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Abstract 


Sequence Analysis Tool (SAT) is an X-window (OPEN LOOK version) based 

interactive system developed for sequence analysis. In this first version, it provides 

a friendly graphical user interface and convenient functions for performing various 

tasks required in sequence alignment. In particular, space-efficient algorithms for 

pairwise alignment and 3-star alignment are implemented as functionalities, which 

can be used to serve most sequence alignment tasks and therefore provide a basis for 

further improvement Jf this tool. 

SAT is also tar1~eted at providing a testing platform for performance analysis of 

various alignment-rela.ted algorithms. A set of procedures is developed to provide an 

application programming interface with which other related programs can be easily 

connected to SAT. 

SAT is programmed in C/Xlib/OLIT. The object-oriented style makes further 

maintenance and imp:ovement easy. 
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Chapter 1 

Introduction 


With the developme:1t of Molecular Biology, the analysis of DNA, RNA and Protein 

sequences is playing an important role in the study of evolution of life. The large 

amount of information and computation involved in the analysis has also brought 

many challenging ccmputational problems to mathematicians and computer scien­

tists. Sequence alignment, comparison and the inference of phylogenies are no doubt 

among the most important topics in sequence analysis. Since these problems are usu­

ally computationally hard (some are NP-hard in terms of computer science), optimal 

solutions are not aYailable or not practical. Therefore heuristic and approximate 

methods are appliec. and new proposals continue to emerge. For a new algorithm, 

although it is important that the algorithm is good in the sense of complexity theory, 

it will be more convincing if a systematic performance analysis is conducted on the 

computed results, and the required time and resources. This demand gives a reason 

for the birth of this Sequence Analysis Tool. 

Sequence An;tlysis Tool (SAT) is an X Window based interactive system aimed 

for providing a platform so that performance analysis of algorithms can be conducted 

easily. At its early age, SAT can only address algorithms related to a limited set 

of alignment problems related to the research of the algorithm group at McMaster 

University. Right now it provides facilities for doing pairwise alignment and 3-star 

alignment, which are essential for other tasks such as aligning multiple sequences and 
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inferring phylogenies. 

SAT includes a graph editor, which provides basic editing functions such as 

create, modify, delete and undo for graphs. When a graph represents the relationship 

between a set of sequences, each node is assigned a sequence and each edge corre­

sponds to a pairwise alignment. The users can (1) view the sequences and alignments 

through pop-up windows; (2) specify the score system and alignment parameters; and 

(3) conduct pairwise alignment and 3-star alignment locally and globally. 

The format £)! denoting sequences in a file is compatible with other popular 

sequence alignment 1.oftware such as clustalv, and the output alignments are readable 

by humans and the system itself. 

A set of procedures has been developed as a programming interface so that 

independent programs can be developed to talk with SAT and use SAT's drawing and 

displaying facilities ·~mploying the multiprocessing utilities of Unix. As a practice, we 

have implemented the algorithm proposed by Jiang, Lawler and Wang [25] for the 

problem of tree ali~;nment with a fixed phylogeny in such a way that the program 

runs by itself and cc.n also communicate with SAT. This should set a model for other 

developments involving interfacing with SAT. 

SAT is devel•)ped with the OPEN LOOK Intrinsics Toolkit (OLIT) and tested 

in the OpenWindovrs environment on a SUN SPARCstation (LX). 

This report contains seven chapters and three appendices. 

Chapter 2 introduces the sequence alignment problems in detail. Dynamic 

programming is the major approach for solving alignment problems. We present 

and implement space-saving algorithms for pairwise alignment, tree alignment with a 

given phylogeny and 3-star alignment. Test results on the 3-star alignment program 
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are also listed to see how the space-saving approach influences the computing time. 

Chapter 3 briefly reviews user interface style and development issues in general. 

A brief introduction to the X Window System is also included. 

Chapter 4 discusses the development and implementation techniques used in 

this project. Main data structures and algorithms for manipulating objects to be 

drawn are presented. 

Chapter 5 is •~ user guide for the main features of SAT. 


Chapter 6 demonstrates an application of SAT in tree alignment. 


Chapter 7 gives some suggestions for further improvement. 


Appendix A i5 a sample input file for SAT. 


Appendix B i:; extracted from the output of the test in Chapter 6. 


Appendix C explains the score matrix file format required by SAT. 




Chapter 2 
~'equence Analysis 

The central dogma of modern Molecular Biology is that DeoxyriboNucleic Acid (D­

NA) is the primary genetic material. DNA is a molecule composed offour nucleotides: 

adenine (A), cytosine (C), guanine (G), and thymine (T), which, conceptually, are 

linked linearly to form long chains called polynucleotides. These chains are called 

DNA sequences. Pnteins are sequences made from 20 amino acids. The study of 

these sequences results in important insights into human biochemistry, physiology 

and disease processes. 

An important method for studying these biosequences is the sequence compar­

ison, which is necessa.ry for the detection of common structure and function as well as 

for the study of evolutionary relationship. The basic idea of most sequence compari­

son algorithms is to obtain a measure of the similarity (or distance) among a collection 

of sequences. Alignments are usually constructed so as to maximize the measure of 

similarity (or minimize the distance) between sequences. Because of the existence of 

various clever alignment techniques and algorithms, comparative sequence analysis is 

an active and fruitful area for the application of computation to biological problems. 

To obtain an optimal (or quasi-optimal) alignment, the dynamic programming 

technique is usually applied. Dynamic programming algorithms are theoretically 

important and beautiful. However, these methods require exhaustive computation, 

which may become impractical in many cases because of the limits of computing time 
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and memory. How to improve various algorithms to save storage or to increase speed 

is a very important research topic. 

In this chaptei, we introduce the fundamentals of sequence alignment, especial­

ly pairwise alignmem, tree alignment with a given phylogeny, and 3-star alignment. 

These three types of alignments are what the SAT system is able to handle at the 

time being. 

2.1 Pairwi~.e Alignment 

In this section, we formally define the terminology and notations needed for alignment. 

Pairwise alignment i~: the basis of all other sequence comparison methods. 

A null is the symbol "-" or "liS". 

An alphabet L is a :finite set of symbols containing null. 

An element is a member of the alphabet :E. 

A letter is an element other than null. 

A sequence (or string) is a :finite string of letters. 

A padded seqt;ence (or padded string) is a :finite string of elements. 

Given an alphabet :E, a scoring function w : :E x :E --+Real can be defined to 

measure differences or siinilarities between any two elements. In this project, we use 

difference-measuring scoring functions. Therefore the following discussions are based 

on the distance criteria. 

Given two secuences A and B, an alignment of A and B is expressed as 

a;:a;··· ai 

bib; ... bi 
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where the two rows are padded sequences obtained with the insertion of nulls into A 

and B respectively, and no column contains two nulls. 

To determine the quality of an alignment, one needs some scoring and opti­

mization criterion defined for alignments. For the above alignment, it is natural to 

consider the sum 
l

L w(a;, b;). 
i=l 

However, to get biokgically reasonable alignments, additional costs must be charged 

for gaps, which are maximal strings of adjacent nulls in one sequence aligned with 

letters in the other. Therefore we can say the cost (or score) of a pairwise alignment 

is the sum of the cost of all aligned pairs of elements and the cost of all gaps. 

An optimal alignment of A and B is one that minimizes the cost over all 

possible alignments. For any two sequences, there may exist many optimal alignments. 

The sequence alignment problem is to find one or more optimal alignments and the 

optimal cost. The standard method uses dynamic programming on variants of the 

following recurrence relations. 

Let A = a1a2···an and B = b1b2 · · · bm. Define a cost matrix GC such that 

CC[i,j] denotes the minimum cost of aligning a1a2 • • • ai and b1 b2 • • • bj. When gap 

costs are not charged, we have the recurrence relation: 

j i 

CC[O, 0] = O, GG[O, j] = L w(95, bk), GC[i, 0] = L w(ak, 95), 
k=l k=l 

and 

CG[i- 1,j] +w(ai, ¢) 

CG[i,j] =min GG[i -1,j -1] + w(ai,bi) 

GG[i,j- 1] +w(95, bi) 
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When gap penalties are considered, let g1c be the gap cost for a gap of k bases. Then 

we have the recurrence relation: 

CC[O, OJ= O, CC[O,j] = gi, CC[i, 0] = gi, 

and 

CC[i- l,j- 1] +w(ai, bi) 

CO[i,j] =min min1$1c$i{CC[i,j- k] +g~c} 

min1$1c$i{CC[i- k,j] + g~c} 

A direct impl ~mentation of this relation needs 0(mn) space. Dynamic pro­

gramming with this kind of recurrence relations has been studied extensively. Lots of 

time or space saving strategies have been proposed and actually applied, see [14, 6]. 

It is importar.t to realize that an optimal alignment is optimal only for the 

particular scoring sy~ tern and gap costs. To make significant biological application of 

these mathematical nodels, we have to consider how to choose the scoring function w 

on .E, and also the gap cost function. In practice, the primary scoring system used for 

nucleic acid sequence> is the identity matrix. For protein sequences, the most common 

choice for measuring similarity is the Dayhoff mutation matrices (PAM matrices), see 

[28]. Among possible gap costs, the simplest and most commonly used are linear gap 

costs, which charges '1. fixed amount for each space. Because they have been taken to 

subsume null costs, they are usually expressed as 

g(k) =a+ bk, 

where a is called as ;he open gap penalty and b as the gap extension penalty, which 

is actually the null e<)st. Gap penalties have a large effect on an alignment and it is 

wise to sample a wic.e range of values in order to find the most interesting optimal 
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alignment. The following example is taken from the book [8] page 130, which shows 

how gap penalties influence sensible alignments. Two alignments of human pancreatic 

hormone and chicken pancreatic hormone are shown. 

Human ALLLQPLLC:AQGAPLEPVYPGDNATP.EQMAQ.YAAD.LRRYINMLTRPRYGKRHKEDTLAF 


Chicken G....P.. ~:. Q..P.. T. YPGDDA .PVEDLIRFY .. DNLQQYLNVVT ......RHR ..... Y 


An optimal alignment without gap penalties. 

Human ALLLQPLLGAQGAPLEPVYPGDNATPEQMAQYAADLRRYINMLTRPRYGKRHKEDTLAF 


Chicken ............ GPSQPTYPGDDAPVEDLIRFYDNLQQYLNVVTRHRY .......... . 


An optimal alignment with gap penalty of 1.0 + O.lx(gap length). 

2.2 Tree Alignment 

An evolutionary tref is a tree whose nodes are associated with sequences. The cost 

of an edge in the tree is defined as the edit distance (optimal cost) between the two 

sequences associated with the ends of the edge. The cost of a tree is the sum of the 

costs of all edges. Given sequences X, the optimal evolutionary tree or multiple tree 

alignment or, simpl~', tree alignment problem is to find a set of sequences Y and an 

evolutionary tree T (sequences from X are assigned to leaves and those from Y are 

assigned to internal nodes ofT) which minimizes the cost of T over possible sets Y 

and trees T. This problem is proved to be MAX SNP-hard [24]. Here we are mainly 

interested in the so-called tree alignment with a given phylogeny, that is, given a set 

X of sequences and a phylogeny T which is defined as a tree structure such that each 
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leaf is assinged a unique sequence of X, we need to construct a sequence for each 

internal node such that the total cost of the tree is minimized. 

The problem of tree alignment with a given phylogeny is NP-hard even if the 

phylogeny is a binary tree [24]. Some heuristic algorithms have been proposed [9, 18]. 

In the following, we outline an efficient approximation algorithm based on recent 

results of Jiang, Lawler and Wang [25]. 

