
AN INTE:R.ACTIVE SYSTEM FOR SEQUENCE ANALYSIS

AN INTERACTIVE SYSTEM FOR SEQUENCE ANALYSIS

By

XIANGDONG CHEN, Ph.D. (Mathematics)

A Project

~)ubmitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Master of Science

McMaster University

9 Copyright by Xiangdong Chen, May 1994

MASTER OF SCIENCE (1994) MCMASTER UNIVERSITY

(Computation) Hamilton, Ontario

TITLE: An Interactive System for Sequence Analysis

AUTHOR: Xiangdong Chen

M. Sc. (Mathematics, Hunan University, China)

Ph.D. (Mathematics, McMaster University, Canada)

SUPERVISOR: Dr. Tao Jiang

NUMBER OF PAGES: ix, 75

ll

Abstract

Sequence Analysis Tool (SAT) is an X-window (OPEN LOOK version) based

interactive system developed for sequence analysis. In this first version, it provides

a friendly graphical user interface and convenient functions for performing various

tasks required in sequence alignment. In particular, space-efficient algorithms for

pairwise alignment and 3-star alignment are implemented as functionalities, which

can be used to serve most sequence alignment tasks and therefore provide a basis for

further improvement Jf this tool.

SAT is also tar1~eted at providing a testing platform for performance analysis of

various alignment-rela.ted algorithms. A set of procedures is developed to provide an

application programming interface with which other related programs can be easily

connected to SAT.

SAT is programmed in C/Xlib/OLIT. The object-oriented style makes further

maintenance and imp:ovement easy.

Ill

Jlcknowledgements

I would like t·) express my thanks to Dr. T. Jiang for his encouragement,

support and guidance. He has contributed greatly to my interest in the subject. I

am also grateful for his careful review of this manuscript.

I am grateful ·;o Dr. P.J. Ryan for his careful reading of the final draft and

valuable comments, to Dr. S. Qiao for his advice on the Unix system and his partic­

ipation in the evaluation of the project, and to Mrs. M. Belec for her suggestions.

I am also grateful to Mr. L. Wang for his valuable discussion, cooperation and

the sharing of compu·;er resources.

A special thanks also goes to Mr. D. Trottier for his technical support and

advice on the system.

I wish to thancr the professors, staff, and my fellow graduate students in the

department, who ma::le my study at McMaster University an extremely enriching

expenence.

I am especially grateful to my wife, daughter and my parents for their constant

encouragement, understanding, love and patient cooperation.

IV

Contents

Abstract 111

Acknowledgement,) IV

1 Introduction 1

2 Sequence Analysis 4

2.1 Pairwise Ali1~nment 5

2.2 Tree Alignment 8

2.3 Star Alignm~nt 12

2.4 Implementa1 ion 20

3 Graphical User Interface 21

3.1 Interface Development 21

3.2 The X Window System . 23

v

4 Project Development 28

4.1 Interface St1ucture 28

4.2 Displaying Graphs 31

4.3 Data Definition 35

4.4 Undoing Facility 37

4.5 Communication . 38

5 Sequence Analysis Tool 42

5.1 Getting Staited 42

5.2 Screen Display. 43

5.3 Canvas and the Representation of Graphs 44

5.4 Command Panel .. 45

5.5 Manipulating Graphs 48

5.6 Assigning Sequences 49

5.7 Alignments 49

5.8 Displaying Sequences and Alignments . 50

5.9 Orienting a Tree . 51

5.10 File Format ... 52

6 Testing 54

7 Concluding Remarks 61

VI

63 Appendices

A Sample Sequenc:es File (input) 63

B Sample Output File 65

C Score Matrix File Format 72

Bibliography 73

Vll

List of Figures

2.1 Algorithm idtialization. 10

2.2 A phylogeny with nine species, which is divided into seven 3-components. 11

2.3 (a) A 3-component. (b) Two overlapping 3-components. 11

2.4 Algorithm costonly_star_align. 15

2.5 Algorithm fi nd_center_string_star_align. 18

2.6 Test results 1>f program star. 19

3.1 Programmer's view of the X Window System. 25

4.1 Primary stru.cture of SAT. . . 29

4.2 Deriving the line for an edge. 32

4.3 The neighbourhood of an edge. 34

4.4 The structme for sequences .. 35

4.5 The adjacen,:y lists structure. 36

4.6 Structure for storing editing information. 39

4.7 The organization of tree.. 41

5.1 Initial screeL of SAT. . . . 42

5.2 The main screen structure of SAT. 43

5.3 Information about a sequence. . . . 50

V11l

5.4 Information about a pairwise alignment. 51

6.1 The phylogeny. 55

6.2 ALIGNMEJ\T PARAMETERS window. 56

6.3 Alignment after initialization of internal nodes. 57

6.4 Executing lccal optimization (first round). .. 58

6.5 Executing lc cal optimization (second round) .. 59

IX

Chapter 1

Introduction

With the developme:1t of Molecular Biology, the analysis of DNA, RNA and Protein

sequences is playing an important role in the study of evolution of life. The large

amount of information and computation involved in the analysis has also brought

many challenging ccmputational problems to mathematicians and computer scien­

tists. Sequence alignment, comparison and the inference of phylogenies are no doubt

among the most important topics in sequence analysis. Since these problems are usu­

ally computationally hard (some are NP-hard in terms of computer science), optimal

solutions are not aYailable or not practical. Therefore heuristic and approximate

methods are appliec. and new proposals continue to emerge. For a new algorithm,

although it is important that the algorithm is good in the sense of complexity theory,

it will be more convincing if a systematic performance analysis is conducted on the

computed results, and the required time and resources. This demand gives a reason

for the birth of this Sequence Analysis Tool.

Sequence An;tlysis Tool (SAT) is an X Window based interactive system aimed

for providing a platform so that performance analysis of algorithms can be conducted

easily. At its early age, SAT can only address algorithms related to a limited set

of alignment problems related to the research of the algorithm group at McMaster

University. Right now it provides facilities for doing pairwise alignment and 3-star

alignment, which are essential for other tasks such as aligning multiple sequences and

1

2

inferring phylogenies.

SAT includes a graph editor, which provides basic editing functions such as

create, modify, delete and undo for graphs. When a graph represents the relationship

between a set of sequences, each node is assigned a sequence and each edge corre­

sponds to a pairwise alignment. The users can (1) view the sequences and alignments

through pop-up windows; (2) specify the score system and alignment parameters; and

(3) conduct pairwise alignment and 3-star alignment locally and globally.

The format £)! denoting sequences in a file is compatible with other popular

sequence alignment 1.oftware such as clustalv, and the output alignments are readable

by humans and the system itself.

A set of procedures has been developed as a programming interface so that

independent programs can be developed to talk with SAT and use SAT's drawing and

displaying facilities ·~mploying the multiprocessing utilities of Unix. As a practice, we

have implemented the algorithm proposed by Jiang, Lawler and Wang [25] for the

problem of tree ali~;nment with a fixed phylogeny in such a way that the program

runs by itself and cc.n also communicate with SAT. This should set a model for other

developments involving interfacing with SAT.

SAT is devel•)ped with the OPEN LOOK Intrinsics Toolkit (OLIT) and tested

in the OpenWindovrs environment on a SUN SPARCstation (LX).

This report contains seven chapters and three appendices.

Chapter 2 introduces the sequence alignment problems in detail. Dynamic

programming is the major approach for solving alignment problems. We present

and implement space-saving algorithms for pairwise alignment, tree alignment with a

given phylogeny and 3-star alignment. Test results on the 3-star alignment program

3

are also listed to see how the space-saving approach influences the computing time.

Chapter 3 briefly reviews user interface style and development issues in general.

A brief introduction to the X Window System is also included.

Chapter 4 discusses the development and implementation techniques used in

this project. Main data structures and algorithms for manipulating objects to be

drawn are presented.

Chapter 5 is •~ user guide for the main features of SAT.

Chapter 6 demonstrates an application of SAT in tree alignment.

Chapter 7 gives some suggestions for further improvement.

Appendix A i5 a sample input file for SAT.

Appendix B i:; extracted from the output of the test in Chapter 6.

Appendix C explains the score matrix file format required by SAT.

Chapter 2
~'equence Analysis

The central dogma of modern Molecular Biology is that DeoxyriboNucleic Acid (D­

NA) is the primary genetic material. DNA is a molecule composed offour nucleotides:

adenine (A), cytosine (C), guanine (G), and thymine (T), which, conceptually, are

linked linearly to form long chains called polynucleotides. These chains are called

DNA sequences. Pnteins are sequences made from 20 amino acids. The study of

these sequences results in important insights into human biochemistry, physiology

and disease processes.

An important method for studying these biosequences is the sequence compar­

ison, which is necessa.ry for the detection of common structure and function as well as

for the study of evolutionary relationship. The basic idea of most sequence compari­

son algorithms is to obtain a measure of the similarity (or distance) among a collection

of sequences. Alignments are usually constructed so as to maximize the measure of

similarity (or minimize the distance) between sequences. Because of the existence of

various clever alignment techniques and algorithms, comparative sequence analysis is

an active and fruitful area for the application of computation to biological problems.

To obtain an optimal (or quasi-optimal) alignment, the dynamic programming

technique is usually applied. Dynamic programming algorithms are theoretically

important and beautiful. However, these methods require exhaustive computation,

which may become impractical in many cases because of the limits of computing time

4

http:necessa.ry

5

and memory. How to improve various algorithms to save storage or to increase speed

is a very important research topic.

In this chaptei, we introduce the fundamentals of sequence alignment, especial­

ly pairwise alignmem, tree alignment with a given phylogeny, and 3-star alignment.

These three types of alignments are what the SAT system is able to handle at the

time being.

2.1 Pairwi~.e Alignment

In this section, we formally define the terminology and notations needed for alignment.

Pairwise alignment i~: the basis of all other sequence comparison methods.

A null is the symbol "-" or "liS".

An alphabet L is a :finite set of symbols containing null.

An element is a member of the alphabet :E.

A letter is an element other than null.

A sequence (or string) is a :finite string of letters.

A padded seqt;ence (or padded string) is a :finite string of elements.

Given an alphabet :E, a scoring function w : :E x :E --+Real can be defined to

measure differences or siinilarities between any two elements. In this project, we use

difference-measuring scoring functions. Therefore the following discussions are based

on the distance criteria.

Given two secuences A and B, an alignment of A and B is expressed as

a;:a;··· ai

bib; ... bi

6

where the two rows are padded sequences obtained with the insertion of nulls into A

and B respectively, and no column contains two nulls.

To determine the quality of an alignment, one needs some scoring and opti­

mization criterion defined for alignments. For the above alignment, it is natural to

consider the sum
l

L w(a;, b;).
i=l

However, to get biokgically reasonable alignments, additional costs must be charged

for gaps, which are maximal strings of adjacent nulls in one sequence aligned with

letters in the other. Therefore we can say the cost (or score) of a pairwise alignment

is the sum of the cost of all aligned pairs of elements and the cost of all gaps.

An optimal alignment of A and B is one that minimizes the cost over all

possible alignments. For any two sequences, there may exist many optimal alignments.

The sequence alignment problem is to find one or more optimal alignments and the

optimal cost. The standard method uses dynamic programming on variants of the

following recurrence relations.

Let A = a1a2···an and B = b1b2 · · · bm. Define a cost matrix GC such that

CC[i,j] denotes the minimum cost of aligning a1a2 • • • ai and b1 b2 • • • bj. When gap

costs are not charged, we have the recurrence relation:

j i

CC[O, 0] = O, GG[O, j] = L w(95, bk), GC[i, 0] = L w(ak, 95),
k=l k=l

and

CG[i- 1,j] +w(ai, ¢)

CG[i,j] =min GG[i -1,j -1] + w(ai,bi)

GG[i,j- 1] +w(95, bi)

7

When gap penalties are considered, let g1c be the gap cost for a gap of k bases. Then

we have the recurrence relation:

CC[O, OJ= O, CC[O,j] = gi, CC[i, 0] = gi,

and

CC[i- l,j- 1] +w(ai, bi)

CO[i,j] =min min1$1c$i{CC[i,j- k] +g~c}

min1$1c$i{CC[i- k,j] + g~c}

A direct impl ~mentation of this relation needs 0(mn) space. Dynamic pro­

gramming with this kind of recurrence relations has been studied extensively. Lots of

time or space saving strategies have been proposed and actually applied, see [14, 6].

