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Abstract

Let Ω ⊂ Rd be a measurable set of finite positive measure (not necessarily bounded).

Let (cj)
k
j=1 be a given collection of vectors in Rd, and let H be the dual lattice of a full

rank lattice K ⊂ Rd. For λ ∈ Rd, let eλ denote the exponential

eλ(x) := e2πi〈λ,x〉, x ∈ Rd.

It is known that, the collection

E(Λ) := {eλ : λ ∈ Λ},

where Λ = {(cj + h) ∈ Rd : h ∈ H, j ∈ {1, ..., k}}, forms Riesz basis on Ω ⊂ Rd if the

domain Ω is a k-tile domain and if, in addition, it satisfies an extra arithmetic property,

called the admissibility condition. The theory of shift invariant spaces generated by the

full rank lattice K plays an important role to analyze and solve the above problem.

The main goal of this thesis is to study a variant of the problem above where the dual

lattice H is replaced by a non-full rank lattice in Rd. In particular, given an at most

countable index set J and a collection of vectors (cj)j∈J ⊂ Rd, we examine the existence

of Riesz sequences, frames and Riesz bases of the form

E(Λ) := {eλ : λ ∈ Λ},

where Λ = {(cj +h) ∈ Rd : h ∈ H, j ∈ J}, on Ω ⊂ Rd as above, and H, a non-full rank

lattice in Rd. Our results are obtained using an extention of the theory of shift invariant

subspaces of L2(Rd), where the shifts are now generated by a non-full rank lattice in

Rd.
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1 Introduction

The study of the existence of Riesz Basis and frames of exponentials under the action

of full rank lattices has some known results. Let Ω ⊂ Rd be a measurable set of finite

Lebesgue measure. For each k ∈ Zd, let ek denote the exponential

ek(x) := e2πi〈k,x〉, x ∈ Rd.

The following theorems (taken from [5] and [6]) give the necessary and sufficient condi-

tions for which the collection E(Zd) := {ek : k ∈ Zd} is a Riesz sequence and a frame in

L2(Ω).

Theorem 1.0.1. Let Ω ⊂ Rd be a measurable set of finite Lebesgue measure. The

collection E(Zd) forms a Riesz sequence in L2(Ω) if and only if

0 <
∑
m∈Zd

χΩ(x+m) ≤M, for a.e x ∈ [0, 1]d, (1.1)

where the constant M <∞.

Theorem 1.0.2. Let Ω ⊂ Rd be a measurable set of finite Lebesgue measure. The

collection E(Zd) forms a frame for L2(Ω) if and only if∑
m∈Zd

χΩ(x+m) ≤ 1, for a.e x ∈ [0, 1]d. (1.2)

The proof of Theorem 1.0.1 and Theorem 1.0.2 is given in [5].

We now turn to a more difficult problem. Let Ω ⊂ Rd be a measurable set of finite

Lebesgue measure. Given a full rank lattice H ⊂ Rd and J, an at most countable index

set, we define the set of frequencies Λ ⊂ Rd by Λ := {(cj + h) ∈ Rd : h ∈ H, j ∈ J},
for (cj)j∈J , some collection of vectors in Rd. Let eλ denote the exponential

eλ(x) := e2πi〈λ,x〉, x ∈ Rd.
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The problem of the existence of such collection of vectors (cj)j∈J ⊂ Rd, such that

E(Λ) := {eλ : λ ∈ Λ},

forms a Riesz basis and a frame in L2(Ω) is well analyzed in [1] and [9].

In [9], Kolountzakis establised that, all bounded multi-tile domains support Riesz

Basis of exponentials. The latter, in his paper, posed an open problem concerning the

case where the domains are unbounded. This open problem was well investigated in [1].

The authors in [1] showed that, in the case where the domains are unbounded, there is

the need for an extra condition, which they called ”admissibility”. The authors in [1]

a gave proof of their result via the theory of shift invariant spaces. After a successful

proof of their result using both the multitile at level k on the full lattice Λ and the

admissibility conditions, they realized by way of an example that, this extra condition,

that is, the admissibility condition, is too strong a condition as this example (Example 3.3

in [1]) showed that, an unbounded k−tile measurable domain of finite positive measure

supports Riesz basis of the form {ecj+h : h ∈ H, j ∈ {1, ..., k}} without being admissible.

In this thesis, we seek to examine the existence of Riesz sequences and frames of

exponentials on measurable sets of finite Lebesgue measure (not necessarily bounded),

under the action of non-full rank lattices. In particular, we seek to investigate the

following problem:

Let Ω ⊂ Rd be a measurable set of finite Lebesgue measure and H ⊂ Rd be a non-full

rank lattice. Let (cj)j∈J be a given collection of vectors in Rd associated with the set of

frequencies

Λ = {(cj + h) ∈ Rd : h ∈ H, j ∈ J}.

We ask the question, under which condition(s) does the collection

E(Λ) := {eλ : λ ∈ Λ},

form a Riesz sequence and a frame in L2(Ω)?

In Chapter 2, we consider some basic definitions of the keywords in the thesis, and

also, we took a look at the background of the thesis.

The Paley-Wiener spaces associated with the set Ω, is defined by

PWΩ = {f ∈ L2(Rd) : f̂ ∈ L2(Ω)}.

We use subspaces of PWΩ, which are the family of shift invariant spaces that we are of
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our interest. Note that, if we let

N = span{ecj+hχΩ : h ∈ H, j ∈ J},

then the subspace

V = span{f, f̂ ∈ N}

is invariant under translations by the non-full rank lattice H. This motivates our study

in Chapter 3 of subspaces of L2(Rd) which are invariant under translations by a non-full

rank lattice H. We consider there, without loss of generality and for simplicity, non-full

rank lattices of the form Zn × {0}d−n where n ∈ Z with 1 ≤ n < d. Our goal here

is to extend some of the results in the theory of shift-invariant subspaces of L2(Rd)

developed by Ron and Shen in [13] and also by Marcin Bownik in [3]. This theory plays

an important role in the study of Riesz sequences and frames and has applications in

shift-invariant systems, Weyl-Heisenberg systems, affine (wavelet) systems, and Gramian

matrices. An important result which we obtained from the extention of the theory of

shift invariant subspaces of L2(Rd) is given by Theorem 3.2.10. This theorem reduces the

problem of checking whether a system in closed subspaces of L2(Rd) is a Riesz sequence

or frame to analyzing the fibers in closed subspaces of L2(Zn ⊕ Rd−n).

In Chapter 4, we use Theorem 3.2.10 to establish the link between the extended

theory of shift invariant spaces and our main problem which was analyzed in R2. We

later considered some examples of our problem, on some bounded subsets of R2.

In Chapter 5, we use basic changes of variables to extend some of the results that

we proved with the lattice Zn × {0}d−n to systems generated by general non-full rank

lattices in Rd. We conclude by stating a more general result on the above problem.
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2 Preliminaries and Background

We shall give definitions of some of the keywords in this thesis. Later in this Chapter,

we will also consider the background problem of this thesis.

2.1 Basic Definitions and Notations

Definition 2.1.1 (Non-full rank Lattice). H ⊂ Rd is a non-full rank lattice if

there exists a d× d invertible matrix Q such that H = Q[Zn × {0}d−n].