First, we need some notations. For a (rooted) tree T, r(T) denotes the root of 

T, c(T) denotes the cost ofT, Leaf(T) denotes the set of the leaves ofT. For each 

node v ofT, Tv denotes the subtree ofT rooted at v. A leaf that is a descendant of 

node vis called a des~endant leaf of v. When all leaves have been assigned sequences, 

we define S(v) to be the set of sequences assigned to the descendant leaves of v. An 

evolutionary tree is called a lifted tree if the sequence associated with each node equals 

the sequence associa·;ed with some child of the node. 

Let X = {s1, .. , sk} be a set of sequences and T a phylogeny for X such that 

the degree of each in~ernal node ofT is 3. To construct an evolutionary tree, we need 

the following steps. 

Step 1: Initialize the internal nodes. 

Take an arbitrary edge uv of the tree T. Adding a new node r and replacing 

the edge uv with two new edges ru and rv, we get a rooted tree T of root r. 

For each v E T and each Si E S(v ), let D[v, si] denote the cost of an optimal 

lifted tree for Tv with v being assigned the sequence Si· D[v, si] can be computed as 

follows. For each leaf v, we define D[v, si] = 0 if Si is assigned to v. Let v be an 

internal node, and v1 and v 2 its children. For each Si E S(v ), Si must belong to one 
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of S (v 1 ) and S (v 2 ). VIe have the recurrence relation: 

min$jES(v2 ){D[v1 ,si] + D[vz,sj] + dist(si,s;)} if Si E 5(Vt) 
D[v,si] = 

{ min$iES(vl){D[vt,si] + D[vz,si] + dist(si,sj)} if Si E 5(vz) 

The full algor.thm is described in Figure 2.1. It outputs an evolutionary tree 

with cost at most 2C:Trnin) and requires O(k3 + k2n 2 ) time in the worst case, where 

Trnin denotes an optimal evolutionary tree and n denotes the maximum length of the 

gtven sequences. 

Input: X= {s 1 , .•• , s~e} (sequences set), T (a phylogeny for X) 
Output: Lifted tree T. 
1. begin 
2. for ea.ch pair (i,j), 1:::; i < j:::; k, do 
3. compute dist(si, Sj)· 
4. Cons1;ruct '1'. 
5. for each level of '1', with the bottom level first, do 
6. for each node v at the level do 
7. for i = 1 to k 
8. if Si E S(v) then compute D[v,si]· 
9. Seled an sEX such that D[r(T), s] is minimized. 
10. Compute the lifted tree T by back-tracing. 
11. end. 

Figure 2.1: Algorithm initialization. 

Step 2: Local Optimization. 

Starting with an evolutionary tree, we can use an iterative improvement method 

to update and imprcve the sequences assigned to the internal nodes to get a better ap­

proximation. Recall that the degree of each internal node of the phylogeny under our 

consideration is three. Based on each internal node, we can construct a 3-component 

which is a subtree consisting of the internal node and three edges connecting to it. 
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Then on each 3-component the local optimization is performed by the star-alignment 

technique introduced in next section. 

To illustrate these two procedures more clearly, consider the phylogeny in Fig­

ure 2.2, which contains nine given species on its nine leaves. (The same example is 

T. utilis ... S. carlbergensis 
I 

I 
I 

\ 

\ Xenopus 

P. fluorescenrs--- ... < .... -­ ~- .... >,., ..... <,- t---""", ..... --- ­ -- ­ .... Human 
I 

I 

,. /" 
I 

I 

'' \ "' 
\ \I 
\1\ 

'' 
\ 

\ 

, 
II 

" ' I 
')\/ 

"' 
I I 

' , ,'"": 
'\ I \ 
\1 \ 

.... ' 

I ''', ,, .. ~,,' \1 \ \I 
1/ ' I "' 1/
II ..., .... - _,...."'* I 

I 
I 

I 


' ' 
/ 

/ Chicken 
E. coli 

B. itearothermophilus Chlorela 

Figure 2.2: A phylogeny with nine species, which is divided into seven 3-components. 

. .· ..~1. 

. .. ss· 

(a) (b) 

Figure 2.3: (a.) A 3-component. (b) Two overlapping 3-components. 

also used in [18]). To construct an evolutionary tree, we assign one of the nine given 

sequences to each int,!rnal node by applying algorithm introduced in Step 1. Then we 
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divide the phylogeny: nto seven 3-components as shown in Figure 2.2. Local optimiza­

tion is done for every 3-component as follows. For the 3-component in Figure 2.3(a), 

from the labels (sequences) s1 , s 2 , and s3 of the three terminals, we can compute 

the label c1 (sequenc() of the center using dynamic programming (introduced in next 

section) to minimize the cost of the component [17, 9]. The revised c1 can then be 

used to update the C(nter label c2 of an overlapping 3-component (see Figure 2.3(b )). 

The algorithm converges since each local optimization reduces the cost of the tree by 

at least one. Thus, :£the process is repeated long enough, every 3-component will 

become optimal. However, this does not necessarily result in an optimal evolutionary 

tree. Nonetheless, it .;eems the algorithm can produce a reasonably good evolutionary 

tree after 5 iteration:; [18]. 

2.3 Star AHgnment 

A star-alignment is :t special case of tree alignment in which the tree has only one 

internal node. Here. we are especially interested in star-alignment of three strings, 

which is a process stated as: Given three strings A, B and C, construct a new string 

D and optimally ali7n D with each of A, B and C. The sum of costs of the three 

pairwise alignments is defined as the cost of the star-alignment. This process will 

be denoted as star-dignment(A, B, C). An optimal star-alignment(A, B, C) is one 

attaining the minimum cost among all possible star-alignment(A, B, C). The string 

D newly constructed in an optimal star-alignment(A, B, C) is called a center-string 

of (A, B, C). 
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In the following, we present an algorithm using the dynamic programming 

method to find a center-string of (A, B, C) with given strings A = a1a2 ···aM, 

Let Ai denote the i-symbol prefix a1a2 • • • ai of A, Bi the j-symbol prefix 

Cost(i,j,k) =the cost of an optimal star-alignment(Ai,Bj,Ck)· 

Then we can obtain the following recurrence relation: 

where 51, 52 ,53 E {0, 1}, la =a, Oa =115, and 5 =(51! 52 , 53 ). There are seven different 

values of 5 with 5 =f 0. The element x where the minimum is attained is the last 

element (maybe 115) of the constructed center-string of (Ai, Bj, Ck)· 

In the implementation of this recurrence relation, we first preprocess the part 

Define a relation lookup : I: x I: x I: ---+ I: x Real, such that, for any e1, e2 , e3 E I:, 

lookup(e1 , e2 , e3 ) has two fields, one is denoted as cost and represents the minimum 

sum, and the other is denoted as letter and stores the letter x such that the minimum 

sum is attained at x. 

To obtain a center-string of (A, B, C), one can use the straightforward back-

tracing technique. That is, set up a 3-dimensional matrix TraceMat, compute the 

recurrence relation of Cost(i,j, k) and store, in the (i, j, k) cell of TraceMat, the ele­

lead to the minimum value Cost(i,j,k). With the information stored in the matrix 
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TreeMat, we can then simply start from the (M, N, K) cell of TraceMat. By following 

the pointers, a linked list is established and a center sequence is obtained in the re­

verse order. Obviously, an implementation based on this technique needs O(NM K) 

space. In practice, this space requirement often limits the method's applicability. 

If we are only interested in the cost of an optimal star-alignment(A, B, C), 

the space requirement can be reduced dramatically. More specifically, for each fixed 

1 ~ i ~ M, we use level(i) to represent the 2-dimensional array consisting of 

{Cost(i,j,k)i1 ~ j ~ N, 1 ~ k ~ K}. The recurrence relation shows that 

Cost(i,j,k) depends only on seven values in level(i- 1) and level(i). Therefore, 

two matrices of size N * K are adequate to compute successive levels. In fact, with 

a little care, one matrix of size N * K and one vector of size K + 1 suffice. Suppose 

Cost(i, J, k) needs to be computed and values preceding it have already been obtained. 

Then we can define a matrix C C N *K and a vector C B of size K + 1 represented as 

follows: 

Cost(i,j,k) if j < J and k < k 
CC(j,k) = 

{ Cost(i -1,j,k) otherwise 

Cost(i -1,j,k -1) if k < k 
CB(k) = 

{ Cost(i- 1, j - 1, k) otherwise 

CB(K +1) = Cost(i -1,] -1,k -1). 

With this loop-invariant condition, we can present an algorithm as shown in Fig­

ure 2.4 for calculating the cost of an optimal star-alignment(A, B, C) using 0( N *K) 

space. To make the algorithm shorter and easy to read, we include the testing of the 

boundary situation in the main body. But in our implementation, we deal with the 

boundary cases separately to eliminate the "if' instructions. 
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Algorithm costonly_star _align( A, B, C, CC) 
Input: A, B and C (strings of size M, Nand K). 

{ We assume the lookup relation has been computed} 
Output: CC (a matrix of size N * K) and cost 
where CC(j,k) represents the cost of an optimal3-star-align(AM,Bi,Cj)· 
var array C C [0 · · · N][0 · · · K], C B [0 · .. (K +1)]. 
begin 

CC(O,O) = 0 
for i = 0 to M do 

for j = 0 to N do 
for k = 0 to K do 

begin 
if (i- 1,j- 1, k- 1) is valid then 

value(O) = CB(K + 1) + lookup(ai, bi, c~e).cost; 
if (i- 1,j- 1, k) is valid then 

value(1) = C B(k) +lookup(ai, bj, ~).cost; 
if (i -1,j,k -1) is valid then 

value(2) = CB(k -1) + lookup(ai,~,c~e).cost; 
if(i-1,j,k) is valid then 

value(3) = CC(j, k) + w(ai, ~); 
if (i,j- 1, k- 1) is valid then 

value(4) = CC(j -1,k -1) + lookup(~,bj,cJe).cost; 
if (i, j - 1, k) is valid then 

value(5) = CC(j- 1,k) + w(bj,~); 
if (i,j, k- 1) is valid then 

value(6) = CC(j, k -1) + w(c~e,~); 
{update CB and CC as follows:} 
if(i > 0) and (j > 0) then 

CB(K + 1) = CB(k); 
if (i > 0) then 

CB(k) = CC(j,k); 
CC(j, k) =min of {value(i)jO :=; i :=; 6}; 

end 
cost= CC(N, K); 
Output cost and CC; 

end 

Figure 2.4: Algorithm costonly_star_align. 
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To actually produce a center-string of a star-alignment, we generalize the re­

cursive divide-and-conquer technique of Hirschberg [11] and Myers and Miller [14] so 

that we obtain an algorithm with O(N * K + logM) space requirement. The central 

idea is to find the "midpoints" of an optimal star alignment of three strings by using 

a "forward" and "backward" application of the quadratic space Costonly_star_align 

algorithm. Then a center-string can be obtained by recursively determining optimal 

star alignments on both side of the midpoints. 

For a sequence X, let rev(X) denote the reverse of X and let Xf denote the 

suffix xi+1Xi+2 · · · XM of X. Given three sequences A, B and C of sizes M, N and 

K respectively, applying the algorithm Costonly_star_align to rev(A), rev(B) and 

rev( C), we obtain a matrix RR such that the entry RR(N- j, K- k) represents the 

cost of an optimal star-alignment (A, BJ, CZ'). 

Now we are in the position of explaining our algorithm of delivering a center­

string of a 3-star alignment. Again, suppose three strings A, Band C are of non-zero 

length M, Nand K respectively. Let i* = LM/2J, then level(i*) bisects the cube 

associated with the recursive Cost function (defined on Page 13). Applying the 

Costonly_star _align algorithm to the strings Ai·, B and C, we get a matrix mat f 

satisfying: 

matf(j, k) = the cost of an optimal star-alignment(Ai•, Bj, C~e). 

