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Abstract

DNA microarray technology makes it possible to analyze the expression levels of
many thousands of genes simultaneously. One of the goals of microarray data analysis
is to understand the multiple biological roles of genes and their interactions in complex
biological processes. Genes with similar expression patterns are likely to share similar
functions or biological processes. Therefore, analysis of changes in gene expression of a
certain biological processes over time is of particular interest. Unsupervised clustering
methods provide an efficient way of finding overall patterns and tendencies by cluster-
ing microarray gene expression data. The genes in the same cluster are regulated in a
similar manner based on the assumption above. But traditional unsupervised cluster-
ing methods usually end up with clusters of genes with similar expression patterns but
without interpretations describing the clusters in terms of gene functions or processes

involved.

In this project, some statistical techniques are applied to analyze the data set from
microarray experiments of sporulation in yeast. These techniques include LOWESS
data normalization, which is intended to remove the systematic variations from the
data; a partitional clustering method, K-means, is used with initial centroids obtained

from hierarchical clustering method of DIANA; the “gap statistic” technique is im-

il



plemented to estimate the “optimal” number of clusters in the data set; and finally
multiple hypothesis testing is used to determine whether biologically related genes
are statistically over-represented in the gene clusters using the web query tool FatiGO.
These methods are combined with graphical representation of cluster profile shape and
colour maps of up and down regulation via heat maps. Application of these methods
to a yeast sporulation time-course data set [Chu et al. 1998] demonstrates the utility
of cluster analysis to such data sets and provides an automated method for including

biological information about gene function and characteristics.
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Chapter 1

Introduction

The DNA microarray (also known as biochip, DNA chip, or gene chip) technology has
had a significant impact on genome studies, making it possible to study the activities
(changes in gene transcription) of many thousands of genes simultaneously instead of
working on a gene-by-gene basis [Leung and Cavalieri 2003]. This technology is being
broadly used in identification and diagnosis of complex genetic diseases, new drug

discovery, etc.

DNA molecules on a chromosome within a cell usually contain all the genes of the
organism. Each gene is a segment or region of the long double-stranded DNA which has
specific function(s) to control the cell activities [Calladine and Drew 1997]. The central
dogma of molecular biology is that DNA is transcribed into mRNA and then mRNA is
translated into protein. A gene is expressed or active if its DNA has been transcribed
to single-stranded mRNA. Gene expression is the level (amount/abundance of the
mRNA) of transcription of the DNA of the gene [Nguyen et al. 2002]. Changes to the

cell’s internal or external environment can lead to changes in gene expression levels.



Finding gene groups with similar gene expression patterns may help in understanding
a gene’s functional behaviour over multiple conditions or experimental samples. For
example, many human diseases (e.g. cancer) may be diagnosed by identifying certain

changes in gene expression under some conditions.

The fundamental basis of DNA microarray is the measurement of the gene ex-
pression levels during biological processes. Microarray technology provides a means
to compare gene expression levels in particular cell samples over a particular time or
under multiple experimental conditions across different tissues or disease states, such

as, diseased versus healthy tissue, or tissue untreated versus treated by a drug.

The commonly used statistical approaches for microarray data analysis include
inferential methods, which identify significantly differentially expressed genes, and ex-
ploratory data analysis, such as clustering methods [Leung and Cavalieri 2003; Kamin-
ski and Friedman 2002]. The replication of a microarray experiment is essential for
applying inferential statistics. Exploratory methods, such as cluster analysis may be

applied to find gene groups with similar expression profiles.

The data used in the project are taken from the work of Chu et al. (1998). The
DNA microarray data contains nearly every yeast gene. Samples were taken at seven
time points during the biological process of sporulation to assay changes in gene ex-
pression during sporulation. In the project, one of the objectives is the detection of
gene groups where genes within a group have similar changing patterns of gene expres-
sion which are related to sporulation. The second objective is the comparison of genes
with unknown functions to genes with known functions in the same cluster. Thus clues
may be obtained to help predict the functions of the former genes. The third objective

is the interpretation of co-expression, which shows the similar expression profile or be-



havior, in a gene group derived from cluster analysis in terms of biological knowledge

(e.g. biological process, molecular function, cellular component).

The project is organized as follows. Chapter 2 describes the basic concepts of the
microarray and the procedures of a microarray experiment. Chapter 3 gives the back-
ground of sporulation data and some characteristics different from other microarray
data. Chapter 4 introduces the techniques used to remove the experimental noise in
the data. Chapter 5 explains details about clustering methodology and some problems
when applying it. Chapter 6 describes how to interpret the gene list in the clusters
using standard biological terms. Chapter 7 discusses the results obtained from the
analysis of gene expression data of sporulation in yeast by our methodology. Finally,

some conclusions are drawn in Chapter 8.



Chapter 2

cDNA Microarray

Affymetrix and ¢cDNA microarrays are two major microarray technologies used to
measure the gene expression levels. ¢cDNA microarray, one of the most popular mi-
croarray platforms, allows the comparison of gene expression levels in two different
samples, e.g., the same cell type in a healthy and diseased state. The main difference
between these two applications is that in the cDNA array the treatment and control
are hybridized onto the same array using two different fluorescent dyes, whereas the
Affymetrix chip uses only one fluorescent dye so two Affymetrix chips are needed to
compare treatment and control [Knudsen 2004]. The advantages of cDNA array are its
flexibility and lower cost whereas the advantages of Affymetrix array are its reliability,
reproducibility, precise measurements and high density per array. In this project, the

data set was obtained from ¢cDNA microarray.

There are two parts to the experimental procedures which precede measurement
of dye intensities. The first is the fabrication of the array on which the set of selected

genes, called probes, are placed (top 2 steps on the left of Figure 2.1), and the second



is the preparation of the sample of interest and a reference sample (top 2 steps in
the middle of Figure 2.1). Typically, a microarray is a chemically coated glass slide,
onto which single stranded DNA molecules of genes of interest are attached in tiny
quantities on the surface of the glass at fixed positions, called probe. The step of
polymerase chain reaction (PCR) involves making many copies of the gene for transfer
to a single spot on the array (Nguyen et al. 2002). There may be thousands of spots
on the glass slide, so the power of a microarray is that it is possible to measure the

expression levels of thousands of genes simultaneously [Knudsen 2004].

The steps involved in making the cDNA of the test and reference sample, hybridiza-

tion and measurement can be summarized as follows (Figure 2.1):

e mRNA is extracted from a test sample and a reference sample separately.

¢ The mRNA is converted to cDNA and then labelled with two fluorescent dyes
where red fluorescent (Cy5) is used for test sample (treatment) and green fluo-

rescent (Cy3) for reference sample (control).

e Both labelled cDNA samples are mixed and then are hybridized to the glass
slide where the probes are spotted for genes of interest. Hybridization refers to
binding two DNA strands together and here it will occur between the sample

and/or reference cDNA and the probe, if there is matching.

o The slide is scanned by a laser microscope scanner and the intensities of the two

dyes are measured for each spot.

e The scanned image is processed and the ratio of intensities of red and green is

calculated as the ratio of expression level of each gene in treatment and control.
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Figure 2.1: Procedures of making cDNA array [Duggan et al. 1999]. Used with
Nature’s copyright permission.

Thus, if the intensity of the red dye is high at the spot of a particular gene of interest,

this implies that the gene is more active in the test sample than in the reference sample.



Chapter 3

Description of Data Set and Data
Selection

3.1 Description of Data Set

The data used to study the transcriptional program of sporulation in budding yeast
were collected and analyzed by Chu et al. (1998). The data set and additional informa-
tion were obtained from http://cmgm.stanford.edu/pbrown/sporulation/additional/.
There were 6118 genes in total and 41% of the genes had unknown functions. The
mRNA levels (expression level) of 6118 genes in the yeast genome were measured

during the course of meiosis and spore formation.

Changes in the concentrations of the mRNA transcripts from each gene were mea-
sured at seven successive intervals after transfer of wild-type (strain SK1) diploid yeast
cells to a nitrogen-deficient medium that induces sporulation [Chu et al. 1998]. Yeast

cells were transferred to sporulation-inducing medium and samples were taken after



0, 0.5, 2,5, 7,9 and 11.5 hours. These times correspond to different stages of meio-
sis and spore formation in yeast. A control sample was prepared at the initial time
point (0 hour). For the sample taken at each time point, transcript abundances were
determined relative to the control by hybridization of sample and control to a cDNA
microarray, as described in Chapter 2 (Figure 2.1). Therefore, 7 arrays were obtained,

including an array in which time 0 is compared with itself.

For each array, the data set used in the project consisted of 4 dye intensities for
each gene: green at spot, green background, red at spot and red background, where
red measures the sample intensity and green measures the control intensity. These

four intensities for each gene were measured at each of the seven time points.

Regardless of what microarray technology is used, the data generated by microarray
experiments can be viewed as a matrix of expression measurements, which is organized
by N genes versus M experiments/conditions/time points/samples once the data pre-
processing is complete. Initially, the data set consisted of a matrix of 6118 rows
(genes) by 28 columns (dye intensities). This was reduced to a matrix of 6118 rows
and 7 columns by calculating the background corrected intensity ratio at each time

point, defined as:

intensity of Cy5 — background intensity of Cy5

background corrected intensity ratio =
& Y intensity of Cy3 — background intensity of Cy3

where Cyb and Cy3 represent the red dye and the green dye respectively. The region
of the slide around the spot (Figure 2.1) provides a measure of background intensity.
Various methods are used to define the areas corresponding to the spot and the back-

ground and determine intensity at the spot and background [Nguyen et al. 2002]. It



does not make any sense if the corrected intensities are zero or negative. Therefore,
the genes with zero or negative ratio must be removed from the data set, but no such

ratios were found in the 6118 genes.