Definition 2.1.2 (Bessel sequence). Let H be a Hilbert space. A countable family of

elements {fj}j∈J ⊂ H is a Bessel sequence for H if there exists B > 0 such that∑
j∈J

|〈fj, g〉|2≤ B‖g‖2
H, ∀g ∈ H. (2.1)

Definition 2.1.3 (Frame). Let H be a Hilbert space. A countable family of elements

{fj}j∈J ⊂ H is a frame for H if there exists constants A, B > 0 such that

A‖g‖2
H ≤

∑
j∈J

|〈fj, g〉|2≤ B‖g‖2
H, ∀g ∈ H. (2.2)

The constants A and B are called frame bounds. In particular, A is called the lower

frame bound and B is the upper frame bound. They are not unique.

Definition 2.1.4 (Riesz Sequence). Let H be a Hilbert space. A countable family of

elements {fj}j∈J ⊂ H is a Riesz sequence for H if there exists constants A, B > 0 such

that

A
∑
j∈J

|cj|2 ≤

∥∥∥∥∥∑
j∈J

cjfj

∥∥∥∥∥
2

H

≤ B
∑
j∈J

|cj|2, ∀(cj) ∈ `2(J). (2.3)

The constants A and B are called Riesz bounds. In particular, A is called the lower

Riesz bound and B is the upper Riesz bound. They are also not unique.

12



Definition 2.1.5 (Riesz Basis). A Riesz basis for H is the family of the form {Uej}∞j=1,

where {ej}∞j=1 is an orthonormal basis for H and U : H → H is a bounded bijective

operator.

Theorem 2.1.6. Let H be a Hilbert space. A countable family of elements {fj}j∈J ⊂ H
is a Riesz basis for H if and only if {fj}j∈J ⊂ H is both a frame and a Riesz sequence

for H.

Proof. See Theorem 3.6.6 in [12].

Some General Notations:

Throughout this thesis, we will denote |S| as the Lebesgue measure of the measurable

set S and denote #(S) as the number of elements in the set S.

Also denote by det(Q), the determinant of the matrix Q and denote by J , an at most

countable index set.

We denote by f̂ , the Fourier transform of the integrable function f : Rd → C, with

f̂(ξ) =

∫
Rd

f(x)e−2πix·ξdx,

and also, we denote by f̌ , the inverse Fourier transform of f , with

f̌(x) =

∫
Rd

f̂(ξ)e2πix·ξdξ,

where x · ξ is the inner product of x, ξ ∈ Rd.

2.2 Background Problem

In this section, we state and observe the background problem. The problem is stated

with full rank lattices. For the details of the background problem, one may look at [1].

Let us start by considering the definitions below which have been taken from [1].

Definition 2.2.1. Λ ⊂ Rd is a full lattice if there exist a d × d invertible matrix M

so that Λ := MZd. A Fundamental Domain with respect to the lattice Λ = MZd is

given by D = MTd. The dual lattice of Λ = MZd, denoted by H is given by

H = {h ∈ Rd : 〈h, λ〉 ∈ Zd for all λ ∈ Λ}.
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Definition 2.2.2 (Multitiling). Let k be a positive integer. We say a measurable set

Ω ⊂ Rd multi-tiles Rd at level k on a lattice Λ ⊂ Rd if for almost every w ∈ D,∑
λ∈Λ

χΩ(w + λ) = k.

Given a measurable set Ω ⊂ Rd, and a lattice Λ ⊂ Rd, for every w ∈ D, we denote

Λw(Ω) = Λw := {λ ∈ Λ : w + λ ∈ Ω}.

Definition 2.2.3 (Admissibility). Let Ω ⊂ Rd be a measurable set of finite measure

and Λ ⊂ Rd, be a full lattice. We say that Ω is admissible for Λ if there exist a

vector v ∈ H and a number n ∈ N; such that for almost every w ∈ D, the numbers

{〈v, λ〉 : λ ∈ Λw} are distinct elements (mod n). We will emphasize on the dependance

on n and v.

Theorem 2.2.4. Let Ω ⊂ Rd be a measurable set of finite measure and Λ ⊂ Rd, a full

lattice with dual lattice H. If

(i) Ω multi-tiles Rd at level k by translation on the lattice Λ ⊂ Rd,

(ii) Ω is admissible for Λ ,

then, there exist a1, ..., ak ∈ Rd, such that the set E(H; a1, ..., ak) is a Riesz basis for

L2(Ω), where

E(H; a1, ..., ak) = {e2πi(aj+h).w : h ∈ H, j = 1, ..., k}.

Theorem 2.2.4 is the Main Result obtained in [1] and was proved via shift invariant

spaces.

Definition 2.2.5 (Shift Invariant Space). A closed subspace V ⊂ L2(Rd) is a H−shift

invariant if f ∈ V , then

Thf ∈ V, ∀h ∈ H

where Thf(x) = f(x− h) for every x ∈ Rd.

14



Definition 2.2.6 (Paley-Wiener Spaces). The Paley-Wiener Space are family of shift

invariant spaces which we are interested in. These spaces are defined by

PWΩ = {f ∈ L2(Rd) : f̂ ∈ L2(Ω)}.

The following theorem is a result obtained in [1] using the concept of shift invariant

spaces. The Main Result in [1] was proved by translating the background problem into

part (i) of Theorem 2.2.7. Then, by using the fact that Theorem 2.2.7 (i) and (ii) are

equivalent, the proof of Theorem 2.2.4 is given by using Theorem 2.2.7 (ii).

Theorem 2.2.7. Let Ω ⊂ Rd be a k − tile measurable set of finite measure. Given

φ1, ..., φk ∈ PWΩ, we define

Tw =


φ̂1(w + λ1) ..... φ̂k(w + λ1)

. ..... .

. ..... .

. ..... .

φ̂1(w + λk) ..... φ̂k(w + λk)


where λj = λj(w) for j = 1, ..., k are the k values of Λ that belongs to Λw. Then the

subsequent statements are equivalent:

(i) The set ΦH = {Thφj : h ∈ H, j = 1, ..., k} is a Riesz basis for PWΩ.

(ii) There exist A,B > 0 such that for almost every w ∈ D,

A‖x‖2 ≤ ‖Twx‖2 ≤ B‖x‖2,

for every x ∈ Ck.

Moreover, in this case, the Riesz bounds are given as

A = inf
w∈D
‖T−1

w ‖2, and B = sup
w∈D
‖Tw‖2.

15



3 Shift Invariant spaces and Non-full

rank lattice of Rd

In this chapter, we will start by stating our main problem which was introduced earlier

in Chapter 1. In the second section, we will study the extended theory of shift invariant

subspaces of L2(Rd) under the action of a non-full rank lattice. The last section is the

Gramian concept of frames and Riesz sequences. The non-full rank lattice H, is chosen

to be Zn × {0}d−n without loss of generality and for simplicity.

3.1 Statement of the Main problem

Given a sequence (aj)j∈J ⊂ Rd , we consider the associated set of frequencies Λ ⊂ Rd

defined by

Λ = {(aj + k) ∈ Rd : k ∈ Zn × {0}d−n, j ∈ J}, (3.1)

and the set of exponentials with frequencies in Λ,

E(Λ) := {eλ : λ ∈ Λ},

where

eλ(x) := e2πi〈λ,x〉, ∀x ∈ Rd.

Main Problem :

Let E ⊂ Rd be a measurable set of finite measure. Can we find a sequence (aj)j∈J ⊂ Rd

such that E(Λ) forms a Riesz sequence or a frame for L2(E) ?

