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Abstract

With rapid adoption of cloud solutions across industries, energy consumed by server

farms continues to rise. There are numerous approaches to reduce energy consumption

in data centres, and one of the approaches is to use energy-aware policies, which focus

on how servers should be operated in order to achieve energy saving and meet service

level agreements (SLA). In this thesis, we focus on studying a single server model with

dynamic voltage scaling (DVS), presenting a framework with explicit solutions to solve

for performance metrics and energy consumption. Our framework is convenient and in-

tuitive, one can easily identify expected response time and expected energy consumption

for a given policy. In addition, we also provide insights on how the value of the faster

service rate and the choice of when to use speed scaling impact energy consumption and

performance metrics.
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Chapter 1

Introduction

1.1 Introduction

The rapid adoption of cloud solutions has led to significant energy consumption by

datacentres across the globe. Fortunately, as much as 40 percent of a typical datacentre’s

energy consumption can be saved [21] when proper energy management practices are

used. The use of guidelines on how to operate servers in datacentres is one of the

common practices that datacentre operators use to lower energy consumption without

compromising service level agreements. This potential energy saving has motivated

researchers to look for optimal policies under various settings. Some focus on how to

operate multiple servers in an efficient way, while others focus on studying single-server

models. Our research interest lies in studying a single-server model where dynamic

voltage scaling is employed. The understanding of the behaviour of a single-server system

is a useful step in understanding the behaviour of more complex, multi-server systems.

A common practice to achieve energy saving for single-server model is to turn off a

server when there are no jobs waiting for service, and turn on a server when there

are jobs waiting for service. This provides energy saving but also results in performance

degradation. Another common practice to achieve energy saving for single-server models
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is to use dynamic voltage scaling. A dynamic voltage scaling enabled server operates

at different speeds depending on the input voltage. As a result, operating policies may

vary operating speed to meet energy consumption and performance requirements. We

are interested in combining both practices, and to study and understand the resulting

system, which is presented in Chapter 4. There we discuss the system and associated

metrics for the model. In Chapter 5, we conduct our analysis for the model we presented

in Chapter 4, and determine the steady-state distribution. This allows us to provide a set

of explicit solutions for system performance metrics and energy consumption. By solving

the system in terms of the control parameters, our solution is not limited to providing an

optimal policy for one specific performance metric, and our solution is more adaptable

to different system settings, such as allowing the operator to turn the server on/off, only

use one processing speed, etc. Our framework also allows users to validate whether the

system meets an SLA, and allows one to search for the optimal policy for their preferred

performance metrics. After the model has been analyzed, Chapter 6 provides a series of

numerical experiments based on the obtained closed form expressions, and we provide a

number of observations focusing on the effects of dynamic voltage scaling.

2
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Chapter 2

Preliminary Knowledge

This chapter provides necessary background knowledge for understanding this thesis,

such as fundamental tools and concepts from stochastic modeling and queueing theory.

This chapter could be skipped if readers are already familiar with Continuous Time

Markov Chains and queueing theory.

2.1 Stochastic Processes

A stochastic process (also referred to as a random process) is a mathematical object that

is used to describe a system’s behavior over time. Mathematically speaking, a stochastic

process is a set of random variables {Xt|t ∈ T}. The index set T is usually viewed as

points in time, which corresponds to the system changing over time. In addition, there

are two types of stochastic process when the index set is interpreted as time. If the index

set T is finite or countable, the stochastic process is considered to be in discrete time,

an example would be Xi may be number of customers in a system at the ith minute

(discrete). On the other hand, if the index set in T represents intervals of the real line,

then the stochastic process is considered to be in continuous time, an example would be

3
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Xi to represent number of customers in a system for all times on the real line between

given times t0 and tf .

2.1.1 Markov Processes

There are numerous types of stochastic processes. A Markov process is one kind of

stochastic process, satisfying the Markov property. The Markov property means that

the future values of the process depend on only the current value, in other words they

are conditionally independent of the previous values. This property is also referred as

"memoryless", because the next value only depends on the current value - what happened

previously is not relevant in determining the next value. Mathematically, the Markov

property is presented as:

P [Xtn ≤ xn|Xt0 = x0, Xt1 = x1, Xt2 = x2, ..., Xtn−1 = xn−1]

= P [Xtn ≤ xn|Xtn−1 = xn−1]

where the values of ti are in order with t0 being the smallest, and tn being the largest.

The memoryless property typically allows a simplified analytical procedure for such

models, as one only needs to understand the relationship between two consecutive states

without requiring the entire history of the system. This property is fundamental for

analyzing many queueing systems.

2.1.2 Continuous-Time Markov Chains

A continuous-time Markov chain (CTMC) is a type of Markov process, which takes on

values in continuous time with a state space consisting of a countable number of states.

In other words, it is represented with random variables {Xt|t ∈ T} which take on discrete

values from a countable state space S, and the set T is some continuous time interval.

4
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A CTMC is a powerful analysis tool because one can easily write balance equations for

the steady-state distribution of the system with the given CTMC. A CTMC transition

rate diagram is shown in Figure 2.1, where each node represents one of the elements

from the state space S (a system state), and the arrows pointing in and out from each

node represent the “transition rates” between elements (system states).

Figure 2.1: CTMC of an M/M/1 queue

2.2 Queueing Theory

Queueing theory is the mathematical study of waiting lines or queues. A queueing model

is constructed so that one can predict statistics of queue lengths and waiting times based

on different characteristics of the system. Queueing models generally describe three key

aspects. One aspect focuses on the job arrivals, describing how jobs arrive to the system;

one example would be that jobs arrive to the system following a particular random

process. The next is the queueing aspect, such as how long the queue length should be.

The last aspect concerns how the system processes jobs, which is the counterpart of the

arrival aspect, an example being the processing times following a particular distribution.

The stochastic nature of the arrival and processing times makes the analysis of queueing

systems complicated. This study is further complicated when these systems interconnect

with each other. To provide sufficient knowledge to understand this thesis, this chapter

presents a simple queueing model along with methods that are typically used to analyse

it.

5
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Figure 2.2: M/M/1 system [19]

2.2.1 Analyzing an M/M/1 queue

One of the representative queueing models is the M/M/1 queue, shown in Figure 2.2,

where M/M/1 is the Kendall’s notation that describes the system. The M/M/1 nota-

tion describes a system with arrivals following a Poisson process, processing times being

exponentially distributed, and one server. The queue is assumed to be infinite in length

and processed in first in first out (FIFO) order. The memoryless property of the expo-

nential distribution allows it to be modeled as a CTMC, with the states denoting the

number of jobs in the system, which includes jobs that are waiting in the queue and the

job that is being processed. The resulting CTMC is shown in Figure 2.1, the number in

system increases or decreases by at most one for any given transition (one job more or

less in the system), thus the system can also be described as a birth-death process.

The next important part of analyzing an M/M/1 queue is to capture the system be-

havior in steady-state. The steady-state distribution captures the probability of being

in each state n, as time goes to infinity. Given the steady-state distribution, one would

be able to compute such quantities as the expected number of jobs in the system. The

steady-state distribution is often represented with the quantities πn, where n represents

the state.

In order to determine the steady-state distribution, the relationships among all the states

6
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must be understood and representable. To solve a queueing system, balance equations

must be derived, which describe the relationship among system states. For a CTMC, it

is known that the rate into each state must be equal to the rate of leaving that state, or

else the system will not reach steady-state. Based on this observation, let λ, µ be the

arrival rate and the processing rate for the system, and ρ = λ
µ , the balance equation for

states n > 0 can be described as λπn−1 + µπn+1 = (λ+ µ)πn, which represents that the

rate into state n is equal to the rate out of state n. Similarly, the balance equation for

the system state 0 is λπ0 = µπ1. This gives π1 = ρπ0,0, and this leads to πn = ρnπ0 by

recursion. As a result, all of the steady-state probabilities can be expressed in terms of

π0. As the system must be in on one of its system states at all times, the sum of all of

the steady-state probabilities must equal 1. Mathematically, this is expressed as,

∞∑
i=0

πi = 1⇒ π0

∞∑
i=0

ρi ⇒ π0 = 1− ρ

Once π0 is determined, the remaining probabilities can be expressed as,

πn = (1− ρ)ρn

The expected number of jobs in the system can be calculated by weighting each πn

by n and summing over all of the states. The expected number of jobs in the sys-

tem is a key performance indicator. The other important performance indicator is the

expected response time, which is the expected time that a job takes from entering to

leaving the system. Fortunately, there is an easy way to calculate the expected response

time if the expected number of jobs is given. One of the key takeaways from queueing

theory is Little’s Law, which states the relationship between the expected number of

jobs and the expected response time, and this law holds independent of the interarrival

7
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time/processing time distribution and queue scheduling policy. Little’s Law states:

E[R] = E[N ]
λ

Thus, the expected response time can be directly calculated via Little’s Law given the

expected number of jobs. The purpose of this thesis is to quantify the trade off be-

tween energy and performance, as a result, the expected energy consumption is another

important performance indicator. Energy is consumed at different rates when a server

operates in different modes. There are only two modes for the server in this M/M/1

queueing model, the server is either idle (with probability π0) or operating (with prob-

ability 1− π0). Assuming that energy cost rates are Eidle and Ebusy for a server in idle

and operating modes respectively, the expected energy consumption can be obtained by

weighting the steady-state probabilities with the corresponding energy cost as,

E[E] = Eidleπ0 + Ebusy

∞∑
n=1

πn

Since π0 = 1−ρ, this gives the sum of the remaining steady-state probabilities as 1−π0,

so the expected energy cost for the M/M/1 queueing model is,

E[E] = Eidle(1− ρ) + Ebusyρ

This completes the example of analyzing an M/M/1 queue - the analytical processes and

tools used in this example will be used throughout this thesis. Although this chapter

provides background in CTMCs and queueing theory, this only covers the knowledge

and examples that are used for this thesis. If readers are interested in looking for deeper

and broader knowledge, an independent study in these fields is recommended, see the

standard references [14],[15],[17].

8
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Chapter 3

Literature Review

This chapter provides an overview of the rising energy consumption problem in datacen-

tres across the globe, as well as to cover some of the popular methods for energy control

in datacentres. Lastly, this chapter examines work that has been done following similar

approaches as this thesis.

3.1 Saving Energy in Datacentres

The rapid adoption of cloud computing leads to significant energy consumption by dat-

acentres, and lowering datacentre utility cost is a high priority for every datacentre

operational manager. From [2], 50%, 25%, 12%, and 10% of the energy consumed in

datacentres is by IT equipment, cooling, air movement, and power distribution, respec-

tively. Many researchers attempt to achieve energy saving by addressing these key energy

consumption areas.

One approach to reduce energy consumption is by thermal cooling design and control.

The work in [13], [16], [1] are examples of this approach. Datacentre airflow is optimized

to avoid hot spots in [13], which are created due to some servers being highly utilized

while other servers are under utilized. The work in [13] and [16] also saves energy from

9
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cooling by turning up thermostats and with the use of liquid cooling. An algorithm is

introduced in [22] that takes both service level agreement (SLA) and heat circulation

problems into consideration for scheduling jobs among servers to avoid hotspots. This

effectively reduces energy consumption due to cooling.

Another effective energy saving approach is to use virtual machine (VM) consolidation

and migration. VM migration allows most applications to be run on a smaller number of

servers by increasing the utilization of those servers, allowing servers with low utilization

to become idle, and they can then be turned off to realize energy saving and require

less cooling. Examples of this approach are [3],[12], they propose similar solutions by

implementing a centralized controller, which distributes jobs to local VMs and controls

VMs migration on hosting servers. In doing so, the centralized controller can provide

efficient VM provisioning over hosting servers, as a result, some servers can be turned

off for energy saving.

In the remainder of this chapter, we provide a deeper discussion of the work that

focuses on server operating policies for energy saving, which is the topic of this thesis.

3.2 Related Work

There are numerous works on operating policies for single-server models, each exploiting

different ways to achieve energy savings while not downgrading performance significantly.

A common practice is to turn off a server when there is no job waiting for service, and

turn on a server when there are jobs waiting for service. This provides energy saving

but also results in performance degradation. There have been a number of other works

taking a queueing-theoretic approach to the single-server problem without DVS, see

[9],[10],[7],[6],[18], and [7] and [18] are most relevant to the work done in this thesis. The

work done by [7] is intended to identify optimality on how to operate a single-server

10
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under the energy response time product (ERP) metric, by modelling and analyzing the

system as a continuous time Markov chain (CTMC). Using properties of the ERP metric,

they identify that the optimal policy is either to always keep the server on, or turn off

the server as soon as there are no jobs waiting to be served. Although optimality is

identified in [7], the result is limited to the performance metric ERP, which tends to

simplify optimality considerations. Work done by [18] follows a similar approach as [7]

but with an additional turn on threshold, which intends to provide insights on when the

server should be turned on. In addition to solving the underlying model and providing

insights on the effect of the turn on threshold, [18] also provides a framework to analyze

the system under other cost models, not being limited to ERP. This thesis is highly

influenced by [7] and [18], and it can be viewed as a combination of the dynamic voltage

scaling aspect into with on/off single-server analysis.

Using dynamic voltage scaling for energy control in datacentres is not new. A dy-

namic voltage scaling enabled server operates at different speeds depending on the input

voltage. As a result, operating policies may vary operating speed to meet energy con-

sumption and performance requirements. The policies in [5],[20],[4] are examples, they

focus on multi-server models (except for [20] which is a single server setting) with similar

real world datacentre settings, focusing on the overall impact of their proposed policies.

They study the relationship between the incoming workload and the adjusted processing

speed, where the performance of policies is highly dependent on whether the incoming

workload can be predicted accurately. This approach does not give much details as

to how a single DVS server should be operated. Others have done work for a single

server model with DVS via queueing-theoretic approaches. Wierman et al. [22] focus

on a queueing model for a DVS server with processor sharing scheduling. They analyze

various scenarios investigating the impact of the operating frequency of the server in

relationship to the arrival rates. The work done by [11] is perhaps the most impactful

work on varying the service rate for a single queue model, their work focuses on holding

11
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costs and operating costs when using different service rates, and they determine solutions

for how to optimally control the service rate to achieve minimum incurred cost. This

work however could not provide a full picture on how DVS should be operated when it

is possible for a server to be turned off, since they assumed the server is always available

to serve jobs.

In this chapter, we covered some of the energy saving techniques that are used in

datacentres, and we discussed the relevant work for this thesis. We will discuss our

approach and how it addresses the problem in Chapter 4.

12
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Chapter 4

Problem Formulation

For a single dynamic voltage scaling server system, which can be operated at different

speeds, one can use the system to meet different objectives, such as improving perfor-

mance by operating at a high speed or lowering energy consumption by operating at a

low speed. To analyse the system, the following metrics are of interest: the expected

number of jobs in the system, the expected response time of a job in the system, and the

expected energy consumption of the system. Typically, a cost function for the system

is constructed from these metrics with the objective of minimizing the cost. Deriving a

policy that minimizes the constructed cost function is an ultimate goal. However, cost

functions are not necessarily universal, and physical system settings could impose hard

constraints on the optimal policy. On the contrary, determining the metrics in terms

of control parameters provide the tools to understand the system, as well as provide

insights on the system behaviors. As a result, the primary objective of this work is to

provide a framework to analyse the on/off single server with dynamic voltage scaling

and determining the metrics of interest. In addition, an analysis of the system under

a particular cost function is conducted to provide insights on how the server should be

operated.

13
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4.1 The Model

We present a simplified version of a DVS server, which only contains two different op-

erating speeds, one is the nominal (lower) speed and the other is the scaled speed. This

leads to five distinct states for the server. The OFF state represents the server is off;

the SETUP state represents the server is being turned on; the BUSY state means the

server is operating at nominal speed; the SCALED state represents the server is oper-

ating at scaled speed; and lastly, the IDLE state represents the server is idle. We define

additional parameters to indicate state transitions for the server. We define a turn on

server threshold k1 to indicate that the server will be transferred from OFF to SETUP

as soon as there are k1 jobs in the system, and the turn on speed scaling threshold k2

is defined to signal the transition to SCALED. Furthermore, we consider that there are

time penalties when turning on the server, and we model this setup time as exponentially

distributed with a rate of γ, this transfers the server from SETUP to either BUSY or

SCALED. Lastly, we also define the turnoff delay rate α, this parameter captures how

long the server waits when there are no jobs, before transferring the server from IDLE

to OFF. The system is made of an infinitely long FIFO queue and a DVS server. Jobs

arrive to the system following a Poisson process with rate λ. Jobs can only be processed

in either the BUSY or SCALED states, the processing time is exponentially distributed

with rates µ and cµ for BUSY and SCALED, respectively, where c is the scaled speed

factor. We can model the system as a Continuous Time Markov Chain (CTMC) with

the arrival rate, processing rates, and the previously defined parameters. Figure 4.1 and

Figure 4.2 capture the possible CTMCs of the system, where the state is represented in

the form (n1,n2), where n1 is either 0 or 1 for the server being off and on respectively,

and n2 represents the number of jobs in the system. Figure 4.1 represents a standard

way of operating the DVS server, where the nominal speed is used before using the scaled

speed, and this allows us to explore the effects on the system when DVS is employed.

14
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Figure 4.1: DVS processor with k1 ≤ k2 CTMC

Figure 4.2: DVS processor with k1 > k2 CTMC

Parameter Description
λ arrival rate
γ rate of turning on the server
α rate that the server waits in IDLE before turning off
c scaling factor of scaled speed
k1 number of jobs in the system before turning on the server
k2 number of jobs in the system before increasing to the scaled processing rate
µ nominal job processing rate

Table 4.1: Table of System Parameters

Figure 4.2 on the other hand represents another possible use case for the DVS server,

where the scaled speed is used as soon as the server is on, and the nominal speed is

only used when the system is moving towards IDLE. This use case is less interesting in

comparison to the use case in Figure 4.1, since it is similar to using a faster server, and

this use case does not allow us to study the effect of delaying using DVS. Although both

models are valid use cases for the DVS server, our main focus is on the model in Figure

4.1, which allows us to study the effects of both the magnitude of the scaled speed and

when to use DVS. For reference, we provide a list of parameters in Table 4.1.

15
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Chapter 5

Analysis

The objective of this analysis is to obtain closed form expressions for system metrics,

namely the expected number of jobs, the expected response time, and the expected en-

ergy consumption. Once this objective is met, we will make use of these closed form

expressions to study the effects of DVS under various system configurations. In order

to provide the complete use scenario of the DVS server under our framework, we need

to obtain closed form expressions of system metrics for both models defined in Chapter

4. We break down our analysis into two sections, with Section 5.1 for the case k1 ≤ k2

and Section 5.2 for the case k2 < k1. The approaches we take for solving both cases

are very similar, we first determine closed form expressions of the first state in the OFF

region π0,0, then we use a weighted average to obtain closed form expressions for the

expected number of jobs and the expected energy consumption. The expected response

time is then obtained via Little’s Law after we have a closed form expression for the

expected number of jobs. As mentioned in Chapter 4, we put more focus on studying

and validating Case 1, k1 ≤ k2.

The CTMC model of this case is presented in Figure 4.1. The balance equations for

different regions are similar, so we group the balance equations together with a common

16
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expression for each region, as follows:



λπ0,n = λπ0,n−1 if 0 ≤ n < k1, OFF region

(λ+ γ)π0,n = λπ0,n−1 if k1 ≤ n SETUP region

λπ0,n = απ1,n if n = 0 IDLE

µπ1,n = λπ1,n−1 + λπ0,n−1 if 0 < n ≤ k1 BUSY to IDLE region

µπ1,n = λπ1,n−1 + λπ0,n−1 if k1 < n < k2 BUSY to SCALED region

(λ+ cµ)π1,n = λπ1,n−1 + γπ0,n + cµπ1,n+1 if k2 ≤ n SCALED region

To obtain closed form expressions for each probability, we work on expressing each

probability in terms of π0,0.