Then applying the Costonly_star_align algorithm to the strings rev(Af.), rev(B) and 

rev(C), we get a matrix matb satisfying: 

matb(j,k) = the cost of an optimal star-alignment(Af.,BJ,cf). 

For any star-alignment( A, B, C), there exist j E [0, N] and k E [0, K] such 
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that the star-alignment is the concatenation of a star-alignment(Ai·, Bj, C~c) and a 

star-alignment(A[., BJ, Cl). Thus the cost of an optimal star-alignment(A, B, C) is 

min{matf(j, k) + matb(N- j, K- k)ij E [0, N] and k E [0, K]}. 

If the minimum is attained at j* and k*, then ( i*, j*, k*) is an optimal midpoint 

for the problem. Now, the crucial point for using the divide-and-conquer method 

is that the concatenation of an optimal star-alignment(~·, Bj•, C1c•) and an optimal 

star-alignment(A[., BJ., G'{.) is an optimal star-alignment(A, B, C). Therefore we can 

employ the midpoint ( i*, j*, k*) to split the star-alignment problem into two sub­

problems of star-aligning shorter strings. The sub-problems are solved by calling the 

above processing recursively. 

The recursion's boundary cases, i.e. the size of one of the three strings is 1 or 

0, are handled directly by using Backtracing technique since only quadratic space is 

required now. 

The full algorithm for finding a center-string is outlined in Figure 2.5. It 

uses O(NK + logM) space: O(NK) for the dynamical allocated space for matf 

and matb or for the boundary cases, and O(logM) for the implicit activation s­

tack needed for no more than llog.i\fj + 1 levels of recursion. Now consider the 

time requirement. Obviously, the procedure costonly_star_align for strings of sizes 

M, Nand K takes O(MNK) time; we assume it is c1MNK. Then in the algo­

rithm find_center_string_star_align, boundary cases take O(M + N K); line (a) takes 

c1(Mj2)NK, line (/3) also takes c1(Mj2)NK and line (I) takes c2 NK time. So the 

main body (lines a, f3 and 1) of the top-level call takes c1 M N K + c2N K time. The 

time spent in the main bodies of the two recursive calls at lines ( 5) and (c:) is 
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Algorithm find_center _string_star _align( A, B, C) 
Input: A, Band C (strings of size M, Nand K). 

{ We assume the lookup relation has been computed} 
Output: finaLseq (a center-string of star alignment) and 

cost (the optimal cost of star alignment) 

begin 
cost = findcenter( A, B, C) 
print(finaLseq) {a center string for the star-alignment} 

end 

recursive function findcenter(A, B, C) 
var array matf[O · · · N][O · · · K], matb[O · · · N][O · · · K]; 

{ dynamically allocated in the implementation} 
begin 

if (M :S 1) or (N :S 1) or (K:::; 1) then 
{Take 11 as the minimum of {M, N, K}, 12 and 13 as others, 
allocate at most two matrices of size 12 x 13 to store information 
for backtracing } 

apply backtracing technique directly to find a partial center-string, 
which will be appended to finaLseq. 

else 
begin 

i* = lM/2J; 
allocate space for mat f and matb; 

(a:) C ostonly_star _align( Ai·, B, C, mat f); 
(;3) C ostonly_star _align( rev( A[.), rev( B), rev(C), matb); 
(J) Find j* and k* minimizing (matf(j, k) + matb(N- j, K- k)); 

Free the space of mat f and matb; 
(5) costl = findcenter(Ai•,Bj•,C~e·); 
(E) cost2 = findcenter( Af.' BJ.' c'[.); 

output costl + cost2. 
end 

end 

Figure 2.5: Algorithm find_center_string3tar_align. 
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c1 (M/2)[jk + (N- j)(K- k)] + c2 [jk + (N- j)(K- k)], which is no more than 

c1(M/2)NK + c2 NK. It follows by induction that the total time taken in the worst 

case, including recursive calls and boundary cases, is no more than 

c1 MNK(1 +-1 +-1 + · · ·) + c2(logM)NK + O(M + NK),
2 4 

which equals 2c1 MNK +c2 (logM)NK+O(M+NK). Therefore the time required for 

algorithm find_center_string_star_align is approximately twice that for the cost-only 

version costonly_star _align . 

We have developed a C-implementation of both algorithms shown in Figure 2.4 

and 2.5. To compare the actual time spent on costonly_star_align part and the 

time spent on find_center_string_star_align part, we have conducted tests on random 

sequences with certain sizes. The results are listed in Figure 2.6. 

stzes cost-only find-center-string ratio (f/c) 
(146, 17, 42) 3 10 2.3333 
(100, 25, 50) 4 12 2.0000 
(100, 50, 50) 9 15 1.6667 

(100, 100, 100) 41 58 1.41463 
(200, 200, 200) 330 456 1.38182 
( 400, 400, 400) 1457 1953 1.34043 
(800, 800, 400) 11616 13798 1.18784 

(Unit: second) 


Figure 2.6: Test results of program star. 


In the above discussion we did not consider gap costs. When gap costs are 

involved, the situation is much complicated. If the recurrence relation Cost(i, j, k) is 

to be re-defined to include the consideration of gap costs, we will have to not only 
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consider the values of Cost(i- 51,j- 52 , k- 53 ), but also analyze the ending pattern 

of the partial alignment of ( Ai-51 , Bj-52 , Ck-53 ). Define the history of a partial 

alignment to be the amount of information necessary to determine the cost of any 

possible extensions. To find an optimal alignment it is necessary in general to know, 

at each node, the minimum cost of the partial alignment in each historical situation. 

Alstchul [1] presents a general analysis of gap costs for tree and star-alignments and 

infers that the number of relevant histories for star-alignment ofn input strings using 

gap costs is 

In our case, n = 3, so there are 44 histories to be considered for each (i,j,k). 

2.4 Implementation 

Since pairwise alignments have been well studied, many excellent implementations 

and strategies have been developed to strive for higher speed and less space. Realizing 

that space may be the limiting factor for our applications, we adopt the approach 

introduced by Myers and Miller [14]. The method can construct an optimal pairwise 

alignment in linear space. 

There are two steps for performing a tree alignment with a given phylogeny. As 

the first step, initialization of internal nodes is conducted by following the algorithm 

shown in Figure 3.3. Then local optimalization is performed on each internal node. 

More discussion about implementation of the initialization algorithm can be found in 

section 4.5. 



Chapter 3 

Graphical User Interface 


In computer systems, the user interface is considered as the mechanism through which 

a dialogue between the computer and the user is established. It plays a vital part in 

the computer system's efficiency. The speciality called Human-Computer Interaction 

(HCI) has emerged as the study of people, computer technology and the ways these 

influence each other. Both the developers of computer systems and users are starting 

to accept that just being able to do a task on a computer is not the only important 

factor. The question 'Can this goal be achieved with a computer?' is starting to 

be replaced by the question 'How easily can the user achieve the goal using the 

computer?'. The interface is in many ways the "packaging" for a computer system. 

If it is easy to learn, simple to use, straightforward, and forgiving, the user will be 

inclined to make good use of what is inside. 

In this chapter, we will briefly review interface style and development issues 

in general and then review the architecture of the X Window System and its funda­

mentals which are related to this project. 

3.1 Interface Development 

The term "user interface" can be defined as the software component of an application 

that translates user's actions into requests for functions, and that provides to the user 
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feedback about the consequences of his/her action. 

A good user interface should provide an end user with a facile, natural environ­

ment for conducting various tasks fast, efficiently, accurately, and inexpensively. The 

nature of the software component of the user interface has been driven and limited 

by the hardware component. As hardware has become more sophisticated, options 

for interaction style have grown. 

The following are some of common interface styles: 

• 	 command and query interface: Communication is purely textual and 1s 

driven via commands and responses to system-generated queries. 

• 	 menu interface: The set of options available to the user is presented on the 

screen. An option is selected by either using the mouse or typing some key. 

Since the options are visible, they are less demanding on the user, relying on 

recognition rather than recall. 

• 	 form-fills and spreadsheets: The user is presented with a display comprising 

a grid of cells, each of which can contain a value. This type of interface is used 

primarily for data entry and data analysis applications. 

• 	 WIMP interface: This type of user interface is characterized by windows, 

icons, menus and pointing devices. It is the default interface style for the 

majority of interactive systems in use today. The important features are (1) 

displaying different types of information simultaneously; (2) enabling the user 

to switch context without losing visual connection with other work; (3) en­

abling the user to perform various tasks in a facile manner; ( 4) increasing the 

interaction efficiency. 
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Each of them is encountered across every application area. The trend is to­

ward multitasking, window-oriented, and point and pick interfaces. Ideally, users can 

customize the interface to suit their working style, rather than adapting their own 

working style to accommodate the interface's way of doing things. 

The most important and natural method for a user interface development is the 

iterative development methodology, which includes building one or more prototypes to 

get requirement specification and comments from clients. To make the user interface 

easier to program, many different kinds of tools have been created. These include 

window systems, toolkits, interface builders, and user interface management systems. 

The survey conducted by Myers and Rosson [15] seems very interesting. It has 

shown that in today's applications, an average of 48% of the code is devoted to the 

user interface portion. The average time spent on the user interface portion is 45% 

during the design phase, 50% during the implementation phase, and 37% during the 

maintenance phase. 

3.2 The X Window System 

The X Window System is an industry-standard software system that allows program­

mers to develop portable graphical user interfaces. 

The X Window System's architecture is based on the client-server model. A 

single process, known as the server, is responsible for all input and output devices. 

An application that uses the facilities provided by the X server is know as a client. 

The syntax and semantics of the conversation between servers and clients are defined 

by X Protocol. Clients use the protocol to send requests to the server to create and 
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manipulate windows, to generate text and graphics, to receive input from the user, and 

to communicate with other clients. The server uses the protocol to send information 

back to the client in response to various requests and to deliver keyboard and other 

· user input on to the appropriate clients. The X Window System allows clients to be 

run on any machine in a network, and be displayed on any other machine( s) in that 

network. 

The X protocol has been implemented with a library so that application pro­

grammers do not have to think in low level terms. This library provides a procedural 

interface that conceals many of the details of the protocol. Various utility functions 

are also provided that are not protocol-related but important in building applications. 

The exact interface for the library may differ for each programming language. The C 

libraries are the most widely used. They include a low-level procedural interface to 

the X protocol called Xlib, which defines an extensive set of functions that provide 

complete access and control over the display, windows, and input devices. 

Although programmers can use Xlib to build applications, this relative low­

level library can be tedious and difficult to use correctly. Many programmer prefer 

to use the higher-level X Toolkit to mask some of the complexity of the X protocol. 

The X Toolkit consists of two parts: a layer known as the Xt Intrinsics, and a set of 

user interface components known as widgets. A widget set implements user interface 

components, while the Xt Intrinsics provides a framework that allows the programmer 

to combine these components to produce a complete user interface. 

There are several widget sets provided by system vendors to implement their 

particular user-interface styles. This project uses the widgets from the OPEN LOOK 

Intrinsics Toolkit (OLIT). The OLIT, based on the Xt Intrinsics from MIT, is one 
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of the three GUI toolkits from OpenWindows. The OpenWindows environment sup­

ports the OPEN LOOK Graphical User Interface, which specifies windows and menus 

with common graphic symbols so that users are presented with a consistent screen 

layout that can be used across various platforms and operating systems. 

Both the Xt Intrinsics and the OLIT widget set are written in C and built 

on the top of Xlib. Applications often use Xlib, the Xt Intrinsics, and the OLIT 

widget set as a complete system for constructing user interfaces. Figure 3.1 shows 

the architecture of an application based on a widget set and the Xt Intrinsics. 