3.2 Data Selection

In most gene expression studies there will typically only be a reasonably small per-
centage of the total number of genes that will show any significant change over time.
For each gene, a criterion of significant change was determined by a threshold level of

1.13 of RMS (Root Mean Square) [Note 20 of Chu et al. 1998], where

iz (log, 7:)?
n

RMS =

where z; is background corrected ratio at time i (¢ = 1,2,...,7). The criterion value
of 1.13 is essentially equivalent to a 3-fold change of expression ratio for a single time
point or an average 2.2-fold change of expression ratio across the entire time course
[Chu et al. 1998]. Therefore, the genes (1148) whose RMS > 1.13 are identified and
used for further analysis. The genes with RM S < 1.13 were interpreted as being genes
for which variations of expression are due to measurement, errors rather than biological
changes, and thus should be removed. To permit comparison with results of Chu et
al., much of the analysis was performed on the set of 1148 genes obtained from RMS
criterion, however some analyses have been done on all 6118 genes and on a subset of

1000 genes.



Chapter 4

Transformation and Normalization

4.1 Transformation

Before further analysis, the raw intensity ratios need to be transformed and normalized.
The intensity ratio is also defined as a fold change. For an unchanged expression, the
ratio is equal to 1; for a down-regulated gene, the ratio is less than 1 and for an
up-regulated gene, the ratio is larger than 1. The problem with the raw intensity
ratios is that the scale is highly asymmetric. Up-regulations will have values between
1 and infinity while down-regulations will have values between 0 and 1. Therefore,
the intensity ratios should be log-transformed so that upregulated and downregulated
values are of the same scale and comparable [Leung and Cavalieri 2003]. The most
common function used for this purpose is the log-transformation with base 2 (i.e.
log, (ratio)). It is intuitive in terms of gene fold change since it treats the up or down

fold change of identical magnitude as equal but with opposite sign.
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4.2 Normalization

The non-biological variation in the measured gene expression data needs to be removed
or minimized so that biological differences can be more easily detected and the samples
made comparable. Some possible sources of non-biological variation can be categorized

as follows [Pevsner 2003]:

e Variations in the labelling efficiencies due to different physical properties of

red/green fluorescence, known as dye biases.

e Variations in the sample preparation. For example, variations of mRNA purity

and quantity among the biological samples being studied.

e Variations in the hybridization. For example, the reaction of hybridization is
influenced by temperature, time, and the overall amount of probe molecules on

the slide used for the hybridization.

e Variations in the performance of the fluorescence scanner used to detect and

quantify the intensities of the fluorescent dyes.

There are a number of approaches to normalization, such as global normalization,
intensity-dependent normalization, within-print tip group normalization and scale nor-
malization [Yang et al. 2002]. The intensity-dependent normalization approach is used

in the project.

Normalization is based on the assumption that most of the genes do not change in
expression level in the samples being tested [Pevsner 2003]. Therefore the average of

intensity ratio with logarithm (i.e. base = 2) transformation should be around zero

11



and the mean of log ratio within each array should be zero. A side-by-side boxplot can
show the systematic variation across time points before normalization (Figure 4.1).
Dye bias is a common phenomenon in the raw microarray data set. The dyes Cy3
and Cy5 have different physical properties that can be checked by labelling the same
sample with both dyes and then plotting intensities against each other. If the dyes
of Cy3 and Cy5 were behaving similarly, then the linear regression line through the
data should have a gradient of 1 and an intercept of 0. In fact, it is rare to have
the dye intensities across all spots equal for two samples [Yang et al. 2002]. Dye
bias is not linear and this can easily be seen in an MA-plot, which characterizes the
difference in log intensities versus average log intensities. In a MA-plot, M is the log
ratio of intensities defined as M = log,(R/G), A is the average log ratio defined as
A =(1/2)*logy(R+G) and M is plotted versus A. To remove intensity-dependent dye

bias, Yang, et al. (2002) recommended “LOWESS” normalization.

LOWESS (locally weighted polynomial regression) [Cleveland 1979] works by doing
local regression on subsets along the length of whole data set. Then the points from
the local regression are joined to form a smooth curve across the whole data set. A
user-defined parameter span is used to split the whole data set into the subsets. A span
of 0.1 uses 10% of the data points for each subset. The span influences the smoothness
of the LOWESS curve. Larger span gives more smoothness but ineffective fit. If the
span is too small, the curve will be too sensitive to local points, increasing the risk
of overfitting. For each subset, the polynomial (linear or quadratic) is fitted using

weighted least squares (WLS) regression. The regression weights for each data point

12



in a subset are computed by the function below:

r—T;

w= (1 - [y

where z is the predictor value associated with the response value to be fitted, z; are
the neighbours of z in the subset determined by the span, and d is the distance from
z to the most distant predictor value within the subset. Therefore, more weight is
given to the points near the point whose response is being estimated and less weight

to points further away.

The weighted least squares regression [Hamilton 2002] employs an 1 x n weighting
matrix W, where n is the number of the points in subset, with the weights w; on
the diagonal of the matrix and zero elsewhere. The weighted least squares regression

model is defined as:

W?IY = WiX3 + Wie
and the estimated coefficients 3 is

’ -1 '
-

B = ((WiX) (W3X)) (WiX)(W2Y)

The fitted value for the point is then obtained by evaluating the local polynomial using

the predictor value for that data point:

13



LOWESS works well to reduce intensity-dependent curvature in the measured ex-
pression levels.

R R
logy 7 — logy = — c(4)

where ¢(A) is the LOWESS fit to the MA-plot and is computed separately for each
array. In particular, it will not be affected by a small percentage of differentially
expressed genes [Yang et al. 2002]. Comparison with the fit, the span parameter,
span = 0.88 was selected for the LOWESS normalization. As noted above, the Figure
4.2 shows the Box-plot and MA-plot after LOWESS normalization on 1148 filtered
genes over seven time points. The data set used for most of the calculations consists of

1148 x 7 matrix of normalized log ratios, ie. the data retained by the RMS procedure.
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Figure 4.1: The boxplot and MA-plots of 1148 filtered genes over seven time points in order
from 0 to 11.5 hours (before normalization).
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Chapter 5

Cluster Analysis

Most gene expression data come from microarray experiments with low number of
replicates or without replicates because of high cost. It is a shortcoming for applying
the inferential statistical methods, such as t-test or ANOVA to find the differentially
expressed genes. However, in the time-course micro-array experiments, the objectives
are different. We are not testing whether the expression level of a gene in the disease
equals that in the normal state, but asking whether profiles over time are similar and
we are comparing these time-courses from gene to gene. For example, consider a cluster
of genes involved in the cell division cycle, for each individual gene in the cluster, the
measurement of expression level might fluctuate due to noise at a given time point so
that it might fall out of the cluster. However, if the measurements for the gene at all
time points are considered together, the cluster will become robust and thus overcome

the noise in individual gene measurement [Baldi et al. 2002].

Cluster analysis [Hartigan 1975; Kaufman and Rousseeuw 1990; Everitt 1974;

Struyf et al. 1996] is a simple but proven method for analyzing gene expression data

16



[Sherlock 2001]. It is used here as a grouping technique to find genes with similar
expression profiles. Generally clustering methods can be divided into two basic types:

hierarchical and partitional clustering.

Hierarchical clustering proceeds successively either by merging smaller clusters, ini-
tially starting with singleton, into larger ones (agglomerative methods), or by splitting
larger clusters, initially starting with one cluster of all objects, until each object is
separate (divisive methods). These hierarchical clustering methods differ in the rule
of how small clusters are merged or how large clusters are split. The end result of
the algorithm is a tree of clusters, called a dendrogram, which shows how the clus-
ters are related. The disjoint clusters are obtained by cutting the dendrogram at a
desired level. Partitional clustering attempts to decompose the data set into a set of
disjoint clusters by minimizing the measure of dissimilarity within each cluster, while

maximizing the dissimilarity of different clusters.

An important component of a clustering algorithm is the distance measure (metric)
between data points to assess the dissimilarity or similarity among the objects of a data
set. Applying the same clustering algorithm but with a different metric might result
in different clusters. Two most commonly used distance measures are the Euclidean
distance d, which is scale-dependent and takes into account the magnitude of the vari-
ables, and 1-Pearson’s correlation coefficient, (1 — r), which is scale/location-invariant

and insensitive to the magnitude of variables.

17



5.1 K-means Clustering Method

The specific clustering algorithm and metric (distance measure) need to be selected as
well as the appropriate number of clusters within the data. The K-means algorithm is
known as a partitioning clustering method which partitions the N objects iteratively

into the predefined number of clusters (K <« N).

Let x;,Xs,...,Xy denote the p-dimensional objects to be clustered. For a given
K, the K-means algorithm attempts to minimize the sum of the squared distance of

an object within the cluster to the cluster center (centroid):

K
W= Z Z HX, ‘)_(01“27

j=14€C;
. th -_ . . —_ _ 1 .
where Cj; is j** cluster and X, is its center, X¢; = o, Ziec]- X;

The basic algorithm of K-means [Hartigan, 1975] is:

1. Specify initial set of K centroids or randomly select K objects from the given

data set to be clustered.

2. Assign each object to the closest cluster center such that K clusters are con-

structed.

3. Calculate the new centers of K clusters (the average of all the members within

a certain cluster).

4. Calculate the sums of within cluster sum of squares, W and for iteration ¢, denote
this by W;. For i = 1, go to step 2. For ¢ > 2, compare W; with W;_; according

to some criterion (e.g. |W; — W;_1| < 0.001). If this criterion is satisfied or
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this criterion can not be satisfied but the number of iterations exceeds a certain

number of iterations (e.g. 100), exit the algorithm, otherwise go back to step 2.

The K-means is sensitive to the selection of the initial partition. It often termi-
nates at a local minimum and is not suitable to discover clusters with non-convex
shapes. Randomly chosen initial centroids can lead to empty cluster(s) and result in
the algorithm failure. A more satisfactory alternative [Costa et al. 2004] is to use
the hierarchical clustering method to provide initial centroids to the K-means. The
hierarchical tree can be cut to produce K clusters and set the K mean vectors as the

initial centroids for K-means algorithm.

In the recent comparative studies of clustering methods, Costa et al. (2004) sug-
gested that as a whole, K-means achieves high accuracies in all experiments. Gibbons
and Roth (2002) studied two ratio-based and two Affymetrix-based microarray data
sets and concluded that hierarchical clustering tends to produce worse-than-random

results.