In the OFF region 0 ≤ n < k1:

λπ0,n = λπ0,n−1

π0,n = π0,0 (5.1)

In the SETUP region k1 ≤ n:

(λ+ γ)π0,n = λπ0,n−1

π0,n = λ

λ+ γ
π0,n−1

Note that the SETUP region starts from k1, and π0,k1−1 belongs to the OFF region, so

we have π0,k1−1 = π0,0. With this information, we have:

π0,n = ( λ

λ+ γ
)n−(k1−1)π0,0 (5.2)
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In the IDLE region n = 0:

λπ0,0 = απ1,0

π1,0 = λ

α
π0,0 (5.3)

In the BUSY towards IDLE region 0 < n ≤ k1:

µπ1,n = λπ1,n−1 + λπ0,n−1

Let ρ = λ
µ

µπ1,1 =λπ1,0 + λπ0,0

⇒ π1,1 =ρπ1,0 + ρπ0,0

µπ1,2 =λπ1,1 + λπ0,1

⇒ π1,2 =ρ2π1,0 + ρ2π0,0 + ρπ0,0

µπ1,n =λπ1,n−1 + λπ0,0

⇒ π1,n =ρnπ1,0 + π0,0

n∑
i=1

ρi

π1,n =π0,0

(
λ

α
ρn + ρ

1− ρn

1− ρ

)
(5.4)

In the BUSY towards SCALED region k1 < n < k2:

µπ1,n = λπ1,n−1 + λπ0,n−1

18

http://www.mcmaster.ca/
http://www.cas.mcmaster.ca/cas/
http://www.cas.mcmaster.ca/cas/


Master of Science– Guang Mo ; McMaster University– Department of Computing and
Software

At the first state of this region (n = k1 + 1), we have

π1,k1+1 = ρπ1,k1 + ρπ0,k1

From (5.2) and (5.4), we have:

π0,k1 = λ

λ+ γ
π0,0

π1,k1 =
(
λ

α
ρk1 + ρ

1− ρk1

1− ρ

)
π0,0

⇒ π1,k1+1 = λ

λ+ γ
ρπ0,0 +

(
λ

α
ρk1+1 + ρ2 1− ρk1

1− ρ

)
π0,0

π1,k1+2 = ρπ1,k1+1 + ρπ0,k1+1

⇒ π1,k1+2 =
(
λ

α
ρk1+2 + ρ3 1− ρk1

1− ρ

)
π0,0 + λ

λ+ γ
ρ2π0,0 +

(
λ

λ+ γ

)2
ρπ0,0

π1,k1+3 = ρπ1,k1+2 + ρπ0,k1+2

⇒ π1,k1+3 =
(
λ

α
ρk1+3 + ρ4 1− ρk1

1− ρ

)
π0,0 + λ

λ+ γ
ρ3π0,0 +

(
λ

λ+ γ

)2
ρ2π0,0 +

(
λ

λ+ γ

)3
ρπ0,0

and this leads to the following expression:

π1,n =
(
λ

α
ρn + ρn−(k1−1) 1− ρk1

1− ρ

)
π0,0 +

n−k1∑
i=1

(
λ

λ+ γ

)i
ρn−k1−(i−1)π0,0 (5.5)

In the SCALED region k2 ≤ n:

(λ+ cµ)π1,n = λπ1,n−1 + γπ0,n + cµπ1,n+1 (5.6)
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The solution to this balance equation can be described as [8]

π1,n = Axn−(k2−1) +B

(
λ

λ+ γ

)n−(k2−1)

where x satisfies:

(λ+ cµ)x = λ+ cµx2

which yields x = 1 or x = λ
cµ .

Substitute this relationship along with (5.2) back into (5.6)

(λ+ cµ)
(
Axn−(k2−1) +B

(
λ

λ+ γ

)n−(k2−1))
= λ

(
Axn−k2 +B

(
λ

λ+ γ

)n−k2)
+ γ

((
λ

λ+ γ

)n−(k1−1)
π0,0

)
+ cµ

(
Axn−k2+2 +B

(
λ

λ+ γ

)n−k2+2)
(5.7)

We can now group terms on both the right hand side and left hand side into those that

contain x and those that do not. If we let x = 1, the terms that contain x on both right

and life hand sides cancel, so the terms that do not contain x on both right and left

hand sides must be equal.
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As a result, the constant terms in (5.7) are:

(λ+ cµ)B
(

λ

λ+ γ

)n−(k2−1)
=λB

(
λ

λ+ γ

)n−k2

+ γ

((
λ

λ+ γ

)n−(k1−1)
π0,0

)
+ cµB

(
λ

λ+ γ

)n−k2+2

(λ+ cµ)B
(

λ

λ+ γ

)
=λB + γ

((
λ

λ+ γ

)k2−(k1−1)
π0,0

)
+ cµB

(
λ

λ+ γ

)2

λ(λ+ γ)k2−k1(λ+ cµ)B =λ(λ+ γ)k2−k1+1B + γλk2−k1+1π0,0 + cµBλ2(λ+ γ)k2−k1−1

γλk2−k1+1π0,0 =
(
λ(λ+ γ)k2−k1(λ+ cµ)− λ(λ+ γ)k2−k1+1 − cµλ2(λ+ γ)k2−k1−1

)
B

γλk2−k1+1π0,0 =λ(λ+ γ)k2−k1−1
(

(λ+ γ)(λ+ cµ)− (λ+ γ)2 − cµλ
)
B

γλk2−k1π0,0 =(λ+ γ)k2−k1−1
(

(λ+ γ)(λ+ cµ)− (λ+ γ)2 − cµλ
)
B

γλk2−k1π0,0 =(λ+ γ)k2−k1−1(cµγ − λγ − γ2)B

B =
(

λk2−k1

(λ+ γ)k2−k1−1(cµ− λ− γ)

)
π0,0

With B solved, we can substitute the result back into (5.7) to solve for A:

(λ+ cµ)
(
Axn−(k2−1) +B

(
λ

λ+ γ

)n−(k2−1))
= λπ1,n−1 + γ

((
λ

λ+ γ

)n−(k1−1)
π0,0

)

+cµ
(
Axn−k2+2 +B

(
λ

λ+ γ

)n−k2+2)

Let n = k2 so that π1,k2−1 falls into the BUSY to SCALED region, which can be

expressed from (5.5) as:

π1,k2−1 =
(
λ

α
ρk2−1 + ρk2−k1 1− ρk1

1− ρ

)
π0,0 +

k2−k1−1∑
i=1

(
λ

λ+ γ

)i
ρk2−k1−iπ0,0
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Set x = 1 as one of the solutions, then we have:

λA = λ

((
λ

α
ρk2−1 + ρk2−k1 1− ρk1

1− ρ

)
π0,0 +

k2−k1−1∑
i=1

(
λ

λ+ γ

)i
ρk2−k1−iπ0,0

)
+ γ

(
( λ

λ+ γ
)k2−k1+1π0,0

)

−λB
(
λ2 + λγ + cµγ

(λ+ γ)2

)

λA = λ

((
λ

α
ρk2−1 + ρk2−k1 1− ρk1

1− ρ

)
π0,0 +

k2−k1−1∑
i=1

(
λ

λ+ γ

)i
ρk2−k1−iπ0,0

)
+ γ

(
( λ

λ+ γ
)k2−k1+1π0,0

)

−λ
(

λk2−k1

(λ+ γ)k2−k1−1(cµ− λ− γ)

)
π0,0

(
λ2 + λγ + cµγ

(λ+ γ)2

)

A =
((

λ

α
ρk2−1 + ρk2−k1 1− ρk1

1− ρ

)
π0,0 +

k2−k1−1∑
i=1

(
λ

λ+ γ

)i
ρk2−k1−iπ0,0

)
+ γ

λk2−k1

(λ+ γ)k2−k1+1π0,0

−
(

λk2−k1(λ2 + λγ + cµγ)
(λ+ γ)k2−k1+1(cµ− λ− γ)

)
π0,0

A =
((

λ

α
ρk2−1 + ρk2−k1 1− ρk1

1− ρ

)
+
k2−k1−1∑
i=1

(
λ

λ+ γ

)i
ρk2−k1−i

)
π0,0

+ λk2−k1

(λ+ γ)k2−k1+1

(
γ − λ2 + λγ + cµγ

cµ− λ− γ

)
π0,0

=
((

λ

α
ρk2−1 + ρk2−k1 1− ρk1

1− ρ

)
+
k2−k1−1∑
i=1

(
λ

λ+ γ

)i
ρk2−k1−i

)
π0,0

+ λk2−k1

(λ+ γ)k2−k1+1

( −(λ+ γ)2

cµ− λ− γ

)
π0,0

=
((

λ

α
ρk2−1 + ρk2−k1 1− ρk1

1− ρ

)
+
k2−k1−1∑
i=1

(
λ

λ+ γ

)i
ρk2−k1−i

)
π0,0 −

λk2−k1

(λ+ γ)k2−k1−1(cµ− λ− γ)π0,0

=
((

λ

α
ρk2−1 + ρk2−k1 1− ρk1

1− ρ

)
+
k2−k1−1∑
i=1

(
λ

λ+ γ

)i
ρk2−k1−i − λk2−k1

(λ+ γ)k2−k1−1(cµ− λ− γ)

)
π0,0

22

http://www.mcmaster.ca/
http://www.cas.mcmaster.ca/cas/
http://www.cas.mcmaster.ca/cas/


Master of Science– Guang Mo ; McMaster University– Department of Computing and
Software

With these expressions for A and B, we can now obtain the expression for the probabil-

ities in this region:

π1,n = A( λ
cµ

)n−(k2−1) +B( λ

λ+ γ
)n−(k2−1)

π1,n =
((

λ

α
ρk2−1 + ρk2−k1 1− ρk1

1− ρ

)
+
k2−k1−1∑
i=1

(
λ

λ+ γ

)i
ρk2−k1−i

− λk2−k1

(λ+ γ)k2−k1−1(cµ− λ− γ)

)
π0,0( λ

cµ
)n−(k2−1)

+
(

λk2−k1

(λ+ γ)k2−k1−1(cµ− λ− γ)

)
π0,0( λ

λ+ γ
)n−(k2−1)

⇒ π1,n =
(

λn+1

αcn−(k2−1)µn
+ λn−k1+1

cn−(k2−1)µn−k1+1
1− ρk1

1− ρ +
k2−k1−1∑
i=1

λn−k1+1

cn−(k2−1)(λ+ γ)iµn−k1+1−i

− λn−k1+1

(λ+ γ)k2−k1−1(cµ− λ− γ)(cµ)n−(k2−1) + λn−k1+1

(λ+ γ)n−k1(cµ− λ− γ)

)
π0,0

(5.8)

We now have expressed all probabilities in terms of π0,0, we can use the fact that the

sum of all of the probabilities must be equal to 1, which leads to an expression for π0,0.

Since the equations developed in (5.3) and (5.4) are in fact the same when n = 0, we can

combine the IDLE region into the BUSY towards IDLE region, and have the following

equation to solve for π0,0

1 =
k1−1∑
n=0

π0,n +
∞∑

n=k1

π0,n +
k1∑
n=0

π1,n +
k2−1∑

n=k1+1
π1,n +

∞∑
n=k2

π1,n (5.9)
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We now subsitute the developed expressions from (5.1), (5.2), (5.4), (5.5), (5.8) into

corresponding regions in (5.9).

1 = π0,0

k1−1∑
n=0

1 + π0,0

∞∑
n=k1

(
λ

λ+ γ

)n−(k1−1)
+ π0,0

k1∑
n=0

(
λ

α
ρn + ρ

1− ρn

1− ρ

)

+ π0,0

k2−1∑
n=k1+1

((
λ

α
ρn + ρn−(k1−1) 1− ρk1

1− ρ

)
+
n−k1∑
i=1

(
λ

λ+ γ

)i
ρn−k1−(i−1)

)

+ π0,0

∞∑
n=k2

(
λn+1

αcn−(k2−1)µn
+ λn−k1+1

cn−(k2−1)µn−k1+1
1− ρk1

1− ρ +
k2−k1−1∑
i=1

λn−k1+1

cn−(k2−1)(λ+ γ)iµn−k1+1−i

− λn−k1+1

(λ+ γ)k2−k1−1(cµ− λ− γ)(cµ)n−(k2−1) + λn−k1+1

(λ+ γ)n−k1(cµ− λ− γ)

)

Let λ
µ = ρ, λ

λ+γ = ξ, we can simplify the equation as:

1 = π0,0

k1−1∑
n=0

1 + π0,0

∞∑
n=k1

ξn−(k1−1) + π0,0

k1∑
n=0

(
λ

α
ρn + ρ

1− ρn

1− ρ

)

+ π0,0

k2−1∑
n=k1+1

((
λ

α
ρn + ρn−(k1−1) 1− ρk1

1− ρ

)
+
n−k1∑
i=1

(
ξ

)i
ρn−k1−(i−1)

)

+ π0,0

∞∑
n=k2

(
λn+1

αcn−(k2−1)µn
+ λn−k1+1

cn−(k2−1)µn−k1+1
1− ρk1

1− ρ +
k2−k1−1∑
i=1

ρn−k1+1−i

cn−(k2−1) ξ
i

− λ+ γ

(cµ− (λ+ γ))cn−(k2−1) ρ
n−k2+1ξk2−k1 + λ

cµ− (λ+ γ)ξ
n−k1

1 = π0,0

(
k1 +

∞∑
n=0

ξn − 1 + λ

α

k1∑
n=0

ρn −
( λ

µ− λ
) k1∑
n=0

ρn +
( λ

µ− λ
)
(k1 + 1)

+ λ

α

k2−1∑
n=k1+1

ρn +
( λ

µ− λ
)
(1− ρk1)

k2−1∑
n=k1+1

ρn−k1

+
k2−1∑

n=k1+1

(
ρn−k1+1

n−k1∑
i=1

(ξ
ρ

)i)+ λck2−1

α

∞∑
n=k1

(ρ
c

)n + (ck2−1)(ρ−k1+1)
(1− ρk1

1− ρ
) ∞∑
n=k1

(ρ
c

)n
+
∞∑

n=k2

(ρn−k1+1

cn−k2+1

k2−1−k1∑
i=1

(ξ
ρ

)i)− (λ+ γ)ξk2−k1

cµ− (λ+ γ)

∞∑
n=k2

(ρ
c

)n−k2+1 + λ

cµ− (λ+ γ)

∞∑
n=k2

ξn−k1

)
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1 = π0,0

(
k1 + 1

1− ξ − 1 +
(λ
α
−
( λ

µ− λ
))1− ρk1+1

1− ρ +
( λ

µ− λ
)
(k1 + 1) + λ

α
ρk1
(ρ(1− ρk2−k1−1)

1− ρ
)

+
( λ

µ− λ
)
(1− ρk1)

(ρ(1− ρk2−k1−1)
1− ρ

)
+

k2−1∑
n=k1+1

(
ρn−k1+1

n−k1∑
i=1

(ξ
ρ

)i)+ λck2−1

α

∞∑
n=k2

(ρ
c

)n
+ (ck2−1)(ρ−k1+1)

(1− ρk1

1− ρ
) ∞∑
n=k2

(ρ
c

)n +
∞∑

n=k2

(ρn−k1+1

cn−k2+1

k2−1−k1∑
i=1

(ξ
ρ

)i)

− (λ+ γ)ξk2−k1

cµ− (λ+ γ)

∞∑
n=k2

(ρ
c

)n−k2+1 + λ

cµ− (λ+ γ)

∞∑
n=k2

ξn−k1

))
(5.10)

This expression has become quite complicated, we will simplify each of the summation

terms in (5.10). We first simplify the first sum in the right hand side of (5.10):

k2−1∑
n=k1+1

(
ρn−k1+1

n−k1∑
i=1

(ξ
ρ

)i) =
k2−1∑

n=k1+1

(
ρn−k1+1

( ξ

ρ− ξ
−
ξ
( ξ
ρ

)n−k1

ρ− ξ

))

=
k2−1∑

n=k1+1

(
ρn−k1+1( ξ

ρ− ξ
))
−

k2−1∑
n=k1+1

(ρξn−k1+1

ρ− ξ

)

=
( ξ

ρ− ξ
)
ρ

k2−1∑
n=k1+1

ρn−k1 −
( ρ

ρ− ξ
)
ξ

k2−1∑
n=k1+1

ξn−k1

=
( ρξ

ρ− ξ
)( k2−1∑

n=k1+1
ρn−k1 −

k2−1∑
n=k1+1

ξn−k1
)

=
( ρξ

ρ− ξ
)( k2−k1−1∑

n=1
ρn −

k2−k1−1∑
n=1

ξn
)

=
( ρξ

ρ− ξ
)(ρ(1− ρk2−k1−1)

1− ρ − ξ(1− ξk2−k1−1)
1− ξ

)
(5.11)
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We continue to simplify the second sum in the RHS of (5.10)

λck2−1

α

∞∑
n=k2

(ρ
c

)n
= λck2−1

α

(ρ
c

)k2
∞∑
n=0

(ρ
c

)n
= λ

cα
ρk2
( c

c− ρ
)

= λ

α(c− ρ)ρ
k2 (5.12)

Next, the third sum in the RHS of (5.10)

ck2−1ρ−k1+1(1− ρk1

1− ρ
) ∞∑
n=k2

(ρ
c

)n
= ck2−1ρ−k1+1(1− ρk1

1− ρ
)(ρ
c

)k2
∞∑
n=0

(ρ
c

)n
= ck2−1ρ−k1+1(1− ρk1

1− ρ
)(ρ
c

)k2( c

c− ρ
)

= ρk2−k1+1(1− ρk1

1− ρ
)( 1
c− ρ

)
(5.13)
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Next, the fourth sum in the RHS of (5.10)

∞∑
n=k2

ρn−k1+1

cn−k2+1

k2−k1−1∑
i=1

(ξ
ρ

)i
= ρk2−k1

∞∑
n=k2

ρn−k2+1

cn−k2+1

( ξ

ρ− ξ
−
ρ
( ξ
ρ

)k2−k1

ρ− ξ

)

= ρk2−k1

( ∞∑
n=k2

ρn−k2+1

cn−k2+1
( ξ

ρ− ξ
)
−
∞∑

n=k2

ρn−k2+1

cn−k2+1

(ρ( ξρ)k2−k1

ρ− ξ

))

= ρk2−k1

(( ξ

ρ− ξ
) ∞∑
n=1

(ρ
c

)n − (ρ( ξρ)k2−k1

ρ− ξ

) ∞∑
n=1

(ρ
c

)n)

=
(( ξ

ρ− ξ
)
−
(ρ( ξρ)k2−k1

ρ− ξ

))ρk2−k1+1

c− ρ

= ρk2−k1+1ξ − ρ2ξk2−k1

(c− ρ)(ρ− ξ) (5.14)

Next, the fifth sum in the RHS of (5.10)

(λ+ γ)ξk2−k1

cµ− (λ+ γ)

∞∑
n=k2

(ρ
c

)n−k2+1

= (λ+ γ)ξk2−k1

cµ− (λ+ γ)
( ρ

c− ρ
)

= (λ+ γ)ξk2−k1ρ(
cµ− (λ+ γ)

)
(c− ρ)

(5.15)
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Finally, we simplify the last sum in the RHS of (5.10)

λ

cµ− (λ+ γ)

∞∑
n=k2

ξn−k1

= λ

cµ− (λ+ γ)ξ
k2−k1

∞∑
n=k2

ξn−k2

= λ

cµ− (λ+ γ)ξ
k2−k1

∞∑
n=0

ξn

= λ

cµ− (λ+ γ)ξ
k2−k1

( 1
1− ξ

)
= λξk2−k1(

cµ− (λ+ γ)
)
(1− ξ)

(5.16)

After we have simplified all of the sums in (5.10), we substute the expressions from

(5.11),(5.12),(5.13),(5.14),(5.15),(5.16) back in (5.10), we then have:

1 = π0,0

(
k1 + 1

1− ξ − 1 +
(λ
α
− λ

µ− λ

)1− ρk1+1

1− ρ +
( λ

µ− λ

)
(k1 + 1) + λ

α
ρk1
(ρ(1− ρk2−k1−1)

1− ρ
)

+
( λ

µ− λ
)
(1− ρk1)

(ρ(1− ρk2−k1−1)
1− ρ

)
+ ρξ

ρ− ξ

(ρ(1− ρk2−k1−1)
1− ρ − ξ(1− ξk2−k1−1)

1− ξ
)

+ λ

α(c− ρ)ρ
k2 + ρk2−k1+1 1− ρk1

1− ρ
1

c− ρ
+ ρk2−k1+1ξ − ρ2ξk2−k1

(c− ρ)(ρ− ξ)

− (λ+ γ)ξk2−k1ρ

(cµ− (λ+ γ))(c− ρ) + λξk2−k1

(cµ− (λ+ γ))(1− ξ)

)
(5.17)

We continue the simplification by simplifying each term from left to right on the RHS

of (5.17), starting off with:

1
1− ξ − 1

= 1
1− λ

λ+γ
− 1

= λ

γ
(5.18)
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Then we continue with the next term on the RHS of (5.17):

(λ
α
− λ

µ− λ

)1− ρk1+1

1− ρ

=
(λ(µ− λ)− αλ

α(µ− λ)
)(1− ρk1+1)µ

µ− λ

= λ(µ− λ− α)(1− ρk1+1)µ
α(µ− λ)2 (5.19)

We can sum up (5.18) and (5.19),

λ

γ
+ λ(µ− λ− α)(1− ρk1+1)µ

α(µ− λ)2

= λα(µ− λ)2 + λγµ(µ− λ− α)− λ2γ(µ− λ− α)ρk1

αγ(µ− λ)2 (5.20)

Next, we continue to simplify the next term on the RHS of (5.17),

( λ

µ− λ
)
(k1 + 1)

= λ(k1 + 1)
µ− λ

(5.21)

We sum up (5.20) and (5.21) to represent the simplification for the first few terms on

the RHS of (5.17),

λα(µ− λ)2 + λγµ(µ− λ− α)− λ2γ(µ− λ− α)ρk1

αγ(µ− λ)2 + λ(k1 + 1)
µ− λ

= λα(µ− λ)2 + λγµ(µ− λ− α)− λ2γ(µ− λ− α)ρk1 + λαγ(k1 + 1)(µ− λ)
αγ(µ− λ)2

= (µ− λ+ γ + γk1λα(µ− λ) + λγµ(µ− λ− α)− λ2γ(µ− λ− α)ρk1

αγ(µ− λ)2 (5.22)
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We continue to simplify the next term on the RHS of (5.17),

λ

α
ρk1

(
ρ(1− ρk2−k1−1)

1− ρ

)
= λ

α
ρk1

(
λ(1− ρk2−k1−1)

µ− λ

)
= λ2ρk1 − λ2ρk2−1

α(µ− λ) (5.23)

Now, we sum up (5.22) and (5.23),

(µ− λ+ γ + γk1λα(µ− λ) + λγµ(µ− λ− α)− λ2γ(µ− λ− α)ρk1

αγ(µ− λ)2 + λ2ρk1 − λ2ρk2−1

α(µ− λ)

= (µ− λ+ γ + γk1)λα(µ− λ) + λγµ(µ− λ− α) + αλ2γρk1 − (µ− λ)λµγρk2

αγ(µ− λ)2 (5.24)

We continue the simplification with the next term on the RHS of (5.17),

( λ

µ− λ

)
(1− ρk1)

(
ρ(1− ρk2−k1−1)

1− ρ

)
= λ2(1− ρk2−k1−1)(1− ρk1)

(µ− λ)2

= λ2 − λ2ρk2−k1−1 − λ2ρk1 + λµρk2

(µ− λ)2 (5.25)

Now we sum up (5.24) and (5.25) to represent the simplification for the first five terms
(excluding k1) on the RHS of (5.17).