Analogous to [1], we analyze the above problem by looking at its equivalent statement

in the fibers of L2(Rd). In the next section, we will take a look at subspaces of L2(Rd)

which are invariant under the action of a non-full rank lattice Zn × {0}d−n.
Both Section 3.2 and 3.3 of this thesis are analogous to Chapter 1 and Chapter 2 of [3].

We give a generalization of the Results obtained in Chapter 1 and Chapter 2 of [3].
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3.2 Shift Invariant Spaces

The main goal of this section is achieved in Theorem 3.2.10. The proof of Theorem 3.2.10

is given mainly by using Proposition 3.2.9. Let us start by considering some definitions.

Definition 3.2.1. A closed subspace V ⊂ L2(Rd) is Zn × {0}d−n−shift invariant if for

every f ∈ V , we have

Tkf ∈ V, ∀k ∈ Zn × {0}d−n,

where Tkf(x) = f(x− k) for every x ∈ Rd.

We will denote by D the set [0, 1]n. The Hilbert space L2(Zn ⊕ Rd−n) is the usual

L2 space associated with the Haar measure δZn ⊗ dy on Rd. In particular, if F ∈
L2(Zn ⊕ Rd−n), then

‖F‖2 =
∑
l∈Zn

∫
Rd−n

|F (l, y)|2 dy.

The Hilbert space of square integrable vector functions denoted by

H = L2(D,L2(Zn ⊕ Rd−n))

consists of all vector valued measurable functions Φ : D → L2(Zn ⊕ Rd−n) whose norm

is given by:

‖Φ‖2 =

∫
D

‖Φ(x)‖2
L2(Zn⊕Rd−n)dx <∞.

The fact that the vector valued measurable function Φ : D → L2(Zn ⊕ Rd−n) is

measurable means that Φ−1(U) is measurable for any U open subset of L2(Zn ⊕ Rd−n).

This is equivalent to the property that ∀ε > 0,

{x ∈ D, ‖Φ(x)− Φ0‖2 < ε} (3.2)

is a measurable set for fixed Φ0 ∈ L2(Zn ⊕ Rd−n). Φ is weakly measurable if x 7→
〈Φ(x), F 〉 is a measurable scalar function for each F ∈ L2(Zn ⊕ Rd−n).

Lemma 3.2.2. The vector valued function Φ : D → L2(Zn⊕Rd−n) is measurable if and

only if it is weakly measurable.

Proof. Firstly, suppose that Φ measurable. Given any continuous function

g : L2(Zn ⊕ Rd−n)→ C,

17



we have that g−1(U) is open, where U is an open subset of C. Therefore,

(g ◦ Φ)−1(U) = {x ∈ D, g(Φ(x)) ∈ U} = {x ∈ D,Φ(x) ∈ g−1(U)}

is measurable since g−1(U) is open. Hence g ◦Φ is measurable. In particular if we define

g(Φ(x)) = 〈Φ(x), F 〉, for any F ∈ L2(Zn⊕Rd−n), then can conclude that x 7→ 〈Φ(x), F 〉
is a measurable scalar function.

To show the converse, choose an orthonormal basis {ej} in L2(Zn ⊕ Rd−n). Then

‖Φ(x)− Φ0‖2 =
∑
j∈N

|〈Φ(x)− Φ0, ej〉|2 =
∑
j∈N

|〈Φ(x), ej〉 − 〈Φ0, ej〉|2 . (3.3)

Assume Φ is weakly measurable then x 7→ 〈Φ(x), ej〉 is measurable. Therefore by using

the properties of measurable functions and (3.3), we have that ‖Φ(x)−Φ0‖2 is a measur-

able function. Hence, (3.2) is a measurable set. This means that Φ : D → L2(Zn⊕Rd−n)

is measurable.

Proposition 3.2.3. The mapping T : L2(Rd)→ H defined for f ∈ L2(Rd) by

T f : D → L2(Zn ⊕ Rd−n),

and

T f(x) =

{
f̂(x+ l, y)

}
(l,y)∈Zn⊕Rd−n

a.e x ∈ D,

is an isometric isomorphism between L2(Rd) and H. Furthermore, for any f ∈ L2(Rd),

k ∈ Zn, we have

T Tkf(x) = e−2πixkT f(x) for a.e x ∈ D. (3.4)

18



Proof.

‖T f‖2
H =

∫
D

‖T f(x)‖2
L2(Zn⊕Rd−n)dx

=

∫
D

∫
Zn⊕Rd−n

|f̂(x+ l, y)|2dhdx,

where dh := δZn ⊗ dy

Hence,

‖T f‖2
H =

∫
D

∑
l∈Zn

∫
Rd−n

|f̂(x+ l, y)|2dydx

=

∫
Rn

∫
Rd−n

|f̂(x, y)|2dydx

=

∫
Rd

|f̂(x,y)|2dxdy, (by Fubini / Tonelli)

= ‖f‖2
L2(Rd), (by Plancherel’s Identity).

Also, given any g ∈ H, we define f ∈ L2(Rd) by its Fourier transform which is given

by f̂(x + l, y) = g(x)|(l,y)∈Zn⊕Rd−n for a.e x ∈ D, so that T f(x) = g(x)|(l,y). Thus, the

mapping T is onto. Clearly, we also have that the mapping T is one-to-one. Therefore,

T is indeed an isometric isomorphism between L2(Rd) and H.

Definition 3.2.4. A range function is a mapping

J : D →
{
closed subspaces of L2(Zn ⊕ Rd−n)

}
.

For x ∈ D, let P (x) : L2(Zn⊕Rd−n)→ J(x) be the associated orthogonal projections

onto J(x). We say that J(x) is measurable if these projections are weakly operator

measurable i.e. x 7→ 〈P (x)a, b〉 is a measurable scalar function for each a, b ∈ L2(Zn ⊕
Rd−n).

For a given range function J(x), we define the subspace MJ of H as

MJ = {φ ∈ H : φ(x) ∈ J(x) for a.e. x ∈ D}. (3.5)

Lemma 3.2.5. Given any (φj)j∈N ⊂ MJ with φi → φ in H for i → ∞, there exists a

subsequence φjk such that φjk(x)→ φ(x) in L2(Zn ⊕ Rd−n) as jk →∞ for a.e x ∈ D.
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Proof. The fact that φj → φ in H means that ∀ε > 0, there exists J such that∫
D

‖Φj(x)− φ(x)‖2
L2(Zn⊕Rd−n)dx < ε j ≥ J.

Therefore there exist jk ∈ N such that∫
D

‖Φjk(x)− φ(x)‖2
L2(Zn⊕Rd−n)dx < 2−k.

⇒
∑
k∈N

∫
D

‖Φjk(x)− φ(x)‖2
L2(Zn⊕Rd−n)dx <

∑
k∈N

2−k.

⇒
∫
D

∑
k∈N

‖Φjk(x)− φ(x)‖2
L2(Zn⊕Rd−n)dx <∞.

⇒
∑
k∈N

‖Φjk(x)− φ(x)‖2
L2(Zn⊕Rd−n) <∞ for a.e x ∈ D.

⇒ lim
jk→∞

‖Φjk(x)− φ(x)‖2
L2(Zn⊕Rd−n) = 0 for a.e x ∈ D.

