖(HT R̃−1(k)H)−1HT R̃−1(k)C‖δx, if
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Table 5.4: The residual notation, fault and the thresholds for the FDI design presented
for actuator faults in Section 5.3.3 based on the framework in Section 5.3.3.

Residual Faults Threshold

r1 ũ1 0.644
r2 ũ2 0.182

d̃i(k) = 0, then ri(k) ≤ δi. Then, if ri(k) > δi, d̃i(k) 6= 0. This concludes the proof of

Theorem 5.1.

Note that Theorem 5.1 addresses the problem of actuator fault detection and iso-

lation for linear systems, and is utilized only as a guideline when implementing on the

testbed, in particular in choosing the threshold. For the present example, to account

for plant model mismatch, the thresholds are chosen as the maximum observed value

for residuals after the input estimation filter has converged. In subsequent application

for FDI ri(k) > δi is considered a trigger only if this condition holds for at least ten

consecutive samples.

Application of the actuators FDI framework

In this section, we apply the causal model based FDI method outlined in Section

5.3.3 to the VAV system. We first demonstrate the FDI capabilities assuming only

actuator faults. Note that since neither effective valve opening (EVO) nor damper

fractional opening (DFO) are subject to direct measurement noise (because they are

values computed by the controller, and known), the values estimated by Eq. 5.6

are first filtered and then utilized for FDI. The filtering is carried out using moving

average filters with span of 10 for both EVO and DFO. Table 5.4 shows the selected

threshold corresponding to each residual as discussed in Section 5.3.3.
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We again consider the damper fault scenario described in Section 5.3.1. The evo-

lution of the actuators (valve and damper), their estimates provided by the estimation

filter and the prescribed value are depicted by blue, red dashed, and green lines in

Figure 5.6, respectively. As can be seen, the estimated values for actuators stay close

to their actual values after fault occurrence. The evolution of residual profiles is

shown in Figure 5.7. Since only r2, the residual corresponding to a damper fault,

breaches its threshold, the FDI filter successfully detects and isolates the fault. Note

that although r1 exceeds its threshold numerous times, it does so for fewer samples

than needed to signal detection and isolation of a fault (each time for less than 10

consecutive samples). The same result holds for stuck damper at 0.16 position.

We next consider the case where the valve gets stuck at the fully open position

as described in Section 5.3.1. As seen in Figures 5.8 and 5.9 only r1, the residual

corresponding to the faulty valve breaches its threshold leading to FDI. Recall that

PCA and joint angle based approaches are unable to isolate this fault.

We next consider a case where both of the valve and damper get stuck simul-

taneously at 1874 sampling time (7:14 a.m. of second day of simulations) (also as

in Section 5.3.1). The position for stuck valve and stuck damper are 1 and 0.16,

respectively. The proposed approach results in FDI as seen in Figure 5.10.

Sensors fault detection and isolation

For sensor fault detection and isolation, we implement the methodology proposed

in Du and Mhaskar (2014) considering a system with two outputs. For the identified

linear system of Eq. 5.3, we design two Kalman filters each using only one of the

sensors. To this end, let yi = Cix(k) + Diu(k) + vi(k) + ỹi(k) ∈ R where i = 1, 2
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(a) (b)

Figure 5.6: Evolution of the prescribed value for actuators (solid blue lines), their
estimates provided by the estimation filter (red dashed-dotted lines) and the actual
value for actuators (green dashed lines). Note that the green dashed lines is plotted
only when the actuator is stuck, and the actual value is different from the prescribed
value. Otherwise only the blue line corresponding to prescribed value is plotted since
the actual value implemented actuators is the same as prescribed value under healthy
conditions. The damper gets stuck at 32% open position at 2233 sampling time (1:13
p.m. of second day of simulations) pointed by arrow in the both figures.

denotes the system output utilized by the ith Kalman filter, where yi = ȳi, C
i = C̄i,

Di = D̄i, v
i = v̄i and ỹi = ¯̃yi. To be able to design the ith Kalman filter using yi, we

need the following assumption:

Assumption 5.3. The pair (A,Ci) is observable.
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(a) (b)

Figure 5.7: Evolution of the residuals (blue solid lines) and thresholds (red dashed
lines), when the damper gets stuck Top: Residual corresponding to fault at valve
position. Bottom: Residual corresponding to fault at damper fractional opening.
The damper gets stuck at 32% open position at 2233 sampling time (1:13 p.m. of
second day of simulations) pointed by arrow in the both figures.