(µ− λ + γ + γk1)λα(µ− λ) + λγµ(µ− λ− α) + αλ2γρk1 − (µ− λ)λµγρk2

αγ(µ− λ)2
+
λ2 − λ2ρk2−k1−1 − λ2ρk1 + λµρk2

(µ− λ)2

=
(λ + α− µ)λµγρk2 − αγλ2ρk2−k1−1 + (µ− λ + γ + γk1)(λαµ− αλ2) + λγµ2 − γµλ2 − λγµα + αγλ2

αγ(µ− λ)2

=
(λ + α− µ)λµγρk2 − αγλ2ρk2−k1−1 + (αλ− 2αµ− γk1α− γµ)λ2 + γk1λαµ + (γ + α)λµ2

αγ(µ− λ)2
(5.26)
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We then continue to simplify the next term on the RHS of (5.17),

− (λ+ γ)ξk2−k1ρ(
cµ− (λ+ γ)

)
(c− ρ)

= − (λ+ γ)ξk2−k1λ(
cµ− (λ+ γ)

)
(cµ− λ)

(5.27)

as well as to simplify the term after that on the RHS of (5.17),

λξk2−k1(
cµ− (λ+ γ)

)
(1− ξ)

= (λ+ γ)λξk2−k1(
cµ− (λ+ γ)

)
γ

(5.28)

Summing (5.27) and (5.28) yields,

⇒ (λ+ γ)λξk2−k1(cµ− λ)− γ(λ+ γ)ξk2−k1λ

(cµ− (λ+ γ))γ(cµ− λ)

= λ(λ+ γ)ξk2−k1

γ(cµ− λ) (5.29)

We contine the simplification with the next term on the RHS of (5.17),

λ

α(c− ρ)ρ
k2

= λµρk2

α(cµ− λ) (5.30)

Summing (5.29) and (5.30) yields,

λγµρk2 + αλ(λ+ γ)ξk2−k1

αγ(cµ− λ) (5.31)
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Contine with the next term on the RHS of (5.17),

ρk2−k1+1ξ − ρ2ξk2−k1

(c− ρ)(ρ− ξ)

= µ2ρk2−k1+1 − λ(λ+ γ)ξk2−k1

(cµ− λ)(λ+ γ − µ) (5.32)

Next, we merge (5.31) and (5.32),

λγµρk2(λ+ γ − µ) + αλ(λ+ γ)ξk2−k1(λ+ γ − µ) + αγµ2ρk2−k1+1 − αγλ(λ+ γ)ξk2−k1

αγ(cµ− λ)(λ+ γ − µ)

= λγµρk2(λ+ γ − µ) + αγµ2ρk2−k1+1 + α(λ− µ)λ(λ+ γ)ξk2−k1

αγ(cµ− λ)(λ+ γ − µ) (5.33)

Continue the simplification with the next term on the RHS of (5.17),

(ρk2−k1+1
(1− ρk1

1− ρ
)( 1
c− ρ

)
= (1− ρk1)µ2ρk2−k1+1

(µ− λ)(cµ− λ) (5.34)

Now, we sum (5.33) and (5.34), yielding,

αγµ2ρk2−k1+1(λ+ γ − µ)− αγµ2ρk2+1(λ+ γ − µ) + λγµρk2(λ+ γ − µ)(µ− λ)
αγ(µ− λ)(cµ− λ)(λ+ γ − µ)

+ αγµ2ρk2−k1+1(µ− λ) + α(λ− µ)(µ− λ)λ(λ+ γ)ξk2−k1

αγ(µ− λ)(cµ− λ)(λ+ γ − µ)

= αγ2µ2ρk2−k1+1 + (µ− λ− α)λγµρk2(λ+ γ − µ)− α(µ− λ)2λ(λ+ γ)ξk2−k1

αγ(µ− λ)(cµ− λ)(λ+ γ − µ) (5.35)
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We continue to simplify the last term on the RHS of (5.17),

ρξ

ρ− ξ

(
ρ(1− ρk2k1−1)

1− ρ − ξ(1− ξk2−k1−1

1− ξ

)
=
( λ2

λ(λ+ γ − µ)
)(λ(1− ρk2−k1−1)

µ− λ
− λ(1− ξk2−k1−1)

γ

)
= λ2γ(1− ρk2−k1−1)− λ2(1− ξk2−k1−1)(µ− λ)

(λ+ γ − µ)(µ− λ)γ (5.36)

Now we sum (5.35) and (5.36), yielding,

αλ2γ(1− ρk2−k1−1)(cµ− λ)− αλ2(1− ξk2−k1−1)(µ− λ)(cµ− λ)
αγ(µ− λ)(cµ− λ)(λ+ γ − µ)

+ αγ2µ2ρk2−k1+1 + (µ− λ− α)λγµρk2(λ+ γ − µ)− α(µ− λ)2λ(λ+ γ)ξk2−k1

αγ(µ− λ)(cµ− λ)(λ+ γ − µ)

= (λ+ γ − cµ)αλµγρk2−k1 + αλ2µ(c− 1)(µ− λ)ξk2−k1−1

αγ(µ− λ)(cµ− λ)(λ+ γ − µ)

+ (µ− λ− α)(λ+ γ − µ)λγµρk2 + (λ+ γ − µ)(cµ− λ)αλ2

αγ(µ− λ)(cµ− λ)(λ+ γ − µ) (5.37)

Now we sum (5.26) and (5.37), which represents all the terms in the parentheses on
the RHS of (5.17) excluding k1, which yields,

⇒
(λ + γ − cµ)αλµγρk2−k1 (µ− λ) + (µ− λ)(µ− λ− α)(λ + γ − µ)λγµρk2

αγ(λ + γ − µ)(µ− λ)2(cµ− λ)

+
αλ2µ(c− 1)(µ− λ)2ξk2−k1−1 + (µ− λ)(λ + γ − µ)(cµ− λ)αλ2

αγ(λ + γ − µ)(µ− λ)2(cµ− λ)

+
(λ + γ − µ)(cµ− λ)(λ + α− µ)λµγρk2 − (λ + γ − µ)(cµ− λ)αγλ2ρk2−k1−1

αγ(λ + γ − µ)(µ− λ)2(cµ− λ)

+
(λ + γ − µ)(cµ− λ)(αλ− 2αµ− γk1α− γµ)λ2 + (λ + γ − µ)(cµ− λ)γk1λαµ + (λ + γ − µ)(cµ− λ)(γ + α)λµ2

αγ(λ + γ − µ)(µ− λ)2(cµ− λ)

Simplify the numerator collecting coefficients of ρk2−k1 , ξk2−k1−1, and ρk2 , we have:

(c− 1)(−αλ(µγ)2ρk2−k1 + αλ2µ(µ− λ)2ξk2−k1−1 + (λ+ γ − µ)(λ+ α− µ)λµ2γρk2

αγ(λ+ γ − µ)(µ− λ)2(cµ− λ)

+ (γk1α+ µ(α+ γ))(µ− λ)λ(λ+ γ − µ)(cµ− λ)
αγ(µ− λ)2(λ+ γ − µ)(cµ− λ) (5.38)
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Now we need to sum (5.38) with k1 since it has been left over from (5.17) when we

started the simplification on each term, yielding,

(c− 1)λµ(−αµγ2ρk2−k1 + αλ(µ− λ)2ξk2−k1−1 + (λ+ γ − µ)(λ+ α− µ)µγρk2

αγ(µ− λ)2(λ+ γ − µ)(cµ− λ)

+ µ(cµ− λ)(λ+ γ − µ)(µ− λ)((α+ γ)λ+ αγk1)
αγ(µ− λ)2(λ+ γ − µ)(cµ− λ) (5.39)

With (5.17) and (5.39), we obtain the final expression for π0,0 as:

π0,0 = αγ(µ−λ)2(λ+γ−µ)(cµ−λ)
(c−1)(αλ2µ(µ−λ)2ξk2−k1−1−αλ(µγ)2ρk2−k1 +(λ+γ−µ)(λ+α−µ)λµ2γρk2 )+µ(cµ−λ)(λ+γ−µ)(µ−λ)((α+γ)λ+αγk1)

(5.40)

The complexity of the above expression makes it difficult to provide meaningful in-

terpretation. However, it does capture the effect of the DVS processor by separating two

terms in the denominator. We can see that one term in the denominator heavily relies

on the value of c. As a result, we can verify whether our calculation is done correctly by

comparing with previous work done in [18]. From [18], for a single-server system with

only a turn on server threshold k1, the closed formed expression for π0,0 is:

π0,0 = (1− ρ) αγ

k1αγ + αλ+ λγ

Our model can be easily converted into a single processing speed model by either

setting c = 1 or k2 = ∞, which means the scaled processing speed is the same as

the nominal speed or we never turn on speed scaling. If we substitute c = 1 into our
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expression, we then have:

π0,0 = αγ(µ− λ)2(λ+ γ − µ)(cµ− λ)
µ(cµ− λ)(λ+ γ − µ)(µ− λ)

(
(α+ γ)λ+ αγk1

)
= αγ(µ− λ)
µ((α+ γ)λ+ αγk1)

= (1− ρ) αγ

k1αγ + αλ+ λγ

This substitution gives us the same expression as developed previously in [18], and it

gives us confidence for the correctness of our calculation. We then use this expression

for π0,0 to determine the expected number of jobs in the system.

We have expressed the steady-state probabilities for each region in terms of π0,0. We

can make use of this information to derive the number of expected jobs E[N ] in the

system by using a weighted sum of the corresponding probabilities.

E[N ] =
k1−1∑
n=0

nπ0,n +
∞∑

n=k1

nπ0,n +
k1∑
n=0

nπ1,n +
k2−1∑

n=k1+1
nπ1,n +

∞∑
n=k2

nπ1,n (5.41)

Substitute the corresponding steady-state probabilities (5.1), (5.2), (5.4), (5.5), (5.8)

E[N ] =
k1−1∑
n=0

nπ0,0 +
∞∑

n=k1

n

(
λ

λ+ γ

)n−(k1−1)
π0,0 +

k1∑
n=0

nπ0,0

(
λ

α
ρn + ρ

1− ρn

1− ρ

)

+
k2−1∑

n=k1+1
n

(
λ

α
ρn + ρn−(k1−1) 1− ρk1

1− ρ +
n−k1∑
i=1

(
λ

λ+ γ

)i
ρn−k1−(i−1)

)
π0,0

+
∞∑

n=k2

n

(
λn+1

αcn−(k2−1)µn
+ λn−k1+1

cn−(k2−1)µn−k1+1
1− ρk1

1− ρ +
k2−k1−1∑
i=1

λn−k1+1

cn−(k2−1)(λ+ γ)iµn−k1−i+1

− λn−k1+1

(λ+ γ)k2−k1−1(cµ− λ− γ)(cµ)n−(k2−1) + λn−k1+1

(λ+ γ)n−k1(cµ− λ− γ)

)
π0,0
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E[N ]
π0,0

=
k1−1∑
n=0

n+
∞∑

n=k1

n

(
λ

λ+ γ

)n−(k1−1)
+ λ

α

k1∑
n=0

n(ρn)

+ λ

α

k2−1∑
n=k1+1

n(ρn) + λ

µ− λ

k1∑
n=0

n− λ

µ− λ

k1∑
n=0

nρn + 1− ρk1

1− ρ

k2−1∑
n=k1+1

n
(
ρn−(k1−1))

+
k2−1∑

n=k1+1
n
(
ρn−k1+1

n−k1∑
i=1

( µ

λ+ γ

)i)+
∞∑

n=k2

n
( λn+1

αcn−(k2−1)µn

)

+
∞∑

n=k2

n
( λn−k1+1

cn−(k2−1)µn−k1+1
1− ρk1

1− ρ
)

+
∞∑

n=k2

n

( k2−1−k1∑
i=1

λn−k1+1

cn−(k2−1)(λ+ γ)iµn−k1+1−i

)

−
∞∑

n=k2

n
( λn−k1+1

(λ+ γ)k2−k1−1(cµ− λ− γ)(cµ)n−(k2−1)

)
+
∞∑

n=k2

n
( λn−k1+1

(λ+ γ)n−k1(cµ− λ− γ)
)

E[N ]
π0,0

=
k1−1∑
n=0

n+
∞∑

n=k1

n

(
λ

λ+ γ

)n−(k1−1)
+ λ

α

k1∑
n=0

n(ρn) + λ

α

k2−1∑
n=k1+1

n(ρn) + λ

µ− λ

k1∑
n=0

n

− λ

µ− λ

k1∑
n=0

nρn + 1− ρk1

1− ρ

k2−1∑
n=k1+1

n
(
ρn−(k1−1))+

k2−1∑
n=k1+1

n
(
ρn−k1+1

n−k1∑
i=1

( µ

λ+ γ

)i)

+ λc(k2−1)

α

∞∑
n=k2

n
λn

cnµn
+ 1− ρk1

1− ρ
ck2µk1

λk1

∞∑
n=k2

n
( λn+1

cn+1µn+1
)

+
∞∑

n=k2

n
( λn−k1+1

cn−(k2−1)µn−k1+1

k2−1−k1∑
i=1

µi

(λ+ γ)i
)

− (cµ)k2

(λ+ γ)k2−k1−1(cµ− λ− γ)λk1

∞∑
n=k2

n
( λn+1

(cµ)n+1
)

+ (λ+ γ)k1

(cµ− λ− γ)λk1

∞∑
n=k2

n
( λn+1

(λ+ γ)n
)
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E[N ]
π0,0

=
k1−1∑
n=0

n+
∞∑

n=k1

n

(
λ

λ+ γ

)n−(k1−1)
+ λ

α

k1∑
n=0

n(ρn) + λ

µ− λ

( k1∑
n=0

n−
k1∑
n=1

nρn
)

+ 1− ρk1

1− ρ

k2−1∑
n=k1+1

nρn−(k1−1) +
k2−1∑

n=k1+1
n
(
ρn−k1+1

n−k1∑
i=1

( µ

λ+ γ

)i)

+
(µck2

α
+ 1− ρk1

1− ρ
ck2µk1

λk1
− (cµ)k2

(λ+ γ)k2−k1−1(cµ− λ− γ)λk1

) ∞∑
n=k2

n
( λn+1

(cµ)n+1
)

+
∞∑

n=k2

n
( λn−k1+1

cn−(k2−1)µn−k1+1

k2−1−k1∑
i=1

µi

(λ+ γ)i
)

+ (λ+ γ)k1

(cµ− λ− γ)λk1

∞∑
n=k2

n
( λn+1

(λ+ γ)n
)

(5.42)

We simplify the terms in the big bracket of the fourth sum of (5.42) in reverse order

as follows:

µck2

α
+ 1− ρk1

1− ρ
ck2µk1

λk1
− (cµ)k2

(λ+ γ)k2−k1−1(cµ− λ− γ)λk1

= µck2

α
+ µ(1− ρk1)

µ− λ
ck2µk1

λk1
− (cµ)k2

(λ+ γ)k2−k1−1(cµ− λ− γ)λk1

= µck2
( 1
α

+ (1− ρk1)
µ− λ

µk1

λk1
− µk2−1

(λ+ γ)k2−k1−1(cµ− λ− γ)λk1

)
= µck2

(λ+ γ)k2−k1−1(cµ− λ− γ)
(
(µλk1 − λk1+1) + (αµk1 − αλk1)

)
− µk2−1(µ− λ)α

α(λ+ γ)k2−k1−1(cµ− λ− γ)λk1(µ− λ)

So we have:

E[N ]
π0,0

=
k1−1∑
n=0

n+
∞∑

n=k1

n

(
λ

λ+ γ

)n−(k1−1)
+ λ

α

k1∑
n=0

n(ρn) + λ

µ− λ

( k1∑
n=0

n−
k1∑
n=1

nρn
)

+ 1− ρk1

1− ρ

k2−1∑
n=k1+1

nρn−(k1−1) +
k2−1∑

n=k1+1
n
(
ρn−k1+1

n−k1∑
i=1

( µ

λ+ γ

)i)
+
(
µck2

(λ+ γ)k2−k1−1(cµ− λ− γ)
(
(µλk1 − λk1+1) + (αµk1 − αλk1)

)
− µk2−1(µ− λ)α

α(λ+ γ)k2−k1−1(cµ− λ− γ)λk1(µ− λ)

) ∞∑
n=k2

n
( λn+1

(cµ)n+1

)
+
∞∑

n=k2

n
( λn−k1+1

cn−(k2−1)µn−k1+1

k2−1−k1∑
i=1

µi

(λ+ γ)i
)

+ (λ+ γ)k1

(cµ− λ− γ)λk1

∞∑
n=k2

n
( λn+1

(λ+ γ)n
)

(5.43)
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We now proceed to simplify each of the sums in the RHS of (5.43).