It is importar.t to realize that an optimal alignment is optimal only for the

particular scoring sy~ tern and gap costs. To make significant biological application of

these mathematical nodels, we have to consider how to choose the scoring function w

on .E, and also the gap cost function. In practice, the primary scoring system used for

nucleic acid sequence> is the identity matrix. For protein sequences, the most common

choice for measuring similarity is the Dayhoff mutation matrices (PAM matrices), see

[28]. Among possible gap costs, the simplest and most commonly used are linear gap

costs, which charges '1. fixed amount for each space. Because they have been taken to

subsume null costs, they are usually expressed as

g(k) =a+ bk,

where a is called as ;he open gap penalty and b as the gap extension penalty, which

is actually the null e<)st. Gap penalties have a large effect on an alignment and it is

wise to sample a wic.e range of values in order to find the most interesting optimal

8

alignment. The following example is taken from the book [8] page 130, which shows

how gap penalties influence sensible alignments. Two alignments of human pancreatic

hormone and chicken pancreatic hormone are shown.

Human ALLLQPLLC:AQGAPLEPVYPGDNATP.EQMAQ.YAAD.LRRYINMLTRPRYGKRHKEDTLAF

Chicken G....P.. ~:. Q..P.. T. YPGDDA .PVEDLIRFY .. DNLQQYLNVVTRHR Y

An optimal alignment without gap penalties.

Human ALLLQPLLGAQGAPLEPVYPGDNATPEQMAQYAADLRRYINMLTRPRYGKRHKEDTLAF

Chicken GPSQPTYPGDDAPVEDLIRFYDNLQQYLNVVTRHRY

An optimal alignment with gap penalty of 1.0 + O.lx(gap length).

2.2 Tree Alignment

An evolutionary tref is a tree whose nodes are associated with sequences. The cost

of an edge in the tree is defined as the edit distance (optimal cost) between the two

sequences associated with the ends of the edge. The cost of a tree is the sum of the

costs of all edges. Given sequences X, the optimal evolutionary tree or multiple tree

alignment or, simpl~', tree alignment problem is to find a set of sequences Y and an

evolutionary tree T (sequences from X are assigned to leaves and those from Y are

assigned to internal nodes ofT) which minimizes the cost of T over possible sets Y

and trees T. This problem is proved to be MAX SNP-hard [24]. Here we are mainly

interested in the so-called tree alignment with a given phylogeny, that is, given a set

X of sequences and a phylogeny T which is defined as a tree structure such that each

9

leaf is assinged a unique sequence of X, we need to construct a sequence for each

internal node such that the total cost of the tree is minimized.

The problem of tree alignment with a given phylogeny is NP-hard even if the

phylogeny is a binary tree [24]. Some heuristic algorithms have been proposed [9, 18].

In the following, we outline an efficient approximation algorithm based on recent

results of Jiang, Lawler and Wang [25].

First, we need some notations. For a (rooted) tree T, r(T) denotes the root of

T, c(T) denotes the cost ofT, Leaf(T) denotes the set of the leaves ofT. For each

node v ofT, Tv denotes the subtree ofT rooted at v. A leaf that is a descendant of

node vis called a des~endant leaf of v. When all leaves have been assigned sequences,

we define S(v) to be the set of sequences assigned to the descendant leaves of v. An

evolutionary tree is called a lifted tree if the sequence associated with each node equals

the sequence associa·;ed with some child of the node.

Let X = {s1, .. , sk} be a set of sequences and T a phylogeny for X such that

the degree of each in~ernal node ofT is 3. To construct an evolutionary tree, we need

the following steps.

Step 1: Initialize the internal nodes.

Take an arbitrary edge uv of the tree T. Adding a new node r and replacing

the edge uv with two new edges ru and rv, we get a rooted tree T of root r.

For each v E T and each Si E S(v), let D[v, si] denote the cost of an optimal

lifted tree for Tv with v being assigned the sequence Si· D[v, si] can be computed as

follows. For each leaf v, we define D[v, si] = 0 if Si is assigned to v. Let v be an

internal node, and v1 and v 2 its children. For each Si E S(v), Si must belong to one

10

of S (v 1) and S (v 2). VIe have the recurrence relation:

min$jES(v2){D[v1 ,si] + D[vz,sj] + dist(si,s;)} if Si E 5(Vt)
D[v,si] =

{ min$iES(vl){D[vt,si] + D[vz,si] + dist(si,sj)} if Si E 5(vz)

The full algor.thm is described in Figure 2.1. It outputs an evolutionary tree

with cost at most 2C:Trnin) and requires O(k3 + k2n 2) time in the worst case, where

Trnin denotes an optimal evolutionary tree and n denotes the maximum length of the

gtven sequences.

Input: X= {s 1 , .•• , s~e} (sequences set), T (a phylogeny for X)
Output: Lifted tree T.
1. begin
2. for ea.ch pair (i,j), 1:::; i < j:::; k, do
3. compute dist(si, Sj)·
4. Cons1;ruct '1'.
5. for each level of '1', with the bottom level first, do
6. for each node v at the level do
7. for i = 1 to k
8. if Si E S(v) then compute D[v,si]·
9. Seled an sEX such that D[r(T), s] is minimized.
10. Compute the lifted tree T by back-tracing.
11. end.

Figure 2.1: Algorithm initialization.

Step 2: Local Optimization.

Starting with an evolutionary tree, we can use an iterative improvement method

to update and imprcve the sequences assigned to the internal nodes to get a better ap­

proximation. Recall that the degree of each internal node of the phylogeny under our

consideration is three. Based on each internal node, we can construct a 3-component

which is a subtree consisting of the internal node and three edges connecting to it.

11

Then on each 3-component the local optimization is performed by the star-alignment

technique introduced in next section.

To illustrate these two procedures more clearly, consider the phylogeny in Fig­

ure 2.2, which contains nine given species on its nine leaves. (The same example is

T. utilis ... S. carlbergensis
I

I
I

\

\ Xenopus

P. fluorescenrs--- ... < -­ ~- >,., <,- t---""", --- ­ -- ­ Human
I

I

,. /"
I

I

'' \ "'
\ \I
\1\

''
\

\

,
II

" ' I
')\/

"'
I I

' , ,'"":
'\ I \
\1 \

.... '

I ''', ,, .. ~,,' \1 \ \I
1/ ' I "' 1/
II ..., - _,...."'* I

I
I

I

' '
/

/ Chicken
E. coli

B. itearothermophilus Chlorela

Figure 2.2: A phylogeny with nine species, which is divided into seven 3-components.

. .· ..~1.

. .. ss·

(a) (b)

Figure 2.3: (a.) A 3-component. (b) Two overlapping 3-components.

also used in [18]). To construct an evolutionary tree, we assign one of the nine given

sequences to each int,!rnal node by applying algorithm introduced in Step 1. Then we

12

divide the phylogeny: nto seven 3-components as shown in Figure 2.2. Local optimiza­

tion is done for every 3-component as follows. For the 3-component in Figure 2.3(a),

from the labels (sequences) s1 , s 2 , and s3 of the three terminals, we can compute

the label c1 (sequenc() of the center using dynamic programming (introduced in next

section) to minimize the cost of the component [17, 9]. The revised c1 can then be

used to update the C(nter label c2 of an overlapping 3-component (see Figure 2.3(b)).

The algorithm converges since each local optimization reduces the cost of the tree by

at least one. Thus, :£the process is repeated long enough, every 3-component will

become optimal. However, this does not necessarily result in an optimal evolutionary

tree. Nonetheless, it .;eems the algorithm can produce a reasonably good evolutionary

tree after 5 iteration:; [18].

2.3 Star AHgnment

A star-alignment is :t special case of tree alignment in which the tree has only one

internal node. Here. we are especially interested in star-alignment of three strings,

which is a process stated as: Given three strings A, B and C, construct a new string

D and optimally ali7n D with each of A, B and C. The sum of costs of the three

pairwise alignments is defined as the cost of the star-alignment. This process will

be denoted as star-dignment(A, B, C). An optimal star-alignment(A, B, C) is one

attaining the minimum cost among all possible star-alignment(A, B, C). The string

D newly constructed in an optimal star-alignment(A, B, C) is called a center-string

of (A, B, C).

13

In the following, we present an algorithm using the dynamic programming

method to find a center-string of (A, B, C) with given strings A = a1a2 ···aM,

Let Ai denote the i-symbol prefix a1a2 • • • ai of A, Bi the j-symbol prefix

Cost(i,j,k) =the cost of an optimal star-alignment(Ai,Bj,Ck)·

Then we can obtain the following recurrence relation:

where 51, 52 ,53 E {0, 1}, la =a, Oa =115, and 5 =(51! 52 , 53). There are seven different

values of 5 with 5 =f 0. The element x where the minimum is attained is the last

element (maybe 115) of the constructed center-string of (Ai, Bj, Ck)·

In the implementation of this recurrence relation, we first preprocess the part

Define a relation lookup : I: x I: x I: ---+ I: x Real, such that, for any e1, e2 , e3 E I:,

lookup(e1 , e2 , e3) has two fields, one is denoted as cost and represents the minimum

sum, and the other is denoted as letter and stores the letter x such that the minimum

sum is attained at x.

To obtain a center-string of (A, B, C), one can use the straightforward back-

tracing technique. That is, set up a 3-dimensional matrix TraceMat, compute the

recurrence relation of Cost(i,j, k) and store, in the (i, j, k) cell of TraceMat, the ele­

lead to the minimum value Cost(i,j,k). With the information stored in the matrix

14

TreeMat, we can then simply start from the (M, N, K) cell of TraceMat. By following

the pointers, a linked list is established and a center sequence is obtained in the re­

verse order. Obviously, an implementation based on this technique needs O(NM K)

space. In practice, this space requirement often limits the method's applicability.

If we are only interested in the cost of an optimal star-alignment(A, B, C),

the space requirement can be reduced dramatically. More specifically, for each fixed

1 ~ i ~ M, we use level(i) to represent the 2-dimensional array consisting of

{Cost(i,j,k)i1 ~ j ~ N, 1 ~ k ~ K}. The recurrence relation shows that

Cost(i,j,k) depends only on seven values in level(i- 1) and level(i). Therefore,

two matrices of size N * K are adequate to compute successive levels. In fact, with

a little care, one matrix of size N * K and one vector of size K + 1 suffice. Suppose

Cost(i, J, k) needs to be computed and values preceding it have already been obtained.

Then we can define a matrix C C N *K and a vector C B of size K + 1 represented as

follows:

Cost(i,j,k) if j < J and k < k
CC(j,k) =

{ Cost(i -1,j,k) otherwise

Cost(i -1,j,k -1) if k < k
CB(k) =

{ Cost(i- 1, j - 1, k) otherwise

CB(K +1) = Cost(i -1,] -1,k -1).

With this loop-invariant condition, we can present an algorithm as shown in Fig­

ure 2.4 for calculating the cost of an optimal star-alignment(A, B, C) using 0(N *K)

space. To make the algorithm shorter and easy to read, we include the testing of the

boundary situation in the main body. But in our implementation, we deal with the

boundary cases separately to eliminate the "if' instructions.

15

Algorithm costonly_star _align(A, B, C, CC)
Input: A, B and C (strings of size M, Nand K).

{ We assume the lookup relation has been computed}
Output: CC (a matrix of size N * K) and cost
where CC(j,k) represents the cost of an optimal3-star-align(AM,Bi,Cj)·
var array C C [0 · · · N][0 · · · K], C B [0 · .. (K +1)].
begin

CC(O,O) = 0
for i = 0 to M do

for j = 0 to N do
for k = 0 to K do

begin
if (i- 1,j- 1, k- 1) is valid then

value(O) = CB(K + 1) + lookup(ai, bi, c~e).cost;
if (i- 1,j- 1, k) is valid then

value(1) = C B(k) +lookup(ai, bj, ~).cost;
if (i -1,j,k -1) is valid then

value(2) = CB(k -1) + lookup(ai,~,c~e).cost;
if(i-1,j,k) is valid then

value(3) = CC(j, k) + w(ai, ~);
if (i,j- 1, k- 1) is valid then

value(4) = CC(j -1,k -1) + lookup(~,bj,cJe).cost;
if (i, j - 1, k) is valid then

value(5) = CC(j- 1,k) + w(bj,~);
if (i,j, k- 1) is valid then

value(6) = CC(j, k -1) + w(c~e,~);
{update CB and CC as follows:}
if(i > 0) and (j > 0) then

CB(K + 1) = CB(k);
if (i > 0) then

CB(k) = CC(j,k);
CC(j, k) =min of {value(i)jO :=; i :=; 6};

end
cost= CC(N, K);
Output cost and CC;

end

Figure 2.4: Algorithm costonly_star_align.

