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ABSTRACT 


The non-invasive measurement of the mass of bone is 

a clinically relevant problem. The bone is one component of 

a composite system. At the spine it may include fat, lean 

and bone mineral. At a hip prosthesis it may include soft 

tissue, bone mineral and metal. The measurement of the 

attenuation of photons of different energies can be used to 

determine the mass of one or all of the components of the 

composite system. 

The first system is currently measured using only 

two photon energies by assuming that it is a two component 

system. A model was developed which predicts the effect of 

the third component, fat, and was validated using phantom 

measurements. Typical parameters for the volume and spatial 

distribution of fat in vivo were determined using CT scans. 

In combination with the model a median error of 8\ is 

introduced by the third component. The feasibility of using 

a third energy to correct for the error was investigated. A 

model for the variance of the bone measurement normalized to 

emitted photon flux was developed. The optimal set of photon 

energies yielded a minimum value for the variance. However, 

this variance was excessively high, requiring a radiation 

dose 3000 times that for dual photon absortiometry. 

For the second system a triple photon absorptiometry 

technique was developed using the isotopes 203-Hg and 141­
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Ce. The technique was shown to be valid, but the variance 

was high due to cross-over of high energy photons in the 

detector and by scattering. In order to make measurements 

with a precision of 1\, counting times of 70 hours are 

required. Monte Carlo simulations were performed to 

determine the optimal geometry to reduce cross-over from 

scattering. However, cross-over cannot be reduced 

sufficiently with 203-Hg and 141-ce. A three isotope source 

is required to make clinical bone measurements at a 

prosthesis. 
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CHAPTER 1 


BONE MINERAL MEASUREMENTS 


1.1 Introduction 

Noninvasive techniques for the measurement of 

skeletal status have been available since the inception of 

medical radiology. More recently, the development of 

sophisticated techniques allow the quantitative measurement 

of bone mineral content with increasing accuracy and 

precision. Each technique has its merits and deficiencies 

when compared with other methods. Their relative value must 

be determined by assessment of how they acheive their 

primary purposes, to differentiate a diseased population 

from a normal population, and to monitor the progress of the 

disease or treatment for the disease. These techniques will 

generally prove useful for metabolic bone diseases or other 

conditions which involve reduction in bone mineral content, 

or osteopenia. 

There are two related problems which fit into this 

category. The first involves the measurement of lumbar spine 

bone mineral content for the assessment of osteoporosis. The 

second involves the measurement of femoral shaft bone 

mineral content following the implantation of a metal hip 

prosthesis. In this work the feasibility of a new technique 
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which utilizes the transmission of photons of three 

different energies, triple photon absorptiometry, will be 

examined. 

1.2 A Description of Osteoporosis: 

Osteoporosis is defined as the reduction of the 

amount of mineralised bone, and it involves the deficiency 

of both the bone mineral hydroxyapatite as well as the 

collagen matrix upon which the mineral is laid (Mazess, 

1979). The osteoporotic bone appears normal histologically 

(Wasserman and Berzel, 1987) and there are no biochemical 

changes which are associated with other bone disorders such 

as osteomalacia and hyperparathyroidism (Houston, Joiner and 

Trounce, 1975). The risk of fracture is elevated; atraumatic 

fracture is frequently the initial presentation of the 

otherwise asymptomatic condition. 

The skeletal system is composed of two different 

types of bone, compact cortical bone and the less dense 

trabecular bone. The most frequent fracture sites are those 

with greater proportions of trabecular bone, namely the 

vertebrae, the proximal femur and the distal radius (Melton 

and Riggs, 1983). Twenty-five percent of women over 60 years 

of age will have vertebral fractures while 32% of women over 

90 will have hip fractures (Wasserman and Barzel, 1987). 

studies have indicated that reduction in bone mineral 

content may be an important risk factor for fracture. at 
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these sites, and that a fracture threshold may exist (Bohr 

and Schaadt 1983, Melton and Riggs 1983, Melton et al 1986). 

The loss of bone mineral is attributed to an 

imbalance in the normal processes of bone formation and 

resorption. In normal aging the average rate of bone loss 

for females would be 1% per year between the ages of 45 and 

75 slowing to 0.4% per year for ages greater than 75. Peak 

bone loss rates may be as high as 3\ per year for a short 

time period following menopause or oophorectomy (Wahner 

1987). In osteoporotic females the rates of loss may be 50\ 

higher than for normals, so that the typical 60 - 70 year 

old osteoporotic may have bone mineral content 10 to 15\ 

lower than normal counterparts (Mazess 1979, Riggs et al 

1982). 

The technique chosen for bone mineral measurement 

should satisfy the following criteria: the bone mineral 

content at the measurement site should be correlated with 

the fracture risk or the fracture threshold at an important 

site; for example the bone mineral at the distal radius is 

used to predict the risk of vertebrae fracture, and the 

reproducibility should be sufficient to demonstrate 

clinically significant (5\) differences in bone mineral 

content over protracted or relatively short periods of time 

(Wahner 1983). As will be presented in the next section the 

presently available array of techniques meet these criteria 
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with varying degrees of success. 

1.3 Bone Mineral Measurement for Osteoporosis: 

A number of non-invasive techniques for the 

measurement of bone mineral content have developed, each of 

which involves the interaction of radiation with tissue 

through absorption or scattering processes. These 

interactions are either measured directly, or indirectly by 

transmission measurements, the latter being the predominant 

method. There are a number of comprehensive reviews of·these 

methods (Wahner, Dunn, and Riggs, 1983. Mazess, 1983. 

Goodwin 1987) so only a brief discussion of their relative 

merits will follow. 

Compton and coherent scattering are two related 

techniques which measure scattering directly by using a 

collimated beam of gamma photons to irradiate a small volume 

of trabecular bone, usually in the calcaneus (with 

predominantly trabecular bone it is thought to be correlated 

with overall skeletal status even though it is rarely a 

fracture site itself [Vogel Wasnich and Ross 19881). The 

intensity of the photons scattered out of the bone at a 

given angle is the product of the incident intensity of the 

beam, the scattering volume and the macroscopic scattering 

probability at that angle for the tissue (figure 1.1). The 

latter factor is the product of the effective atomic 

differential cross-section for the tissue and the density of 
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Scattering 

I 

Tf Io 
' 
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Source 

Volume (V) 

Detector 

I = Iovg_a. 
dn 

sou~ce Io 

I 

- fJJ(t)dt 
I = Ioe 

Detector 

FIGURE 1.1 	 Geometry of bone mineral measurement techniques: 
a) Scattering measurements, b) Transmission 
measur~ments. 
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the tissue, both of which are related to bone mineral 

content. The scattered intensity is affected by attenuation 

of both the incident and scattered beams and by multiple 

scattering. 

Compton scattering using 153-Sm (Garnett et al 1973) 

or 137-Cs (Hazan et al 1977) was the first of these 

techniques to be used clinically. The reproducibility of the 

measurements was of the order 1.5%, however the technique 

was affected by multiple scatter with typical errors of 10% 

(Webber 1981). More recently coherent scattering has been 

investigated (Kerr et al 1980, Karrellas et al 1983, Ndlovu 

personal communications). It is expected that this technique 

may be more sensitive to differences in bone mineral content 

than Compton scattering since the atomic differential cross­

section for coherent scattering is more strongly dependent 

upon atomic number than is Compton scattering. 

Neutron activation analysis ~f calcium involves the 

direct measurement of the absorption of a beam of neutrons 

by the tissue. Radioactive 49-Ca is produced by the capture 

of thermal neutrons by 48-Ca. This decays with a half-life 

of 8.9 minutes, emitting a 3.1 Mev gamma ray isotropically. 

The intensity of the emitted photons is a product of the 

neutron flux, the volume of irradiation and the macroscopic 

absorption probability, which is the product of the atomic 

absorption cross-section and the density of 48-ca. The 
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emitted intensity is affected by attenuation of both 

neutrons and photons, as well as by interference from other 

neutron activation products, such as 24-Na (Cohn 1981). 

The choice of irradiation site ranges from the hand 

or torso to the whole body with isotopic sources, 

accelerators and reactors used to produce the neutrons. Each 

choice of site has its limitations. The hand is convenient 

to measure, but may not be highly correlated with fracture 

risk. The torso site includes the vertebrae, · but 

measurements here have relatively high standard deviations 

(4%). The whole body measurement is accurate (5%) and 

precise (1%), but measurements do not distinguish high 

fracture risk sites (Cohn 1981). 

Transmission methods are used to determine bone 

mineral content by measurement of the attenuation of 

photons in the diagnostic energy range through the tissue. 

These methods utilize the attenuation factor ,Y, which is 

based upon the fundamental relationship between the incident 

intensity of the radiation, Io, and the transmitted 

intensity, I, as given in equation 1.1 (figure 1.1). 

Y = ln(Io/I) = /•<t)dt 1.1 

The attenuation factor is equal to the integral of •<t), 

which is the macroscopic linear attenuation coefficient and 

is a function of the energy of the radiation and the atomic 

composition of the tissue. The various transmission methods 
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extract bone mineral content differently from the 

attenuation factor. These differences affect the validity of 

each method. 

Single photon absorptiometry, SPA, measures the 

attenuation of a collimated beam of photons of a single 

energy through the tissue (Cameron and Sorenson 1963, 

Karajalainen 1973). Since the attenuation is due not only to 

the bone mineral but also the overlying soft tissue, the 

attenuation factor is compared to the attenuation through an 

equal thickness of soft tissue, the difference being 

proportional to the lineal density of bone mineral. In 

practice one assures an equal transmission thickness by 

immersion in water, so the technique is restricted to such 

locations as the distal radius or the os calcis. 

The precision of the technique is quite good, with 

long term reproducibility of 1.5%. This is degraded by 

repositioning errors of 4% (Wahner, Riggs and Beabout 1977) 

so that precision may be of the order 7% (Mazess, Cameron 

and Miller 1972). The accuracy is affected by fat, a 

constituent of soft tissue, which is not compensated for by 

immersion in water. Errors due to fat have been estimated to 

range from 8.5% (Wooten, Judy and Greenfield 1973) to 15% 

(Zeitz 1972). 

In dual photon absorptiometry, DPA, the transmission 

of photons of two different energies is measured (Wilson and 
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Madsen 1977, Dunn, Wahner and Riggs 1980, Krolner and Pors 

Neilsen 1980). If the tissue is composed of only two 

components, such as soft tissue and bone mineral, then the 

differential attenuation of the two photons is used to 

determine the thickness of either component (this will be 

described in detail later). The effect of fat can be reduced 

by choosing a baseline in regions with no bone mineral. 
~ 

The technique has the advantage that it does not 

require constant thickness of tissue and can be used for the 

hip, lumbar vertebrae or the whole body. The long term 

reproducibility for patients is of the order 4% and may be 

as low as 2.5% for modern machines. Errors can be introduced 

by inhomogeneous distributions of fat, the magnitude of 

which are examined in this study. 

Quantitative computed tomography, OCT, uses 

tomographic reconstruction to obtain the transaxial 

distribution of attenuation coefficients in Hounsfield 

units. The trabecular bone can be isolated within the 

vertebrae or the hip uncomplicated by overlying tissue using 

either a single energy or a dual energy approach (Cann and 

Genant 1980, Reiser and Genant 1984). Reference standards 

which contain well defined amounts of bone equivalent 

material are used to calibrate the Hounsfield units to 

effective mineral density. 

The reproducibility is of the order of 2.5% for 
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single energy QCT, but is worse at 21\ for the dual energy 

approach (Goodwin 1988). The accuracy is better for dual 

energy QCT then for single energy which can have errors 

due to fat of the order 20\ (Laval-Jeantet et al 1986). 

Clearly each of these techniques has its 

deficiencies, and no one method is ideal. DPA may seem to be 

the best approach at present for choice of site, precision, 

and low radiation dose. The effect of inhomogeneous fat 

needs to be addressed, and perhaps remedied with triple 

photon absorptiometry. 

1.4 Patterns of Loosening of Hip Prosthesis; 

The evolution of the surgical procedure of total hip 

arthroplasty has been assisted by a combination of gradual 

development and engineering of the prosthesis and major 

advances in the selection of biocompatable materials. The 

first of these was the development of the metal alloy 

'Vitallium', composed of chromium, cobalt and molybdenum by 

Venable and stuck in 1938. This alloy is biologically inert 

and has the necessary strength, and durability to be used 

for load bearing implants. The second major advance was the 

introduction by Charnley of high density polyethylene for 

bearing surfaces in the 1960s. This has appropriate friction 

and wear characteristics for joint linings. The prosthesis 

is designed to withstand the stresses of normal motion over 

extended periods. Unfortunately, such mechanical devices do 
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not have the self regenerative capacity of the original 

biological tissue so that wear is inevitable, with the end 

result being failure of the prosthesis primarily by 

loosening (Bechtol 1983, Haberman 1986). 

The incidence of loosening of the femoral prosthesis 

has been described in a large number of cases and varies 

widely from study to study. The rates vary from 1.1% to 50%, 

which reflects real differences in surgical technique as 

well as differences in clinical definition of loosening 

(Paterson et al 1986, Haberman 1986). Loosening can be 

caused by infection, but the majority of loosening is 

aseptic and may be associated with resorption of bone 

(Freiberger 1986). The incidence of calcar resorption ranges 

from 16% to 69% (Haberman 1986) with calcar resorption 

reported in greater than 50% of loosening cases and femoral 

cortex resorption in 5% of cases (Carlsson and Gentz 1980). 

Loosening associated with bone resorption may follow 

different patterns. Atrophy of the supporting cortical or 

trabecular bone may occur due to redistribution of stress in 

the presence of the prosthesis (Woo et al 1976). 

Alternatively, resorption at the bone-cement/prosthesis 

interface may be due to histiocytic reaction to wear and 

corrosion products (Willert and Semlltsch 1976, Winter 

1976). Radiological evidence for prosthesis loosening relies 

upon demonstration of resorption of bone at the bone 
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prosthesis interface. 

1.5 Methods of Evaluating Hip Prostheses: 

As mentioned in the previous section, the incidence 

of prosthesis loosening depends strongly upon the clinical 

definition of loosening. Assessment of loosening can be 

classified into two categories: demonstration of degradation 

of the bone-cement/prosthesis interface and measurement of 

movement between the bone and the prosthesis. 

The simplest technique which fits the first category 

is direct visualization of a radiolucent zone adjacent to 

the stem of the prosthesis (Paterson, Fulford and Denham 

1986). The other techniques rely upon intra-articular 

injection of some agent which can enter the region of 

resorbed bone for visualization. Examples of this include 

radionuclide arthrography using 99m-Tc sulphur colloid 

imaged with a gamma camera (Uri et al 1984), contrast 

arthrography with radiological contrast agents using either 

standard radiographs or subtraction techniques (O'Neil and 

Harris 1984) and scintigraphy with 99m-Tc MOP and 67-Ga 

which assesses both increased bone activity and infection 

(Rushton et al 1982). 

The second type of technique, roentgen 

stereophotogrammetric analysis, RSA, uses tantalum markers 

to demonstrate relative movement of the prosthesis and bone 

(Mjoberg et al 1986). The markers are placed in the 
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trochanters and act as a reference for the position of the 

femoral prosthesis. Serial radibgraphs can demonstrate 

displacement associated with loosening. 

While each of these techniques is suitable for 

demonstration of a loose prosthesis, none assesses the bone 

during the loosening process. The high attenuation of 

photons by the metal Vitallium makes standard bone content 

techniques unsuitable at this site. While some attempts have 

been made to modify CT images using multiplanar 

reconstruction (Fishman et al 1986) or by interpolation of 

Hounsfield numbers at the prosthesis (Seitz and Ruegsegger 

1982), these do not produce reliable measurements of the 

bone mineral content about the prosthesis. Triple photon 

absorptiometry may prove a viable method to assess the bone 

mineral at this site. 

1.6 The Physical Basis for Triple Photon Absorptiometry: 

The attenuation of a beam of photons of energy E by 

a complex system like the human body can be described by the 

attenuation factor, Y(E), which is the natural logarithm of 

the ratio of the original intensity, Io, and the attenuated 

intensity, I (which is an energy dependent version of 

expression 1.1). The attenuation factor is given by the 

integral of the linear attenuation coefficient, ., at each 

position, x, along the path length through the body (figure 

1.2). That is 
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Y(E) = ln(Io/I) = f•<E,x)dx 1.2 

In general •<E,x) is a function of the local density 

and atomic composition of the tissue. It can be represented 

by the weighted sum of the linear attenuation coefficients 

of certain basis phases, * (figure 1.2). In such cases the 

attenuation factor is described as the sum of attenuation 

factors due to equivalent thicknesses of the basis phases. 

That is 

1.3· 

The equivalent thicknesses can be recovered by 

determining the attenuation factor at differ~nt energies by 

transmission measurements. If • represents the matrix of 

linear attenuation coefficients for the different phases at 

the different energies then 

y = • t 1.4 

where Y and t are the attenuation factor and thickness 

matrices respectively. If the matrix • is non-singular, the 

equivalent thicknesses are found from the inverse matrix as 

shown in equation 1.5. 

t = • -I y 1.5 

For DPA, two basis phases, soft tissue and bone 

mineral, are utilized to describe the attenuation of the 

body. However, other two phase basis sets have been 

suggested, examples of which include photoelectric and 
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Compton phases, water and cacl, Lucite and aluminum (Alvarez 

and Macovski, 1976; Avrin, Macovski and Zara, 1978; Jackson 

and Hawkes, 1983; Lehmann et al, 1981; Hawkes, Jackson and 

Parker, 1986). These have been shown to describe the 

attenuation of photons by tissue to 1-2\ over the diagnostic 

energy range. However divergences increase to 5\ for higher 

atomic numbered elements such as copper and iodine. 

Three phase basis sets have been utilized for 

removal of iodine contrast from soft tissue and bone images 

using iodine K-edge techniques (Reiderer, Kruger and 

Mistretta, 1981). For TPA, two separate three component 

systems will be considered: bone mineral, lean tissue and 

fat, and bone mineral, soft tissue and Vitallium. The most 

natural basis phases to choose will be the constituent 

components themselves. The feasibility of TPA will depend 

upon the linear independence of the linear attenuation 

coefficients of the components at the chosen photon 

energies. 

Some insight into this can be obtained by 

consideration of the possible photon interactions with the 

materials at the various photon energies. The linear 

attenuation coefficient of a material, m, at an energy, E, 

is proportional to the sum of the cross-sections for the 

various photon interaction processes, G, at the given 

energy, as in expression 1.6. 
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•<E,m) = K t o(E,i) 1.6 

Frequently the cross-sections can be expressed as 

the product of two terms, one which includes the energy 

dependence, o'(E,i), and the other the atomic number 

dependence, f(Z,i), where Z is the effective atomic number 

of the material for a particular process. In such a case, 

the cross-section can be written as in expression 1.7. 

•<E,m) =I f(Z,i)o'(E,i) 1.7 

Since the term on the left is in fact a matrix 

element, substitution into equation 1.4 gives a new matrix 

equation with matrices containing the energy dependence and 

the atomic number dependence separately. 