Chen et al. (2002) applied 4 indices to evaluate the performance of clustering
algorithms. Let g be the member of cluster C; and C; be the center of the cluster.
N is the total number of genes and Nc; is the number of genes in cluster C;. D is
the Euclidean distance function. Then index of homogeneity and separation scores is

defined as

N,
1Y
Haverage = N > :D(QJ(' )7Ci)
i=1

and

1 . -
> N¢,Ne,D(C;, Cj)

Savera e = = A A
& Ei;éj NCiNCj -y
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Hayerage reflects the compactness of the clusters while Saverage reflects the overall
distance between clusters. Decreasing Haverage or increasing Saverage suggests an
improvement in the clustering results. Silhouette width proposed by Rousseeuw (1987)
is a composite index reflecting the compactness and separation of the clusters. A larger
averaged silhouette width indicates a better overall quality of the clustering result
[Rousseeuw 1987]. WADP (weighted average discrepant pairs) was proposed by Bittner
et al. (2000) to test the robustness of clustering results after small perturbation. This is
important in microarray expression data analysis because there is always experimental
noise in the data. A good clustering result should be insensitive to the noise and
able to capture the real structure in the data, reflecting the biological processes under
investigation. WADP equals zero when two clustering results match perfectly. In the
worst case, WADP is close to one. After evaluating these indices, Chen et al. (2002)
suggested that K-means generated clusters with slightly better structural quality than

others.

The distance metric used with the clustering algorithm will affect the clustering
results as well. Gibbons and Roth (2002) demonstrated that for ratio-style data, Eu-
clidean distance is better than or equal to the other measures (e.g. Pearson correlation
distance, Manhattan distance, etc.). Therefore, Euclidean distance metric was selected

for K-means cluster analysis of yeast gene expression data.

5.2 Estimating the Number of Clusters in Data

One of the problems in cluster analysis is how to estimate the appropriate number of

clusters in the data set. For most clustering methods (e.g. K-means), the user must
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specify the number of clusters. Therefore, estimating the “true” number of clusters in
the data set must be done in an iterative fashion, running the cluster algorithm for a
set of plausible values of K. Because most microarray data sets have higher dimensions,
visualization tools are difficult to use in finding a reasonable number of clusters in a
high dimensional data set, if we visualize clusters for each variable. A good clustering
algorithm should yield clusters which have high intra-class similarity and low inter-
class similarity. Therefore, there is an intuitive way to find the appropriate number
of clusters. First we apply the clustering algorithm with different number of clusters
(k=1,2,...,K) to the data set. For each k, we calculate the ratio of average euclidian
distance within and between clusters. The appropriate number of clusters should occur
at lowest ratio. However, numerous other approaches to this issue have been proposed
from many studies. A comprehensive survey of methods for estimating the number of
clusters is given by Milligan and Cooper (1985). Tibshirani et al. (2001) suggested a
statistical approach with some theoretical development and involving what was called
the gap statistic. The method is applicable to virtually any clustering algorithm (A
implementation of the gap statistic using R package was written for the project and is

given in the Appendix A.2).

Let d,; be the distance between observations i and . Suppose a clustering algo-

rithm has generated m clusters, C, Cs, ..., Cy,, with C, denoting the indices of the

observations in cluster 7 and n, = |C,| the cluster size. Let D, = ¥+ d;» and
We =3k, QDJT . If d;7 is squared Euclidean distance then Wy is the pooled within

cluster sum of squares around cluster means. The basic idea of the gap static is to

compare log(Wy) to its expectation under an appropriate null reference distribution.
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The gap statistic is defined as
Gap, (k) = E}(log(Wy)) — log(Wy)

where E* denotes expectation under a sample of size n from the reference distribution.
The estimate & will be the value maximizing Gapn(k) after taking the sampling dis-
tribution into account. The expectation of the reference distribution E}(log(Wy)) can
be estimated as (1/B) £, (log(W},) where Wy, is the within-cluster sum of squares
of the bth Monte Carlo replicate of Wy.

From a graphic view, within-cluster sum of squares Wy, is a decreasing function of k.

we look for a turning point of elbow-shape to identify the number of clusters, k.

5.3 Gap Statistic Algorithm

The notations and the steps follow Tibshirani et al. (2001).

Notation:

{zi;} m x p normalized log intensities ratio matrix

diy the Euclidean distance between point ¢ and ¢’
C, the indices of points in cluster r and n, = |C|
D, the sum of pairwise distances for all points in cluster r
Steps:
1. cluster the intensities ratio matrix at the number of clusters £ =1,2,..., K.
2. for k=1,2,..., K compute the sum of pairwise distances for all points in cluster
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r and the within cluster dispersion measures Wy:

D, = Em"ecr iy
Siec, Lvec, 1% — xu||?

= 2 Yiec, Ixi — x|

and

3. generate B reference matrices using one of methods below:

(a) generate each reference feature uniformly over the range of the observed

values for that feature.

(b) Generate the reference features from a uniform distribution over a box
aligned with the principal components of the data.
Note: Because we have normalized the data matrix X, the columns have
mean zero. Compute the singular value decomposition X = UDV7T and
transform via X’ = XV and then draw uniform features Z’ over the ranges
of the columns of X’, as in method a above. Back transform via Z = Z'V7T

to give reference data Z.

4. for each reference matrix, compute the within cluster dispersion measures W, b =

1,2,...,Band k=1,2,...,K as in step 2.
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5. compute the estimated gap statistic,

Gap(k) = (1/B) Zb:log(Wib) — log(Wi)

6. compute standard deviation sdy,
sdy, = [(1/B) Y (log(Wp,) — 1)*]/?
b

where [ = (1/B) Y, log(W5,).
7. define the simulation error s = sdi(/1+ 1/B.

8. find the optimal number of clusters by k: = smallest k such that

Gap(k) > Gap(k + 1) — sg41.

5.4 Fitting Polynomial Curves For Clusters

In the comparative studies of clustering algorithms, it was also shown that no single
clustering algorithm is the best approach [Chen et al. 2002). Combining these meth-
ods we may succeed in getting more meaningful clustering results. R source code is
provided to fit a fourth-order polynomial curve, expected to be adequate with only

7 time points, to each cluster to summarize the pattern of change in expression over
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time for all genes in a cluster. The fourth-order polynomial model is defined as:

yi = Bo + Bizi + Box? + Baxi + Puzi + &

where y represents log intensity ratio in a cluster (ny=the number of genes in cluster
k) and x; represents 7 time points. In our case, the matrix X is

o
o

1 05 0.25 0.125

1 2 4 8

1 5 25 125
1 7 49 343
1 9 81 648

X7"k X567
1 115 132.25 1520.875

1 7 49 343
1 9 81 648

1 115 132.25 1520.875

16
625
2401
5832
17490.0625

2401
5832
17490.0625

gene 1

gene ny

Therefore, the parameters 3; can be estimated by 3 = (X’X)'X'Y. The fit of

the polynomial curve can be measured by the coefficient of determination, R?2. When

the mean is contained in the model, the coefficient of determination corrected for the

mean, R?2, is defined as the ratio of the sum of squares model corrected for the mean

to the sum squares total corrected for the mean [Goldsmith 1974],

R% =

SSM,,  SSM — MSS

™ §ST,, SST — MSS’
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where the SSM is the sum of squares model, the MSS is the sum of squares due to

mean and the SST is the sum of squares total.

5.5 Clustering of Yeast Data

Initial centroids for K-means were obtained using diana(X) [Kaufman and Rousseeuw
1990]. The K-means clustering was performed with improvement using R function
Cluster(X,k, hc) in Appendix A.5. Gap statistic implementation was written in R
and given in Appendix A.2. R source code for plots of profiles of genes within cluster

and fitted polynomial curves was given in Appendix A.3.

Initially the shape of profiles for genes in a cluster and number of genes in cluster
was explored for K = 20, 25, 30, 40 using the first 1000 genes of 6118 genes in the data
set. This was done to understand the nature of the profiles and it was found that some
large clusters showed essentially no change of expression over time, others with various
shapes stayed fairly stable with change of K and there were some small clusters with
atypical profiles. It’s also done for all 6118 genes. This provides support for the use of
criterion of Chu, since a large number of genes (3391 when clustering done on all 6118

genes) fall into clusters with constant expression over time.

The gap statistic with K-means and initial centroids obtained from hierarchical
clustering was applied to the 1148 genes meeting RMS criterion. The maximum num-
ber of clusters was set at 30 and the reference matrices were generated at step 3 of
gap statistic algorithm using a uniform distribution over the range of observed values
(option a), and the number of clusters was determined to be 9. The results of gap

statistic are given in Figure 5.1 and Figure 5.2.
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> gapstat(newdat3[,2:8], K=30, B=50)

$Gapk
f1]
(8]
[15]
[22]
[29]

$sk
(1]
(7]
(13]
[19]
[25]

$Sdk
(1]
(7]
[13]
[19]
[25]

$Diff
[1]
(6]
[11]
[16]
[21]
[26]

$Khat
(11 o

0
2
2.
2
2

O O O OO0

O O O O O

.01082040
.01145138
.01276264
.01363560
.01263769

.01071379 0O
.01133856 0
.01263690 0.
.01350126 0
.01251318 0

O O O O O

.1234522156
.0470397419
.0086287507
.0006093439
.0004208016
.0041706051

.6930711 1.8283406 1.
.2399751 2.2782241 2.
3037693 2.2868366 2.
.3146344 2.3375083 2.
.3375174 2.3

356186

.01181728
.01235576
.01100956
.01227602
.01287899

.01170085
.01223403

01090109

.01215507
.01275210

9632833 1.9878576 2.1212461 2.1671136 2.2256047
2843147 2.3134124 2.3169155 2.3122075 2.3167583
2999302 2.3037831 2.3056700 2.2893878 2.3029118
3416686 2.3438345 2.3404221 2.3485463 2.3437400

0.01189092 0.01106499 0.01143219 0.01137687
0.01201024 0.01403692 0.01335720 0.01213183
0.01134031 0.01147210 0.01248416 0.01323230
0.01197334 0.01130182 0.01148524 0.01125200
0.01229486 0.01202497 0.01101910 0.01110992
0.01177376 0.01095597 0.01131956 0.01126478
0.01189191 0.01389863 0.01322560 0.01201231
0.01122858 0.01135907 0.01236116 0.01310193
0.01185537 0.01119047 0.01137208 0.01114114
0.01217372 0.01190650 0.01091053 0.01100046

-0.1230517764 -0.0135093180 -0.1219563227 -0.0344906474

-0.0020145691 -0.0262388341
0.0174706714 0.0064587250
0.0093793830

-0.0113886906
0.0168312385

.0079463461 -0.0157405043
.0243293216 0.0284047391
.0285582745 -0.0015506225
.0104717889 0.0162914084
.0130086828

(@]

.0117486228
.0070917386
.0172417361

O O O
O O O O

Figure 5.1: The results were obtained from 1148 filtered genes by the gap statistic
algorithm with the K-means clustering method used to generate the clusters, DIANA
used to compute the initial centers for the K-means, The maximum number of clusters
K=30, and the Monte Carlo replicate B=>50.
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Figure 5.2: The plot of gap statistic with & = 9 shown as solid dot. The results
were obtained from 1148 filtered genes and the gap statistic algorithm.