16

To actually produce a center-string of a star-alignment, we generalize the re­

cursive divide-and-conquer technique of Hirschberg [11] and Myers and Miller [14] so

that we obtain an algorithm with O(N * K + logM) space requirement. The central

idea is to find the "midpoints" of an optimal star alignment of three strings by using

a "forward" and "backward" application of the quadratic space Costonly_star_align

algorithm. Then a center-string can be obtained by recursively determining optimal

star alignments on both side of the midpoints.

For a sequence X, let rev(X) denote the reverse of X and let Xf denote the

suffix xi+1Xi+2 · · · XM of X. Given three sequences A, B and C of sizes M, N and

K respectively, applying the algorithm Costonly_star_align to rev(A), rev(B) and

rev(C), we obtain a matrix RR such that the entry RR(N- j, K- k) represents the

cost of an optimal star-alignment (A, BJ, CZ').

Now we are in the position of explaining our algorithm of delivering a center­

string of a 3-star alignment. Again, suppose three strings A, Band C are of non-zero

length M, Nand K respectively. Let i* = LM/2J, then level(i*) bisects the cube

associated with the recursive Cost function (defined on Page 13). Applying the

Costonly_star _align algorithm to the strings Ai·, B and C, we get a matrix mat f

satisfying:

matf(j, k) = the cost of an optimal star-alignment(Ai•, Bj, C~e).

Then applying the Costonly_star_align algorithm to the strings rev(Af.), rev(B) and

rev(C), we get a matrix matb satisfying:

matb(j,k) = the cost of an optimal star-alignment(Af.,BJ,cf).

For any star-alignment(A, B, C), there exist j E [0, N] and k E [0, K] such

17

that the star-alignment is the concatenation of a star-alignment(Ai·, Bj, C~c) and a

star-alignment(A[., BJ, Cl). Thus the cost of an optimal star-alignment(A, B, C) is

min{matf(j, k) + matb(N- j, K- k)ij E [0, N] and k E [0, K]}.

If the minimum is attained at j* and k*, then (i*, j*, k*) is an optimal midpoint

for the problem. Now, the crucial point for using the divide-and-conquer method

is that the concatenation of an optimal star-alignment(~·, Bj•, C1c•) and an optimal

star-alignment(A[., BJ., G'{.) is an optimal star-alignment(A, B, C). Therefore we can

employ the midpoint (i*, j*, k*) to split the star-alignment problem into two sub­

problems of star-aligning shorter strings. The sub-problems are solved by calling the

above processing recursively.

The recursion's boundary cases, i.e. the size of one of the three strings is 1 or

0, are handled directly by using Backtracing technique since only quadratic space is

required now.

The full algorithm for finding a center-string is outlined in Figure 2.5. It

uses O(NK + logM) space: O(NK) for the dynamical allocated space for matf

and matb or for the boundary cases, and O(logM) for the implicit activation s­

tack needed for no more than llog.i\fj + 1 levels of recursion. Now consider the

time requirement. Obviously, the procedure costonly_star_align for strings of sizes

M, Nand K takes O(MNK) time; we assume it is c1MNK. Then in the algo­

rithm find_center_string_star_align, boundary cases take O(M + N K); line (a) takes

c1(Mj2)NK, line (/3) also takes c1(Mj2)NK and line (I) takes c2 NK time. So the

main body (lines a, f3 and 1) of the top-level call takes c1 M N K + c2N K time. The

time spent in the main bodies of the two recursive calls at lines (5) and (c:) is

18

Algorithm find_center _string_star _align(A, B, C)
Input: A, Band C (strings of size M, Nand K).

{ We assume the lookup relation has been computed}
Output: finaLseq (a center-string of star alignment) and

cost (the optimal cost of star alignment)

begin
cost = findcenter(A, B, C)
print(finaLseq) {a center string for the star-alignment}

end

recursive function findcenter(A, B, C)
var array matf[O · · · N][O · · · K], matb[O · · · N][O · · · K];

{ dynamically allocated in the implementation}
begin

if (M :S 1) or (N :S 1) or (K:::; 1) then
{Take 11 as the minimum of {M, N, K}, 12 and 13 as others,
allocate at most two matrices of size 12 x 13 to store information
for backtracing }

apply backtracing technique directly to find a partial center-string,
which will be appended to finaLseq.

else
begin

i* = lM/2J;
allocate space for mat f and matb;

(a:) C ostonly_star _align(Ai·, B, C, mat f);
(;3) C ostonly_star _align(rev(A[.), rev(B), rev(C), matb);
(J) Find j* and k* minimizing (matf(j, k) + matb(N- j, K- k));

Free the space of mat f and matb;
(5) costl = findcenter(Ai•,Bj•,C~e·);
(E) cost2 = findcenter(Af.' BJ.' c'[.);

output costl + cost2.
end

end

Figure 2.5: Algorithm find_center_string3tar_align.

19

c1 (M/2)[jk + (N- j)(K- k)] + c2 [jk + (N- j)(K- k)], which is no more than

c1(M/2)NK + c2 NK. It follows by induction that the total time taken in the worst

case, including recursive calls and boundary cases, is no more than

c1 MNK(1 +-1 +-1 + · · ·) + c2(logM)NK + O(M + NK),
2 4

which equals 2c1 MNK +c2 (logM)NK+O(M+NK). Therefore the time required for

algorithm find_center_string_star_align is approximately twice that for the cost-only

version costonly_star _align .

We have developed a C-implementation of both algorithms shown in Figure 2.4

and 2.5. To compare the actual time spent on costonly_star_align part and the

time spent on find_center_string_star_align part, we have conducted tests on random

sequences with certain sizes. The results are listed in Figure 2.6.

stzes cost-only find-center-string ratio (f/c)
(146, 17, 42) 3 10 2.3333
(100, 25, 50) 4 12 2.0000
(100, 50, 50) 9 15 1.6667

(100, 100, 100) 41 58 1.41463
(200, 200, 200) 330 456 1.38182
(400, 400, 400) 1457 1953 1.34043
(800, 800, 400) 11616 13798 1.18784

(Unit: second)

Figure 2.6: Test results of program star.

In the above discussion we did not consider gap costs. When gap costs are

involved, the situation is much complicated. If the recurrence relation Cost(i, j, k) is

to be re-defined to include the consideration of gap costs, we will have to not only

20

consider the values of Cost(i- 51,j- 52 , k- 53), but also analyze the ending pattern

of the partial alignment of (Ai-51 , Bj-52 , Ck-53). Define the history of a partial

alignment to be the amount of information necessary to determine the cost of any

possible extensions. To find an optimal alignment it is necessary in general to know,

at each node, the minimum cost of the partial alignment in each historical situation.

Alstchul [1] presents a general analysis of gap costs for tree and star-alignments and

infers that the number of relevant histories for star-alignment ofn input strings using

gap costs is

In our case, n = 3, so there are 44 histories to be considered for each (i,j,k).

2.4 Implementation

Since pairwise alignments have been well studied, many excellent implementations

and strategies have been developed to strive for higher speed and less space. Realizing

that space may be the limiting factor for our applications, we adopt the approach

introduced by Myers and Miller [14]. The method can construct an optimal pairwise

alignment in linear space.

There are two steps for performing a tree alignment with a given phylogeny. As

the first step, initialization of internal nodes is conducted by following the algorithm

shown in Figure 3.3. Then local optimalization is performed on each internal node.

More discussion about implementation of the initialization algorithm can be found in

section 4.5.

Chapter 3

Graphical User Interface

In computer systems, the user interface is considered as the mechanism through which

a dialogue between the computer and the user is established. It plays a vital part in

the computer system's efficiency. The speciality called Human-Computer Interaction

(HCI) has emerged as the study of people, computer technology and the ways these

influence each other. Both the developers of computer systems and users are starting

to accept that just being able to do a task on a computer is not the only important

factor. The question 'Can this goal be achieved with a computer?' is starting to

be replaced by the question 'How easily can the user achieve the goal using the

computer?'. The interface is in many ways the "packaging" for a computer system.

If it is easy to learn, simple to use, straightforward, and forgiving, the user will be

inclined to make good use of what is inside.

In this chapter, we will briefly review interface style and development issues

in general and then review the architecture of the X Window System and its funda­

mentals which are related to this project.

3.1 Interface Development

The term "user interface" can be defined as the software component of an application

that translates user's actions into requests for functions, and that provides to the user

21

22

feedback about the consequences of his/her action.

A good user interface should provide an end user with a facile, natural environ­

ment for conducting various tasks fast, efficiently, accurately, and inexpensively. The

nature of the software component of the user interface has been driven and limited

by the hardware component. As hardware has become more sophisticated, options

for interaction style have grown.

The following are some of common interface styles:

• 	 command and query interface: Communication is purely textual and 1s

driven via commands and responses to system-generated queries.

• 	 menu interface: The set of options available to the user is presented on the

screen. An option is selected by either using the mouse or typing some key.

Since the options are visible, they are less demanding on the user, relying on

recognition rather than recall.

• 	 form-fills and spreadsheets: The user is presented with a display comprising

a grid of cells, each of which can contain a value. This type of interface is used

primarily for data entry and data analysis applications.

• 	 WIMP interface: This type of user interface is characterized by windows,

icons, menus and pointing devices. It is the default interface style for the

majority of interactive systems in use today. The important features are (1)

displaying different types of information simultaneously; (2) enabling the user

to switch context without losing visual connection with other work; (3) en­

abling the user to perform various tasks in a facile manner; (4) increasing the

interaction efficiency.

23

Each of them is encountered across every application area. The trend is to­

ward multitasking, window-oriented, and point and pick interfaces. Ideally, users can

customize the interface to suit their working style, rather than adapting their own

working style to accommodate the interface's way of doing things.

The most important and natural method for a user interface development is the

iterative development methodology, which includes building one or more prototypes to

get requirement specification and comments from clients. To make the user interface

easier to program, many different kinds of tools have been created. These include

window systems, toolkits, interface builders, and user interface management systems.

The survey conducted by Myers and Rosson [15] seems very interesting. It has

shown that in today's applications, an average of 48% of the code is devoted to the

user interface portion. The average time spent on the user interface portion is 45%

during the design phase, 50% during the implementation phase, and 37% during the

maintenance phase.

3.2 The X Window System

The X Window System is an industry-standard software system that allows program­

mers to develop portable graphical user interfaces.

The X Window System's architecture is based on the client-server model. A

single process, known as the server, is responsible for all input and output devices.

An application that uses the facilities provided by the X server is know as a client.

The syntax and semantics of the conversation between servers and clients are defined

by X Protocol. Clients use the protocol to send requests to the server to create and

24

manipulate windows, to generate text and graphics, to receive input from the user, and

to communicate with other clients. The server uses the protocol to send information

back to the client in response to various requests and to deliver keyboard and other

· user input on to the appropriate clients. The X Window System allows clients to be

run on any machine in a network, and be displayed on any other machine(s) in that

network.

The X protocol has been implemented with a library so that application pro­

grammers do not have to think in low level terms. This library provides a procedural

interface that conceals many of the details of the protocol. Various utility functions

are also provided that are not protocol-related but important in building applications.

The exact interface for the library may differ for each programming language. The C

libraries are the most widely used. They include a low-level procedural interface to

the X protocol called Xlib, which defines an extensive set of functions that provide

complete access and control over the display, windows, and input devices.

Although programmers can use Xlib to build applications, this relative low­

level library can be tedious and difficult to use correctly. Many programmer prefer

to use the higher-level X Toolkit to mask some of the complexity of the X protocol.

The X Toolkit consists of two parts: a layer known as the Xt Intrinsics, and a set of

user interface components known as widgets. A widget set implements user interface

components, while the Xt Intrinsics provides a framework that allows the programmer

to combine these components to produce a complete user interface.