Thus the ith Kalman filter takes the following form:

R̃i
k = Ci(AP

i
kA

T +Qi)CT
i +Ri

k

Ki = (AP i
kA

T +Qi)CT
i (R̃i

k)
−1

x̂i(k) = x̂k|k−1 +K(yi(k)− Cix̂k|k−1 −Du(k))

P i
k+1 = (I −KiCi)(AP

i
kA

T +Qi)

x̂k+1|k = Ax̂i(k) +Bu(k)

(5.12)

where Q(k) = E[w(k)w(k)T ] ≥ 0 and R(k) = E[v(k)vT (k)] > 0. The filter is
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(a) (b)

Figure 5.8: Evolution of the prescribed value for actuators (solid blue lines), their
estimates provided by the estimation filter (red dashed-dotted lines) and the actual
value for actuators (green dashed lines), if the corresponding actuator is subject to
fault. Note that the green dashed lines is plotted only when the actuator is stuck, and
the actual value is different from the prescribed value. In the absence of faults, the
prescribed value equals the actual value and the lines overlap.The valve gets stuck at
100% open position at 1931 sampling time (8:11 a.m. of day two of the simulation)
pointed by arrow in the both figures.

initialized as follows:

x̂i0 = E[xi0]

P i
0 = E[(xi0 − x̂i0)(xi0 − x̂i0)T ]

(5.13)

Now, we describe the residual definition and fault detection and isolation design

through the ith Kalman filter. Each residual is the norm of the difference between the

expected trajectories of the state and the state estimates. The expected trajectories

are calculated using the following prediction model:

x̃i(k + 1) = Ax̃i(k) +Bu(k) t ∈ [tk−T , tk) (5.14)
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(a) (b)

Figure 5.9: Evolution of the residuals (blue solid lines) and thresholds (red dashed
lines). Top: Residual corresponding to fault at valve position. Bottom: Residual
corresponding to fault at damper fractional opening. The valve gets stuck at 100%
open position at 1931 sampling time (8:11 a.m. of day two of the simulation) pointed
by arrow in the both figures.

where x̃i is the state of the prediction model, and T is the prediction horizon: T = 1

if 0 < tk ≤ tk′ ; T = k−k′ if tk′ < tk ≤ tk′+Tp ; and T = Tp if tk > tk′+Tp , with a positive

integer Tp being a chosen prediction horizon. The prediction model is initialized at

the state estimate at time tk−T : x̃i(k − T ) = x̂i(k − T ). By solving Eq. (5.14), the

state prediction at time tk is obtained. The corresponding residual is defined as below:

ri(k) = ‖x̃i(k)− x̂i(k)‖ (5.15)

A fault is declared if at least one of the two residuals breach their thresholds. If

only one of the residuals breaches its threshold, this means a fault has occurred in

the corresponding sensor for the other residual (the insensitive residual) and the fault

is successfully isolated. If both of the residuals breach their thresholds, this indicates
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(a) (b)

Figure 5.10: Evolution of the prescribed value for actuators (solid blue lines), their
estimates provided by the estimation filter (red dashed-dotted lines) and the true
value for actuators (green dashed lines), if the corresponding actuator is subject to
fault. The valve and damper get stuck simultaneously at 1874 sampling time ( 7:14
a.m. of day two of simulation) pointed by arrow in the both figures.

that both of the sensors are subject to fault. Thus, there is a unique breaching pattern

corresponding to each fault scenario.