The first sum on the RHS of (5.43):

k1−1∑
n=0

n = k1(k1 − 1)
2 (5.44)

The second sum on the RHS of (5.43) can be simplified as:

∞∑
n=k1

n

(
λ

λ+ γ

)n−(k1−1)

=
∞∑
n=1

(
n+ (k1 − 1)

)
( λ

λ+ γ
)n

=
∞∑
n=1

n( λ

λ+ γ
)n + (k1 − 1)

∞∑
n=1

( λ

λ+ γ
)n

= λ

λ+ γ

∞∑
n=0

n( λ

λ+ γ
)n−1 + (k1 − 1)

( ∞∑
n=0

( λ

λ+ γ
)n − 1

)
= λ

λ+ γ

d

d( λ
λ+γ )

∞∑
n=0

( λ

λ+ γ
)n + k1 − 1

1− λ
λ+γ
− (k1 − 1)

= λ

λ+ γ

1(
1− λ

λ+γ
)2 + (λ+ γ)(k1 − 1)− γ(k1 − 1)

γ

= λ(λ+ γ)
γ2 + λ(k1 − 1)

γ

= λ(λ+ k1γ)
γ2 (5.45)
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Next, the third sum in the RHS of (5.43),

λ

α

k2−1∑
n=0

nρn

= λ

α
ρ
k2−1∑
n=0

nρn−1

= λ

α
ρ
d

d(ρ)

k2−1∑
n=0

ρn

= λ

α
ρ

1− ρk2 − k2ρ
k2−1 + k2ρ

k2

(1− ρ)2 (5.46)

Next, the fourth sum in the RHS of (5.43),

λ

µ− λ
( k1∑
n=0

n−
k1∑
n=0

nρn
)

= λ

µ− λ

(k1(k1 + 1)
2 − ρ d

d(ρ)

k1∑
n=0

ρn
)

= λ

µ− λ

(k1(k1 + 1)
2 − ρ1− ρk1+1 − (k1 + 1)ρk1 + (k1 + 1)ρk1+1

(1− ρ)2

)
= λ

µ− λ

(k1(k1 + 1)(µ− λ)2

2(µ− λ)2 − ρµ2 − µ2ρk1+2 − µ2(k1 + 1)ρk1+1 + µ2(k1 + 1)ρk1+2

(µ− λ)2

)
= λ

(k1(k1 + 1)(µ− λ)2 − 2ρµ2 + 2µ2ρk1+2 + 2µ2(k1 + 1)ρk1+1 − 2µ2(k1 + 1)ρk1+2

2(µ− λ)3

)
(5.47)
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Next, the fifth sum on the RHS of (5.43)

1− ρk1

1− ρ

k2−1∑
n=k1+1

nρn−(k1−1)

= λ(1− ρk1)
µ− λ

k2−1∑
n=k1+1

nρn−k1

= λ(1− ρk1)
µ− λ

k2−k1−1∑
n=1

(n+ k1)ρn

= λ(1− ρk1)
µ− λ

( k2−k1−1∑
n=1

nρn + k1

k2−k1−1∑
n=1

ρn
)

= λ(1− ρk1)
µ− λ

(
ρ
d

d(ρ)

k2−k1−1∑
n=1

ρn + k1
ρ(1− ρk2−k1−1)

1− ρ
)

= λ(1− ρk1)
µ− λ

(
ρ
d

d(ρ)
(ρ− ρk2−k1

1− ρ
)

+ k1
ρ(1− ρk2−k1−1)

1− ρ
)

= λ(1− ρk1)
µ− λ

(
ρ

(1− ρ)(1− (k2 − k1)ρk2−k1−1) + (ρ− ρk2−k1)
(1− ρ)2 + k1

ρ(1− ρk2−k1−1)
1− ρ

)
= λ2(1− ρk1)

((µ− λ)(1− (k2 − k1)ρk2−k1−1) + λ(1− ρk2−k1−1) + k1(µ− λ)(1− ρk2−k1−1)
(µ− λ)3

)
= λ2(1− ρk1)

(µ+ k1(µ− λ)− (k2(µ− λ) + λ)ρk2−k1−1

(µ− λ)3

)
(5.48)
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Next, the sixth sum on the RHS of (5.43),

k2−1∑
n=k1+1

n
(
ρn−k1+1

n−k1∑
i=1

( µ

λ+ γ
)i
)

=
k2−1∑

n=k1+1
n
(
ρn−k1+1µ

(
1− ( µ

λ+γ )n−k1
)

λ+ γ − µ

)

= λ

λ+ γ − µ

k2−1∑
n=k1+1

(
nρn−k1+1 − nρn−k1+1( µ

λ+ γ
)n−k1

)

= λ

λ+ γ − µ

( k2−1∑
n=k1+1

(nρn−k1+1)− ρ
k2−1∑

n=k1+1

(
n( λ

λ+ γ
)n−k1

))

= λ

λ+ γ − µ

(
ρ
k2−k1−1∑
n=1

(n+ k1)ρn − ρ
k2−k1−1∑
n=1

(
(n+ k1)( λ

λ+ γ
)n
))

= λ

λ+ γ − µ

(
ρ
k2−k1−1∑
n=1

nρn−1 + k1

k2−k1−1∑
n=1

ρn − λ

λ+ γ

k2−k1−1∑
n=1

n( λ

λ+ γ
)n−1 − k1

k2−k1−1∑
n=1

( λ

λ+ γ
)n
)

= λ

λ+ γ − µ

(
ρ
d

d(ρ)

k2−k1−1∑
n=1

ρn + k1
ρ(1− ρk2−k1−1)

1− ρ − λ

λ+ γ

d

d( λ
λ+γ )

k2−k1−1∑
n=1

n( λ

λ+ γ
)n

− k1
λ
(
1− ( λ

λ+γ )k2−k1−1)
γ

)

= λ

λ+ γ − µ

(
ρ
d

d(ρ)
(ρ− ρk2−k1

1− ρ
)

+ k1
ρ(1− ρk2−k1−1)

1− ρ − λ

λ+ γ

d

d( λ
λ+γ )

( λ
λ+γ

(
1− ( λ

λ+γ )k2−k1−1)
1− λ

λ+γ

)

− k1
λ
(
1− ( λ

λ+γ )k2−k1−1)
γ

)
= λ

λ+ γ − µ

(
ρ

(1− ρ)
(
1− (k2 − k1)ρk2−k1−1)+ ρ− ρk2−k1

(1− ρ)2 + k1
ρ(1− ρk2−k1−1)

1− ρ

− λ

λ+ γ

(
1− λ

λ+γ
)(

1− (k2 − k1)( λ
λ+γ )k2−k1−1)+ λ

λ+γ − ( λ
λ+γ )k2−k1(

1− λ
λ+γ

)2 − k1
λ
(
1− ( λ

λ+γ )k2−k1−1)
γ

)

= λ2

λ+ γ − µ

(
µ+ k1(µ− λ)−

(
k2(µ− λ) + λ

)
ρk2−k1−1

(µ− λ)2 −
γ + k1γ + λ− (k2γ + λ)( λ

λ+γ )k2−k1−1

γ2

)
(5.49)
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Next, the seventh sum on the RHS of (5.43),

(
µck2

(λ+ γ)k2−k1−1(cµ− λ− γ)
(
(µλk1 − λk1+1) + (αµk1 − αλk1)

)
− µk2−1(µ− λ)α

α(λ+ γ)k2−k1−1(cµ− λ− γ)λk1(µ− λ)

) ∞∑
n=k2

n
λn+1

(cµ)n+1

(5.50)

We first focus on simplifying
∑∞
n=k2 n

λn+1

(cµ)n+1 :

∞∑
n=k2

n
λn+1

(cµ)n+1

= ( λ
cµ

)k2
∞∑
n=1

(n+ k2 − 1)( λ
cµ

)n

= ( λ
cµ

)k2
( ∞∑
n=1

n( λ
cµ

)n + (k2 − 1)
∞∑
n=1

( λ
cµ

)n
)

= ( λ
cµ

)k2

(
λ

cµ

∞∑
n=1

n( λ
cµ

)n−1 + (k2 − 1)
λ
cµ

1− λ
cµ

)

= ( λ
cµ

)k2

(
λ

cµ

d

d( λcµ)

( λ
cµ

1− λ
cµ

)
+ (k2 − 1) λ

cµ− λ

)

= ( λ
cµ

)k2

(
λ

cµ

(cµ)2

(cµ− λ)2 + (k2 − 1) λ

cµ− λ

)
= ( λ

cµ
)k2
(λcµ+ (k2 − 1)(cµ− λ)λ

(cµ− λ)2

)
= ( λ

cµ
)k2λ

(cµ+ k2cµ− k2λ− cµ+ λ

(cµ− λ)2

)
= λ( λ

cµ
)k2
(k2cµ− k2λ+ λ

(cµ− λ)2

)

So (5.50)becomes:

(
µc
k2

(λ + γ)k2−k1−1(cµ− λ− γ)
(

(µλk1 − λk1+1) + (αµk1 − αλk1 )
)
− µk2−1(µ− λ)α

α(λ + γ)k2−k1−1(cµ− λ− γ)λk1 (µ− λ)

)
λ(

λ

cµ
)k2
( k2cµ− k2λ + λ

(cµ− λ)2

)
=
(
µ

(λ + γ)k2−k1−1(cµ− λ− γ)
(

(µλk1 − λk1+1) + (αµk1 − αλk1 )
)
− µk2−1(µ− λ)α

α(λ + γ)k2−k1−1(cµ− λ− γ)λk1−1(µ− λ)

)
(
λ

µ
)k2
( k2cµ− k2λ + λ

(cµ− λ)2

)
(5.51)
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and we continue with the eighth sum on the RHS of (5.43),

∞∑
n=k2

n

(
λn−k1+1

cn−(k2−1)µn−k1+1

k2−1−k1∑
i=1

µi

(λ+ γ)i
)

=
∞∑

n=k2

n

(
λn−k1+1

cn−(k2−1)µn−k1+1

( µ
λ+γ )

(
1− ( µ

λ+γ )k2−1−k1
)

1− µ
λ+γ

)

=
∞∑

n=k2

n

(
λn−k1+1

cn−(k2−1)µn−k1+1

1− ( µ
λ+γ )k2−1−k1

λ+ γ − µ

)

= 1
λ+ γ − µ

∞∑
n=k2

n

(
λn−k1+1

cn−(k2−1)µn−k1+1

(
1− ( µ

λ+ γ
)k2−1−k1

))

= 1
λ+ γ − µ

( ∞∑
n=k2

n
( λn−k1+1

cn−(k2−1)µn−k1+1

)
−
∞∑

n=k2

n
( λn−k1+1

cn−(k2−1)µn−k1+1
( µ

λ+ γ

)k2−1−k1
))

= 1
λ+ γ − µ

( ∞∑
n=k2

n
( λn−k1+1

cn−(k2−1)µn−k1+1

)
−
( µ

λ+ γ

)k2−1−k1 λ
k2−k1+1

cµk2−k1

∞∑
n=0

(n+ k2) λn

(cµ)n
)

= 1
λ+ γ − µ

(
λk2−k1+1

cµk2−k1

∞∑
n=0

(n+ k2)( λ
cµ

)n − ( 1
λ+ γ

)k2−k1−1λ
k2−k1+1

cµ

∞∑
n=0

(n+ k2)( λ
cµ

)n
)

= λk2−k1+1

c(λ+ γ − µ)

(( 1
µk2−k1

− ( 1
λ+ γ

)k2−k1−1 1
µ

) ∞∑
n=0

(n+ k2)( λ
cµ

)n
)

= λk2−k1+1

c(λ+ γ − µ)

(((λ+ γ)k2−k1−1 − µk2−k1−1

µk2−k1(λ+ γ)k2−k1−1

)( λ
cµ

∞∑
n=0

n( λ
cµ

)n−1 + k2
cµ

cµ− λ

))

=
λk2−k1+1((λ+ γ)k2−k1−1 − µk2−k1−1)
c(λ+ γ − µ)µk2−k1(λ+ γ)k2−k1−1

( λ
cµ

(cµ)2

(cµ− λ)2 + k2
cµ

cµ− λ

)
=
λk2−k1+1((λ+ γ)k2−k1−1 − µk2−k1−1)
(λ+ γ − µ)µk2−k1−1(λ+ γ)k2−k1−1

(
λ

1
(cµ− λ)2 + k2

1
cµ− λ

)
=
λk2−k1+1((λ+ γ)k2−k1−1 − µk2−k1−1)
(λ+ γ − µ)µk2−k1−1(λ+ γ)k2−k1−1

(λ+ (cµk2 − λk2)
(cµ− λ)2

)
(5.52)
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Finally, we simplify the last sum on the RHS of (5.43),

(λ+ γ)k1

(cµ− λ− γ)λk1

∞∑
n=k2

n
λn+1

(λ+ γ)n

= (λ+ γ)k1λ

(cµ− λ− γ)λk1

∞∑
n=0

(n+ k2) λn+k2

(λ+ γ)n+k2

= (λ+ γ)k1λ

(cµ− λ− γ)λk1
( λ

λ+ γ
)k2

∞∑
n=0

(n+ k2)( λ

λ+ γ
)n

= (λ+ γ)k1λ

(cµ− λ− γ)λk1
( λ

λ+ γ
)k2
( ∞∑
n=0

n( λ

λ+ γ
)n + k2

∞∑
n=0

( λ

λ+ γ
)n
)

= (λ+ γ)k1λ

(cµ− λ− γ)λk1
( λ

λ+ γ
)k2

(
( λ

λ+ γ
)
∞∑
n=0

n( λ

λ+ γ
)n−1 + k2

1
1− λ

λ+γ

)

= (λ+ γ)k1λ

(cµ− λ− γ)λk1
( λ

λ+ γ
)k2

(
( λ

λ+ γ
) d

d( λ
λ+γ )

( 1
1− λ

λ+γ

)
+ k2

λ+ γ

γ

)

= (λ+ γ)k1λ

(cµ− λ− γ)λk1
( λ

λ+ γ
)k2

(
λ

λ+ γ

(λ+ γ)2

γ2 + k2
λ+ γ

γ

)
= (λ+ γ)k1λ

(cµ− λ− γ)λk1
( λ

λ+ γ
)k2 λ+ γ

γ
(λ
γ

+ k2)

= λk2−k1+1

(λ+ γ)k2−k1−1(cµ− λ− γ)γ (λ
γ

+ k2) (5.53)

We continue the simplification by summing up the simplified sums from (5.44) to

(5.53).

Summing (5.44) and (5.45):

k1(k1 − 1)
2 + λ(λ+ k1γ)

γ2

= k1(k1 − 1)γ2 + 2λ(λ+ k1γ)
2γ2

= (k1
2γ2 − k1γ

2) + (2λ2 + 2k1γλ)
2γ2

= k1
2γ2 + 2k1γλ+ λ2 − k1γ

2 + λ2

2γ2

= (k1γ + λ)2 − k1γ
2 + λ2

2γ2 (5.54)
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and (5.54) and (5.46) :

(k1γ + λ)2 − k1γ
2 + λ2

2γ2
+
λ

α
ρ

1− ρk2 − k2ρ
k2−1 + k2ρ

k2

(1− ρ)2

=
(k1γ + λ)2 − k1γ

2 + λ2

2γ2
+
λ2µk2 − λk2+2(1 + k2

µ
λ
− k2)

αµk2−1(µ− λ)2

=
(k1γ + λ)2αµk2−1(µ− λ)2 − k1γ

2αµk2−1(µ− λ)2 + λ2αµk2−1(µ− λ)2 + 2γ2λ2µk2 − 2γ2λk2 + 2(1 + k2
µ
λ
− k2)

2γ2αµk2−1(µ− λ)2
(5.55)

Next, we sum (5.55) and (5.47). The common denominator between (5.55) and (5.47) is

2γ2αµk2−1(µ − λ)3, we first simplify (5.47) by multiplying the numerator by γ2αµk2−1

yielding

= λ
(k1(k1 + 1)(µ− λ)2 − 2ρµ2 + 2µ2ρk1+2 + 2µ2(k1 + 1)ρk1+1 − 2µ2(k1 + 1)ρk1+2

2(µ− λ)3

)
= k1(k1 + 1)(µ− λ)2λ− 2µλ2 + 2µ−k1λk1+3 + 2µ1−k1(k1 + 1)λk1+2 − 2µ−k1(k1 + 1)λk1+3

2(µ− λ)3

So the numerator of (5.47) becomes:

(
k1(k1 + 1)(µ− λ)2λ− 2µλ2 + 2µ−k1λk1+3 + 2µ1−k1(k1 + 1)λk1+2 − 2µ−k1(k1 + 1)λk1+3

)
γ2αµk2−1

= k1(k1 + 1)(µ− λ)2λγ2αµk2−1 − 2αγ2µk2λ2 + 2αγ2µk2−k1−1λk1+3 + 2αγ2µk2−k1(k1 + 1)λk1+2

− 2αγ2µk2−k1−1(k1 + 1)λk1+3

(5.56)

Similarly, to have the same common denominator of 2γ2αµk2−1(µ−λ)3, the numerator

of (5.55) becomes:

(k1γ + λ)2αµk2−1(µ− λ)3 − k1γ
2αµk2−1(µ− λ)3 + λ2αµk2−1(µ− λ)3 + 2γ2λ2µk2(µ− λ)

−2γ2λk2+2(1 + k2
µ

λ
− k2)(µ− λ)

(5.57)
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There are similar terms in both of the numerators of (5.57) and (5.56) when we sum

the two terms, so we continue the simplifications by merging similar terms one by one:

We first merge terms that containing µk2−1:

k1(k1 + 1)(µ− λ)2λγ2αµk2−1 + (k1γ + λ)2αµk2−1(µ− λ)3 − k1γ
2αµk2−1(µ− λ)3

+ λ2αµk2−1(µ− λ)3

= αµk2−1(µ− λ)2
(
k1

2λγ2 + k1λγ
2 + µ(k1γ)2 + 2k1γλµ+ µλ2 − µk1γ

2 + µλ2 − λ(k1γ)2

− 2k1γλ
2 + λk1γ

2 − 2λ3
)

= αµk2−1(µ− λ)2
(
2k1λγ

2 − 2k1γλ
2 − 2λ3 + µ(k1γ)2 + 2k1γλµ− µk1γ

2 + 2µλ2
)

= αµk2−1(µ− λ)2
(
2λ(k1γ

2 − k1γλ− λ2) + µ(k1γ)2 + 2k1γλµ− µk1γ
2 + 2µλ2

)
= αµk2−1(µ− λ)2

(
(k1

2 + k1)λγ2 + (µ− λ)
(
(k1γ + λ)2 − k1γ

2 + λ2))
(5.58)

and then we merge terms containing µk2 :

− 2αγ2µk2λ2 + 2γ2λ2µk2(µ− λ)

= 2γ2λ2µk2(µ− λ− α) (5.59)

Next, we merge the terms containing µk2−k1−1:

2αγ2µk2−k1−1λk1+3 − 2αγ2µk2−k1−1(k1 + 1)λk1+3

= 2αγ2λk1+3µk2−k1−1(1− (k1 + 1)
)

= −2k1αγ
2λk1+3µk2−k1−1 (5.60)
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and we also merge terms contain µk2−k1 :

2αγ2µk2−k1(k1 + 1)λk1+2 (5.61)

Combining the terms containing µk2−k1 (5.61) and µk2−k1−1 (5.60)

2αγ2µk2−k1(k1 + 1)λk1+2 − 2k1αγ
2λk1+3µk2−k1−1

= 2αγ2λk1+2µk2−k1−1(µ(k1 + 1)− k1λ
)

= 2αγ2λk1+2µk2−k1−1(k1(µ− λ) + µ
)

(5.62)

Combining terms that contain µk2 (5.59) and µk2−1 (5.58)

αµk2−1(µ− λ)2(2λ(k1γ
2 − k1γλ− λ2) + µ(k1γ)2 + 2k1γλµ− µk1γ

2 + 2µλ2)+ 2γ2λ2µk2(µ− λ− α)

= µk2−1
(
α(µ− λ)2(2λ(k1γ

2 − k1γλ− λ2) + µ(k1γ)2 + 2k1γλµ− µk1γ
2 + 2µλ2)

+ 2γ2λ2µ(µ− λ− α)
)

(5.63)

With the simplifications we have done in (5.62) and (5.63), the sum of (5.55) and

(5.47) becomes:

2αγ2λk1+2µk2−k1−1(µk1 − k1λ+ µ)
2γ2αµk2−1(µ− λ)3

+
µk2−1

(
α(µ− λ)2(2λ(k1γ

2 − k1γλ− λ2) + µ(k1γ)2 + 2k1γλµ− µk1γ
2 + 2µλ2)+ 2γ2λ2µ(µ− λ− α)

)
2γ2αµk2−1(µ− λ)3

−
2γ2λk2+2(1 + k2

µ
λ − k2)(µ− λ)

2γ2αµk2−1(µ− λ)3

(5.64)

We continue to merge the summation terms, and sum up (5.64) and (5.48). We examine

(5.48) alone for the common denominator 2γ2αµk2−1(µ − λ)3, in order to get to this
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form, we need to multiply (5.48) by 2γ2α, yielding

λ2(1− ρk1)
(µ+ k1(µ− λ)− (k2(µ− λ) + λ)ρk2−k1−1

(µ− λ)3

)
= (λ2µk1 − λk1+2)

(µk2−k1 + k1(µ− λ)µk2−k1−1 −
(
k2(µ− λ) + λ

)
λk2−k1−1

µk2−1(µ− λ)3

)

Multiply both numerator and denominator by 2γ2α:

2γ2α(λ2µk1 − λk1+2)
(µk2−k1 + k1(µ− λ)µk2−k1−1 −

(
k2(µ− λ) + λ

)
λk2−k1−1

2γ2αµk2−1(µ− λ)3

)

We now focus on simplying the numerator.