There are several widget sets provided by system vendors to implement their

particular user-interface styles. This project uses the widgets from the OPEN LOOK

Intrinsics Toolkit (OLIT). The OLIT, based on the Xt Intrinsics from MIT, is one

25

of the three GUI toolkits from OpenWindows. The OpenWindows environment sup­

ports the OPEN LOOK Graphical User Interface, which specifies windows and menus

with common graphic symbols so that users are presented with a consistent screen

layout that can be used across various platforms and operating systems.

Both the Xt Intrinsics and the OLIT widget set are written in C and built

on the top of Xlib. Applications often use Xlib, the Xt Intrinsics, and the OLIT

widget set as a complete system for constructing user interfaces. Figure 3.1 shows

the architecture of an application based on a widget set and the Xt Intrinsics.

Application

Widget Set
Xt Intrinsics

Xlib C Language Interface

Network Interface

X Server

Figure 3.1: Programmer's view of the X Window System.

An important X concept which needs to be introduced here is the event. An

event is a notification, sent by the X server to a client, that some condition has

changed. The server generates events as a result of some user input, or as a side

effect of a request to the X server. The server sends each event to all interested

clients, who determine what kind of event has occurred by looking at the type of the

event. To receive events, applications must specifically request the X server to send

26

the types of events in which they are interested. Most X applications are completely

event-driven and are designed to wait until an event occurs, respond to the event,

and then wait for the next event. The event-driven approach provides a natural

model for interactive applications. The user does not need to navigate a deep menu

structure and can perform any action at any time. The user, not the application, is

in control. The application simply performs some setup and goes into a loop from

which application functions may be invoked in any order as events arrive.

Managing resources is an important part of programming with X. Resources

are named data units that specify widget attribute values such as colors, fonts, images,

text, positions and sizes of windows, or any customizable parameter that affects the

behavior of the application. Resources can be set in four ways:

• In the application code when/after the widget is created.

• Through the resource database.

• In a command line option.

• Dynamically while the application is running.

If a resource is not set in any of these ways, OLIT will set the resource to a default

value. Setting resources in source code is considered as hard. Users cannot customize

hard coded resources unless the source code is modified and recompiled. Therefore,

the application programmer should only set the resource values in program for the re­

sources that are not allowed to be changed by a user. To make programs customizable,

a good approach is to provide an application default resource file for every program

so that uses can customize an application by simply changing the appropriate entries

in the resource file.

27

When an OLIT program is initialized, the connection to the X server is set and

the resource database is created and embedded with the program. The resource

specifications in the user's resource files are loaded into the resource database. The

four resource files are the application defaults file whose path can be identified by the

environment variable XFILESEARCHPATH, the per-user application defaults file

whose path is identified by the environment variable XUSERFILESEARCHPATH,

the user's defaults which is the file ;Xdefaults, and the user's per-host defaults whose

path can be identified by the environment variable XENVIRONMENT.

Chapter 4

Project Development

This project is an application based on OPEN LOOK Intrinsics Toolkit, which follows

an object-oriented and event-driven model. In general, such an application consists

of three parts:

1. 	creating and manipulating OLIT widgets to build the desired user interface;

2. 	 using C/C++/Xlib to develop the application code, i.e., the code that performs

the actual work on the application's data;

3. 	 attaching the application code to the user interface via callback procedures and

event handlers that are executed when the user performs some action on a

widget. Attaching specific procedures to specific widgets allows programmers

to produce modular source code.

4.1 Interface Structure

In this section, we discuss the widget hierarchy used in SAT. As in Figure 2.2, we can

divide the initial screen of SAT into four areas: Control Panel, Canvas, Message

Panel, and Information Panel. The hierarchy structure is depicted in Figure 4.1

and explained below. The names of OLIT widget classes are underlined.

The toplevel is a shell widget, created by the call to initialize the Toolkit.

A shell widget must have exactly one child widget. The shell widget serves as a

28

29

Control Panel

Figure 4.1: Primary structure of SAT.

wrapper around its child, providing an interface between the child widget and the

window manager. The RubberTile widget, as the only child of toplevel, manages

two children widgets in a row. Relative weights can be assigned to each child so

that it expands or contracts a certain percentage of size changes of the RubberTile.

The FooterPanel widget attaches a footer at the bottom of a window so that various

messages can be displayed in the footer area. The ControlArea widget manages two

important parts: Control Panel and Canvas.

The Control Panel contains six MenuButton widgets: File, Check, Undo,

Parameters, Mode and Calculation, managed by a ControlArea widget. Each of

them has its own pop-up menu, containing further OblongButton widgets through

which users call application functions. SAT uses callbacks to link these widgets with

application functions.

The Canvas is implemented as a Draw Area widget. This is the window where

a graph is created, manipulated and displayed. In this area, the events ButtonPress,

30

Bu.ttonMotion, ButtonRelease are all the events in which this application is interest­

ed. Event Handlers are invoked by the Xt Intrinsics when a specific type of event

occurs. The event type and associated application function are registered using the

XtAddEventHandler function.

The Message Panel contains two StaticText widgets to display messages.

The Information Panel is made of a ControlArea widget managing two

Caption widgets, a ScrollingList widget and a OblongButton widget in a column.

The Caption widgets are used to create labels for their child widgets. In our case,

one StaticText widget shows the number of sequences already loaded and the other

shows the total score after an alignment is conducted. The scrollingList widget is

able to display a list of items in a scrollable pane and provides a sophisticated set of

widget-defined functions for manipulating the items in the list.

Moreover, there are other interface areas brought up by PopupWindowShell

and NoticeShell widgets. They represent a way of using widgets. Popup widgets are

subclassed off the TransientShell class. Popups are not visible until a certain user

command is given, or a situation arises in which the program requires user input.

In SAT, Popup widgets are used for a variety of purposes including (1) prompt­

ing for input/output file names; (2) setting parameters for calculation; (3) displaying

sequences and alignments; and (4) getting confirmation from users if some "dangerous

action" happens such as pressing the Clear button.

31

4.2 Displaying Graphs

The SAT system contains a graph editor. The user is able to edit a (undirected)

graph in the drawing area in which vertices are represented by circles and edges are

represented by lines.

In X Window programming, drawing things like points and lines can be easily

done by first creating a graphics context (GC) and then calling Xlib graphics functions.

The GC is an X Window System resource which contains 23 distinct attributes to

specify things like color and line width. When one object could be overdisplayed by

another, the GC's GCFunction attribute should be considered since it specifies how

each pixel of a new image is combined with the current contents of a destination. This

attribute is commonly set as the X 0 R mode so that drawing a figure twice restores

the screen to its original state. The SAT system uses this property to erase an image

and perform rubber banding operations.

When drawing an object, the coordinates have to be specified in pixel units.

Coordinates are always relative to the upper left corner of a drawable window. The

x coordinate increases toward the right and they coordinate increases downwards.

In the following, we explain how vertices and edges are displayed in SAT.

A vertex is represented on the screen as a circle (also called as a node) with

a radius of r (= 5 pixels). When a vertex is created by clicking the mouse, the circle

is displayed such that its center is at the position of the hotspot of the cursor. The

center's coordinates are also called the coordinates of the vertex and stored as a part

of the internal representation of the vertex.

32

An edge is represented on the screen by a line connecting two nodes. Inter­

nally, it is represented by a relation between two vertices. Notice that we cannot

simply draw a line connecting the centers of two nodes since the overlapping parts

between the line and nodes will not be displayed properly. The natural choice is to

choose a boundary point from each node. However, to ease the calculation involved,

it is much easier to simply pick up a boundary point from the surrounding rectangle

of each node. Therefore we choose the two ending positions of the line as follows.

Assume two vertices are of coordinates (x1 ,y1) and (x 2 ,y2) and displayed as nodes of

radius r. Define the slope

Define CT-z = 1 if Xt :S x2 and -1 otherwise, and uy = 1 if y1 :S y2 and -1 otherwise.

(b) k > 1 or k < -1

Figure 4.2: Deriving the line for an edge.

33

If -1 ::; k ::; 1, as shown in Figure 4.2(a), we calculate

a= x1 + a,r; b = y1 + a,rk; c = x2 - a,r; d = Y2- a,rk

If k > 1 or k < -1, as shown in Figure 4.2(b), we calculate

Then the line connecting points (a, b) and (c, d) is displayed as the edge connecting

vertices (xllYt) and (x2,y2).

Once nodes and lines are drawn, information about them has to be saved by the

application program since the workstation has no memory of the fact that something

is drawn.

Manipulation of vertices and edges is conducted by first selecting corresponding

nodes and lines. Then procedures are invoked by event handlers to perform some

actions. From the user's point of view, a selection can be done by moving the cursor

onto nodes and lines displayed on the screen and then pressing/releasing a mouse

button. However, from the programmer's point of view, the program has to do

(maybe a lot of) background computation to compare the user-selected position of

the cursor with the coordinates of each vertex and see if the difference is small enough

(predefined). If we imagine vertices and edges as objects in an object-oriented model,

then every object will (the frequency depends on the types of events registered) receive

messages concerning whether the hotspot of the cursor is within its neighbourhood

and the object with a confirmative answer is selected to accept some actions. How is

the neighbourhood defined for a vertex and for a edge? Assume a vertex has (a, b) as

its coordinates, then its neighbourhood is defined as {(x, y)llx- al < r and IY- bl <

r} (r = 5 pixels in SAT). The neighbourhood of an edge, requiring much more

34

computation, is defined as a 2 * r-width band surrounding the line segment. Assume

the two ends of the line are (a, b) and (c, d) as shown in Figure 4.2, then the line's

algebraic equation is

y-b

x-a

b-d
' a-c

which can be re-written as

(b- d)x +(a- c)y +cb- ad= 0.

The distance between a point (x0 , y0) and the line is calculated by

\(b-d)xo+(a-c)y0 +cb-ad\
dist (x0 ,y0 ,a, b,c, d) = V .

(b- d) 2 +(a- c)2

Now we can define the neighborhood of the edge (see Figure 4.3) to be

{(x,y)\dist(x,y,a,b,c,d) < r, min(a,c) < x < max(a,c),min(b,d) < y < max(b,d)}.

(c,d) ~

The band of width 2 * r

Figure 4.3: The neighbourhood of an edge.

35

4.3 Data Definition

In this section, we discuss the primary data structures used in SAT.

1. Sequence.

The common set of information of sequences includes the name, a short de­

scription, the sequence itself, format (how the sequence is kept in a file), and the

category of the sequence. Therefore we use the data structure shown in Figure 4.4

for the type of sequences. Loaded sequences will be stored in SEQArray, which is

typedef struct {
string name;
string description;
char *content·

'
/* sequences * /

short format; /* FASTA or NBRF/PIR* /
Boolean is dna; /* DNA/RNA or Protein? * /

} SEQtype;

Figure 4.4: The structure for sequences.

declared as an array of SEQtype.

2. Graph.

The graph under the consideration is undirected and weighted. Information

of a vertex includes its coordinates at the drawing area and the sequence associated

with it. Knowledge of an edge covers the information of the associated alignment of

two sequences assigned to the ends.

We use the adjacency lists structure to represent a graph. That is, each vertex

is associated with a linked list consisting of all the edges adjacent to this vertex, and

all vertices are stored in an array. The data types, shown in Figure 4.5, are used

36

to describe the adjacency lists structure. The meaning of each member is easy to

understand with the given comments.

typedef struct _EDGE {
int
float
char
char
PARAtype
struct _EDGE

} EDGEtype

typedef struct _VERTEX {
int
int
SEQtype
EDGEtype

} VERTEXtype;

index;
weight;
*seq1;
*seq2;
*para;
*next;

_x·
'

-Yi
*con;
*head;

I* index of the vertex*I
I* cost of the alignment *I
I* padded sequence.J. after alignment* I
I* padded sequence_2 after alignment* I
I* parameters for doing alignment *I
I* next edge*I

/* x-coordinate *I
I* y-coordinate *I
I* sequence assinged to the vertex *I
/* edge list associated to the vertex* I

Figure 4.5: The adjacency lists structure.

Considering the size limitation of the display screen, it is unlikely the user will

draw a graph with over 100 vertices. So, in this package, the number of vertices of

a graph is restricted to 100. Of course, this number is easily adjusted by redefining

a constant and recompiling the program. During processing, users can handle only

one graph at a time. The graph is represented by NODEArray, which is initialized

statically by declaring an array, with size 100, of VERTEXtype. The offset of each

element in the array coincides with the vertex label. This permits direct access to

vertex data and thus reduces the searching operations which would otherwise be used

so frequently in many functions. The variable node_num is used to keep the number

of vertices of the graph. Existing vertices are always kept in the first node_num cells

of NODEArray.