Remark 5.2. Note for a system with three or more outputs, breaching of all of

the residuals only indicates detection of multiple faults and an additional number of

observers must be designed for isolation of multiple faults in this case (see Du and

Mhaskar (2014) and Du et al. (2013)).

Application of sensors FDI framework

In this section, we apply the described FDI scheme in Section 5.3.3 to the HVAC

system of the north zone in the AHU model while considering only sensor faults. Since

the model has two outputs, two Kalman filters are designed which use measurements
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(a) (b)

Figure 5.11: Evolution of the residuals (blue solid lines) and thresholds (red dashed
lines). Top: Residual corresponding to fault at valve position. Bottom: Residual
corresponding to fault at damper fractional opening. The valve and damper get
stuck simultaneously at 1874 sampling time (7:14 a.m. of day two of testing) pointed
by arrow in the both figures.

of discharge air temperature (DAT) and air flow (AF), respectively. To initialize

the Kalman filters, for the first 100 sampling times each Kalman filter uses both

measurements, then the additional measurement is removed. Also, for purpose of

initialization the prediction model is associated with a Kalman filter that is active

for 100 sampling times using both measurements. The Kalman filters parameters are

P0 = O7×7 and Q = 103I7×7. The residuals are defined as described in 5.3.3. To

account for effect of uncertainty, thresholds are selected as the maximum observed

values for residuals while operating at steady state. Table 5.5 shows the selected

threshold corresponding to each residual.

To this end, we consider simultaneous faults in the flow sensor and discharge

air temperature sensor take place as described in Section 5.3.1. As can be seen from
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Table 5.5: Faults to which the residuals are insensitive and thresholds for FDI design
presented for sensor faults of the example in Section 5.3.3 based on the proposed
framework in Section 5.3.3.

Residual Faults Threshold

r1 ỹ1 0.155
r2 ỹ2 0.23

Figure 5.12, since estimated values for both air flow and discharge air temperature are

generated using faulty measurements, there is a discrepancy between the predicted

values calculated using Eq. 5.14 and estimated values calculated using Eq. 5.12

for both flow and discharge air temperature. This causes both of the residuals to

breach their thresholds (see Figure 5.13). Thus the fault is successfully detected and

isolated. Note that the same results holds for single sensor faults. In conclusion,

using the causal model based approaches enables isolation of multiple actuator and

sensor faults (including those faults that are compensated by the controller). Note

that for the case of simultaneous actuator and sensor faults, if the fault is detectable

(see Remark 5.4), fault detection is still achieved. However, simultaneous actuator

and sensor faults can not be isolated. This is due to fundamental limitation of the

system dynamics and available measurements (see Remark 5.5).

Remark 5.3. Note that in this work a modified diagnostic observer methodology

has been used for designing FDI scheme for diagnosing actuator faults. As mentioned

earlier, the existing FDI approaches are not designed to detect and isolate actuator

faults where the effect of the fault is compensated by the controller. The present

design thus represents a modified diagnostic observer approach that uses the norm of

the difference between the prescribed value and estimated value of inputs for residuals

generation. In this way, the actuator faults can be diagnosed even in the presence of a
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(a) (b)

Figure 5.12: Evolution of estimation (red) and prediction (blue) profiles for flow and
discharge air temperature when both of the sensors are faulty. Simultaneous faults in
the flow sensor and discharge air temperature sensor taking place at 1975 sampling
time (8:55 a.m. of the day two of the simulation test) pointed by arrow in the both
figures.

robust controller that compensates the effect of faults on the outputs. For sensor faults

isolation, the diagnostic observer presented in Du and Mhaskar (2014) is utilized and

is equivalent to other diagnostic approaches. The only difference is that the residuals

are defined as norm of difference between expected and estimates trajectories of the

plant.

