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Abstract 


DNA microarray technology makes it possible to analyze the expression levels of 

many thousands of genes simultaneously. One of the goals of microarray data analysis 

is to understand the multiple biological roles of genes and their interactions in complex 

biological processes. Genes with similar expression patterns are likely to share similar 

functions or biological processes. Therefore, analysis of changes in gene expression of a 

certain biological processes over time is of particular interest. Unsupervised clustering 

methods provide an efficient way of finding overall patterns and tendencies by cluster­

ing microarray gene expression data. The genes in the same cluster are regulated in a 

similar manner based on the assumption above. But traditional unsupervised cluster­

ing methods usually end up with clusters of genes with similar expression patterns but 

without interpretations describing the clusters in terms of gene functions or processes 

involved. 

In this project, some statistical techniques are applied to analyze the data set from 

microarray experiments of sporulation in yeast. These techniques include LOWESS 

data normalization, which is intended to remove the systematic variations from the 

data; a partitional clustering method, K-means, is used with initial centroids obtained 

from hierarchical clustering method of DIANA; the "gap statistic" technique is im­
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plemented to estimate the "optimal" number of clusters in the data set; and finally 

multiple hypothesis testing is used to determine whether biologically related genes 

are statistically over-represented in the gene clusters using the web query tool FatiGO. 

These methods are combined with graphical representation of cluster profile shape and 

colour maps of up and down regulation via heat maps. Application of these methods 

to a yeast sporulation time-course data set [Chu et al. 1998] demonstrates the utility 

of cluster analysis to such data sets and provides an automated method for including 

biological information about gene function and characteristics. 
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Chapter 1 

Introduction 

The DNA microarray (also known as biochip, DNA chip, or gene chip) technology has 

had a significant impact on genome studies, making it possible to study the activities 

(changes in gene transcription) of many thousands of genes simultaneously instead of 

working on a gene-by-gene basis [Leung and Cavalieri 2003]. This technology is being 

broadly used in identification and diagnosis of complex genetic diseases, new drug 

discovery, etc. 

DNA molecules on a chromosome within a cell usually contain all the genes of the 

organism. Each gene is a segment or region of the long double-stranded DNA which has 

specific function(s) to control the cell activities [Calladine and Drew 1997]. The central 

dogma of molecular biology is that DNA is transcribed into mRNA and then mRNA is 

translated into protein. A gene is expressed or active if its DNA has been transcribed 

to single-stranded mRNA. Gene expression is the level (amount/abundance of the 

mRNA) of transcription of the DNA of the gene [Nguyen et al. 2002]. Changes to the 

cell's internal or external environment can lead to changes in gene expression levels. 
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Finding gene groups with similar gene expression patterns may help in understanding 

a gene's functional behaviour over multiple conditions or experimental samples. For 

example, many human diseases (e.g. cancer) may be diagnosed by identifying certain 

changes in gene expression under some conditions. 

The fundamental basis of DNA microarray is the measurement of the gene ex­

pression levels during biological processes. Microarray technology provides a means 

to compare gene expression levels in particular cell samples over a particular time or 

under multiple experimental conditions across different tissues or disease states, such 

as, diseased versus healthy tissue, or tissue untreated versus treated by a drug. 

The commonly used statistical approaches for microarray data analysis include 

inferential methods, which identify significantly differentially expressed genes, and ex­

ploratory data analysis, such as clustering methods [Leung and Cavalieri 2003; Kamin­

ski and Friedman 2002]. The replication of a microarray experiment is essential for 

applying inferential statistics. Exploratory methods, such as cluster analysis may be 

applied to find gene groups with similar expression profiles. 

The data used in the project are taken from the work of Chu et al. (1998). The 

DNA microarray data contains nearly every yeast gene. Samples were taken at seven 

time points during the biological process of sporulation to assay changes in gene ex­

pression during sporulation. In the project, one of the objectives is the detection of 

gene groups where genes within a group have similar changing patterns of gene expres­

sion which are related to sporulation. The second objective is the comparison of genes 

with unknown functions to genes with known functions in the same cluster. Thus clues 

may be obtained to help predict the functions of the former genes. The third objective 

is the interpretation of co-expression, which shows the similar expression profile or be­
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havior, in a gene group derived from cluster analysis in terms of biological knowledge 

(e.g. biological process, molecular function, cellular component). 

The project is organized as follows. Chapter 2 describes the basic concepts of the 

microarray and the procedures of a microarray experiment. Chapter 3 gives the back­

ground of sporulation data and some characteristics different from other microarray 

data. Chapter 4 introduces the techniques used to remove the experimental noise in 

the data. Chapter 5 explains details about clustering methodology and some problems 

when applying it. Chapter 6 describes how to interpret the gene list in the clusters 

using standard biological terms. Chapter 7 discusses the results obtained from the 

analysis of gene expression data of sporulation in yeast by our methodology. Finally, 

some conclusions are drawn in Chapter 8. 

3 




Chapter 2 

eDNA Microarray 

Affymetrix and eDNA microarrays are two maJor microarray technologies used to 

measure the gene expression levels. eDNA microarray, one of the most popular mi­

croarray platforms, allows the comparison of gene expression levels in two different 

samples, e.g., the same cell type in a healthy and diseased state. The main difference 

between these two applications is that in the eDNA array the treatment and control 

are hybridized onto the same array using two different fluorescent dyes, whereas the 

Affymetrix chip uses only one fluorescent dye so two Affymetrix chips are needed to 

compare treatment and control [Knudsen 2004]. The advantages of eDNA array are its 

flexibility and lower cost whereas the advantages of Affymetrix array are its reliability, 

reproducibility, precise measurements and high density per array. In this project, the 

data set was obtained from eDNA microarray. 

There are two parts to the experimental procedures which precede measurement 

of dye intensities. The first is the fabrication of the array on which the set of selected 

genes, called probes, are placed (top 2 steps on the left of Figure 2.1), and the second 

4 




is the preparation of the sample of interest and a reference sample (top 2 steps in 

the middle of Figure 2.1). Typically, a microarray is a chemically coated glass slide, 

onto which single stranded DNA molecules of genes of interest are attached in tiny 

quantities on the surface of the glass at fixed positions, called probe. The step of 

polymerase chain reaction (PCR) involves making many copies of the gene for transfer 

to a single spot on the array (Nguyen et al. 2002). There may be thousands of spots 

on the glass slide, so the power of a microarray is that it is possible to measure the 

expression levels of thousands of genes simultaneously [Knudsen 2004]. 

The steps involved in making the eDNA of the test and reference sample, hybridiza­

tion and measurement can be summarized as follows (Figure 2.1): 

• 	 mRNA is extracted from a test sample and a reference sample separately. 

• 	 The mRNA is converted to eDNA and then labelled with two fluorescent dyes 

where red fluorescent (Cy5) is used for test sample (treatment) and green fluo­

rescent ( Cy3) for reference sample (control). 

• 	 Both labelled eDNA samples are mixed and then are hybridized to the glass 

slide where the probes are spotted for genes of interest. Hybridization refers to 

binding two DNA strands together and here it will occur between the sample 

and/or reference eDNA and the probe, if there is matching. 

• 	 The slide is scanned by a laser microscope scanner and the intensities of the two 

dyes are measured for each spot. 

• 	 The scanned image is processed and the ratio of intensities of red and green is 

calculated as the ratio of expression level of each gene in treatment and control. 
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Figure 2.1: Procedures of making eDNA array [Duggan et al. 1999]. Used with 
Nature's copyright permission. 

Thus, if the intensity of the red dye is high at the spot of a particular gene of interest, 

this implies that the gene is more active in the test sample than in the reference sample. 
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Chapter 3 

Description of Data Set and Data 
Selection 

3.1 Description of Data Set 

The data used to study the transcriptional program of sporulation in budding yeast 

were collected and analyzed by Chu et al. (1998). The data set and additional informa­

tion were obtained from http://cmgm.stanford.edujpbrown/sporulation/additionalj. 

There were 6118 genes in total and 41% of the genes had unknown functions. The 

mRNA levels (expression level) of 6118 genes in the yeast genome were measured 

during the course of meiosis and spore formation. 

Changes in the concentrations of the mRNA transcripts from each gene were mea­

sured at seven successive intervals after transfer of wild-type (strain SK1) diploid yeast 

cells to a nitrogen-deficient medium that induces sporulation [Chu et al. 1998]. Yeast 

cells were transferred to sporulation-inducing medium and samples were taken after 
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0, 0.5, 2, 5, 7, 9 and 11.5 hours. These times correspond to different stages of meio­

sis and spore formation in yeast. A control sample was prepared at the initial time 

point (0 hour). For the sample taken at each time point, transcript abundances were 

determined relative to the control by hybridization of sample and control to a eDNA 

microarray, as described in Chapter 2 (Figure 2.1). Therefore, 7 arrays were obtained, 

including an array in which time 0 is compared with itself. 

For each array, the data set used in the project consisted of 4 dye intensities for 

each gene: green at spot, green background, red at spot and red background, where 

red measures the sample intensity and green measures the control intensity. These 

four intensities for each gene were measured at each of the seven time points. 

Regardless of what microarray technology is used, the data generated by microarray 

experiments can be viewed as a matrix of expression measurements, which is organized 

by N genes versus M experiments/conditions/time points/samples once the data pre­

processing is complete. Initially, the data set consisted of a matrix of 6118 rows 

(genes) by 28 columns (dye intensities). This was reduced to a matrix of 6118 rows 

and 7 columns by calculating the background corrected intensity ratio at each time 

point, defined as: 

. . . intensity of Cy5 - background intensity of Cy5 bac groun correcte mtens1ty ratiO= ___.:.__ ___::______:._____----'---'- ­
intensity of Cy3 - background intensity of Cy3 

k d d 

where Cy5 and Cy3 represent the red dye and the green dye respectively. The region 

of the slide around the spot (Figure 2.1) provides a measure of background intensity. 

Various methods are used to define the areas corresponding to the spot and the back­

ground and determine intensity at the spot and background [Nguyen et al. 2002]. It 
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does not make any sense if the corrected intensities are zero or negative. Therefore, 

the genes with zero or negative ratio must be removed from the data set, but no such 

ratios were found in the 6118 genes. 