37

The insertion/deletion operations are illustrated as follows:

• 	 add a vertex: coordinates and/or a sequence of the vertex are inserted into the

node_num-th cell of NODEArray and node_num increments by 1.

• 	 add an edge: Assume it connects ith and jth vertex. Then processing will go

through allocating memory space for one EDGEtype variable, filling it with

the label of jth vertex and other edge-related information, and inserting it to

the beginning of the linked list (edges) associated with ith vertex. The similar

processing is repeated with the exchange of i and j in the above sentence.

• 	 delete an edge: The linked list associated with each of the two ends is searched.

The involved items, one from each list, are removed and their memory location

become free.

• 	 delete a vertex: All edges connecting to the vertex are deleted. The last vertex is

moved to the cell of the deleted vertex. The linked lists of the vertices adjoining

to the former last vertex are updated. node_num decrements by 1.

Information of an edge is stored in two lists so that it is very convenient to

design and implement other edge-related procedures.

4.4 Undoing Facility

Undoing and redoing are basic facilities that should be provided by any good in­

teractive system. These facilities allow users to cancel a command: to recover from

operating mistakes that may be damaging and also allow users to do input testing,

knowing that they can back up easily if the result is not what they expect.

38

To perform an Undo operation, something has to be saved. For example, we

cannot undo a delete operation unless we have stored the deleted material. Therefore

a natural question is how to save information efficiently.

In this project, we developed an one-level undo facility for the graph editor.

Any editing operation can be undone up to one level. Executing undo twice succes­

sively will let system go back to the state as if the undo operations were not executed.

We are interested in six types of editing operations. They are moving a node,

changing the content of a node, inserting a node, deleting a node, inserting an edge

and deleting an edge. According to the actual amount of information to be saved, we

define the following data type, as shown in Figure 4.6, to guide information saving.

The union construct is used to allow storage sharing and a member called flag is

used for the interpretation of the stored information.

A memory space undo_buffer is used to save editing information. When an

editing operation is performed, we first check which part of the graph will be changed

and old data is saved in undo_buffer, and then the graph is updated as required.

For the undo command, the most expensive editing is the deletion of a node,

which involves deleting the node, the edges connecting to it, and rearranging the

vertex array of the graph. To save all this information, the space of undo_buffer is

not enough. So we dynamically allocate memory for this purpose.

4.5 Communication

One of goals of this software is to provide a tool for testing and analyzing algorithms

related to sequence alignment. One way of doing this is to implement new algorithms

39

typedef struct {
UNDOTYPE
union {

struct {
int
int

} move...node;
struct {

int
SEQtype

} change_con;
struct {

int
int
float
char
PARAtype

} re_edge;
struct {

int
NODEtype

} re...node;
} set;

} undo_type;

flag;

index;
x, y;

index;
*content;

index;
index2;
weigh;
*seql, *seq2;
*para;

index;
node;

j* one of six types *I

j* node is moved *I

I* node's content is changed *I

I* changing edge* I

j* changing node *I

Figure 4.6: Structure for storing editing information.

as modules and add them to the code of SAT. The obvious disadvantage of this

method is that the internal structure of SAT has to be understood and the source code

is subject to change. Alternatively, researchers can implement programs separately,

and then employ SAT as a graphical user interface. That is, users can use SAT to draw

a graph, load sequences, connect to a computing program and send all the data to the

program. After computation is done, all results are sent back and displayed in SAT.

In this way, the development of a new program does not involve the internal structure

of SAT and will not affect SAT in any way. For this to work, we need a communication

40

protocol with which SAT and other programs can talk to and understand each other.

First, we design an abstract data type HEADERtype, similar to the type

defined in Figure 4.5, for representing a graph structure and the sequences/ alignments

information associated with it. Then we develop a set of functions which support

loading variables of type HEADERtype from formatted files and storing data of

the type into files with a given format. The type HEADERtype is based on the

concept of adjacency lists, a very common data structure for graphs. This should be

useful in implementation of algorithms dealing with evolutionary tree construction

problems. The most important point is that a program supporting data of type

HEADERtype can communicate with SAT.

As an exercise, we have developed a program, called tree, based on the tree

initialization algorithm as shown in Figure 2.1. The organization of the program tree

is shown in Figure 4.7.

Steps 1, 2 and 4 can be easily achieved by calling functions defined in our

library, which are also used in SAT for input/output and retrieving /storing data.

Therefore the same set of functions for handling input/output provides a base for

the communication between SAT and tree. The third step of tree is allowed to

be extended and modifyed to do more task without worrying about SAT. Now the

relation between these two can be described as:

• 	 Use SAT to create a graph with certain information;

• 	 Use the fork, exec and pipe Unix system calls to create a new process, to run

tree on the new process and to open a communication channel so that data of

SAT ":flow" over to tree. The functions designed for getting input/output file

41

j1. 	Get input and output file pointerj

l
12. Load variables of type HEADtype from a file I

l
3. Convert to proper data structures

and

calculate

l

4. Save data of type HEADtype to a file

Figure 4.7: The organization of tree.

pointers include manipulation of pipes.

• 	 tree gets data from the pipe, performs the calculation and puts resulting data

back to the pipe.

• 	 SAT gets data from the pipe and displays the data.

The successful separation and communication between SAT and tree sets a

model as how to use SAT as a friendly user interface to support related programs.

This gives our system some flavour of client-server computing.

Chapter 5

Sequence Analysis Tool

This chapter is a brief introduction to Sequence Analysis Tool (SAT). To produce

a good interface display, it is the best to run the program in the OpenWindows

environment on a Sun SPARCstation with a color monitor.

5.1 Getting Started

Sequence Analysis Tool (SAT)
(Version 1.0)

Xl«>gdong Chen

~11, 1954

An Interactive System
For

Sequence Alignment

Figure 5.1: Initial screen of SAT.

42

43

To get started, move to the directory where SAT is installed and type

setenv XENVIRONMENT Resources

sat

Figure 5.1 shows the initial screen with an introduction message. Pressing any mouse

button in the window where the message is displayed will erase the message and

set the system ready to work for you. If the screen is not displayed properly, check

whether the file Resources is included in the directory and check the value of the

XENVIRONMENT variable.

5.2 Screen Display

To introduce the features, we divide the SAT screen into four main areas as shown in

Figure 5.2. The Control Panel provides six menu-buttons, each has a menu associated

Control Panel

Information
Canvas Panel

Message Panel

Figure 5.2: The main screen structure of SAT.

with it. The user chooses a menu item to invoke an action or set the mouse to a

44

working mode. The Canvas takes up most of the screen. It is the area where graphs are

composed and manipulated, and relevant data are displayed. The Information Panel

shows the number and the names of loaded sequences, and displays the score of an

alignment. The Message Panel is the place where SAT displays messages responding·

to the user's operations. In the following sections, we will show how to operate SAT

and some input requirements.

Since SAT is mouse-operated, it is important to be familiar with the functions

of each mouse button. Following the OpenWindows Version 3 User's Guide, we

will refer to mouse buttons by functions, that is,

1. SELECT = the left mouse button

2. ADJUST = the middle mouse button

3. MENU= the right mouse button.

But we will also refer to mouse buttons by their positions when it is more convenient.

5.3 Canvas and the Representation of Graphs

On the Canvas a graph is represented as a collection of nodes and edges. In the

context of sequence analysis, a node is assigned a sequence and an edge is assigned

an alignment of the two sequences associated with the two end nodes. In order to let

the user visualize the assignment, we use the following display strategy.

A small circle is used to denote a node, called an empty node, which has not

been assigned any sequence. If a sequence is assigned to a node, the node becomes

solid, also called a full node. The sequence's name is displayed above the node .

45

An edge has a dark color if it has been assigned a pairwise alignment. Other­

wise an edge has a light color.

Information about a sequence includes

• sequence description.

• sequence name.

• sequence storing format.

• DNA/RNA or Protein.

Information about a pairwise alignment includes

• score.

• length.

• the number of matches.

• the number of mismatches.

• the number of gaps.

• the number of insert/delete operations.

• the actual alignment.

How to manipulate a graph, ass1gn sequences and alignments and view the

information will be shown later.

5.4 Command Panel

This panel contains six menu-buttons. Press MENU on a menu-button to bring up

its menu. To choose an item on the menu, simply click SELECT on the item and

then its associated function is invoked. Directly press SELECT on a menu-button to

select the default menu item.

46

1. 	File Menu contains items to handle loading a sequence/graph file, saving a graph

file and quitting SAT.

• Press 	MENU on Load, and then select the Sequence menu item to dis­

play the Load Sequence File window, through which a sequence file in any

directory can be selected. Then the sequences are loaded and their names

are displayed in the Information Panel. The format of a sequence file is

explained in Section 5.10.

• Press 	MENU on Load, and then select the Graph menu item to display

the Load Graph File window, which is similar to the Load Sequence File

window. The graph files should have been generated by SAT.

• Selecting the Save menu item displays a window prompting for a file name

to save the information about the graph shown on the screen, and the

sequences and alignments assigned to the graph. No restriction has been

set for choosing a file name.

• Select the Quit menu item to quit SAT.

2. 	Validation Menu contains items to verify whether the drawn graph is a tree or

connected. The Check menu item is used to print internal data for debugging

purposes.

3. 	Undo Menu contains Undo Last Action and Clear commands.

• 	 The Undo Last Action command will reverse the effect of the last graph

editing command issued.

47

• 	 The Clear command will erase all objects in the Canvas. A window will

show up to get the use's confirmation.

4. 	Parameters Menu contains one command which will display a window con­

taining three fields (1) file of score matrix; (2) gap-open penalty and (3) gap­

extension penalty. Without a valid setting of these values, the system will refuse

to perform alignment operations. For the file format of a score matrix, refer to

Appendix C.

5. 	Mode Menu contains five menu items. Each assigns a mode to the mouse so

that it can play many different roles in Canvas. The name of the selected

mode is displayed on the right side of the menu-button to remind the user

of the current mode of the mouse. The five modes will be explained in next

five sections. When designing mouse buttons to deal with nodes and edges,

the general principle is that the left button manipulates nodes and the middle

button manipulates edges.

6. 	Calculation Menu contains four commands.

• 	 The Alignment command calculates an optimal alignment of the two

sequences associated with each edge of the graph drawn in the Canvas.

The total cost is displayed in the Information Panel.

• 	 The Tree Align command conducts a 3-star alignment on each node of

degree 3 of the graph to have a local optimization. A star ("*") is appended

to the name of each affected sequence. The user can tell how many times

3-star alignment has been conducted on a node by counting the number of

48

stars appended to the name of the original sequence assigned to the node.

Based on the modified sequences, an optimal pairwise alignment for each

edge is conducted again so that the alignment associated with each edge

is also updated, and the total score window is updated.

• 	 The WJ Method command, for initializing the internal nodes of the

graph (now it must be a tree such that each node has a degree of either 1

or 3), invokes the tree program and sends it all the sequences and the tree

structure drawn in the Canvas. After the completion of the tree program,

its output, including the initial sequences for internal nodes of the graph,

is sent back to SAT.

• 	 The Others command displays a window so that the user can specify a

compatible program and execute it. A program is compatible when it

is developed using several convenient input/output functions provided by

this package and designed to communicate with SAT.

5.5 Manipulating Graphs

Select Editing from the Mode Menu. Now the mouse is ready for graph editing.

• 	 Creating a node: Press/Release the left button. An empty node is created at

the location of the mouse cursor when the button is released.

• 	 Moving a node: Press the left button on a node, move the cursor around and

release the button. The node is moved to the cursor's position when the button

is released.

49

• 	 Creating an edge: Press the middle button on one node, move the cursor and

release the button when the cursor is on the other node.

• Deleting a node: Click the right button on the node.

• Deleting an edge: Click the right button on the edge.

Each node will have an index generated by the system. To reverse an editing action,

select Undo Last Action command from the Undo Menu.

5.6 Assigning Sequences

Select Labeling from the Mode Menu. Now the mouse is ready for assigning

sequences to nodes.