Y = f G' t 1.8 

The inverse matrices can be used to determine the equivalent 

thicknesses of the interaction processes if both matrices f 

and G' are non-singular as in equation 1.9. 

t = GI-l f - l y 1. 9 

This result suggests that the number of phases that 

can be recovered from the transmission data is limited by 

the number of photon interaction processes. The validity of 

this result will depend upon the nature of the photon 

interaction processes. For photons in the diagnostic 

radiology range there are three atomic processes of 

consequence: incoherent scattering, coherent scattering and 
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photoelectric absorption. These have been described in great 

detail by others, (Evans 1955, Hobbie 1987) so only a brief 

discussion of the relevant points will be given here. 

The first of these, incoherent scattering, involves 

Compton scattering of the incident photon by a single 

electron of the atom. The differential cross-section for 

scattering by a free electron is described by the Klein­

Nishina formula. Integration over all scattering angles 

yields the total cross-section for a free electron as ·given 

in equation 1.10, with the photon energy, E, in electron 

rest mass units. 

G « (1±&) 2C1+E) - ln(1+2E) 1.10 
E 1+2E E 

+ 	 lnC1+2E) - ~ 
2E (1+2E) 

A first approximation of atomic differential cross-sections 

is given by multiplication of the free electric cross­

section by the number of electrons, z, which is in the form 

of equation 1.7. These must be modified by atomic form 

factors which reduce the cross-section by restricting 

scattering to events which deliver more than the binding 

energy of the electron. These effects are small, and 

primarily affect small scatter angles. Nonetheless, the 

total cross-sections deviate by a small fraction from a 

simple multiplication of the free electron cross-section and 

atomic number. 
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The second interaction, coherent scattering, 

involves the non-relativistic scattering of the photon by 

all the electrons of the atom. The differential cross­

section for a free electron is given by the Thompson cross­

section. The atomic differential cross-section is given by 

multiplication of the Thompson cross-section by the square 

of a form factor, F(x,Z), where Z is the atomic number and x 

is the momentum transferred to the atom and is a function of 

photon energy and scatter angle. The form factor is given as 

the Fourier transform of the charge density of the atom, and 

at a given angle and photon energy is approximately 

proportional to the square of the atomic number. Thus the 

differential cross-section can be expressed as the product 

of an energy and an atomic number dependent term, in the 

form of equation 1.7. unfortunately the total cross-section 

is not so easily placed into the form of equation 1.7, and 

is only approximately proportional to the square of atomic 

number. Moreover, since the scattering is strongly forward 

peaked, the total interaction is very small relative to the 

other interactions, and in broad-beam conditions may be 

negligible. 

The third interaction, photoelectric absorption, 

involves complete absorption of the photon, with the energy 

and momentum taken up by the entire atom. Theoretical 

description of the process has proven difficult over all 
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energy ranges, but an empirical description of the cross­

section is given by equation 1.11, where E represents the 

photon energy in electron rest mass units. 

n -7/2
4 ~ Z E 1.11 

This is in the form of equation 1.7, but unfortunately the 

energy exponent is only valid over certain energy ranges 

and requires slight modifications to cover the complete 

range. Moreover there is not complete agreement as to the 

exponent for the atomic number term ranging from n=4 (Evans 

1955) to n=S (Hobble 1987). 

overall, the three interaction cross-sections are 

described by expression 1.7 with small deviations. One of 

these interactions, coherent scattering, does not contribute 

greatly to the total interaction of the photon, and in some 

geometries may be negligible. It is not surprising then that 

two components accurately describe the attenuation of 

photons to within small percentages. Triple photon 

absorptiometry must exploit the small differences due to 

binding effects in Compton scattering, due to coherent 

scattering and due to changes in exponents in photoelectric 

absorption to analyze a three component system. This work 

will be an examination of the necessity and the feasibility 

of triple photon absorptlometry for the two systems of 

interest mentioned previously. 



CHAPTER 2 


THE ERROR DUE TO FAT IN DPA MEASUREMENTS 


2.1 Introduction 

The theory of multiple photon absorptiometry has 

been described in the previous chapter, as have several 

methods of bone densitometry. In this chapter dual photon 

absorptiometry will be examined in detail. In particular 

the validity of a dual photon approach to solve a composite 

system which clearly has more than two components will be 

examined by determining the magnitude of errors due to fat 

imhomogeneities in bone mineral measurements at the lumbar 

spine. 

Dual photon absorptiometry (DPA) has certain 

advantages over other techniques as discussed earlier. The 

essence of thE: technique is to assume that the body consists 

of a two compc~nent system, namely soft tissue and bone, and 

to exploit the different attenuation characteristics of the 

components at two different photon energies in order to 

calculate the mass of bone in the beam (Wilson and Madsen 

1977, Dunn, Wahner and Riggs 1980, Krolner and Pors Nielsen 

1980). 

In reality the body consists of at least three 

components: bone, lean tissue, and fat tissue. If 

21 
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unaccounted for, the effect of the fat tissue is to reduce 

the apparent bone mass measurement. However, if it is 

assumed that the fat is distributed homogeneously, 

measurements in regions in which there is no bone can be 

used to establish a baseline, or a relative soft tissue 

component. This baseline can be used to calculate a 

corrected bc•ne mass in other regions. 

Trans.mission measurements through the abdomen at the 

lumbar spinE: will include fat arising in three principal 

forms: fat layers which surround organs, fat within bone 

marrow and lcLyers of subcutaneous fat. Inhomogeneities will 

most likely be due to fat surrounding organs which 

themselves a1:e not distributed uniformly within the body. 

The effects of inhomogeneous fat distribution have 

been invest:.gated in the past. Wahner et al (1985) used 

phantoms and cadaver spines to measure the effects of marrow 

fat. They found negligible errors provided the aorta was not 

highly calc:Lfied and provided there was not excessive fat 

adjacent to the vertebrae. Roos et al (1980) measured 

cadaver sec1:ions and found median errors of 10\ due to fat 

adjacent to ·:he spine. Krolner and Pors Nielsen ( 1980) using 

tissue subs·:itutes found that significant errors could be 

introduced by non-uniform fat layers, but that careful 

selection of the baseline could minimize the error. This 

work incorporates in vivo measurements of fat distributions 



23 

with a model for the errors introduced by fat distributions 

to estimate ia vivo DPA errors that can be expected. 

2.2 Model for error due to fat 

An analytic expression for the error due to fat can 

be derived from the equations which describe attenuation of 

photons as given in equation 1.3. For the dual photon system 

using a high energy, E1, and a low energy, E2, to find the 

mass of bone, m(b), and the mass of soft tissue, m(s), this 

can be written as 

Y(E1) = a(b,E1)m(b) + a(s,E1)m(s) 2.1a 

Y(E2) = a(b,E2)m(b) + ~(s,E2)m(s) 2.lb 

These can be solved to give the mass of bone m(b) as 

m(b) = (Y(Ella(s,E2)-Y(E2lA(s,E1)) 2.2 
D(s,b) 

where the dE:nominator is the determinant of the matrix of 

the mass attenuation coefficients and in general is given by 

D(B,b) = a(s,E1)~(b,E2)-~(s,E2)a(b,El) 2.3 

The effect of a layer of fat is to change the 

attenuation factors in equation 2.1 by the addition of the 

attenuation due to fat as given by 

Y(E1)' = Y(E1) 	 + ~(f,El)m(f) 2.4a 

Y ( J!:2) ' = Y ( E2) + a ( f, E2) m( f) 2.4b 

Solving thes'~ as before yields .. 
m(:> ) ' = m ( b ) + 	p <s , f ) m ( f ) 


D(s,b) 


so that the error in bone mineral, Am(b), is given by 

2.5 
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~ID(b) = D(f,s)m(b) 2.6 
D(b,s) 

If the fat were composed of a uniform layer this 

error could be removed by proper choice of baseline, in 

effect removing a background signal of bone due to fat. In 

practice a bctseline measurement is made, so that the error 

which is unctccounted for is due to differences in the mass 

of fat bet\reen the baseline and the position of bone 

measurement, Am(£). The error is now described by the 

following expression 

.o~~m ( b ) = D<f , s ) Am ( f ) 
D(b,s) 

2.7 

The fractional error in bone mass is given by 

~!l.ihl = 0 ( f, s) Am( b) 2.8 
mb D(b,s)m(b) 

An alternative expression can be derived using the 

fractional :Eat content rather than the mass of fat. The 

fractional fat content is defined as the ratio of fat volume 

to total so.Et tissue volume and refers to the cylinder of 

tissue inter::ogated by the photon beam. A mineral thickness, 

t, is equivalent to the bone mass, m(b), divided by the bone 

mineral denslty. If Af is the difference between fractional 

fat content at the baseline and at the vertebrae, and the 

patient has thickness d, the equivalent thickness of fat, 

Af(d-t), is given by the difference of fat mass, Amf, 

divided by t~e fat density. These equivalent thicknesses can 
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be substituted into equation 2.8 to yield the expression 

~Ql = (d-tlD'<f,sl•f 2.9 
m(b) t D'(b,s) 

where D'(a,t>) is similar to D(a,b), but depends on linear 

attenuation coefficients rather than mass attenuation 

coefficients. 

Examlnation of equation 2.9 reveals two terms which 

describe the patient, (d-t)/t and •f, and another term which 

is lndependE:nt of the patient, D'(f,s)/D'(b,s), a fat 

effect parar~ter. Calculation of expected errors in bone 

measurements will require an estimate of the patient 

parameters as well as the patient independent parameter 

which will depend upon the values chosen for the linear 

attenuation c::oefficients. 

Linear attenuation coefficients for tissues will 

depend upon the atomic composition of the tissues and are 

not a trivial exercise to obtain. Webber (1987) has compiled 

a list of measured as well as derived attenuation 

coefficients for lean tissue, fat tissue and bone. In 

addition re(:ommended linear attenuation coefficients are 

given for us·~ in the energy range 40 kev to 100 kev. 

Us in·~ these coefficients the quantity 

D'(f,s)/D'(b,s) was calculated and the results are given in 

table 2.1. Clearly, the choice of value of linear 

attenuation coefficient is critical, with fourfold 
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Table 2.1 	The value of the fat effect parameter by source 

of linear attenuation coefficients. 

Reference 	 Fat Effect Parameter 

Bradley, Chong and Ghose (1986) -0.0686 

Hubbe 11 ( 196i:) -0.0376 

Joyet, Baudrc:tz and Joyet ( 197 4) -0.0834 

Webber (1987> -0.0535 

White and Fitzgerald (1977) -0.0225 
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differences possible in the calculation of bone mass errors. 

For further calculations using the model of equation 

2.9 the recomnended coefficients were used to give a value 

for D'(f,s)/D'(b,s) of -.0535 for 153-Gd. A similar approach 

using the recJmmended attenuation coefficients at 60 kev, 

and the mean of the coefficients of Rao (1975), Hubbell 

(1982) and White (1980) gives a value for D'(f,s)/D'(b,s) 

for 241-Am-137-cs of -0.0404. These values will be used to 

determine the errors due to measured fat distributions in 

later sections. 

2.3 	Phantom Measurements 

The adequacy of the model as expressed in equation 

2.9 was tested by simulating inhomogeneous fat distributions 

using phantom materials. The DPA measurements were made 

using a source of 153-Sm (which has the same photon energies 

as 153-Gd with the same decay daughter 153-Eu) developed by 

Bhaskar (19841. This source was mounted on a modified 

rectilinear scanner which was interfaced to a NOVA computer 

and transmisslon measurements were made using a method 

described in detail by Rowntree (1985). The analysis of the 

transmission data differed in that images of the DPA scans 

were generated. Figure 2.1 shows a typical noisy image; the 

rectangular aluminum region has approximate dimensions of 5 

by 10 pixels. 

The three tissues lean, fat and bone were 



FIGURE 2.1 Dual photon bone mineral image obtained using 
the modified rectilinear scanner. 
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substituted with water, polyethylene and aluminum 

respectively. Because the linear attenuation coefficients 

for the phantom materials do not exactly match their 

biological counterparts, the quantity D'(f,s)/D'(b,s), the 

fat effect co.efficient, for the phantom materials and for 

153-Sm was det~~rmined to be -0.0459. 

The fj:actional error in aluminum thickness was 

determined f01: various combinations of thicknesses of 

phantom mater l.als with 20 em total thickness by Rowntree 

(1985) and selected measurements were repeated using the 

image display analysis to verify the results. The combined 

sets of data were analyzed by plotting the fractional error 

against the absolute value of 4f(d-t)/t in figure 2.2. A 

straight line was obtained with correlation coefficient of 

0.98. The slope which should be equal to the fat effect 

coefficient was 0.046±0.006. It appears that the analytical 

model adequately describes the effect of inhomogeneous fat 

distributions and can be used for further estimates of the 

error. 

2.4 In vivo fat distribution - single slice 

Of the two patient dependent parameters in equation 

2.9, the first, (d-t)/t, which describes patient thickness 

divided by equivalent bone mineral thickness is fairly well 

defined, whereas the second, Af, the fat deviation is not. 

In order to estimate the fat deviation for the population 
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seen clinically, CT images centred through a single lumbar 

vertebral body were obtained and analyzed. These were taken 

from archived images of a series of 11 patients who were to 

be scanned for other causes and volunteered for a single 

additional exposure. 

A rectangular region of interest corresponding to 

the typical field of view for a DPA scan was manually drawn 

using a joystick and a histogram of CT numbers was created 

as shown in figure 2.3a. When the region was positioned in 

soft tissue there were two distinct populations of CT 

numbers corresponding to lean and fat tissue as in figure 

2.3b, whereas when the region was drawn to include the 

vertebrae a t~ird population of CT numbers appeared which 

corresponds to bone as in figure 2.3c. 

The fcactional fat content for a given region of 

interest was defined as the volume of fat divided by the 

volume of both fat and lean tissue. This was calculated from 

the histogram l>Y using the following expression 

fat content = It pixels fat 2.10 
I pixels fat + # pixels lean 

The numbers of pixels were obtained by setting 

a FWHM window i:o include either the fat or lean peaks shown 

in figure 2.3 and determining the area of the peak. The fat 

content was measured at seven different positions, both over 

the vertebrae c:md lateral to it as indicated ln figure 2. 4. 



(a) 

(b) 

(c) 

FIGURE 2.3 CT transverse images through a lumbar vertebra 
showing the shape of the region of interest (a) 

and the histograms of CT numbers for regions adjacent to the 
vertebra (b) "and including the vertebra (c). The lean , fat 
and bone pixels appear as distinct peaks in the histogram~. 



33 

0 

1 2 3 4 5 6 7 


FIGURE 2.4 Location of measurement regions on CT image. 
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Each region of interest was of a similar size and shape 

within the reproducibility of a manual drawing procedure. 

The fat content deviation was defined as the 

difference between the fat content at a given location and 

the fat content at the spine expressed as a percentage. This 

was calculated for each region and the results are plotted 

by region in figure 2.5. The fat content deviation increases 

as the position of the region of interest is moved away from 

the vertebrae, probably due to reaching the side of the 

patient with increasing subcutaneous fat. 

For this reason a mean fat content deviation was 

calculated, which is the mean of the deviations for the two 

regions immediately adjacent to the vertebrae, on either 

side. In addition, this was expected to mimic the clinical 

situation most closely, namely that the baseline would 

include regions on either side of the vertebrae. The mean 

fat content deviation will be referred to as the fat 

deviation for the individual scan for the remainder of this 

discussion. 

The fat deviations were found to be both positive 

and negative depending upon the patient, and there was no 

significant correlation with either fat content at the 

vertebrae or with patient age. The magnitude of the fat 

deviation was not strongly dependent on other patient 

parameters, and it is unlikely that either age or fat 
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content is a good predictor of deviation. 


The magnitude of fat deviation was found to have a 


median value of 4.1% with upper and lower quartiles of 7.5% 

and 3.0% respectively. Fat deviation measurements were 

repeatable to within 0.8%. 

2.5 In yivo fat distribution - multiple images 

The single scan measurements were made with the 

assumption that the fat deviation did not vary along the 

cephalad-caudal axis and that a single measurement is 

representative of the entire lumbar region. In order to test 

this, the fat deviation was measured through each of four 

lumbar vertebrae for 15 volunteers. The fat deviations for 

the individual vertebrae were determined, and there was 

little dependence on vertebral body number. In figure 2.6 

the individual fat deviation measurements can be seen to 

cluster about the mean value with little divergence from the 

mean value. This suggests that there is not enough variation 

from vertebra to vertebra to be of consequence. 

For the multiple scan measurements, as for single 

image measurements, the fat deviation could be both positive 

and negative, and there was no strong correlation with age 

or fat at the spine. The mean fat deviation was found to 

have a median value of 4.1% with upper and lower quartiles 

of 12.0% and 1.7% respectively. The mean fat deviation was 

found with precision of 0.7\. 
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Since the differences in fat content are assumed to 

be due to deep fat surrounding organs which are large 

relative to the slice thickness it seems reasonable to 

assume that the single measurement through the centre of one 

vertebra is representative of the fat deviation over all 

four vertebrae. The clustering of the multiple measurements, 

and the close relationship between the single and multiple 

measurements suggests that both the single measurements and 

the multiple measurements represent mean fat deviations 

which can be expected in the general population. For these 

reasons the individual results of the first group of images 

were combined with the mean results of the second group of 

images to yield fat deviation measurements for 26 patients. 

The fat deviations for the combined group are 

plotted against age in figure 2.7 and against fat at the 

spine in figure 2.8. The correlation coefficient was 

calculated for the relationships of fat deviation to age and 

fat deviation to fat at the spine, and for both was found to 

be 0.34. This is not significantly different from 0 which 

suggests that there is no strong correlation between the fat 

deviation and patient age or fat at the spine. 

The magnitude of the fat deviation for the combined 

populations had a median of 4.4\ with upper and lower 

quartiles of 8.2\ and 2.1\. The maximum for an individual 

was 19.0\. 
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2.6 The effect of fat on DPA accuracy 

The effect of fat deviations which were measured can 

be estimated by substitution of typical patient parameters 

into equation 2.9. This was performed for a 20 em thick 

patient for the median, and upper and lower quartiles, with 

the results plotted in figure 2.9. The typical population 

seen at McMaster bas bone mineral densities (BMD) ranging 

from 0.8 g/cm2 to 1.4 g/cm2 (Webber 1988). Using the median 

fat deviation of 4.4% suggests that BMD errors of 6 to llt 

will be common. Using the upper quartile fat deviation of 

8.2%, BMD errors of 11 to 20% are possible. Substitution of 

the mean BMD value of 1.1 g/cm2 along with the median fat 

deviation value yields a median BMD error of 7.9%. 

This median error can be compared with the results 

of Roos et al (1980). Using 241-Am-137-Cs they found median 

errors of lOt. Using equation 2.9, their error will 

correspond to a median error of 12% using 153-Gd. 

An alternative analysis is to choose an arbitrary 

BMD error, say 10%, and to determine the fraction of the 

population which can be expected to have errors of greater 

magnitude. Choosing a mean BMD value of 1.1 g/cm2 and a 20 

em thick patient, all patients with fat deviations greater 

than 5.6% will have BMD errors greater than 10%. Examination 

of figure 2.9 reveals 10 out of 26 patients with fat 

deviations greater than 5.6%. In other words about 1/3 of 
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the patients will have BMD errors greater that 10%. 