3.2 Data Selection 

In most gene expression studies there will typically only be a reasonably small per­

centage of the total number of genes that will show any significant change over time. 

For each gene, a criterion of significant change was determined by a threshold level of 

1.13 of RMS (Root Mean Square) [Note 20 of Chu et al. 1998], where 

2::~=1 (log2 xi)2
RMS= 

n 

where xi is background corrected ratio at time i (i = 1, 2, ... , 7). The criterion value 

of 1.13 is essentially equivalent to a 3-fold change of expression ratio for a single time 

point or an average 2.2-fold change of expression ratio across the entire time course 

[Chu et al. 1998]. Therefore, the genes (1148) whose RMS > 1.13 are identified and 

used for further analysis. The genes with RMS :S: 1.13 were interpreted as being genes 

for which variations of expression are due to measurement errors rather than biological 

changes, and thus should be removed. To permit comparison with results of Chu et 

al., much of the analysis was performed on the set of 1148 genes obtained from RMS 

criterion, however some analyses have been done on all 6118 genes and on a subset of 

1000 genes. 
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Chapter 4 

Thansformation and Normalization 

4.1 Transformation 

Before further analysis, the raw intensity ratios need to be transformed and normalized. 

The intensity ratio is also defined as a fold change. For an unchanged expression, the 

ratio is equal to 1; for a down-regulated gene, the ratio is less than 1 and for an 

up-regulated gene, the ratio is larger than 1. The problem with the raw intensity 

ratios is that the scale is highly asymmetric. Up-regulations will have values between 

1 and infinity while down-regulations will have values between 0 and 1. Therefore, 

the intensity ratios should be log-transformed so that upregulated and downregulated 

values are of the same scale and comparable [Leung and Cavalieri 2003]. The most 

common function used for this purpose is the log-transformation with base 2 (i.e. 

log2 (ratio)). It is intuitive in terms of gene fold change since it treats the up or down 

fold change of identical magnitude as equal but with opposite sign. 
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4.2 Normalization 

The non-biological variation in the measured gene expression data needs to be removed 

or minimized so that biological differences can be more easily detected and the samples 

made comparable. Some possible sources of non-biological variation can be categorized 

as follows [Pevsner 2003]: 

• 	 Variations in the labelling efficiencies due to different physical properties of 

red/green fluorescence, known as dye biases. 

• 	 Variations in the sample preparation. For example, variations of mRNA purity 

and quantity among the biological samples being studied. 

• 	 Variations in the hybridization. For example, the reaction of hybridization is 

influenced by temperature, time, and the overall amount of probe molecules on 

the slide used for the hybridization. 

• 	 Variations in the performance of the fluorescence scanner used to detect and 

quantify the intensities of the fluorescent dyes. 

There are a number of approaches to normalization, such as global normalization, 

intensity-dependent normalization, within-print tip group normalization and scale nor­

malization [Yang et al. 2002]. The intensity-dependent normalization approach is used 

in the project. 

Normalization is based on the assumption that most of the genes do not change in 

expression level in the samples being tested [Pevsner 2003]. Therefore the average of 

intensity ratio with logarithm (i.e. base = 2) transformation should be around zero 
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and the mean of log ratio within each array should be zero. A side-by-side boxplot can 

show the systematic variation across time points before normalization (Figure 4.1). 

Dye bias is a common phenomenon in the raw microarray data set. The dyes Cy3 

and Cy5 have different physical properties that can be checked by labelling the same 

sample with both dyes and then plotting intensities against each other. If the dyes 

of Cy3 and Cy5 were behaving similarly, then the linear regression line through the 

data should have a gradient of 1 and an intercept of 0. In fact, it is rare to have 

the dye intensities across all spots equal for two samples [Yang et al. 2002]. Dye 

bias is not linear and this can easily be seen in an MA-plot, which characterizes the 

difference in log intensities versus average log intensities. In a MA-plot, M is the log 

ratio of intensities defined as M = log2 (R/G), A is the average log ratio defined as 

A= (1/2) * log2 (R *G) and M is plotted versus A. To remove intensity-dependent dye 

bias, Yang, et al. (2002) recommended "LOWESS" normalization. 

LOWESS (locally weighted polynomial regression) [Cleveland 1979] works by doing 

local regression on subsets along the length of whole data set. Then the points from 

the local regression are joined to form a smooth curve across the whole data set. A 

user-defined parameter span is used to split the whole data set into the subsets. A span 

of 0.1 uses 10% of the data points for each subset. The span influences the smoothness 

of the LOWESS curve. Larger span gives more smoothness but ineffective fit. If the 

span is too small, the curve will be too sensitive to local points, increasing the risk 

of overfitting. For each subset, the polynomial (linear or quadratic) is fitted using 

weighted least squares (WLS) regression. The regression weights for each data point 
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in a subset are computed by the function below: 

where x is the predictor value associated with the response value to be fitted, xi are 

the neighbours of x in the subset determined by the span, and d is the distance from 

x to the most distant predictor value within the subset. Therefore, more weight is 

given to the points near the point whose response is being estimated and less weight 

to points further away. 

The weighted least squares regression [Hamilton 2002] employs an n x n weighting 

matrix W, where n is the number of the points in subset, with the weights Wi on 

the diagonal of the matrix and zero elsewhere. The weighted least squares regression 

model is defined as: 

and the estimated coefficients {3 is 

A 1 f 1 -l 1 f 1 

{3 = ((W2X) (W2X)) (W2X) (W2Y) 

The fitted value for the point is then obtained by evaluating the local polynomial using 

the predictor value for that data point: 
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LOWESS works well to reduce intensity-dependent curvature in the measured ex­

pression levels. 

R R
log2 - ---+ log2 - - c(A)

G G 

where c(A) is the LOWESS fit to the MA-plot and is computed separately for each 

array. In particular , it will not be affected by a small percentage of differentially 

expressed genes [Yang et al. 2002]. Comparison with the fit, the span parameter, 

span= 0.88 was selected for the LOWESS normalization. As noted above, the Figure 

4.2 shows the Box-plot and MA-plot after LOWESS normalization on 1148 filtered 

genes over seven time points. The data set used for most of the calculations consists of 

1148 x 7 matrix of normalized log ratios, ie. the data retained by the RMS procedure. 

i ~ _r------:::-o 

{:~88
! ~ l l l l l li ~ '-,-.:;:-,.-,-.,..-,--,--J 

0 05 2 5 7 9 11 .5 8 9 10 11 12 13 14 7 6 9 10 11 12 13 14 e 9 10 11 12 tJ 14 

A (Aver~ log irteruiy) A (Avereqe log irtend.y) A (Avere.ge log i1emity) 

8 9 10 11 12 13 14 9 10 11 12 13 14 15 a 9 10 11 12 13 14 1 a 9 ·to 11 12 13 14 

A (A'fCf~ loc;l K1err'-'Y) A (Avtnt•;e kJ9 f' llendy) 

Figure 4.1: The boxplot and MA-plots of 1148 filtered genes over seven time points in order 
from 0 to 11 .5 hours (before normalization) . 
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Figure 4.2: The boxplot and MA-plots of 1148 filtered genes over seven time points in order 
from 0 to 11.5 hours (after normalization). 
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Chapter 5 

Cluster Analysis 

Most gene expression data come from microarray experiments with low number of 

replicates or without replicates because of high cost. It is a shortcoming for applying 

the inferential statistical methods, such as t-test or ANOVA to find the differentially 

expressed genes. However, in the time-course micro-array experiments, the objectives 

are different. We are not testing whether the expression level of a gene in the disease 

equals that in the normal state, but asking whether profiles over time are similar and 

we are comparing these time-courses from gene to gene. For example, consider a cluster 

of genes involved in the cell division cycle, for each individual gene in the cluster, the 

measurement of expression level might fluctuate due to noise at a given time point so 

that it might fall out of the cluster. However, if the measurements for the gene at all 

time points are considered together, the cluster will become robust and thus overcome 

the noise in individual gene measurement [Baldi et al. 2002]. 

Cluster analysis [Hartigan 1975; Kaufman and Rousseeuw 1990; Everitt 1974; 

Struyf et al. 1996] is a simple but proven method for analyzing gene expression data 
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[Sherlock 2001]. It is used here as a grouping technique to find genes with similar 

expression profiles. Generally clustering methods can be divided into two basic types: 

hierarchical and partitional clustering. 

Hierarchical clustering proceeds successively either by merging smaller clusters, ini­

tially starting with singleton, into larger ones (agglomerative methods), or by splitting 

larger clusters, initially starting with one cluster of all objects, until each object is 

separate (divisive methods). These hierarchical clustering methods differ in the rule 

of how small clusters are merged or how large clusters are split. The end result of 

the algorithm is a tree of clusters, called a dendrogram, which shows how the clus­

ters are related. The disjoint clusters are obtained by cutting the dendrogram at a 

desired level. Partitional clustering attempts to decompose the data set into a set of 

disjoint clusters by minimizing the measure of dissimilarity within each cluster, while 

maximizing the dissimilarity of different clusters. 

An important component of a clustering algorithm is the distance measure (metric) 

between data points to assess the dissimilarity or similarity among the objects of a data 

set. Applying the same clustering algorithm but with a different metric might result 

in different clusters. Two most commonly used distance measures are the Euclidean 

distanced, which is scale-dependent and takes into account the magnitude of the vari­

ables, and !-Pearson's correlation coefficient, (1- r), which is scale/location-invariant 

and insensitive to the magnitude of variables. 
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5.1 K-means Clustering Method 

The specific clustering algorithm and metric (distance measure) need to be selected as 

well as the appropriate number of clusters within the data. The K-means algorithm is 

known as a partitioning clustering method which partitions the N objects iteratively 

into the predefined number of clusters (K « N). 

Let x 1, x 2 , ..• , XN denote the p-dimensional objects to be clustered. For a given 

K, the K-means algorithm attempts to minimize the sum of the squared distance of 

an object within the cluster to the cluster center (centroid): 

K 

W = 'L L llxi -xc1 W, 
j=l iECJ 

. 	 ·th 1 t d - . "t t - 1 "' where C1 1s J c us er an xc. 1s 1 s cen er, xc1 = ~ uiEC. xi 
J 	 Cj J 

The basic algorithm of K-means [Hartigan, 1975] is: 

1. 	 Specify initial set of K centroids or randomly select K objects from the given 

data set to be clustered. 