The changing pattern in expression level over time for each cluster can be dynam-
ically shown by the plot of profiles of all genes in a cluster, with the polynomial fitted
to the log ratios for all genes in the cluster. This is shown for the 9 clusters on the
selected set of 1148 genes in Figure 5.3. Clusters 1, 2, 5, 7 and 9 have mean profiles
that show up regulation over the entire period of observation, but with some markedly
different patterns. For example, the cluster 1 mean profile shows increased expression
in the early part of the period of observation, whereas, that of cluster 5 shows sharp
increase from ¢ = 0 to a maximum at about time 7 and then it levels off. Clusters 3,

4, 6 and 8 show down regulation over the entire period of observation, with cluster 8
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showing a steady decline.
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Figure 5.3: The gene patterns for 9 clusters, where clusters were obtained from 1148 filtered
genes by K-means clustering algorithm and the gap statistic to determine the number of
clusters. Each grey line consists of the 7 points (time, expression level) for one gene joined
by lines. The black curve is the polynomial fitted to the data for all genes in the cluster.

The value of R? associated with the 4th degree polynomial fitted to the data in

a cluster gives an indication of which clusters have genes with more similar profiles.

There is less variability around the mean profile in clusters 4, 5 and 8, for which R2

is 0.72, 0.73 and 0.85 respectively. The variability that is present at each time point

is also informative and is shown in the Figure 5.4. In each cluster, time 0 expressibn

is very muck less variable than at other points because array t0 was compared with

itself.
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Figure 5.4: Box plots of expression levels by time point within cluster for the same clusters

as shown in Figure 5.3.
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Chapter 6

Interpretation of Clustering Results
Using (Gene Ontology

Interpretation of clustering results using Gene Ontology is the final step of microarray
data analysis. Some clusters of genes that share similar patterns of expression have
been identified. But to provide a biological interpretation, similarity of the genes in
a cluster needs to be summarized with respect to biological features, such as their
molecular functions, their roles in biological processes, and their presence in cellular

components.

An ontology is a description of concepts. Gene Ontology [Ashburner et al. 2000;
http:// www.geneontology.org] provides the standard terms with consistent biologi-
cal descriptions for the gene annotation of different organisms (e.g. yeast). GO is a
biological knowledge database about genes which is organized in three independent
ontologies: molecular function (e.g. catalytic activity) which refers to the tasks per-

formed by individual genes; biological process (e.g. pyrimidine metabolism) which
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refers to the biological function with which a gene is associated; and cellular compo-
nent (e.g. ribosome) which refers to the subcellular structure locations. Each gene
is annotated with GO terms which are structured in a hierarchy, ranging from more
general (higher level) to more specific (lower level). Therefore, a term at a lower level
has one (or more) parent term(s) at the upper level. It is possible that one gene is
annotated with more than one GO term. The level 3 is the best compromise between
quantity and quality of GO information [Conde et al. 2002; Mateos et al. 2002]. The
systematic gene names (e.g. YBR166C) are used to map the relationship between
the gene and its GO terms and extract the biologically common characteristics in the

groups of genes under study.

FatiGO [Al-Shahrour et al. 2004; http://www.fatigo.org/| is a web tool for finding
the most characteristic Gene Ontology terms for each cluster or comparing two groups
of genes to give those GO terms which are statistically significant in two groups using

multiple testing.

Given a fixed level and one of three ontologies, for each GO term, FatiGo counts
the number of genes in the group with the term at the given level. The percentage for

the GO term is computed by

the number of genes in the group with the term at the given level « 100%

percentage = the total number of genes in the group
or
percentage = the number of genes in the group with the term at the given level % 100%

the total number of genes in the group—the number of genes without GO annotated

The percentages are ordered from higher to lower. Therefore, the dominant GO terms

can be found in the group of genes.

For comparing one group of genes (typically a cluster) with the reference gene

group (typically all genes except group to be compared), a Fisher’s exact test for
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2x2 contingency tables is applied for each GO term, with the null hypothesis of no

difference in the frequency of the given term in each group.

Compared group Reference group

Given GO term present np; N2 n;,
Given GO term absent nog; Tigg no,
n,; n,; N

The p-value from Fisher’s exact test for the given GO term is computed by using

hypergeometric distribution:

ni. N —n,.
.1 k? nya— k
p-value = Z
k=n11 N
na

where N is the number of genes in the genome (6118 for yeast), n.; is the number of
genes in the cluster, n,, is the number of the given GO terms and n;; is the number

of this GO term in the cluster.

For each test, given a significant level «, the chance of making a type I error is just
«. When n independent tests are carried, the chance of making at least one type I
error in the n test is at most 1—(1—a)” (e.g. 1—(1—0.05)!° = 0.40). Since it is likely
to get a number of false rejections just by chance, the individual p-value can not be

directly used to check whether the corresponding GO term is statistically significant.

FatiGO returns one unadjusted p-value from Fisher’s exact test and three adjusted

p-values based on three different ways of accounting for multiple testing: step-down
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minP method [Westfall and Young 1993] which provides control of the family wise
error rate; False Discovery Rate (FDR) method [Benjamini and Hochberg 1995] which
provides control of the FDR only under independence and some specific type of pos-
itive dependence of tests statistics. and False Discovery Rate method [Benjamini
and Yekutieli 2001] which provides strong control under arbitrary dependency of test
statistics. The details for adjusted p-values are described as follows (e.g. FDR of
Benjamini and Hochberg 1995): Suppose that p;,ps,...,p, are n observed p-values
for n GO terms from Fisher’s exact test. Order them from the smallest to the largest
as p(1), P(2)s - - - »P(n), then the it" adjusted p-value [Dudoit et al. 2003] is:
adj

n
Y= i in(-— D}ei=1,...,n.
Pa) kel{l;'l}{lyn}{mln(k *pry, 1)} i=1,...,n
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Chapter 7

Interpretation of Yeast Cluster
Results

In the analysis of the sporulation data using the method of Chu et al. (1998) given
in Section 3.2 above, 1148 genes were retained from 6118 genes by RMS criterion
(RMS > 1.13) and the rest of the genes which did not show significant changes were
removed. Chu et al. (1998) noted that about half of 1148 genes were induced (log ratio
of expression greater than 0 and the spot color is red), and half were repressed (log
ratio of expression less than 0 and the spot color is green). For the analysis performed
here, the changing pattern of expression level during sporulation was shown in Figure

5.3

The amount/abundance of the mRNA levels (expression levels) in the two biological
samples can be indirectly measured by the intensities of the two dyes. The entire set
of gene expressions over 7 time points can be visualized as a heatmap image [Shannon

et al. 2003; Saeed et al. 2003]. The heatmap presents a grid of colored points where

35



each color represents a ratio of gene expression value in the samples, where colors
of red, green and black represent up-regulated, down-regulated, and unchanged genes
respectively. The heatmap is used to display the expression patterns of a group of genes
in a graphical format. The color intensity of each spot in the heatmap is proportional to
the gene expression ratio at this spot. Red and green represent positive and negative
value respectively. The brightness represents relatively higher positive or negative
values. Comparison of Figure 7.1, genes which have not been clustered, with Figures
7.2, 7.3 and 7.4 provide another means of seeing the pattern of expression represented
by genes in a cluster. These can be compared with the plots for corresponding clusters
in Figure 5.3. These heatmaps have been produced using the free Java package of TM4
(Saeed et al. 2003) and uploading clustering results (the data format in Appendix A.7)
into TM4.

36



WRLDREW
YRR Y AW
ERIG DT
YR IS
EHRLAY IR
WAL
BT R B
VR L 2
HRLG LGS
RS BT
EHRLILGES

AIRAHSW

Cene Nanwe

Fuanction Deseription

R g LD s AR D e e Sk
R

Tasrer A, S8 KD sasanic
Taatoer EFl-Gata

Ay raselia HEEIN

{paranicel Socganent of asetin DAnGing pLoneasn
WY ACBERLSNEL NG Goawma ~ Lanie

el 8 R R R GO

WHKS W

BHRNREWA T @RBABE LB Gene

WHRKAD W

simd e to Basilles SelEilis IR

SimElas to Readpus 1aawit GTE-Risding peotess QRS

FREL AR KL

GALE agRlin

D e B TR SRRt SR

BRI

HUPRERSAGE F U Loryde wuNionine

PG A ERE LR LA s Lt £ e A S AR S B SR B A

BAWE I LE SUORGIONEE L8 L LY ~HHAGEUd PROTALRG

R

BRI

ARG ~TGER B  CIRY T AW

LABGREWaL PrOuALn LIE

CAR sy whawe X

P e

B

s

@3 KA

KiAfeEin Relstsd ROolein

WRERGHLCLT CREBMYT ~ LA CHLRET B L Sk

rimcesmal pUnTain 298

B

BERERI R GRS L A g GorEplan Sulvenit

W Caafendeial FAIPI~ATPase selunin

AR

da ¥ S gl LGNS L et

AR

WAy

LR AR BEYRGLYLENL RPRCH Ao

wimilar wo BIaWe

EABeaemal pratain LAA

QIR AN

Ipurarived GI4TR LRPRIBVLARY SEBERIR

RO AR Kindkse
1

Simadae T SRS TR R T T e
WK
DS, s ~ Lt A B
DNA ks~ & nEwS KL
WA WA
WK T
b S #

bt

FLPS AT Pase suBuntt

W AT

PR St Y

S LaE to DUman LEeans DX N en - Sens i el
e o ea s

WK AL WS

A SN AS S {RRRARIVEY . APY AanceBor Soashnenk
P EiR ST

B MGG G KA S

BN Pt £ e B

B

WKW

B atahl e P Beodly OB L.