It would appear that median fat differences can give 

rise to BMD errors of the order of 8%. This effect must 

contribute to the biological variation of DPA measurements. 

Of more concern, however, is the fact that 1/3 of the 

population can be expected to have BMD errors in excess of 

10% with some errors considerably greater. This is 

compounded by the fact that the errors increase as the BMD 

decreases and that the errors cause predominately falsely 

high BMD measurements. The unfortunate result is that the 

measurements of most concern are most subject to 

inaccuracies. 



CHAPTER 3 


FEASIBILITY OF TPA AT THE LUMBAR SPINE 


The results of the previous chapter suggest that 

inhomogeneous distributions of fat at the lumbar spine can 

introduce errors of greater than 10\ in a significant 

fraction of the patient population, which is in agreement 

with previous studies (Krolner and Nielsen, 1980, ·Roos, 

Hansson and Skoldborn, 1980). The errors are an unavoidable 

consequence of the DPA technique in which the body is 

assumed to be composed of two components, mineral and soft 

tissue. Unfortunately, a third component, fat, is 

interpreted erroneously as mineral mass. 

If the effect of fat could be removed then it might 

improve the discrimination between normal and osteoporotic 

populations. An approach might be triple photon 

absorptiometry (TPA) in which three photon energies are used 

in a three component body. In this chapter certain 

theoretical aspects of TPA will be presented with an 

examination of the variance and accuracy which may be 

expected. A comparison of the possible merits of TPA 

compared with DPA will be given. 

3.1 	variance of TPA Measurements 

The theory of triple photon absorptiometry has been 
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described in detail in chapter 1, in which the equivalent 

thickness of a given basis phase is recovered using the 

attenuation factors (given by equation 1.3) for the three 

photon energies and the inverse of the linear attenuation 

coefficient matrix as in equation 1.5, reproduced here as 

equation 3.1. 

t = II -I Y 3.1 

with Y(E) = ln(Io/I) = tl~J(E,*)t(*)] 3.2 

It was indicated that two basis phases are sufficient to 

describe the attenuation of diagnostic energy photons to 

small fractions accurately, so that triple photon 

absorptiometry will require measuring small differences in 

attenuation coefficients of the phases. Since the ultimate 

aim of TPA is to generate bone mineral measurements with 

good precision, the test of the feasibility of TPA will be 

the precision of such measurements at reasonable radiation 

doses. 

A fundamental factor which introduces variance into 

the TPA measurement and will prove to be a limiting factor 

in the precision of the technique is quantum noise from 

counting statistics of the transmitted photons. Efforts to 

choose the photon energies should be directed towards 

maximizing the statistical precision. The statistical 

precision for various isotope combinations and patient 
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geometries has been calculated for DPA using a generalized 

parameter which was independent of source intensity (Watt 

1975, Smith, sutton and Tothill 1983). A similar treatment 

can be performed to determine the optimum energies for TPA. 

The variance of the bone mineral measurement is a 

complicated function of the patient geometry, the photon 

energies and the initial intensities of the three photon 

beams. However if the patient parameters and the initial 

photon intensities are held fixed, an expression for the 

variance can be derived using the standard propagation of 

errors as described in such sources as Bevington (1969). 

If one begins with equation 3.1, the variance is given 

by the following expression 

-1 
var(t(b)) = var( I • (b,E)Y(E)) 3.3 

in which .-I (b,E) is an element of the inverse of the matrix 

•· In practice, the elements of .-• will be obtained 

directly using phantoms rather than by inverting the matrix 

•, and errors in the measurement of __ , will result in 

errors of accuracy rather than loss of precision. For the 

purpose of this discussion the variance will be considered 

to be due entirely to counting statistics, and .-' (b,E) can 

be regarded as a constant. In this case the variance can be 

written as 
-1 2 

var(t(b)) =I <• (b,E)) var(Y(E)) 3.4 



48 

initial intensities. A normalized variance, V, which is 

independent of the initial intensity, is given by 

multiplication of the variance of the bone mineral by the 

normalized initial intensity as in equation 3.9. 

V = l:[ (J& 
-1 2 

(b,E)) 
Y(E) 

e /f(E) 1 3.9 

Typical forms for the factor, f(E), are given in equation 

3.10. 

equal initial intensity f(E) = 1 · 3 .lOa 

Y(E) 
equal transmitted intensity f(E) = e 3.10b 

equal dose f (E) = 3.10c 
-Y(E) 

(1 - e ) 

If the effect of crossover is included, then the 

normalized variance will change since the value of I(E) in 

equation 3.5 will be falsely increased by crossover. If I(E) 

represents the transmitted intensity at energy E, then I(E) 

is given by 

I(E) = Im(E)- E X(E')I{E') 3.11 

for E'>E 

where Im(E) represents the measured intensity at energy E 

and X(E') is the crossover from energy E' to energy E. Since 

the variance of Im(E) obeys counting statistics, the 

variance of ln(I(E)) is given by 

2 2 
var{ln[I(E))} = [Im(E)+l:(X(E') I(E')J/l(E) 3.12 
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This can be written as the multiple of 1/I(E) and a 

crossover term, XF(E) given by 

2 
XF(E) = (Im(E)+I(X(E') I(E')]/I(E) 3.13 

Substitution for I(E) from equation 3.2 and Im(E) from 

equation 3.11 gives 

2 -Y(E') -Y(E) 
XF(E) = 1+I{[X(E')+X(E') )f(E')e }/f(E)e 3.14 

and the normalized variance, V, can be written as 

-1 2 Y(E} 
V = IlC• (b,E)) e XF(E)/f(E)J 3.15 

This is similar to equation 3.10, with the additional term 

XF(E) accounting for crossover. 

3.2 Selection of photon energies 

Once the normalizing correction, f(E), and the patient 

parameters are chosen, the normalized variance can be 

calculated for any given set of photon energies. In 

principle the optimum photon energies will be given by the 

minimum value of the normalized variance over the three 

space of photon energies. In practice the minimum is 

difficult to find since the normalized variance diverges 

when two or more energies are identical. The possible 

choices of photon energies are reduced further by the 

practical consideration of the photon energies of available 

isotopes. 

In order to overcome these difficulties it was assumed 
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that one of the photons would have energy greater than 100 

kev so that the dominant photon interaction for all tissues 

would be Compton scattering. The normalized variance was 

calculated over the plane of the remaining two photon 

energies in order to find the minimum. The patient 

parameters were set to correspond to those typical at 

McMaster, viz 20 em total thickness, 30% fat content in soft 

tissue and 1.0 g/cma bone mineral areal density. Linear 

attenuation coefficients were obtained from a 

parameterization of White and Fitzgerald (1977). 

Results for some selected combinations of energy are 

shown in figure 3.1 with f(E) set to unity for all photon 

energies. Two of the energies have been fixed and the value 

of the normalized variance is plotted for the third energy 

ranging from 20 to 100 kev. Three different sets of photon 

combinations are given, with the fixed photon energies at 42 

and 103 kev, 60 and 660 kev, and 37 and 145 kev 

corresponding to 153-Gd, 137-Cs-241-Am and 141-Ce 

respectively. The minima at approximately 28 kev and 60 kev 

for the Cs-Am and Ce curves correspond to the ideal third 

energy for these isotopes. 

Similar data are presented in figure 3.2 with two 

energies fixed at 103 and 42 kev and the factor f(E) chosen 

to correspond to the three different conditions in equation 

3.10. Qualitatively the shapes of the curves are similar, 
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with little change in the location of the minima due to the 

choice of the form of f(E). 

Similar data are presented in figure 3.3 with two 

energies fixed at 103 and 42 kev and the crossover factor 

ranging from 0 to 10%. Again, the shapes of the curves are 

qualitatively similar, with little change in the location of 

the minima due to crossover. The effect of crossover is more 

pronounced for lower energies which suggests that the 

optimal combination of energies will not include very low 

energies. Using these results the combination of 145, 60 and 

37 kev using the isotopes 141-Ce and 241-Am was chosen for 

further analysis of TPA. 

3.3 Simulation of TPA 

The variance of the bone measurement was estimated by 

computer modelling of the TPA process. Transmission of each 

photon beam was simulated for a bone mineral equivalent 

elliptical cross-section cylinder embedded in composite fat 

and lean tissue. The typical patient parameters referred to 

earlier were used to determine the attenuation factors, 

Y(E), using the model indicated in figure 3.4. 

An initial intensity was chosen which was then used 

to generate the transmitted intensity for each energy. 

statistical fluctuations were introduced using a random 

Gaussian variate. These were generated using an algorithm 

given by Lewis (1975) in which random points on the unit 
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FIGURE 3.4 Model used for simulation of TPA at the spine. 
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circle are chosen. The unit circle is then inverted to give 

two gaussian variates with mean 0 and standard deviation 1 

as illustrated in figure 3.5. 

Inverse linear attenuation coefficients appropriate 

for the selected photon energies were used to recover the 

equivalent bone mineral thickness and to generate the 

simulated TPA images shown in figure 3.6. 

The local variance of the bone mineral equivalent 

thickness was estimated by the root mean squared difference 

from the expected bone mineral value. The noise amplitude 

was found for different combinations of crossover and photon 

intensity, defined as the number of transmitted photons at 

145 kev in a region with no bone mineral and is plotted in 

figure 3.7. The noise amplitude amplitude was found to vary 

as -1241(1+0.055 XO)/fN g/cm~, where XO is the crossover in 

percent and N is the number of photons in the 145 kev 

channel. This expression is valid both for a single pixel as 

well as for an entire vertebra, and is in agreement with the 

theoretically derived variance. • 

3.4 The effect of uncertainty in attenuation coefficients 

The uncertainty in the theoretical variance was 

determined by Monte carlo methods. The parametrization of 

White and Fitzgerald was accurate to within 1\, which could 

include random deviations as well as deviations correlated 

with tissue type. Gaussian deviations with a standard 
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Figure 3.5 	 Algorithm for generating Gaussian variates, gl
and g2. 

vl ~ 2*rnd-l 

v2 ~ 2*rnd-l 

2 2 
r ~ vl + v2 

1£ r > 1 then choose new vl and v2 

It 
£ ~ [-2 ln(r)/r] 


gl ~ f*vl 


g2 ~ f*v2 




FIGURE 3.6 	Simulated TPA images for elliptical cylinders of 
bone with thicknesses from left to right of 0.6, 

1.0 and 1.4 g/cm~. The images from top to bottom are with 
no statistical noise, with transmitted count rates of 500~ 

5000 and 50,000 per pixel in the high energy channel. 
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deviation totalling 1% both random and tissue correlated 

were added to the linear attenuation coefficent matrix and 

the variance was determined using equation 3.15. The 

resultant distributions were log-normal as indicated in 

figure 3.8. The greatest range in possible values of the 

variance occurs when the uncertainties are random. This 

should be expected, since random errors tend to remove the 

energy and atomic number dependence for the interaction 

cross-sections, thereby allowing for more phases· than 

interaction types. 

The most likely combination of uncertainties was 

chosen to be 25% random and 75% correlated. This gave 

distribution of variances with 90% confidence interval 

~ 6.9xl0 79.7xl0 , compared with the expected value of 
G

9.6xl0 . 

3.5 Count reguirements and relative dose for TPA 

The count requirements for TPA can be determined from 

the expression for the noise amplitude. The bone content 

must be determined only in the vertebrae, so the vertebrae 

must be defined for the measurement procedure. It is 

simplest to do this using the TPA image itself, but the 

vertebrae can be measured following definition by some other 

means (Jonson, Roos and Hansson 1986). In the former case, 

the probability that a true signal be detected above noise 

becomes greater than 50% when the signal to noise ratio, 
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SNR, is approximately 2 (Billingsley 1975). For bone mineral 

of 1 g/cma and crossover of 3% the number of transmitted 

photons per pixel must be 8,000,000, which is considerably 

larger than that encountered in typical DPA measurements. If 

the number of pixels in the vertebrae is -400 as for DPA, 

then the precision of the mean bone mineral measurement will 

be 2.5%. 

The ratio of the skin doses for TPA and DPA was 

evaluated using 

D(TPA) = t ~(E) E Io(E) 3.16 
D(DPA) t ~(E) E Io(E) 

where •(E) represents mass energy absorption coefficients 

taken from Hubbel (1982), E represents the energy of the 

photons, and Io(E) the incident intensity at that energy, 

and their product is summed over all photon energies. For 

TPA, Io was determined from the transmitted countrate, while 

for DPA, Io was determined from transmitted countrates seen 

at McMaster, typically 1500 per pixel. To obtain similar 

statistical precision the dose for TPA will be approximately 

3,000 times the DPA dose. Although the form of equation 3.16 

is a crude estimate of the dose, the ratio is so large that 

any refinements are unnecessary. 

If the 90% confidence levels for the variance are used 

the dose ratio becomes 30 to 30,000 times that for DPA for 

2.5% precision. In all likelihood one would like to achieve 
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precision of 1\ or better, which requires a radiation dose 

at least 200 times that for DPA. 

3.6 Feasibility of TPA at the Spine 

Errors in transmission measurements arise from such 

factors as scatter, cross-over, beam hardening and 

statistical fluctuations. When the contribution from only 

the latter factor is analyzed for TPA using an optimum set 

of photon energies, the radiation dose associated with a 

reasonable point variance was found to be 3,000 times that 

for DPA. Clearly the other sources of error will exacerbate 

the situation. 

These results support the conclusions of Hawkes, 

Jackson and Parker (1986) and Lehmann et al (1981) who 

showed that two phases are sufficient to describe the 

attenuation of tissue to within 1\ over the diagnostic 

energy range. The high dose for TPA illustrates the 

difficulty of measuring the small ·attenuation differences 

between the three tissues. TPA is not a viable solution for 

this problem since the radiation dose for a reasonable 

variance is unacceptably large, with 90\ confidence levels 

indicate dose levels 30 to 30,000 times those for DPA 

assuming a precision of 2.5\. 



CHAPTER 4 


TRIPLE PHOTON ABSORPTIOMETRY FOR THE HIP 


In this chapter the problem of triple photon 

absorptiometry, TPA, for the measurement of bone mineral 

about a hip prosthesis is examined. The discussion begins 

with examination of the physical parameters of the problem, 

is followed by the development of the TPA source and· ends 

with a description of phantom measurements. This will lead 

into examination of requirements for successful clinical 

TPA. 

4.1 Physical Parameters for TPA 

The cause of mischief, and for our purposes, of 

interest, is the hip prosthesis itself. It is composed of 

the alloy Vitallium FHS which is specifically formulated for 

high tensile strength and blocompatability. As indicated in 

table 4.1 the alloy is composed primarily of cobalt and has 

a mean atomic number of 26.3 (Howmedica 1979). The 

composition is very similar to that of stainless steel with 

cobalt substituted for iron. The density was determined 

volumetrically to be 7.26 g/cm3 ± 2%. 

The prosthesis is asymmetrically shaped (figure 4.1) 

for optimal load bearing characteristics and has a textured 

surface at the proximal end for improved adhesion to the 

64 
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Table 4.1 

Elemental composition of Vitallium FHS 

Element Fraction(\) Atomic NuiDber 

Carbon .05 6 

Silicon .75 14 

Manganese .70 25 

Chromium 26.50 24 

Molybdenum 5.50 42 

Cobalt 66.50 27 
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trabecular bone by ingrowth into the texture. The length 

from proximal to distal end is approximately 8 em and the 

cross-section is approximately elliptical with thickness of 

1 em and width of 3 em at the proximal end tapering to 1 em 

at the distal end. The high attenuation of photons in the 

diagnostic energy range by Vitallium will make it advisable 

to measure transmission through the shortest pathlength. It 

may be possible to arrange for patients to lie so that 

typical transmission pathlengths are between 1 and 2 ems. 

The prosthesis is situated in the femur, which has 

decreasing fractions of trabecular bone from the proximal 

end towards the centre, and it becomes trabecular again at 

the distal end. The bone mineral density at the hlp will be 

in the range 0.6 to 1.0 g/cma. The overlying soft tissue 

will have fat contents in the range 20 to 50% with total 

thickness in the range 10 to 20 ems, with typical thickness 

of 15 em. 

The attenuation characteristics of these materials 

are indicated in figure 4.2. The mass attenuation 

coefficients were determined using the following 

parameterization 

ln(•/p) 
4 

= E 
1=0 

i 
a(i)E 4.1 

The parameters, a(i), for biological material were taken 

from White and Fitzgerald (1977) and for phantom materials 
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were obtained from fitting cross-sections from Hubbel et al 

(1975). 

4.2 Development of TPA source 

The ideal source for TPA was determined by 

consideration of appropriate photon energies, half-lives and 

availability of isotopes. Examination of figure 4.2 reveals 

that the mass attenuation coefficient for Vitallium 

increases rapidly for energies below 100 kev whereas those 

for soft tissue and bone mineral only begin to diverge·below 

100 kev. The choice of the lowest energy was necessarily a 

compromise between these two considerations. The other two 

energies were separated from the lowest energy and each 

other in order to be resolved using Nal detectors for 

transmission measurements. 

The isotopes 141-Ce with a gamma energy of 145 kev 

and 203-Hg with gamma energy of 279 and Tl x-rays in the 

range 72 to 80 kev were chosen as a possible TPA source. 

These feature half lives of 32.5 days for 141-Ce and 46.9 

days for 203-Hg which would give the source a moderately 

useful life. They can be produced readily by neutron 

activation with thermal cross-sections of 0.6 barns for 140­

Ce and 4 barns for 202-Hg (Lederer 1968). 

The possibility of producing these sources using 

naturally occuring elements rather than enriched isotopes 

was determined by irradiating small quantities of 
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material. samples of 34 mg ceo and 7.7 mg HgO were placed in 

the high flux tube at McMaster Nuclear Reactor for 30 

minutes and 210 minutes respectively and allowed to decay 

for 24 hours. The spectra were obtained using a high purity 

Germanium detector to identify contaminants and the isotopes 

which were identified are indicated in table 4.2. These are 

all produced from different isotopes of Hg and ce and since 

all have half-lives shorter than that of 203-Hg and 141-Ce 

it was considered possible to produce essentially· pure 

sources by allowing the contaminants to decay. 