Remark 3.2.6. Suppose J(x) is a range function (not necessarily measurable). Then

MJ defined in (3.3) is a closed subspace of H.

Proof of Remark 3.2.6. Given any (φj)j∈N ⊂ MJ with φi → φ in H for i → ∞, we

will have to show that φ ∈MJ . Now, (φi) ⊂MJ means that φi(x) ∈ J(x) for a.e x ∈ D.

Therefore, by Lemma 3.2.5, for a.e x ∈ D, there exists a subsequence φij converging

pointwise to φ in L2(Zn ⊕ Rd−n); i.e φij(x)→ φ(x) in L2(Zn ⊕ Rd−n) as ij →∞ for a.e

x ∈ D. Since J(x) is closed, φ(x) ∈ J(x) for a.e. x ∈ D. Hence φ ∈ MJ . Therefore MJ

is closed.

Lemma 3.2.7. Let J(x) be a measurable range function with associated projection P (x).

Let P be the orthogonal projection of H onto MJ . Then for any φ ∈ H,

(Pφ)(x) = P (x)(φ(x)) for a.e x ∈ D. (3.6)

Proof. Define P ′ : H→ H by

P ′φ(x) = P (x)(φ(x)).

First all we show that P (x)(φ(x)) is measurable. We do this by showing that x 7→
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〈P (x)(φ(x)), F 〉 is measurable for any F ∈ L2(Zn ⊕ Rd−n). Consider an orthonormal

basis {ek}∞k=1 ∈ L2(Zn ⊕ Rd−n). Then we can write

φ(x) =
∑
k∈N

〈φ(x), ek〉ek,

so that

〈P (x)(φ(x)), F 〉 =

〈
P (x)

(∑
k∈N

〈φ(x), ek〉ek
)
, F

〉
=

〈∑
k∈N

P (x)

(
〈φ(x), ek〉ek

)
, F

〉
=
∑
k∈N

〈
P (x)

(
〈φ(x), ek〉ek

)
, F

〉
=
∑
k∈N

〈φ(x), ek〉〈P (x)ek, F 〉.

Since both φ(x) P (x) are measurable, we have that

x 7→ 〈φ(x), ek〉 and x 7→ 〈P (x)ek, F 〉

are measurable. Thus x 7→ 〈P (x)(φ(x)), F 〉 is measurable. Since ‖P (x)(φ(x))‖ ≤
‖φ(x)‖ < ∞, for φ ∈ H, we have that P (x)(φ(x)) belongs to H. Next, (P ′)2 = P ′

as P (x) has this property for a.e x ∈ D. Also, for any ψ ∈ H we have that

〈P ′φ, ψ〉 =

∫
D

〈P ′φ(x), ψ(x)〉dx

=

∫
D

〈P (x)(φ(x)), ψ(x)〉dx

=

∫
D

〈φ(x), P (x)ψ(x)〉dx

=

∫
D

〈φ(x),P ′ψ(x)〉dx

= 〈φ,P ′ψ〉.

Hence P ′ is also self adjoint. Therefore P ′ is an orthogonal projection whose range

we shall call M ′. If we consider any g ∈ M ′, then g(x) ∈ J(x) for a.e. x ∈ D, since

P (x) is the projection onto J(x). Therefore, we have that M ′ ⊂MJ . To prove the other
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containment, let us suppose that there exist a nonzero ψ ∈ MJ , which is orthogonal to

M ′. Then,

0 =

∫
D

〈P (x)(φ(x)), ψ(x)〉dx

=

∫
D

〈φ(x), P (x)ψ(x)〉dx,

for all φ ∈ H, which implies that P (x)ψ(x) = 0 for a.e x ∈ D. Therefore, ψ(x) =

P (x)ψ(x) = 0 for a.e x ∈ D which is a contradiction. Hence M ′ = MJ .

Corollary 3.2.8. Suppose MJ = MK for some measurable range functions J and K

with associated respective projections, P and Q. Then J(x) = K(x) for a.e x ∈ D.

Proposition 3.2.9. A closed subspace V ⊂ L2(Rd) is Zn × {0}d−n−shift invariant if

and only if

V = {f ∈ L2(Rd) : T f(x) ∈ JV (x) for a.e x ∈ D} (3.7)

where JV is a measurable range function. The correspondence between V and JV is

one-to-one under the convention that the range functions are identified if they are equal

almost everywhere. Furthermore, if

V = span{Tkf : k ∈ Zn × {0}d−n, f ∈ A} (3.8)

for some countable A ⊂ L2(R2), then for almost every x ∈ D,

JV (x) = span{T f(x) : f ∈ A}. (3.9)

Therefore by (3.4), V ⊂ L2(Rd) is shift invariant if and only if M := T V ⊂ H is a

closed subspace under multiplication by exponentials i.e. φ(·) ∈ M ⇒ e2πi(·)kφ(·) ∈ M
for all k ∈ Zn, where · represent a generic variable.

Proof of proposition 3.2.9. Suppose V = span{Tkf : k ∈ Zn, f ∈ A} is shift

invariant. Let M = T V and let JV (x) be given by (3.9). Consider any φ ∈ M . Then,

we can find some sequence (φi) converging to φ such that

T −1φi ∈ span{Tkf : f ∈ A, k ∈ Zn}.

Using (3.4), we see that φi(x) ∈ JV (x). By Remark 3.2.6, we conclude that φ ∈ MJ .

Hence M ⊂MJ .
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Take any ψ ∈MJ which is orthogonal to M. Then for any φ ∈ T V and k ∈ Zn, we have

that e−2πixkφ(x) ∈ T V. Hence,

0 =

∫
D

〈e−2πixkφ(x), ψ(x)〉dx

=

∫
D

e−2πixk〈φ(x), ψ(x)〉dx

Therefore, if we let F ∈ L1(D) to be defined by F (x) = 〈φ(x), ψ(x)〉 then all the Fourier

coefficients of F will be zero and thus F (x) = 0 for a.e x ∈ D. Hence ψ(x) ∈ JV (x)⊥ for

a.e x ∈ D. Since Ψ(x) ∈ JV (x), we conclude that Ψ(x) = 0 for a.e x ∈ D. Thus, there

is no non-zero ψ ∈MJ which is orthogonal to M, and therefore M = MJ .

We finally show that JV (x) given by (3.9) is measurable. Let P denote the orthogonal

projection of H onto M, and let P (x) be the associated orthogonal projection onto

JV (x). Take any ψ ∈ H, then (I−P)ψ is orthogonal to M. We conclude using the above

argument that ψ(x)− Pψ(x) ∈ JV (x)⊥ for a.e x ∈ D. Therefore,

P (x)(ψ(x)) = P (x)(Pψ(x)) = Pψ(x) for a.e x ∈ D (3.10)

as Pψ(x) ∈ JV (x) for a.e x ∈ D with M = MJ .

Take any function a = ψ(x) ∈ L2(Zn ⊕Rd−n). Since Pψ(x) is a measurable function by

(3.6), we have that x 7−→ P (x)a is measurable. Thus, JV is measurable.

Conversely, suppose JV (x) is a measurable range function, then by Remark 3.2.6,

V = T −1MJ

is a closed shift invariant space. By Lemma 3.2.7, it is easy to see that V satisfies (3.7).

The one-to-one correspondence between V and JV (x) is as a result of Corollary 3.2.8.

Theorem 3.2.10. Let A ⊂ L2(Rd) be countable.