Remark 5.4. Note since there are uncertainties associated with both of the identified

linear model and the in-control model, a number of missed faults are inevitable by

both of the proposed model based and statistical model based approaches utilized for

FDI. This is due to the trade off between robustness and fault sensitivity (see e.g.,

Zhang et al. (2010b) and Dunia and Qin (1998) for more on detectability analysis for

the proposed model based and statistical model based approaches, respectively). Note
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(a) (b)

Figure 5.13: Evolution of the residuals (blue solid lines) and thresholds (red dashed
lines). Top: Residual corresponding to fault at flow sensor. Bottom: Residual corre-
sponding to fault at discharge air temperature. Simultaneous faults in the flow sensor
and discharge air temperature sensor taking place at 1975 sampling time (8:55 a.m.
of the day two of the simulation test) pointed by arrow in the both figures.

that a fault can be detected if and only if it satisfies the corresponding detectability

conditions (for more on this, see Zhang et al. (2010b), Zhang (2011) and Dunia and

Qin (1998)).

Remark 5.5. Simultaneous actuator and sensor faults can not be isolated for the

present case, since the model structure does not meet the necessary and sufficient

conditions for a fault scenario to be distinguishable (for more on this see Shahnazari

et al. (2016)). Note that this is due to the fundamental limitation of the AHU system

dynamics and limited measurements, not a limitation of the utilized FDI methodology.

Remark 5.6. The results obtained using the proposed model based approach ad-

vances the statistical model based approaches in terms of diagnosis of complex faults,

multiple faults as well as applicability to the ability to isolate faults whose effect is
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masked by the operating controller. Note that the present work does not consider

zone temperature sensors in the FDI analysis, thus the zone temperature is not nec-

essary in the identified statistical and causal models. Performing FDI for a larger

section of the HVAC system remains the focus of future work.

5.3.4 Fault handling design

In this section, we illustrate a safe parking strategy for multi-zone HVAC systems

to handle the fault of a stuck damper at a position close to zero but not completely

closed (0.16 position). In this scenario, due to increasing cooling loads, the zone

temperature increases and the control design can not handle the faulty situation. As

a consequence the zone temperature exceeds the cooling set point during occupied

periods. The safe parking strategy is based on replacing damper fractional opening

with the supply fan pressure set point as the manipulated variable in the inner loop of

the cascade control design for the faulty zone. By increasing the supply fan pressure

set point, the air flow rate through the stuck damper will also increase. Thus, upon

isolation, the faulty zone is parked in a temporary operating condition with new

control objective (the cooling set point is now 24 0C rather than 23 0C ) until the

faulty equipment has been repaired or replaced. Figure 5.14 shows the evolution

of air flow rate entering the north zone, damper fractional opening of a fault free

zone, north zone temperature (ZT) profile and supply fan pressure in the presence

and absence of the safe parking strategy. As shown in Figure 5.14, by increasing the

supply fan pressure, the amount of air flow rate through the faulty damper increases.

In the healthy zones, the dampers close more to maintain the same amount of air flow

rate entering the healthy zones as before fault occurrence. In the faulty zone, since
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the damper is stuck, more air flow enters the zone and as a result the temperature in

the faulty zone is kept closer to the nominal operating condition until the system is

brought back to its original condition. Note that there exist three possible scenarios

for the case under consideration. One is to let the system operate in the faulty

condition without an attempt to handle the fault, leading to increased discomfort,

albeit without additional energy usage. The second scenario is to compensate for the

fault completely by achieving the set point in the healthy condition (by increasing

the static pressure in the entire system). In this case, the comfort is entirely retained

at the price of more energy usage. The third scenario is to use the described safe

parking strategy that trades off between the other two scenarios. Compared to the

first scenario, there is improved comfort but more energy usage. Compared to the

second scenario, there is decreased comfort, but also less energy usage. A more

detailed implementation of the safe-parking approach to the HVAC system remains

an objective of future work.

Remark 5.7. Note that when a VAV box damper gets stuck, different scenarios

could take place depending on damper position and operating point of the systems.

If the damper is stuck fully open, normally the VAV heating valve opens up and

compensates for the fault effect at a price of additional energy usage in the system.