Temporal Class Notation

Bl T A
Haw Ly ~364X
B w1 G

WA AR w

Baw Ly -3
Bak it 1 ae
e ratad da

& Lot ke
Wi L L

Baw Ly~
B Lk Kk

Banw Ly ~3ix

R

Eanm 1‘{ b & 4
S o Lo o
fLEg a2
ELEREE ST

Bawly~HiL
Hang LM

Figure 7.1: The heatmap represents the first 67 of the 1148 filtered genes data set
before clustering. The colour patterns which represent genes profiles can not be recog-
nized easily. The columns to the right of the heatmap are that systematic gene name,

the description of gene function and temporal class notations.

Seven temporal class

notations associated with some genes means that these genes were induced at the seven
transcription stages. The temporal class notations were given in the original data set.
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Cene Name Function Description Teraporal Claxs Notation

YRLOG2W NABP-glutamate dehpdrogenase Hatabolic
YARGOTIC replication factor A, 6% K subunit Hebabolic
YALBS4C acetyl-CoR synthetase Hetabolic
YBLOA3W  unlowsm Hetabolic
TREOELC  DNA poly px ivity fact Hetabolic
YCROUSc peroxisomal citrate synthase Raxly I

YHRAROW  wndwwn: biads chromesomes Eaxly Y

TRR256C cabalase A Metabolic
YERG24w  similar to Yatip Hetabolic
TEEDS 5o ATF plosphoribosylirasierase Hetabolio
YEROS wr acetylgintanate kKinase and Hetabolic
YEROD Lo homooysteine methyltrans ferase Hetabolic
YEROIOW  sulfite reduckase swbunil Hetabolic
YGLOE2W  pyruvate carboxylase 1 Hetabolic
TCROGIC WRKROWIL Hetabolic
YGR239C wnlousn Hetabolic

YHLD24W similar to RNA-binding proteing in the N-terminal Eaxly I

YHLO3OW unknowm Hatabolic
YHROS53C metallotidonein Hetabolic
TIRO2IW  allantoicase Hetabolic
YIBG42C unlouwm Hetabolic
YILBASW similar to succinate delhydrogenase flavoprotedin Eaxly I
YJILOagsW transcription factox Hetabolic
YJIL153C pevipheral membrane protein Hetabolic
FIROLEC dihydroxyacid dehydratase Hetabolic
YJIR109C carbamgl phosplate synthetase Hetabolic
FIRLSIW  allantoate permesse MHetabolic
YEL120W gimilay to members of the mitochondrial carzier Raxly I
YERBOSC peroxisomal beta-oxidation protein Hetabolic
YERGIIC gimdlax to Gatlp Hetabolic
YEROAW transoription factox Hetabulic
T¥ROTAC unknown

YLLO2TW  unknowm Early I
TLEIOIW  O-acetylhomoserine sulfhydrylase Hetabolic
YLR3G4C aconitase Hetabolic
YLEAIW orvdithine andnotransferase Hetabolic
YHL G429 carnitine O-acetyltrmwferasse Metabolic
YHEO1SW  similar to PexSp/PasiOp (GR:249211) Hetaboulic
THRBISC wnknown; induced in stationary phase Hetabolic
YHRIATW unlaursm Eaxly I
THLIITW  malate synthagse Hetabolic
YHLid2W armonia permeane Hetabolic
YHL202W perowisomal 2, 4~-dienoyl-Col reductase Early X
ToRiooC similar to menbers of the mitochomdrial carvier Hetabolic
YOLA25W  unlowwn Hetabolic
FORZZ5W  uanknown Hetabolic
YORITISC glutamate dehydrogenase Hetabolic
YPLILIW axginase Hetabolic
YPROUZW  simdlax to Bacillus subbilis MMGE protedin Hetabolic
YPROGGC isovibrate lyase, moanfunctional Hetabulic

Figure 7.2: The heatmap of cluster 1 which contains 50 up-regulated genes with
higher expression level at 0.5 hour. The cluster is generated from 1148 filtered genes
by K-means clustering algorithm.
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Gene Name Function Description Temporal Class Notati

YREROI2W  stress-induced protedin

¥CRO12w  phosphoglycerats Kinase

YCROAIC unknown

YDL2340 CTPaze~activating protein for Yptip

YOROSOC tricosephosphate isomerase

THEGSSw  sinmdlax to menmbers of the Spep-Eomdp-¥Yolidép
YOR258C  mdtochondrial

YER06Tw  unknown

YEELS0w  similar to Sedip

YER1S&C gimilar to RAfrip

YEROS55W  gimdlaxr to E. coli cystathionine beta
YCLOSSW  unknown

TEL25IW hemokinase I

WCRIAZW  wdonvwn

TCR146C unknown

YCR185C I

YORZLIM  unknown

YHLO24C wdanewn

YHROG4C HSPIB homolog

YTHRELIAW  envlase XX

TILOS2W glycexraldehyde-3-phosphate delgypdrogenase 1
TILASIW  gecreted glycoprotein of HEPF family

AILLGEC putative protein kinase

YIL171C unknowm

HIRGNHC glyceraldehyde~3-phosphate dehydrogenase 2
TEL1520 phosphoglyoervate mutase

YELASIW  wndonowmn

YERO1IW simdilax to plant FR-patlogen related proteins
YLE194C dauoewn

YLEOddc pyruvate decarboxylase

YLE134w pryuvate decarboxylase

TLR136c wnknown

YERUGIW pubative marmosyliransierase; type 2 membyane
YERagUW HAB-dependent 5, M-pethylenctetrahydrafolate
YLLU2 6w heat shock probein

YLE3SW adenylosuccinates lyase

YLRITIC fructose~1, 6 -bisphosphatase

YLE392C wondauen

YLR4213C unknow

YHLU3BC similar to vanadate resistance protein GogfSp
YHR235C nnknown

YHR305C gimilar to BglZp and other glucans (GB:249212)
YRLLGOW wdkanown: vesponge to nulrient limitation
YHRO3IW  para-aminobenzoate synthase

YOLO16C calmodulin-dependent protein Kinase

YUR128C phosphoribogylandnwinddazole vacrhoxylase
YOLA1G8C major facilitator swperfamily

YOLOS W glycexol-3-phosphate delydrogenase

YORLTBC Glo7p regulatoxy subwmit

YORLITW unknown

YOR208W  protein tyrogine phosphatase

YORZOSC nicotinate phogsphovibusyltvansfsvase
YOR2IIW  unknown

WORIAC bagic h-1~-h tramscviption factor

YORISSW  unknown

YORILOIW  wnknown

YPLU6IW  acetaldehyde delydroyg

ATPL2TIC koo

TPROTIC transketolase

Figure 7.3: The heatmap of cluster 8 which contains 59 down-regulated genes with
higher negative expression level after 5 hour. The cluster is generated from 1148
filtered genes by K-means clustering algorithm.
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Figure 7.4: The heatmap of cluster 9 contains 39 up-regulated genes with higher
expression level after 0 hour. The cluster is generated from 1148 filtered genes by

Function Description
alpha-galactosidase
wnkronn
unknown
wnkaown

anaphage inhdbitor {putative)
gynaptonemal complex protein
WdCrrRn

unknown

unkanonn

Wnknow

HutS homolog
F-igopropylmalate dehpdratase
wikavown

DNARNA hwlicase, putative
G2/M oyclin
ondercomm

ds break formation complex catalytic subunilt
negative regulator of M phame (putative)

transaminase

suppresses rdf2 smtation
nknown

DPHAR binding protein
koW

probein Kinase

putative uwbdguitin-protein ligase

ribomucleoprobtein
WRdCHow

gynaptonemal complex component {(putatiwve)
ds break formation conplex subwdt
spindle pole body asgociated protein
wnknown

koW
unknown
£aTh 5 L
protein Kinase

izocitrate lyase, nonfunctional

K-means clustering algorithm.

Genes with similar functions are grouped into 9 clusters with good separation
(comparing Figure 7.1 with Figures 7.2, 7.3, and 7.4). Five clusters (1, 2, 5, 7, and 9)
have up-regulated genes. The majority of genes in these 5 clusters have the temporal
class notation (e.g. Metabolic, Early I, Early II, Early-Mid, Middle, Mid-Late, and
Late). Four clusters (3, 4, 6, and 8) have down-regulated genes without temporal class

notation, which can be verified by their heatmaps. Interestingly it also can be seen in
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heatmaps of these 9 clusters that genes within the same cluster are either up-regulated
or down-regulated over time. This result is consistent with the findings in the paper

of Chu et al. (1998).

o4 -

o

o
o

o3

Avera

C1 c2 3 C4 85 C6 . Cs c8

Cluster

Figure 7.5: The average of gene expression versus clusters.

Some properties of gene clusters can be explored by Figure 7.5. Array t0 was self-
hybridized and compared with itself. Therefore, the average of gene expression of each
cluster at O hour is around zero. The average of gene expression of Cluster 5 reaches
the highest level at 11.5 hours. However, the average of gene expression of Cluster 8

reaches the highest level at 7 hours.