Application 

Widget Set 
Xt Intrinsics 

Xlib C Language Interface 

Network Interface 

X Server 

Figure 3.1: Programmer's view of the X Window System. 

An important X concept which needs to be introduced here is the event. An 

event is a notification, sent by the X server to a client, that some condition has 

changed. The server generates events as a result of some user input, or as a side 

effect of a request to the X server. The server sends each event to all interested 

clients, who determine what kind of event has occurred by looking at the type of the 

event. To receive events, applications must specifically request the X server to send 
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the types of events in which they are interested. Most X applications are completely 

event-driven and are designed to wait until an event occurs, respond to the event, 

and then wait for the next event. The event-driven approach provides a natural 

model for interactive applications. The user does not need to navigate a deep menu 

structure and can perform any action at any time. The user, not the application, is 

in control. The application simply performs some setup and goes into a loop from 

which application functions may be invoked in any order as events arrive. 

Managing resources is an important part of programming with X. Resources 

are named data units that specify widget attribute values such as colors, fonts, images, 

text, positions and sizes of windows, or any customizable parameter that affects the 

behavior of the application. Resources can be set in four ways: 

• In the application code when/after the widget is created. 

• Through the resource database. 

• In a command line option. 

• Dynamically while the application is running. 

If a resource is not set in any of these ways, OLIT will set the resource to a default 

value. Setting resources in source code is considered as hard. Users cannot customize 

hard coded resources unless the source code is modified and recompiled. Therefore, 

the application programmer should only set the resource values in program for the re­

sources that are not allowed to be changed by a user. To make programs customizable, 

a good approach is to provide an application default resource file for every program 

so that uses can customize an application by simply changing the appropriate entries 

in the resource file. 
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When an OLIT program is initialized, the connection to the X server is set and 

the resource database is created and embedded with the program. The resource 

specifications in the user's resource files are loaded into the resource database. The 

four resource files are the application defaults file whose path can be identified by the 

environment variable XFILESEARCHPATH, the per-user application defaults file 

whose path is identified by the environment variable XUSERFILESEARCHPATH, 

the user's defaults which is the file ;Xdefaults, and the user's per-host defaults whose 

path can be identified by the environment variable XENVIRONMENT. 



Chapter 4 

Project Development 


This project is an application based on OPEN LOOK Intrinsics Toolkit, which follows 

an object-oriented and event-driven model. In general, such an application consists 

of three parts: 

1. 	creating and manipulating OLIT widgets to build the desired user interface; 

2. 	 using C/C++/Xlib to develop the application code, i.e., the code that performs 

the actual work on the application's data; 

3. 	 attaching the application code to the user interface via callback procedures and 

event handlers that are executed when the user performs some action on a 

widget. Attaching specific procedures to specific widgets allows programmers 

to produce modular source code. 

4.1 Interface Structure 

In this section, we discuss the widget hierarchy used in SAT. As in Figure 2.2, we can 

divide the initial screen of SAT into four areas: Control Panel, Canvas, Message 

Panel, and Information Panel. The hierarchy structure is depicted in Figure 4.1 

and explained below. The names of OLIT widget classes are underlined. 

The toplevel is a shell widget, created by the call to initialize the Toolkit. 

A shell widget must have exactly one child widget. The shell widget serves as a 
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Control Panel 

Figure 4.1: Primary structure of SAT. 

wrapper around its child, providing an interface between the child widget and the 

window manager. The RubberTile widget, as the only child of toplevel, manages 

two children widgets in a row. Relative weights can be assigned to each child so 

that it expands or contracts a certain percentage of size changes of the RubberTile. 

The FooterPanel widget attaches a footer at the bottom of a window so that various 

messages can be displayed in the footer area. The ControlArea widget manages two 

important parts: Control Panel and Canvas. 

The Control Panel contains six MenuButton widgets: File, Check, Undo, 

Parameters, Mode and Calculation, managed by a ControlArea widget. Each of 

them has its own pop-up menu, containing further OblongButton widgets through 

which users call application functions. SAT uses callbacks to link these widgets with 

application functions. 

The Canvas is implemented as a Draw Area widget. This is the window where 

a graph is created, manipulated and displayed. In this area, the events ButtonPress, 
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Bu.ttonMotion, ButtonRelease are all the events in which this application is interest­

ed. Event Handlers are invoked by the Xt Intrinsics when a specific type of event 

occurs. The event type and associated application function are registered using the 

XtAddEventHandler function. 

The Message Panel contains two StaticText widgets to display messages. 

The Information Panel is made of a ControlArea widget managing two 

Caption widgets, a ScrollingList widget and a OblongButton widget in a column. 

The Caption widgets are used to create labels for their child widgets. In our case, 

one StaticText widget shows the number of sequences already loaded and the other 

shows the total score after an alignment is conducted. The scrollingList widget is 

able to display a list of items in a scrollable pane and provides a sophisticated set of 

widget-defined functions for manipulating the items in the list. 

Moreover, there are other interface areas brought up by PopupWindowShell 

and NoticeShell widgets. They represent a way of using widgets. Popup widgets are 

subclassed off the TransientShell class. Popups are not visible until a certain user 

command is given, or a situation arises in which the program requires user input. 

In SAT, Popup widgets are used for a variety of purposes including ( 1) prompt­

ing for input/output file names; (2) setting parameters for calculation; (3) displaying 

sequences and alignments; and ( 4) getting confirmation from users if some "dangerous 

action" happens such as pressing the Clear button. 
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4.2 Displaying Graphs 

The SAT system contains a graph editor. The user is able to edit a (undirected) 

graph in the drawing area in which vertices are represented by circles and edges are 

represented by lines. 

In X Window programming, drawing things like points and lines can be easily 

done by first creating a graphics context (GC) and then calling Xlib graphics functions. 

The GC is an X Window System resource which contains 23 distinct attributes to 

specify things like color and line width. When one object could be overdisplayed by 

another, the GC's GCFunction attribute should be considered since it specifies how 

each pixel of a new image is combined with the current contents of a destination. This 

attribute is commonly set as the X 0 R mode so that drawing a figure twice restores 

the screen to its original state. The SAT system uses this property to erase an image 

and perform rubber banding operations. 

When drawing an object, the coordinates have to be specified in pixel units. 

Coordinates are always relative to the upper left corner of a drawable window. The 

x coordinate increases toward the right and they coordinate increases downwards. 

In the following, we explain how vertices and edges are displayed in SAT. 

A vertex is represented on the screen as a circle ( also called as a node) with 

a radius of r ( = 5 pixels). When a vertex is created by clicking the mouse, the circle 

is displayed such that its center is at the position of the hotspot of the cursor. The 

center's coordinates are also called the coordinates of the vertex and stored as a part 

of the internal representation of the vertex. 
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An edge is represented on the screen by a line connecting two nodes. Inter­

nally, it is represented by a relation between two vertices. Notice that we cannot 

simply draw a line connecting the centers of two nodes since the overlapping parts 

between the line and nodes will not be displayed properly. The natural choice is to 

choose a boundary point from each node. However, to ease the calculation involved, 

it is much easier to simply pick up a boundary point from the surrounding rectangle 

of each node. Therefore we choose the two ending positions of the line as follows. 

Assume two vertices are of coordinates (x1 ,y1 ) and (x 2 ,y2 ) and displayed as nodes of 

radius r. Define the slope 

Define CT-z = 1 if Xt :S x2 and -1 otherwise, and uy = 1 if y1 :S y2 and -1 otherwise. 

(b) k > 1 or k < -1 

Figure 4.2: Deriving the line for an edge. 
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If -1 ::; k ::; 1, as shown in Figure 4.2( a), we calculate 

a= x1 + a,r; b = y1 + a,rk; c = x2 - a,r; d = Y2- a,rk 

If k > 1 or k < -1, as shown in Figure 4.2(b ), we calculate 

Then the line connecting points (a, b) and (c, d) is displayed as the edge connecting 

vertices (xllYt) and (x2,y2). 

Once nodes and lines are drawn, information about them has to be saved by the 

application program since the workstation has no memory of the fact that something 

is drawn. 

Manipulation of vertices and edges is conducted by first selecting corresponding 

nodes and lines. Then procedures are invoked by event handlers to perform some 

actions. From the user's point of view, a selection can be done by moving the cursor 

onto nodes and lines displayed on the screen and then pressing/releasing a mouse 

button. However, from the programmer's point of view, the program has to do 

(maybe a lot of) background computation to compare the user-selected position of 

the cursor with the coordinates of each vertex and see if the difference is small enough 

(predefined). If we imagine vertices and edges as objects in an object-oriented model, 

then every object will (the frequency depends on the types of events registered) receive 

messages concerning whether the hotspot of the cursor is within its neighbourhood 

and the object with a confirmative answer is selected to accept some actions. How is 

the neighbourhood defined for a vertex and for a edge? Assume a vertex has (a, b) as 

its coordinates, then its neighbourhood is defined as {(x, y)llx- al < r and IY- bl < 

r} (r = 5 pixels in SAT). The neighbourhood of an edge, requiring much more 
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computation, is defined as a 2 * r-width band surrounding the line segment. Assume 

the two ends of the line are (a, b) and ( c, d) as shown in Figure 4.2, then the line's 

algebraic equation is 

y-b 

x-a 

b-d 
' a-c 

which can be re-written as 

(b- d)x +(a- c)y +cb- ad= 0. 

The distance between a point (x0 , y0 ) and the line is calculated by 

\(b-d)xo+(a-c)y0 +cb-ad\
dist (x0 ,y0 ,a, b,c, d) = V . 

(b- d) 2 +(a- c)2 

Now we can define the neighborhood of the edge (see Figure 4.3) to be 

{(x,y)\dist(x,y,a,b,c,d) < r, min(a,c) < x < max(a,c),min(b,d) < y < max(b,d)}. 

(c,d) ~ 

The band of width 2 * r 

Figure 4.3: The neighbourhood of an edge. 
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4.3 Data Definition 

In this section, we discuss the primary data structures used in SAT. 

1. Sequence. 

The common set of information of sequences includes the name, a short de­

scription, the sequence itself, format (how the sequence is kept in a file), and the 

category of the sequence. Therefore we use the data structure shown in Figure 4.4 

for the type of sequences. Loaded sequences will be stored in SEQArray, which is 

typedef struct { 
string name; 
string description; 
char *content·

' 
/* sequences * / 

short format; /* FASTA or NBRF/PIR* / 
Boolean is dna; /* DNA/RNA or Protein? * / 

} SEQtype; 

Figure 4.4: The structure for sequences. 

declared as an array of SEQtype. 

2. Graph. 

The graph under the consideration is undirected and weighted. Information 

of a vertex includes its coordinates at the drawing area and the sequence associated 

with it. Knowledge of an edge covers the information of the associated alignment of 

two sequences assigned to the ends. 

We use the adjacency lists structure to represent a graph. That is, each vertex 

is associated with a linked list consisting of all the edges adjacent to this vertex, and 

all vertices are stored in an array. The data types, shown in Figure 4.5, are used 
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to describe the adjacency lists structure. The meaning of each member is easy to 

understand with the given comments. 

typedef struct _EDGE { 
int 
float 
char 
char 
PARAtype 
struct _EDGE 

} EDGEtype 

typedef struct _VERTEX { 
int 
int 
SEQtype 
EDGEtype 

} VERTEXtype; 

index; 
weight; 
*seq1; 
*seq2; 
*para; 
*next; 

_x·
' 

-Yi 
*con; 
*head; 

I* index of the vertex*I 
I* cost of the alignment *I 
I* padded sequence.J. after alignment* I 
I* padded sequence_2 after alignment* I 
I* parameters for doing alignment *I 
I* next edge*I 

/* x-coordinate *I 
I* y-coordinate *I 
I* sequence assinged to the vertex *I 
/* edge list associated to the vertex* I 

Figure 4.5: The adjacency lists structure. 