The irradiation and decay times needed to produce 

pure sources were determined by considering the various 

isotopes which are produced by neutron irradiation of 

natural elements. The activity of a given isotope following 

irradiation is given by 

A = ab m Na 
MW 

-~ 

a ~ (1-e l 4.2 

where ab is isotopic abundance, m is mass of the material, 

Na is Avogadro's number, MW is molecular weight of the 

material, G is the neutron cross-section , ~ is the neutron 

flux, I is the decay constant and t is the irradiation 

time. The activities of the neutron activation products were 

calculated using data taken from Lederer (1968) and are 

indicated in table 4.3 for Hg and table 4.4 for Ce in which 

relative activities are given immediately following 
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Table 4.2 Isotopes identified in preliminary spectra 

Isotope Half-life Energy Ckevl 

HgO 197-Hg 65 hr 190 

197m-Hg 55 min 133 

203-Hg 47 day 279 

ceo 141-Ce 32.5 day 145 

143-Ce 34 hr 58,232,294 
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Table 4.3 Isotopes produced by irradiation of Hg for 3 days 

Cross­
Isoto12~ Abyndgnce Half-I.if~ s~~tion R~latiY:~ Activit:t: 

(barns) 

0 days 30 days 

197 .0015 65 hr 880. 19.2 .022 

197m .0015 24 hr 25. 1.48 0 

199m .1002 42.6 min .02 2.67 0 

203 .298 46.9 day 4.0 1 1 

205 .0685 55 min .04 28.2 0 

http:Half-I.if
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Table 4.4 Isotopes produced by irradiation of ce for 3 days 

Cross-
I~QtoJ2e Atn.m!:ISlD~~ Half-Lifg Sgs;;t12D R~latiY~ A~:t1vltl!: 

(barns) 

0 days 30 gays 

137 .0019 9 hr 6.0 8.6 0 

137m .0019 34 hr .6 .05 0 

139 .0025 140 day 1.0 .001 .0016 

139m .0025 60 sec .04 8.8 0 

141 .8850 32.5 day .6 1 1 

143 .1110 34 hr 1.0 4.8 .00001 
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irradiation for 3 days and following 30 days decay. The 3 

day irradiation time was chosen because the 203-Hg activity 

saturated in the high flux irradiation tube in three days, 

whereas the 30 days decay was required to remove most of the 

contaminants. 

sources were constructed consisting of 600 mg ceo 

and 750 mg HgO in graphite capsules. These were irradiated 

for 3 days in the high flux tube at McMaster reactor and 

allowed to decay for 30 days. Examination revealed that the 

HgO source had excessive leakage due to radiative heating 

and subsequent dissociation of HgO into the constituent 

vapours. 

To alleviate this problem, which is 

considerably more stable than HgO was used. A quantity of 

650 mg was sealed in quartz and heated at 500 °C for 2 days 

with no observable effect. Following this it was irradiated 

under identical conditions as the HgO and found to be intact 

when removed from storage. 

The spectra for 141-Ce and 203-Hg are shown 

superimposed in figure 4.3. The peaks due to the 279 and 145 

kev photons are indicated as is the peak due to the Tl x­

rays. These were obtained using a 2 inch Nai(Tl) crystal 

with relatively poor resolution. This will be discussed in 

greater detail in later sections. The sources were used 

separately so that only the two peaks from the 203-Hg were 
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FIGURE 4.3 Nai spectra of 203-Hg and 141-Ce superimposed. 
The photopeaks at 145 and 279 kev are indicated 

along with the Tl X-rays. 



76 

measured simultaneously. 

4.3 Transmission measurement procedure 

The transmission measurements were made using the 

modified rectilinear scanner mentioned in chapter 2, with 

further modifications to account for lower source activity. 

The 141-Ce source consisted of ceo powder placed into a 

graphite capsule whereas the 203-Hg source consisted of 

HgaFa powder sealed in quartz. Following irradiation they 

were placed individually into a source hol?er. These are 

illustrated in figure 4.4. The source holder was placed into 

a lead castle and the beam was directed towards a detector 

collimator. 

The detector signals were analyzed using two single 

channel analyzers with windows for two photopeaks, namely 

the 279 kev photon and Tl x-rays for 203-Hg, or the single 

145 kev photon for 143-ce. The windows were calibrated using 

a multi-channel analyzer. The SCA output was sent to a 16 

bit counter interfaced to a NOVA computer as described in 

detail by Rowntree (1985). The counters were examined and 

cleared every second to prevent overflow and subsequent 

errors. 

TWO different detectors were used in the 

measurements. A 1.27 em Nal detector which had been used for 

153-Sm was used for preliminary measurements. This was not 

ideal for measuring the 279 kev photons for two reasons. 
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Firstly, the probability of any type of interaction in the 

crystal is given by 

P = 1 - exp(-•t> 4.3 

where • is the linear attenuation coefficient for Nai and t 

is the thickness of the crystal. For a 1.27 em crystal using 

attenuation coefficients from Mannhart (1976) this is 52% at 

279 kev. Secondly, only a fraction of these will be 

photoelectric events, and appear in the photopeak. The rest 

will be Compton scattered and will deposit only a fraction 

of their energy in the crystal, with some of these appearing 

in the window of the lower energy photons. For 279 kev 

photons approximately 50% of the interactions will be 

Compton scattered contributing_to cross-over. 

The cross-over was found to be 34.3% for the small 

crystal. This was measured by filtering the 203-Hg source 

with 1 mm Ta, which afforded attenuation of the Tl X-rays by 

6 orders of magnitude. 

For later measurements a 5.08 em Nai detector was 

used. The probability of any interaction in this crystal at 

279 kev is 95%, however the fraction of compton scattered 

photons will not change. This might suggest that the cross­

over will be the same as for the smaller crystal. However 

the cross-over was reduced because the energy resolution of 

the detectors were different and the photons scattered 

within the detector will have a greater probability of 
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secondary interactions. A Compton scatter followed by a 

photoelectric interaction will not be distinguished from a 

single photoelectric event in the detector output and will 

appear in the photopeak. 

The cross-over for the 5.08 em Nai detector was 

found to be 12.6%. This was measured by using the Ta filter 

as before and was verified by measuring the transmission of 

the Tl x-rays through various thicknesses of steel. The 

transmitted intensity was fitted to a function of the form 

I(t) = A expl-#(Tl)t) + B exp[-•(279)t) 4.4 

where the parameter B is the initial intensity of the 279 

kev photons multiplied by the cross-over fraction. The 

transmitted intensities are shown in figure 4.5, and are 

fitted by the following functions 

1(279) = 2443 exp(-.8771 t) 4.5a 

I(Tl) = 997exp(-5.9779 t) + 309 exp(-.8771t) 4.5b 

The detector was held opposite the source castle, 

and a collimator was attached to the front of the detector 

holder as indicated in figure 4.6. The source collimator had 

a diameter of 5mm while the detector collimator was 8 mm in 

diameter (the source collimator had a diameter of 8 mm using 

the original HgO source). These did not allow high spatial 

resolution in the measurements, however the large bores were 

neccesary to ensure high count rates from relatively weak 

sources. 
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The deadtime of the detection system was assumed to 

be non-paralyzable. In this model the ratio of observed to 

true count rates, n/m, is given by 

n/m = 1 - n~ 4.6 

where ~ is the pulse length corresponding to an interaction 

in the detector (Knoll 1979). Subsequent measurements were 

corrected for deadtime losses by inverting equation 4.6 to 

yield the true count rate as 

m = n/£1-n~J 4.7 

The pulse length was determined by measurement of 

the deadtime by using a pulser to establish the ratio of 

observed to true count rates. This was performed for both 

141-Ce and 203-Hg at different count rates, with the results 

plotted in figure 4.7. A straight line was fitted to these 

data using least squares with the slope of the line equal to 

the pulse length. This was found to be approximately 9 •s· 

4.4 Phantom Materials 

For the purpose of this work phantom materials were 

required to mimic the biological tissues fat, lean and bone 

as well as Vitallium. For the first three tissues, 

polyethylene, water and aluminum were chosen, primarily 

because they had been used for previous work, whereas for 

Vitallium, stainless steel was chosen. These two materials 

have similar compositions as indicated in table 4.5. One can 

almost think of Vitallium as stainless steel with the iron 
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Table 4.5 Composition of Vitallium 	and Stainless Steel 

Element Atomic Number 	 Fraction ( \) 

Vitallium steel 

Carbon 6 .05 

Silicon 14 .75 1.00 

Chromium 24 26.50 20.00 

Manganese 25 .70 2.00 

Iron 26 67.00 

Cobalt 27 66.50 

Nickel 28 10.00 

Molybdenum 42 5.50 
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replaced by cobalt. 

The attenuation characteristics of the phantom 

materials were determined by transmission measurements using 

the 1.27 em Nai detector and the original Hgo source and the 

CeO source. The linear attenuation coefficients were 

determined by fitting the logarithm of the transmitted 

intensities to a straight line using least squares 

procedure. These were measured as accurately as possible 

with the weak source, with some transmitted intensities no 

greater than background. The mass attenuation coefficients 

were calculated by dividing by the densities of the phantom 

materials. These are given in table 4.6. In addition the 

difference between the measured phantom mass attenuation 

coefficients and the calculated tissue coefficients is given 

as a percentage of those for the tissues. 

4.5 Simulation of Phantom TPA 

In order to determine the feasibility of TPA 

at the hip simulations similar to those in chapter 3 were 

performed. Linear attenuation coefficients were taken from 

table 4.6 in order to determine the inverse matrix of 

attenuation coefficients. For aluminum the evaluated inverse 

matrix elements were found to be 2.275, -22.15 and 24.851 

for the Tl x-rays, 145 kev and 279 photons respectively. 

As before, an initial intensity was chosen, and 

transmitted intensities were calculated using the 
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Table 4.6 Mass attenuation coefficient for phantom 

materials 

Material Density Mass attenuation coefficient 

3 
(Tissue) g/cm (Differences %) 

Tl X-ray 145 kev 279 kev 

Polyethylene 0.93 .1769 .1505 .1179 
±..0016 ±..0009 ±..0025 

(Fat) 0.93 -4.0 -1.3 -5.1 

water 1.00 .1829 .1520 .1210 
±..0017 +.0018 ±..0018 

(Lean) 1.06 0.3 2.1 0.7 

Aluminum 2.71 .2336 .1351 .1138 
.±.· 004 7 ±..0018 +.0032 

(Bone) 1.89 4.4 -6.9 1.9 

steel 7.86 .7236 .1977 .1100 
±..0048 +.0008 ±..0007 

(Vitallium) 7.26 -10.4 -6.0 2.0 
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attenuation coefficients for the geometry shown in figure 

4.6. Statistical fluctuations were introduced using a random 

Gaussian variate, and the aluminum thickness was recovered 

using the inverse matrix terms. 

Aluminum thickness images were generated for three 

different thicknesses (0.25, 0.375 and 0.50 em) with 0.65 em 

of steel. Images for different intensities are given in 

figure 4.9. The noise amplitude was found to vary as 31.3/fN 

where N is the number of transmitted photons in a region of 

soft tissue. This is considerably lower than that for TPA at 

the spine, and seems to suggest that TPA may be possible at 

reasonable doses. 

4.6 	Phantom Verification of TPA 

Preliminary phantom measurements were made using the 

1.27 em Nai detector and the weak HgO source with a purpose 

more concerned with establishing the validity of the TPA 

technique than with mimicking clinical measurements. Only 

three of the phantom materials were used, namely steel, 

aluminum and polyethylene. The elimination of water was 

necessary to ensure the most accurate reproducibility of 

transmission thickness when the sources were exchanged, 

since these materials were solid slabs. This was considered 

reasonable since the mass attenuation coefficients of water 

and polyethylene are similar for the three photon energies 

under consideration. 
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FIGURE 4.8 Phantom geometry used for TPA simul3tion . 



FIGURE 4.9 Simulated TPA images for phantom geometry with 
rectangular aluminum regions with thicknesses 

from left to right of 0.25, 0.375 and 0.5 em. The images 
from top _to bottom are with transmitted count rates of 
10,000, 5000 and 1000 per pixel in the high energy channel. 
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The transmission measurements were performed using a 

constant thickness of 10 em of polyethylene with different 

thicknesses of aluminum and steel. There were 16 different 

configurations of phantom materials as indicated in figure 

4.10. It was hoped that the thickness of aluminum could be 

recovered from the attenuation factors using the previously 

calculated inverse linear attenuation coefficients or that 

correct inverse coefficients could be determined directly by 

fitting the aluminum thickness to the sum of inverse 

attenuation coefficients multiplied by attenuation factor. 

Background was measured for 10 hours for the 203-Hg 

source and for 3 hours for the 141-Ce source. The background 

rates were 2022, 439 and 366 counts per hour respectively 

for the Tl X-rays, 145 and 279 kev photons. The unattenuated 

count rates were measured for 60 minutes for 203-Hg and for 

20 minutes for 141-Ce and were 181432, 72065 and 66071 

respectively for the Tl X-rays, 145 and 279 kev photons. 

Transmission measurements were made for each 

combination of phantom materials for 60 minutes for 203-Hg 

and 20 minutes for 141-Ce. The measured count rates were 

corrected for background, source decay and dead time, and 

the cross-over to the Tl X-rays was corrected by the 

subtraction of 34.3\ of the 279 kev count rates. 

The 203-Hg source was very weak following the 

leakage and was sealed in a different source holder than in 
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figure 4.6. The collimator in this instance was 8 mm in 

diameter, and the source holder sat above the source castle, 

reducing the source collimator to detector collimator 

distance. 

The attenuation factors were calculated for each 

photon energy for each phantom combination and the validity 

of these were assessed by fitting the attenuation factors to 

a function of the form 

Y(E) = t «(E,i)t(i) ·4.8 

where «(E,i) is the linear attenuation coefficient for 

material i at energy E. The results for the fitted 

attenuation coefficients are compared to the previously 

measured (or expected) coefficients in table 4.7 

The coefficients for 145 and 279 kev are reasonable. 

However the results for the Tl X-rays are not correct, 

especially for steel. The most likely explanation for this 

is that 279 kev photons are scattered within the phantom and 

are detected as Tl X-rays. This will result in falsely high 

Tl x-ray transmission rates with corresponding falsely low 

attenuation factors. This cross-over is seen in dual photon 

absorptiometry, and is corrected by choosing a cross-over 

factor which includes both cross-over in the patient and in 

the detector. Invariably this is a function of patient 

thickness, however it varies slowly enough that a single 

value can be used accurately over the normal range of 
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Table 4.7 Fitted and Measured Linear 

Coefficients for Phantom Materials 

Attenuation 

Energy 

Tl X-rays 

145 kev 

279 kev 

Polyethylene 

.158 

.165 

.140 

.140 

.113 

.110 

Aluminum 

.542 

.633 

.370 

.366 

.293 

.308 

steel 

3.089 
5.687 

1.557 
1.554 

. 929 

.864 

F 
E 

F 
E 

F 
E 

F - fitted E - expected 
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patient thicknesses. 

In order to determine the appropriate value of 

cross-over to use, the expected attenuation factors were 

calculated for each phantom configuration and were set 

equal to 

Y(Tl)=ln[(Io(Tl)-XO Io(279))/(I(Tl)-XO !(279))1 4.9 

which was inverted to give the required cross-over using the 

following expression. 

XO=[Io(Tl)-I(Tl)exp(Y(Tl)))/[Io(279)-I(279)exp(Y(TL))] 4.10 

The required cross-overs are given in table 4.8 and range 

from 44\ to 80\ over a very small range of phantom thickness 

(10-12 em). To correct for patient cross-over using this 

method is probably prone to error. 

Another approach to correct for the cross-over is to 

assume that the additional cross-over due to scatter is a 

fraction of the incident 279 kev flux rather than the 

transmitted flux. The cross-over would be identical for all 

phantom configurations which have approximately equal 

thicknesses. With a constant scatter term the attenuation 

factor is given by 

Y(Tl) = ln IoCTll-XOioC279l 4.11 
I(Tl) -xo 1(279)-scat 

where XO is the cross-over within the Nai crystal. This can 

be solved to give 

Scat = [I(Tl)-XOI(279)1 
- exp(-Y(Tl))[Io(tl)-XOio(279)] 4.12 
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Table 4.8 Cross-over factor required for phantom 

configurations. 

Phantom configuration cross-over (%) 

1 43.9 

2 49.3 

3 50.5 

4 55.8 

5 64.4 

6 64.2 

7 59.2 

8 65.0 

9 71.2 

10 70.5 

11 65.8 

12 70.7 

13 70.6 

14 78.4 

15 79.8 

16 73.8 
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The scattered flux was determined using equation 

4.12 for all phantom configurations with a mean value of 

4428 counts per hour. The attenuation factors were 

calculated using this result and equation 4.11 and are given 

in table 4.9 together with the expected attenuation factors. 

There is general agreement. Another interpretation of 

equation 4.11 is that the scatter term is in fact an 

incorrect measurement of the background. This seems unlikely 

since the correction is twice the measured background ·rate, 

which was determined to within 1\ by counting for 10 hours. 

The inverse linear attenuation coefficients were 

determined by least squares fitting of the thickness of 

aluminum to the linear combination of attenuation factors as 

T(al) = t •(E)Y(E) 4.13 

where •(E) is the inverse linear attenuation coefficient. 

These were found to be 2.05±.61, -16.51±4.82 and 17.42+5.00 

respectively for Tl X-rays, 145 and 279 kev. These compare 

favourably with the calculated counterparts used in the 

previous section of 2.27, -22.15 and 24.85. 

The thickness of aluminum was calculated using the 

inverse coefficients and is given in table 4.10. The 

thickness of aluminum was recovered using TPA and the root 

mean squared deviation for the phantom configuration was 

0.25 em aluminum. This is not discouraging since the source 

was very weak (approximately 50 counts per second in the Tl 

http:17.42+5.00
http:16.51�4.82
http:2.05�.61
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Table 4.9 Attenuation factors for phantom configurations 

Phantom Configuration Expected Scatter Flux 

1 1.61 1. 69 

2 1.81 1.87 

3 2.03 2.11 

4 2.23 2.28 

5 2.51 2.42 

6 2.71 2.66 

7 2.93 2.99 

8 3.13 3.14 

9 3.41 3.15 

10 3.61 3.42 

11 3.83 3.86 

12 4.03 4.03 

13 4.32 3.99 

14 4.51 4.00 

15 4.74 4.28 

16 4.93 5.13 
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Table 4.10 comparison of aluminum thickness by TPA with 

expected aluminum thickness 

Phantom Configuration Aluminum Thickness (em) 

Expected TPA 

1 0.000 0.099 

2 0.314 0.405 

3 0.662 0.633 

4 0.976 0.478 

5 0.000 0.353 

6 0.314 0.520 

7 0.662 0.415 

8 0.976 0.701 

9 0.000 0.337 

10 0.314 0.783 

11 0.662 0.408 

12 0.976 0.928 

13 0.000 -0.037 

14 0.314 0.459 

15 0.662 0.551 

16 0.976 0.893 
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X-Ray window) and a stronger source may result in more 

precise measurements. This will be discussed in the next 

section. 

4.7 variance of Phantom TPA 

The shortcomings of the preliminary 

phantom measurements were a result of two factors. The first 

is that the 203-Hg source was very weak, so that transmitted 

count rates were not much greater than background. The 

second is that the cross-over of the 1.27 em Nal detector 

was excessive. For the next set of phantom measurements the 

5.08 em Nai detector was used with the Hg~F~ souce. The aims 

of these measurements were to determine the inverse linear 

attenuation coefficients more accurately and to determine 

the precision of the TPA technique. 

As mentioned previously, the transmission 

measurements were made with only a single source in the 

holder. In order to measure a two-dimensional phantom with 

the rectilinear scanner two separate scans would have to be 

made, generating two sets of transmission data. This 

introduced the possibility of misalignment of the data sets. 

Although one can conceive of several arrangements to prevent 

misalignment, for the purpose of these measurements it was 

more expedient to make pseudo-scan images and to leave 

misalignment correction as a future refinement. This 

involved making repeated measurements at a single site on 
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the phantom with both sources before moving to a different 

site. These sets of data were combined mathematically to 

generate TPA images. 

The combinations of thicknesses of phantom materials 

were similar to those in the previous section, with 

polyethylene at 9.7 em and aluminum ranging from 0.314 to 

0.976 em. Only one thickness of 0.794 em steel was used. 