(2αγ2λ2µk1 − 2αγ2λk1+2)
(
µk2−k1 + k1(µ− λ)µk2−k1−1 −

(
k2(µ− λ) + λ

)
λk2−k1−1

)
= 2αγ2λ2µk2 + 2αγ2λ2k1(µ− λ)µk2−1 − 2αγ2µk1

(
k2(µ− λ) + λ

)
λk2−k1+1

− 2αγ2λk1+2µk2−k1 − 2αγ2k1(µ− λ)λk1+2µk2−k1−1 + 2αγ2(k2(µ− λ) + λ
)
λk2+1

(5.65)

There are no additional changes for (5.64), and we have the numerator of (5.64) as:

2αγ2λk1+2µk2−k1−1(µk1 − k1λ+ µ)

+ µk2−1
(
α(µ− λ)2(2λ(k1γ

2 − k1γλ− λ2) + µ(k1γ)2 + 2k1γλµ− µk1γ
2 + 2µλ2)

+ 2γ2λ2µ(µ− λ− α)
)
− 2γ2λk2+2(1 + k2

µ

λ
− k2)(µ− λ)

(5.66)
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Similarly, we merge similar terms from both (5.66) and (5.65) as we sum (5.66) and

(5.65). We first merge terms containing µk2 :

2αγ2λ2 + α(µ− λ)2
(
(k1γ)2 + 2k1γλ− k1γ

2 + 2λ2
)

+ 2γ2λ2(µ− λ− α)

= 2αγ2λ2 + 2γ2λ2(µ− λ− α) + α(µ− λ)2((k1γ)2 + 2k1γλ− k1γ
2 + 2λ2)

= 2γ2λ2(α+ (µ− λ− α)
)

+ α(µ− λ)2((k1γ)2 + 2k1γλ− k1γ
2 + 2λ2)

= 2γ2λ2(µ− λ) + α(µ− λ)2((k1γ)2 + 2k1γλ− k1γ
2 + 2λ2) (5.67)

and we merge the terms that contain µk2−1:

2αγ2λ2k1(µ− λ) + 2λα(µ− λ)2(k1γ
2 − k1γλ− λ2)

= 2αλ(µ− λ)
(
γ2λk1 + (µ− λ)(k1γ

2 − k1γλ− λ2)
)

= 2αλ(µ− λ)(γ2λk1 + µk1γ
2 − µk1γλ− µλ2 − λk1γ

2 + k1γλ
2 + λ3)

= 2αλ(µ− λ)(µk1γ
2 − µk1γλ− µλ2 + k1γλ

2 + λ3) (5.68)
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Combining (5.67) and (5.68):

2µγ2λ2(µ− λ) + αµ(µ− λ)2((k1γ)2 + 2k1γλ− k1γ
2 + 2λ2)

+ 2αλ(µ− λ)(µk1γ
2 − µk1γλ− µλ2 + k1γλ

2 + λ3)

= 2λ(µ− λ)(µγ2λ+ αµk1γ
2 − αµk1γλ− αµλ2 + αk1γλ

2 + αλ3)

+ αµ(µ− λ)2((k1γ)2 + 2k1γλ− k1γ
2 + 2λ2)

= (µ− λ)
(
2µγ2λ2 + 2αµk1λγ

2 − 2αµk1γλ
2 − 2αµλ3 + 2αk1γλ

3 + 2αλ4 + αµ2(k1γ)2 + αµ22k1γλ

− αµ2k1γ
2 + 2αµ2λ2 − αµλ(k1γ)2 − 2αµk1γλ

2 + αµλk1γ
2 − 2αµλ3)

= (µ− λ)
(
2µγ2λ2 + αµk1γ

2((µ− λ)(k1 − 1) + 2λ
)
− 2αµλ2(2k1γ − µ)− 2αλ3(2µ− k1γ)

+ 2αλ4 + 2αµ2k1γλ
)

(5.69)

and we have terms that contain µk1 :

−2αγ2µk1
(
k2(µ− λ) + λ

)
λk2−k1+1 (5.70)

and terms that contain µk2−k1 :

−2αγ2λk1+2 (5.71)

and we can merge the terms that contain µk2−k1−1:

− 2αγ2k1(µ− λ)λk1+2 + 2αγ2λk1+2(µk1 − k1λ+ µ)

= 2αγ2λk1+2((µk1 − k1λ+ µ)− µk1 + k1λ
)

= 2αµγ2λk1+2 (5.72)
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By combining (5.68) and (5.72), we get:

−2αµγ2λk1+2 + 2αµγ2λk1+2 = 0

Also we can simplify the terms that contain λk2+1 and λk2+2:

2αγ2(k2(µ− λ) + λ
)
λk2+1 − 2γ2λk2+2(1 + k2

µ

λ
− k2)(µ− λ)

= 2γ2λk2+1(k2µ(α+ 2λ− µ)− λµ− λ(k2 − 1)(λ+ α)
)

(5.73)

We can now substitute the results from (5.67) to (5.73) in the sum of (5.64) and
(5.48), and we have:

(µ− λ)µk2−1
(

2µγ2λ2 + αµk1γ
2((µ− λ)(k1 − 1) + 2λ)− 2αµλ2(2k1γ − µ)

)
2γ2αµk2−1(µ− λ)3

−
2αλ3(2µ− k1γ)− 2αλ4 − 2αµ2k1γλ

2γ2αµk2−1(µ− λ)3

−
2αγ2µk1

(
k2(µ− λ) + λ

)
λk2−k1+1 − 2γ2λk2+1

(
k2µ(α + 2λ− µ)− λµ− λ(k2 − 1)(λ + α)

)
2γ2αµk2−1(µ− λ)3

(5.74)

The equation (5.74) represents the simplification for the first to fifth sums on the RHS

of (5.43), we continue the simplification for (5.43) by merging the seventh sum (5.51)

and the ninth sum (5.53), and we have:

α(λγ + k2)(µ− λ)µk2−1(cµ− λ)2 − (k2cµ− k2λ+ λ)µk2−1(µ− λ)αγ
α(λ+ γ)k2−k1−1(cµ− λ− γ)γλk1−k2−1(µ− λ)µk2−1(cµ− λ)

+
(λ+ γ)k2−k1−1(cµ− λ− γ)(k2cµ− k2λ+ λ)γ

(
(µλk1 − λk1+1) + α(µk1 − λk1)

)
α(λ+ γ)k2−k1−1(cµ− λ− γ)γλk1−k2−1(µ− λ)µk2−1(cµ− λ)

=
α(µ− λ)µk2−1((λγ + k2)(cµ− λ)2 − k2(cµ− λ)γ − γλ

)
α(λ+ γ)k2−k1−1(cµ− λ− γ)γλk1−k2−1(µ− λ)µk2−1(cµ− λ)

+
(λ+ γ)k2−k1−1(cµ− λ− γ)(k2cµ− k2λ+ λ)γ

(
(µλk1 − λk1+1) + α(µk1 − λk1)

)
α(λ+ γ)k2−k1−1(cµ− λ− γ)γλk1−k2−1(µ− λ)µk2−1(cµ− λ)

(5.75)
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We now also merge the eighth sum term (5.52) of (5.43) with (5.75).

We first force (5.52) to have a common denominator with (5.75), so (5.52) becomes:

αγµk1(cµ− λ− γ)(µ− λ)
(
(λ+ γ)k2−k1−1 − µk2−k1−1)(λ+ k2(cµ− λ)

)
αγ(λ+ γ − µ)µk2−1(λ+ γ)k2−k1−1(cµ− λ− γ)λk1−k2−1(µ− λ)(cµ− λ)2 (5.76)

And now we also need to make (5.75) to have the same common denominator, which

only requires multiplication by (λ + γ − µ). For better readability, we only show the

numerator:

α(µ− λ)µk2−1(λ+ γ − µ)
(
(λ
γ

+ k2)(cµ− λ)2 − k2(cµ− λ)γ − γλ
)

+ (λ+ γ − µ)(λ+ γ)k2−k1−1(cµ− λ− γ)(k2cµ− k2λ+ λ)γ
(
(µλk1 − λk1+1) + α(µk1 − λk1)

)
(5.77)

We now simplify the numerator of the sum for the seventh, eighth, and ninth sums

of (5.43).

α(µ− λ)µk2−1(λ+ γ − µ)
(
(λ
γ

+ k2)(cµ− λ)2 − k2(cµ− λ)γ − γλ
)

+ (λ+ γ − µ)(λ+ γ)k2−k1−1(cµ− λ− γ)(k2cµ− k2λ+ λ)γ
(
(µλk1 − λk1+1) + α(µk1 − λk1)

)
+ αγµk1(cµ− λ− γ)(µ− λ)

(
(λ+ γ)k2−k1−1 − µk2−k1−1)(λ+ k2(cµ− λ)

)

By following a similar simplification approach as we did previously, merging terms

that are similar, ((5.69) is an example of this approach), we have the sum of (5.75) and
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(5.52) as:

α(µ− λ)µk2−1(λ+ γ − µ)
(
(λγ + k2)(cµ− λ)2)− (c− 1)αγ(µ− λ)µk2

(
λ+ k2(cµ− λ)

)
αγ(λ+ γ − µ)(λ+ γ)k2−k1−1(cµ− λ− γ)λk1−k2−1(µ− λ)µk2−1(cµ− λ)2

+
γ(cµ− λ− γ)(λ+ γ)k2−k1−1(k2(cµ− λ) + λ

)(
αγ(µk1 − λk1)−

(
(µ− λ)2 − (α+ γ)(µ− λ)

)
λk1
)

αγ(λ+ γ − µ)(λ+ γ)k2−k1−1(cµ− λ− γ)λk1−k2−1(µ− λ)µk2−1(cµ− λ)2

(5.78)

gmotest Now we want to merge the sixth sum on the RHS of (5.43) into either (5.74)

(the sum of the first sum to the fifth sum) or (5.78) (the sum of the seventh sum to the

ninth sum). The sixth sum (5.49) is more similar to (5.74) than (5.78), so we merge the

sixth sum with (5.74).

We first simplify and arrange the sixth sum (5.49) such that it shows more similar
patterns with (5.74)

λ2

λ + γ − µ

(µ + k1(µ− λ)−
(
k2(µ− λ) + λ

)
ρk2−k1−1

(µ− λ)2
−
γ + k1γ + λ− (k2γ + λ)( λ

λ+γ )k2−k1−1

γ2

)
=

λ2

λ + γ − µ

( γ2µk2 (λ + γ)k2−k1−1 + k1(µ− λ)γ2µk2−1(λ + γk2−k1−1)− γ2µk1
(
k2(µ− λ) + λ

)
λk2−k1−1(λ + γ)k2−k1−1

γ2(µ− λ)2µk2−1(λ + γ)k2−k1−1

−
γµk2−1(µ− λ)2(λ + γ)k2−k1−1 + k1γµ

k2−1(µ− λ)2(λ + γ)k2−k1−1 + λµk2−1(µ− λ)2(λ + γ)k2−k1−1

γ2(µ− λ)2µk2−1(λ + γ)k2−k1−1

+
µk2−1(µ− λ)2(k2γ + λ)λk2−k1−1

γ2(µ− λ)2µk2−1(λ + γ)k2−k1−1

)
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We now simplify the numerator of the term within the large parentheses:

γ2µk2(λ+ γ)k2−k1−1 + k1(µ− λ)γ2µk2−1(λ+ γ)k2−k1−1

− γ2µk1
(
k2(µ− λ) + λ

)
λk2−k1−1(λ+ γ)k2−k1−1 − (γµk2−1(µ− λ)2(λ+ γ)k2−k1−1

+ k1γµ
k2−1(µ− λ)2(λ+ γ)k2−k1−1 + λµk2−1(µ− λ)2(λ+ γ)k2−k1−1

− µk2−1(µ− λ)2(k2γ + λ)λk2−k1−1)

= γ2µk2(λ+ γ)k2−k1−1 + k1(µ− λ)γ2µk2−1(λ+ γ)k2−k1−1 − γµk2−1(µ− λ)2(λ+ γ)k2−k1−1

− k1γµ
k2−1(µ− λ)2(λ+ γ)k2−k1−1 − λµk2−1(µ− λ)2(λ+ γ)k2−k1−1

− γ2µk1
(
k2(µ− λ) + λ

)
λk2−k1−1(λ+ γ)k2−k1−1 + µk2−1(µ− λ)2(k2γ + λ)λk2−k1−1

= µk2−1(λ+ γ)k2−k1−1(γ2µ+ k1(µ− λ)γ2 − λ(µ− λ)2 − k1γ(µ− λ)2 − λ(µ− λ)2)
− λk2−k1−1

(
γ2µk1

(
k2(µ− λ) + λ

)
(λ+ γ)k2−k1−1 − µk2−1(µ− λ)2(k2γ + λ)

)
= µk2−1(λ+ γ)k2−k1−1

(
γ2(µ+ k1(µ− λ)

)
− (µ− λ)2(γ + k1γ + λ)

)
− λk2−k1−1

(
γ2µk1

(
k2(µ− λ) + λ

)
(λ+ γ)k2−k1−1 − µk2−1(µ− λ)2(k2γ + λ)

)
So (5.49) becomes:

λ2

λ+ γ − µ

(µk2−1(λ+ γ)k2−k1−1
(
γ2(µ+ k1(µ− λ)

)
− (µ− λ)2(γ + k1γ + λ)

)
γ2(µ− λ)2µk2−1(λ+ γ)k2−k1−1

−
λk2−k1−1

(
γ2µk1

(
k2(µ− λ) + λ

)
(λ+ γ)k2−k1−1 − µk2−1(µ− λ)2(k2γ + λ)

)
γ2(µ− λ)2µk2−1(λ+ γ)k2−k1−1

)
(5.79)
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We then make (5.74) have the same common denominator as (5.79):

(µ− λ)µk2−1
(

2µγ2λ2 + αµk1γ
2((µ− λ)(k1 − 1) + 2λ)− 2αµλ2(2k1γ − µ)− 2αλ3(2µ− k1γ) + 2αλ4 + 2αµ2k1γλ

)
2γ2αµk2−1(µ− λ)3

−
2αγ2µk1

(
k2(µ− λ) + λ

)
λk2−k1+1 − 2γ2λk2+1

(
k2µ(α + 2λ− µ)− λµ− λ(k2 − 1)(λ + α)

)
2γ2αµk2−1(µ− λ)3

=
(µ− λ)(λ + γ − µ)(λ + γ)k2−k1−1µk2−1

(
2µγ2λ2 + αµk1γ

2
(

(µ− λ)(k1 − 1) + 2λ
)
− 2αµλ2(2k1γ − µ)

)
2γ2α(λ + γ − µ)µk2−1(µ− λ)3(λ + γ)k2−k1−1

+
(µ− λ)(λ + γ − µ)(λ + γ)k2−k1−1µk2−1

(
− 2αλ3(2µ− k1λ) + 2αλ4 + 2αµ2k1γλ

)
2γ2α(λ + γ − µ)µk2−1(µ− λ)3(λ + γ)k2−k1−1

+
2γ2(λ + γ − µ)(λ + γ)k2−k1−1λk2+1

(
k2µ(α + 2λ− µ)− λµ− λ(k2 − 1)(λ + α)

)
2γ2α(λ + γ − µ)µk2−1(µ− λ)3(λ + γ)k2−k1−1

−
2αγ2(λ + γ − µ)(λ + γ)k2−k1−1µk1

(
k2(µ− λ) + λ

)
λk2−k1+1

2γ2α(λ + γ − µ)µk2−1(µ− λ)3(λ + γ)k2−k1−1 (5.80)

We also need to make (5.79) have the same denominator as (5.80):

λ2

λ+ γ − µ

(µk2−1(λ+ γ)k2−k1−1
(
γ2(µ+ k1(µ− λ)

)
− (µ− λ)2(γ + k1γ + λ)

)
γ2(µ− λ)2µk2−1(λ+ γ)k2−k1−1

−
λk2−k1−1

(
γ2µk1

(
k2(µ− λ) + λ

)
(λ+ γ)k2−k1−1 − µk2−1(µ− λ)2(k2γ + λ)

)
γ2(µ− λ)2µk2−1(λ+ γ)k2−k1−1

)

=
µk2−1(λ+ γ)k2−k1−1λ2

(
γ2(µ+ k1(µ− λ)

)
− (µ− λ)2(γ + k1γ + λ)

)
(λ+ γ − µ)γ2(µ− λ)2µk2−1(λ+ γ)k2−k1−1

−
λk2−k1−1

(
γ2µk1

(
k2(µ− λ) + λ

)
(λ+ γ)k2−k1−1 − µk2−1(µ− λ)2(k2γ + λ)

)
(λ+ γ − µ)γ2(µ− λ)2µk2−1(λ+ γ)k2−k1−1

=
2α(µ− λ)µk2−1(λ+ γ)k2−k1−1λ2

(
γ2(µ+ k1(µ− λ)

)
− (µ− λ)2(γ + k1γ + λ)

)
2γ2α(λ+ γ − µ)µk2−1(µ− λ)3(λ+ γ)k2−k1−1

−
2α(µ− λ)λk2−k1−1

(
γ2µk1

(
k2(µ− λ) + λ

)
(λ+ γ)k2−k1−1 − µk2−1(µ− λ)2(k2γ + λ)

)
2γ2α(λ+ γ − µ)µk2−1(µ− λ)3(λ+ γ)k2−k1−1

(5.81)
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We follow a similar approach of separating and merging similar terms, obtaining the
sum for the first to sixth sums on the RHS of (5.43) as:

(µ− λ)(λ + γ)k2−k1−1µk2−1
(

(λ + γ − µ)
(
αµk1γ

2(µ− λ)(k1 − 1) + 2µγ2λ2 + 2λαµk1γ
2 + 2αλ(µ− λ)2(γk1 + λ)

))
2γ2α(λ + γ − µ)µk2−1(µ− λ)3(λ + γ)k2−k1−1

+
(µ− λ)(λ + γ)k2−k1−1µk2−1

(
2αλ2

(
γ2(µ + k1(µ− λ))− (µ− λ)2(γ + k1γ + λ)

))
2γ2α(λ + γ − µ)µk2−1(µ− λ)3(λ + γ)k2−k1−1

+
2γ2(λ + γ − µ)(λ + γ)k2−k1−1λk2+1

(
k2µ(α + 2λ− µ)− λµ− λ(k2 − 1)(λ + α)

)
2γ2α(λ + γ − µ)µk2−1(µ− λ)3(λ + γ)k2−k1−1

−
2αγ3(λ + γ)k2−k1−1µk1λk2−k1+1

(
k2(µ− λ) + λ

)
2γ2α(λ + γ − µ)µk2−1(µ− λ)3(λ + γ)k2−k1−1 +

2αλk2−k1+1µk2−1(µ− λ)3(k2γ + λ)
2γ2α(λ + γ − µ)µk2−1(µ− λ)3(λ + γ)k2−k1−1 (5.82)

We have the sum of the first to sixth sums on the RHS of (5.43) in (5.82), as well we

have the sum of the seventh to ninth sums on the RHS of (5.43). Now, we need to sum

these two to complete the simplification.