Considering the size limitation of the display screen, it is unlikely the user will 

draw a graph with over 100 vertices. So, in this package, the number of vertices of 

a graph is restricted to 100. Of course, this number is easily adjusted by redefining 

a constant and recompiling the program. During processing, users can handle only 

one graph at a time. The graph is represented by NODEArray, which is initialized 

statically by declaring an array, with size 100, of VERTEXtype. The offset of each 

element in the array coincides with the vertex label. This permits direct access to 

vertex data and thus reduces the searching operations which would otherwise be used 

so frequently in many functions. The variable node_num is used to keep the number 

of vertices of the graph. Existing vertices are always kept in the first node_num cells 

of NODEArray. 
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The insertion/deletion operations are illustrated as follows: 

• 	 add a vertex: coordinates and/or a sequence of the vertex are inserted into the 

node_num-th cell of NODEArray and node_num increments by 1. 

• 	 add an edge: Assume it connects ith and jth vertex. Then processing will go 

through allocating memory space for one EDGEtype variable, filling it with 

the label of jth vertex and other edge-related information, and inserting it to 

the beginning of the linked list (edges) associated with ith vertex. The similar 

processing is repeated with the exchange of i and j in the above sentence. 

• 	 delete an edge: The linked list associated with each of the two ends is searched. 

The involved items, one from each list, are removed and their memory location 

become free. 

• 	 delete a vertex: All edges connecting to the vertex are deleted. The last vertex is 

moved to the cell of the deleted vertex. The linked lists of the vertices adjoining 

to the former last vertex are updated. node_num decrements by 1. 

Information of an edge is stored in two lists so that it is very convenient to 

design and implement other edge-related procedures. 

4.4 Undoing Facility 

Undoing and redoing are basic facilities that should be provided by any good in­

teractive system. These facilities allow users to cancel a command: to recover from 

operating mistakes that may be damaging and also allow users to do input testing, 

knowing that they can back up easily if the result is not what they expect. 
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To perform an Undo operation, something has to be saved. For example, we 

cannot undo a delete operation unless we have stored the deleted material. Therefore 

a natural question is how to save information efficiently. 

In this project, we developed an one-level undo facility for the graph editor. 

Any editing operation can be undone up to one level. Executing undo twice succes­

sively will let system go back to the state as if the undo operations were not executed. 

We are interested in six types of editing operations. They are moving a node, 

changing the content of a node, inserting a node, deleting a node, inserting an edge 

and deleting an edge. According to the actual amount of information to be saved, we 

define the following data type, as shown in Figure 4.6, to guide information saving. 

The union construct is used to allow storage sharing and a member called flag is 

used for the interpretation of the stored information. 

A memory space undo_buffer is used to save editing information. When an 

editing operation is performed, we first check which part of the graph will be changed 

and old data is saved in undo_buffer, and then the graph is updated as required. 

For the undo command, the most expensive editing is the deletion of a node, 

which involves deleting the node, the edges connecting to it, and rearranging the 

vertex array of the graph. To save all this information, the space of undo_buffer is 

not enough. So we dynamically allocate memory for this purpose. 

4.5 Communication 

One of goals of this software is to provide a tool for testing and analyzing algorithms 

related to sequence alignment. One way of doing this is to implement new algorithms 
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typedef struct { 
UNDOTYPE 
union { 

struct { 
int 
int 

} move...node; 
struct { 

int 
SEQtype 

} change_con; 
struct { 

int 
int 
float 
char 
PARAtype 

} re_edge; 
struct { 

int 
NODEtype 

} re...node; 
} set; 

} undo_type; 

flag; 

index; 
x, y; 

index; 
*content; 

index; 
index2; 
weigh; 
*seql, *seq2; 
*para; 

index; 
node; 

j* one of six types *I 

j* node is moved *I 

I* node's content is changed *I 

I* changing edge* I 

j* changing node *I 

Figure 4.6: Structure for storing editing information. 

as modules and add them to the code of SAT. The obvious disadvantage of this 

method is that the internal structure of SAT has to be understood and the source code 

is subject to change. Alternatively, researchers can implement programs separately, 

and then employ SAT as a graphical user interface. That is, users can use SAT to draw 

a graph, load sequences, connect to a computing program and send all the data to the 

program. After computation is done, all results are sent back and displayed in SAT. 

In this way, the development of a new program does not involve the internal structure 

of SAT and will not affect SAT in any way. For this to work, we need a communication 



40 

protocol with which SAT and other programs can talk to and understand each other. 

First, we design an abstract data type HEADERtype, similar to the type 

defined in Figure 4.5, for representing a graph structure and the sequences/ alignments 

information associated with it. Then we develop a set of functions which support 

loading variables of type HEADERtype from formatted files and storing data of 

the type into files with a given format. The type HEADERtype is based on the 

concept of adjacency lists, a very common data structure for graphs. This should be 

useful in implementation of algorithms dealing with evolutionary tree construction 

problems. The most important point is that a program supporting data of type 

HEADERtype can communicate with SAT. 

As an exercise, we have developed a program, called tree, based on the tree 

initialization algorithm as shown in Figure 2.1. The organization of the program tree 

is shown in Figure 4.7. 

Steps 1, 2 and 4 can be easily achieved by calling functions defined in our 

library, which are also used in SAT for input/output and retrieving /storing data. 

Therefore the same set of functions for handling input/output provides a base for 

the communication between SAT and tree. The third step of tree is allowed to 

be extended and modifyed to do more task without worrying about SAT. Now the 

relation between these two can be described as: 

• 	 Use SAT to create a graph with certain information; 

• 	 Use the fork, exec and pipe Unix system calls to create a new process, to run 

tree on the new process and to open a communication channel so that data of 

SAT ":flow" over to tree. The functions designed for getting input/output file 
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j1. 	Get input and output file pointerj 

l 
12. Load variables of type HEADtype from a file I 

l 
3. Convert to proper data structures 

and 

calculate 

l 

4. Save data of type HEADtype to a file 

Figure 4.7: The organization of tree. 


pointers include manipulation of pipes. 


• 	 tree gets data from the pipe, performs the calculation and puts resulting data 

back to the pipe. 

• 	 SAT gets data from the pipe and displays the data. 

The successful separation and communication between SAT and tree sets a 

model as how to use SAT as a friendly user interface to support related programs. 

This gives our system some flavour of client-server computing. 



Chapter 5 

Sequence Analysis Tool 


This chapter is a brief introduction to Sequence Analysis Tool (SAT). To produce 

a good interface display, it is the best to run the program in the OpenWindows 

environment on a Sun SPARCstation with a color monitor. 

5.1 Getting Started 

Sequence Analysis Tool (SAT) 
(Version 1.0) 

Xl«>gdong Chen 

~11, 1954 

An Interactive System 
For 

Sequence Alignment 

Figure 5.1: Initial screen of SAT. 
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To get started, move to the directory where SAT is installed and type 

setenv XENVIRONMENT Resources 

sat 

Figure 5.1 shows the initial screen with an introduction message. Pressing any mouse 

button in the window where the message is displayed will erase the message and 

set the system ready to work for you. If the screen is not displayed properly, check 

whether the file Resources is included in the directory and check the value of the 

XENVIRONMENT variable. 

5.2 Screen Display 

To introduce the features, we divide the SAT screen into four main areas as shown in 

Figure 5.2. The Control Panel provides six menu-buttons, each has a menu associated 

Control Panel 

Information 
Canvas Panel 

Message Panel 

Figure 5.2: The main screen structure of SAT. 


with it. The user chooses a menu item to invoke an action or set the mouse to a 
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working mode. The Canvas takes up most of the screen. It is the area where graphs are 

composed and manipulated, and relevant data are displayed. The Information Panel 

shows the number and the names of loaded sequences, and displays the score of an 

alignment. The Message Panel is the place where SAT displays messages responding· 

to the user's operations. In the following sections, we will show how to operate SAT 

and some input requirements. 

Since SAT is mouse-operated, it is important to be familiar with the functions 

of each mouse button. Following the OpenWindows Version 3 User's Guide, we 

will refer to mouse buttons by functions, that is, 

1. SELECT = the left mouse button 

2. ADJUST = the middle mouse button 

3. MENU= the right mouse button. 

But we will also refer to mouse buttons by their positions when it is more convenient. 

5.3 Canvas and the Representation of Graphs 

On the Canvas a graph is represented as a collection of nodes and edges. In the 

context of sequence analysis, a node is assigned a sequence and an edge is assigned 

an alignment of the two sequences associated with the two end nodes. In order to let 

the user visualize the assignment, we use the following display strategy. 

A small circle is used to denote a node, called an empty node, which has not 

been assigned any sequence. If a sequence is assigned to a node, the node becomes 

solid, also called a full node. The sequence's name is displayed above the node . 
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An edge has a dark color if it has been assigned a pairwise alignment. Other­

wise an edge has a light color. 

Information about a sequence includes 

• sequence description. 

• sequence name. 

• sequence storing format. 

• DNA/RNA or Protein. 

Information about a pairwise alignment includes 

• score. 

• length. 

• the number of matches. 

• the number of mismatches. 

• the number of gaps. 

• the number of insert/delete operations. 

• the actual alignment. 

How to manipulate a graph, ass1gn sequences and alignments and view the 

information will be shown later. 

5.4 Command Panel 

This panel contains six menu-buttons. Press MENU on a menu-button to bring up 

its menu. To choose an item on the menu, simply click SELECT on the item and 

then its associated function is invoked. Directly press SELECT on a menu-button to 

select the default menu item. 
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1. 	File Menu contains items to handle loading a sequence/graph file, saving a graph 

file and quitting SAT. 

• Press 	MENU on Load, and then select the Sequence menu item to dis­

play the Load Sequence File window, through which a sequence file in any 

directory can be selected. Then the sequences are loaded and their names 

are displayed in the Information Panel. The format of a sequence file is 

explained in Section 5.10. 

• Press 	MENU on Load, and then select the Graph menu item to display 

the Load Graph File window, which is similar to the Load Sequence File 

window. The graph files should have been generated by SAT. 

• Selecting the Save menu item displays a window prompting for a file name 

to save the information about the graph shown on the screen, and the 

sequences and alignments assigned to the graph. No restriction has been 

set for choosing a file name. 

• Select the Quit menu item to quit SAT. 

2. 	Validation Menu contains items to verify whether the drawn graph is a tree or 

connected. The Check menu item is used to print internal data for debugging 

purposes. 

3. 	Undo Menu contains Undo Last Action and Clear commands. 

• 	 The Undo Last Action command will reverse the effect of the last graph 

editing command issued. 
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• 	 The Clear command will erase all objects in the Canvas. A window will 

show up to get the use's confirmation. 

4. 	Parameters Menu contains one command which will display a window con­

taining three fields (1) file of score matrix; (2) gap-open penalty and (3) gap­

extension penalty. Without a valid setting of these values, the system will refuse 

to perform alignment operations. For the file format of a score matrix, refer to 

Appendix C. 

5. 	Mode Menu contains five menu items. Each assigns a mode to the mouse so 

that it can play many different roles in Canvas. The name of the selected 

mode is displayed on the right side of the menu-button to remind the user 

of the current mode of the mouse. The five modes will be explained in next 

five sections. When designing mouse buttons to deal with nodes and edges, 

the general principle is that the left button manipulates nodes and the middle 

button manipulates edges. 