2. 	 Assign each object to the closest cluster center such that K clusters are con­

structed. 

3. Calculate the new centers of K clusters (the average of all the members within 

a certain cluster). 

4. 	 Calculate the sums of within cluster sum of squares, W and for iteration i, denote 

this by Wi. For i = 1, go to step 2. Fori ~ 2, compare Wi with Wi-l according 

to some criterion (e.g. IWi - Wi-ll < 0.001). If this criterion is satisfied or 
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this criterion can not be satisfied but the number of iterations exceeds a certain 

number of iterations (e.g. 100), exit the algorithm, otherwise go back to step 2. 

The K-means is sensitive to the selection of the initial partition. It often termi­

nates at a local minimum and is not suitable to discover clusters with non-convex 

shapes. Randomly chosen initial centroids can lead to empty cluster(s) and result in 

the algorithm failure. A more satisfactory alternative [Costa et al. 2004] is to use 

the hierarchical clustering method to provide initial centroids to the K-means. The 

hierarchical tree can be cut to produce K clusters and set the K mean vectors as the 

initial centroids for K-means algorithm. 

In the recent comparative studies of clustering methods, Costa et al. (2004) sug­

gested that as a whole, K-means achieves high accuracies in all experiments. Gibbons 

and Roth (2002) studied two ratio-based and two Affymetrix-based microarray data 

sets and concluded that hierarchical clustering tends to produce worse-than-random 

results. 

Chen et al. (2002) applied 4 indices to evaluate the performance of clustering 

algorithms. Let g}j) be the member of cluster Cj and C1 be the center of the cluster. 

N is the total number of genes and Nci is the number of genes in cluster C1. D is 

the Euclidean distance function. Then index of homogeneity and separation scores is 

defined as 

1 Nc; 
(i) -

Haverage = N L D(g1 , Ci) 
j=l 

and 

19 




Haverage reflects the compactness of the clusters while Saverage reflects the overall 

distance between clusters. Decreasing Haverage or increasing Saverage suggests an 

improvement in the clustering results. Silhouette width proposed by Rousseeuw (1987) 

is a composite index reflecting the compactness and separation of the clusters. A larger 

averaged silhouette width indicates a better overall quality of the clustering result 

[Rousseeuw 1987]. WADP (weighted average discrepant pairs) was proposed by Bittner 

et al. (2000) to test the robustness of clustering results after small perturbation. This is 

important in microarray expression data analysis because there is always experimental 

noise in the data. A good clustering result should be insensitive to the noise and 

able to capture the real structure in the data, reflecting the biological processes under 

investigation. WADP equals zero when two clustering results match perfectly. In the 

worst case, WADP is close to one. After evaluating these indices, Chen et al. (2002) 

suggested that K-means generated clusters with slightly better structural quality than 

others. 

The distance metric used with the clustering algorithm will affect the clustering 

results as well. Gibbons and Roth (2002) demonstrated that for ratio-style data, Eu­

clidean distance is better than or equal to the other measures (e.g. Pearson correlation 

distance, Manhattan distance, etc.). Therefore, Euclidean distance metric was selected 

for K-means cluster analysis of yeast gene expression data. 

5.2 Estimating the Number of Clusters in Data 

One of the problems in cluster analysis is how to estimate the appropriate number of 

clusters in the data set. For most clustering methods (e.g. K-means), the user must 
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specify the number of clusters. Therefore, estimating the "true" number of clusters in 

the data set must be done in an iterative fashion, running the cluster algorithm for a 

set of plausible values of K. Because most microarray data sets have higher dimensions, 

visualization tools are difficult to use in finding a reasonable number of clusters in a 

high dimensional data set, if we visualize clusters for each variable. A good clustering 

algorithm should yield clusters which have high intra-class similarity and low inter­

class similarity. Therefore, there is an intuitive way to find the appropriate number 

of clusters. First we apply the clustering algorithm with different number of clusters 

(k = 1, 2, ... , K) to the data set. For each k, we calculate the ratio of average euclidian 

distance within and between clusters. The appropriate number of clusters should occur 

at lowest ratio. However, numerous other approaches to this issue have been proposed 

from many studies. A comprehensive survey of methods for estimating the number of 

clusters is given by Milligan and Cooper (1985). Tibshirani et al. (2001) suggested a 

statistical approach with some theoretical development and involving what was called 

the gap statistic. The method is applicable to virtually any clustering algorithm (A 

implementation of the gap statistic using R package was written for the project and is 

given in the Appendix A.2). 

Let dii' be the distance between observations i and i'. Suppose a clustering algo­

rithm has generated m clusters, C1, C2 , ... , Cm, with Cr denoting the indices of the 

observations in cluster r and nr = ICrl the cluster size. Let Dr = Eii'ECr dii' and 

Wk = 2:~= 1 i:;,.. If dii' is squared Euclidean distance then Wk is the pooled within 

cluster sum of squares around cluster means. The basic idea of the gap static is to 

compare log(Wk) to its expectation under an appropriate null reference distribution. 
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The gap statistic is defined as 

where E* denotes expectation under a sample of size n from the reference distribution. 


The estimate k will be the value maximizing Gapn (k) after taking the sampling dis­


tribution into account. The expectation of the reference distribution E~(log(Wk)) can 


be estimated as (1/B) "L.~=l (log(Wk'b) where Wk'b is the within-cluster sum of squares 


of the bth Monte Carlo replicate of Wk'. 


From a graphic view, within-cluster sum of squares Wk is a decreasing function of k. 


we look for a turning point of elbow-shape to identify the number of clusters, k. 


5.3 Gap Statistic Algorithm 

The notations and the steps follow Tibshirani et al. (2001). 

Notation: 

{ Xij} n x p normalized log intensities ratio matrix 

dii' the Euclidean distance between point i and i' 

Cr the indices of points in cluster r and nr = ICrl 

Dr the sum of pairwise distances for all points in cluster r 

Steps: 

1. cluster the intensities ratio matrix at the number of clusters k = 1, 2, ... , K. 

2. fork= 1, 2, ... , K compute the sum of pairwise distances for all points in cluster 
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r 	and the within cluster dispersion measures Wk: 

l:i,i'ECr dii' 

and 

3. 	 generate B reference matrices using one of methods below: 

(a) generate each reference feature uniformly over 	the range of the observed 

values for that feature. 

(b) 	 Generate the reference features from a uniform distribution over a box 

aligned with the principal components of the data. 

Note: Because we have normalized the data matrix X, the columns have 

mean zero. Compute the singular value decomposition X = UDVT and 

transform via X' = XV and then draw uniform features Z' over the ranges 

of the columns of X', as in method a above. Back transform via Z = Z'VT 

to give reference data Z. 

4. 	 for each reference matrix, compute the within cluster dispersion measures Wkb• b = 

1, 2, ... , B and k = 1, 2, ... , K as in step 2. 
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5. compute the estimated gap statistic, 

Gap(k) = (1/B) L log(W;b) -log(Wk) 
b 

6. 	 compute standard deviation sdk, 

sdk = [(1/B) L(log(W;b)- I) 2FI2 

b 

7. define the simulation error Sk = sdkJ1 + 1/B. 

8. find the optimal number of clusters by k = smallest k such that 

Gap(k) ~ Gap(k + 1)- sk+l· 

5.4 Fitting Polynomial Curves For Clusters 

In the comparative studies of clustering algorithms, it was also shown that no single 

clustering algorithm is the best approach [Chen et al. 2002]. Combining these meth­

ods we may succeed in getting more meaningful clustering results. R source code is 

provided to fit a fourth-order polynomial curve, expected to be adequate with only 

7 time points, to each cluster to summarize the pattern of change in expression over 
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time for all genes in a cluster. The fourth-order polynomial model is defined as: 

where y represents log intensity ratio in a cluster (nk=the number of genes in cluster 

k) and xi represents 7 time points. In our case, the matrix X is 

x; x; X~ x4 
' 

0 0 0 0 

0.5 	 0.25 0.125 0.0625 

2 4 8 16 

5 25 125 625 

7 49 343 2401 gene 1 

9 81 648 5832 
X7nkx5= 

1 11.5 132.25 1520.875 17490.0625 

7 49 343 2401 

9 81 648 5832 

1 11.5 132.25 1520.875 17490.0625 

Therefore, the parameters f3i can be estimated by {3 = (X'X) - 1 X'Y. The fit of 

the polynomial curve can be measured by the coefficient of determination, R 2
• When 

the mean is contained in the model, the coefficient of determination corrected for the 

mean, R'?n, is defined as the ratio of the sum of squares model corrected for the mean 

to the sum squares total corrected for the mean [Goldsmith 197 4], 

R2 = SSMm SSM - MSS 
m SSTm SST- MSS' 
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where the SSM is the sum of squares model, the MSS is the sum of squares due to 

mean and the SST is the sum of squares total. 

5.5 Clustering of Yeast Data 

Initial centroids for K-means were obtained using diana(X) [Kaufman and Rousseeuw 

1990]. The K-means clustering was performed with improvement using R function 

Cluster (X, k, he) in Appendix A.5. Gap statistic implementation was written in R 

and given in Appendix A.2. R source code for plots of profiles of genes within cluster 

and fitted polynomial curves was given in Appendix A.3. 

Initially the shape of profiles for genes in a cluster and number of genes in cluster 

was explored for K = 20, 25, 30, 40 using the first 1000 genes of 6118 genes in the data 

set. This was done to understand the nature of the profiles and it was found that some 

large clusters showed essentially no change of expression over time, others with various 

shapes stayed fairly stable with change of K and there were some small clusters with 

atypical profiles. It's also done for all 6118 genes. This provides support for the use of 

criterion of Chu, since a large number of genes (3391 when clustering done on all6118 

genes) fall into clusters with constant expression over time. 