These were combined to yield a pseudo-scan with the 

combinations shown in figure 4.11. This pseudo-scan can be 

considered as three sets of data, each a single thickness of 

aluminum with steel in the middle. Given the 5 mm diameter 

of the source collimator, the images would represent real 

images with dimensions 12 by 8 ems, with aluminum 7 em wide 

and steel 2 ems wide. These are somewhat representative of 

clinical dimensions, except perhaps for the polyethylene 

thickness. They should reproduce all the features of proper 

scanned TPA without the difficulties of misalignment, and of 

course with perfect spatial resolution. 

Background was measured for each of the sources for 

60 minutes and was found to be 1.55, 0.72 and 0.85 counts 

per second respectively for Tl X-rays, 145 and 279 kev 

photons. The unattenuated count rate was measured for 4 

minutes and found to be 1462.4, 2620.4 and 2532.6 counts per 

second respectively for Tl X-rays, 145 and 279 kev photons. 

The transmitted intensity was measured for the two 
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sources independently and was corrected for background, 

deadtime and source decay as described in the previous 

section. Measurements were taken for different lengths of 

time including 1, 5, 10, 50 and 100 seconds per pixel. These 

data were combined to generate the sets of transmission data 

for each photon energy. 

A cross-over correction of 12.66\ was used to remove 

the cross-over photons from the 279 kev to the Tl X-ray 

window. However, as in the previous section, this procedure 

did not correct for cross-over from within the phantom. The 

linear attenuation coefficients for the various materials 

were determined using mean attenuation factors for the 

entire set of phantom data. These are given in table 4.11. 

The attenuation coefficients are correct for the 145 and 279 

kev photons but are not correct for the Tl X-rays. 

An analysis similar to that in the previous section 

was performed to determine the scatter flux. Unlike the 

previous measurements the cross-over required to give 

accurate transmission factors was relatively constant at 

16.75\ with a range of 16.5 to 17.0\ for all phantom 

combinations with aluminum. It was lower at 15.9\ at the 

region with only polyethylene. The more constant cross-over 

is probably due to better collimation of the source and 

increased air gap from the phantom to the detector 

collimator. 



103 

Table 4.11 Fitted and Measured Linear Attenuation 

Coefficients for Phantom Materials 

Energy Polyethylene Aluminum steel 

Tl x-rays .156 .520 2.907 F 
.165 .633 5.687 E 

145 kev .141 .368 1.552 F 
.140 .366 1.554 E 

279 kev .115 .333 .831 F 
.110 .308 .864 E 

F - fitted E - expected 
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The inverse linear attenuation coefficients which 

had been calculated earlier (2.27, -22.14, 24.85) were used 

to recover the aluminum thickness from the transmission 

data. The results, however, were incorrect, and are 

summarized in table 4.12. The attenuation factors from the 

pseudo-scans were used to determine the best values for the 

inverse linear attenuation coefficients by least squares 

fitting of equation 4.13. These were found to be 0.36, -3.7, 

4.43 and were used to recover the aluminum thickness· with 

more success as indicated in table 4.12 and by the pseudo­

scan images in figure 4.12. 

The precision of TPA was determined by calculation 

of the RMS deviation of the measured aluminum thickness for 

each thickness both at sites with and without steel. This 

was found to be quite different if steel was or was not 

present, but did change appreciably with the thickness of 

aluminum. The RMS deviation without steel present was found 

to vary as 0.242/fT em aluminum with T the counting time in 

seconds per pixel. The RMS deviation of regions with steel 

present was 2.36/JT em aluminum. 

These results are further complicated by the fact 

that the transmission through the steel included pixels with 

countrates which were negative when the background, cross­

over and scatter flux were subtracted. These pixels could 

not be used to calculate attenuation factors and were 
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Table 4.12 Aluminum thickness recovered by TPA for 10 

seconds per pixel pseudo-scan. 

Aluminum Calculated Fitted 
Thickness Coefficients coefficients 

No steel 

0.314 -1.20 0.25 

0.662 0.21 0.54 

0.976 1.00 0.72 

steel 

0.314 -1.04 0.49 

0.662 -0.09 0.67 

0.976 1.14 0.91 
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FIGURE 4.12 Phantom pseudoscans for rectangular plates of 
aluminum of thickness from left to right of 

0.976, 0.662 and 0.314 em. The images from top to bottom 
were obtained with counting times of 1, 5 and 10 seconds 
per pixel. 
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ignored. The fraction of pixels which had less than one 

count in the Tl X-ray window depended upon the counting time 

ranging from 73% at 1 second per pixel to 40% at 10 seconds 

per pixel. The fraction did not change considerably for 

counting times greater than 10 seconds per pixel. Whether 

these pixels can be ignored, leaving blank pixels in the TPA 

image, or whether some arbitrary low count threshold is used 

the result will be a biased TPA measurement. 

From the results of the phantom measurements it 

appears that TPA using 203-Hg and 141-Ce is possible under 

some circumstances. However, there is an important question 

which deserves consideration. Is it possible to make TPA 

measurements in reasonable counting times with high 

precison? This will be addressed by Monte carlo simulation 

of the photon transmission to determine the scatter flux for 

various geometries. The Monte Carlo code is described in the 

next chapter, and the analysis will be given in the 

following chapter. 



CHAPTER 5 

DESCRIPTION AND VALIDATION OF MONTE CARLO CODE 

5.1 Introduction 

Monte carlo methods are a well established technique 

to solve photon transport problems in radiological 

applications (Turner, Wright and Ham 1985). The particular 

problem of the distribution of scattered photons has· been 

addressed for X-ray transmission through tissue (Kallendar 

1981, Chan and Dol 1983, Chan and Dol 1986, Persllden and 

Carlsson 1986, Boone and Seibert 1988). In this work the 

distribution of photons scattered from pencil beams of 

monoenergetic photons will be investigated as a function of 

transmission thickness and photon energy. 

The Monte carlo method is used to obtain statistical 

estimates of a physical parameter. Pseudorandom numbers are 

used to sample distributions which model the physical 

processes of scattering and absorption as photons penetrate 

materials. Clearly the algorithm used to generate the 

pseudorandom numbers must be suitable for the task and the 

physical processes must be modelled correctly. 

This chapter is devoted to a description of the code 

including the random number generator and the distribution 

sampling techniques as well as a validation of the sampling 
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and scoring techniques. The Monte carlo code used in this 

work was implemented in compiled BASIC and run using IBMI as 

well as ATARI STI personal computers. The code for these are 

included in appendix 3. 

5.2 Pseudorandom Number Generator 

A pseudorandom number generator is an algorithm 

which can generate successive numbers, usually in the range 

0 to 1, which must approximate a random selection as defined 

by statistical tests. Implemented on a binary computer, it 

will have a finite period, after which the selection of 

numbers will be a repetition of the previously selected set 

of numbers. The ideal pseudorandom number generator will 

have two important qualities: it will have a long period and 

will meet all statistical tests which are applied. A 

generalized feedback shift register was chosen as the 

pseudorandom number generator for this work since it was 

most capable of meeting the aforementioned requirements. 

A feedback shift register (Lewis 1975) is based upon 

a primitive polynomial of the form 5.1 using an algorithm 

which will be described later. 

p q 
X + X + 1 5.1 

p 
It will have period 2 -1 with the order of the polynomial, 

p, usually limited by the wordsize of the computer. The 

values of p and q are restricted to a few combinations 
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including the useful combination of p=31 and q=13 which 

gives a generator with a long period. Unfortunately this 

requires a 32 bit integer, which was not available on the 

computers used in this work. 

A generalized feedback shift register uses a set of 

p integers each of wordlength w. The set of bits at a given 

position in each integer form a single shift register of p 

bits (figure 5.1), with w such shift registers in all, as 

the columns in figure 5.1. If these shift registers (each of 

which is a random number generator) are independent, then 

the rows in figure 5.1, the integers themselves, will also 

generate pseudorandom numbers. The independence of the 

columns is assured by proper initialization of the set of 

integers (Lewis 1975). The set can be stored at the end of 

any program to be used as an initialized set for subsequent 

use. 

The values p=31 and q=13 were used with a set of 31 

integers of length 16 bits. The algorithm is indicated in 

figure 5.2 in which the random number is chosen by rotating 

a pointer through the set of integers rather than actually 

shifting, and the feedback is provided by the exclusive OR 

operation (a Boolean algebra operation on two logical 

variables which returns a true value if either is true but 

returns a false value if both are true or both are false). 

The values 0 and 1 are generated because there are 
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1 0 0 0 1 1 

0 0 1 1 1 0 

1 1 1 0 1 0 

1 0 0 1 0 0 

1 0 1 0 1 1 

0 1 1 0 0 0 

0 0 1 0 0 1 

1 1 0 0 0 1 

0 1 0 1 1 1 

0 0 0 1 0 0 

Figure 5.1 Illustration of division of set of p=lO words of 

length q=6 (rows) into a set of 6 shift registers of 10 bits 

(columns) . 
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k ~ k + 1 

If k > p then k ~ 1 

j ~ j + q 

If j> p then j ~ j - p 

W(k) ~ W(k) XOR we j > 

Rand ~ W(K) I Wmax 

Figure 5.2 Scheme of random number generator in which Rand 

is the random number given by division of W(k) by the 

largest integer wmax. A pointer, k, refers to a location in 

a table of length W which is the lowest order bit in the 31 

bit column. The other pointer, j, refers to the location of 

the bit used for the feedback. 
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considerably less integers possible from a 16 bit word than 

the period of the random number generator. The complete 

cycle of these integers, including 0 and 1, is generated 

repeatedly, however in different order until the period of 

the random number generator is completed. 

statistical tests of the random number generator are 

included in appendix 1 and the BASIC code for the random 

number generator is included in appendix 3. 

5.3 overview of Monte carlo code 

The overall objective of the Monte Carlo simulation 

is to represent the response of the physical experiment 

using a mathematical model that describes the behaviour of 

the photons. The geometry of the source and detector as well 

as source and detector collimators are parameters which can 

be adjusted in the simulation to determine the 

characteristics of the apparatus, or to optimize the 

physical process. Frequently parameters related to the 

geometry are entered explicitly in the Monte carlo code for 

generation or scoring of photons, although this restricts 

the usefulness of the particular simulation. In this work a 

more general approach is taken, using a pencil beam of 

radiation to determine the point source response of a given 

patient transmission geometry. Following simulation, the 

response can be convolved with an arbitrary distribution, 

representing the source configuration, and can be scored for 
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an arbitrary detector configuration. 

The point source response is generated by 

determining the probability per incident photon of 

transmission through a semi-infinite slab of given thickness 

and composition. As illustrated in figure 5.3, there are 

three classes of transmitted photons: those with no 

interactions or directly transmitted, those with a single 

scatter, and the multiply scattered photons. Of these, the 

directly transmitted probability can be determined directly 

from the exponential transmission probability, while the 

singly scattered probability is given by the integral of the 

photon flux multiplied by the scatter probability through 

the slab. Only the multiply scattered component cannot be 

calculated easily and must be estimated using Monte carlo 

simulation (although it is convenient to determine the 

single scatter component by Monte carlo as well). 

In this work the scheme is to determine the point 

source response for transmission by determining the 

scattered contribution using Monte Carlo, and to estimate 

the response of typical experimental situations by 

convolution with source distributions, and scoring for 

detector arrangements. This is similar to work by Kalendar 

(1981), Chan and Dol (1983, 1986) and Boone and Seibert 

(1988) who performed simulations for x-ray transmission, 

producing distributions of scattered photons as a function 
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FIGURE 5.3 	Mechanisms for photons to be transm:tted 
through a slab of tissue. 
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of distance from the pencil beam and angle of emergence for 

a variety of high voltages and thicknesses. In this work 

however, the photons are mono-energetic, and the energy 

response of the detector must be considered. Distributions 

of singly and multiply scattered photons will be generated 

as a function of energy, position and angle, which can be 

used for characterization of the experimental apparatus. 

5.4 Mechanics of Photon Simulation 

The essence of the Monte Carlo method for photon 

transport is the simulation of the random trajectories of 

numerous photons in order to estimate the behaviour of real 

photons in experimental conditions. The trajectory of a 

single photon is described as a set of state vectors, each 

of which is a set of parameters which describe the photon at 

an interaction vertex. These parameters may be real 

quantities such as position in space, direction of travel, 

or energy, or they may be contrived such as survival 

weights. In general, the history of a single photon begins 

with assigning initial values to the parameters which 

comprise the state vector. subsequent state vectors are 

calculated recursively by determining pathlengths to the 

next interaction vertex and interaction outcomes by random 

sampling of the appropriate probability distributions. This 

procedure is continued until the photon is no longer within 

the volume of simulation. 
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For the particular simulation in this study, the 

state vector consisted of eight parameters: three Cartesian 

coordinates describing the position of the photon in space, 

three direction cosines describing the direction of the 

photon, the energy of the photon and the weight of the 

photon. The pencil beam of radiation was chosen to be along 

the positive z axis. 

The photon history consisted of the following steps: 

1 creation of the photon at the origin of Cartesian space, 

2 selection of a path length to the next interaction 

vertex, 3 - determination of new interaction vertex, 4 

selection of either a Coherent or Compton interaction and 

adjustment of the photon weight by the survival weight, 5 ­

sampling for the scatter angle and new energy of photon, 6 ­

calculation of new direction. The photon history was 

terminated at step 3 if the next interaction vertex was not 

within the simulation volume, at step 4 if the weight fell 

below a predetermined value or at step 5 if the energy fell 

below a predetermined value, usually 20 kev. 

Each of these processes is described in more detail, 

with descriptions of the probability distributions and the 

sampling techniques which were used in appendix 2. The 

corresponding BASIC code subroutines are included in 

appendix 3. 
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5.5 Scoring Scatter Flux 

The scattered flux at a detector can be simulated 

directly by scoring the weight of each photon when it 

escapes the simulation region either missing or hitting the 

detector. In the latter case the plane fluence is given by 

the mean score over the area of the detector, which can 

be given as a function of photon energy or direction if 

desired. For convolution of the pencil beam scatter 

probability with the source geometry many scoring_ elements 

may be used. For high resolution these must be small which 

will adversely affect precision of the simulation. 

An alternative to direct scoring is analogue scoring 

using a collision density estimator (Carter and Cashwell 

1975, Persilden 1986). The plane fluence of photons 

scattered from a given interaction vertex by a given 

scattering process to a scoring point is given by 

-<•<E')r d4(8o) 
9 = cos83' e dft 5.2 

2 
a r 

where •<E') is the linear attenuation coefficient of the 

scattered photon, r is the distance from the interaction 

vertex to the scoring point, 83' is the polar angle of the 

scattered photon and a is the total cross-section for all 

interactions. The geometry of this is illustrated in figure 

5.4. The scoring points can be situated with as fine a 
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FIGURE 5.4 Geometry of collision density estim2ta:. 
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resolution as desired and the scattering can be scored at 

each interaction vertex, thereby generating a series of 

fluences: those due to single, double, triple, etc. 

scatters. In this work single and multiple scattered 

fluences were obtained. 

5.5.1 Mechanics of Analogue scoring 

The plane flux at a scattering point was found for 

both coherent and compton scattering as a function of radius 

from the point of transmission of the pencil beam. The·total 

cross-section was determined by using the linear attenuation 

coefficients from the tables described earlier using the 

relation 

G = .ILJ:1Ji 5.3 
p Na 

where MW, p and ,u are the molecular weight, density and 

linear attenuation coefficient of the composite material and 

Na is Avogadro's number. The distance to the scoring 

position, r, is given by 

2 2 2 ~ 
r = ((x'-x} +(y'-y} +(z'-z} J 5.4 

where (x,y,z} and (x',y',z'} are the cartesian coordinates 

of the interaction vertex and scoring point respectively. 

The direction cosines of the scattered photon are given by 

cos91' = (x'-x}/r s.sa 

cos92' = (y'-y}/r 5.5b 

cos93' = (z'-z)/r 5.5c 
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and the cosine of the scattering angle is given by the dot 

product of the direction cosines 

coseo=(cosel,cose2,cos93) (cos9l',cos92',cos93') 5.6 

The linear attenuation coefficient of the scattered photon 

is found from the tables described earlier, and the 

differential cross-sections are found using equations A2.11 

and A2.19 using the tables of form factors and scattering 

factors described earlier. 

5.6 Variance Reduction 

A major difficulty with the collision density 

estimator is estimating the flux at a point which is on the 

surface or entirely contained within the simulation volume. 

This arises from the 1/r 
~ 

term in equation 5.2 which is 

unbounded as r~O. Several solutions to this have been 

proposed (Kalos 1962, Steinberg and Kalos 1971) which 

suggest that the variance of the estimator is bounded by 

reselecting a scattering point if the original interaction 

vertex is within a small volume about the scoring point. 

This reselected point is randomly sampled using a 

distribution which compensates for the 1/r ~ term in the flux 

calculation. The simplest such volume is a sphere with a 

radius, Rs, which depends upon the mean free path of the 

photons in the medium (this will be discussed later). 

Williamson (1987) showed that this reselection is equivalent 

to using the mean value of 1/r 
~ 

over the sphere for any 
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interaction vertex within the sphere. 

If the flux must be determined at a point on the 

surface and the angular flux distribution is required, the 

sphere is not an appropriate reselection volume since it 

involves the contribution over 4w solid angle. The 

reselection volume was set to be a cone of solid angle 6 

equal to the angular scoring resolution with length Rs as 

illustrated in figure 5.5. The mean value of 1/r- from the 

scoring point over this volume is given by 

2 6 Rs 2 
<1/r > = JJr d~dJl 5.7 

0 0 Vr 

3
where v is the volume of the reselection volume, 6 Rs /3. 

The solution of equation 5.7 is given by 

2 2 
<1/r > = 6 Rs/V = 3/Rs 5.8 

This is equivalent to substituting Rs//:3 for r in equation 

5.2 whenever an interaction vertex is within the reselection 

volume. 

steinberg (1971) suggested that for a spherical 

reselection volume the optimal value for Rs was given by 

11• where • is the linear attenuation coefficient of the 

scattered photon. This was tested for the conical 

reselection volume by calculating the single scattered plane 

flux for different reselection lengths and comparing the 

results to those for direct simulation scoring. The 
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FIGURE 5.5 	Reselection volume for collision density 
estimator. 
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simulation was performed through 20 em water for 150 kev 

photons using 10,000 photons for analogue scoring and 

500,000 photons for direct scoring (with similar precision). 

The results are shown in figure 5.6 for scoring at 

the site of the pencil beam and in figure 5.7 for scoring at 

a position away from the pencil beam. In each of these the 

analogue scoring flux in arbitrary units is plotted for 

different reselection lengths, and the direct scoring flux 

is included for comparison. The analoque scoring flux is 

equal to the direct scoring flux at a reselection length 

approximately corresponding to the value 11• of 6.6 em which 

is in agreement with the suggestion of steinberg. The 

reselection length of 11• was used for further simulations. 