6. 	Calculation Menu contains four commands. 

• 	 The Alignment command calculates an optimal alignment of the two 

sequences associated with each edge of the graph drawn in the Canvas. 

The total cost is displayed in the Information Panel. 

• 	 The Tree Align command conducts a 3-star alignment on each node of 

degree 3 of the graph to have a local optimization. A star ("*") is appended 

to the name of each affected sequence. The user can tell how many times 

3-star alignment has been conducted on a node by counting the number of 
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stars appended to the name of the original sequence assigned to the node. 

Based on the modified sequences, an optimal pairwise alignment for each 

edge is conducted again so that the alignment associated with each edge 

is also updated, and the total score window is updated. 

• 	 The WJ Method command, for initializing the internal nodes of the 

graph (now it must be a tree such that each node has a degree of either 1 

or 3), invokes the tree program and sends it all the sequences and the tree 

structure drawn in the Canvas. After the completion of the tree program, 

its output, including the initial sequences for internal nodes of the graph, 

is sent back to SAT. 

• 	 The Others command displays a window so that the user can specify a 

compatible program and execute it. A program is compatible when it 

is developed using several convenient input/output functions provided by 

this package and designed to communicate with SAT. 

5.5 Manipulating Graphs 

Select Editing from the Mode Menu. Now the mouse is ready for graph editing. 

• 	 Creating a node: Press/Release the left button. An empty node is created at 

the location of the mouse cursor when the button is released. 

• 	 Moving a node: Press the left button on a node, move the cursor around and 

release the button. The node is moved to the cursor's position when the button 

is released. 
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• 	 Creating an edge: Press the middle button on one node, move the cursor and 

release the button when the cursor is on the other node. 

• Deleting a node: Click the right button on the node. 

• Deleting an edge: Click the right button on the edge. 

Each node will have an index generated by the system. To reverse an editing action, 

select Undo Last Action command from the Undo Menu. 

5.6 Assigning Sequences 

Select Labeling from the Mode Menu. Now the mouse is ready for assigning 

sequences to nodes. 

Press SELECT on an item in the scrolling list of Information Panel to select a 

sequence. Then click the left button on a node. Now the chosen sequence is assigned 

to the node. If the node is full before, the new sequence overwrites the old one. 

To remove a sequence from a node, simply click the right button on the node. 

5.7 Alignments 

Select Aligning from the Mode Menu. Now the mouse is ready for alignment. 

Suppose the parameters for doing alignment have been set. 

• 	 Click the left button on a node of degree 3. A 3-star alignment on the node is 

conducted and the newly obtained sequence is assigned to the node. The new 

sequence's name is the concatenation of the old name with a "*". 
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• 	 Click the middle button on an edge. An optimal pairwise alignment associated 

with the edge is performed. The edge is assigned the information of the new 

alignment. 

5.8 Displaying Sequences and Alignments 

Select Display from the Mode Menu. Now the mouse 1s ready for displaying 

sequences and alignments. 

• 	 Click the left button on a node to display the SEQUENCE window, which 

shows the information related to the sequence assigned to this node. The se­

quence itself is displayed on a text pane and is editable. If the sequence is 

' 
modified and saved, a "?" is appended to the sequence's name. See Figure 5.3. 

GUCUACGGCC AUACCACCCU GAACGCGCCC CGAUCUCGUU 
GAUCUCGGAA GCUAAGCAGG GUCGGGCCUG GUUUAGUACU 
UGGAUGGGAG ACCCGCCUGG GAAUACCGGG UGCUGUAGGG 
cuu 

Figure 5.3: Information about a sequence. 
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• 	 Click the middle button on an edge to display the Pairwise Alignment win­

dow, showing the alignment information associated with the edge. The align­

ment is editable. See Figure 5.4. 

Figure 5.4: Information about a pairwise alignment. 

5.9 Orienting a Tree 

Select Rooting from the Mode Menu. Now the mouse is ready for orienting a tree, 

i.e., redrawing it as a rooted tree. If the system detects the graph is not a tree, it will 

refuse to be in this mode and reset to the Editing mode. 

If the graph is a tree, press / release the left button on a node. Then a rooted 

tree will be drawn such that the selected node is the root and is at the cursor's position 

when the button is released. 
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5.10 File Format 

For SAT to be able to read/write the files of sequences, alignments and graph struc­

tures, we need to specify some file formats. 

Two types of files are used here. One is the pure sequence file, where sequences 

are listed in either FASTA or NBRF/PIR format, which are described later in this 

section. A sample file is shown in Appendix A. 

Another format is designed to include information about sequences, alignments 

and graph structures. A file is divided into into 5 blocks. Block 1 consists of an integer 

and a four-bit number. The integer shows the number of vertices of the graph and the 

four bits show which of next four blocks are valid. Block 2 preceded by "/Edges" shows 

pairs of vertices and real numbers which represent edges and their weights. Block 3 

starting with the key line "/Coordinates of nodes" shows the coordinates of vertices 

at the SAT's drawing area, i.e., Canvas. Block 4 preceded by "/Contents of nodes" 

contains sequences in the order of vertices. The recognized sequence formats include 

FASTA and NBRF/PIR. Finally Block 5, preceded by "/Information of edges", gives 

calculated pairwise alignments associated with the graph and other data. A sample 

file is shown in Appendix B. 

FASTA (PEARSON AND LIPMAN, 1988) FORMAT: The sequences 

are delimited by an angle bracket ">" in column 1. The text immediately after the 

">" is used as the name and the title. Everything on the following lines until the 

next ">" or the end of the file is one sequence. An example is 
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> RABSTOUT rabbit Guinness receptor 

LKMHLMGHLKMGLKMGLKGMHLMHLKHMHLMTYTYTTYRRWPLWMWLPDFGHAS 

ADSCVCAHGFAVCACFAHFDVCFGAVCFHAVCFAHVCFAAAVCFAVCAC 

NBRF/PIR FORMAT is similar to FASTA format but immediately after 

the ">", you find the characters "Pl;" if the sequence is protein or "DL;" if it is 

nucleic acid. The text after the ";" is treated as the sequence name while the entire 

next line is treated as the title. The sequence is terminated by a star ("*") and 

the next sequence can then begin (with a >Pl; etc ). This is just the basic format 

description (there are other variations and rules). An example is 

>P1;RABSTOUT 

rabbit Guinness receptor 

LKMHLMGHLKMGLKMGLKGMHLMHLKHMHLMTYTYTTYRRWPLWMWLPDFGHAS 

ADSCVCAHGFAVCACFAHFDVCFGAVCFHAVCFAHVCFAAAVCFAVCAC* 



Chapter 6 

Testing 


In this chapter, we present an example execution of SAT. The testing data 

(sequences, tree structure and score system) are chosen from the paper [18] of Sankoff, 

Cedergren and Lapalme. The input j output files and score matrix are presented in 

Appendices A, B and C. The test proceeds as follows. 

1. 	Load the sequences. 

The required sequences with the FASTA format are manually typed in a file 

(see Appendix A). To load the sequences, click on 

file ---t open ---t sequence 

and then select the file from the newly popped-up window. Now sequences are 

loaded into SAT with their names displayed on the scrolling menu of the right 

hand side. 

2. 	 Draw the tree. 


The tree can be drawn easily by using graph editor facility of SAT. 


3. 	Assign sequences to the external nodes (leaves) of the tree. 

Click on 


Mode ---t Labelling 
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to set the mouse mode so that, when an item is selected from the scrolling menu 

of sequence names and a node on the drawing screen is selected, the sequence 

is assigned to the node. Figure 6.1 shows the constructed phylogeny, whose 

external nodes have been assigned sequences. 

I 
B.sL~ilus 
~7 

Figure 6.1: The phylogeny. 
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4. 	 Select parameters for the alignment. 

Use the Parameters button to display the ALIGNMENT PARAMETERS win­

dow, then specify the score matrix file and values for gap penalties. See Fig­

ure 6.2. Refer to Appendix C for the score matrix file sankoffSCORE. 

Figure 6.2: ALIGNMENT PARAMETERS window. 

5. 	 Run the program "tree" to initialize the internal nodes. 

Click on 


Calculation ------+ WJMethod. 


Or click on 


Calculation ------+ Others ... 


to display the Calculation Method window, then type (tree [optionl] [option2]) 

to invoke the tree program such that an root is chosen on the edge of connecting 

the node of index option with that of index option2. All the data about the 

sequences and the tree structure are sent to the tree program, which will do 

calculation and construct sequences to be associated with internal nodes. Then 

results are sent back to SAT and the screen is updated. 
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6. Perform pairwise alignments on all edges 

Click on 


Calculation ----+ Alignment. 


After the pairwise alignment of the two sequences associated with each edge is 

completed, the current score of the tree is obtained and displayed in the Total 

Cost window. See Figure 6.3. 

T.Utills 

•a S.C...lber9enois 

P.Fluorescens 

~I: ,., ~ 
'\.­ ~./"'

13 15 

Chi hen 

Figure 6.3: Alignment after initialization of internal nodes. 
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7. Perform tree alignment 

Click on 


Calculation --+ treealign. 


A local optimization is conducted on each internal node once. A "*" will be 

appended to an internal node if a local optimization is done on it. The new 

score is displayed. See Figure 6.4. 

Figure 6.4: Executing local optimization (first round). 
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8. Repeat tree alignment 


Repeat the above local optimization step, the result is displayed in Figure 6.5. 


T.Ut!l!s 

•a 

P.Fluoroscens 

S.C...lber9'"S1s 

~r:. ... .. -
~·- ~./., 

1.3 15 

Figure 6.5: Executing local optimization (second round). 

9. 	 Save the alignment result to a file. 

Click on 


file --t save 


to display the Save File window. Then type a :file name. The alignment result 

is shown in Appendix B. 

As shown in the above :figures, after the internal nodes of the tree are initialized 

with the tree program. The t otal score is 370.00 . T v,:o successive rounds of local 

optimization on every node bring the score down to 305.25 and .304.25. We have 
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continued more rounds of local optimalizations, conducted in various order of nodes. 

The score was unchanged. However, this does not mean that we have found an 

optimal tree alignment for the given data. Assigning different sequences to internal 

nodes at the initialization stage keeps the final score stable with different values. So 

far, the best score we have got is 297.25 obtained by assigning sequences extracted 

from [18] to the internal nodes at the initialization stage. 



Chapter 7 

Concluding Remarks 


Sequence Analysis Tool is aimed to provide an interactive tool for the performance 

analysis of various alignment-related algorithms. Now it provides a friendly graphical 

user interface for performing tasks related to pairwise alignment, tree alignment with 

a given structure and 3-star alignment. It may also be used to preprocess data for 

other activities such as multiple alignments, phylogenetic reconstruction, etc, which 

requires the distance between any two sequences under consideration. 

As regard adding more features to SAT, a good candidate that may take advan­

tage of the graphical displaying service of SAT is the feature for doing phylogenetic 

reconstructions, which can be described as: given a collection of sequences, recon­

struct a branching structure, termed a phylogeny or tree, that illustrates the ancestral 

relationships between the sequences. A very commonly used algorithm for this purpose 

is the Neighbor Joining method proposed by Saitou and Nei [22]. 

An interesting survey concerning sequence comparison methods has been con­

ducted by Chan, Wong and Chiu [4]. A useful resource of information on various 

software of sequence analysis is the site, accessible through anonymous ftp to 

evolution.genetics.washington.edu 

SAT, in its first version, serves as a prototype for further improvement. In 

the future development, the following points should be considered. 