1. The family {Tkf : k ∈ Zn, f ∈ A} is a frame for V with frame constants A, B

if and only if for a.e x ∈ D, {T f(x) : f ∈ A} ⊂ L2(Zn ⊕ Rd−n) is a frame for

JV (x) with positive constants A,B.

2. The family {Tkf : k ∈ Zn, f ∈ A} is a Riesz sequence in V with Riesz constants

A, B if and only if for a.e x ∈ D, {T f(x) : f ∈ A} ⊂ L2(Zn ⊕ Rd−n) is a Riesz
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sequence in JV (x), with Riesz constants A, B.

Lemma 3.2.11. Let A ⊂ L2(Rd) be countable and V as in (3.8). Then for all g ∈ V ,

we have that ∑
f∈A

∑
k∈Zn

|〈Tkf, g〉|2 =
∑
f∈A

∫
D

|〈T f(x), T g(x)〉|2dx.

Proof of Lemma 3.2.11. Let k ∈ Zn, f ∈ A and g ∈ V . Then, we have that, for a.e

x ∈ D,

〈Tkf, g〉 = 〈T Tkf, T g〉

=

∫
D

〈T Tkf(x), T g(x)〉dx

=

∫
D

〈e−2πixkT f(x), T g(x)〉dx by (3.4)

=

∫
D

e−2πixk〈T f(x), T g(x)〉dx

∴ |〈Tkf, g〉|2 = |
∫
D

e−2πixk〈T f(x), T g(x)〉dx|2

= |
∫
D

e−2πixkF (x)dx|2, where F (x) = 〈T f(x), T g(x)〉

= |F̂ (k)|2.

This implies that,

∑
k∈Zn

|〈Tkf, g〉|2 =
∑
k∈Zn

|F̂ (k)|2 =

∫
D

|F (x)|2dx by (Plancherel’s Identity).

Thus,

∑
k∈Zn

|〈Tkf, g〉|2 =

∫
D

|〈T f(x), T g(x)〉|2dx

and
∑
f∈A

∑
k∈Zn

|Tkf, g〉|2 =
∑
f∈A

∫
D

|〈Tkf(x), g(x)〉|2dx.

Proof of Theorem 3.2.10 (1). Suppose that {T f(x) : f ∈ A} ⊂ L2(Zn ⊕ Rd−n) is

a frame of JV (x) with frame constants A,B for a.e x ∈ D. Then for a.e x ∈ D, we have
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that,

A‖T g(x)‖2
JV
≤
∑
f∈A

|〈T f(x), T g(x)〉|2≤ B‖T g(x)‖2
JV

(3.11)

for any g ∈ V . By integrating (3.11) over D, we obtain

A

∫
D

‖T g(x)‖2
JV
dx ≤

∑
f∈A

∫
D

|〈T f(x), T g(x)〉|2dx ≤ B

∫
D

‖T g(x)‖2
JV
dx

By Proposition 3.2.9 and Lemma 3.2.11, we obtain

A‖g‖2
V ≤

∑
f∈A

∑
k∈Zn

|〈Tkf, g〉|2≤ B‖g‖2
V , (3.12)

which means that {Tkf : k ∈ Zn, f ∈ A} is a frame for V with frame constants A,B.

Conversely, suppose {Tkf : k ∈ Zn, f ∈ A} is a frame for V with frame constants A,B.

This means (3.12) holds. We want to show that {T f(x) : f ∈ A} ⊂ L2(Zn ⊕ Rd−n) is

a frame of JV (x) with frame constants A,B for a.e x ∈ D. Let {d1, d2, ...} be a dense

subset of L2(Zn ⊕ Rd−n). Then we are to show that,

A‖P (x)di‖2 ≤
∑
f∈A

|〈T f(x), P (x)di〉|2≤ B‖P (x)di‖2 (3.13)

for any i ∈ N, for a.e x ∈ D.

Suppose (3.13) fails, then there exists a measurable set S ⊂ D, with |S| > 0, such

that for some i0 ∈ N, either

1.
∑
f∈A

|〈T f(x), P (x)di0〉|2 > B‖P (x)di0‖2, or

2.
∑
f∈A

|〈T f(x), P (x)di0〉|2 < A‖P (x)di0‖2 for x ∈ S.
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Let g ∈ V be given by T g(x) = χS(x)P (x)di0 . If for example (1) happens, then

∑
f∈A

∑
k∈Zn

|〈Tkf, g〉|2 =
∑
f∈A

∫
D

|〈T f(x), T g(x)〉|2dx, by Lemma 3.2.9

=

∫
D

∑
f∈A

|〈T f(x), T g(x)〉|2dx

=

∫
S

∑
f∈A

|〈T f(x), P (x)di0〉|2dx

> B

∫
D

χS(x)‖T P (x)di0‖2

= B

∫
D

‖T g(x)‖2dx

= B‖g‖2
V , by Proposition 3.2.9.

which is a contradiction to (3.12). If (2) happens, we obtain a contradiction by a similar

computation.

Proof of Theorem 3.2.10 (2). Let C(k,f)∈Zn×A be a sequence with only finitely many

nonzero terms. Then by the Plancherel’s Theorem,

∑
f∈A

∑
k∈Zn

|C(k,f)|2 =

∫
D

∑
f∈A

|Cf (x)|2dx, where Cf (x) =
∑
k∈Zn

C(k,f)e
−2πikx, x ∈ D. (3.14)

Also see that ∥∥∥∥∥∑
f∈A

∑
k∈Zn

C(k,f)Tkf

∥∥∥∥∥
2

=

∥∥∥∥∥∑
f∈A

∑
k∈Zn

C(k,f)T Tkf

∥∥∥∥∥
2

=

∥∥∥∥∥∑
f∈A

∑
k∈Zn

C(k,f)e
−2πixkT f

∥∥∥∥∥
2

by (3.4)

=

∥∥∥∥∥∑
f∈A

Cf (x)T f

∥∥∥∥∥
2

=

∫
D

∥∥∥∥∥∑
f∈A

Cf (x)T f(x)

∥∥∥∥∥
2

dx
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i.e

∥∥∥∥∥∑
f∈A

∑
k∈Zn

C(k,f)Tkf

∥∥∥∥∥
2

=

∫
D

∥∥∥∥∥∑
f∈A

Cf (x)T f(x)

∥∥∥∥∥
2

dx (3.15)

Suppose {T f(x) : f ∈ A} forms a Riesz sequence for JV (x) for a.e x ∈ D with Riesz

constants A,B > 0. Then for a.e x ∈ D, we have that

A
∑
f∈A

|Cf (x)|2 ≤ ‖
∑
f∈A

Cf (x)T f(x)‖2 ≤ B
∑
f∈A

|Cf (x)|2 (3.16)

Integrating (3.16) over D, for a.e x ∈ D, we obtain

A

∫
D

∑
f∈A

|Cf (x)|2dx ≤
∫
D

‖
∑
f∈A

Cf (x)T f(x)‖2dx ≤ B

∫
D

∑
f∈A

|Cf (x)|2dx (3.17)

and using (3.14) and (3.15) gives

A
∑
f∈A

∑
k∈Zn

|C(k,f)|2 ≤ ‖
∑
f∈A

∑
k∈Zn

C(k,f)Tkf‖2 ≤ B
∑
f∈A

∑
k∈Zn

|C(k,f)|2 (3.18)

which means that {Tkf : k ∈ Zn, f ∈ A} is a Riesz sequence for V with Riesz constants

A,B.