Results and further analysis will be given in the next 

chapter and used to analyze the feasibility of TPA at the 

hip. 
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FIGURE 5.6 Comparison of analogue scoring (+) with direct 
scoring for different reselection lengths for 

a scoring point on the pencil beam. 
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FIGURE 5.7 Comparison of analogue scoring (O) with direct 
scoring for different reselection lengths for 

a scoring point not on the pencil beam. 



CHAPTER 6 


THE FEASIBILITY OF TPA AT THE HIP 


In chapter four phantom measurements were made using 

the 203-Hg/141-Ce source. The validity of the technique was 

established and the variance of aluminum thickness 

measurements as a function of counting time as estimated 

(RMS deviation was 2. 36/.rT for transmission through the 

steel). In this chapter the variance will be examined in 

detail using the Monte carlo model which was described in 

the previous chapter. Ultimately, the source strength 

requirements for TPA and the feasibility of TPA will be 

assessed. 

6.1 variance of TPA 

In order to estimate the variance of TPA for 

geometries (both source and detector collimation and 

patient) which differ from the experimental situation an 

expression for the variance must be used. In chapter three 

the normalized variance was introduced and was given by 

equation 3.15, reproduced here as equation 6.1 

-1 2 Y(E) 
v = I:[(jt (b,E)) e XF(E)/f(E)] 6.1 

with the cross-over factor XF(E) given by equation 3.14, 

reproduced here as equation 6.2. 
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2 -Y(E') -Y(E) 
XF(E) = 1+t{[X(E')+X(E') )f(E')e }/f(E)e 6.2 

In this instance V was given as the product of the variance 

and the initial intensity parameter Io', and the intensities 

at the individual photon energies are given by expression 

6.3. 

Io(E) = Io'f(E) 6.3 

For the phantom measurements, the intensities at the 

various photon energies are known, and it makes more ·sense 

to determine the variance per unit counting time, V(T), 

given as the product of the variance and the counting time. 

An expression for this is identical to that in equation 6.1 

if the intensities at the photon energies are given as 

Io(E) = T f(E) 6.4 

with f(E) equal to 1021.8, 2620.4 and 2532.6 respectively 

for Tl X-rays, 145 and 279 kev photons. 

If the inverse linear attenuation coefficients, • 

and the attenuation factors, Y(E), are substituted into 

equation 6.1 for the phantom configuration consisting of 10 

em polyethylene, 0.6 em aluminum and 0.8 em steel and the 

cross-over of 16.75%, the variance per unit counting time is 

given as 4.11 em~. The RMS deviation of bone mineral 

measurements will be given by taking the square root of 

this, which is 2.03/tT em bone. This compares favourably 

with the measured RMS deviation of 2.36/fT. The discrepancy 
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may be due to the fact that expression 6.1 does not include 

any systematic effects, and it assumes that the variance in 

the initial count rates and background is negligible. 

Nevertheless the agreement supports further use of 

expression 6.1. 

The variance per unit time for more realistic 

patient geometries can be estimated by determining the 

appropriate attenuation factors and substituting them into 

equation 6.1. If this is done for 14 em polyethylene, 0.6 em 

aluminum and 1 em steel the variance per unit time is given 

as 70.84 em and the RMS deviation will be given as 8.42/rT 

em aluminum. 

It is possible that the variance per unit time can 

be reduced by adjusting the geometry of the collimators. 

This will change both the initial intensities at each photon 

energy and the scatter flux, and hence the cross-over 

correction, X. If the values of the inverse attenuation 

coefficients and attenuation factors for the realistic 

patient geometry are substituted into equation 6.1, an 

expression for the variance per unit time for arbitrary 

cross-over factor is given by 

2 
V(T) = 0.929 + 357.2(X + X) 6.5 

If the intensities at the three photon energies are equally 

affected by changes in geometry then the variance per unit 
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time can be given by 

2 
V(T) = [ 0.929 + 357.2(X +X) 1/R 6.6 

where R is the ratio of the intensity at a given geometry to 

the intensity of the experimental geometry. 

The next few sections will be concerned with 

evaluating the cross-over factor and the intensity ratios 

for various collimator geometries, and finally with 

determing the optimal geometry for TPA at the hip. 

6.2 Intensity ratios of incident beams 

The intensity ratio, R, of incident beams for 

various collimator geometries was determined using a simple 

Monte Carlo calculation (different from the scatter flux 

Monte carlo code). The geometry used for these calculations 

is shown in figure 6.1 in which the source was a uniform 

cylinder of length 1 em (corresponding to the actual active 

volume of the source) and radius equal to the radius of the 

source collimator. 

Photons were created uniformly within the cylinder 

and the direction was isotropic within a restricted range of 

polar angles, from 0 to approximately 12 degrees. The point 

of intersection of the path of the photon with the exit 

plane of the source collimator was determined. If this was 

not within a circle of radius equal to the source collimator 

the photon was assumed to have been absorbed in the lead 
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FIGURE 6.1 Schematic diag:am of geometry for calculation 
of intensity ra~io for different collimators. 
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collimator. Self-absorption in the source was not considered 

because of the different energies of photons. 

The flux at the detector plane was scored by 

determining the point of intersection of the photon path 

with the plane at the detector and counting the photons 

which intesect at given radii from the centre of the 

collimator. The code for this calculation appears in 

appendix 4. 

The results of this calculation for the phantom 

configuration using 30,000 photons are given in figure 6.2, 

in which the fraction of the total number of photons leaving 

the source collimator is given for different radii at the 

detector plane. It is clear that the beam was not well 

collimated, and that less than 10\ of photons were used in 

the transmission measurement with a collimator of diameter 8 

mm. The other 90\ are undesirable both because they 

contribute to scatter and because they introduce radiation 

dose for no information gain. 

Clearly one would prefer better use of these 

photons, and in order to maintain spatial resolution of the 

rectilinear scanner, increasing the radius of the detector 

collimator is not the ideal solution. To investigate the 

potential improvement of lengthening the collimators, the 

calculation was performed for collimators of various radii, 

each with length 5 em. 
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The results are given in figure 6.3 in which the 

intensity ratio compared with the experimental geometry is 

given. The collimation is improved with little loss in 

intensity for source collimators with larger radii. In the 

next sections the cross-over due to scatter flux will be 

determined for these geometries, and the results will be 

combined to determine the variance per unit photon for 

various geometries. 

6.3 Monte carlo Simulation Parameters 

The scatter flux was estimated for both the singly 

and multiply scattered photons using the principles 

discussed in chapter five; in essence integrating the 

the probability of scattering to a scoring point multiplied 

by the photon density at a scattering point, over a 

scattering volume. For the singly scattered flux, the photon 

density along a pencil beam is given analytically as an 

exponentially decreasing function. The integration along the 

pencil beam was performed numerically by Simpson's rule 

using 1000 points. The multiply scattered photon density 

cannot be expressed as a simple analytic expression, so it 

was sampled using Monte carlo methods and the scatter flux 

was estimated using a collision density estimator. The 

number of photons used for the multiple scatter was 10,000, 

which was adequate with the variance reduction techniques. 

The plane flux per unit photon was estimated at 



-----------

135 

-----------------------. 
_....­---­

1C-~_---------------------------=========== 

-- /..; ....-
0 /.;:; " /-/ ./ 

ro / / .- /

0:: / / / 

>- I 
. 

/ I 
/ 

i 
I...- 0.1 -- /• I I 

(j) -~ /1 / ! c I I i .
Q) - i 

I 

..... I Iic 1/I I 
I ----------------------------------~0.01 -- / . I 

- I/ 

/ !' 
i 

0.001 
0.00 0.50 1.00 1.50 2.00 

Radius {em) 

FIGURE 6.3 ?lot of intensity ratio as a function of radius 
of detecto= collimator for collimators of length 

5 em and r::dius varying from 2.5 mm (------)to 0.5 mm 
(-- • --·-- l in ste~s of 0. 5 mm. 



136 

several scoring points along a line perpendicular to the 

axis of symmetry (the pencil beam) at the plane of the 

detector. These points were spaced 0.25 em apart going from 

the axis to 3 em from the axis. The flux was estimated as a 

function of photon energy and polar angle (from axis of 

symmetry) at each point. The probability for a given photon 

was added to a bin corresponding to the energy. These bins 

were 10 kev wide ranging from 0 to 300 kev. 

For the multiply scattered photons the flux was 

also stored as a function of polar angle. It was assumed 

that the azimuthal angle was not important due to 

cylindrical symmetry. The cosine of the polar angle was 

binned with width of 0.02 ranging from 0.8 to 1.0. Angles 

with cosines less than 0.8 will be greater than 37 degrees, 

which should be restricted by collimation. 

The single scattered flux was estimated as a 

function of energy only. This was reasonable since the 

azimuthal angle is directly related to the position of the 

scoring point on the plane of the detector. 

The source to detector distance was limited to 

approximately 18 em experimentally. Since commercial DPA 

devices have fixed minimum distances it seemed reasonable to 

use 18 em as a minimum separation for all simulations. 

The analysis of the scattered flux generates 

probabilities of counting scattered photons as either Tl X­
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rays or 279 kev gamma rays. This will involve the following 

tasks: determining the energy response of the Na! detector, 

convolving the pencil beam profile with the source 

collimator, and calculating the angular response of the 

detector collimator. 

6.4 Energy response of the 5.08 em Nai detector 

The response of a Na! detector to a photon of a 

given energy is described in detail in several sources such 

as Knoll (1979). The energy response is the pulse height 

spectrum generated by deposition of energy in the crystal. 

For photon energies below 300 kev the important features are 

the photopeak which is due to photoelectric absorption, a 

Compton continuum due to scatter in the crystal and possibly 

an iodine escape peak which is due to iodine X-rays leaving 

the crystal following a photoelectric absorption. Generally 

the photopeak is used to count the number of photons of a 

given energy. 

In this section a different type of energy response 

is discussed. Since the energies of the transmitted photons 

are well defined, the photopeaks corresponding to Tl X-rays 

and 279 kev photons are counted using single channel 

analyzers (SCA). Scattered photons will add spurious counts 

in these windows when they give a pulse with height which is 

within the range of pulse heights accepted by the SCA. This 

can occur when the photopeak of the scattered photon 
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overlaps the window, or when a photon has energy greater 

than that of the window and deposits only a fraction of its 

energy in the detector. The response of interest is the 

probability that a photon of a given energy will appear in 

either of the two photopeak windows. 

This response was determined empirically by 

obtaining the spectra of several different isotopes under 

conditions identical to those used for phantom measurements. 

The isotopes and the photon energies are listed in table 

6.1. For each photon energy the total counts, ct, and the 

overlap into a given SCA window, O(w), were determined. The 

efficiency of the 5.08 em Nai crystal, €, was calculated 

using linear attenuation coefficients for Nai(Tl) from 

Mannhart (1976). The energy response, or the probability 

that a photon of a given energy will be counted by a given 

SCA was given by the following expression. 

P(W) = ( O(w)/Ct 6.7 

This is plotted for the Tl X-ray window in figure 6.4. The 

response was fitted using least squares to the sum of two 

functions. The first was a fourth order polynomial for 

energies greater than 60 kev, and 0 for energies less than 

60 kev. This corresponds to Compton scattered higher energy 

photons. The second was erf(IEo-EI) which corresponded to 

the overlap of a Gaussian into the window of the SCA. Only 

the second function was used to fit the data for the 279 kev 
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Table 6.1 Isotopes used to determine detector response 

Isotope Photon Energies <key} 

241-Am 60 

153-Gd 103 

57-Co 122 

143-Ce 145 

111-In 173 

247 

203-Hg 279 
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window. 

Since the Monte Carlo scatter flux was determined 

with energy bins of width 10 kev, the mean response over 10 

kev intervals was determined for both SCA windows. These are 

given in figures 6.5 and 6.6 and were used to calculate the 

scatter count rate in a window from the flux as a function 

of energy. Further analysis of the Monte Carlo calculations 

is described in the next sections. 

6.5 scatter Flux Estimation 

The scatter flux was determined for both singly and 

multiply scattered photons using the parameters indicated in 

section 6.3. The energy response was incorporated to yield 

scatter flux as a function of radius, and for multiply 

scattered photons as a function of photon direction. The 

analysis of the data for single and multiple scattering 

differs from this point. 

6.5.1 Single Scatter Flux 

The energy response corrected single scatter flux 

was determined for both the 279 kev photons and the Tl X-ray 

photons for all phantom configurations. A typical example 

for the Tl x-rays is shown in figure 6.7 in which the flux 

probability at the scoring points was used to generate the 

flux probability for the entire radial function using a 

cubic spline. Similar data are shown in figure 6.8 for 279 

kev photons in which the responses of both SCA windows are 
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shown. 

Examination of figure 6.8 reveals that the response 

of the Tl X-ray window is exactly 12.6% of the 279 kev 

window (the detector response), and there is in fact no 

cross-over of 279 kev photons due to scatter in the phantom. 

This must be expected since all singly scattered photons 

at small radii will necessarily have energies very near to 

the initial energy since the scatter angle is also small. 

Similarly the Tl X-rays which scatter through small angles 

will not differ in energy from the original energies. 

This being the case, the small angle singly 

scattered photons will be indistinguishable from the 

transmitted photons and should not be used for calculation 

of scatter flux. In reality the linear attenuation 

coefficients were determined experimentally, so that these 

singly scattered photons would have counted as transmitted 

photons in the first instance. All further analysis will 

concern the multiply scattered flux. 

6.5.2 Multiply Scattered Flux 

The energy response corrected multiply scattered 

flux probability is a function of both radius and direction 

of the photon. This was determined for both the 279 kev 

photons and the Tl X-rays for all phantom configurations. 

The result of importance was the scatter into the Tl X-ray 

window and analysis was restricted to such. Typical examples 



147 

of the flux probability for 10,000 photons are plotted in 

figure 6.9 for both 279 kev photons and Tl X-rays. 

Examination of figure 6.9 reveals that the 

probability decreases with radius for cos(G)=l while it 

increases for all other values. This trend was observed for 

all phantom configurations. It was possible to parameterize 

the flux probability by using two different equations. For 

cos(G)=l the parameterization was a function of only the 

radius, with a quadratic giving reasonably good fits. A 

typical quadratic fit is shown in figure 6.10. For the rest 

of the data the parameterization was a function of both the 

radius and cos(e). It was determined that a function of the 

form 

P(r,cos(G)) = (l+kr)P(cos(G)) 6.8 

where P(cos(G)) was a second order polynomial gave good fits 

with typical reduced Chi-squared values of 1.5-2.0. 

The scatter flux probability for a given source 

collimator geometry was given by convolution of the pencil 

beam flux probability with the beam profile expected from 

the source collimator. Since the source collimator was 

cylindrical it was expected that the beam profile would 

consist of a uniform circle with radius equal to the 

collimator radius and that the convolution would itself be 

circularly symmetric. It was possible to calculate the 

radial portion of the convolution using only the radial 
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portions of the pencil beam flux probability and beam 

profile. This is described in detail in appendix five. 

The result of the convolution was a set of radial 

functions of the scatter flux probability at the plane of 

the entrance of the detector collimator, each appropriate 

for a single photon polar angle. The flux probability at the 

detector will be due to photons which have radii less than 

that of the collimator both at the entrance and the exit. 

The flux entering the collimator could be calculated by 

integrating the scatter flux probability over the area of 

the entrance of the detector collimator, however some of 

these would interact with the collimator wall. 

The stipulation that the photon reach the detector 

was incorporated by assuming that the multiply scattered 

photon direction would display azimuthal symmetry. A photon 

at a given radius would give rise to a cone of photons with 

equal polar angle. The fraction of these which reach the 

detector was calculated using a method described in appendix 

six, the geometric efficiency of the collimator. 

The scatter flux probability was corrected for 

angular response and then integrated over the area of the 

collimator to yield the net scatter flux probability. This 

is expressed as the number of photons counted in the Tl x­

ray window for each photon emitted from the source. 

The total scatter flux into the Tl X-ray window is 
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the sum of the scatter from the 279 kev photons and the Tl 

X-rays. The unattenuated count rates in these windows were 

measured in chapter four, and combined with the photopeak 

efficiency calculated in section 6.4 the ratio of Tl X-rays 

to 279 kev photons was determined to be approximately 0.22. 

The total scatter flux per 279 kev photon was calculated by 

summing the individual scatters using the weights 0.22 and 1 

for Tl X-rays and 279 kev photons. The precision of this 

procedure was estimated to be 5% based upon repeated 

simulations for selected phantom configurations. 

The calculation of scatter flux probabilities made 

it possible to compare the Monte Carlo results with the 

phantom results. The scatter flux for the phantom 

measurements was determined by subtracting from the measured 

count rate a count rate calculated as the product of the 

initial count rate and the linear attenuation coefficients. 

The ratio of the scatter flux at a given configuration to 

that with only polyethylene was calculated and compared with 

the ratio determined from the Monte carlo scatter flux 

probability. The ratios are given in table 6.2 in which the 

phantom measurements and the Monte carlo results agree. 

This agreement gives confidence in further analysis 

which involved calculating the flux probability for the 

phantom configuration and source detector collimator 

geometries indicated in section 6.2. These were used to 
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Table 6.2 Scatter 

configurations 

Phantom Configuration 

.314 em aluminum 

.974 em aluminum 

.314 em aluminum 

.794 em steel 

.974 em aluminum 

.794 em steel 

flux ratios for some phantom 

scatter Flux Ratio 

Measured 	 Monte carlo 

1.038 	 .987 + .074 

1.154 	 1.068 + .080 

.524 .446 + .033 

.498 .407 + .031 
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calculate the cross-over due to scatter, which will be 

described in the next section. 

6.6 Cross-oyer and variance for varying Geometry 

The cross-over due to scatter will be given by the 

scatter flux per photon divided by the transmitted flux per 

photon calculated for each geometry. The scatter flux was 

calculated for 10000 photons as described in the previous 

section. Rather than finding the scatter flux per photon the 

scatter flux was normalized to the flux for the phantom with 

9.7 em polyethylene. This was done by multiplying the 

measured phantom scatter flux by the ratio of the scatter 

flux for a given configuration divided by that for the 

phantom from Monte Carlo simulation, and multiplying the 

result by the ratio of total beam intensity for the 

configuration and the phantom (given as the integral of the 

intensity ratio from figure 6.3). This was done to eliminate 

any difficulties arising from assumptions about the fraction 

of the beam hitting the detector in the phantom 

measurements. 

The transmitted flux was normalized to the phantom 

flux by dividing the exponential of the attenuation factor, 

exp(-Y(Tl X-ray)), for the Monte Carlo configuration by that 

for the phantom. The result was then multiplied by the 

product of the transmitted flux for the phantom measurements 

and the intensity ratio (taken from figure 6.3). 
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The cross-over due to scatter was determined by 

dividing the scatter flux by the transmitted flux for the 

configurations discussed earlier. The results appear in 

figure 6.11 and can now be combined with the intensity ratio 

3 to determine the variance per unit counting time using 

equation 6.6. However the cross-over appearing in equation 

6.6 refers to total cross-over and not just scatter in the 

phantom. The scatter cross-over was added to .1266, the 

cross-over from the detector response to give the ·total 

cross-over and this was used with the intensity ratio from 

figure 6.3 to find the variance per unit counting time for 

various configurations. This is plotted in figure 6.12. 