The gap statistic with K-means and initial centroids obtained from hierarchical 

clustering was applied to the 1148 genes meeting RMS criterion. The maximum num­

ber of clusters was set at 30 and the reference matrices were generated at step 3 of 

gap statistic algorithm using a uniform distribution over the range of observed values 

(option a), and the number of clusters was determined to be 9. The results of gap 

statistic are given in Figure 5.1 and Figure 5.2. 
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> gapstat(newdat3[,2:8], K=30, B=50) 
$Gapk 

[1] 0.6930711 1.8283406 1.9632833 1.9878576 2.1212461 2.1671136 2.2256047 
[8] 2.2399751 2.2782241 2.2843147 2.3134124 2.3169155 2.3122075 2.3167583 

[15] 2.3037693 2.2868366 2.2999302 2.3037831 2.3056700 2.2893878 2.3029118 
[22] 2.3146344 2.3375083 2.3416686 2.3438345 2.3404221 2.3485463 2.3437400 
[29] 2.3375174 2.3356186 

$Sk 
[1] 0.01082040 0.01181728 0.01189092 0.01106499 0.01143219 0.01137687 
[7] 0.01145138 0.01235576 0.01201024 0.01403692 0.01335720 0.01213183 

[13] 0.01276264 0.01100956 0.01134031 0.01147210 0.01248416 0.01323230 
[19] 0.01363560 0.01227602 0.01197334 0.01130182 0.01148524 0.01125200 
[25] 0.01263769 0.01287899 0.01229486 0.01202497 0.01101910 0.01110992 

$Sdk 
[1] 0.01071379 0.01170085 0.01177376 0.01095597 0.01131956 0.01126478 
[7] 0.01133856 0.01223403 0.01189191 0.01389863 0.01322560 0.01201231 

[13] 0.01263690 0.01090109 0.01122858 0.01135907 0.01236116 0.01310193 
[19] 0.01350126 0.01215507 0.01185537 0.01119047 0.01137208 0.01114114 
[25] 0.01251318 0.01275210 0.01217372 0.01190650 0.01091053 0.01100046 

$Diff 
[1] -1.1234522156 -0.1230517764 -0.0135093180 -0.1219563227 -0.0344906474 
[6] 

[11] 
[16] 
[21] 
[26] 

-0.0470397419 -0.0020145691 -0.0262388341 
0.0086287507 0.0174706714 0.0064587250 

-0.0006093439 0.0093793830 0.0117486228 
-0.0004208016 -0.0113886906 0.0070917386 

0.0041706051 0.0168312385 0.0172417361 

0.0079463461 
0.0243293216 
0.0285582745 
0.0104717889 
0.0130086828 

-0.0157405043 
0.0284047391 

-0.0015506225 
0.0162914084 

$Khat 
[1] 9 

Figure 5.1: The results were obtained from 1148 filtered genes by the gap statistic 
algorithm with the K-means clustering method used to generate the clusters, DIANA 
used to compute the initial centers for the K-means, The maximum number of clusters 
K=30, and the Monte Carlo replicate B=50. 
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Figure 5.2: The plot of gap statistic with k = 9 shown as solid dot. The results 
were obtained from 1148 filtered genes and the gap statistic algorithm. 

The changing pattern in expression level over time for each cluster can be dynam­

ically shown by the plot of profiles of all genes in a cluster, with the polynomial fitted 

to the log ratios for all genes in the cluster. This is shown for the 9 clusters on the 

selected set of 1148 genes in Figure 5.3. Clusters 1, 2, 5, 7 and 9 have mean profiles 

that show up regulation over the entire period of observation, but with some markedly 

different patterns. For example, the cluster 1 mean profile shows increased expression 

in the early part of the period of observation, whereas, that of cluster 5 shows sharp 

increase from t = 0 to a maximum at about time 7 and then it levels off. Clusters 3, 

4, 6 and 8 show down regulation over the entire period of observation, with cluster 8 
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showing a steady decline . 

Cluster 1 (50 genes! 
Miusted-R"2,. 38.97 ':l> 

Cluster 2 ( 166 genes) 
~.Jsted-R:•l .. 40 .06 % 

Ouster 3 ( 225 genes) Cluster 4 ( 235 genes) Cluster 5 ( 90 genes) 
odluotod·R-'2. 85.12 ... 

~-­/ 

~~ 

(j 2 5 7 8 11.5 o 2 s 1 s n .s 0 2 5 7 9 11 .5 0 2 s 7 9 11 .5 0 2 5 7 9 11.5 

time hme time time time 

Cluster 6 ( 108 genes) Cluster 7 ( 176 genes) Cluster 8 (59 genes) Cluster 9 ( 39 genes) 
adjus1ed~R"2 • 65 .26% l!ldjusted-R"2 • 72 .05% Mjus1ed-R'"'2 • 60.7% 

0 2 	 5 7 9 11 .5 0 2 5 7 9 11.5 0 2 5 7 9 11 .5 0 2 5 7 9 11.5 


time time time time 


Figure 5.3: The gene patterns for 9 clusters, where clusters were obtained from 1148 filtered 
genes by K-means clustering algorithm and the gap statistic to determine the number of 
clusters. Each grey line consists of the 7 points (time, expression level) for one gene joined 
by lines . The black curve is the polynomial fitted to the data for all genes in the cluster. 

The value of R 2 associated with the 4th degree polynomial fitted to the data in 

a cluster gives an indication of which clusters have genes with more similar profiles. 

There is less variability around the mean profile in clusters 4, 5 and 8, for which R2 

IS 0. 72 , 0. 73 and 0.85 respectively. The variability that is present at each time point 

IS also informative and is shown in the Figure 5.4. In each cluster, time 0 expression 

is very muck less variable than at other points because array tO was compared with 

itself. 
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Figure 5.4: Box plots of expression levels by time point within cluster for the same clusters 
as shown in Figure 5.3. 
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Chapter 6 

Interpretation of Clustering Results 
Using Gene Ontology 

Interpretation of clustering results using Gene Ontology is the final step of microarray 

data analysis. Some clusters of genes that share similar patterns of expression have 

been identified. But to provide a biological interpretation, similarity of the genes in 

a cluster needs to be summarized with respect to biological features, such as their 

molecular functions, their roles in biological processes, and their presence in cellular 

components. 

An ontology is a description of concepts. Gene Ontology [Ashburner et al. 2000; 

http:// www.geneontology.org] provides the standard terms with consistent biologi­

cal descriptions for the gene annotation of different organisms (e.g. yeast). GO is a 

biological knowledge database about genes which is organized in three independent 

ontologies: molecular function (e.g. catalytic activity) which refers to the tasks per­

formed by individual genes; biological process (e.g. pyrimidine metabolism) which 
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refers to the biological function with which a gene is associated; and cellular compo­

nent (e.g. ribosome) which refers to the subcellular structure locations. Each gene 

is annotated with GO terms which are structured in a hierarchy, ranging from more 

general (higher level) to more specific (lower level). Therefore, a term at a lower level 

has one (or more) parent term(s) at the upper level. It is possible that one gene is 

annotated with more than one GO term. The level 3 is the best compromise between 

quantity and quality of GO information [Conde et al. 2002; Mateos et al. 2002]. The 

systematic gene names (e.g. YBR166C) are used to map the relationship between 

the gene and its GO terms and extract the biologically common characteristics in the 

groups of genes under study. 

FatiGO [Al-Shahrour et al. 2004; http:/ jwww.fatigo.org/] is a web tool for finding 

the most characteristic Gene Ontology terms for each cluster or comparing two groups 

of genes to give those GO terms which are statistically significant in two groups using 

multiple testing. 

Given a fixed level and one of three ontologies, for each GO term, FatiGo counts 

the number of genes in the group with the term at the given level. The percentage for 

the GO term is computed by 

iven level X lOO% 

or 

The percentages are ordered from higher to lower. Therefore, the dominant GO terms 

can be found in the group of genes. 

For comparing one group of genes (typically a cluster) with the reference gene 

group (typically all genes except group to be compared), a Fisher's exact test for 
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2x2 contingency tables is applied for each GO term, with the null hypothesis of no 

difference in the frequency of the given term in each group. 

Compared group Reference group 

Given GO term present nn 

Given GO term absent n21 

n.1 n.2 N 

The p-value from Fisher's exact test for the given GO term is computed by using 

hypergeometric distribution: 

n1. ) ( N - n1. ) 
(n,J k n. 1 - k 

p-value = L 
k=nu 

where N is the number of genes in the genome (6118 for yeast), n. 1 is the number of 

genes in the cluster, n 1• is the number of the given GO terms and nu is the number 

of this GO term in the cluster. 

For each test, given a significant level o:, the chance of making a type I error is just 

o:. When n independent tests are carried, the chance of making at least one type I 

error in then test is at most 1- (1- o:)n (e.g. 1- (1- 0.05) 10 = 0.40). Since it is likely 

to get a number of false rejections just by chance, the individual p-value can not be 

directly used to check whether the corresponding GO term is statistically significant. 

FatiGO returns one unadjusted p-value from Fisher's exact test and three adjusted 

p-values based on three different ways of accounting for multiple testing: step-down 
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minP method [Westfall and Young 1993] which provides control of the family wise 

error rate; False Discovery Rate (FDR) method [Benjamini and Hochberg 1995] which 

provides control of the FDR only under independence and some specific type of pos­

itive dependence of tests statistics. and False Discovery Rate method [Benjamini 

and Yekutieli 2001] which provides strong control under arbitrary dependency of test 

statistics. The details for adjusted p-values are described as follows (e.g. FDR of 

Benjamini and Hochberg 1995): Suppose that Pl,P2, ... ,pn are n observed p-values 

for n GO terms from Fisher's exact test. Order them from the smallest to the largest 

as P(l),P(2), ... ,P(n), then the ith adjusted p-value [Dudoit et al. 2003] is: 

P(1f = min {min(~k *P(k), 1)}, i = 1, ... , n. 
kE{z, ... ,n} 
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Chapter 7 

Interpretation of Yeast Cluster 
Results 

In the analysis of the sporulation data using the method of Chu et al. (1998) given 

in Section 3.2 above, 1148 genes were retained from 6118 genes by RMS criterion 

(RMS ~ 1.13) and the rest of the genes which did not show significant changes were 

removed. Chu et al. (1998) noted that about half of 1148 genes were induced (log ratio 

of expression greater than 0 and the spot color is red), and half were repressed (log 

ratio of expression less than 0 and the spot color is green). For the analysis performed 

here, the changing pattern of expression level during sporulation was shown in Figure 

5.3. 