In such a scenario, a possible safe-parking implementation would be to change the

supply fan pressure (reduce it) but just enough so discomfort in the zone under

consideration is reduced, without causing discomfort in the other zones. There is

another scenario when the damper is stuck closed. In this case, nothing can be done

until the faulty equipment is recovered or repaired. The particular case considered in

the work is applicable for the situation where the damper gets stuck at an intermediate
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position, and for the case where the controller is calling for the damper to open further.

Note that the problem of fault handling in the context of VAV boxes is addressed,

recognizing that while in the present context, the faults are not safety critical in

nature, they do present an opportunity for trading off between comfort and energy

usage. Thus, a safe parking strategy is designed to handle stuck dampers and the

resulting energy reduction demonstrated.

5.4 Conclusion

In this work, we designed and implemented an integrated framework for fault

diagnosis and fault handling in VAV boxes of HVAC systems. To this end, first, a

statistical model based FDI scheme is designed using a combination of PCA and joint

angle analysis. Then we designed a linear causal model based frameworks for detection

and isolation of multiple actuator and multiple sensor faults. The linear model is

identified using a subspace identification method. The causal model based frameworks

achieve fault isolation for the cases that the statistical model based framework is not

able to isolate the fault. Finally, we illustrated a FTC strategy to handle a stuck

damper fault in one of the zones using a safe-parking approach to achieve a trade off

between comfort and energy usage.
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(a) (b)

(c) (d)

Figure 5.14: Evolution of a: supply fan pressure, b: damper fractional opening of the
core zone, c: air flow rate entering the north zone , d: north zone temperature profile.
Blue: When the safe parking framework is not active, Red: When the safe parking
framework is active (time of fault occurrence is shown by arrow in the figures).
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Chapter 6

Conclusion and future work

This chapter summarizes the main contributions of this thesis and suggests re-

search opportunities for future work.

6.1 Conclusion

This work considers the problem of fault diagnosis and fault tolerant control for

complex process systems. In Chapter 2, the problem of isolating distinguishable

actuator and sensor faults in the solution copolymerization of MMA and VAc was

considered. To achieve fault detection and isolation for the distinguishable faults

in copolymerization reactor, an actuator and sensor fault detection and isolation

framework was designed. To this end, first state estimates were generated using a bank

of high-gain observers and then nonlinear fault detection and isolation (FDI) residuals

were defined. The ability of the proposed framework in detecting and narrowing

the possible locations for indistinguishable fault scenarios to a subset of possible

scenarios was proved and verified through simulations. Illustrative linear FDI filters

168



Ph.D. Thesis - Hadi Shahnazari McMaster - Chemical Engineering

were also designed for the purpose of comparison. While linear model based FDI only

achieved fault detection, the application of the proposed FDI mechanism was found

to also successfully isolate distinguishable faults even in the presence of plant-model

mismatch and measurement noise.

In Chapter 3, the problem of actuator and sensor fault detection and isolation was

addressed for control affine nonlinear systems subject to uncertainty. An FDI frame-

work was proposed and fault detectability and isolability conditions were rigorously

derived. Finally, the efficacy of the fault isolation framework subject to uncertainty

and measurement noise was illustrated using a chemical reactor example.

In Chapter 4, the problem of simultaneous fault diagnosis was addressed for non-

linear uncertain networked systems utilizing a distributed fault detection and fault

isolation strategy. The idea is to design a bank of local robust FDI schemes in a dis-

tributed manner with each FDI scheme corresponding to a subsystem. Time-varying

thresholds were selected by explicitly accounting for the effect of uncertainties and

faults in shared interconnections. In this way, robustness of the LFDI schemes to false

alarms is guaranteed. Also, in the case of faults in the shared interconnections that

can be isolated locally, the distributed architecture of the proposed FDI framework

allows the other FDI schemes to function as intended. The detectability and isoability

conditions were rigorously derived for the distributed FDI scheme. Effectiveness of

the proposed methodology was shown via application to a reactor-separator process

subject to uncertainty and measurement noise.