Concerning the X Toolkit, although OLIT and OpenWindows are quite friendly 
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http:evolution.genetics.washington.edu
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and well-developed, the market has made the X/Motif Toolkit the most popular de­

velopment tool in the X-based GUI industry. So, for a serious development, X/Motif 

Toolkit should be applied instead. This was actually given as an advice, in a private 

talk with a representative of Sun Microsystem. 

There are lots of applications that use graphs to represent relationships. A 

graph editor is actually needed in many interactive software systems. More gener­

ic approaches should be considered in the development of a graph editor so that the 

source code can be reused and extended in different applications. Therefore objected­

oriented design and programming should be followed. In fact, there are generic C++ 

libraries [23], including a generic class definition for representing graphs, which is im­

plemented through the adjacency lists data structure. By the class inheritance feature 

of objected-oriented programming, the generic graph class can be easily extended to 

represent and handle graphs required in various applications. 

Therefore, C++ and Motif are recommended for the continuation of this 

project. 



Appendix A 

Sample Sequences File (input) 


The following nine sequences are extracted from [18]. The sequences are written in 

FASTA format. 

>e.Coli 9-1Sankoff 

UGCCUGGCGG CCGUAGCGCG GUGGUCCCAC CUGACCCCAU GCCGAACUCA GAAGUGAAAC 

GCCGUAGCGC CGAUGGUAGU GUGGGGUCUC CCCAUGCGAG !GU!GGGAAC UGCCAGGCAU 

>P.Fluorescens 9-2Sankoff 

UGUUCUUUGA CGAGUAGUAG CAUUGGAACA CCUGAUCCCA UCCCGAACUC AGAGGUGAAA 

CGAUGCAUCG CCGAUGGU!G UGUGGGGUUU CCCCAUGUCA !GAUCUCGAC CAUAGAGCAU 

>S.Carlbergensis 9-3Sankoff 

GGUUGCGGCC AUACCAUCUA GAAAGCACCG UUCUCCGUCC GAUAACCUGU AGUUAAGCUG 

GUAAGAGCCU GACCGAGUAG UGUAGUGGGU GACCAUACGC GAAACCUAGG UGCUGCAAUC U 

>Human 9-4Sankoff 

GUCUACGGCC AUACCACCCU GAACGCGCCC GAUCUCGUCU GAUCUCGGAA GCUAAGCAGG 

GUCGGGCCUG GUUAGUACUU GGAUGGGAGA CCGCCUGGGA AUACCGGGUG CUGUAGGCUU 
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>Xenopus 9-5Sankoff 

GCCUACGGCC ACACCACCCU GAAAGUGCCC GAUCUCGUCU GAUCUCGGAA GCCAAGCAGG 

GUCGGGCCUG GUUAGUACUU GGAUGGGAGA CCGCCUGGGA AUACCAGGUG UCGUAGGCUU 

>Chlorella 9-6Sankoff 

AUGCUACGUU CAUACACCAC GAAAGCACCC GAUCCCAUCA GAACUCGGAA GUUAAACGUG 

GUUGGGCUCG ACUAGUACUG GGUUGGGAGG AUUACCUGAG UGGGAACCCC GACGUAGUGU 

>Chichen 9-7Sankoff 

GCCUACGGCC AUCCCACCCC UGUAACGCCC GAUCUCGUCU GAUCUCGGAA GCUAAGCAGGG 

UCGGGCCUGG UUAGUACUUG GAUGGGAGAC CUCCUGGGAA UACCGGGUGC UGUAGGCUU 

>B.Stearothermophilus 9-8Sankoff 

CCUAGUGACA AUAGCGAGGA GAGAAACACC CGUCUCCAUC CCGAACACGA AGGUUAAGCUC 

UCCCAGCGCC GAUGGUAGUU GGGGCCAGCG CCCCUGCAAG AGUAGGUUGU CGCUAGGC 

>T.Utilis 9-9Sankoff 

GGUUGCGGCC AUAUCUAGCA GAAAGCACCG UUCUCCGUCC GAUCAACUGU AGUUAAGCUGC 

UAAGAGCCUG AUCGAGUAGU GUAGUGGGUG ACCAUACGCG AAACUCAGGU GCGCAAUCU 



Appendix B 

Sample Output File 


This is extracted from the output of the testing described in Chapter 6. The local opti­

mization has been applied three times on each internal node. 

/presentation of a graph. 


16 1111 


/Edges 


0 9 21.50 


[the above line means the edge connecting 0,9 has weight 39.00] 


[other lines were deleted] 


/Coordinates of nodes 


48 367 I* the first node's coordinates *I 


[other lines were deleted] 


/Contents of nodes 


[Here come first 9 sequences assigned to leaves, they are listed 


in Appendix A, and therefore omitted here. ] 

>derived#O*** updated by star-align 

UGCCUAGUGA CAGUAGUAGC AGUGGAACAC CUGACCCCAU CCCGAACUCA GAGGUGAAAC 

GCCGCAGCGC CGAUGGUAGU GUGGGGUCUC CCCAUGCAAG AGUAGGGAAC CGCUAGGCAU 

>derived#7*** updated by star-align 

GCCUAGUGAC AAUAGCUAGC AGAGAAACAC CCGUCUCCAU CCCGAACACA GAGGUUAAGC 

UCCCCAGCGC CGAUGGUAGU GUGGGGUCAC CCCAUGCAAG AGUAGGGUGC CGCUAGGCU 
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>derived#8*** updated by star-align 

GCCUACGGCC AUACCUAGCA GAAAGCACCC GUCUCCGUCC GAUCACAGAA GUUAAGCUGC 

UCAGAGCCUG AUGAGUAGUG UAGUGGGUGA CCACAUGCGA AAAUCAGGUG CUGCAGUCU 

>derived#8**** updated by star-align 

GGUUGCGGCC AUACCUAGCA GAAAGCACCG UUCUCCGUCC GAUCACCUGU AGUUAAGCUG 

CUAAGAGCCU GAUCGAGUAG UGUAGUGGGU GACCAUACGC GAAACUCAGG UGCUGCAAUC U 

>derived#3*** updated by star-align 

GUCUACGGCC AUACCACCAC GAAAGCACCC GAUCCCGUCC GAUCUCGGAA GUUAAGCAUG 

GUCGGGCCUG AUUAGUACUG GGAUGGGAGA CCACCUGGGA AAACCAGGUG CUGUAGUCU 

>derived#3*** updated by star-align 

GUCUACGGCC AUACCACCCU GAAAGCGCCC GAUCUCGUCU GAUCUCGGAA GCUAAGCAGG 

GUCGGGCCUG GUUAGUACUU GGAUGGGAGA CCGCCUGGGA AUACCAGGUG CUGUAGGCUU 

>derived#3*** updated by star-align 

GUCUACGGCC AUACCACCCU GAAAGCGCCC GAUCUCGUCU GAUCUCGGAA GCUAAGCAGG 

GUCGGGCCUG GUUAGUACUU GGAUGGGAGA CCGCCUGGGA AUACCGGGUG CUGUAGGCUU 

/Information of edges 


#MATRIX = sankoffSCORE, GAP OPEN PANELITY =O.OO,GAP EXTEND PANELITY =2.25, 


#SCORE =21.50, LENGTH =121, 


#MATCH =105, MISMATCH =14, GAPs =2, INDEL =2 


0: UGCCUGGCGG CCGUAGC-GC GGUGGUCCCA CCUGACCCCA UGCCGAACUC AGAAGUGAAA 

9: UGCCUAGUGA CAGUAGUAGC AGUGGAAC-A CCUGACCCCA UCCCGAACUC AGAGGUGAAA 

IIIII I I I 1111 II 1111 I I 1111111111 I 11111111 Ill 111111 

0: CGCCGUAGCG CCGAUGGUAG UGUGGGGUCU CCCCAUGCGA GAGUAGGGAA CUGCCAGGCA U 

9: CGCCGCAGCG CCGAUGGUAG UGUGGGGUCU CCCCAUGCAA GAGUAGGGAA CCGCUAGGCA U 

IIIII 1111 1111111111 1111111111 11111111 I 1111111111 I II IIIII I 

**************************************************** 
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#MATRIX = sankoffSCORE, GAP OPEN PANELITY =O.OO,GAP EXTEND PANELITY =2.25, 


#SCORE =34.50, LENGTH =123, 


#MATCH =102, MISMATCH =15, GAPs =6, INDEL =6 


1: UGUUCUUUGA CGAGUAGUAG CAUUGGAACA CCUGAUCCCA UCCCGAACUC AGAGGUGAAA 

9: UGCCUAGUGA C-AGUAGUAG CAGUGGAACA CCUGACCCCA UCCCGAACUC AGAGGUGAAA 

II Ill I 11111111 II 1111111 IIIII 1111 1111111111 1111111111 

1: CGAUGCAUCG CCGAUGGUAG UGUGGGGUUU CCCCAUGUCA AGA-UCUCGA -CCA-UAGAG CAU 

9: CGCCGCAGCG CCGAUGGUAG UGUGGGGUCU CCCCAUG-CA AGAGUAGGGA ACCGCUAG-G CAU 

II Ill II 1111111111 11111111 I 1111111 II Ill II II Ill I Ill 

**************************************************** 


#MATRIX= sankoffSCORE, GAP OPEN PANELITY =O.OO,GAP EXTEND PANELITY =2.25, 


#SCORE =12.75, LENGTH =122, 


#MATCH =114, MISMATCH =6, GAPs =2, INDEL =2 


2: GGUUGCGGCC AUACC-AUCU AGAAAGCACC GUUCUCCGUC CGAUAACCUG UAGUUAAGCU 

12: GGUUGCGGCC AUACCUAGC- AGAAAGCACC GUUCUCCGUC CGAUCACCUG UAGUUAAGCU 

1111111111 IIIII I I 1111111111 1111111111 1111 IIIII 1111111111 

2: GGUAAGAGCC UGACCGAGUA GUGUAGUGGG UGACCAUACG CGAAACCUAG GUGCUGCAAU CU 

12: GCUAAGAGCC UGAUCGAGUA GUGUAGUGGG UGACCAUACG CGAAACUCAG GUGCUGCAAU CU 

I 11111111 Ill 111111 1111111111 1111111111 111111 II 1111111111 II 

**************************************************** 


#MATRIX = sankoffSCORE, GAP OPEN PANELITY =O.OO,GAP EXTEND PANELITY =2.25, 


#SCORE =1.75, LENGTH =120, 


#MATCH =119, MISMATCH =1, GAPs =0, INDEL =0 


3: GUCUACGGCC AUACCACCCU GAACGCGCCC GAUCUCGUCU GAUCUCGGAA GCUAAGCAGG. 