The amount/abundance of the mRN A levels (expression levels) in the two biological 

samples can be indirectly measured by the intensities of the two dyes. The entire set 

of gene expressions over 7 time points can be visualized as a heatmap image [Shannon 

et al. 2003; Saeed et al. 2003]. The heatmap presents a grid of colored points where 
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each color represents a ratio of gene expression value in the samples, where colors 

of red, green and black represent up-regulated, down-regulated, and unchanged genes 

respectively. The heatmap is used to display the expression patterns of a group of genes 

in a graphical format. The color intensity of each spot in the heatmap is proportional to 

the gene expression ratio at this spot. Red and green represent positive and negative 

value respectively. The brightness represents relatively higher positive or negative 

values. Comparison of Figure 7.1, genes which have not been clustered, with Figures 

7.2, 7.3 and 7.4 provide another means of seeing the pattern of expression represented 

by genes in a cluster. These can be compared with the plots for corresponding clusters 

in Figure 5.3. These heatmaps have been produced using the free Java package of TM4 

(Saeed et al. 2003) and uploading clustering results (the data format in Appendix A.7) 

into TM4. 
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F igure 7.1: T he heatmap represents the first 67 of the 1148 fi ltered genes data set 
before clustering. The colour patterns which represent genes profiles can not be recog­
nized easily. The columns to the right of t he heatmap are that systematic gene name, 
the descript ion of gene function and temporal class notations. Seven temporal class 
notations associated with some genes means that t hese genes were induced at the seven 
transcription stages. The temporal class not ations were given in the original data set. 
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Figure 7.2: The heatmap of cluster 1 which contains 50 up-regulated genes with 
higher expression level at 0.5 hour . The cluster is generated from 1148 filtered genes 
by K-means clustering algorithm. 
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Figure 7.3: The heatmap of cluster 8 which contains 59 down-regulated genes with 
higher negative expression level after 5 hour. The cluster is generated from 1148 
filtered genes by K-means clustering algorithm. 
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Figure 7.4: The heatmap of cluster 9 contains 39 up-regulated genes with higher 
expression level after 0 hour. The cluster is generated from 1148 filtered genes by 
K-means clustering algorithm. 

Genes with similar functions are grouped into 9 clusters with good separation 

(comparing Figure 7.1 with Figures 7.2, 7.3 , and 7.4) . Five clusters (1, 2, 5, 7, and 9) 

have up-regulated genes. The majority of genes in these 5 clusters have the temporal 

class notation (e.g. Metabolic, Early I, Early II , Early-Mid , Middle, Mid-Late, and 

Late). Four clusters (3 , 4, 6, and 8) have down-regulated genes without temporal class 

notation, which can be verified by their heatmaps. Interestingly it also can be seen in 
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of Chu et al. (1998). 

heatmaps of these 9 clusters that genes within the same cluster are either up-regulated 

or down-regulated over time. This result is consistent with the findings in the paper 
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Figure 7.5: The average of gene expression versus clusters. 

Some properties of gene clusters can be explored by Figure 7.5. Array tO was self-

hybridized and compared with itself. Therefore , the average of gene expression of each 

cluster at 0 hour is around zero. The average of gene expression of Cluster 5 reaches 

the highest level at 11.5 hours. However, the average of gene expression of Cluster 8 

reaches the highest level at 7 hours. 

In the research of Chu et al. (1998) , a small , representative set of genes was hand­

picked for each of these 7 temporal classes (Table 7.1 ). All hand-picked genes with the 

temporal class of Metabolic, Early I, and Early II are grouped into cluster 1, 9, and 2 
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Metabolic Early I Early II Early-Mid Middle Mid-Late Late 
ACSl (1) ZIPl (9) KGD2 (2) YBL078C (2) YSWl (5) CDC27 (7) YMR322C (7) 
PYCl (1) YDR374 (9) AGA2 (2) QRil (2) SPR28 (5) DIT2 (7) YOR391C (7) 

SIP4 (1) DMCl (9) YPT32 (2) YNL013C (2) SPS2 (5) YKL050C (7) SPSlOO (6) 
CAT2 (1) HOPl (9) SP016 (2) APC4 (5) YLL012W (5) DITl (5) 

YORlOOC (1) IME2 (9) YPR192W (2) STU2 (5) YLR277C (7) 
CARl (1) PDSl (9) ORC3 (7) 

YLL005C (7) 

Table 7.1: A representative set of genes were hand-picked for 7 temporal classes [Chu et al. 
1998]. The number in the bracket beside the gene name is the cluster which the gene belongs 
to. 

respectively. Those hand-picked genes with the temporal class of Early-Mid, Middle, 

Mid-Late, and Late are grouped into the different clusters but some of them are still 

in the same cluster. Therefore, more time points might be needed to sharpen these 

boundaries and reveal more classes or more clusters may be needed. 

The genes with significant GO terms in the different clusters can be explored by 

FatiGO. For example, 44.62% of the genes in cluster 6 function as the GO term of 

nucleic acid binding. The function is significantly different from the rest of the genes 

with p-value less than 1e-5 (Table 7.2). In cluster 3, 57.86% of the genes are function­

ally annotated in GO term as structural constituent of ribosome. This percentage is 

clearly higher than the 3.11% observed for the distribution of this GO term in the rest 

of the genes (Figure 7.6). Similarly, the significant component and process annotations 

are summarized in Table 7.3 and Table 7.4 respectively. For example, 88.14% of the 

genes in cluster 3 are involved in metabolism process and the annotation is significantly 

different from the rest of the genes with p-value less than 1e-5 (Table 7.4). 53.33% 

of the genes in cluster 9 were annotated as the component of non-membrane-bound 

organelle and the annotation is significantly different from the rest of the genes with 

p-value less than 0.005 (Table 7.3). 
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Cluster Function ( s) Percentage p-values 
2 structural constituent of cytoskeleton 8.70% 0.00002 0.00194 0.00984 
3 structural constituent of ribosome 

transferase activity 
57.86% 
8.12% 

< 1e -v 

0.00032 
< 1e ·5 

0.00666 
< 1e -5 

0.03147 
5 structural constituent of cytoskeleton 17.65% < 1e -v 0.00037 0.00187 
6 nucleic acid binding 

helicase activity 
44.62% 
12.31% 

< 1e -5 

0.00011 

< 1e -t> 

0.00502 

< 1e -::, 

0.02548 

Table 7.2: Significant function annotations in the different clusters. The p-values from left 
to right: unadjusted p-value, adjusted p-value of step-down minP and FDR [Benjamini and 
Hochberg 1995]. 

Cluster Component(s) Percentage p-values 
3 ribonucleoprotein complex 

non-membrane-bound organelle 
eukaryotic 43S preinitiation complex 
eukaryotic 48S initiation complex 
intracellular organelle 
intracellular 

55.21% 
64.06% 
21.35% 
19.79% 
87.50% 
97.92% 

< 1e -5 

< 1e-5 

< 1e-5 

< 1e-5 

0.00002 
0.00031 

< 1e-5 

< 1e-5 

< 1e-5 

< 1e-5 

0.00032 
0.00481 

< 1e -5 

< 1e-5 

< 1e-5 

< 1e-5 

0.00173 
0.02599 

4 proton-transporting ATP synthase 
complex 
proton-transporting two-sector 
ATPase complex 
external encapsulating structure 

3.33% 

3.33% 

7.14% 

< 1e -5 

< 1e-5 

< 1e-5 

0.00002 

0.00002 

0.00030 

0.00013 

0.00013 

0.00146 
5 immature spore 

external encapsulating structure 
16.33% 
20.41% 

< 1e -5 

< 1e-5 
< 1e -s 
< 1e-5 

< 1e -5 

< 1e-5 

7 ubiquitin ligase complex 6.56% < 1e-5 0.00018 0.00099 
8 external encapsulating structure 20.00% < 1e -v < 1e -v 0.00001 
9 non-membrane-bound organelle 53.33% < 1e -v 0.00066 0.00354 

Table 7.3: Significant component annotations in the different clusters. The p-values from 
left to right: unadjusted p-value, adjusted p-value of step-down minP and FDR [Benjamini 
and Hochberg 1995]. 
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Cluster Process( es) Percentage p-values 
2 regulation of gene expression, epig­

netic 
8.04% 0.00024 0.00577 0.02179 

3 metabolism 88.14% < 1e-5 < 1e-5 < 1e-5 

5 cell differentiation 48.21% < 1e -::> < 1e -::> < 1e - ::> 

7 cell differentiation 11 .71% < 1e -:o 0.00005 0.00019 

Table 7.4: Significant process annotations in the different clusters. The p-values from left 
to right: unadjusted p-value, adjusted p-value of step-down minP and FDR [Benjamini and 
Hochberg 1995] . 

Molecular function. Level : 3 
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Figure 7.6 : Exploration with FatiGO to show that the percentage of a GO term in Cluster 
3 is different from the distribution of this term in the rest of the genes. The p-values from 
left to right: unadjusted p-value, adjusted p-value of step-down minP and FDR [Benjamini 
and Hochberg 1995]. 

In each cluster, there exist many genes with unknown functions. Because genes 
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with related functions tend to be expressed in similar patterns, the possible roles and 

functions of these unknown genes can be inferred by the roles and functions of the well 

known genes in the same cluster. These hypothesis about the gene function can be 

verified by further studies. 

In cluster analysis, usually the number of clusters must be decided in advance 

and arbitrarily selected. A statistical method (gap statistic) can be applied to find 

the number, as done here, especially when the underlying biological knowledge is 

unavailable. 

The biological interpretation of gene clusters is the key step of the whole analysis. 

Because there exist many gene functional annotation databases, without a standard 

term to describe the gene's function(s), the interpretation of the clustering results 

might be misunderstood. The GO provides structured, controlled vocabularies (on­

tologies) that describe gene products in terms of their associated biological processes, 

cellular components and molecular functions in a species-independent manner. FatiGO 

is applied to compare two groups of genes and extract a list of GO terms distribution 

among the two groups which is significantly different by using multiple testing. 