In Chapter 5, an integrated framework was designed and implemented for fault

diagnosis and fault handling in VAV boxes of HVAC systems. To this end, first, a

statistical model based FDI scheme is designed using a combination of PCA and joint
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angle analysis. Then we designed linear causal model based frameworks for detection

and isolation of multiple actuator and multiple sensor faults. The linear model is

identified using a subspace identification method. The causal model based frameworks

achieve fault isolation for the cases that the statistical model based framework is not

able to isolate the fault. Finally, we illustrated a FTC strategy to handle a stuck

damper fault in one of the zones using a safe-parking approach to achieve a trade off

between comfort and energy usage.

6.2 Future work

The results of this thesis suggest the following topics for future work:

1. Actuator and sensor fault detection and isolation of nonlinear uncertain systems

subject to delay

2. Actuator and sensor fault detection and isolation of nonlinear stochastic systems

subject to uncertainty

3. Fault diagnosis and safe parking design for HVAC systems with supply fan

pressure reset strategy

First, we consider the problem of fault diagnosis for nonlinear process systems

subject delay. There are a few results available in the literature for FDI design in the

presence of delay (see e.g., Chen and Saif (2006) and Yao et al. (2014)). However,

none of these results have addressed the problem of fault detection and isolation in

the presence of input, state and output delay. The other limitations of the existing

results in the literature are considering only single actuator faults and being only
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applicable to specific classes of nonlinear systems. To address this problem, the first

step is to design a predictor that enables estimation of system states in the past

and present in the presence of delay. The closed loop convergence property of the

proposed predictor must be established rigorously. The next step is to design FDI

filters in a way that they account for system complexities that cause nonzero values

for the generated residuals in the absence of fault. The FDI filters must be designed

in a way that enable differentiation between actuator and sensor faults.

Second, we consider the problem of fault diagnosis for nonlinear uncertain stochas-

tic systems. There are only a few results available in the literature when it comes

to FDI design for stochastic systems. In Keller (1999), FDI filters are designed to

diagnose single and multiple actuator faults in linear stochastic systems using mod-

ified full order Kalman filters. In George (2012), a robust FDI scheme is designed

for detection and isolation of single and simultaneous actuator and sensor faults in

uncertain linear stochastic systems using robust observers. However, there is a lack

of results in the literature when the problem of FDI design for uncertain nonlinear

stochastic systems has been addressed. To investigate this problem, the first step is

to design a robust observer with bounded estimation error in the presence of uncer-

tainty and process noise. Again, the closed loop convergence property of the proposed

estimator must be rigorously established. The next step is to design FDI filters in a

way they explicitly account for system complexities that cause nonzero values in the

generated residuals in the absence of fault. As far as defining residuals is concerned,

the methodology presented in Du et al. (2013) can be adapted accordingly. The third

step is to establish the ability of the proposed FDI scheme in detecting and isolat-

ing faults in the presence of uncertainty rigorously that can be achieved via proper
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detectability and isoability analysis, respectively.

Third, we consider the problem of fault diagnosis and safe parking design for

HVAC systems with supply fan pressure reset strategy. Static pressure setpoint reset

strategy is based on reseting the static pressure setpoint for the zone requiring the

most pressure i.e., the setpoint is decreased until one of the zone dampers is open

at a desired amount. The main advantage of utilizing the reset strategy is energy

saving since the static pressure is being kept at the minimum value in the allowable

range and it increases only when it is required (see e.g., Taylor (2007)). However,

when the supply fan pressure is not constant, the relation between damper fractional

opening (DFO) and air flow (AF) becomes nonlinear. Also, when one of the dampers

gets stuck at almost closed positions, the VAV controller signals the damper to be

fully open as long as long the damper is stuck. Thus the supply fan pressure reset

strategy does not continue to work properly in this case and there is some energy

loss in the system due to increase in supply fan pressure values. As a result of this, a

fault handling strategy is required to minimize both discomfort and energy losses in

the zones. To address these problems, the first step is to identify a model that can

capture the nonlinear behavior of the system. As model identification is concerned,

an online model identification strategy (see e.g., Alanqar et al. (2017)) will be used

that results in a linear parameter varying (LPV) model for the system. The second

step is to design a FDI framework. The methodologies proposed in Du et al. (2013)

or Shahnazari et al. (2018) can be utilized for FDI design depending on the structure

of the identified model for the system. The third step is to design a fault handling

framework for stuck dampers with ability to balance between providing comfort in

the zones and energy usage.
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Appendix