It is clear from figure 6.12 that the variance 

decreases with increasing radius of source collimator, due 

primarily to increasing the intensity ratio. The variance 

also decreases with increasing radius of detector 

collimator. Although the cross-over increases with 

increasing detector collimator radius, the intensity ratio 

affects the variance more strongly than the cross-over. 

Moreover the effect of decreasing cross-over is limited by 

the 12.66% cross-over in the detector itself. 

The best choice of collimators would be the 2.5 mm 

source collimator with a large detector collimator. 

Obviously one is restricted in the choice of detector 

collimator by resolution of the scanner and should remain 
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with radii below 5mm, a value not very different from the 

phantom measurement configuration. To choose the radius 

between 4 mm and 5 mm would give variance between 87 and 56 

em per second counting time. The implications of this will 

be discussed in the next section. 

6.7 Source strength Reguirements and Feasibility of TPA 

The results of the Monte Carlo calculations suggest 

that the lowest variance per unit time which can be achieved 

using reasonable geometry is 56 em ~ . This of course is the 

variance per pixel, and the variance over the entire bone 

a
mineral image will be given by 56/N em where N is the 

number of pixels with bone mineral. This number will be 

reduced since the variance over regions without steel is 

considerably lower (2 orders of magnitude) than with steel, 

and most of the noise will be over the prosthesis. Using a 

collimator radius of between 4 and 5 mm one can expect N to 

be of the order 20 to 25. This will lead to variance for 

average thickness of 2.25 em per unit counting time; that 

is, a precision of 1.5/fT em where T is the counting time. 

The source strength requirement will depend upon the 

precision required to demonstrate clinically relevant 

changes in bone mineral. Unfortunately since these 

measurements have not been made before, that figure is not 

known. However based upon normal bone loss of 1-2%, a 

precision of 3% would be a minimum requirement and precision 
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of 1\ would probably be ideal. 

If typical bone mineral areal densities are between 

0.6 and 1.0 g/cm
Q 

then the corresponding thicknesses of 

aluminum are between .20 and .37 em. Choosing a midrange 

thickness of .3 em aluminum, a precision of 3\ is in fact 

.009 em aluminum while 1\ is .003 em aluminum. The counting 

time per pixel to acheive these results will be 7.7 hours 

and 69 hours respectively. 

These counting times are clearly unreasonable. It is 

conceivable that counting times as long as one hour may be 

feasible. This will include counting regions away from the 

prosthesis. It is likely that some form of increasing the 

counting time for regions including the prosthesis will be 

necessary and it may mean that the counting time will be 

restricted almost entirely to the prosthesis. If there are 

25 pixels, this will allow counting of approximately 2 

minutes per pixel. In order to achieve the same number of 

counts in the shorter time the source must be approximately 

231 times stronger. 

The major problem involved in 'boosting' the source 

activity is that the thermal neutron cross-section of the 

202-Hg is low, and the source saturates at its present 

activity. If a more massive source were used, it would 

require almost 200 g of Hg Q. Fa. to achieve the desired 

activity. That would involve considerable self absorption of 
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the Tl X-rays, which would require a further increase in 

source strength to obtain a proportionate increase in 

photon flux. Even if a higher neutron flux were available, 

an increase of 200 times is required to yield 3% precision. 

Ultimately it appears that the cross-over dooms the 

TPA by increasing the variance. It is unlikely that the 

precision of the technique can be improved by any means 

other than using a different source so that TPA with a Hg­

Ce source is not a feasible approach to measuring· bone 

mineral about a hip prosthesis. 



CHAPTER 7 

CONCLUSION 

7.1 Bone Mineral Absorptiometry at the Spine 

Bone mineral absorptiometry at the spine involves 

measuring the transmission of photons through a three 

component system including lean, fat and bone mineral. The 

present commercially available dual photon absorptiometry 

uses two photon energies to separate bone mineral from a 

composite soft tissue, assuming a two component system. 

The error due to inhomogeneous distributions of fat 

was estimated by measuring the in-vivo distribution of fat 

in normal populations using CT scans through the lumbar 

vertebrae. These results were used in a model which 

predicted the error due to fat inhomogeneities which was 

validated by phantom results. 

Projected errors were found to have a median value 

of 8%, and could be either positive or negative. These must 

be considered a source of variance in the dual photon 

technique which reduces the sensitivity of such 

measurements. 

The predicted errors are in agreement with Roos et 

al (1980) who measured the difference between dual photon 

bone mineral measurements for vertebrae from cadavers both 

160 
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in situ and excised. More recently Gotfredsen et al (1988) 

found errors of 10.3% and Eriksson et al (1988) found errors 

of 6 - 16% also using cadavers. Tothill et al (1987) used CT 

scans in a method similar to this study to predict errors of 

8 - 20%. The inescapable conclusion is that large errors are 

introduced by fat inhomogeneities. If these errors could be 

removed, then the discrimination of osteopenic populations 

from normal populations might be improved. 

Triple photon absorptiometry was analyzed -as a 

possible solution for the errors introduced by fat. This 

seems to be an obvious approach, to use three photon 

energies to solve a three component system. However, the 

differences between the attenuation properties of the three 

components was small. In order for TPA to be viable the 

attenuation of the photons must be measured extremely 

accurately with photon energies that give the greatest 

discrimination of tissue types. 

The analysis consisted of determining the optimum 

set of photon energies by calculating a normalized variance 

for the bone mineral equivalent thickness for typical 

patient parameters. This was found to depend strongly upon 

the cross-over of higher energy photons to lower energy 

channels and on the set of photon energies. The variance of 

the bone mineral equivalent using the optimum set was 

calculated by simulating the TPA measurement including only 
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statistical noise in the data and eliminating any systematic 

errors which may occur. 

The radiation dose required for TPA measurements 

with precision similar to present DPA measurements was found 

to be 3,000 higher than that for DPA. This estimate does not 

include systematic errors which will exacerbate the 

situation. If TPA were implemented the increase in accuracy 

would serve to reduce the variance of the bone mineral 

measurements. This includes both the normal biological 

variation of bone mineral as well as the variance due to the 

errors. The increased radiation dose required to perform TPA 

will not justify the increase in accuracy. 

These results are in contrast to Jonson, Roos and 

Hansson (1988) who have suggested that TPA may be viable 

using a combination of 153-Gd and 241-Am. Close examination 

of their data indicates that the variance to dose ratio is 

similar to that calculated in chapter three. In fact they 

concluded that the precision of TPA is not sufficient for 

clinical purposes. 

The linear attenuation coefficient for a third 

material can be expressed as a linear combination of those 

for two other materials. These relations do not change much 

with energy. For TPA the linear combinations are 

sufficiently similar over the energy range of diagnostic 

radiology that large numbers of photons must be transmitted 
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in order to separate the three materials. For DPA fat 

introduces only small errors (.05 em bone per em fat) 

however since there is considerably more fat than bone 

mineral the errors are an appreciable fraction of the bone 

mineral. 

7.2 TPA at the Hlp Prosthesis 

TPA at the hlp prosthesis involves measuring the 

bone mineral surrounding the shaft of the femoral component 

of the hlp prosthesis. This is accomplished by decomposing 

the three phases, metal, bone mineral and soft tissue by 

using three different photon energies. 

An isotopic source consisting of 203-Hg and 143-Ce 

was produced in the reactor and phantom measurements 

demonstrated that TPA would work albeit with high variance. 

Monte Carlo calculations to determine the best precision 

possible using the present source showed the source to be 

unfeasible due to extremely long counting times required. 

The largest source of variance in the measurements 

was the cross-over correction for the 279 kev photons in the 

Tl X-ray window for the 203-Hg source. The transmission flux 

rates are sufficiently low that the cross-over can be 

several times the Tl X-ray counts, with the result that the 

variance of the attenuation factor may be several times 

larger than the measurement itself. 

Unlike the case of TPA at the lumbar spine in which 
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the differences in attenuation coefficients for the three 

materials was the limiting factor, in this case the limiting 

factor is the cross-over in the detector itself. Changing 

to a detector with better energy resolution, such as a high 

purity germanium detector , HPGe, does not improve the 

situation appreciably. Preliminary measurements of the 

spectrum of 203-Hg using a HPGe indicated that the cross­

over in the detector is approximately 3%. This will only 

reduce counting times by one half. The only solution to 

improve the variance is to eliminate the cross-over, since 

changes in geometry have little effect. 

If a third isotope such as 109-Cd with an 66 kev 

photon were used, and the transmission was measured 

separately for the three photon energies the cross-over 

would be eliminated. The development of such a source may 

form the basis for further work in this area. 

7.3 TPA; a Final Word 

Triple photon absorptiometry is an extension of dual 

photon absortiometry and any dual energy technique which 

decomposes a complex combination of materials into two 

phases. Pundits argued that two phases were sufficient for 

any number of materials, and in fact that no more than two 

phases can be decomposed from a mixture of materials. 

In this work two different combinations were 

examined. In the first, the effective atomic numbers of the 
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constituent materials did not differ greatly, while in the 

second the steel was considerably different from the other 

two components. The results suggest that three components 

can indeed be decomposed using three photon energies 

(although the variance was high due to cross-over). The 

difficulty of making these measurements increases as the 

differences between the effective atomic numbers of the 

constituents become smaller. The possibility of decomposing 

three constituents depends upon what are second order terms 

in the cross-sections, such as atomic scattering factors for 

incoherent scattering, and coherent scattering (an 

interaction of little impact in broad beam measurements in 

planar radiological imaging). 

Perhaps the notion that TPA is not possible arose 

from such modalities as dual energy CT or digital radiology 

where it is indeed unviable. However it is not correct to 

assume that under different geometry with materials of 

sufficient difference that TPA is not possible. 
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APPENDIX 1 


STATISTICAL TESTS OF RANDOM NUMBER GENERATOR 


Five different tests were performed on the 

generalized feedback shift register to determine both the 

validity of the algorithm and the initiallization of the set 

of integers. These tests are described in detail by Lewis 

(1975), along with several other tests which could be 

performed, but a brief discussion of these tests will be 

given below. 

The frequency test assesses the uniformity of the 

random number generator by determining the occurence of 

numbers in sub-intervals of the interval 0-1 for a finite 

number of random numbers. One hundred sub-intervals were 

chosen with 10000 random numbers. 

The serial test uses pairs of random numbers to fill 

a two-dimensional analog of the frequency test, that is 

filling sub-squares on the unit square. One hundred sub­

squares were chosen with 10000 random numbers. 

The gap test measures the length of gaps between 

successive occurences in a given sub-interval such as in the 

frequency test. Ten sub-intervals were chosen, and the gaps 

between successive occurences in the first subinterval were 

counted for 10000 random numbers. 
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The Yule's test consists of taking the sum of the 

decimal digits (the integer part of the multiple of the 

random number and 10) of 5 consecutive random numbers. The 

frequency of occurence of these sums (on the range 0-45) was 

determined for 10000 random numbers. 

The D~ test involves selection of two points 

randomly in the unit square (as in the serial test). The 

distribution of the square of the distance between the 

points was determined over 20 sub-intervals for 10000 random 

numbers. 

Comparisons with expected distributions (as 

described by Lewis) are given for some of these tests in 

figure A1.1 and chi-squared values for deviations are given 

in table A1.1 with 5% probability levels from Rosner (1986). 

The random number generator passes all but the frequency 

test at the 5% probability level, but passes even this at 

the 2.5% probability level. The random number generator and 

the initiallization seem to be adequate for use in the Monte 

Carlo simulation. 
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Table A1.1 Chi-squared values for statistical tests of 

random number generator 

Test Degrees Chi-squared 5% Probability 
of Freedom Levels 

Frequency 99 74.38 77.93 - 124.34* 

serial 99 112.16 77.93 - 124.34 

Gap 21 12.71 11.59 - 32.67 

Yule 44 31.89 30.63 - 61.63 

2 
D 19 10.86 10.12 - 30.14 

* 2.5% probability levels 74.22 - 129.56 



APPENDIX 2 


SIMULATION PROCESSES 


A2.1 Photon creation 

Since the simulation involves determining the point 

source response, the photons all begin with the same state 

vector. The initial position of the photon is at the origin 

of the three dimensional Cartesian coordinate system with 

initial direction along the positive z axis. The initial 

weight of the photon is 1 and the initial energies of each 

photon are identical, a parameter input for each simulation. 

A2.2 Path and Path Length Determination 

The pathlength, s, is sampled by inversion of the 

normalized cumulative distribution of the pathlengths. If a 

material has a linear attenuation coefficient ., the 

distribution of pathlengths is given by 

P(s) = exp(-•s> A2.1 

and the normalized cumulative distribution is given by 

C(s) = 1 - exp(-•s) A2.2 

If a random number, R, is assigned to C(s), then the 

pathlength is determined by inversion to be 

s = -ln(1-R)/• A2.3 

Since both R and 1-R are uniformly distributed over the 

interval 0-1 an alternate form 
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s = -ln(R)/,u A2.4 

is used. 

The linear attenuation coefficient will depend upon 

the energy of the photon as well as the material with which 

it interacts. The coefficient was found from a table of 

attenuation coefficients for integral values of photon 

energy in kev from 30 to 300 kev. For non-integral energies 

the attenuation coefficients are determined by linear 

interpolation. The table was filled by using a 

parametrization of the individual interaction mass 

attenuation coefficients (ie coherent, incoherent and 

photoelectric absorption) of the form 

4 i 
ln(,u/p) = t a ( i )E A2.5 

i=O 

where E is the energy of the photon in kev. The coefficients 

for biological material were taken from White and Fitzgerald 

(1977) and for phantom materials from fitting cross-section 

from Hubbel et al (1975). 

If the simulation included more than one material a 

single attenuation coefficient for a composite homogeneous 

mixture of the materials was used. The composite mass 

attenuation coefficient was given by 

.U/p = tw(i),u/p(i) A2.6 

where 

w(i) = p(i)t(i)/MW(i) A2.7 
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and p(i), t(i) and MW(i) are the density, thickness and 

molecular weight respectively of material i. 

The position of the photon at a specific vertex is 

given by the cartesian coordinates, (x,y,z), and the 

direction of the photon is given by the direction cosines 

(cos8l,cos82,cose3). The position of the next interaction 

vertex, (x',y',z') is given by 

x' = x + s easel A2.8a 

y' = y + s cos82 A2.8b 

z' = z + s cos83 A2.8c 

A2.3 Determination of Interaction Type 

At the energies used in these simulations the 

photon interactions which are possible include photoelectric 

absorption, Compton scattering and coherent scattering. For 

photoelectric absorption in biological materials as well as 

steel and vitallium the fluorescent X-rays are considered to 

have energies too low to be of inter~st, resulting in loss 

of the photon from the simulation. Rather than follow a 

photon for a long part of its history only to lose it in a 

photoelectric interaction, no photoelectric interactions are 

included. In order to remove the bias due to the loss of 

this interaction the weight of the photon is reduced by 

multiplication with the survival probability, which is the 

probability of Compton or coherent scattering divided by the 

total interaction probability. The survival probability is 
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obtained from a table similar to that for the linear 

attenuation coefficient using the partial interaction linear 

attenuation coefficients described earlier. 

The scatter type is determined by choosing a random 

number, R, between 0 and 1. The ratio of the Compton scatter 

cross-section to the total scatter cross-section (the sum of 

the Compton and coherent cross section) is determined. If R 

is less than this ratio the photon is Compton scattered, and 

otherwise is coherently scattered. This ratio is· also 

stored in a table similar to the linear attenuation 

coefficient which was obtained from the individual 

interaction linear attenuation coefficients. The 

determination of the scatter angle is described in the next 

sections. 

A2.4 Coherent Scattering 

Coherent scattering involves the scatter of the 

photon by the entire atom with no loss in energy of the 

photon. The differential scattering cross-section for a 

single electron is given by the Thompson cross-section 

2 2 
daCTh} = vRo (1 + cos 8) A2.9 
dcose 

where Ro is the classical electron radius and e is the 

scattering angle. For the entire atom interference from 

individual electrons is possible, and the cross-section is 

multiplied by the square of the form factor FF(Z,v) where z 
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is the atomic number and v is the momentum transferred by 

the scattering process, given by 

v = kE -V 1-cosa A2.10 

where E is the photon energy in electron rest mass units and 

k is a constant 29.1433 em-' The coherent differential 

cross-section is given by 

2 
da(Coh} = FF (Z,v)da(Th) A2.11 
dcosa dcosa 

This is sampled to generate random scatter angles 

using the generalized rejection technique of Carter and 

Cashwell (1975). They showed that if va is sampled rather 

than cosa the probability distribution of v~ is given by 

2 2 2 2 
P(v )dv = c F(v )da<Thldv A2.12 

dcosa 

where 
2 2 2 

F(v ) = ;[f (Z~Y: ) A2.13 
2 

A(Z,v m) 
-). ';}.

where v m is v at 9=w, and 

y 2 2 
A(Z,y) = JFF (Z,v)dv A2.14 

0 

Tables of FF (Z,v) taken from Veigele (1973) were used to 

construct cumulative tables of A(Z,v~) by numerical 

integration. At a given energy the value A(Z,v~ ) was found 

and a random number, R, was used to select v a by 
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2 2 
A(Z,v ) = R A(Z,v m) A2.15 

and interpolating from the tables. 

The scattering angle was determined by inverting 

equation 5.11 to give 

2 
cose = 1 - (v/kE) A2.16 

where k=0.057, and E is the photon energy in kev. A 

rejection technique was used to include the Thompson cross-

section. A random number, R, was used to accept the 

scattering angle if R<(1+cos 9)/2, otherwise to choose a new 

a v . 

This sampling procedure was tested by generating 

100,000 scatter angles apd comparing with. the expected 

distributions for water at 40, 100, 150 and 300 kev obtained 

from the differential cross-section. As seen in figure A2.1 

the technique is valid for 40 and 100 kev, but is not as 

good for 150 and 300 kev. This is probably due to difficulty 

in determining the expected distributions for these energies 

rather than with the sampling technique since the scattering 

is highly forward peaked. This should not be a great problem 

since coherent scattering is not predominant at these 

energies. 

A2.5 Compton Scattering 

Compton scattering involves elastic scattering of 

the photon by a free electron. The differential scattering 
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FIGURE A2.l Frequency distributions generated by sampling 
Coherent scatter angle for water including 

expected distributions. 
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cross-section is given by the Klein-Nishini formula (Evans 

1955) 

2 2 
da(KN) = vRo (E'/E)[(E'/E)+(E/E')+cos G-11 A2.17 
dcose 

where E and E' represent the photon energies in electron 

rest mass units before and after scattering respectively, 

and Ro is the electron radius as before. Energy and 

momentum are conserved, which gives the relation between E, 

E' and scatter angle 

E' = E~-----_____ A2.18 
1+E(1-cos8) 

For incoherent scattering, atomically bound 

electrons scatter the photon and the cross-section must be 

modified to include binding energies, especially at small 

scatter angles. The differential scatter cross-section is 

given by the compton cross-section multiplied by a 

scattering factor I(Z,v), with z the atomic number and v the 

momentum transfer (as for coherent scattering), and is given 

as 

da(Incl = I(Z,v)daCKN) A2.19 
dcose dcose 

This is sampled using a modified rejection method, 

by first sampling the Compton cross-section to obtain cos8, 

then choosing a random number, R, and accepting if 

R<I(Z,v)/I(Z,vm). The values of I(Z,v) were obtained from 

tables generated from data by Veigele (1973). 
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The Compton cross-section is difficult to invert, so 

it is sampled by a method due to Kahn (Wood 1982) which uses 

three random numbers to generate cose. The scheme of this 

method is indicated in figure A2.2. 