We first make the sum of the first to sixth sums (5.82) have the appropriate common
denominator by multiplying by (cµ− λ)2(cµ− λ− γ):

(cµ− λ)2(cµ− λ− γ)(µ− λ)(λ + γ)k2−k1−1µk2−1
(

(λ + γ − µ)
(
αµk1γ

2(µ− λ)(k1 − 1) + 2µγ2λ2 + 2λαµk1γ
2 + 2αλ(µ− λ)2(γk1 + λ)

))
2(cµ− λ)2(cµ− λ− γ)γ2α(λ + γ − µ)µk2−1(µ− λ)3(λ + γ)k2−k1−1

+
(cµ− λ)2(cµ− λ− γ)(µ− λ)(λ + γ)k2−k1−1µk2−1

(
2αλ2

(
γ2(µ + k1(µ− λ))− (µ− λ)2(γ + k1γ + λ)

))
2(cµ− λ)2(cµ− λ− γ)γ2α(λ + γ − µ)µk2−1(µ− λ)3(λ + γ)k2−k1−1

+
2(cµ− λ)2(cµ− λ− γ)γ2(λ + γ − µ)(λ + γ)k2−k1−1λk2+1

(
k2µ(α + 2λ− µ)− λµ− λ(k2 − 1)(λ + α)

)
2(cµ− λ)2(cµ− λ− γ)γ2α(λ + γ − µ)µk2−1(µ− λ)3(λ + γ)k2−k1−1

−
2(cµ− λ)2(cµ− λ− γ)αγ3(λ + γ)k2−k1−1µk1λk2−k1+1

(
k2(µ− λ) + λ

)
2γ2α(λ + γ − µ)µk2−1(µ− λ)3(λ + γ)k2−k1−1

+
2αλk2−k1+1µk2−1(µ− λ)3(k2γ + λ)

2(cµ− λ)2(cµ− λ− γ)γ2α(λ + γ − µ)µk2−1(µ− λ)3(λ + γ)k2−k1−1 (5.83)

Similarly, we also need to make the sum of the seventh to ninth sums (5.84) have the
same common denominator by multiplying by 2γ(µ− λ)2, and (5.84) becomes:

2γ(µ− λ)3λk2−k1+1αµk2−1(λ + γ − µ)
(

(λ
γ

+ k2)(cµ− λ)2
)
− (c− 1)αγ(µ− λ)µk2

(
λ + k2(cµ− λ)

)
2γ2(µ− λ)3α(λ + γ − µ)(λ + γ)k2−k1−1(cµ− λ− γ)µk2−1(cµ− λ)2

+
2γ2(µ− λ)2(cµ− λ− γ)(λ + γ)k2−k1−1λk2−k1+1

(
k2(cµ− λ) + λ

)(
αγ(µk1 − λk1 )−

(
(µ− λ)2 − (α + γ)(µ− λ)

)
λk1
)

2γ2(µ− λ)3α(λ + γ − µ)(λ + γ)k2−k1−1(cµ− λ− γ)µk2−1(cµ− λ)2

(5.84)
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Once again, we separate the terms and simplify, similar to what we did in (5.69), we
obtain the sum of the first to last sums of (5.43) as:

E[N ]
π0,0

=
(µ− λ)(cµ− λ)2(λ + γ)k2−k1−1µk2−1(cµ− λ− γ)(λ + γ − µ)

(
αµk1γ

2(µ− λ)(k1 − 1) + 2µγ2λ2
)

2γ2α(λ + γ − µ)(cµ− λ− γ)µk2−1(cµ− λ)2(µ− λ)3(λ + γ)k2−k1−1

+
(µ− λ)(cµ− λ)2(λ + γ)k2−k1−1µk2−1(cµ− λ− γ)(λ + γ − µ)

(
2λαµk1γ

2 + 2αλ(µ− λ)2(γk1 + λ)
)

2γ2α(λ + γ − µ)(cµ− λ− γ)µk2−1(cµ− λ)2(µ− λ)3(λ + γ)k2−k1−1

+
(µ− λ)(cµ− λ)2(λ + γ)k2−k1−1µk2−1(cµ− λ− γ)2αλ2

(
γ2
(
µ + k1(µ− λ)

)
− (µ− λ)2(γ + k1γ + λ)

)
2γ2α(λ + γ − µ)(cµ− λ− γ)µk2−1(cµ− λ)2(µ− λ)3(λ + γ)k2−k1−1

+
2αµk1γ3(cµ− λ− γ)(λ + γ)k2−k1−1λk2−k1+1(µ− cµ)

(
k2(cµ− λ)(µ− λ) + λ

(
(cµ− λ) + (µ− λ)

))
2γ2α(λ + γ − µ)(cµ− λ− γ)µk2−1(cµ− λ)2(µ− λ)3(λ + γ)k2−k1−1

+
2α(c− 1)λk2−k1+1µk2 (µ− λ)3

(
(k2γ + λ)(cµ− λ)2 − γ2

(
λ + k2(cµ− λ)

))
2γ2α(λ + γ − µ)(cµ− λ− γ)µk2−1(cµ− λ)2(µ− λ)3(λ + γ)k2−k1−1

+
2γ2(cµ− λ− γ)(λ + γ)k2−k1−1λk2+1(α− µ + λ)(µ− λ− γ)(µ− cµ)

(
k2(cµ− λ)(µ− λ) + λ

(
(cµ− λ) + (µ− λ)

))
2γ2α(λ + γ − µ)(cµ− λ− γ)µk2−1(cµ− λ)2(µ− λ)3(λ + γ)k2−k1−1

(5.85)

We have obtained the expression for π0,0 in (5.40). Along with the expression we ob-

tained in (5.85), we have the expression for E[N ] as:

E[N ] =
(µ−λ)(cµ−λ)2(cµ−λ−γ)

(
(λ+γ−µ)

(
αµk1γ2(µ−λ)(k1−1)+2µγ2λ2+2λαµk1γ2+2αλ(µ−λ)2(γk1+λ)

)
+2αλ2

(
γ2(µ+k1(µ−λ))−(µ−λ)2(γ+k1γ+λ)

))
2µγ(λ+γ−µ)(cµ−λ−γ)(cµ−λ)2(µ−λ)2

(
(α+γ)λ+αγk1

)
+2λµγ(c−1)(cµ−λ−γ)(cµ−λ)(µ−λ)

(
αλ(µ−λ)2ξk2−k1−1+ρk2

(
(λ+γ−µ)(λ+α−µ)µγ−αµγ2ρ−k1

))

+
2λµ(c−1)

(
αλξk2−k1−1(µ−λ)3

(
(k2γ+λ)(cµ−λ)2−γ2(λ+k2(cµ−λ))

)
+γ2µ(cµ−λ−γ)ρk2

(
k2(cµ−λ)(µ−λ)+λ((cµ−λ)+(µ−λ))

)(
(µ−α−λ)(µ−λ−γ)−αγρ−k1

))
2µγ(λ+γ−µ)(cµ−λ−γ)(cµ−λ)2(µ−λ)2

(
(α+γ)λ+αγk1

)
+2λµγ(c−1)(cµ−λ−γ)(cµ−λ)(µ−λ)

(
αλ(µ−λ)2ξk2−k1−1+ρk2

(
(λ+γ−µ)(λ+α−µ)µγ−αµγ2ρ−k1

))
(5.86)

We have obtained the closed form expression for E[N ] in (5.86). To determine the

expected response time, we can apply Little’s Law to obtain the expression for E[R].

Little’s Law states:

E[R] = E[N ]
λ

By applying Little’s Law to (5.86), we have the expected response time as:

E[R] =
(µ−λ)(cµ−λ)2(cµ−λ−γ)

(
(λ+γ−µ)

(
αµk1γ2λ−1(µ−λ)(k1−1)+2µγ2λ+2αµk1γ2+2α(µ−λ)2(γk1+λ)

)
+2αλ

(
γ2(µ+k1(µ−λ))−(µ−λ)2(γ+k1γ+λ)

))
2µγ(λ+γ−µ)(cµ−λ−γ)(cµ−λ)2(µ−λ)2

(
(α+γ)λ+αγk1

)
+2λµγ(c−1)(cµ−λ−γ)(cµ−λ)(µ−λ)

(
αλ(µ−λ)2ξk2−k1−1+ρk2

(
(λ+γ−µ)(λ+α−µ)µγ−αµγ2ρ−k1

))
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+
2µ(c−1)

(
αλξk2−k1−1(µ−λ)3

(
(k2γ+λ)(cµ−λ)2−γ2(λ+k2(cµ−λ))

)
+γ2µ(cµ−λ−γ)ρk2

(
k2(cµ−λ)(µ−λ)+λ((cµ−λ)+(µ−λ))

)(
(µ−α−λ)(µ−λ−γ)−αγρ−k1

))
2µγ(λ+γ−µ)(cµ−λ−γ)(cµ−λ)2(µ−λ)2

(
(α+γ)λ+αγk1

)
+2λµγ(c−1)(cµ−λ−γ)(cµ−λ)(µ−λ)

(
αλ(µ−λ)2ξk2−k1−1+ρk2

(
(λ+γ−µ)(λ+α−µ)µγ−αµγ2ρ−k1

))
(5.87)

We also need the expected energy consumption of the system. In order to determine a

closed form expression for E[E], we follow a similar approach that we used for identifying

a closed form expression for E[N ]. However, energy costs for different system states vary,

for example, it is expected to require more energy in the SETUP state versus when the

system is in the IDLE state. To be more adaptable to energy cost variations, we express

the expected energy consumption as the weighted sum of energy costs from all energy

states as follows:

E[E] = ESETUPπSETUP + EIDLEπIDLE + ENORMALπNORMAL + ESCALEDπSCALED

(5.88)

where πstate represents the total probability for a system state, for example, πSETUP

represents the total probability that the system is in SETUP. As a result, we need to

determine expressions for the total probabilities for each system state.
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We first solve for πSETUP . The probability of being in the SETUP state is given by

(5.2), which leads to:

πSETUP =
∞∑

n=k1

π0,n

=
∞∑

n=k1

( λ

λ+ γ
)n−(k1−1)π0,0

= π0,0

∞∑
n=1

( λ

λ+ γ
)n

= π0,0

λ
λ+γ

1− λ
λ+γ

= π0,0
λ

γ
(5.89)

And next we solve for πIDLE , and from (5.3), we have:

πIDLE = π1,0

= λ

α
π0,0 (5.90)

We continue to solve for πNORMAL, which contains two regions, one from BUSY to

IDLE, and the other one from BUSY to SCALED. With the expressions obtained for
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both regions (5.4) and (5.5), we have:

πNORMAL =
k2−1∑
n=1

π1,n

=
k1∑
n=1

π1,n +
k2−1∑
k1+1

π1,n

= π0,0

k1∑
n=1

(λ
α
ρn + ρ

1− ρn

1− ρ
)

+ π0,0

k2−1∑
k1+1

((λ
α
ρn + ρn−(k1−1) 1− ρk1

1− ρ

)
+
n−k1∑
i=1

( λ

λ+ γ
)iρn−k1−(i−1)

)

= π0,0

( k1∑
n=1

λ

α
ρn +

k1∑
n=1

ρ
1− ρn

1− ρ

)
+ π0,0

( k2−1∑
k1+1

λ

α
ρn +

k2−1∑
k1+1

(
ρn−(k1−1) 1− ρk1

1− ρ
)

+
k2−1∑
k1+1

n−k1∑
i=1

( λ

λ+ γ
)iρn−k1−(i−1)

)

= π0,0

(
λ

α

k2−1∑
n=1

ρn + ρ

1− ρ

k1∑
n=1

(1− ρn)
)

+ π0,0

(
ρ

1− ρk1

1− ρ

k2−1∑
k1+1

ρn−k1 +
k2−1∑
k1+1

(
ρn−k1+1

n−k1∑
i=1

( λ

λ+ γ
)iρ−i

))

= π0,0

(
λ

α

k2−1∑
n=1

ρn + ρ

1− ρ

( k1∑
n=1

(1)−
k1∑
n=1

ρn
))

+ π0,0

(
ρ

1− ρk1

1− ρ

k2−k1−1∑
n=1

ρn

+
k2−1∑
k1+1

(
ρn−k1+1

n−k1∑
i=1

( µ

λ+ γ
)i
))

= π0,0

(λ
α

ρ(1− ρk2−1)
1− ρ + ρ

1− ρ
(
k1 −

ρ(1− ρk1)
1− ρ

))
+ π0,0

(
ρ

1− ρk1

1− ρ
ρ(1− ρk2−k1−1)

1− ρ +
k2−1∑
k1+1

(
ρn−k1+1

µ
λ+γ

(
1− ( µ

λ+γ )n−k1
)

1− µ
λ+γ

))

= π0,0
ρ

1− ρ

(λ
α

(1− ρk2−1) + k1 −
ρ(1− ρk1)

1− ρ

)
+ π0,0

(
ρ2(1− ρk1)(1− ρk2−k1−1)

(1− ρ)2 +
µ

λ+γ

1− µ
λ+γ

( k2−1∑
k1+1

ρn−k1+1 −
k2−1∑
k1+1

(
ρn−k1+1( µ

λ+ γ
)n−k1

)))

= π0,0
ρ

1− ρ

(λ
α

(1− ρk2−1) + k1 −
ρ(1− ρk1)

1− ρ

)
+ π0,0

(
ρ2(1− ρk1)(1− ρk2−k1−1)

(1− ρ)2 + µ

λ+ γ − µ

(
ρ

k2−k1−1∑
n=1

ρn − ρ
k2−k1−1∑
n=1

( λ

λ+ γ
)n
))

= π0,0
λ

µ− λ

(λ
α

(1− ρk2−1) + k1 −
ρ(1− ρk1)

1− ρ

)
+ π0,0

(
λ2(1− ρk1)(1− ρk2−k1−1)

(µ− λ)2

+ µ

λ+ γ − µ

(λ(1− ρk2−k1−1)
µ− λ

−
λ
(
1− ( λ

λ+γ )k2−k1−1)
γ

))
= π0,0

(λ2(1− ρk2−1)(µ− λ) + k1αλ(µ− λ)− αλ2(1− ρk1)
α(µ− λ)2

)
+ π0,0

(
λ2(1− ρk1)(1− ρk2−k1−1)

(µ− λ)2 +
γλ2(1− ρk2−k1−1)− λ2(µ− λ)

(
1− ( λ

λ+γ )k2−k1−1)
γ(µ− λ)(λ+ γ − µ)

)
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= π0,0
(λ2(1− ρk2−1)(µ− λ) + k1αλ(µ− λ)− αλ2(1− ρk1 )

α(µ− λ)2

)
+ π0,0

(λ2γ(λ + γ − µ)(1− ρk1 )(1− ρk2−k1−1) + γ(µ− λ)λ2(1− ρk2−k1−1)− λ2(µ− λ)2
(

1− ( λ
λ+γ )k2−k1−1

)
γ(µ− λ)2(λ + γ − µ)

)
= π0,0

(
λ2γ(1− ρk2−1)(µ− λ)(λ + γ − µ) + k1αλγ(µ− λ)(λ + γ − µ)− αλ2γρk2−k1−1(1− ρk1 )(λ + γ − µ)

αγ(µ− λ)2(λ + γ − µ)

+
αγ(µ− λ)λ2(1− ρk2−k1−1)− αλ2(µ− λ)2

(
1− ( λ

λ+γ )k2−k1−1
)

αγ(µ− λ)2(λ + γ − µ)

)
(5.91)

Then we continue to solve for πOFF , from (5.1), we have:

πOFF =
k1−1∑
n=0

π0,n

=
k1−1∑
n=0

π0,0

= k1π0,0 (5.92)

Lastly, to calculate πSCALED, we can use the fact that the sum of the steady-state

probabilities must be equal to 1, so we have:

πSCALED = 1− πOFF − πIDLE − πSETUP − πNORMAL (5.93)

We first substitute the expression for π0,0 into each of the expressions (5.89), (5.90),

(5.91), (5.92). So we have:

πIDLE = λγ(µ−λ)2(λ+γ−µ)(cµ−λ)

(c−1)
(
−αλ(µγ)2ρk2−k1 +αλ2µ(µ−λ)2ξk2−k1−1+(λ+γ−µ)(λ+α−µ)λµ2γρk2

)
+µ(cµ−λ)(λ+γ−µ)(µ−λ)

(
(α+γ)λ+αγk1

)
(5.94)

πSETUP = αλ(µ−λ)2(λ+γ−µ)(cµ−λ)

(c−1)
(
−αλ(µγ)2ρk2−k1 +αλ2µ(µ−λ)2ξk2−k1−1+(λ+γ−µ)(λ+α−µ)λµ2γρk2

)
+µ(cµ−λ)(λ+γ−µ)(µ−λ)

(
(α+γ)λ+αγk1

)
(5.95)
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πNORMAL = (cµ−λ)
(
αλ2(µ−λ)2ξk2−k1−1−αµλγ2ρk2−k1−µλγ(λ+γ−µ)(µ−λ−α)ρk2

)
+λ(µ−λ)(cµ−λ)(λ+γ−µ)(λγ+k1αγ+αλ)

(c−1)
(
−αλ(µγ)2ρk2−k1 +αλ2µ(µ−λ)2ξk2−k1−1+(λ+γ−µ)(λ+α−µ)λµ2γρk2

)
+µ(cµ−λ)(λ+γ−µ)(µ−λ)

(
(α+γ)λ+αγk1

)
(5.96)

πOFF = k1αγ(µ−λ)2(λ+γ−µ)(cµ−λ)

(c−1)
(
−αλ(µγ)2ρk2−k1 +αλ2µ(µ−λ)2ξk2−k1−1+(λ+γ−µ)(λ+α−µ)λµ2γρk2

)
+µ(cµ−λ)(λ+γ−µ)(µ−λ)

(
(α+γ)λ+αγk1

)
(5.97)

In order to find πSCALED, we just need to use (5.93). Since all of the denominators of

(5.94)-(5.97) are the same, the numerator of 1 is just same as the common denominator.

From (5.93), we first simplify the numerator first, with substitutions from (5.97), (5.96),
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(5.95), (5.94), we have the numerator of πSCALED as:

(c− 1)
(
− αλ(µγ)2ρk2−k1 + αλ2µ(µ− λ)2ξk2−k1−1 + (λ+ γ − µ)(λ+ α− µ)λµ2γρk2

)
+ µ(cµ− λ)(λ+ γ − µ)(µ− λ)

(
(α+ γ)λ+ αγk1

)
− k1αγ(µ− λ)2(λ+ γ − µ)(cµ− λ)

− λγ(µ− λ)2(λ+ γ − µ)(cµ− λ)− αλ(µ− λ)2(λ+ γ − µ)(cµ− λ)

−
(
λ2γ(1− ρk2−1)(µ− λ)(cµ− λ)(λ+ γ − µ) + k1αλγ(µ− λ)(cµ− λ)(λ+ γ − µ)

− αλ2γρk2−k1−1(1− ρk1)(cµ− λ)(λ+ γ − µ)

+ αγ(µ− λ)(cµ− λ)λ2(1− ρk2−k1−1)− αλ2(µ− λ)2(cµ− λ)
(
1− ( λ

λ+ γ
)k2−k1−1))

= (c− 1)
(
− αλ(µγ)2ρk2−k1 + αλ2µ(µ− λ)2ξk2−k1−1 + (λ+ γ − µ)(λ+ α− µ)λµ2γρk2

)
− λ2γ(1− ρk2−1)(µ− λ)(cµ− λ)(λ+ γ − µ) + αλ2γρk2−k1−1(1− ρk1)(cµ− λ)(λ+ γ − µ)

− αγ(µ− λ)(cµ− λ)λ2(1− ρk2−k1−1) + αλ2(µ− λ)2(cµ− λ)(1− ξk2−k1−1)

+ µ(cµ− λ)(λ+ γ − µ)(µ− λ)
(
(α+ γ)λ+ αγk1

)
− k1αγ(µ− λ)2(λ+ γ − µ)(cµ− λ)

− λγ(µ− λ)2(λ+ γ − µ)(cµ− λ)− αλ(µ− λ)2(λ+ γ − µ)(cµ− λ)− k1αλγ(µ− λ)(cµ− λ)(λ+ γ − µ)

= (c− 1)
(
(−αλ(µγ)2ρk2−k1 + (λ+ γ − µ)(λ+ α− µ)λµ2γρk2

)
+ λ2(cµ− λ)(µ− λ)(µ− λ− γ)(α+ γ)

+ λ2γ(cµ− λ)(µ− λ− α)(λ+ γ − µ)ρk2−1 + αλ2γ2(cµ− λ)ρk2−k1−1

+ αλ2(µ− λ)2ξk2−k1−1((c− 1)µ− (cµ− λ)
)

+ (µ− λ)(cµ− λ)(λ+ γ − µ)(αλµ+ γλµ+ αγk1µ− k1αγµ+ k1αγλ− λγµ+ λγλ− αλµ+ αλλ− k1αλγ)

= λ2(cµ− λ)(µ− λ)(µ− λ− γ)(α+ γ) + λ2(µ− λ)(cµ− λ)(λ+ γ − µ)(γ + α)

+ λµγ(µ− λ− α)(λ+ γ − µ)ρk2
(
(cµ− λ)− (c− 1)µ

)
+ αλµγ2ρk2−k1

(
(cµ− λ)− (c− 1)µ

)
+ αλ2(µ− λ)2ξk2−k1−1((c− 1)µ− (cµ− λ)

)

= λµγ(µ− λ− α)(λ+ γ − µ)ρk2(µ− λ) + αλµγ2ρk2−k1(µ− λ)− αλ2(µ− λ)2ξk2−k1−1(µ− λ)

= λµγ(µ− λ− α)(λ+ γ − µ)ρk2(µ− λ) + αλµγ2ρk2−k1(µ− λ)− αλ2(µ− λ)3ξk2−k1−1
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As a result, we have the expression for πSCALED as:

πSCALED = λµγ(µ−λ−α)(λ+γ−µ)ρk2 (µ−λ)+αλµγ2ρk2−k1 (µ−λ)−αλ2(µ−λ)3ξk2−k1−1

(c−1)
(
−αλ(µγ)2ρk2−k1 +αλ2µ(µ−λ)2ξk2−k1−1+(λ+γ−µ)(λ+α−µ)λµ2γρk2

)
+µ(cµ−λ)(λ+γ−µ)(µ−λ)

(
(α+γ)λ+αγk1

)
(5.98)

We have determined closed form expressions for all of the required probabilities. Once

the energy costs have been specified, one can easily obtain the total expected energy cost.