Conversely suppose {Tkf : k ∈ Zn, f ∈ A} forms a Riesz sequence in V with Riesz

constants A,B > 0. Then by (3.14) and (3.15) , we have that (3.17) holds. Take any

family of functions {Mf ∈ L∞(D) : f ∈ A} with Mf = 0 except for finitely many f .

As a consequences of the Lusin’s Theorem, there exists sequence of trigonometric poly-

nomials, call it {C(i)
f }i∈N, such that‖C

(i)
f ‖∞ ≤ ‖Mf‖∞ for all i ∈ N, f ∈ A

C(i)
f (x)→Mf (x), i→∞, for a.e x ∈ D, f ∈ A.

(3.19)

By using (3.19) and the Lebesgue Dominated Convergence Theorem, (3.17) yields the

inequalities

A

∫
D

∑
f∈A

|Mf (x)|2dx ≤
∫
D

‖
∑
f∈A

Mf (x)T f(x)‖2dx ≤ B

∫
D

∑
f∈A

|Mf (x)|2dx (3.20)

Let (di)i∈N where di=(dif )f∈A be dense in `2(A). We can assume, for each i, dif = 0 for

finitely many f . The family {T f(x) : f ∈ A} forming a Riesz sequence for JV (x) with
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Riesz constants A,B for a.e x ∈ D means that,

A
∑
f∈A

|dif |2 ≤ ‖
∑
f∈A

difT f(x)‖2 ≤ B
∑
f∈A

|dif |2 for all i ∈ N for a.e x ∈ D. (3.21)

Suppose now that (3.21) fails, then there exists a measurable set S ⊂ D, with |S| > 0,

such that for some i0 ∈ N, either

1. ‖
∑
f∈A

diof T f(x)‖2 > B
∑
f∈A

|diof |
2, or

2. ‖
∑
f∈A

diof T f(x)‖2 < A
∑
f∈A

|diof |
2 for x ∈ S.

Consider the family of functions Mf = diof χS and assume for example that (1) holds

then,

∫
D

∥∥∥∥∥∑
f∈A

Mf (x)T f(x)

∥∥∥∥∥
2

dx =

∫
D

∥∥∥∥∥∑
f∈A

dioχS(x)T f(x)

∥∥∥∥∥
2

dx

> B

∫
S

∑
f∈A

|diof |
2dx

= B

∫
D

∑
f∈A

|diof χS(x)|2dx

= B

∫
D

∑
f∈A

|Mf (x)|2dx

which contradicts (3.20).

Remark 3.2.12. Theorem 3.2.10 reduces the problem of checking whether

{Tkf : k ∈ Zn × {0}d−n, f ∈ A}

is a frame, or a Riesz sequence in a subspace of L2(Rd) to analyzing the fibers in subspaces

of L2(Zn ⊕ Rd−n) parameterized by D, the base space.

3.3 The Gramian Concept

The goal of this section is achieved in Theorem 3.3.3, which is a corollary of Theorem

3.2.10.
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Consider the vectors {tj : j ∈ J} ⊂ L2(Zn ⊕ Rd−n), define the operator

K : `2(J)→ L2(Zn ⊕ Rd−n)

by K(C) =
∑
j∈J

Cjtj for {Cj}j∈J ∈ `2(J) and Cj = 0 except for finitely many j′s.

If K extends to bounded operator, then the adjoint of K, K∗ : L2(Zn ⊕ Rd−n)→ `2(J)

is given by K∗(a) = {〈a, tj〉}n∈J for a ∈ L2(Zn ⊕ Rd−n). This is because,

〈KC, a〉 = 〈
∑
j∈J

Cjtj, a〉

=
∑
j∈J

Cj〈tj, a〉

=
∑
j∈J

Cj〈a, tj〉

= 〈C, 〈a, tj〉〉

= 〈C, K∗a〉

Definition 3.3.1. For a.e x ∈ D, consider the vectors {tj : j ∈ J} ⊂ L2(Zj ⊕ Rd−n).

The Gramian associated with the collection {tj : j ∈ J},

G : `2(J)→ `2(J)

is defined by G = K∗K and the dual Gramian

G̃ : L2(Zn ⊕ Rd−n)→ L2(Zn ⊕ Rd−n)

is defined by G̃ = KK∗.

By letting {ej}∞j=1 be the canonical orthonormal basis for `2(J), the jk-th entry of the

matrix representation of G is

Gjk = 〈K∗Kek, ej〉

= 〈Kek, Kej〉

= 〈tk, tj〉 for j, k ∈ J.

Remark 3.3.2. If G as in the above is a bounded operator on `2(J) then it is self adjoint.

Also, if G̃ is a bounded operator on L2(Zn ⊕Rd−n) then G̃ is self adjoint. In summary,
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if either G, G̃,K or K∗ is bounded, then ‖G‖ = ‖G̃‖ = ‖K∗‖2 = ‖K‖2 <∞.

Theorem 3.3.3. Let A = {fj : j ∈ J} ⊂ L2(Rd). For fixed x ∈ D, let G(x) and

G̃(x) denote the Gramian and the dual Gramian of {T fj(x) : j ∈ J} ⊂ L2(Zn ⊕ Rd−n)

respectively. Then,

1. {Tkfj : k ∈ Zn, j ∈ J} is a frame with frame constants A,B for its cosed linear

span if and only if

A‖a‖2 ≤ 〈G̃(x)a, a〉 ≤ B‖a‖2 (3.22)

for a ∈ span{T fj(x) : j ∈ J}, for a.e x ∈ D.

2. {Tkfj : k ∈ Zn, j ∈ J} is a Riesz sequence with Riesz constants A,B if and only if

A‖c‖2 ≤ 〈G(x)c, c〉 ≤ B‖c‖2 (3.23)

for all c ∈ `2(J), for a.e x ∈ D.

Proof. 1. For fixed x ∈ D, let tj(x) = T fj(x). Then for any a ∈ span{T fj(x) : j ∈
J},

〈G̃(x)a, a〉 = 〈K∗a,K∗a〉

= 〈〈a, tj(x)〉, 〈a, tj(x)〉〉

=
∑
j∈J

〈a, tj(x)〉〈a, tj(x)〉

=
∑
j∈J

|〈a, tj(x)〉|2

Therefore, (3.22) can be written as

‖a‖2 ≤
∑
j∈J

|〈a, tj(x)〉|2 ≤ B‖a‖2 for a.e x ∈ D. (3.24)

By Theorem (3.2.10), we have that (3.24) is equivalent to {Tkfj : k ∈ Z, j ∈ J}
forming a frame with constants A,B.
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2. Also, for any c ∈ `2(J),

〈G(x)c, c〉 = 〈Kc,Kc〉

= ‖Kc‖2

= ‖
∑
j∈J

cjtj(x)‖2

Therefore, (3.23) can be written as

A‖c‖2 ≤ ‖
∑
j∈J

cjtj(x)‖2 ≤ B‖c‖2 for a.e x ∈ D. (3.25)

By Theorem (3.2.10), we have that (3.25) is equivalent to {Tkfj : k ∈ Z, j ∈ J}
forming a Riesz sequence with Riesz constants A,B.
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4 Main Results.