To validate the clustering results above, the whole data set without RMS filtering 

was analyzed using the same method above. The number of cluster was chosen to be 11 

as identified by the gap statistic. The changing patterns of gene expression for these 

11 clusters is very similar to what we found above (compare Figure 5.3 and Figure 

7.7). Cluster 1, 2 and 3 (total of 3391 genes) from the complete data set contain those 

genes with smaller changes during sporulation process and the tendency is for constant 

gene expression in clusters. Analysis using the whole data set and 1148 filtered genes 

generally identify the same tendencies for genes either upregulated or downregulated 
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Cluster from 1148 
filtered genes 

Cluster from 
6118 genes 

Number of the common 
genes in two clusters 

Cluster 1* (50) Cluster 8 (345) 44 
Cluster 2 (166) Cluster 8 (345) 73 
Cluster 3 (225) Cluster 10 (204) 125 
Cluster 4* (235) Cluster 5 (491) 213 
Cluster 5* (90) Cluster 9 (100) 89 
Cluster 6* (108) Cluster 4 (412) 101 
Cluster 7* (176) Cluster 7 (273) 154 
Cluster 8* (59) Cluster 10 (204) 59 
Cluster 9* (39) Cluster 11 (46) 39 

Cluster 1 (1173) 0 
Cluster 2 (708) 0 
Cluster 3 (1510) 0 
Cluster 6 (856) 0 

Total (1148) Total (6118) 

Table 7.5: Comparison of clustering results from the whole genes data set and the filtered 
genes data set. the number in the bracket is the number of genes within the cluster. The 
most genes within the cluster with asterisk are well separated into the different clusters even 
when the whole data set is used. 

over entire time period, but of course with a different number of clusters. Comparison 

of clustering results from the whole genes data set and the filtered genes data set is 

summarized in Table 7.5. Clusters were matched by the shape of the mean profile and 

the number of genes in common for matched clusters was counted. There is reasonable 

consistency in cluster membership between the 1148 filtered genes data set and the all 

6118 genes data set. For example, 90 genes from the filtered gene data set are grouped 

into cluster 5. When 6118 genes are used, 89 of 90 genes are still grouped together 

into cluster 9 from the whole data set. This means that these 89 genes might have a 

strong relationship. Clusters 1, 2, 3 and 6 of 6118 genes contains genes with smaller 

expression changes. These genes were removed when RMS filter criterion of 1.13 was 

applied. 
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Cluster 1 ( 1173 genes) Cluster 2 ( 708 genes) Cluster 3 ( 1510 genes) Cluster 4 ( 412 genes) Cluster 5 ( 491 genes) Cluster 6 ( 856 genes) 
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Figure 7,7: The gene patterns for 9 clusters are obtained from all of 6118 genes by K-means 
clustering algorithm. 
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Chapter 8 

Conclusions 

DNA microarray technology has now made it possible to measure simultaneously the 

gene expression levels for thousands of genes during certain biological processes (e.g. 

sporulation) or the response to changes in the environment (e.g. drug treatment) 

across samples. 

The application of cluster analysis to gene expression data is based on the as­

sumption that genes with similar expression profiles share similar functions or involve 

similar biological processes [Eisen et al. 1998; Gibbons and Roth 2002]. The co­

expressed genes with unknown functions or poorly characterized genes in the same 

cluster can be predicted by genes with known functions or characters. One biological 

process may involve hundreds of genes. One gene may also function in many biological 

processes. The genes with similar expression patterns in the same cluster can help 

in understanding how the genes interact with changes in the environment/conditions. 

This is very useful in new drug discovery. 

Cluster analysis has proven to be useful to group genes together with similar func­
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tions based on gene expression patterns under various conditions or across different 

tissue samples [Eisen et al. 1998] and has demonstrated genes with similar expression 

patterns contribute to common function and are likely co-regulated. However, cluster­

ing is an unsupervised method. This means that no previous knowledge of the number 

and characteristics of the clusters in the data is used in determining the clusters. There 

exist different techniques for identifying the number of clusters. A recent approach to 

identify the number of clusters is the use of gap statistic. For unsupervised cluster 

analysis, GO is an excellent biological knowledge database for gene function prediction 

and biological interpretation of clusters. The software FatiGo, a query tool, is used to 

integrate GO annotation into cluster analysis. 

In this project, similarity patterns and significant GO annotations in each cluster 

are assessed. With our methodology, the biological knowledge is integrated into cluster 

analysis and makes the clustering results more meaningful. The gap statistic is used 

to determine the number of the clusters based on the nature of the data, and thus 

the number of clusters is not arbitrarily selected. The gene expression patterns are 

displayed by fitting a polynomial curve for each cluster and by displaying the heat maps 

for each cluster. The two types of displays provide complementary information since 

the heat map is a depiction of the state of expression, as upregulation, downregulation 

or no change relative to the control, at each time point for all genes in a cluster. The 

use of these methods in the project shows that they can be easily implemented and 

that they automate the microarray data analysis. 

The final results depend on what clustering method and similarity metric is em­

ployed and what technique is used to find the "optimal" number of clusters in the given 

data set. However, if used in an iterative fashion, the procedures and the methodology 
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used here are generally applicable and provide knowledge-driven cluster analysis for 

gene expression data. 

Most clustering algorithms require that a gene reside within exactly one cluster. 

But genes usually play multiple roles in sporulation process. From the view of gene 

functional category, it is reasonable that some genes may overlap between categories. It 

means that the same genes might function differently at different stages or conditions 

(see Appendix A.l). Many genes can be seen in multiple categories. Therefore, it 

is reasonable to generate "fuzzy" clusters, or leave some genes unclustered [Chen et 

al. 2002]. Application of such methods to the present data set is an area for further 

investigation. 

Usually a microarray data set contains a huge amount of gene expression values. 

It is necessary to draw attention to the time complexity of the clustering algorithms 

when using some clustering algorithms. K-means algorithm is relatively efficient. The 

time complexity is O(tkn), where n is the number of objects, k is the number of 

clusters, and t is the number of iterations (k, t « n). Comparing with other common 

used clustering algorithms, PAM has time complexity O(k(n - k) 2). DIANA has 

worst-case time complexity O(n2logn). The different versions of AGNES differ in how 

they compute cluster similarity. The most common versions of AGNES are single­

link, complete-link and average-link clustering. The complexity of these algorithms is 

O(n2logn). [Pantel 2003; Jain et al. 1999]. 
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Appendix A 

A.l The Gene Ontology (GO) 

The Gene Ontology (GO) provides a consistent vocabulary to describe aspects of a 

gene product's biology. A gene product's biology is represented by three ontologies: 

molecular function, biological process and cellular component. The following table 

gives three ontologies (at level 1). The number in the bracket beside the GO term 

is the number of genes with the GO term at current level. (The table was from 

http: I I www .godatabase .orglcgi-bin IamigoIgo.cgi) 

- all : all ( 6456 ) Pie Chart for. 

- G0:0008150 : biological_process ( 6456 ) 


+ G0:0007610 behavior ( 0 ) 
+ G0:0000004 biological process unknown ( 1664 ) 
+ G0:0009987 cellular process ( 4650 ) 
+ G0:0007275 development ( 451 ) 
+ G0:0040007 growth ( 110 ) 
+ G0:0007582 physiological process ( 4741 ) 
+ G0:0050789 regulation of biological process ( 572 ) 
+ G0:0016032 viral life cycle ( 2 ) 


- G0:0005575 : cellular_component ( 6439 ) 

+ G0:0005623 : cell ( 5408 ) 
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+ G0:0008372 
+ G0:0031012 
+ G0:0005576 
+ G0:0043226 
+ G0:0043234 
+ G0:0019012 

cellular component unknown ( 1006 ) 

extracellular matrix ( 0 ) 

extracellular region ( 22 ) 

organelle ( 3921 ) 

protein complex ( 1299 ) 

virion ( 0 ) 


- G0:0003674 : molecular_function ( 6439 ) 
+ G0:0016209 
+ G0:0005488 
+ G0:0003824 
+ G0:0030188 
+ G0:0030234 
+ G0:0005554 
+ G0:0003774 
+ G0:0045735 
+ G0:0031386 
+ G0:0004871 
+ G0:0005198 
+ G0:0030528 
+ G0:0045182 
+ G0:0005215 
+ G0:0030533 

antioxidant activity ( 20 ) 

binding ( 1124 ) 

catalytic activity ( 1897 ) 

chaperone regulator activity ( 8 ) 

enzyme regulator activity ( 159 ) 

molecular function unknown ( 2304 ) 

motor activity ( 18 ) 

nutrient reservoir activity ( 0 ) 

protein tag ( 8 ) 

signal transducer activity ( 65 ) 

structural molecule activity ( 356 ) 

transcription regulator activity ( 324 ) 

translation regulator activity ( 58 ) 

transporter activity ( 425 ) 

triplet codon-amino acid adaptor activity ( 300 ) 
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A.2 Function of the gap statistic 

gapstat=function(X, K, 8=20) 
{ 

#calculating the gap statistic 
#X data matrix (normalized intensities ratios) 
#K maximum of cluster (equal to or less than the 
# number of rows of matrix X) 
#8 number of Monte Carlo replicates (greater than 1) 

Cluster=function(X, k, he) 
{ 

#run clustering algorithm 
#X = data matrix 
#k = the number of cluster in the current run 
#he= clustering object returned by any hierarchical 
# clustering algorithm 

if(k==1) 
{ 

clusters=rep(1, length(X[,1])) 
} 

else 
{ 

hc.clust=cutree(hc, k=k) 
centers=matrix(O, nrow=k, ncol=ncol(X)) 
for(i in 1:k) 
{ 

centers[i, ]=apply(as.matrix(X[hc.clust==i, ]), 2, mean) 
#centers[i, ]=apply(as.matrix(X[hc.clust==i, ]), 2, median) 

} 

clusters=kmeans(X, centers=centers, iter.max=100)$cluster 
} 

clusters 
} 

Refdist=function(x) 
{ 

#uniform distribution as reference distribution 
runif(length(x), min=min(x), max=max(x)) 

} 
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#set initial values 
Wk=rep(O, K) #pooled within-cluster sum of squares around 

#the cluster mean 
Wkb=matrix(O, K, B) #B copies of Wkb* 
Gapk=rep(O, K) #gap statistic 
Sdk =rep(O, K) #standard deviation of B of Wkb* 
Sk =rep(O, K) #Sk=Sdk*sqrt(l+l/B) 

hc=diana(X) 	 #executing DIANA clustering algorithm to 
#create a hierarchical clustering object 
#for computing the initial centers of K-means 