In the research of Chu et al. (1998), a small, representative set of genes was hand-
picked for each of these 7 temporal classes (Table 7.1). All hand-picked genes with the

temporal class of Metabolic, Early I, and Early II are grouped into cluster 1, 9, and 2
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Metabolic Early 1 Early 11 Early-Mid Middle Mid-Late Late

ACS1 (1) ZIP1 (9) KGD2 (2) YBLO78C (2) YSW1 (5) CDC27 (7) YMR322C (7)

PYC1 (1) YDR374 (9) AGA2 (2) QRI1 (2) SPR28 (5) DIT2 (7) YORS391C (7)

SIP4 (1) DMC1 (9) YPT32 (2) YNLO13C (2) SPS2 (5) YKLO050C (7) SPS100 (6)

CAT2 (1) HOP1 (9) SPO16 (2) APC4 (5) YLLO12W (5) DIT1 (5)

YOR100C (1) IME2 (9) YPRI192W (2) STU2 (5) YLR277C (7)
CARL1 (1) PDS1 (9) ORC3 (7)
YLLO005C (7)

Table 7.1: A representative set of genes were hand-picked for 7 temporal classes [Chu et al.
1998]. The number in the bracket beside the gene name is the cluster which the gene belongs
to.

respectively. Those hand-picked genes with the temporal class of Early-Mid, Middle,
Mid-Late, and Late are grouped into the different clusters but some of them are still
in the same cluster. Therefore, more time points might be needed to sharpen these

boundaries and reveal more classes or more clusters may be needed.

The genes with significant GO terms in the different clusters can be explored by
FatiGO. For example, 44.62% of the genes in cluster 6 function as the GO term of
nucleic acid binding. The function is significantly different from the rest of the genes
with p-value less than 1e=® (Table 7.2). In cluster 3, 57.86% of the genes are function-
ally annotated in GO term as structural constituent of ribosome. This percentage is
clearly higher than the 3.11% observed for the distribution of this GO term in the rest
of the genes (Figure 7.6). Similarly, the significant component and process annotations
are summarized in Table 7.3 and Table 7.4 respectively. For example, 88.14% of the
genes in cluster 3 are involved in metabolism process and the annotation is significantly
different from the rest of the genes with p-value less than 1le~5 (Table 7.4). 53.33%
of the genes in cluster 9 were annotated as the component of non-membrane-bound
organelle and the annotation is significantly different from the rest of the genes with

p-value less than 0.005 (Table 7.3).
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Cluster | Function(s) Percentage p-values

2 structural constituent of cytoskeleton 8.70% | 0.00002 0.00194 0.00984

3 structural constituent of ribosome 57.86% | <le™ <le™® <le”
transferase activity 8.12% | 0.00032 0.00666 0.03147

5 structural constituent of cytoskeleton 17.65% | < 1le™® 0.00037 0.00187

6 nucleic acid binding 44.62% | <le™ <le™® <le”
helicase activity 12.31% § 0.00011 0.00502 0.02548

Table 7.2: Significant function annotations in the different clusters. The p-values from left
to right: unadjusted p-value, adjusted p-value of step-down minP and FDR, [Benjamini and
Hochberg 1995].

Cluster | Component(s) Percentage p-values
3 ribonucleoprotein complex 55.21% | <le™® <le® <le™®
non-membrane-bound organelle 64.06% | <1le™® <le™® <le™d
eukaryotic 43S preinitiation complex 21.35% | <le™® <le™® <led
eukaryotic 488 initiation complex 19.79% | <1le™® <le™® <le™®
intracellular organelle 87.50% | 0.00002 0.00032 0.00173
intracellular 97.92% | 0.00031 0.00481 0.02599
4 proton-transporting ATP synthase 3.33% | <1le™® 0.00002 0.00013
complex
proton-transporting two-sector 3.33% | < 1e™® 0.00002 0.00013
ATPase complex
external encapsulating structure 7.14% | < 1e”® 0.00030 0.00146
5 immature spore 16.33% | <le™® <le™® <le™
external encapsulating structure 2041% | <1le™® <le™® < 1le™®
7 ubiquitin ligase complex 6.56% | < 1le=> 0.00018 0.00099
8 external encapsulating structure 20.00% | <1le™ < 1le™ 0.00001
9 non-membrane-bound organelle 53.33% | < 1le™® 0.00066 0.00354

Table 7.3: Significant component annotations in the different clusters.
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The p-values from
left to right: unadjusted p-value, adjusted p-value of step-down minP and FDR [Benjamini
and Hochberg 1995].




Cluster | Process(es) Percentage p-values

2 regulation of gene expression, epig- 8.04% | 0.00024 0.00577 0.02179
netic

3 metabolism 8Bl4E ]| wle® <«le?” <le”

5 cell differentiation dBANG | «le” <leg” <le

7 cell differentiation 11.71% | <1e=® 0.00005 0.00019

Table 7.4: Significant process annotations in the different clusters. The p-values from left
to right: unadjusted p-value, adjusted p-value of step-down minP and FDR [Benjamini and
Hochberg 1995].

toleould ‘unction. vel: 3 wyal ups X
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Figure 7.6: Exploration with FatiGO to show that the percentage of a GO term in Cluster
3 is different from the distribution of this term in the rest of the genes. The p-values from
left to right: unadjusted p-value, adjusted p-value of step-down minP and FDR [Benjamini
and Hochberg 1995].

In each cluster, there exist many genes with unknown functions. Because genes
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with related functions tend to be expressed in similar patterns, the possible roles and
functions of these unknown genes can be inferred by the roles and functions of the well
known genes in the same cluster. These hypothesis about the gene function can be

verified by further studies.

In cluster analysis, usually the number of clusters must be decided in advance
and arbitrarily selected. A statistical method (gap statistic) can be applied to find
the number, as done here, especially when the underlying biological knowledge is

unavailable.

The biological interpretation of gene clusters is the key step of the whole analysis.
Because there exist many gene functional annotation databases, without a standard
term to describe the gene’s function(s), the interpretation of the clustering results
might be misunderstood. The GO provides structured, controlled vocabularies (on-
tologies) that describe gene products in terms of their associated biological processes,
cellular components and molecular functions in a species-independent manner. FatiGO
is applied to compare two groups of genes and extract a list of GO terms distribution

among the two groups which is significantly different by using multiple testing.

To validate the clustering results above, the whole data set without RMS filtering
was analyzed using the same method above. The number of cluster was chosen to be 11
as identified by the gap statistic. The changing patterns of gene expression for these
11 clusters is very similar to what we found above (compare Figure 5.3 and Figure
7.7). Cluster 1, 2 and 3 (total of 3391 genes) from the complete data set contain those
genes with smaller changes during sporulation process and the tendency is for constant
gene expression in clusters. Analysis using the whole data set and 1148 filtered genes

generally identify the same tendencies for genes either upregulated or downregulated
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Cluster from 1148 Cluster from Number of the common
filtered genes 6118 genes genes in two clusters
Cluster 1* (50) | Cluster 8 (345) 44
Cluster 2 (166) | Cluster 8 (345) 73
Cluster 3 (225) | Cluster 10 (204) 125
Cluster 4* (235) | Cluster 5 (491) 213
Cluster 5% (90) | Cluster 9 (100) 89
Cluster 6* (108) | Cluster 4 (412) 101
Cluster 7* (176) | Cluster 7 (273) 154
Cluster 8* (59) | Cluster 10 (204) 59
Cluster 9% (39) | Cluster 11 (46) 39
Cluster 1 (1173) 0
Cluster 2 (708) 0
Cluster 3 (1510) 0
Cluster 6 (856) 0
Total (1148) | Total (6118)

Table 7.5: Comparison of clustering results from the whole genes data set and the filtered
genes data set. the number in the bracket is the number of genes within the cluster. The
most genes within the cluster with asterisk are well separated into the different clusters even
when the whole data set is used.

over entire time period, but of course with a different number of clusters. Comparison
of clustering results from the whole genes data set and the filtered genes data set is
summarized in Table 7.5. Clusters were matched by the shape of the mean profile and
the number of genes in common for matched clusters was counted. There is reasonable
consistency in cluster membership between the 1148 filtered genes data set and the all
6118 genes data set. For example, 90 genes from the filtered gene data set are grouped
into cluster 5. When 6118 genes are used, 89 of 90 genes are still grouped together
into cluster 9 from the whole data set. This means that these 89 genes might have a
strong relationship. Clusters 1, 2, 3 and 6 of 6118 genes contains genes with smaller
expression changes. These genes were removed when RMS filter criterion of 1.13 was

applied.
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Figure 7.7: The gene patterns for 9 clusters are obtained from all of 6118 genes by K-means
clustering algorithm.
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Chapter 8

Conclusions

DNA microarray technology has now made it possible to measure simultaneously the
gene expression levels for thousands of genes during certain biological processes (e.g.
sporulation) or the response to changes in the environment (e.g. drug treatment)

across samples.

The application of cluster analysis to gene expression data is based on the as-
sumption that genes with similar expression profiles share similar functions or involve
similar biological processes [Eisen et al. 1998; Gibbons and Roth 2002]. The co-
expressed genes with unknown functions or poorly characterized genes in the same
cluster can be predicted by genes with known functions or characters. One biological
process may involve hundreds of genes. One gene may also function in many biological
processes. The genes with similar expression patterns in the same cluster can help
in understanding how the genes interact with changes in the environment/conditions.

This is very useful in new drug discovery.
Cluster analysis has proven to be useful to group genes together with similar func-
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tions based on gene expression patterns under various conditions or across different
tissue samples [Eisen et al. 1998] and has demonstrated genes with similar expression
patterns contribute to common function and are likely co-regulated. However, cluster-
ing is an unsupervised method. This means that no previous knowledge of the number
and characteristics of the clusters in the data is used in determining the clusters. There
exist different techniques for identifying the number of clusters. A recent approach to
identify the number of clusters is the use of gap statistic. For unsupervised cluster
analysis, GO is an excellent biological knowledge database for gene function prediction
and biological interpretation of clusters. The software FatiGo, a query tool, is used to

integrate GO annotation into cluster analysis.

In this project, similarity patterns and significant GO annotations in each cluster
are assessed. With our methodology, the biological knowledge is integrated into cluster
analysis and makes the clustering results more meaningful. The gap statistic is used
to determine the number of the clusters based on the nature of the data, and thus
the number of clusters is not arbitrarily selected. The gene expression patterns are
displayed by fitting a polynomial curve for each cluster and by displaying the heat maps
for each cluster. The two types of displays provide complementary information since
the heat map is a depiction of the state of expression, as upregulation, downregulation
or no change relative to the control, at each time point for all genes in a cluster. The
use of these methods in the project shows that they can be easily implemented and

that they automate the microarray data analysis.