In this chapter, we will analyze in the special case where d = 2, the main problem which

was stated in Section 3.1 of Chapter 3. We will state and give proofs of the results on

Riesz sequences and frames in Section 4.2 and 4.3 respectively. In the last section of this

chapter, we will consider some examples of bounded sets which demonstrate the results

obtained on Riesz sequences and frames.

Notations and Settings:

Let E ⊂ R2 be a measurable set of finite Lebesgue measure and Λ ⊂ R2 be a discrete

set of frequencies. We associate with Λ the collection of exponentials

E(Λ) := {eλ : λ ∈ Λ}

where

eλ(x, y) := e2πiλ.(x,y) for λ ∈ Λ, (x, y) ∈ E,

and λ.(x, y) is the inner product of λ ∈ Λ and (x, y) ∈ E.
As a particular case of the theory developed in Chapter 3, we define the integer

translation on the x-axis by

Tkf(x, y) = f(x− k, y), k ∈ Z, f ∈ L2(R2),

and

T f(x) =

{
f̂(x+ l, y)

}
(l,y)∈Z⊕R

for a.e x ∈ [0, 1].

For each x ∈ [0, 1], we define the subset of Z⊕ R, F(E)x, by

F(E)x := {(l, y) ∈ Z⊕ R : (x+ l, y) ∈ E}.

Note that, If we let

VE := {f ∈ L2(R2) : f̂ ∈ L2(E)},
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VE is invariant by any shift in R2, in particular, by the shifts Tk, k ∈ Z, defined above.

Proposition 4.0.1. Let E ⊂ R2 be a measurable set of finite Lebesgue measure. Then

the range function of VE is characterised as

JV (x) := {T f(x) ∈ L2(Z⊕ R) : supp(T f(x)) ⊆ F(E)x, f ∈ VE}.

Proof. For each x ∈ [0, 1], we set

Kx = {T f(x) ∈ L2(Z⊕ R) : supp(T f(x)) ⊆ F(E)x, f ∈ VE}.

Let g ∈ Kx, and define

f(t, y) =
∑
l∈Z

ψl(t− x)g(l, y)χE(t, y),

where

ψl(x) =



1, if x = l

x, if l < x ≤ l + 1
2

−x, if l − 1
2
≤ x < l

0, otherwise

so that,

f(x+ l, y) = g(l, y)χE(x+ l, y).

If we define f̃ as f in E, and zero in R2 \ E, then by using the definition of VE, we

have that ˇ̃f ∈ VE. Hence, T ˇ̃f(x) = f(x + l, y) = g(l, y) ∈ JV (x) . This shows that

Kx ⊆ JV (x).

Conversely suppose that g ∈ JV (x). Then g ∈ span{T f(x) : f ∈ VE}. This implies that

supp(g) ⊆ F(E)x, thus g ∈ Kx. Therefore, JV (x) ⊆ Kx.

4.1 The connection between Section 3.1 and Section

3.2

In this section, we give a corollary to Theorem 3.2.10 in the special case where d = 2

and n = 1, using VE and JV (x) defined above, as the shift invariant space and range

function respectively.
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Theorem 4.1.1. Let E ⊂ R2 be a measurable set of finite Lebesgue measure. Let (aj)j∈J

and (bj)j∈J be two sequences of real numbers and define

Λ = {(aj + k, bj) ∈ R2 : k ∈ Z, j ∈ J}.

Then, the following holds.

1. The set E(Λ) forms a Riesz sequence of L2(E) with Riesz constants A,B > 0 if

and only if for a.e x ∈ [0, 1] the set {e2πiaj le2πibjyχE(x+ l, y) : j ∈ J} ⊂ L2(Z⊕R)

also forms a Riesz sequence in JV (x) with Riesz constants A,B > 0 .

2. The set E(Λ) forms a frame of L2(E) with frame constants A,B > 0 if and only if

for a.e x ∈ [0, 1] the set {e2πiaj le2πibjyχE(x+ l, y) : j ∈ J} ⊂ L2(Z⊕R) also forms

a frame of JV (x) with frame constants A,B > 0.

Proof. Let fj ∈ VE, j ∈ J be defined by

f̂j = e(aj ,bj)χE , j ∈ J, (4.1)

and note that

E(Λ) = {ekf̂j : k ∈ Z, j ∈ J}.

By (3.4) in Chapter 3, we have that ekf̂j = T̂kfj. Hence, the fact that

{ekf̂j : k ∈ Z, j ∈ J}

forms a Riesz sequence (resp. frame) of L2(E) is equivalent to the collection

{Tkfj : k ∈ Z, j ∈ J}

being a Riesz sequence (resp. frame) for VE. By Theorem 3.2.10, the latter is equivalent

to

{T fj(x) : j ∈ J}

forming a Riesz sequence (resp. frame) for JV (x) for a.e x ∈ [0, 1]. Also,

T f(x) = {f̂(x+ l, y)}(l,y)∈Z⊕R
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and by using (4.1), we have that

f̂(x+ l, y) = e2πi(ajx+aj l)e2πibjyχE(x+ l, y)

= e2πiajxe2πiaj le2πibjyχE(x+ l, y).

Therefore the set E(Λ) forms a Riesz sequence (resp. frame) of L2(E) with Riesz (resp.

frame) constants A,B > 0 if and only if, for a.e x ∈ [0, 1], the sequence

{e2πiaj le2πibjyχE(x+ l, y) : j ∈ J}

also forms a Riesz sequence (resp. frame) of JV (x) with Riesz (resp. frame) constants

A,B > 0 .

4.2 Results on Riesz Sequences of Exponentials

Definition 4.2.1. Consider a measurable set S ⊂ Rd, and let w : S → [0,∞) be a

measurable function. The norm on the w-weighted L2 space on the set S, L2
w(S) is

defined as

‖f‖2
L2
w(S) =

∫
S

|f(x)|2w(x)dx <∞.

Theorem 4.2.2. Let E ⊂ R2 be a measurable set of finite positive measure and for some

(ajo , bjo) ∈ R2 let Λ = {(ajo + k, bjo) ∈ R2 : k ∈ Z, jo ∈ J} then the set E(Λ) is a Riesz

sequence L2(E) with constants A,B > 0 if and only if

A ≤
∑
l∈Z

∫
R
χE(x+ l, y)dy ≤ B for a.e x ∈ [0, 1].

The theorem below is a special case where (aj)j∈J ⊂ R as given in Theorem 4.1.1, are

chosen to be zero.

Theorem 4.2.3. Let E ⊂ R2 be a measurable set of finite Lebesgue measure. Let (bj)j∈J

be a sequence of real numbers and define

Λ = {(k, bj) ∈ R2 : k ∈ Z, j ∈ J}.

Then the following statements are equivalent:

(a) E(Λ) forms a Riesz sequence in L2(E) with Riesz constants A,B > 0 .
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(b) For a.e x ∈ [0, 1],

(i)

A ≤
∑
l∈Z

∫
R
χE(x+ l, y)dy ≤ B, and

(ii) the set {e2πibjy : j ∈ J} is a Riesz sequence in L2
Fx

(Ex) with uniform Riesz

constants A,B > 0, where for each x ∈ [0, 1],

Ex := {y ∈ R :
∑
l∈Z

χE(x+ l, y) ≥ 1},

and

Fx(y) =
∑
l∈Z

χE(x+ l, y), for y ∈ Ex.