Press SELECT on an item in the scrolling list of Information Panel to select a

sequence. Then click the left button on a node. Now the chosen sequence is assigned

to the node. If the node is full before, the new sequence overwrites the old one.

To remove a sequence from a node, simply click the right button on the node.

5.7 Alignments

Select Aligning from the Mode Menu. Now the mouse is ready for alignment.

Suppose the parameters for doing alignment have been set.

• 	 Click the left button on a node of degree 3. A 3-star alignment on the node is

conducted and the newly obtained sequence is assigned to the node. The new

sequence's name is the concatenation of the old name with a "*".

50

• 	 Click the middle button on an edge. An optimal pairwise alignment associated

with the edge is performed. The edge is assigned the information of the new

alignment.

5.8 Displaying Sequences and Alignments

Select Display from the Mode Menu. Now the mouse 1s ready for displaying

sequences and alignments.

• 	 Click the left button on a node to display the SEQUENCE window, which

shows the information related to the sequence assigned to this node. The se­

quence itself is displayed on a text pane and is editable. If the sequence is

'
modified and saved, a "?" is appended to the sequence's name. See Figure 5.3.

GUCUACGGCC AUACCACCCU GAACGCGCCC CGAUCUCGUU
GAUCUCGGAA GCUAAGCAGG GUCGGGCCUG GUUUAGUACU
UGGAUGGGAG ACCCGCCUGG GAAUACCGGG UGCUGUAGGG
cuu

Figure 5.3: Information about a sequence.

51

• 	 Click the middle button on an edge to display the Pairwise Alignment win­

dow, showing the alignment information associated with the edge. The align­

ment is editable. See Figure 5.4.

Figure 5.4: Information about a pairwise alignment.

5.9 Orienting a Tree

Select Rooting from the Mode Menu. Now the mouse is ready for orienting a tree,

i.e., redrawing it as a rooted tree. If the system detects the graph is not a tree, it will

refuse to be in this mode and reset to the Editing mode.

If the graph is a tree, press / release the left button on a node. Then a rooted

tree will be drawn such that the selected node is the root and is at the cursor's position

when the button is released.

52

5.10 File Format

For SAT to be able to read/write the files of sequences, alignments and graph struc­

tures, we need to specify some file formats.

Two types of files are used here. One is the pure sequence file, where sequences

are listed in either FASTA or NBRF/PIR format, which are described later in this

section. A sample file is shown in Appendix A.

Another format is designed to include information about sequences, alignments

and graph structures. A file is divided into into 5 blocks. Block 1 consists of an integer

and a four-bit number. The integer shows the number of vertices of the graph and the

four bits show which of next four blocks are valid. Block 2 preceded by "/Edges" shows

pairs of vertices and real numbers which represent edges and their weights. Block 3

starting with the key line "/Coordinates of nodes" shows the coordinates of vertices

at the SAT's drawing area, i.e., Canvas. Block 4 preceded by "/Contents of nodes"

contains sequences in the order of vertices. The recognized sequence formats include

FASTA and NBRF/PIR. Finally Block 5, preceded by "/Information of edges", gives

calculated pairwise alignments associated with the graph and other data. A sample

file is shown in Appendix B.

FASTA (PEARSON AND LIPMAN, 1988) FORMAT: The sequences

are delimited by an angle bracket ">" in column 1. The text immediately after the

">" is used as the name and the title. Everything on the following lines until the

next ">" or the end of the file is one sequence. An example is

53

> RABSTOUT rabbit Guinness receptor

LKMHLMGHLKMGLKMGLKGMHLMHLKHMHLMTYTYTTYRRWPLWMWLPDFGHAS

ADSCVCAHGFAVCACFAHFDVCFGAVCFHAVCFAHVCFAAAVCFAVCAC

NBRF/PIR FORMAT is similar to FASTA format but immediately after

the ">", you find the characters "Pl;" if the sequence is protein or "DL;" if it is

nucleic acid. The text after the ";" is treated as the sequence name while the entire

next line is treated as the title. The sequence is terminated by a star ("*") and

the next sequence can then begin (with a >Pl; etc). This is just the basic format

description (there are other variations and rules). An example is

>P1;RABSTOUT

rabbit Guinness receptor

LKMHLMGHLKMGLKMGLKGMHLMHLKHMHLMTYTYTTYRRWPLWMWLPDFGHAS

ADSCVCAHGFAVCACFAHFDVCFGAVCFHAVCFAHVCFAAAVCFAVCAC*

Chapter 6

Testing

In this chapter, we present an example execution of SAT. The testing data

(sequences, tree structure and score system) are chosen from the paper [18] of Sankoff,

Cedergren and Lapalme. The input j output files and score matrix are presented in

Appendices A, B and C. The test proceeds as follows.

1. 	Load the sequences.

The required sequences with the FASTA format are manually typed in a file

(see Appendix A). To load the sequences, click on

file ---t open ---t sequence

and then select the file from the newly popped-up window. Now sequences are

loaded into SAT with their names displayed on the scrolling menu of the right

hand side.

2. 	 Draw the tree.

The tree can be drawn easily by using graph editor facility of SAT.

3. 	Assign sequences to the external nodes (leaves) of the tree.

Click on

Mode ---t Labelling

54

55

to set the mouse mode so that, when an item is selected from the scrolling menu

of sequence names and a node on the drawing screen is selected, the sequence

is assigned to the node. Figure 6.1 shows the constructed phylogeny, whose

external nodes have been assigned sequences.

I
B.sL~ilus
~7

Figure 6.1: The phylogeny.

56

4. 	 Select parameters for the alignment.

Use the Parameters button to display the ALIGNMENT PARAMETERS win­

dow, then specify the score matrix file and values for gap penalties. See Fig­

ure 6.2. Refer to Appendix C for the score matrix file sankoffSCORE.

Figure 6.2: ALIGNMENT PARAMETERS window.

5. 	 Run the program "tree" to initialize the internal nodes.

Click on

Calculation ------+ WJMethod.

Or click on

Calculation ------+ Others ...

to display the Calculation Method window, then type (tree [optionl] [option2])

to invoke the tree program such that an root is chosen on the edge of connecting

the node of index option with that of index option2. All the data about the

sequences and the tree structure are sent to the tree program, which will do

calculation and construct sequences to be associated with internal nodes. Then

results are sent back to SAT and the screen is updated.

57

6. Perform pairwise alignments on all edges

Click on

Calculation ----+ Alignment.

After the pairwise alignment of the two sequences associated with each edge is

completed, the current score of the tree is obtained and displayed in the Total

Cost window. See Figure 6.3.

T.Utills

•a S.C...lber9enois

P.Fluorescens

~I: ,., ~
'\.­ ~./"'

13 15

Chi hen

Figure 6.3: Alignment after initialization of internal nodes.

58

7. Perform tree alignment

Click on

Calculation --+ treealign.

A local optimization is conducted on each internal node once. A "*" will be

appended to an internal node if a local optimization is done on it. The new

score is displayed. See Figure 6.4.

Figure 6.4: Executing local optimization (first round).

59

8. Repeat tree alignment

Repeat the above local optimization step, the result is displayed in Figure 6.5.

T.Ut!l!s

•a

P.Fluoroscens

S.C...lber9'"S1s

~r:. -
~·- ~./.,

1.3 15

Figure 6.5: Executing local optimization (second round).

9. 	 Save the alignment result to a file.

Click on

file --t save

to display the Save File window. Then type a :file name. The alignment result

is shown in Appendix B.

As shown in the above :figures, after the internal nodes of the tree are initialized

with the tree program. The t otal score is 370.00 . T v,:o successive rounds of local

optimization on every node bring the score down to 305.25 and .304.25. We have

60

continued more rounds of local optimalizations, conducted in various order of nodes.

The score was unchanged. However, this does not mean that we have found an

optimal tree alignment for the given data. Assigning different sequences to internal

nodes at the initialization stage keeps the final score stable with different values. So

far, the best score we have got is 297.25 obtained by assigning sequences extracted

from [18] to the internal nodes at the initialization stage.

Chapter 7

Concluding Remarks

Sequence Analysis Tool is aimed to provide an interactive tool for the performance

analysis of various alignment-related algorithms. Now it provides a friendly graphical

user interface for performing tasks related to pairwise alignment, tree alignment with

a given structure and 3-star alignment. It may also be used to preprocess data for

other activities such as multiple alignments, phylogenetic reconstruction, etc, which

requires the distance between any two sequences under consideration.

As regard adding more features to SAT, a good candidate that may take advan­

tage of the graphical displaying service of SAT is the feature for doing phylogenetic

reconstructions, which can be described as: given a collection of sequences, recon­

struct a branching structure, termed a phylogeny or tree, that illustrates the ancestral

relationships between the sequences. A very commonly used algorithm for this purpose

is the Neighbor Joining method proposed by Saitou and Nei [22].

An interesting survey concerning sequence comparison methods has been con­

ducted by Chan, Wong and Chiu [4]. A useful resource of information on various

software of sequence analysis is the site, accessible through anonymous ftp to

evolution.genetics.washington.edu

SAT, in its first version, serves as a prototype for further improvement. In

the future development, the following points should be considered.

Concerning the X Toolkit, although OLIT and OpenWindows are quite friendly

61

http:evolution.genetics.washington.edu

62

and well-developed, the market has made the X/Motif Toolkit the most popular de­

velopment tool in the X-based GUI industry. So, for a serious development, X/Motif

Toolkit should be applied instead. This was actually given as an advice, in a private

talk with a representative of Sun Microsystem.

There are lots of applications that use graphs to represent relationships. A

graph editor is actually needed in many interactive software systems. More gener­

ic approaches should be considered in the development of a graph editor so that the

source code can be reused and extended in different applications. Therefore objected­

oriented design and programming should be followed. In fact, there are generic C++

libraries [23], including a generic class definition for representing graphs, which is im­

plemented through the adjacency lists data structure. By the class inheritance feature

of objected-oriented programming, the generic graph class can be easily extended to

represent and handle graphs required in various applications.

Therefore, C++ and Motif are recommended for the continuation of this

project.

Appendix A

Sample Sequences File (input)

The following nine sequences are extracted from [18]. The sequences are written in

FASTA format.

>e.Coli 9-1Sankoff

UGCCUGGCGG CCGUAGCGCG GUGGUCCCAC CUGACCCCAU GCCGAACUCA GAAGUGAAAC

GCCGUAGCGC CGAUGGUAGU GUGGGGUCUC CCCAUGCGAG !GU!GGGAAC UGCCAGGCAU

>P.Fluorescens 9-2Sankoff

UGUUCUUUGA CGAGUAGUAG CAUUGGAACA CCUGAUCCCA UCCCGAACUC AGAGGUGAAA

CGAUGCAUCG CCGAUGGU!G UGUGGGGUUU CCCCAUGUCA !GAUCUCGAC CAUAGAGCAU

>S.Carlbergensis 9-3Sankoff

GGUUGCGGCC AUACCAUCUA GAAAGCACCG UUCUCCGUCC GAUAACCUGU AGUUAAGCUG

GUAAGAGCCU GACCGAGUAG UGUAGUGGGU GACCAUACGC GAAACCUAGG UGCUGCAAUC U

>Human 9-4Sankoff

GUCUACGGCC AUACCACCCU GAACGCGCCC GAUCUCGUCU GAUCUCGGAA GCUAAGCAGG

GUCGGGCCUG GUUAGUACUU GGAUGGGAGA CCGCCUGGGA AUACCGGGUG CUGUAGGCUU

63

64

>Xenopus 9-5Sankoff

GCCUACGGCC ACACCACCCU GAAAGUGCCC GAUCUCGUCU GAUCUCGGAA GCCAAGCAGG

GUCGGGCCUG GUUAGUACUU GGAUGGGAGA CCGCCUGGGA AUACCAGGUG UCGUAGGCUU

>Chlorella 9-6Sankoff

AUGCUACGUU CAUACACCAC GAAAGCACCC GAUCCCAUCA GAACUCGGAA GUUAAACGUG

GUUGGGCUCG ACUAGUACUG GGUUGGGAGG AUUACCUGAG UGGGAACCCC GACGUAGUGU

>Chichen 9-7Sankoff

GCCUACGGCC AUCCCACCCC UGUAACGCCC GAUCUCGUCU GAUCUCGGAA GCUAAGCAGGG

UCGGGCCUGG UUAGUACUUG GAUGGGAGAC CUCCUGGGAA UACCGGGUGC UGUAGGCUU

>B.Stearothermophilus 9-8Sankoff

CCUAGUGACA AUAGCGAGGA GAGAAACACC CGUCUCCAUC CCGAACACGA AGGUUAAGCUC

UCCCAGCGCC GAUGGUAGUU GGGGCCAGCG CCCCUGCAAG AGUAGGUUGU CGCUAGGC

>T.Utilis 9-9Sankoff

GGUUGCGGCC AUAUCUAGCA GAAAGCACCG UUCUCCGUCC GAUCAACUGU AGUUAAGCUGC

UAAGAGCCUG AUCGAGUAGU GUAGUGGGUG ACCAUACGCG AAACUCAGGU GCGCAAUCU

Appendix B

Sample Output File

This is extracted from the output of the testing described in Chapter 6. The local opti­

mization has been applied three times on each internal node.