The final results depend on what clustering method and similarity metric is em-
ployed and what technique is used to find the “optimal” number of clusters in the given

data set. However, if used in an iterative fashion, the procedures and the methodology
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used here are generally applicable and provide knowledge-driven cluster analysis for

gene expression data.

Most clustering algorithms require that a gene reside within exactly one cluster.
But genes usually play multiple roles in sporulation process. From the view of gene
functional category, it is reasonable that some genes may overlap between categories. It
means that the same genes might function differently at different stages or conditions
(see Appendix A.1). Many genes can be seen in multiple categories. Therefore, it
is reasonable to generate “fuzzy” clusters, or leave some genes unclustered [Chen et
al. 2002]. Application of such methods to the present data set is an area for further

investigation.

Usually a microarray data set contains a huge amount of gene expression values.
It is necessary to draw attention to the time complexity of the clustering algorithms
when using some clustering algorithms. K-means algorithm is relatively‘ efficient. The
time complexity is O(tkn), where n is the number of objects, k is the number of
clusters, and ¢ is the number of iterations (k,t <« n). Comparing with other common
used clustering algorithms, PAM has time complexity O(k(n — k)%). DIANA has
worst-case time complexity O(n%logn). The different versions of AGNES differ in how
they compute cluster similarity. The most common versions of AGNES are single-
link, complete-link and average-link clustering. The complexity of these algorithms is

O(n?*logn). [Pantel 2003; Jain et al. 1999)].
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Appendix A

A.1 The Gene Ontology (GO)

The Gene Ontology (GO) provides a consistent vocabulary to describe aspects of a
gene product’s biology. A gene product’s biology is represented by three ontologies:
molecular function, biological process and cellular component. The following table
gives three ontologies (at level 1). The number in the bracket beside the GO term
is the number of genes with the GO term at current level. (The table was from

http://www.godatabase.org/cgi-bin/amigo/go.cgi)

- all : all ( 6456 ) Pie Chart for.
- G0:0008150 : b1010g1ca1 process ( 6456 )
+ G0:0007610 : behavior ( 0 )
G0:0000004 : biological process unknown ( 1664 )
G0:0009987 : cellular process ( 4650 )
G0:0007275 : development ( 451 )
G0:0040007 : growth ( 110 )
G0:0007582 : physiological process ( 4741 )
G0:0050789 : regulation of biological process ( 572 )
+ G0:0016032 : viral life cycle ( 2 )
- GD:0005575 : cellular _component ( 6439 )
+ G0:0005623 : cell ( 5408 )

+ + + + + 4+
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G0:0008372 : cellular component unknown ( 1006 )
G0:0031012 : extracellular matrix ( 0 )
GD:0005576 : extracellular region ( 22 )
G0:0043226 : organelle ( 3921 )
G0:0043234 : protein complex ( 1299 )

+ G0:0019012 : virion ( 0 )
- G0:0003674 : molecular_function ( 6439 )

+ G0:0016209 : antioxidant activity ( 20 )
G0:0005488 : binding ( 1124 )
G0:0003824 : catalytic activity ( 1897 )
G0:0030188 : chaperone regulator activity ( 8 )
G0:0030234 : enzyme regulator activity ( 159 )
G0:0005554 : molecular function unknown ( 2304 )
GO0:0003774 : motor activity ( 18 )
G0:0045735 : nutrient reservoir activity ( 0 )
G0:0031386 : protein tag ( 8 )
G0:0004871 : signal transducer activity ( 65 )
G0:0005198 : structural molecule activity ( 356 )
G0:0030528 : transcription regulator activity ( 324 )
G0:0045182 : translation regulator activity ( 58 )
G0:0005215 : transporter activity ( 425 )
G0:0030533 : triplet codon-amino acid adaptor activity ( 300 )

+ 4+ + + +

+ + + + + 4+ + + +++ + + o+
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A.2 Function of the gap statistic

gapstat=function(X, K, B=20)

{

#calculating the gap statistic

#
#
#
#

X
K

B

= data matrix (normalized intensities ratios)
maximum of cluster (equal to or less than the
number of rows of matrix X)

number of Monte Carlo replicates (greater than 1)

Cluster=function(X, k, hc)

{

¥

#r
#X
#k
#h
#

un clustering algorithm
= data matrix

= the number of cluster in the current run
c= clustering object returned by any hierarchical
clustering algorithm
if (k==1)
{
clusters=rep(1, length(X[,1]))
}
else
{
hc.clust=cutree(hc, k=k)
centers=matrix (0, nrow=k, ncol=ncol(X))
for(i in 1:k)
{
centers[i, J=apply(as.matrix(X[hc.clust==i, ]), 2, mean)
#centers[i, J=apply(as.matrix(X[hc.clust==i, ]), 2, median)
}
clusters=kmeans (X, centers=centers, iter.max=100)$cluster
}
clusters

Refdist=function(x)

{

1

#uniform distribution as reference distribution

runif(length(x), min=min(x), max=max(x))
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#set initial values

Wk=rep(0, K) #pooled within-cluster sum of squares around
#the cluster mean

Wkb=matrix (0, K, B) #B copies of Wkbx*

Gapk=rep(0, K) #gap statistic

Sdk =rep(0, K) #standard deviation of B of Wkb*

Sk =rep(0, K) #Sk=Sdk*sqrt (1+1/B)

hc=diana(X) #executing DIANA clustering algorithm to

#create a hierarchical clustering object
#for computing the initial centers of K-means
#hc=hclust(dist(X), method="average")

for(k in 1:K)
{
clusterX=Cluster(X, k, hc=hc)
for(i in 1:k)
{
Nr=length(X[clusterX==i, 1])
#Dr=sum ((dist (X[clusterX==i, 1))"2)
#Wk (k] =Wk [k] +Dr/Nr
Wk [k] =Wk [k]+(Nr-1) *sum(diag(var (X[clusterX==i, ])))

}

for(b in 1:B)

{

#draw B Monte Carlo replicates using Method (a)
Xstar=apply(X, 2, Refdist)

# draw B Monte Carlo replicates using Method (b)

# s=svd(X) # decomposition

# D=diag(s$d)

# V=s$v #X=UDV

# Xp=XU*%V # X=XV

# Zp=apply(X’, 2, Refdist)

# Z=Zplxht (V)  # Z=2°t(V)

# Xstar=7
hcstar=diana(Xstar) #create a hierarchical clustering
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#object for the initial centers of K-means
#hcstar=hclust(dist(Xstar), method="average")

for(k in 1:K)
{
clusterXstar=Cluster(¥Xstar, k, hc=hcstar)
for(i in 1:k)
{
Nr=length(Xstar[clusterXstar==i, 1])
#Dr=sum((dist(Xstar [clusterXstar==i, ]))~2)
#Wkb [k, b]l=Wkb[k, b]+Dr/Nr
Wkb(k, bl=Wkb[k, bl+(Nr-1)+*sum(diag(var(Xstar[clusterXstar==i, ])))

Khat=K
for(k in 1:K)
{
Gapk [k]=mean (log(Wkb[k,]))-log(Wk[k])
Lbar=mean (log(Wkb[k,]))
Sdk [k]=sqrt ((1/(B-1))*sum((log(Wkb[k,])-Lbar)~2))
Sk [k]=sqrt (1+1/B) *Sdk [k]
}

for(k in 1:(K-1))
{
if (Gapk [k]-(Gapk [k+1]-Sk[k+1])>=0)
{
Khat=k
break
}
}
par (mfrow=c(1, 2))
plot(1:K, Wk, xlab="Number 0f Clusters k",
ylab="Within sum squares Wk")
lines(1:K, Wk, lty=2)
points(Khat, Wk[Khat], pch=19)
plot(1:K, Gapk, xlab="Number Of Clusters k", ylab="Gap")
lines(1:K, Gapk, lty=2)
points(Khat, Gapk[Khat], pch=19)
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title("Gap statistic", outer=T, line=-2.5)
list (Gapk=Gapk, Sk=Sk, Sdk=Sdk, Diff=Gapk[1:(K-1)1-(Gapk[2:K]-Sk[2:K]),
Khat=Khat)
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A.3 Fitting the polynomial curves

Main<-function(dat, K)

{

#fit the polynomial curve

#dat = data matrix (normalized intensities ratios)
#K = the number of cluster

if (K==1)
{
cluster.id=rep(1, length(dat[,1]))
}
else
{
hc.clust=cutree(diana(dat), k=K)
centers=matrix (0, nrow=K, ncol=ncol(dat))
for(i in 1:K)
{
centers[i, ]=apply(as.matrix(dat[hc.clust==i, ]), 2, mean)
}
cluster.id=kmeans(dat, centers=centers, iter.max=100)$cluster
}

clustObj=cbind(dat, cluster.id)

par (mfrow=c(ceiling(X/5), 5))
for(j in 1:K)
{
Cluster.Plot(j, clustObj)
Fit.Curve(j, line=T, power=4, clust0Obj)
}
b

Cluster.Plot<-function(i, dat)
{
#draw the scater plot, time vs log ratio
#i = i_th cluster
#dat = intensity matrix with clustering vector
r=dat
maxy=max(r[, 1:7]) # compute y axis range
miny=min(r(, 1:7])
r=as.matrix(r)
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x=c(0, 0.5, 2, 5, 7, 9, 11.5) #the time points when the
#samples were taken
num=GenesInCluster(r) #get the number of the
#genes in each cluster
plot(0, xlim=c(0, 11.5), ylim=c(miny, maxy), main=paste("Cluster",
i, "(", num[i], "genes)"), type="n", xlab="time",
ylab="1og(Cy5/Cy3)", axes=F)
axis(1, at=x, labels=c("Q", "0.5", "2u, "gn wyrw ugn_  niq1 5"))
axis(2)

for(j in 1:dim(r) [1])