Appendix A: Lyapunov Based Model Predictive Con-

trol

Consider the nonlinear system of Eq. 2.4 with input constraints for which a control

Lyapunov function V exists. Let Π denote a set of states where V̇ (x(t)) can be made

negative by using the allowable values of the constrained input:

Π = {x ∈ Rn : LfV (x) + inf
u

(LGV (x)u) ≤ −ε∗∗} (A.1)

where LGV (x) = [Lg1V (x), . . . , LgmV (x)], with gi the ith column of G and ε∗∗ is a

positive real number. The controller of Mahmood and Mhaskar (2008) possesses a

stability region, an estimate of which is given by

Ω = {x ∈ Π : V (x) ≤ cmax}, (A.2)
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where cmax is a positive (preferably the largest possible) constant. Having defined

the sets Π, Ω, the Lyapunov based predictive controller of Mahmood and Mhaskar

(2008) follows the formulation below:

uMPC(x) : = argmin{J(x, t, u(.))|u(.) ∈ S} (A.3)

s.t. ẋ = f(x) +G(x)u (A.4)

V̇ ≤ −ε∗,∀τ ∈ [t, t+ ∆), if V (x(t)) > δ′ (A.5)

V̇ ≤ −δ′, ∀τ ∈ [t, t+ ∆), if V (x(t)) ≤ δ′ (A.6)

x(t+ τ) ∈ Π, ∀τ ∈ [t, t+ ∆) if V > cmax (A.7)

where S = S(t, T ) is the family of piecewise continuous functions (functions contin-

uous from the right), with T denoting the control horizon, mapping [t, t + T ] into

U, for a given positive number d, δ′ is a positive real number such that V (x) ≤ δ′

implies that ‖x(t)‖ ≤ d and ε∗ is a positive real number (related to ε∗∗ through ∆,

see Mahmood and Mhaskar (2008) for details). A control u(.) in S is characterized by

the sequence {u(tk)} and satisfies u(τ) = u(tk) for all τ ∈ [tk, tk + ∆]. The objective

function is given by

J(x, t, u(.)) =

∫ t+T

t

[‖xu(s;x, t)‖2
Qw + ‖u(s)‖2

Rw ]ds (A.8)

where Qw and Rw are positive semidefinite, and strictly positive definite, symmetric

matrices, respectively, xu(s;x, t) denotes the solution of Eq. A.4, due to control u,

with initial state x at time t and T is specified horizon. In accordance with the
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receding horizon implementation, the minimizing control uMPC is then applied to

the system over [t, t + ∆], and the same procedure is repeated at the next instant.

The stability property of the Lyapunov based predictive control design in Mahmood

and Mhaskar (2008) can be formulated as follows: given any positive real number d,

there exists a positive real number ∆∗ such that if ∆ ∈ [0,∆∗] and x(0) ∈ Ω then

x(t) ∈ Ω, for all t ≥ 0 and lim supt→∞‖x(t)‖ ≤ d. Furthermore, for x(0) ∈ Π\Ω,

if the optimization problem of Eqs A.3-A.7 is successively feasible, then x(t) ∈ Π

∀t ≥ 0 and lim supt→∞‖x(t)‖ ≤ d (see e.g. Mahmood and Mhaskar (2008) for further

details). Note that the control design in Mahmood and Mhaskar (2008) is used only

to illustrate the proposed framework in this work and the obtained results hold under

any control law that guarantees stability of the closed loop system.
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