/presentation of a graph.

16 1111

/Edges

0 9 21.50

[the above line means the edge connecting 0,9 has weight 39.00]

[other lines were deleted]

/Coordinates of nodes

48 367 I* the first node's coordinates *I

[other lines were deleted]

/Contents of nodes

[Here come first 9 sequences assigned to leaves, they are listed

in Appendix A, and therefore omitted here.]

>derived#O*** updated by star-align

UGCCUAGUGA CAGUAGUAGC AGUGGAACAC CUGACCCCAU CCCGAACUCA GAGGUGAAAC

GCCGCAGCGC CGAUGGUAGU GUGGGGUCUC CCCAUGCAAG AGUAGGGAAC CGCUAGGCAU

>derived#7*** updated by star-align

GCCUAGUGAC AAUAGCUAGC AGAGAAACAC CCGUCUCCAU CCCGAACACA GAGGUUAAGC

UCCCCAGCGC CGAUGGUAGU GUGGGGUCAC CCCAUGCAAG AGUAGGGUGC CGCUAGGCU

65

66

>derived#8*** updated by star-align

GCCUACGGCC AUACCUAGCA GAAAGCACCC GUCUCCGUCC GAUCACAGAA GUUAAGCUGC

UCAGAGCCUG AUGAGUAGUG UAGUGGGUGA CCACAUGCGA AAAUCAGGUG CUGCAGUCU

>derived#8**** updated by star-align

GGUUGCGGCC AUACCUAGCA GAAAGCACCG UUCUCCGUCC GAUCACCUGU AGUUAAGCUG

CUAAGAGCCU GAUCGAGUAG UGUAGUGGGU GACCAUACGC GAAACUCAGG UGCUGCAAUC U

>derived#3*** updated by star-align

GUCUACGGCC AUACCACCAC GAAAGCACCC GAUCCCGUCC GAUCUCGGAA GUUAAGCAUG

GUCGGGCCUG AUUAGUACUG GGAUGGGAGA CCACCUGGGA AAACCAGGUG CUGUAGUCU

>derived#3*** updated by star-align

GUCUACGGCC AUACCACCCU GAAAGCGCCC GAUCUCGUCU GAUCUCGGAA GCUAAGCAGG

GUCGGGCCUG GUUAGUACUU GGAUGGGAGA CCGCCUGGGA AUACCAGGUG CUGUAGGCUU

>derived#3*** updated by star-align

GUCUACGGCC AUACCACCCU GAAAGCGCCC GAUCUCGUCU GAUCUCGGAA GCUAAGCAGG

GUCGGGCCUG GUUAGUACUU GGAUGGGAGA CCGCCUGGGA AUACCGGGUG CUGUAGGCUU

/Information of edges

#MATRIX = sankoffSCORE, GAP OPEN PANELITY =O.OO,GAP EXTEND PANELITY =2.25,

#SCORE =21.50, LENGTH =121,

#MATCH =105, MISMATCH =14, GAPs =2, INDEL =2

0: UGCCUGGCGG CCGUAGC-GC GGUGGUCCCA CCUGACCCCA UGCCGAACUC AGAAGUGAAA

9: UGCCUAGUGA CAGUAGUAGC AGUGGAAC-A CCUGACCCCA UCCCGAACUC AGAGGUGAAA

IIIII I I I 1111 II 1111 I I 1111111111 I 11111111 Ill 111111

0: CGCCGUAGCG CCGAUGGUAG UGUGGGGUCU CCCCAUGCGA GAGUAGGGAA CUGCCAGGCA U

9: CGCCGCAGCG CCGAUGGUAG UGUGGGGUCU CCCCAUGCAA GAGUAGGGAA CCGCUAGGCA U

IIIII 1111 1111111111 1111111111 11111111 I 1111111111 I II IIIII I

**

67

#MATRIX = sankoffSCORE, GAP OPEN PANELITY =O.OO,GAP EXTEND PANELITY =2.25,

#SCORE =34.50, LENGTH =123,

#MATCH =102, MISMATCH =15, GAPs =6, INDEL =6

1: UGUUCUUUGA CGAGUAGUAG CAUUGGAACA CCUGAUCCCA UCCCGAACUC AGAGGUGAAA

9: UGCCUAGUGA C-AGUAGUAG CAGUGGAACA CCUGACCCCA UCCCGAACUC AGAGGUGAAA

II Ill I 11111111 II 1111111 IIIII 1111 1111111111 1111111111

1: CGAUGCAUCG CCGAUGGUAG UGUGGGGUUU CCCCAUGUCA AGA-UCUCGA -CCA-UAGAG CAU

9: CGCCGCAGCG CCGAUGGUAG UGUGGGGUCU CCCCAUG-CA AGAGUAGGGA ACCGCUAG-G CAU

II Ill II 1111111111 11111111 I 1111111 II Ill II II Ill I Ill

**

#MATRIX= sankoffSCORE, GAP OPEN PANELITY =O.OO,GAP EXTEND PANELITY =2.25,

#SCORE =12.75, LENGTH =122,

#MATCH =114, MISMATCH =6, GAPs =2, INDEL =2

2: GGUUGCGGCC AUACC-AUCU AGAAAGCACC GUUCUCCGUC CGAUAACCUG UAGUUAAGCU

12: GGUUGCGGCC AUACCUAGC- AGAAAGCACC GUUCUCCGUC CGAUCACCUG UAGUUAAGCU

1111111111 IIIII I I 1111111111 1111111111 1111 IIIII 1111111111

2: GGUAAGAGCC UGACCGAGUA GUGUAGUGGG UGACCAUACG CGAAACCUAG GUGCUGCAAU CU

12: GCUAAGAGCC UGAUCGAGUA GUGUAGUGGG UGACCAUACG CGAAACUCAG GUGCUGCAAU CU

I 11111111 Ill 111111 1111111111 1111111111 111111 II 1111111111 II

**

#MATRIX = sankoffSCORE, GAP OPEN PANELITY =O.OO,GAP EXTEND PANELITY =2.25,

#SCORE =1.75, LENGTH =120,

#MATCH =119, MISMATCH =1, GAPs =0, INDEL =0

3: GUCUACGGCC AUACCACCCU GAACGCGCCC GAUCUCGUCU GAUCUCGGAA GCUAAGCAGG.