{
if(xr(j,8]==1)
{
lines(x, r[j,1:7], col="light grey")
}
}

GenesInCluster<-function(dat)
{
#Count the total number of genes within a cluster.
#dat = intensity matrix with clustering vector
r=dat
n=max(r[, 8]) #total number of clusters
NumGenes=matrix(0, nrow=1, ncol=n)
for(i in 1:n)

{
NumGenes [i]=sum(r [, 8]==1)
}
NumGenes #the total number of geme in each cluster

Fit.Curve<-function(i, line=T, power, dat)

{

#fit a curve to the data

#1 = i_th clusters

#line = T draw the fitted line;

#power = the highest power of polynomial curve(<=4)
#dat = intensity matrix with clustering vector
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r=dat
n=max(r[, 8]) # total number of clusters
nun=GenesInCluster(r)
X=matrix(0, nrow=7, ncol=power+1) # design matrix
X[, 1)=c(1, 1, 1, 1, 1, 1, 1)
X[, 2]=x1=c(0, 0.5, 2, 5, 7, 9, 11.5)
for(j in 3:(power+1)) # construct design matrix
X[, jI1=x[, 217(3-1)
#row binding for mutlple Y’s
tmp=X
if (num([i]>1)
{
j=1
for(j in 1:(num[i]-1))
X=rbind(X, tmp)

}
Y=matrix(t(r[r([,8]==1,1:7]), nrow=7*num(i], ncol=1) #construct Y matrix
bHat=solve (t (X) %*%X) %%t (XD %*%Y #estimate the coefficients of
#the polynomial curve function
yHat=X%*/,bHat #fitted Y
SSE=round (t (Y-yHat)%*%(Y-yHat), digits=3) #SSE=Sum Square of (Error)
#Residual
df=length(Y)-qr (X) $rank #df=Dgree of Freedom
bHat=round (bHat, digits=5) #round digits for displaying
SSM=sum(yHat"~2) #3SM=Sum of Squares Model
MSS=(sum(Y))"2/length(Y) #MSS=Sum of Squares Mean
SST=sum(Y"2) #SST=Sum of Squares Total

R=round (SSM/SST*100, digits=2)
Radj=round ((SSM-MSS)/(SST-MS5)*100, digits=2)

yHat=yHat [1:7]
if (1ine==T)
{
lines(x1, yHat, col="red", lwd=1)
}
c(8SSE, df, bHat)
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A.4 Normalization of the array at hour 0

tOr=tOred-tOredbkg #background correcting for Cy5 (red)
t0g=tOgreen-tOgreenbkg #background correcting for Cy3 (green)
A0=1/2x1og(t0r*t0g, base=2) #compute A for hour 0
MO=1log(tOr/t0g, base=2) #compute M for hour O

loess0=1oess(MO~AQ, span=0.88) #LOWESS fitting

newMO =MO-predict(loessO, A0)

newt0r=2" (AO+newM0/2)

newt0g=2" (A0-newM0/2)

newt0 =newtOr/newtOg

lognewtO=log(newt0, base=2) #normalized log ratio of hour 0

#MA plot (before normalization)
predictO=predict(loess0)
plot (A0, MO, xlab="A (Average log intemnsity)",
ylab="M (log ratio)", col="light grey")
lines (AO[order(A0)], predictO[order(A0)], col="red", lwd=2)

#MA plot (after normalization)

plot (A0, newMO, xlab="A (Average log intensity)",
ylab="M (log ratio)", col="light grey")

lines(AO[order(40)], predict(loess(newMO~AQ, span=span,
degree=2)) [order(40)], col="red", lwd=2)
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A.5 Improved K-means clustering method

Cluster=function(X, k, hc)

{

#computer the initial centers for K-means clustering algorithm
#X = data matrix

#k = the number of cluster in the current run

#hc = clustering result from another clustering algorithm (diana)

if (k==1)
{
clusters=rep(1, length(X[,1]))
}
else
{
hc.clust=cutree(hc, k=k)
centers=matrix (0, nrow=k, ncol=ncol(X))
for(i in 1:k)
{
centers[i, ]=apply(as.matrix(X[hc.clust==i, ]), 2, mean)
}
clusters=kmeans(X, centers=centers, iter.max=100)$cluster
}
clusters
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A.6 Attaching functional annotation to the expres-

sion data matrix

#annotation.csv: functional annotation database

annotation=read.csv("annotation.csv", header=T, sep=",")

gene_anno=combine (as.vector (dat[, 1]),as.vector(annotation[, 3]),
as.vector (annotation[, 4]))

km=Cluster(dat[, 2:8], 9, iter.max=200) #run K-means clustering

cl.annol=gene_funcs [km$cluster==1, ] #annotation for cluster 1

spaces=function(n)
{ #generate n spaces
spaces_str=""

if (n==0)

{
return("")

}

else

{
for(i in 1:n)
spaces_str=paste(spaces_str, " ", sep="")
return(spaces_str)

}

b

combine=function(cl, c2, c3)
{ #combine the description columns for annotation
n=length(cl)
max_len_cl=max(nchar(cl))
max_len_c2=max(nchar(c2))
results=rep("", n)
for(i in 1:n)
{
results[i]=paste(c1[i], spaces(1+max_len_cl-nchar(c1[i])), <c2[i],
spaces (1+max_len_c2-nchar(c2(i])), c3[i], sep="")
}

as.matrix(results)
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A.7 Gene functions and expressions

ORFs

YALOS2W
YARQQ7C
YALOS4C
YBLO43W
YBRO8SSC
YCROOSc
YDR18OW
YDR256C
YERO24w
YEROS5¢
YERO69w
YERO91c¢
YFRO30W
YGLO62W
YGRO67C
YGR239C
YHLO24W
YHLO30W
YHROS3C
YIRO29W
YIR042C
YJLO45W
YJLOBIW
YJL153C
YJRO16C
YJR109C
YJR152W
YKL120W
YKROOSC
YKRO33C
YKRO34W
YKRO71C
YLLO27W
YLR303W
YLR304C
YLR438W
YMLO42W
YMRO18W
YMROSSC
YMR147W
YNL117W
YNL142W
YNL202W
YOR100C
YOL125W
YOR225W
YOR375C
YPL111W
YPROO2W
YPROOEC

DESCRIPTION
NADP-glutamate dehydrogenase
replication factor A, 69 kD subunit
acetyl-CoA synthetase
unknown
DNA polymerase processivity factor
peroxisomal citrate synthase
K ; binds chr
catalase A
similar to Yatlp
ATP phosphoribosyltransferase
acetylglutamate kinase and
homocysteine methyltransferase
sulfite reductase subunit
pyruvate carboxylase 1
unknown
unknown
similar to RNA-binding proteins in the N-terminal
unknown
metallothionein
allantoicase
unknown
similar to succinate dehydrogenase flavoprotein
transcription factor
peripheral membrane protein
dihydroxyacid dehydratase
carbamyl phosphate synthetase
allantoate permease
similar to members of the mitochondrial carrier
peroxisomal beta-oxidation protein
similar to Gatlp
transcription factor
unknown
unknown
O-acetylhomoserine sulfhydrylase
aconitase
ornithine aminotransferase
carnitine O-acetyltransferase
similar to Pex6p/PaslOp (GB:Z49211)
unknown; induced in stationary phase
unknown
malate synthase
ammonia permease
peroxisomal 2,4-dienoyl-CoA reductase
similar to members of the mitochondrial carrier
unknown
unknown
glutamate dehydrogenase
arginase
similar to Bacillus subtilis MMGE protein
isocitrate lyase, nonfunctional

Metabolic
Metabolic
Metabolic
Metabolic
Metabolic
Early I

Early I

Metabolic
Metabolic
Metabolic
Metabolic
Metabolic
Metabolic
Metabolic
Metabolic
Metabolic
Early I
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Metabolic
Metabolic
Metabolic
Early I

Metabolic
Metabolic
Metabolic
Metabolic
Metabolic
Early I

Metabolic
Metabolic
Metabolic

Early I

Metabolic
Metabolic
Metabolic
Metabolic
Metabolic
Metabolic
Early I

Metabolic
Metabolic
Early I

Metabolic
Metabolic
Metabolic
Metabolic
Metabolic
Metabolic
Metabolic

TEMPORAL CLASS

COOO0OO0O000OO0O0O0O000D0OODO0O00000O0OO0000D0
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A.8 Agglomerative hierarchical clustering algorithm

The agglomerative hierarchical clustering algorithm builds the hierarchy by merging.
The objects initially belong to a list of singleton sets Si,...,5,. Then a distance
function is used to find the pair of sets {S;,S;} from the list that is the shortest to
merge. Once merged, S; and S; are removed from the list of sets and replaced with
Si U S;. This process iterates until all objects are in a single group. Three variants
of agglomerative hierarchical clustering algorithms may use three distance functions
which measure the distance between two clusters. Complete linkage, average linkage,
and single linkage methods use maximum, average, and minimum distances between

the members of two clusters, respectively [Chen et al. 2002].
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A.9 DIANA (Divisive Analysis) algorithm

DIANA (Divisive Analysis) [Kaufman 1990} is a divisive hierarchical clustering algo-
rithm. DIANA construct the hierarchy by initially spliting the largest cluster con-
taining all objects into clusters with only single object. The details of the DIANA

algorithm is:

e Select a cluster C' with the highest diameter
diameter(C) = maxd(s, j),
i,jeC

where d(1, ) is the distance between two objects ¢ and j.

e Find the object i € C' with the highest average dissimilarity

1 o
=1 Y d(i, )

JEC,j#i

to all other objects in the cluster C, then construct a new cluster Cy with the

object 4 such that Cy = Ci and C; = {i}.
e For each object ¢ € Cy(¢ € C), compute the difference

1

Di= i —
IColl -1

> d(i, ) > d, j)
J€Co,J#i ”01“ j€Ch
¢ Find the object k£ with the largest difference

DK = IZIEI%?)({Dz}
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e If Dy, > 0, move the object k into C; from Cj and repeat steps 3 and 4. Otherwise

stop processing and the cluster C is split into two smaller clusters Cy and C}.

o If there exists a cluster C' with the number of objects ||C|| > 1, then goto step 1

until all clusters contains only 1 object
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