#hc=hclust(dist(X), 	method="average") 

for(k in l:K) 
{ 

clusterX=Cluster(X, k, hc=hc) 
for(i in l:k) 
{ 

Nr=length(X[clusterX==i, 1]) 
#Dr=sum((dist(X[clusterX==i, ]))-2) 

#Wk[k]=Wk[k]+Dr/Nr 
Wk[k]=Wk[k]+(Nr-l)*sum(diag(var(X[clusterX==i, ]))) 

} 
} 

for(b in l:B) 
{ 

#draw B Monte Carlo replicates using Method (a) 

Xstar=apply(X, 2, Refdist) 


# draw B Monte Carlo replicates using Method (b) 

# s=svd(X) # decomposition 

# D=diag(s$d) 

# V=s$v # X = U D V' 

# Xp=X%*%V # X'= XV 

# Zp=apply(X', 2, Refdist) 

# Z=Zp%*%t(V) # Z=Z't(V) 

# Xstar=Z 


hcstar=diana(Xstar) #create a hierarchical clustering 
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#object for the initial centers of K-means 

#hcstar=hclust(dist(Xstar), method="average") 


for(k in 1:K) 
{ 


clusterXstar=Cluster(Xstar, k, hc=hcstar) 

for(i in 1:k) 

{ 


Nr=length(Xstar[clusterXstar==i, 1]) 

#Dr=sum((dist(Xstar[clusterXstar==i, ]))-2) 

#Wkb[k, b]=Wkb[k, b]+Dr/Nr 

Wkb[k, b]=Wkb[k, b]+(Nr-1)*sum(diag(var(Xstar[clusterXstar==i, ]))) 


} 
} 

} 

Khat=K 
for(k in 1:K) 
{ 

Gapk[k]=mean(log(Wkb[k,]))-log(Wk[k]) 

Lbar=mean(log(Wkb[k,])) 

Sdk[k]=sqrt((1/(B-1))*sum((log(Wkb[k,])-Lbar)-2)) 

Sk[k]=sqrt(1+1/B)*Sdk[k] 


} 

for(k in 1:(K-1)) 
{ 

if(Gapk[k]-(Gapk[k+1]-Sk[k+1])>=0) 
{ 

Khat=k 

break 


} 
} 


par(mfrow=c(1, 2)) 

plot(l:K, Wk, xlab="Number Of Clusters k", 


ylab="Within sum squares Wk") 
lines(1:K, Wk, lty=2) 
points(Khat, Wk[Khat], pch=19) 
plot(l:K, Gapk, xlab="Number Of Clusters k", ylab="Gap") 
lines(1:K, Gapk, lty=2) 
points(Khat, Gapk[Khat], pch=19) 
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title("Gap statistic", outer=T, line=-2.5) 
list(Gapk=Gapk, Sk=Sk, Sdk=Sdk, Diff=Gapk[1:(K-1)]-(Gapk[2:K]-Sk[2:K]), 

Khat=Khat) 
} 
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A.3 Fitting the polynomial curves 

Main<-function(dat, K) 
{ 

#fit the polynomial curve 
#dat = data matrix (normalized intensities ratios) 
#K = the number of cluster 

if (K==1) 

{ 


cluster.id=rep(1, length(dat[,1])) 

} 


else 

{ 


hc.clust=cutree(diana(dat), k=K) 

centers=matrix(O, nrow=K, ncol=ncol(dat)) 

for(i in 1:K) 

{ 


centers[i, ]=apply(as.matrix(dat[hc.clust==i, ]), 2, mean) 
} 

cluster.id=kmeans(dat, centers=centers, iter.max=100)$cluster 
} 

clustObj=cbind(dat, cluster.id) 

par(mfrow=c(ceiling(K/5), 5)) 

for(j in 1:K) 

{ 


Cluster.Plot(j, clustObj) 

Fit.Curve(j, line=T, power=4, clustObj) 


} 

} 

Cluster.Plot<-function(i, dat) 
{ 

#draw the seater plot, time vs log ratio 
#i = i_th cluster 
#dat = intensity matrix with clustering vector 

r=dat 

maxy=max(r[, 1:7]) # compute y axis range 

miny=min(r[, 1:7]) 

r=as.matrix(r) 
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x=c(O, 0.5, 2, 5, 7, 9, 11.5) #the time points when the 
#samples were taken 

num=GenesinCluster(r) #get the number of the 
#genes in each cluster 

plot(O, xlim=c(O, 11.5), ylim=c(miny, maxy), main=paste("Cluster", 
i, "(", num[i], "genes)"), type="n", xlab="time", 
ylab="log(Cy5/Cy3)", axes=F) 

axis(1, at=x, labels=c("O", "0.5", "2", "5", "7", "9", "11.5")) 
axis(2) 

for(j in 1:dim(r) [1]) 

{ 


if (r [j, 8] ==i) 

{ 

lines(x, r[j,1:7], col="light grey") 
} 

} 

} 

GenesinCluster<-function(dat) 
{ 

#Count the total number of genes within a cluster. 
#dat = intensity matrix with clustering vector 

r=dat 

n=max(r[, 8]) #total number of clusters 

NumGenes=matrix(O, nrow=1, ncol=n) 

for(i in 1:n) 

{ 


NumGenes[i]=sum(r[, 8]==i) 
} 

NumGenes #the total number of gene in each cluster 
} 

Fit.Curve<-function(i, line=T, power, dat) 
{ 

#fit a curve to the data 
#i = i_th clusters 
#line = T draw the fitted line; 
#power = the highest power of polynomial curve(<=4) 
#dat = intensity matrix with clustering vector 
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r=dat 

n=max(r[, 8]) # total number of clusters 

num=GenesinCluster(r) 

X=matrix(O, nrow=7, ncol=power+1) #design matrix 

X[, 1]=c(1, 1, 1, 1, 1, 1, 1) 

X[, 2]=x1=c(O, 0.5, 2, 5, 7, 9, 11.5) 

for(j in 3:(power+1)) #construct design matrix 


X[, j]=X[, 2]-(j-1) 

#row binding for mutlple Y's 

tmp=X 

if (num [i] >1) 

{ 


j=1 

for(j in 1:(num[i]-1)) 


X=rbind(X, tmp) 

} 

Y=matrix(t(r[r[,8]==i,1:7]), nrow=7*num[i], ncol=1) #construct Y matrix 
bHat=solve(t(X)%*%X)%*%t(X)%*%Y #estimate the coefficients of 

#the polynomial curve function 
yHat=X%*%bHat #fitted Y 
SSE=round(t(Y-yHat)%*%(Y-yHat), digits=3) #SSE=Sum Square of (Error) 

#Residual 
df=length(Y)-qr(X)$rank #df=Dgree of Freedom 
bHat=round(bHat, digits=5) #round digits for displaying 
SSM=sum(yHat-2) #SSM=Sum of Squares Model 
MSS=(sum(Y))-2/length(Y) #MSS=Sum of Squares Mean 
SST=sum(r2) #SST=Sum of Squares Total 
R=round(SSM/SST*100, digits=2) 
Radj=round((SSM-MSS)/(SST-MSS)*100, digits=2) 

yHat=yHat [1: 7] 

if Cline==T) 

{ 


lines(x1, yHat, col="red", lwd=1) 
} 

c(SSE, df, bHat) 
} 
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A.4 Normalization of the array at hour 0 

tOr=tOred-tOredbkg #background correcting for Cy5 (red) 

tOg=tOgreen-tOgreenbkg #background correcting for Cy3 (green) 

A0=1/2*log(t0r*t0g, base=2) #compute A for hour 0 

MO=log(tOr/tOg, base=2) #compute M for hour 0 


loessO=loess(MO-AO, span=0.88) #LOWESS fitting 

newMO =MO-predict(loessO, AO) 

newt0r=2-(AO+newM0/2) 

newt0g=2-(AO-newM0/2) 

newtO =newtOr/newtOg 

lognewtO=log(newtO, base=2) #normalized log ratio of hour 0 


#MA plot (before normalization) 

predictO=predict(loessO) 

plot(AO, MO, xlab="A (Average log intensity)", 


ylab="M (log ratio)", col="light grey") 
lines(AO[order(AO)], predictO[order(AO)], col="red'', lwd=2) 

#MA plot (after normalization) 
plot(AO, newMO, xlab="A (Average log intensity)", 

ylab="M (log ratio)", col="light grey") 
lines(AO[order(AO)], predict(loess(newMO-AO, span=span, 

degree=2))[order(AO)], col="red", lwd=2) 
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A.5 Improved K-means clustering method 

Cluster=function(X, k, he) 
{ 

#computer the initial centers for K-means clustering algorithm 
#X = data matrix 
#k = the number of cluster in the current run 
#he = clustering result from another clustering algorithm (diana) 

if (k==1) 
{ 

clusters=rep(1, length(X[,1])) 
} 


else 

{ 


hc.clust=cutree(hc, k=k) 

centers=matrix(O, nrow=k, ncol=ncol(X)) 

for(i in 1:k) 

{ 


centers[i, ]=apply(as.matrix(X[hc.clust==i, ]), 2, mean) 
} 

clusters=kmeans(X, centers=centers, iter.max=100)$cluster 
} 

clusters 
} 
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A.6 Attaching functional annotation to the expres­

sion data matrix 

#annotation.csv: functional annotation database 

annotation=read. csv ("annotation. csv", header=T, sep=", ") 

gene_anno=combine(as.vector(dat[, 1]),as.vector(annotation[, 3]), 


as.vector(annotation[, 4])) 
km=Cluster(dat[, 2:8], 9, iter.max=200) #run K-means clustering 
cl.anno1=gene_funcs[km$cluster==1, ] #annotation for cluster 1 

spaces=function(n) 
{ #generate n spaces 

spaces_str="" 
if (n==O) 
{ 

return("") 
} 


else 

{ 


for(i in 1:n) 
II IIspaces_str=paste(spaces_str, sep=" ") 

return(spaces_str) 
} 

} 

combine=function(c1, c2, c3) 
{ #combine the description columns for annotation 

n=length(c1) 
max_len_c1=max(nchar(c1)) 
max_len_c2=max(nchar(c2)) 
results=rep("", n) 
for (i in 1:n) 
{ 

results[i]=paste(c1[i], spaces(1+max_len_c1-nchar(c1[i])), c2[i], 
spaces(1+max_len_c2-nchar(c2[i])), c3[i], sep="") 