15: GUCUACGGCC AUACCACCCU GAAAGCGCCC GAUCUCGUCU GAUCUCGGAA GCUAAGCAGG 

1111111111 1111111111 Ill 111111 1111111111 1111111111 1111111111 

3: GUCGGGCCUG GUUAGUACUU GGAUGGGAGA CCGCCUGGGA AUACCGGGUG CUGUAGGCUU 

15: GUCGGGCCUG GUUAGUACUU GGAUGGGAGA CCGCCUGGGA AUACCGGGUG CUGUAGGCUU 

1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 
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#MATRIX = sankoffSCORE, GAP OPEN PANELITY =O.OO,GAP EXTEND PANELITY =2.25, 


#SCORE =6.00, LENGTH =120, 


#MATCH =114, MISMATCH =6, GAPs =0, INDEL =0 


4: GCCUACGGCC ACACCACCCU GAAAGUGCCC GAUCUCGUCU GAUCUCGGAA GCCAAGCAGG 

14: GUCUACGGCC AUACCACCCU GAAAGCGCCC GAUCUCGUCU GAUCUCGGAA GCUAAGCAGG 

I 11111111 I 11111111 IIIII 1111 1111111111 1111111111 II 1111111 

4: GUCGGGCCUG GUUAGUACUU GGAUGGGAGA CCGCCUGGGA AUACCAGGUG UCGUAGGCUU 

14: GUCGGGCCUG GUUAGUACUU GGAUGGGAGA CCGCCUGGGA AUACCAGGUG CUGUAGGCUU 

1111111111 1111111111 1111111111 1111111111 1111111111 11111111 

**************************************************** 


#MATRIX = sankoffSCORE, GAP OPEN PANELITY =O.OO,GAP EXTEND PANELITY =2.25, 


#SCORE =42.00, LENGTH =123, 


#MATCH =95, MISMATCH =21, GAPs =7, INDEL =7 


5: AUGCUACGUU CAUAC-ACCA CGAAAGCACC CGAUCCCAUC AGAACUCGGA AGUUAAACGU 

13: GU-CUACGGC CAUACCACCA CGAAAGCACC CGAUCCCGUC CGAUCUCGGA AGUUAAGCAU 

I IIIII IIIII 1111 1111111111 1111111 II II 111111 111111 I I 

5: GGUUGGGCUC GACUAGUACU GGGUUGGGAG GAUUACCUGA GUGGGAACCC CG-AC-GUAG UGU 

13: GGUCGGGCCU GAUUAGUACU GGGAUGGGAG -ACCACCUG- G-GAAAACCA GGUGCUGUAG UCU 

Ill 1111 II II IIIII I I I II I I II IIIII II II I 1111 I I 

**************************************************** 


#MATRIX= sankoffSCORE, GAP OPEN PANELITY =O.OO,GAP EXTEND PANELITY =2.25, 


#SCORE =10.75, LENGTH =121, 


#MATCH =115, MISMATCH =4, GAPs =2, INDEL =2 


6: GCCUACGGCC AUCCCACCCC UGUAA-CGCC CGAUCUCGUC UGAUCUCGGA AGCUAAGCAG 

15: GUCUACGGCC AUACCACCC- UGAAAGCGCC CGAUCUCGUC UGAUCUCGGA AGCUAAGCAG 

I 11111111 II 111111 II II 1111 1111111111 1111111111 1111111111 

6: GGUCGGGCCU GGUUAGUACU UGGAUGGGAG ACCUCCUGGG AAUACCGGGU GCUGUAGGCU U 

15: GGUCGGGCCU GGUUAGUACU UGGAUGGGAG ACCGCCUGGG AAUACCGGGU GCUGUAGGCU U 

1111111111 1111111111 1111111111 Ill 111111 1111111111 1111111111 I 



69 

#MATRIX= sankoffSCORE, GAP OPEN PANELITY =O.OO,GAP EXTEND PANELITY =2.25, 


#SCORE =24.50, LENGTH =122, 


#MATCH =108, MISMATCH =8, GAPs =6, INDEL =6 


7: -CCUAGUGAC AAUAGCGAGG AGAGAAACAC CCGUCUCCAU CCCGAACACG AAGGUUAAGC 

10: 	 GCCUAGUGAC AAUAGCUAGC AGAGAAACAC CCGUCUCCAU CCCGAACACA GAGGUUAAGC 

111111111 111111 II 1111111111 1111111111 111111111 111111111 

7: UCUCCCAGCG CCGAUGGUAG U-UGGGGCCA GCGCCCCUGC AAGAGUAGGU UGUCGCUAGG C­

10: 	 UC-CCCAGCG CCGAUGGUAG UGUGGGGUCA -C-CCCAUGC AAGAGUAGGG UGCCGCUAGG CU 

II 1111111 1111111111 I IIIII II I Ill Ill 111111111 II 1111111 I 

**************************************************** 


#MATRIX= sankoffSCORE, GAP OPEN PANELITY =O.OO,GAP EXTEND PANELITY =2.25, 


#SCORE =2.75, LENGTH =121, 


#MATCH =119, MISMATCH =2, GAPs =0, INDEL =0 


8: GGUUGCGGCC AUAUCUAGCA GAAAGCACCG UUCUCCGUCC GAUCAACUGU AGUUAAGCUG 

12: 	 GGUUGCGGCC AUACCUAGCA GAAAGCACCG UUCUCCGUCC GAUCACCUGU AGUUAAGCUG 

1111111111 Ill 111111 1111111111 1111111111 IIIII 1111 1111111111 

8: CUAAGAGCCU GAUCGAGUAG UGUAGUGGGU GACCAUACGC GAAACUCAGG UGCUGCAAUC U 

12: 	 CUAAGAGCCU GAUCGAGUAG UGUAGUGGGU GACCAUACGC GAAACUCAGG UGCUGCAAUC U 

1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 I 

**************************************************** 


#MATRIX = sankoffSCORE, GAP OPEN PANELITY =O.OO,GAP EXTEND PANELITY =2.25, 


#SCORE =26.75, LENGTH =121, 


#MATCH =104, MISMATCH =14, GAPs =3, INDEL =3 


9: UGCCUAGUGA CAGUAG-UAG CAGUGGAACA CCUGACCCCA UCCCGAACUC AGAGGUGAAA 

10: 	 -GCCUAGUGA CAAUAGCUAG CAGAGAAACA CCCGUCUCCA UCCCGAACAC AGAGGUUAAG 

111111111 II Ill Ill Ill I 1111 II I I Ill 11111111 I 111111 II 

9: CGCCGCAGCG CCGAUGGUAG UGUGGGGUCU CCCCAUGCAA GAGUAGGGAA CCGCUAGGCA U 

10: 	 CUCCCCAGCG CCGAUGGUAG UGUGGGGUCA CCCCAUGCAA GAGUAGGGUG CCGCUAGGC- U 

I II IIIII 1111111111 111111111 1111111111 11111111 111111111 
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#MATRIX =sankoffSCORE, GAP OPEN PANELITY =O.OO,GAP EXTEND PANELITY =2.25, 

#SCORE =44.75, LENGTH =123, 


#MATCH =95, MISMATCH =20, GAPs =8, INDEL =8 


10: GCCUAGUGAC AAUAGCUAGC AGAGAAACAC CCGUCUCCAU CCCGAACACA GAGGUUAAGC 

11: GCCUA-CGGC CAUACCUAGC AGA-AAGCAC CCGUCUCCGU CC-GAUCACA GAAGUUAAGC 

IIIII I I Ill IIIII Ill II Ill 11111111 I II II 1111 II 1111111 

10: UCCCCAGCGC C-GAUG-GUA GUGU-G-GGG UCACCCCAUG CAAGAGUAGG GUGCCGCUAG GCU 

11: UGCUCAGAGC CUGAUGAGUA GUGUAGUGGG UGACCACAUG CGAAAAUCAG GUGCUGC-AG UCU 

I I Ill II I 1111 Ill 1111 I Ill I Ill 1111 I I I I I 1111 II II II 

**************************************************** 


#MATRIX =sankoffSCORE, GAP OPEN PANELITY =O.OO,GAP EXTEND PANELITY =2.25, 


#SCORE =35.50, LENGTH =121, 


#MATCH =98, MISMATCH =19, GAPs =4, INDEL =4 


11: GCCUACGGCC AUACCUAGCA -GAAAGCACC CGUCUCCGUC CGAUCACAGA AGUUAAGC-U 

13: GUCUACGGCC AUACC-ACCA CGAAAGCACC CGAUCCCGUC CGAUCUCGGA AGUUAAGCAU 

I 11111111 IIIII I II 111111111 II IIIII IIIII I II 11111111 I 

11: GCUCAGAGCC UGAUGAGUAG UGUAGUGGGU GACCACAUGC GAAAAUCAGG UGCUGCAGUC U 

13: GGUCGG-GCC UGAUUAGUAC UGGGAUGGGA GACCACCUGG GAAAACCAGG UGCUGUAGUC U 

I II I Ill 1111 1111 II 1111 111111 II IIIII 1111 IIIII 1111 I 

**************************************************** 


#MATRIX = sankoffSCORE, GAP OPEN PANELITY =O.OO,GAP EXTEND PANELITY =2.25, 


#SCORE =21.75, LENGTH =121, 


#MATCH =107, MISMATCH =12, GAPs =2, INDEL =2 


11: GCCUACGGCC AUACCUAGCA GAAAGCACCC GUCUCCGUCC GAUCACA-GA AGUUAAGCUG 

12: GGUUGCGGCC AUACCUAGCA GAAAGCACCG UUCUCCGUCC GAUCACCUGU AGUUAAGCUG 

I IIIII 1111111111 111111111 111111111 111111 1111111111 

11: CUCAGAGCCU GAU-GAGUAG UGUAGUGGGU GACCACAUGC GAAAAUCAGG UGCUGCAGUC U 

12: CUAAGAGCCU GAUCGAGUAG UGUAGUGGGU GACCAUACGC GAAACUCAGG UGCUGCAAUC U 

II 1111111 Ill 111111 1111111111 IIIII I II 1111 IIIII 1111111 II I 
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#MATRIX = sankoffSCORE, GAP OPEN PANELITY =O.OO,GAP EXTEND PANELITY =2.25, 

#SCORE =18.00, LENGTH =120, 


#MATCH =107, MISMATCH =12, GAPs =1, INDEL =1 


13: 	 GUCUACGGCC AUACCACCAC GAAAGCACCC GAUCCCGUCC GAUCUCGGAA GUUAAGCAUG 

14: 	 GUCUACGGCC AUACCACCCU GAAAGCGCCC GAUCUCGUCU GAUCUCGGAA GCUAAGCAGG 

1111111111 11111111 111111 Ill 1111 1111 1111111111 I 111111 I 

13: 	 GUCGGGCCUG AUUAGUACUG GGAUGGGAGA CCACCUGGGA AAACCAGGUG CUGUAGUCU­

14: 	 GUCGGGCCUG GUUAGUACUU GGAUGGGAGA CCGCCUGGGA AUACCAGGUG CUGUAGGCUU 

1111111111 11111111 1111111111 II 1111111 I 11111111 111111 II 

**************************************************** 


#MATRIX = sankoffSCORE, GAP OPEN PANELITY =O.OO,GAP EXTEND PANELITY =2.25, 


#SCORE =1.00, LENGTH =120, 


#MATCH =119, MISMATCH =1, GAPs =0, INDEL =0 


14: GUCUACGGCC AUACCACCCU GAAAGCGCCC GAUCUCGUCU GAUCUCGGAA GCUAAGCAGG 

15: GUCUACGGCC AUACCACCCU GAAAGCGCCC GAUCUCGUCU GAUCUCGGAA GCUAAGCAGG 

1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 

14: 	 GUCGGGCCUG GUUAGUACUU GGAUGGGAGA CCGCCUGGGA AUACCAGGUG CUGUAGGCUU 

15: 	 GUCGGGCCUG GUUAGUACUU GGAUGGGAGA CCGCCUGGGA AUACCGGGUG CUGUAGGCUU 

1111111111 1111111111 1111111111 1111111111 IIIII 1111 1111111111 

**************************************************** 



Appendix C 

Score Matrix File Format 


The following are two sample matrix .files for score systems used in SAT. They should 

clearly demostrate how to construct a compatible matrix file. The first one show a matrix 

where different pair has a different score. 

## file name: sankoffSCORE 

## Score scheme from Sankoff's paper. 

## Number of letters in alphabet =4 

## 

.A. c u G 

0 1.75 1. 75 1 

0 	 1 1. 75 

0 	 1.75 


0 


The next format has a constant score on each match pair and mismatch pair. 

## .A. constant cost for mismatch 

# The mismatch and match cost are 1 0 

.A. B C D E F G H I J K L M N 0 P Q R S T U V W X Y Z 
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