We will show an example in the experiment results in Chapter 6.

With the closed form expression for E[E], we have determined all of the required

closed form expressions for the first case of our study, where the threshold to turn on

speed scaling is larger than or equal to the turn on server threshold, namely k1 ≤ k2.

The CTMC model of this case is presented in Figure 4.2. The analysis process is

very similar to what we have done for the first case in Chapter 5.1, and as mentioned

earlier, our research interest is in the first case where k1 ≤ k2, we only show the necessary

analysis for this case.

Similar to Case 1, we first obtain the system balance equations as follows:



λπ0,n = λπ0,n−1 if 0 ≤ n < k1 OFF region

(λ+ γ)π0,n = λπ0,n−1 if k1 ≤ n SETUP region

λπ0,n = απ1,n if n = 0 IDLE

µπ1,n = λπ1,n−1 + λπ0,n−1 if 0 < n < k2 BUSY to IDLE region

cµπ1,n = λπ1,n−1 + λπ0,n−1 if k2 ≤ n < k1 SCALED to BUSY region

(λ+ cµ)π1,n = λπ1,n−1 + γπ0,n + cµπ1,n+1 if k1 ≤ n SCALED region
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We now work on expressing the steady-state probabilities in terms of π0,0. The

expressions for the OFF, SETUP, and BUSY towards IDLE regions are identical with

those in Case 1 since these portions of the two CTMCs in 4.1 and 4.2 are identical.

So we can reuse the expressions developed in (5.1), (5.2),and (5.4). We have identical

expressions with Case 1 for the OFF and SETUP regions, with the same expressions

as (5.1) and (5.2). We then focus on finding the expression for the SCALED towards

BUSY region k2 ≤ n < k1:

cµπ1,n = λπ1,n−1 + λπ0,n−1

Let Z = λ
cµ

π1,k2 = Zπ1,k2−1 + Zπ0,k2−1

π1,k2+1 = Zπ1,k2 + Zπ0,k2

π1,k2+1 = Z2π1,k2−1 + Z2π0,k2−1 + Zπ0,k2

and from (5.1) we have π0,n = π0,0 since the range is within the OFF region. So we have:

π1,n = Zn−k2+1π1,k2−1 + π0,0

n−k2+1∑
i=1

Z

= Zn−k2+1π1,k2−1 + π0,0
(
Z

1− Zn−k2+1

1− Z
)

(5.99)

π1,k2−1 is in the BUSY towards IDLE region, from (5.4), we have:

π1,k2−1 = π0,0
(λ
α
ρk2−1 + ρ

1− ρk2−1

1− ρ
)

(5.100)
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Substitute (5.100) back into (5.99)

π1,n = Zn−k2+1π0,0
(λ
α
ρk2−1 + ρ

1− ρk2−1

1− ρ
)

+ π0,0
(
Z

1− Zn−k2+1

1− Z
)

=
(
Zn−k2

(λ
α
ρk2−1 + ρ

1− ρk2−1

1− ρ
)

+ 1− Zn−k2+1

1− Z

)
Zπ0,0

(5.101)

Since Z = λ
cµ and ρ = λ

µ , we can substitute these expressions back to (5.101) for

further simplification. We first perform simplification on the last term inside the large

parentheses in (5.101):

1− Zn−k2+1

1− Z

=
(cµ)n−k2+1−λn−k2+1

(cµ)n−k2+1

cµ−λ
cµ

= (cµ)n−k2+1 − λn−k2+1

(cµ)n−k2(cµ− λ) (5.102)

Then we perform simplification on the first term inside the large parentheses of

(5.101), and simplifying terms inside the small parentheses first.

λ

α
ρk2−1 + ρ

1− ρk2−1

1− ρ

= λ

α

λk2−1

µk2−1 + λ

µ

µk2−1−λk2−1

µk2−1

µ−λ
µ

= λ

α

λk2−1

µk2−1 + λ
µk2−1 − λk2−1

µk2−1(µ− λ)

=
(λk2−1

α
+ µk2−1 − λk2−1

µ− λ

) λ

µk2−1 (5.103)

66

http://www.mcmaster.ca/
http://www.cas.mcmaster.ca/cas/
http://www.cas.mcmaster.ca/cas/


Master of Science– Guang Mo ; McMaster University– Department of Computing and
Software

We now substitute (5.103) into the first term in the large parentheses of (5.101),

yielding:

Zn−k2
(λ
α
ρk2−1 + ρ

1− ρk2−1

1− ρ
)

= λn−k2+1

cn−k2µn−1

(λk2−1

α
+ µk2−1 − λk2−1

µ− λ

)
(5.104)

We can now simplify (5.101) by substituting (5.102) and (5.104):

Zn−k2
(λ
α
ρk2−1 + ρ

1− ρk2−1

1− ρ
)

+ 1− Zn−k2+1

1− Z

= λn−k2+1

cn−k2µn−1

(λk2−1

α
+ µk2−1 − λk2−1

µ− λ

)
+ (cµ)n−k2+1 − λn−k2+1

(cµ)n−k2(cµ− λ)

=
(
λn−k2+1

µk2−1

(λk2−1

α
+ µk2−1 − λk2−1

µ− λ

)
+ (cµ)n−k2+1 − λn−k2+1

(cµ− λ)

) 1
(cµ)n−k2

(5.105)

We need to simplify (5.105) further by simplifying the first term inside the large paren-

theses as follows:

λn−k2+1

µk2−1

((µλk2−1 − λk2) + αµk2−1 − αλk2−1

α(µ− λ)

)
= λn−k2+1

µk2−1

((
µλk2−1 − λk2 − αλk2−1)+ αµk2−1

α(µ− λ)

)
= λn−k2+1

µk2−1

(
λk2−1(µ− λ) + αµk2−1 − αλk2−1

α(µ− λ)

)
= (µ− λ− α)λn + αµk2−1λn−k2+1

α(µ− λ)µk2−1

The terms with common denominator within the large parentheses in (5.105) become:

(µ− λ− α)λn(cµ− λ) + αµk2−1λn−k2+1(cµ− λ)
α(µ− λ)µk2−1(cµ− λ) + α(µ− λ)µk2−1(cµ)n−k2+1 − α(µ− λ)µk2−1λn−k2+1

α(µ− λ)µk2−1(cµ− λ)
(5.106)
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We now simplify the numerator of (5.106)

(µ− λ− α)λn(cµ− λ) + αµk2−1λn−k2+1(cµ− λ) + α(µ− λ)µk2−1(cµ)n−k2+1 − α(µ− λ)µk2−1λn−k2+1

= (µ− λ− α)λn(cµ− λ) + αµk2−1λn−k2+1(cµ− λ)− α(µ− λ)µk2−1λn−k2+1 + α(µ− λ)µk2−1(cµ)n−k2+1

= (µ− λ− α)λn(cµ− λ) + (cµ− λ− µ+ λ)αµk2−1λn−k2+1 + α(µ− λ)µk2−1(cµ)n−k2+1

= (µ− λ− α)λn(cµ− λ) + (c− 1)αµk2λn−k2+1 + α(µ− λ)µncn−k2+1

So the expression in (5.106) becomes:

(µ− λ− α)λn(cµ− λ) + (c− 1)αµk2λn−k2+1 + α(µ− λ)µncn−k2+1

α(µ− λ)µk2−1(cµ− λ) (5.107)

This completes the simplification for the terms within the large parentheses in (5.101),

and now we substitute the result from (5.107), along with Z = λ
cµ into (5.101), which

yields the expression for this region as:

π1,n =
((µ− λ− α)λn+1(cµ− λ) + (c− 1)αµk2λn−k2+2 + α(µ− λ)λµncn−k2+1

cn−k2+1α(µ− λ)µn(cµ− λ)

)
π0,0

(5.108)

We then move to solve for the expression in the SCALED region, where k1 ≤ n. We

have the balance equation for this region as:

(λ+ cµ)π1,n = λπ1,n−1 + γπ0,n + cµπ1,n+1 (5.109)

Similar to Case 1, this balance equation once again can be described as:

π1,n = Axn−(k1−1) +B( λ

λ+ γ
)n−(k1−1) (5.110)

where x satisfies:

(λ+ cµ)x = λ+ cµx2,
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which yields x = 1 or x = λ
cµ . Substitute this relationship back into the balance equation

(5.109):

(λ+ cµ)
(
Axn−(k1−1) +B( λ

λ+ γ
)n−(k1−1)

)
=λ
(
Axn−k1 +B( λ

λ+ γ
)n−k1

)
+ γ( λ

λ+ γ
)n−(k1−1)π0,0 + cµ

(
Axn−k1+2 +B( λ

λ+ γ
)n−k1+2

)
We apply the same technique as in Case 1 by separating the constant terms and x terms,

then we can solve for B:

(λ+ cµ)B( λ

λ+ γ
)n−(k1−1) = λB( λ

λ+ γ
)n−k1 + γ( λ

λ+ γ
)n−(k1−1)π0,0 + cµB( λ

λ+ γ
)n−k1+2

(λ+ cµ)( λ

λ+ γ
)B = λB + γ( λ

λ+ γ
)π0,0 + cµB( λ

λ+ γ
)2

(λ+ cµ)B = (λ+ γ)B + γπ0,0 + cµB
λ

λ+ γ

(λ+ cµ)B − (λ+ γ)B − cµB λ

λ+ γ
= γπ0,0

cµB − γB − cµB λ

λ+ γ
= γπ0,0

cµ(λ+ γ)B − γ(λ+ γ)B − cµλB = γ(λ+ γ)π0,0

(λcµB + γcµB)− (λγB + γγB)− cµλB = γ(λ+ γ)π0,0

(cµB)− (λB + γB) = (λ+ γ)π0,0

(cµ− λ− γ)B = (λ+ γ)π0,0

B = λ+ γ

cµ− λ− γ
π0,0 (5.111)

With B solved, we can solve for A with the balance equation written as:

(λ+ cµ)
(
Axn−(k1−1) +B( λ

λ+ γ
)n−(k1−1)

)
= λπ1,n−1 + γ( λ

λ+ γ
)n−(k1−1)π0,0

+cµ
(
Axn−k1+2 +B( λ

λ+ γ
)n−k1+2

) (5.112)

69

http://www.mcmaster.ca/
http://www.cas.mcmaster.ca/cas/
http://www.cas.mcmaster.ca/cas/


Master of Science– Guang Mo ; McMaster University– Department of Computing and
Software

When n = k1, π1,n−1 = π1,k1−1, which belongs to the SCALED to NORMAL region:

π1,k1−1 = π0,0
(c− 1)αµk2λk1−k2+1 + (µ− λ− α)λk1(cµ− λ) + α(µ− λ)λµk1−1ck1−k2

αck1−k2(µ− λ)µk1−1(cµ− λ)
(5.113)

Set x = 1 as one of the solutions for (5.112) and substitute (5.113) into (5.112), we then

have:

(λ+ cµ)
(
A+B

λ

λ+ γ

)
= λπ0,0

( (c− 1)αµk2λk1−k2+1 + (µ− λ− α)λk1(cµ− λ) + α(µ− λ)λµk1−1ck1−k2

αck1−k2(µ− λ)µk1−1(cµ− λ)

)
+ γ( λ

λ+ γ
π0,0) + cµ

(
A+B( λ

λ+ γ
)2)

λA+ (λ+ cµ)B λ

λ+ γ
= λπ0,0

( (c− 1)αµk2λk1−k2+1 + (µ− λ− α)λk1(cµ− λ) + α(µ− λ)λµk1−1ck1−k2

αck1−k2(µ− λ)µk1−1(cµ− λ)

)
+ γ( λ

λ+ γ
π0,0) +Bcµ( λ

λ+ γ
)2

A+ (λ+ cµ)B 1
λ+ γ

= π0,0

( (c− 1)αµk2λk1−k2+1 + (µ− λ− α)λk1(cµ− λ) + α(µ− λ)λµk1−1ck1−k2

αck1−k2(µ− λ)µk1−1(cµ− λ)

)
+ γ( 1

λ+ γ
π0,0) +Bcµ

λ

(λ+ γ)2

A = π0,0

( (c− 1)αµk2λk1−k2+1 + (µ− λ− α)λk1(cµ− λ) + α(µ− λ)λµk1−1ck1−k2

αck1−k2(µ− λ)µk1−1(cµ− λ)

)
+ γ( 1

λ+ γ
π0,0)

+B
(cµλ− (λ+ γ)(λ+ cµ)

(λ+ γ)2

)
(5.114)

Sub B = λ+γ
cµ−λ−γπ0,0 from (5.111) and simplify the B term of (5.114):

B
(cµλ− (λ+ γ)(λ+ cµ)

(λ+ γ)2

)
= λ+ γ

cµ− λ− γ

(cµλ− (λ+ γ)(λ+ cµ)
(λ+ γ)2

)
π0,0

= 1
cµ− λ− γ

(cµλ− (λ+ γ)(λ+ cµ)
λ+ γ

)
π0,0

= − λ(λ+ γ) + γcµ

(cµ− λ− γ)(λ+ γ)π0,0
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Substitute the simplified B term above into (5.114), so A becomes:

A = π0,0
((c− 1)αµk2λk1−k2+1 + (µ− λ− α)λk1(cµ− λ) + α(µ− λ)λµk1−1ck1−k2

αck1−k2(µ− λ)µk1−1(cµ− λ)
)

+ γ( 1
λ+ γ

π0,0)

− λ(λ+ γ) + γcµ

(cµ− λ− γ)(λ+ γ)π0,0

A = π0,0
((c− 1)αµk2λk1−k2+1 + (µ− λ− α)λk1(cµ− λ) + α(µ− λ)λµk1−1ck1−k2

αck1−k2(µ− λ)µk1−1(cµ− λ)
)
− λ+ γ

cµ− λ− γ
π0,0

(5.115)

Now we merge the π0,0 terms of (5.115) using a common denominator, and simplify:

(c− 1)αµk2λk1−k2+1(cµ− λ− γ) + (cµ− λ− γ)(µ− λ− α)λk1(cµ− λ) + α(cµ− λ− γ)(µ− λ)λµk1−1ck1−k2

αck1−k2(µ− λ)µk1−1(cµ− λ)(cµ− λ− γ)

− αck1−k2(µ− λ)µk1−1(cµ− λ)(λ+ γ)
αck1−k2(µ− λ)µk1−1(cµ− λ)(cµ− λ− γ)

(5.116)

Simplify the numerator of (5.116):

(c− 1)αµk2λk1−k2+1(cµ− λ− γ) + (cµ− λ− γ)(µ− λ− α)λk1(cµ− λ) + α(cµ− λ− γ)(µ− λ)λµk1−1ck1−k2

− αck1−k2(µ− λ)µk1−1(cµ− λ)(λ+ γ)

= (c− 1)αµk2λk1−k2+1(cµ− λ− γ) + (cµ− λ− γ)(µ− λ− α)λk1(cµ− λ)

+ α(µ− λ)ck1−k2µk1−1((cµ− λ)λ− γλ− (cµ− λ)λ− γ(cµ− λ)
)

= (c− 1)αµk2λk1−k2+1(cµ− λ− γ) + (cµ− λ− γ)(µ− λ− α)λk1(cµ− λ)− γα(µ− λ)ck1−k2+1µk1

(5.117)

With the results from (5.117), we have A as:

A = π0,0

( (c− 1)αµk2λk1−k2+1(cµ− λ− γ) + (cµ− λ− γ)(µ− λ− α)λk1(cµ− λ)− γα(µ− λ)ck1−k2+1µk1

αck1−k2(µ− λ)µk1−1(cµ− λ)(cµ− λ− γ)

)
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With A and B solved, let x = λ
cµ . Subsitute these back into (5.110), we now have the

expression:

π1,n = π0,0
( (c− 1)αµk2λn−k2+2(cµ− λ− γ) + (cµ− λ− γ)(µ− λ− α)λn+1(cµ− λ)− γα(µ− λ)ck1−k2+1λn−k1+1µk1

αcn−k2+1(µ− λ)µn(cµ− λ)(cµ− λ− γ)

)
+

λn−k1+1

(cµ− λ− γ)(λ + γ)n−k1
π0,0 (5.118)

We now have expressed all probabilities in terms of π0,0. As for Case 1, the sum of the

probabilities must be 1, so we can solve for π0,0 with:

1 =
k1−1∑
n=0

π0,n +
∞∑

n=k1

π0,n +
k2−1∑
n=0

π1,n +
k1−1∑
n=k2

π1,n +
∞∑

n=k1

π1,n (5.119)

We now substitute the developed expressions from (5.1), (5.2),(5.4), (5.108), (5.118)
into the corresponding regions in (5.119).

1 =

k1−1∑
n=0

π0,0 +

∞∑
n=k1

(
(

λ

λ + γ
)n−(k1−1)

π0,0
)

+

k2−1∑
n=0

π0,0
( λ
α
ρ
n + ρ

1− ρn

1− ρ

)
+

k1−1∑
n=k2

( (c− 1)αµk2λn−k2+2 + (µ− λ− α)λn+1(cµ− λ) + α(µ− λ)λµncn−k2+1

αcn−k2+1(µ− λ)µn(cµ− λ)

)
+

∞∑
n=k1

(
π0,0
( (c− 1)αµk2λn−k2+2(cµ− λ− γ) + (cµ− λ− γ)(µ− λ− α)λn+1(cµ− λ)− γα(µ− λ)ck1−k2+1λn−k1+1µk1

αcn−k2+1(µ− λ)µn(cµ− λ)(cµ− λ− γ)

)
+

λn−k1+1

(cµ− λ− γ)(λ + γ)n−k1
π0,0

)
(5.120)

We perform simplification on each of the sums appearing on the RHS of (5.120), the

first sum is:
k1−1∑
n=0

π0,0 = π0,0

k1−1∑
n=0

1 = k1π0,0 (5.121)

We continue to the second sum of the RHS of (5.120):

π0,0

∞∑
n=k1

( λ

λ+ γ
)n−(k1−1) = π0,0

∞∑
n=1

( λ

λ+ γ
)n
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since
λ

λ+ γ
< 1

⇒ π0,0

∞∑
n=1

( λ

λ+ γ
)n = π0,0

λ
λ+γ

1− λ
λ+γ

= λ

γ
π0,0 (5.122)

We continue to perform simplification on the third sum on the RHS of (5.120),

k2−1∑
n=0

(λ
α
ρn + ρ

1− ρn

1− ρ
)

=
k2−1∑
n=0

(λ
α

(λ
µ

)n + λ

µ

1− (λµ)n

1− λ
µ

)
=

k2−1∑
n=0

(λn+1

αµn
+ λ

µn − λn

µn(µ− λ)
)

=
k2−1∑
n=0

λn+1(µ− λ) + αλµn − αλn+1

αµn(µ− λ)

=
k2−1∑
n=0

(λn+1

αµn
+ λ

µ− λ
− λn+1

µn(µ− λ)
)

=
k2−1∑
n=0

λn+1

αµn
+
k2−1∑
n=0

λ

µ− λ
−
k2−1∑
n=0

λn+1

µn(µ− λ)

= λ

α

k2−1∑
n=0

λn

µn
+ λ

µ− λ

k2−1∑
n=0

1− λ

µ− λ

k2−1∑
n=0

λn

µn
(5.123)

and
k2−1∑
n=0

λn

µn
=

1− (λµ)k2

1− λ
µ

= µk2 − λk2

µk2−1(µ− λ)
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Substitute this result back to (5.123), so we have:

⇒ λ

α

µk2 − λk2

µk2−1(µ− λ) + λ

µ− λ
k2 −

λ

µ− λ
µk2 − λk2

µk2−1(µ− λ)

= k2µ
k2−1αλ(µ− λ) + (µk2 − λk2)(µ− λ− α)λ

µk2−1α(µ− λ)2 (5.124)

We merge the first portion of the fourth sum of (5.120) with the first part inside the

large parentheses of the fifth sum of (5.120), and perform simplification,

π0,0

k1−1∑
n=k2

(c− 1)αµk2λn−k2+2 + (µ− λ− α)λn+1(cµ− λ)
αcn−k2+1(µ− λ)µn(cµ− λ)

+ π0,0

∞∑
n=k1

(c− 1)αµk2λn−k2+2 + (µ− λ− α)λn+1(cµ− λ)
αcn−k2+1(µ− λ)µn(cµ− λ)

= π0,0

∞∑
n=k2

(c− 1)αµk2λn−k2+2 + (µ− λ− α)λn+1(cµ− λ)
αcn−k2+1(µ− λ)µn(cµ− λ)

= π0,0

∞∑
n=1

(c− 1)αµk2λn+2 + (µ− λ− α)λn+k2(cµ− λ)
αcn(µ− λ)µn+k2−1(cµ− λ)

= π0,0

∞∑
n=1

( (c− 1)αλn+1

αcn(µ− λ)µn−1(cµ− λ) + (µ− λ− α)λn+k2(cµ− λ)
αcn(µ− λ)µn+k2−1(cµ− λ)

)
(5.125)

We now need to discuss whether the expression within the sum of (5.125) converges or

not for further simplification.