} 

as.matrix(results) 
} 
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A.7 Gene functions and expressions in Cluster 1 


ORFs DESCRIPTION TEMPORAL CLASS tO t05 t2 t5 t7 t9 t115 
YAL062W NADP-glutamate dehydrogenase Metabolic 0. 38200 3. 326421 3. 7190581 2. 53136567 -0.01819543 0.16155006 1. 007761845 
YAR007C replication factor A, 69 kD subunit Metabolic 0.13700 2.102698 2. 9156549 1. 96572862 1. 72112550 0. 74138717 0. 675133318 
YAL054C acetyl-CoA synthetase Metabolic 0. 54000 3. 304114 2. 6214284 3.03557597 2.17190924 0.16044949 0.362131916 
YBL043W unknown Metabolic 0.34400 3.116136 2.0841143 1.13345508 1.54122048 0. 95783122 0. 395195596 
YBROBBC DNA polymerase processivity factor Metabolic 0.06980 1.434064 2.8083567 2.02531107 1.46927755 0.66215004 0.476037472 
YCR005c peroxisomal citrate synthase Early I 0. 07500 1. 938328 2. 5223558 2.15087139 1.81361794 0.46151472 0. 712103734 
YDR180W unknown; binds chromosomes Early I -0.17900 1.483697 1.9426578 1. 92862410 1. 72974487 0.19281574 0. 091994342 
YDR256C catalase A Metabolic 0.37200 4.183543 2.2564419 1. 78267455 0.88164964 1.37165634 2. 616370225 
YER024v similar to Yatlp Metabolic 0.24900 3.586683 3.0521148 2. 21369124 1. 95802901 0.82246925 2. 088450390 
YER055c ATP phosphoribosyltransferase Metabolic -0. 19200 3. 198279 1. 3477982 0.47815272 1.22822047 0.96880340 0. 800948333 
YER069v acetylglutamate kinase and Metabolic 0.02940 2.701990 1.5209777 0. 24102406 0.52626761 1.17740074 0.541036487 
YER091c homocysteine methyltransferase Metabolic 0.32600 3.060462 1.6587843 0.20363083 -1.54264751 -0.39530805 0.297327475 
YFR030W sulfite reductase subunit Metabolic 0.09840 3. 683718 1. 2629609 1. 02381834 1. 12321685 0. 49616748 1. 188728695 
YGL062W pyruvate carboxylase 1 Metabolic 0.05480 2.692410 2.3323696 1.59561554 0.62192057 -0.03650271 -0.268792926 
YGR067C unknown Metabolic 0.17600 3. 089401 2. 2833270 0. 09437134 -0.52196861 -0.63089387 -0. 532048341 
YGR239C unknown Metabolic -0.00596 2. 538368 1. 9969214 0. 86273101 0. 73384813 0. 38484594 0. 221866599 
YHL024W similar to RNA-binding proteins in the N-terminal Early I -0.14500 2.336907 2.8054093 3.88017028 2.63635073 1.24848976 0.482682230 
YHL030W unknown Metabolic 0.01280 2.688238 1.6700469 1.49137128 1. 71886876 1.20189114 0.208800151 
YHR053C metallothionein Metabolic 0.16500 3. 243603 0. 1176646 -0, 50892354 0. 57636691 0. 93394418 0. 165432820 
YIR029W allantoicase Metabolic -0.10500 2. 857226 3. 2249737 0, 30970174 0. 44812188 0 .17354567 -0.089710790 
YIR042C unknown Metabolic 0.46600 2.678291 2.0635724 0.10641660 1.19881582 1.29477715 0.830075937 
Y JL045W similar to succinate dehydrogenase flavoprotein Early I 0. 46600 2. 394626 1. 7968528 1. 98767594 0. 71093478 0. 30408197 1.394578570 
YJL089W transcription factor Metabolic 0.08700 2.218829 1.8568243 1.62580248 0.95357346 0.69010428 0.327737182 
Y JL153C peripheral membrane protein Metabolic -0. 13200 3. 052649 1. 4919460 2. 63355520 1. 96334053 0. 05300374 -0.754258826 
Y JR016C dihydroxyacid dehydratase Metabolic 0. 16900 2. 515357 2. 2090341 1. 26996153 0. 39429380 0. 76641336 0. 676762572 
YJR109C carbamyl phosphate synthetase Metabolic 0.07920 3.365063 1.9639593 -0.44923519 0.01268921 0.50984512 0.382585405 
Y JR152W allantoate permease Metabolic 0. 17700 4. 497459 3. 8287357 0.14270701 1. 02525857 1. 01734777 0. 960833692 
YKL120W similar to members of the mitochondrial carrier Early I -0.18900 3.140462 3.3673026 2.00583936 1.89924944 1.82446726 1.855881599 
YKR009C peroxisomal beta-oxidation protein Metabolic 0. 30400 3. 107466 2. 1058788 2. 48214293 1. 22746815 0. 46803182 1. 943894766 
YKR033C similar to Gatlp Metabolic -0.00775 3. 743488 3. 3391670 0. 81222084 2. 14721152 0. 80175115 1. 205533092 
YKR034W transcription factor Metabolic 0. 07280 3. 469603 3. 1731000 1. 41040927 1. 98635474 1. 31322723 1. 757846515 
YKR071C unknown 0.02550 1.589268 2.1879982 1. 49371295 1.60262392 0.63501558 0. 527659494 
YLL027W unknown Early I 0.00726 2.561277 2.3730312 1.50725442 2.05876842 1.30740362 1.045830299 
YLR303W 0-acetylhomoserine sulfhydrylase Metabolic -0.23400 3. 985322 2. 0400287 -0. 70459650 -0.76486148 -0.73849681 0. 355987391 
YLR304C aconitase Metabolic -0.03860 3. 125141 2. 4900813 1. 97124101 2. 26258619 0. 05445716 -0.032563011 
YLR438W ornithine aminotransferase Metabolic 0.11600 3.617980 3.1980299 2. 79402836 2.11287886 1. 77788175 1.343301386 
YML042W carnitine a-acetyltransferase Metabolic -0.06100 3. 956638 3. 0879112 2. 90888846 2. 34343943 0. 73365699 1. 426292294 
YMR018W similar to Pex5p/Pas10p (GB: Z49211) Metabolic -0. 15700 3. 265122 0. 8828237 0. 62903096 0. 44138208 0. 26832851 -0.171832079 
YMR095C unknown; induced in stationary phase Metabolic 0. 08120 2. 532611 1. 1959349 0. 80948193 0. 83728011 0. 88661528 1. 216433371 
YHR147W unknown Early I 0. 24400 2. 435344 2. 1360096 2. 06002633 2. 31926829 0. 91901498 1. 221490206 
YNL117W malate synthase Metabolic -0.04510 3. 191729 2. 0716376 0. 62286178 0. 84208662 -1.73277463 -1.724330175 
YNL142W ammonia permease Metabolic -0.28800 4. 246421 4. 6267008 1. 52893311 -0.32181054 -0.45385929 -0.003502410 
YNL202W peroxisomal 2,4-dienoyl-CoA reductase Early I 0.00951 2.225263 1.5619210 0. 78045778 0.92480388 0.85385112 0.942031801 
YOR100C similar to members of the mitochondrial carrier Metabolic -0.04490 3.277857 3.0613603 2.18075087 1.87482695 0.76445919 0.616558580 
YOL125W unknown Metabolic 0.16300 2. 407919 2. 4954927 0. 98843164 1.02493439 0. 74265506 -0.003323616 
YOR225W unknown Metabolic -0.03040 2.141477 2.1323865 1.10541858 0.91440029 0. 72194163 0.464522303 
YOR375C glutamate dehydrogenase Metabolic -0.07000 3. 390150 4. 3347712 2. 04731640 0. 68683844 -0.77690990 -0.396953079 
YPL111W arginase Metabolic -0.07750 2.914627 2.9171662 3.09481629 1.82411487 1.07643066 0.692528757 
YPR002W similar to Bacillus subtilis MMGE protein Metabolic -0.19600 2. 754872 2. 4513502 2. 11973421 0. 98762691 -0.15117276 -1.057753376 
YPR006C isocitrate lyase, nonfunctional Metabolic -0.29000 3. 318945 2. 6714266 2. 44014164 2. 18508592 0. 36416000 -1.061381115 
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A.8 Agglomerative hierarchical clustering algorithm 

The agglomerative hierarchical clustering algorithm builds the hierarchy by merging. 

The objects initially belong to a list of singleton sets S1 , ... , Sn· Then a distance 

function is used to find the pair of sets { si' sj} from the list that is the shortest to 

merge. Once merged, Si and Sj are removed from the list of sets and replaced with 

Si U Sj. This process iterates until all objects are in a single group. Three variants 

of agglomerative hierarchical clustering algorithms may use three distance functions 

which measure the distance between two clusters. Complete linkage, average linkage, 

and single linkage methods use maximum, average, and minimum distances between 

the members of two clusters, respectively [Chen et al. 2002]. 
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A.9 DIANA (Divisive Analysis) algorithm 

DIANA (Divisive Analysis) [Kaufman 1990] is a divisive hierarchical clustering algo­

rithm. DIANA construct the hierarchy by initially spliting the largest cluster con­

taining all objects into clusters with only single object. The details of the DIANA 

algorithm is: 

• Select a cluster C with the highest diameter 

diameter(C) = rnaxd(i,j),
t,JEC 

where d(i,j) is the distance between two objects i and j. 

• Find the object i E C with the highest average dissimilarity 

IICI~- 1 . ~ d(i,j)
JEC,Jf.• 

to all other objects in the cluster C, then construct a new cluster C1 with the 

object i such that C0 = Ci and C1 = {i}. 

• For each object i E C0 (i rf. C1), compute the difference 

1 1 
Di = IIC II- 1 . L_ d(i,j)- -IICII _L d(i,j) 

0 JECo,Jf.• 1 JEC1 

• Find the object k with the largest difference 
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• 	If Dk > 0, move the object k into C1 from C0 and repeat steps 3 and 4. Otherwise 

stop processing and the cluster Cis split into two smaller clusters C0 and C1. 

• 	If there exists a cluster C with the number of objects IICII > 1, then goto step 1 

until all clusters contains only 1 object 
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