15: GUCUACGGCC AUACCACCCU GAAAGCGCCC GAUCUCGUCU GAUCUCGGAA GCUAAGCAGG

1111111111 1111111111 Ill 111111 1111111111 1111111111 1111111111

3: GUCGGGCCUG GUUAGUACUU GGAUGGGAGA CCGCCUGGGA AUACCGGGUG CUGUAGGCUU

15: GUCGGGCCUG GUUAGUACUU GGAUGGGAGA CCGCCUGGGA AUACCGGGUG CUGUAGGCUU

1111111111 1111111111 1111111111 1111111111 1111111111 1111111111

68

#MATRIX = sankoffSCORE, GAP OPEN PANELITY =O.OO,GAP EXTEND PANELITY =2.25,

#SCORE =6.00, LENGTH =120,

#MATCH =114, MISMATCH =6, GAPs =0, INDEL =0

4: GCCUACGGCC ACACCACCCU GAAAGUGCCC GAUCUCGUCU GAUCUCGGAA GCCAAGCAGG

14: GUCUACGGCC AUACCACCCU GAAAGCGCCC GAUCUCGUCU GAUCUCGGAA GCUAAGCAGG

I 11111111 I 11111111 IIIII 1111 1111111111 1111111111 II 1111111

4: GUCGGGCCUG GUUAGUACUU GGAUGGGAGA CCGCCUGGGA AUACCAGGUG UCGUAGGCUU

14: GUCGGGCCUG GUUAGUACUU GGAUGGGAGA CCGCCUGGGA AUACCAGGUG CUGUAGGCUU

1111111111 1111111111 1111111111 1111111111 1111111111 11111111

**

#MATRIX = sankoffSCORE, GAP OPEN PANELITY =O.OO,GAP EXTEND PANELITY =2.25,

#SCORE =42.00, LENGTH =123,

#MATCH =95, MISMATCH =21, GAPs =7, INDEL =7

5: AUGCUACGUU CAUAC-ACCA CGAAAGCACC CGAUCCCAUC AGAACUCGGA AGUUAAACGU

13: GU-CUACGGC CAUACCACCA CGAAAGCACC CGAUCCCGUC CGAUCUCGGA AGUUAAGCAU

I IIIII IIIII 1111 1111111111 1111111 II II 111111 111111 I I

5: GGUUGGGCUC GACUAGUACU GGGUUGGGAG GAUUACCUGA GUGGGAACCC CG-AC-GUAG UGU

13: GGUCGGGCCU GAUUAGUACU GGGAUGGGAG -ACCACCUG- G-GAAAACCA GGUGCUGUAG UCU

Ill 1111 II II IIIII I I I II I I II IIIII II II I 1111 I I

**

#MATRIX= sankoffSCORE, GAP OPEN PANELITY =O.OO,GAP EXTEND PANELITY =2.25,

#SCORE =10.75, LENGTH =121,

#MATCH =115, MISMATCH =4, GAPs =2, INDEL =2

6: GCCUACGGCC AUCCCACCCC UGUAA-CGCC CGAUCUCGUC UGAUCUCGGA AGCUAAGCAG

15: GUCUACGGCC AUACCACCC- UGAAAGCGCC CGAUCUCGUC UGAUCUCGGA AGCUAAGCAG

I 11111111 II 111111 II II 1111 1111111111 1111111111 1111111111

6: GGUCGGGCCU GGUUAGUACU UGGAUGGGAG ACCUCCUGGG AAUACCGGGU GCUGUAGGCU U

15: GGUCGGGCCU GGUUAGUACU UGGAUGGGAG ACCGCCUGGG AAUACCGGGU GCUGUAGGCU U

1111111111 1111111111 1111111111 Ill 111111 1111111111 1111111111 I

69

#MATRIX= sankoffSCORE, GAP OPEN PANELITY =O.OO,GAP EXTEND PANELITY =2.25,

#SCORE =24.50, LENGTH =122,

#MATCH =108, MISMATCH =8, GAPs =6, INDEL =6

7: -CCUAGUGAC AAUAGCGAGG AGAGAAACAC CCGUCUCCAU CCCGAACACG AAGGUUAAGC

10: 	 GCCUAGUGAC AAUAGCUAGC AGAGAAACAC CCGUCUCCAU CCCGAACACA GAGGUUAAGC

111111111 111111 II 1111111111 1111111111 111111111 111111111

7: UCUCCCAGCG CCGAUGGUAG U-UGGGGCCA GCGCCCCUGC AAGAGUAGGU UGUCGCUAGG C­

10: 	 UC-CCCAGCG CCGAUGGUAG UGUGGGGUCA -C-CCCAUGC AAGAGUAGGG UGCCGCUAGG CU

II 1111111 1111111111 I IIIII II I Ill Ill 111111111 II 1111111 I

**

#MATRIX= sankoffSCORE, GAP OPEN PANELITY =O.OO,GAP EXTEND PANELITY =2.25,

#SCORE =2.75, LENGTH =121,

#MATCH =119, MISMATCH =2, GAPs =0, INDEL =0

8: GGUUGCGGCC AUAUCUAGCA GAAAGCACCG UUCUCCGUCC GAUCAACUGU AGUUAAGCUG

12: 	 GGUUGCGGCC AUACCUAGCA GAAAGCACCG UUCUCCGUCC GAUCACCUGU AGUUAAGCUG

1111111111 Ill 111111 1111111111 1111111111 IIIII 1111 1111111111

8: CUAAGAGCCU GAUCGAGUAG UGUAGUGGGU GACCAUACGC GAAACUCAGG UGCUGCAAUC U

12: 	 CUAAGAGCCU GAUCGAGUAG UGUAGUGGGU GACCAUACGC GAAACUCAGG UGCUGCAAUC U

1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 I

**

#MATRIX = sankoffSCORE, GAP OPEN PANELITY =O.OO,GAP EXTEND PANELITY =2.25,

#SCORE =26.75, LENGTH =121,

#MATCH =104, MISMATCH =14, GAPs =3, INDEL =3

9: UGCCUAGUGA CAGUAG-UAG CAGUGGAACA CCUGACCCCA UCCCGAACUC AGAGGUGAAA

10: 	 -GCCUAGUGA CAAUAGCUAG CAGAGAAACA CCCGUCUCCA UCCCGAACAC AGAGGUUAAG

111111111 II Ill Ill Ill I 1111 II I I Ill 11111111 I 111111 II

9: CGCCGCAGCG CCGAUGGUAG UGUGGGGUCU CCCCAUGCAA GAGUAGGGAA CCGCUAGGCA U

10: 	 CUCCCCAGCG CCGAUGGUAG UGUGGGGUCA CCCCAUGCAA GAGUAGGGUG CCGCUAGGC- U

I II IIIII 1111111111 111111111 1111111111 11111111 111111111

70

#MATRIX =sankoffSCORE, GAP OPEN PANELITY =O.OO,GAP EXTEND PANELITY =2.25,

#SCORE =44.75, LENGTH =123,

#MATCH =95, MISMATCH =20, GAPs =8, INDEL =8

10: GCCUAGUGAC AAUAGCUAGC AGAGAAACAC CCGUCUCCAU CCCGAACACA GAGGUUAAGC

11: GCCUA-CGGC CAUACCUAGC AGA-AAGCAC CCGUCUCCGU CC-GAUCACA GAAGUUAAGC

IIIII I I Ill IIIII Ill II Ill 11111111 I II II 1111 II 1111111

10: UCCCCAGCGC C-GAUG-GUA GUGU-G-GGG UCACCCCAUG CAAGAGUAGG GUGCCGCUAG GCU

11: UGCUCAGAGC CUGAUGAGUA GUGUAGUGGG UGACCACAUG CGAAAAUCAG GUGCUGC-AG UCU

I I Ill II I 1111 Ill 1111 I Ill I Ill 1111 I I I I I 1111 II II II

**

#MATRIX =sankoffSCORE, GAP OPEN PANELITY =O.OO,GAP EXTEND PANELITY =2.25,

#SCORE =35.50, LENGTH =121,

#MATCH =98, MISMATCH =19, GAPs =4, INDEL =4

11: GCCUACGGCC AUACCUAGCA -GAAAGCACC CGUCUCCGUC CGAUCACAGA AGUUAAGC-U

13: GUCUACGGCC AUACC-ACCA CGAAAGCACC CGAUCCCGUC CGAUCUCGGA AGUUAAGCAU

I 11111111 IIIII I II 111111111 II IIIII IIIII I II 11111111 I

11: GCUCAGAGCC UGAUGAGUAG UGUAGUGGGU GACCACAUGC GAAAAUCAGG UGCUGCAGUC U

13: GGUCGG-GCC UGAUUAGUAC UGGGAUGGGA GACCACCUGG GAAAACCAGG UGCUGUAGUC U

I II I Ill 1111 1111 II 1111 111111 II IIIII 1111 IIIII 1111 I

**

#MATRIX = sankoffSCORE, GAP OPEN PANELITY =O.OO,GAP EXTEND PANELITY =2.25,

#SCORE =21.75, LENGTH =121,

#MATCH =107, MISMATCH =12, GAPs =2, INDEL =2

11: GCCUACGGCC AUACCUAGCA GAAAGCACCC GUCUCCGUCC GAUCACA-GA AGUUAAGCUG

12: GGUUGCGGCC AUACCUAGCA GAAAGCACCG UUCUCCGUCC GAUCACCUGU AGUUAAGCUG

I IIIII 1111111111 111111111 111111111 111111 1111111111

11: CUCAGAGCCU GAU-GAGUAG UGUAGUGGGU GACCACAUGC GAAAAUCAGG UGCUGCAGUC U

12: CUAAGAGCCU GAUCGAGUAG UGUAGUGGGU GACCAUACGC GAAACUCAGG UGCUGCAAUC U

II 1111111 Ill 111111 1111111111 IIIII I II 1111 IIIII 1111111 II I

71

#MATRIX = sankoffSCORE, GAP OPEN PANELITY =O.OO,GAP EXTEND PANELITY =2.25,

#SCORE =18.00, LENGTH =120,

#MATCH =107, MISMATCH =12, GAPs =1, INDEL =1

13: 	 GUCUACGGCC AUACCACCAC GAAAGCACCC GAUCCCGUCC GAUCUCGGAA GUUAAGCAUG

14: 	 GUCUACGGCC AUACCACCCU GAAAGCGCCC GAUCUCGUCU GAUCUCGGAA GCUAAGCAGG

1111111111 11111111 111111 Ill 1111 1111 1111111111 I 111111 I

13: 	 GUCGGGCCUG AUUAGUACUG GGAUGGGAGA CCACCUGGGA AAACCAGGUG CUGUAGUCU­

14: 	 GUCGGGCCUG GUUAGUACUU GGAUGGGAGA CCGCCUGGGA AUACCAGGUG CUGUAGGCUU

1111111111 11111111 1111111111 II 1111111 I 11111111 111111 II

**

#MATRIX = sankoffSCORE, GAP OPEN PANELITY =O.OO,GAP EXTEND PANELITY =2.25,

#SCORE =1.00, LENGTH =120,

#MATCH =119, MISMATCH =1, GAPs =0, INDEL =0

14: GUCUACGGCC AUACCACCCU GAAAGCGCCC GAUCUCGUCU GAUCUCGGAA GCUAAGCAGG

15: GUCUACGGCC AUACCACCCU GAAAGCGCCC GAUCUCGUCU GAUCUCGGAA GCUAAGCAGG

1111111111 1111111111 1111111111 1111111111 1111111111 1111111111

14: 	 GUCGGGCCUG GUUAGUACUU GGAUGGGAGA CCGCCUGGGA AUACCAGGUG CUGUAGGCUU

15: 	 GUCGGGCCUG GUUAGUACUU GGAUGGGAGA CCGCCUGGGA AUACCGGGUG CUGUAGGCUU

1111111111 1111111111 1111111111 1111111111 IIIII 1111 1111111111

**

Appendix C

Score Matrix File Format

The following are two sample matrix .files for score systems used in SAT. They should

clearly demostrate how to construct a compatible matrix file. The first one show a matrix

where different pair has a different score.

file name: sankoffSCORE

Score scheme from Sankoff's paper.

Number of letters in alphabet =4

.A. c u G

0 1.75 1. 75 1

0 	 1 1. 75

0 	 1.75

0

The next format has a constant score on each match pair and mismatch pair.

.A. constant cost for mismatch

The mismatch and match cost are 1 0

.A. B C D E F G H I J K L M N 0 P Q R S T U V W X Y Z

72

Bibliography

[1] 	 S. Altschul, Gap Costs for Multiple Sequence Alignment, J. Theor. Bioi. 138, pp. 279­

309, 1989.

[2] 	 S. Altschul and D. Lipman, Trees, Stars, and Multiple Sequence Alignment, SIAM

Journal on Applied Math. 49, pp. 197-209, 1989.

[3] 	 H. Carrillo and D. Lipman, The Multiple Sequence Alignment Problem in Biology,

SIAM Journal on Applied Math. 48, pp. 1073-1082, 1988.

[4] 	 S. C. Chan, A. K. C. Wong and D. K. T. Chiu, A Survey of Multiple Sequence Com­

parison Methods, Bulletin of Mathematical Biology 54(4), pp. 563-598, 1992.

[5] 	 Alan Dix, Janet Finlay, Gregory Abowd and Russell Beale, Human-Computer Inter­

action, Prentice Hall, 1993.

[6] 	 D. Eppstein, R. Giancarlo and G. F. Italiano, Sparse Dynamic Programming 1: Linear

Cost Functions, J. Assoc. Comp. Machinery, 39(3), pp. 519-545, 1992.

[7] 	 D. Gusfi.eld, Efficient Methods for Multiple Sequence Alignment with Guaranteed Error

Bounds, Bulletin of Mathematical Biology 55, pp. 141-154, 1993.

[8] 	 M. Gribskov and J. Devereux, Sequence Analysis Primer, Stockton Press, 1991.

73

74

[9] 	 J. J. Hein, A Tree Reconstruction Method that is Economical in the Number of Pairwise

Comparisons Used, Mol. Biol. Evol. 6(6), pp. 669-684, 1989.

[10] 	 J. J. Hein, A New Method that Simultaneously Aligns and Reconstructs Ancestral Se­

quences for Any Number of Homologous Sequences, When the Phylogeny is Given, Mol.

Biol. Evol. 6(6), pp. 649-668, 1989.

[11] 	 D.S. Hirschberg, A Linear Space Algorithm for Computing Longest Common Subse­

quences, Commun. Assoc. Comput. Mach., 18, pp. 341-343, 1975.

[12] 	 T. Jiang and M. Li, Optimization Problems in Molecular Biology, to appear in Advances

in Optimization, D.-Z. Du (ed.), 1993.

[13] 	 Oliver Jones, Introduction to the X Window System, Prentice Hall, 1989.

[14] 	 E. W. Myers and W. Miller, Optimal Alignments in Linear Space, CABIOS, 4(1), pp.

11-17, 1988.

[15] 	 Brad A. Myers and Mary Beth Rosson, Survey on User Interface Programming, CHI'92

Conference Proceedings on Human Factors in Computer Systems, pp. 195-202, ACM

Press, New York, 1992.

[16] 	 D. Penny, Criteria for Optimising Phylogenetic Trees and the Problem of Determining

the Root of a Tree, J. Mol. Evol. 8, pp. 95-116, 1976.

[17] 	 D. Sankoff, Minimal Mutation Trees of Sequences, SIAM J. APPL. Math. 28(1), pp.

35-42, 1975.

[18] 	 D. Sankoff, R. J. Cedergren and G. Lapalme, Frequency of Insertion-Deletion,

Transversion, and Transition in the Evolution of SS Ribosomal RNA, J. Mol. Evol.

7, pp. 133-149, 1976.

75

[19] 	 D. Sankoff and R. Cedergren, Simultaneous Comparisons of Three or More Sequences

Related by a Tree, Time Warps, String Edits, and Macromolecules: the Theory and

Practice of Sequence Comparison, pp. 253-264, Addison Wesley, Reading Mass., 1983.

[20] 	 D. Sankoff and J. Kruskal (Eds), Time Warps, String Edits, and Macromolecules: the

Theory and Practice of Sequence Comparison, Addison Wesley, Reading Mass., 1983.

[21] 	 Bertrand Meyer, Object-oriented Software Construction, Prentice Hall, 1988.

[22] 	 N. Saitou and M. Nei, The Neighbor-Joining Method: A New Method for Reconstructing

Phylogenetic Trees, Mol. Biol. Evol. 4-4, pp. 406-425, 1987.

[23] 	 Namir C. Shammas, Visual C++ Generic Programming, Windcrest/McGraw-Hill,

1994.

[24] 	 L. Wang and T. Jiang, On the Complexity of Multiple Sequence Alignment, to appear

in Journal of Computational Biology, 1993.

[25] 	 T. Jiang, E. L. Lawler and L. Wang, Aligning Sequences Via an Evolutionary Tree:

Complexity and Approximation, Proc. of the 26th ACM Symp. on Theory of Comput­

ing, pp. 760-769, 1994.

[26] 	 M. S. Waterman, Mathematical Methods for DNA sequences, CRC Press, 1989.

[27] 	 Douglas A. Young and John A. Pew, The X Window System Programming and Appli­

cations With Xt (OPEN LOOK Edition), Prentice Hall, 1992.

[28] 	 M. Dayhoff, Atlas of Protein Sequence and structure, Vol.5, Suppl. 3, pp.345-358, 1978,

National Biomedical Research Foundation, Washington.

. · l

	book1
	book2
	book3