∞∑
n=1

(c− 1)αµλλn

αcn(µ− λ)µn(cµ− λ) +
∞∑
n=1

(µ− λ− α)λk2λn

αcn(µ− λ)µk2−1µn

= (c− 1)αµλ
α(µ− λ)(cµ− λ)

∞∑
n=1

λn

cnµn
+ (µ− λ− α)µλk2

α(µ− λ)µk2

∞∑
n=1

λn

cnµn

Since we have λ
cµ < 1 for a stable system, so (5.125) becomes:

= π0,0

( (c− 1)αµλ
α(µ− λ)(cµ− λ)

λ

(cµ− λ) + (µ− λ− α)µλk2

α(µ− λ)µk2

λ

(cµ− λ)

)
= π0,0

(
λµ

α(µ− λ)(cµ− λ)
((c− 1)αλ

cµ− λ
+ (µ− λ− α)λk2

µk2

)
(5.126)
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We then focus on simplifying the rest of the fourth and fifth sums of (5.120).

π0,0

k1−1∑
n=k2

α(µ− λ)λµncn−k2+1

αcn−k2+1(µ− λ)µn(cµ− λ) − π0,0

∞∑
n=k1

γα(µ− λ)ck1−k2+1λn−k1+1µk1

αcn−k2+1(µ− λ)µn(cµ− λ)(cµ− λ− γ)

= π0,0

k1−1∑
n=k2

λ

cµ− λ
− π0,0

∞∑
n=k1

γλn−k1+1

cn−k1µn−k1(cµ− λ)(cµ− λ− γ)

= π0,0

(
λ

cµ− λ

k1−1∑
n=k2

1− λ

cµ− λ
γ

cµ− λ− γ

∞∑
n=k1

λn−k1

cn−k1µn−k1

)

= π0,0

(
λ

cµ− λ

k1−1∑
n=k2

1− λ

cµ− λ
γ

cµ− λ− γ

∞∑
n=0

λn

cnµn

)

= π0,0

(
λ

cµ− λ
(k1 − k2)− λ

cµ− λ
γ

cµ− λ− γ
cµ

cµ− λ

)
(5.127)

Lastly, we perform simplification on the last term of (5.120),

∞∑
n=k1

λn−k1+1

(cµ− λ− γ)(λ+ γ)n−k1

=
∞∑
n=0

λn+1

(cµ− λ− γ)(λ+ γ)n

= λ

(cµ− λ− γ)

∞∑
n=0

λn

(λ+ γ)n

= λ(λ+ γ)
(cµ− λ− γ)γ (5.128)

We can now continue to solve for π0,0 with all the simplified forms from (5.121), (5.122),

(5.124), (5.126), (5.127), and (5.128). Substitute these results into (5.120), yielding,

1 = k1π0,0 + λ

γ
π0,0 + π0,0

k2µ
k2−1αλ(µ− λ) + (µk2 − λk2)(µ− λ− α)λ

µk2−1α(µ− λ)2

+ π0,0
λµ

α(µ− λ)(cµ− λ)
((c− 1)αλ

(cµ− λ) + (µ− λ− α)λk2

µk2

)
+ π0,0

( λ

cµ− λ
(k1 − k2)− λ

(cµ− λ)
γ

(cµ− λ− γ)
cµ

cµ− λ

)
+ π0,0

λ(λ+ γ)
(cµ− λ− γ)γ

We then follow similar approaches as we did for Case 1, by arranging similar terms

75

http://www.mcmaster.ca/
http://www.cas.mcmaster.ca/cas/
http://www.cas.mcmaster.ca/cas/


Master of Science– Guang Mo ; McMaster University– Department of Computing and
Software

together to achieve further simplification, and we obtain the closed form expression for

Case 2 as:

π0,0 = α(µ− λ)2(cµ− λ)2(cµ− λ− γ)
(
λµ
(
λα(c− 1)(µ− λ)(cµ− λ− γ)

+ 2(µ− λ− α)(cµ− λ− γ)(cµ− λ)2 + k1αc(µ− λ)2λ−1(cµ− λ)(cµ− λ− γ)

+ k2µ
−1α(µ− λ)(cµ− λ)(cµ− λ− γ)

(
(c− 1)µ+ (cµ− λ)

)
+ cα(µ− λ)2(γ−1(cµ− λ)2(cµ− λ− γ)− γ

)))−1

(5.129)

After the expression for π0,0 is determined, we can follow exactly the same approaches

as we did for Case 1 to determine the expressions for E[N ], E[R], and E[E]. As a result,

we omit the detailed derivation for Case 2, and only provide the final expressions here.

E[N ]
π0,0

= (k1 − 1)k1

2 + λ(λ+ k1γ)
γ2 + λ

α
ρ

1− ρk2 − k2ρ
k2−1 + k2ρ

k2

(1− ρ)2 + λ

µ− λ

(k2(k2 − 1)
2

− ρ1− ρk2 − k2ρ
k2−1 + k2ρ

k2

(1− ρ)2

)
+ 1
α(µ− λ)(cµ− λ)

(
(c− 1)µαλ2

cµ− λ

(λ− λ( λcµ )k1

cµ− λ
+ k2 − (k1 + k2)( λ

cµ
)k1
)

+ (µ− λ− α)(cµ− λ)λ
k2+2

µk2−1

−k1
cµ
λ ( λcµ )k1 + k1( λcµ )k1 + 1− ( λcµ )k1

(cµ− λ)2 + α(µ− λ)λ
( (k1 − 1)k1

2 + k2k1

))
+ λ

α(µ− λ)(cµ− λ)(cµ− λ− γ)

(
(cµ− λ− γ)ck2−1

(
(c− 1)αµk2λ−k2+1 + (µ− λ− α)(cµ− λ)

)
( λ
cµ

)k1
cµ

cµ− λ
( λ

cµ− λ
+ k1)− γα(µ− λ) cµ

(cµ− λ) ( λ

cµ− λ
+ k1)

)
+ λ

cµ− λ− γ
λ+ γ

γ
(λ
γ

+ k1)

E[R]
π0,0

= (k1 − 1)k1

2λ + (λ+ k1γ)
γ2 + 1

α
ρ

1− ρk2 − k2ρ
k2−1 + k2ρ

k2

(1− ρ)2 + 1
µ− λ

(k2(k2 − 1)
2

− ρ1− ρk2 − k2ρ
k2−1 + k2ρ

k2

(1− ρ)2

)
+ 1
αλ(µ− λ)(cµ− λ)

(
(c− 1)µαλ2

cµ− λ

(λ− λ( λcµ )k1

cµ− λ
+ k2 − (k1 + k2)( λ

cµ
)k1
)

+ (µ− λ− α)(cµ− λ)λ
k2+2

µk2−1

−k1
cµ
λ ( λcµ )k1 + k1( λcµ )k1 + 1− ( λcµ )k1

(cµ− λ)2 + α(µ− λ)λ
( (k1 − 1)k1

2 + k2k1

))
+ 1
α(µ− λ)(cµ− λ)(cµ− λ− γ)

(
(cµ− λ− γ)ck2−1

(
(c− 1)αµk2λ−k2+1 + (µ− λ− α)(cµ− λ)

)
( λ
cµ

)k1
cµ

cµ− λ
( λ

cµ− λ
+ k1)− γα(µ− λ) cµ

(cµ− λ) ( λ

cµ− λ
+ k1)

)
+ 1
cµ− λ− γ

λ+ γ

γ
(λ
γ

+ k1)
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The closed form expression for E[E] is determined by using the required probabilities

below:

πOFF = k1π0,0

πSETUP = λ

γ
π0,0

πIDLE = λ

α
π0,0

πNORMAL =
((λ

α
− ρ

1− ρ
)1− ρk2

1− ρ −
λ

α
+ k2

ρ

1− ρ

)
π0,0

πSCALED = 1− πOFF − πSETUP − πOFF − πSCALED

At this point, we have solved for E[N ] and the probability of each energy state for

both k1 < k2 and k1 > k2 cases. With these expressions, we could easily find out

the expected number of jobs in the system and expected energy consumption once the

values of the parameters are known. On the other hand, the expressions developed are

highly complex, so it is difficult to make general observations based on the expressions

themselves, so we will conduct numerical experiments to achieve this purpose in the next

chapter.
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Chapter 6

Experiments and Observations

In this chapter, the main goal is to explore the effect of dynamic voltage scaling under

various system settings via numerical experiments based on the closed form expressions

developed in Chapter 5. Apart from meeting this goal, we also investigate how dynamic

voltage scaling should be utilized under the energy response time product (ERP) per-

formance metric, which gives an example of the impact of dynamic voltage scaling for a

particular cost function.

In order to conduct the experiments, we need to define energy costs for each of the

energy states for our system. There are five energy states in our model, and we select

ENORMAL as the nominal energy cost, then we express energy costs for the other energy

states with respect to ENORMAL. Typically, a server consumes more energy during

setup and consumes less energy when it is idling. We capture these effects by assigning

energy cost in appropriate proportion to ENORMAL. Once a server starts to operate

using dynamic voltage scaling, the energy consumption highly depends on its operating

frequency, and according to [5],

Dynamic CPU power = c1f
3

where c1 is a processor-dependent constant coefficient, and f is the CPU operating
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frequency. This gives an exponential correlation with factor of 3 for the operating speeds.

Thus, we model energy cost for scaled state as:

ESCALED = c3ENORMAL

Before conducting the experiments, we must discuss our experimental setup separately.

Since the closed form expressions of performance metrics developed in Chapter 5 are

composed of numerous parameters, we must fix the values of some parameters in order

to see the impact of dynamic voltage scaling. We consider the scaled speed (c) and

when to turn on dynamic voltage scaling (k2) as the main contributors to the impact

of dynamic voltage scaling on the system, so we then fix the remaining parameters.

We consider various settings. There are four types of system that we consider, Low

Load, Medium Load, Heavy Load, and Over Load, which are defined based on the ratio

between the arrival rate and the processing rate. Within each type of system, we also

select different values for when to turn off the server when no jobs are present (α) and

when to turn on the server (k1). For example, α = 0.00001 corresponds to a very slow

turn off rate, which means we almost never turn off the server even when the system

is idling often; On the other hand α = 10000, represents a fast turn off rate, which

means we turn off the server almost as soon as the system is in the idle state. We

summarize the energy costs for each energy state and the values of fixed parameters in

Table 6.1. To illustrate how we use this table for experiments, we describe the system

configuration for Low Load as an example. We perform each experiment on five different

configurations, which contain different values for either k1 or α while all the remaining

parameters simply follow the values listed in Table 1. For example, for the configuration

when k1 = 1, we use µ = 1, γ = 0.85, k2 = 5, α = 0.11 as system parameters to conduct

the experiment in Figure 6.1 (a), and we use µ = 1, γ = 0.85, α = 0.11, c = 2.8 as system

parameters to conduct the experiment in Figure 6.1 (b).
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Parameter Value
EOFF 0

ENORMAL 100
EIDLE 70
ESETUP 140
ESCALED c3 * 100
Low Load λ 0.2
Med Load λ 0.5
Heavy Load λ 0.8
Over Load λ 1.6

µ 1
γ 0.85
k1 2 unless specified
k2 5 unless specified
α 0.11 unless specified
c 2.8 unless specified

Table 6.1: Table of Values for Experiments

6.1 Low Load System

We study the dynamic voltage scaling effects on the expected number of jobs E[N ], the

expected energy consumption E[E], obtaining the results in Figures 6.1 and 6.2. We see

both scaled speed c and when to turn on speed scaling k2 do not affect E[N ] and E[E]

a lot, this is expected since the system is low load, and as the system spends most of

(a) E[N ] vs c (b) E[N ] vs k2

Figure 6.1: DVS effect on E[N ] in low load system
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(a) E[E] vs c (b) E[E] vs k2

Figure 6.2: DVS effect on E[E] in low load system

(a) ERP vs c (b) ERP vs k2

Figure 6.3: DVS effect on ERP in low load system
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the time operating at the nominal speed, dynamic voltage scaling would be rarely used.

There is another interesting observation worth mentioning here, we see both E[N ] and

E[E] are impacted a lot when we change values for k1 and α. As explained, the low

loaded system spends most of the time operating at the nominal rate, as a result, we

would expect the system spends most of its time at the left side of the resulting CTMC

(Figure 4.1), which is mainly among the OFF, SETUP, BUSY, IDLE states, such that

when to turn on server k1 and how fast we turn off server α impacts the expected number

of jobs significantly.

We are also interested in observing how dynamic voltage scaling affects the system under

a particular performance metric. To illustrate, we conduct our experiments under the

energy response time product (ERP) metric. The effect is shown in Figure 6.3. For a

low load system, the DVS effect is not obvious, we see as c increases, the resulting ERP

for nearly instant off system and the system with k1 = 2 increases. This is due to the

fact that a relatively rapid increase in energy consumption for the two systems, delay in

starting the system (a larger value of k1) and a nearly instant off system (a very large

value of α) are more likely to cause a system to use speed scaling to process jobs.

6.2 Medium Load System

We conduct similar experiments for a medium load system. Under medium load, the

system spends more time in the middle of the CTMC in Figure 4.1, mainly in the BUSY

and SCALED regions, as a result, we expect the effects from the turn on server threshold

k1 and α to reduce. This is reflected in Figure 6.4 and Figure 6.5, as we can see the

gaps between curves are reduced compared with Figure 6.1 and Figure 6.2, respectively.

In addition, we would expect to see a greater effect of DVS for a medium load system,

this is shown in Figure 6.5, as we see E[N ] reduces dramatically with a small increase

in c for all system configurations, and E[N ] increases rapidly when we delay the start
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(a) E[N ] vs c (b) E[N ] vs k2

Figure 6.4: DVS effect on E[N ] in medium load system

(a) E[E] vs c (b) E[E] vs k2

Figure 6.5: DVS effect on E[E] in medium load system

(a) ERP vs c (b) ERP vs k2

Figure 6.6: DVS effect on ERP in medium load system
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(a) E[N ] vs c (b) E[N ] vs k2

Figure 6.7: DVS effect on E[N ] in heavy load system

of DVS with an increase in k2. With this observation, we would expect the effect from

DVS would be beneficial to performance. From the resulting ERP in Figure 6.6, the

ERP drops first as c increases but then it rises again under all system configurations,

this suggests there exists an optimal value of c that minimizes ERP. However, the effect

of k2 is not clear. Figure 6.6 (b) suggests DVS should be delayed to start, or in other

words, not to use DVS. The actual data points in Figure 6.6 (b) actually show that ERP

rises slowly as the value of k2 increases, but the change is so small that it is difficult to

see the benefit of using DVS.

6.3 Heavy Load System

A heavy load system spends more time in the BUSY and SCALED regions towards the

right side of the CTMC in Figure 4.1, and we expect the system is impacted more by

the DVS effects and less by the effects from k1 and α. From Figure 6.7 and Figure 6.8,

we see the gaps among curves in each figure get smaller, this confirms the system is im-

pacted less by the effects from k1 and α. There is also a more rapid reduction or increase

for E[N ] as we increase c or delay using DVS (increasing k2), which shows the system

benefits from DVS. Examining the resulting ERP in Figure 6.9, it shows the minimum
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(a) E[E] vs c (b) E[E] vs k2

Figure 6.8: DVS effect on E[E] in heavy load system

(a) ERP vs c (b) ERP vs k2

Figure 6.9: DVS effect on ERP in heavy load system
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(a) E[N ] vs c (b) E[N ] vs k2

Figure 6.10: DVS effect to E[N ] in over load system

(a) E[E] vs c (b) E[E] vs k2

Figure 6.11: DVS effect to E[E] in over load system

ERP occurs when we increase the value of c, and it suggests optimality is achieved with

a small increase in c. On the other hand, the ERP results with respect to k2 in Figure

6.9 (b) are once again not clear, as we can not see a clear pattern for how DVS should

be operated. We do see that there exists an optimal value of k2 that minimizes ERP,

but it could vary significantly with different system configurations.
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(a) ERP vs c (b) ERP vs k2

Figure 6.12: DVS effect to ERP in over load system

6.4 Over Load System

Over load system is a special case, where DVS has to be used in order to have a stable

system, since the arrival rate is now larger than the nominal processing speed. Under

over load system, the system spends more of its time at the BUSY and SCALED regions

(on the right side of the CTMC in Figure 4.1), so we would expect that the over load

system has the most benefit from DVS, and we expect the effects from k1 and α to be

minimal. From Figure 6.10 and Figure 6.11, the graphs with different system configu-

rations almost overlap with each other, this confirms the effects to the system from k1

and α are almost eliminated, and the significant drops and rises from those graphs show

that DVS is essential. Even though DVS is required to be used for the over load system,

we can still observe insights on how DVS should be used. The resulting ERP in Figure

6.12 shows once again that there exists an optimal value of c that minimizes ERP, and

DVS should be used as soon as possible.
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6.5 Discussion of Optimality

After making observations on how DVS affects the system under different loads, we want

to discuss the optimality of operating DVS under the ERP metric. Despite the fact that

the effect from DVS varies under different workloads, optimality consistently happens

at system configurations with a very small value for α, which represents the server is

nearly never turned off, and this result is consistent with what [7] has claimed, as never

turning off the server is one of the optimal policies under the ERP metric. Optimally

operating DVS is achieved differently under different system workloads. For low load

system, the DVS impact is minimal, and optimality is achieved by not using DVS at all

(setting turn on DVS threshold (k2) to be infinity). For medium, heavy, and overload

workloads, optimality is achieved by operating the DVS server at its optimal speed (c),

depending on the system configuration. The benefit of using DVS in medium workload is

not significant, and a high value of k2 (even choosing it to be infinity) is recommended to

achieve optimality. The benefit of using DVS in heavily loaded and overloaded systems

is significant. DVS should be used with an optimal value of k2 for heavy load system (the

value of k2 depends on the system parameters), and DVS should be used immediately

for over load system.
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Chapter 7

Conclusion

Energy consumption in datacentres has become a severe problem in our society due to

the popularity of cloud computing. We must continue our efforts in researching better

energy saving practices. Here we presented our research on the dynamic voltage scaling

effect for a single server with on/off energy control. We have established a CTMC model

that combines the effects of turning on/off server as well as turning on/off dynamic

voltage scaling, and we have solved for explict closed form expressions for performance

metrics E[N ], E[R], and E[E]. With the CTMC model and these expressions, one

can easily determine the performance of a given system configuration, or use the given

expressions to search for an effective system configuration. Lastly, we also revealed some

of the implications for operating a DVS server in our experiments, providing insights for

system managers.

We want to extend this work to consider different performance metrics as well as

completing Case 2 (Section 5.2). We want to evaluate our work under different perfor-

mance metrics to have a more complete picture of the DVS effect, in particular, we want

to take switching costs into consideration, as it is one of the popular cost considerations

in this field. We also want to examine the DVS effect for other performance metrics
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other than ERP since ERP does tend to simplify optimality analysis. Although we ar-

gued Case 2 where k2 < k1 is not an interesting case to investigate, it is still a possible

case of operating DVS. Only by completing Case 2 as well as performing evaluations

under different cost functions, and performace metrics, can we have the full picture of

the analysis of on/off single servers with dynamic voltage scaling.
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