This method was tested by generating 100,000 random 

scatter angles and comparing with the expected distributions 

for water at 40, 100,150 and 300 kev obtained from the 

differential cross-section. As indicated in figure A2.3 the 

technique is valid over this energy range. 

A2.6 Calculation of New Direction Cosines 

The previous two sub-sections described the sampling 

of the cosine of the scattering angle, eo, in the local 

reference frame of the photon; that is, the angle of scatter 

from the previous direction of travel. The azimuthal angle, 

9, is uniformly distributed over 2w and is sampled by a 

rejection technique the scheme of which is given in figure 

A2.4 wherein the sine and cosine of 9 are generated. The new 

direction of the photon is given by the direction cosines 

cos91', cos92' and cos93' which are found from spherical 

trigonometry using the scheme of Carter and Caswell (1975) 

by the following 

cos9l'=cos9lcos9o+sin9o[cos9lcos93cos9-cose2sin9J A2.20a 
sin93 

cos92'=cose2coseo+sin9o[cos92cos93cos9+coselsin9J A2.20b 
sin93 

cos93'=cos93cos9o-sin93sin9ocos9 A2.20c 
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a ~ 511/E 


Choose R1, R2, R3 


if Rl > (1+2/tl) go to * 

(9+2/tl) 

ER ~ 	 ( 1 +2/ i\) 
( 1+2R2/ i'l 

2 
K ~ [(a-ERa+l) + l/ERJ/2 

if R3 > K then reject 

go to ** 

* 	ER ~ 1+2R2/ (I 

2 
K ~ 4[1/ER-1/ER ) 

if R3 > K then reject 

** cose ~ 1 + (1-ER) a 

FIGURE 	 A2.2 Scheme for random sampling Compton 

scattering angle due to Kahn. 



189 

-1.00 -o.60 -Q20 020 0.60 1.00 - 1.00 -0.60 -0.20 020 0.60 1.00 

40 kev 100 kev 

-1.00 -o.60 -0.20 020 0.60 1.00 - 1.00 -o.60 -0.20 020 0.60 1.00 

150 ..... , 
300 kev 

FIGURE A2.3 Frequency distributions generated by sampling 
incoherent scatter angle for water including 

expected distribution. 
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choose Rl R2 random numbers 


X ~ 2Rl - 1 


y ~ 2R2 - 1 


2 2 2 
r ~ x + y 

if r > 1 then reject 

cosc> ~ x/r 

sin<t ~ y/r 

FIGURE A2.4 	Scheme for random sampling sine and cosine-of 

azimuthal angle 
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If cos63=0 these are modified to the following form 

cos61' = sineocos¢ A2.21a 

cos62' = sineosin¢ A2.21b 

cos63' = coseocos63/lcose31 A2.21c 



APPENDIX 3 

BASIC CODE FOR MONTE CARLO SUBROUTINES 

DIM TABLE(6,32): REM FORM FACTORS,ATOMIC SCATTERING FACTORS 
DIM CRSX(6,300): REM ATTENUATION COEFFICIENTS 
DIM CT(6): REM DIRECTION COSINES 
REM BINARY TABLE SEARCH TO FIND 
REM POSITION IT% 
REM GIVEN VALUE XT 
TABLOOK: IT%=17: JT%=8 
WHILE JT%>=1 
IF TABLE(KT%,IT%)=XT THEN RETURN 
IF TABLE(KT%,IT%)<XT THEN IT%=IT%+JT% ELSE IT\=IT%-JT\· 
JT\=JT%/2: WEND 
IF TABLE(KT%,IT%)>XT THEN IT\=IT\-1 
RETURN 

REM RANDOM NUMBER GENERATOR 
REM RETURNS RANDOM NUMBER XR ON (0,1) 
REM USING INITIALLIZED SET RN%(31) 
RAND: JR\=JR%+1: IF JR%>31 THEN JR%=1 
KR\=JR\+13: IF KR%>31 THEN KR\=KR%-31 
RN%(JR%)=RN%(JR%) XOR RN\(KR%) 
IF RN\(JR\)=0 OR RN%(JR%)=XRM THEN GOTO RAND 
XR=RN\(JR%) 
XR=XR/XRM: RETURN 

REM DIRECTION CHANGE 
REM FINDS SINE AND COSINE OF AZIMUTHAL ANGLE (CP,SP) 
REM AND NEW DIRECTION COSINES (CT(4),CT(5),CT(6)) 
REM GIVEN SCATTERING ANGLE CTO 
REM RETURNS DIRECTION AS CT(1),CT(2),CT(3) 
ANGLES: GOSUB RAND 
ANGLES!: P=2*XR-1: GOSUB RAND: Q=2*XR-1 
CP=Q*Q+P*P: IF CP>l THEN GOSUB RAND: GOTO ANGLES! 
CP=SQR(CP): SP=Q/CP: CP=P/CP 
STO=SQR(1-CTO*CT0) 
IF ABS(CT(3))>0.9999 THEN GOTO ANGLES2 
ST=SQR(l-CT(3)*CT(3)) 
CT(4)=CT(1)*CTO+STO*(CT(l)*CT(3)*CP-CT(2)*SP)/ST 
CT(5)=CT(2)*CTO+STO*(CT(2)*CT(3)*CP+CT(1)*SP)/ST 
CT(6)=CT(3)*CT0-ST*STO*CP 
CT(l)=CT(4): CT(2)=CT(5): CT(3)=CT(6): RETURN 
ANGLES2: CT(1)=STO*CP: CT(2)=STO*SP 
CT(3)=CTO*CT(3)/ABS(CT(3)) 
RETURN 
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REM SAMPLE COHERENT SCATTERING ANGLE 
REM RETURNS SCATTERING ANGLE CTO 
COHER: VM=(0.080655*E)A2: REM MAXIMUM MONENTUM TRANSFER 
IF VM>36 THEN VM=36 
KT%=1: XT=VM: GOSUB TABLOOK: REM FIND VM IN LOOKUP TABLE 
Q=TABLE(2,IT%)+(VM-TABLE(1,IT%))*TABLE(5,IT%)*0.5 
Q=TABLE(3,IT%)+Q*(VM-TABLE(l,IT%)): REM MAX INTEGRAL FORM 
COHER1: GOSUB RAND: REM FACTOR SQUARED FFS 
KT%=3: XT=XR*Q: GOSUB TABLOOK: REM SAMPLE INTEGRAL FFS 
P=2*(XT-TABLE(3,IT%))/TABLE(5,IT%) 
P=SQR(P+(TABLE(2,IT%)/TABLE(5,IT%))A2)+TABLE(2,IT%)/TABLE(5,IT%) 
P=TABLE(l,IT%)-P: CTO=l-P/VM 
GOSUB RAND: STO=XR 
P=(l+CTO*CT0)/2: IF STO>P THEN GOTO COHERl: REM REJECTION 
RETURN 

REM SAMPLING COMPTON SCATTER ANGLE 
REM RETURNS SCATTER ANGLE CTO AND CHANGES THE ENERGY 
REM OF THE PHOTON 
COMPT: VM=(0.080655*E)A2: REM MAX MOMENTUM TRANSFER 
IF VM>36 THEN VM=36 
KT%=1: XT=VM: GOSUB TABLOOK: REM POSITION OF VM IN TABLE 
IZV=TABLE(4,IT%)+(VM-TABLE(l,IT%))*TABLE(6,IT%): REM ATOMIC 
REM SCATTERING FACTOR ASF 
E=E/511: REM ELECTRON REST MASS UNITS 
COMPTl: GOSUB RAND 
IF XR>(l+2*E)/(9+2*E) THEN GOTO COMPT2 
GOSUB RAND: ER=1+2*XR*E: REM ER IS E/E(SCATTER) 
GOSUB RAND 
IF XR<=4*(1/ER-1/ERA2) THEN GOTO COMPT3 ELSE GOTO COMPT1 
COMPT2: GOSUB RAND 
ER=(1+2*E)/(1+2*XR*E): REM E/E(SCATTER) 
GOSUB RAND 
XCOM=((l/E-ER/E+l)A2+1/ER)/2 
IF XR<=XCOM THEN GOTO COMPT3 ELSE GOTO COMPT1 
COMPT3: CT0=1+(1-ER)/E: IF ABS(CT0)>0.9999 THEN GOTO COMPT1 
E=E*511: REM BACK TO KEV 
XT=(0.0570317*E)A2*(1-CT0): REM MOMEMTUM TRANSFER OF SCATTER 
KT%=1: GOSUB TABLOOK 
P=TABLE(4,IT%)+(XT-TABLE(1,IT%))*TABLE(6,IT%): REM ASF 
GOSUB RAND: IF XR>P/STO THEN GOTO COMPT1: REM REJECT 
E=E/ER: EI%=INT(E): DE=E-EI% 
RETURN 

REM CALCULATE PATHLENGTH S 
PATH: P=CRSX(1,EI%)+DE*CRSX(4,EI%): REM TABLE OF ATTEN COEFF 
GOSUB RAND: S=-LOG(XR)/P 
RETURN 
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REM DETERMINE SCATTER TYPE AND CHANGE WEIGHT 
SCATTER: WT=WT*(CRSX(2,EI%)+DE*CRSX(5,EI%)): REM WEIGHT 
P=CRSX(3,EI%)+DE*CRSX(6,EI%): GOSUB RAND: REM SCATTER RATIO 
IF XR<=P THEN GOSUB COMPT ELSE GOSUB COHER: REM SCATTER 
RETURN 

REM CALCULATE COHERENT DIFF CROSS-SECTION 
REM GIVEN SCATTER ANGLE 
COHXS: XT=(1-CT0)*(0.0570317*E)A2: REM MOMENTUM TRANSFER 
IF XT>36 THEN XT=36 
KT%=1: GOSUB TABLOOK 
XS=TABLE(2,IT%)+(XT-TABLE(1,IT%))*TABLE(5,IT%): REM FFS 
XS=XS*(1+CTO*CT0): REM DIFF CROSS-SECTION* PI RoA2 
RETURN 

REM CALCULATE COMPTON DIFF CROSS-SECTION 
REM GIVEN SCATTER ANGLE 
COMXS: XT=(1-CT0)*(0.0570317*E)A2: REM MOMENTUM TRANSFER 
IF XT>36 THEN XT=36 
KT%=1: GOSUB TABLOOK 
XS=TABLE(4,IT%)+(XT-TABLE(1,IT%))*TABLE(6,IT%): REM ASF 
P=1/(1+E*(1-CT0)/511): XE=P*E 
XS=XS*(PA3+PA2*(CTO*CT0-1)+P): REM KLEIN-NISH FACTOR 
RETURN 

REM CALCULATE DISTANCE AND DIRECTION AND SCATTER 
REM ANGLE TO SCORING POINT (SO,YO,T) 
FORANG: S=SQR((T-Z)A2+(X0-X)A2+(Y0-Y)A2): REM DISTANCE 
CT(6)=(T-Z)/S: CT(5)=(YO-Y)/S 
CT(4)=(X-X0)/S: REM DIRECTION COSINES 
CTO=CT(1)*CT(4)+CT(2)*CT(5)+CT(3)*CT(6): REM SCATTER ANGLE 
P=CRSX(1,EI%)+DE*CRSX(4,EI%) 
P=l/P: REM RESELECT LENGTH 
IF S>=P THEN PRBSC0=1/SA2 ELSE PRBSC0=3/PA2 
PRBSC0=PRBSC0*CT(6)*CRCOR: REM COMMON FOR COH AND COMPTON 
RETURN 

REM CALCULATE COHERENT PROBABILITY 
REM GIVEN SCATTER ANGLE, DISTANCE, AND ENERGY 
PRBCOH: P=CRSX(l,EI%)+DE*CRSX(4,EI%) 
P=P*EXP(Sl*P) 
PRBSCT=PRBSCO/P: REM ALL BUT DIFF X-SEC. 
GOSUB COHXS 
PRBSCT=PRBSCT*XS: REM CRCOR IS 1/ATTEN COEFF* PI RoA2 
RETURN 
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REM CALCULATE COMPTON PROBABILITY 
REM GIVEN SCATTER ANGLE, DISTANCE AND ENERGY 
PRBCOM: P=CRSX(l,EI%)+DE*CRSX(4,EI%) 
PRBSCT=PRBSCO/P 
GOSUB COMXS: REM SCATTER ENERGY IS XE 
EI1%=INT(XE): DEl=XE-Eil% 
P=CRSX(l,Eil%)+DEl*CRSX(4,Eil%) 
PRBSCT=PRBSCT*XS*EXP(-Sl*P) 
RETURN 



APPENDIX 4 

BASIC CODE FOR INTENSITY RATIO CALCULATION 

rem generates sum of flux as function of radius in flx(45) 
dim flx(45) 
gosub rndini: rem random number generator initialization 
tpi=8*atn(l) 
input "radius of collimator (em) ",rmax 
input "collimator length (em) ",cl 
rmax2=rmax*rmax 
input "number of points ",np% 
for i%=1 to np% 
gosub posit: rem position in source 
gosub direc: rem direction of photon 
gosub colint: rem intersection point of collimator exit 
if rl>rmax2 then cyclend 
gosub detint: rem intersection point at detector 
r3=sqr(r2) 
ir=1nt(r3*10)+1 
flx(ir)=flx(ir)+l 
cyclend: next i% 
end 
posit: gosub rand: z=xr 
posit!: gosub rand: x=(2*xr-l)*rmax 
gosub rand: y=(2*xr-l)*rmax 
r=x*x+y*y: if r>rmax2 then posit! else return 
direc: gosub rand: ct=l-.019*xr 
gosub rand: phi=tpi*xr 
st=sqr(l-ct*ct) 
cty=st*sin(phi) 
ctx=st*cos(phi) 
return 
colint: dz=cl+z: s=dz/ct 
xl=x+ctx*s: yl=y+cty*s 
rl=xl*xl+yl*yl 
return 
detint:s=(17.5+cl)/ct 
x2=xl+s*ctx: y2=yl+s*cty 
r2=x2*x2+y2*y2 
return 
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APPENDIX 5 


CONVOLUTION OF CIRCULARLY SYMMETRIC FUNCTION 


WITH A UNIFORM CIRCLE 


In the Monte Carlo simulations the flux probability 

for a pencil beam was assumed to be a radial function with 

no dependence on azimuthal angle. The flux probability for a 

finite beam will be given by the convolution of the pencil 

beam flux probability with the flux density of the beam at 

the source collimator. This density was assumed to be 

uniform over a circle of radius equal to the radius of the 

collimator with density equal to the recipricol of the area 

of the collimator. In this way the convolved flux density 

will be normalized by the number of photons in the entire 

beam. 

The most obvious approach to perform the convolution 

would be to generate two dimensional sets of data 

corresponding to the radial functions for the pencil beam 

flux probability and the beam flux density and to convolve 

these either by direct calculation or by using Fourier 

transforms. A quicker and more elegant (in my opinion) 

approach was to calculate the radial function of the 

convolution directly using the two known radial functions. 

This involved considering the two dimensional flux 
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probability to be composed of several uniform rings of 

different diameters and heights. The convolution of the 

entire radial function with the uniform circle is then the 

sum of the convolutions of the rings with the uniform 

circle. 

The convolution of a ring with a uniform circle can 

be determined by considering the effect of convolving a 

point with a uniform circle. In figure AS.la a ring of 

radius Rl and thickness ARl is convolved with a circle of 

radius R2. The point Pl will be uniformly spread over the 

circle surrounding it, so that the contribution of the point 

Pl to any point within the circle, say P2, will be the 
a

recipricol of the area of the circle, l/wR2 . For an 

arbitrary point at a position R3 the convolution, C(R3), 

will be the integral of the contribution from all points on 

the ring which fall within a circle of radius R2 about that 

point. This will be given by the product of the area of the 

ring within the circle and the contribution from each point, 

that is 

C(R3) = ~ AS.l 
2 

wR2 

If Rl is greater than R2 then the area is zero when 

R3 is less than Rl-R2 or when R3 is greater than Rl+R2. 

Otherwise the area is given by the product of the arc 

length, 2Rl9, and thickness, ARl, of the portion of the ring 
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(a) 

(b) 

FIGURE A5.1 Evaluation of convolution of a ring with a 
uniform circle when the radius of the ring 

is greater than the circle (a) and when the radius of the 
ring is less than the circle (b). 
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in the circle. 

If R2 is greater than Rl, as indicated in figure 

A5.1b then the area is zero when R3 is greater than Rl+R2 

and if R3 is less than R2-Rl the area is 2TrRlARl. For other 

values of R3 the area is given by the product of the arc 

length and thickness as above. 

The convolution at a radius R3 is given by the 

following expressions 

Case 1: Rl > R2 

C(R3) = 0 R3 < Rl-R2 

C(R3) = 2Rl~ABJ. Rl-R2 < R3 < Rl+R2 
2 

TrR2 

C(R3) = 0 Rl+R2 < R3 

Case 2: R2 > Rl 

C(R3) = 2RlJIARl R3 < R2-Rl 
2 

TrR2 

C(R3) = .2.1U2AR1 R2-Rl < R3 < R2+Rl 
2 

TrR2 

C(R3) = 0 R2+Rl < R3 

Examples of the radial convolutions are given in 

figure A5.2 for cases with Rl greater than R2 and Rl less 

than R2. 
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functions from left to right of 
a ring with unit height, a uniform circle and 

the convolution of the ring and the circle. These are shown 
for radius of the ring greater than for the circle (upper) 
and for the radius of the ring less than the circle (lower). 



APPENDIX 6 


GEOMETRIC EFFICIENCY OF DETECTOR WITH PHOTON ANGLE 


The results of the Monte Carlo simulations were 

distributions of flux probabilities as a function of radius 

and photon direction. It was assumed that the multiply 

scattered photons would have azimuthal symmetry in their 

direction and that the polar angle would be sufficient to 

describe the direction. For an arbitrary position at the 

entrance of the detector collimator at a given polar angle 

the flux probability is uniform over a cone with apex equal 

to the polar angle, and the photons will strike the detector 

in a circle which is the intersection of the cone with the 

plane of the detector. This is illustrated in figure A6.1. 

As is evident from figure A6.1 the intersection of 

the cone with the detector plane will include paths through 

the collimator itself, which must be discounted. The angular 

response is the fraction of photons at a radius, r, with 

polar angle, e, which hit the detector without hitting the 

collimator. This was the fraction of the circle which 

intersects the circle of the detector collimator as in 

figure A6.1. This was determined simply as the ratio of the 

arc length within the collimator divided by the entire 

circumference of the circle. 
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R2 


f-- Rl~ 

R3=T tan(9} 

FIGURE A6.1 Evaluation of geometric efficiency of detector 
collimator of radius Rl for a point at R2 with 

polar direction e. The upper diagram indicates the cone 
of directions with polar angle 9 while the lower diagram 
shows the 6verlap of the intersection of the cone with the 
detector plane and the detector collimator ( vv.v....... ). ·The 
efficiency will be given as ¢/w. 
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