Proof. Let {Cj}j∈J be any sequence with finitely many non-zero terms and observe

that, ∥∥∥∥∥∑
j∈J

Cje2πibjy

∥∥∥∥∥
2

L2
Fx

(Ex)

=

∫
Ex

∣∣∣∣∣∑
j∈J

Cje2πibjy

∣∣∣∣∣
2∑
l∈Z

χE(x+ l, y)dy

=
∑
l∈Z

∫
Ex

∣∣∣∣∣∑
j∈J

Cje2πibjy

∣∣∣∣∣
2

χE(x+ l, y)dy

=
∑
l∈Z

∫
Ex

∣∣∣∣∣∑
j∈J

Cje2πibjyχE(x+ l, y)

∣∣∣∣∣
2

dy

=

∥∥∥∥∥∑
j∈J

Cje2πibjyχE(x+ l, y)

∥∥∥∥∥
2

JV (x)

that is, ∥∥∥∥∥∑
j∈J

Cje2πibjy

∥∥∥∥∥
2

L2
Fx

(Ex)

=

∥∥∥∥∥∑
j∈J

Cje2πibjyχE(x+ l, y)

∥∥∥∥∥
2

JV (x)

. (4.2)

Assume (a). Then (b)(i) holds by Theorem 4.2.2. By Theorem 4.1.1, we have that (a)

implies

{e2πibjyχE(x+ l, y) : j ∈ J}

forming a Riesz sequence in JV (x) with uniform Riesz constants A,B > 0, for a.e

x ∈ [0, 1]. Using (4.2), the latter statement is equivalent to (b)(ii).
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Conversely, assume that (b) holds. Then by using (4.2), we have that (b)(ii) is equiv-

alent to the collection

{e2πibjyχE(x+ l, y) : j ∈ J}

forming a Riesz sequence in JV (x) with uniform Riesz constants A,B > 0, for a.e

x ∈ [0, 1]. The latter statement is equivalent to (a) by Theorem 4.1.1.

Remark 4.2.4. If E ⊂ R2 is bounded, or more generally, if the projection of E onto

the x− axis is bounded, then∑
l∈Z

χE(x+ l, y) ≤M for a.e y ∈ R

for some M ∈ N and we have∥∥∥∥∥∑
j∈J

Cje2πibjy

∥∥∥∥∥
2

L2(Ex)

≤

∥∥∥∥∥∑
j∈J

Cje2πibjy

∥∥∥∥∥
2

L2
Fx

(Ex)

≤ M

∥∥∥∥∥∑
j∈J

Cje2πibjy

∥∥∥∥∥
2

L2(Ex)

.

The above Remark leads to the an immediate corollary of Theorem 4.2.3.

Corollary 4.2.5. Under the previous assumptions, if E is bounded, or more generally,

if the projection of E onto the x− axis is bounded, the set E(Λ) forms a Riesz sequence

in L2(E) with Riesz constants A,B > 0, if and only if for a.e x ∈ [0, 1], the set {e2πibjy :

j ∈ J} is a Riesz sequence in L2(Ex), with uniform Riesz constants A,B > 0, and

A ≤ |Ex| ≤ B, where Ex is as given in Theorem 4.2.3.

In the theorem below, we give a condition for choosing the sequence (aj)j∈J ⊂ R, such

that E(Λ̃) as defined in Theorem 4.2.6 forms a Riesz sequence in L2(E) given that

(bj)j∈J ⊂ R is chosen so that E(Λ) defined in Theorem 4.2.3 forms a Riesz sequence in

L2(E).

Theorem 4.2.6 (Riesz sequence perturbation result). Let E ⊂ R2 be a measurable

set of finite Lebesgue measure. Define

D(x) = {l ∈ Z,
∫
R
χE(x+ l, y)dy > 0}.

Let (bj)j∈J be a collection of real numbers and suppose that the collection E(Λ) forms a

37



Riesz sequence in L2(E) with Riesz constants A,B > 0 where

Λ = {(k, bj) ∈ R2 : k ∈ Z, j ∈ J}.

Let (aj)j∈J be another collection of real numbers in [0, 1) such that

sup
x∈[0,1]

sup
j∈J

∑
l∈D(x)

|1− e2πiaj l|2 < A

2B + 2
, (4.3)

then the set E(Λ̃) forms a Riesz sequence in L2(E) with Riesz constants A
2B+2

, and
AB
B+1

+ 2B where Λ̃ = {(aj + k, bj) ∈ R2 : k ∈ Z, j ∈ J}.

Proof. By Theorem 4.1.1, E(Λ) forms a Riesz sequence in L2(E) with Riesz constants

A,B > 0 if and only if {e2πibjyχE(x+ l, y) : j ∈ J} forms a Riesz sequence in JV (x) with

uniform Riesz constants A,B > 0. The latter means that,

A
∑
j∈J

|cj|2 ≤

∥∥∥∥∥∑
j∈J

cje
2πibjyχE(x+ l, y)

∥∥∥∥∥
2

Jv(x)

≤ B
∑
j∈J

|cj|2, (4.4)

for any {cj}j∈J ∈ `2(J).

Observe that, using the inequality, |a+ b|2 ≤ 2|a|2 + 2|b|2, for a, b ∈ C, we have∥∥∥∥∥∑
j∈J

cje
2πiaj le2πibjyχE(x+ l, y)

∥∥∥∥∥
2

Jv(x)

=
∑
l∈Z

∫
Ex

∣∣∣∣∣∑
j∈J

cje
2πiaj le2πibjyχE(x+ l, y)

∣∣∣∣∣
2

dy

=
∑
l∈Z

∫
Ex

∣∣∣∣∣∑
j∈J

(
cje

2πiaj le2πibjy − cje2πibjy + cje
2πibjy

)
χE(x+ l, y)

∣∣∣∣∣
2

dy

≤ 2
∑
l∈Z

∫
Ex

∣∣∣∣∣∑
j∈J

cj

(
e2πiaj l − 1

)
e2πibjyχE(x+ l, y)

∣∣∣∣∣
2

dy

+2
∑
l∈Z

∫
Ex

∣∣∣∣∣∑
j∈J

cje
2πibjyχE(x+ l, y)

∣∣∣∣∣
2

dy

= 2
∑
l∈Z

∫
Ex

∣∣∣∣∣∑
j∈J

cj

(
e2πiaj l − 1

)
e2πibjyχE(x+ l, y)

∣∣∣∣∣
2

dy

+2

∥∥∥∥∥∑
j∈J

cje
2πibjyχE(x+ l, y)

∥∥∥∥∥
2

Jv(x)
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Further observe that, the term

2
∑
l∈Z

∫
Ex

|
∑
j∈J

cj(e
2πiaj l − 1)e2πibjy|2χE(x+ l, y)dy

= 2
∑
l∈D(x)

∫
Ex

|
∑
j∈J

cj(e
2πiaj l − 1)e2πibjy|2χE(x+ l, y)dy

≤ 2
∑
l∈D(x)

∫
Ex

|
∑
j∈J

cj(e
2πiaj l − 1)e2πibjy|2

∑
l′∈Z

χE(x+ l′, y)dy

= 2
∑
l∈D(x)

∑
l′∈Z

∫
Ex

|
∑
j∈J

cj(e
2πiaj l − 1)e2πibjy|2χE(x+ l′, y)dy

= 2
∑
l∈D(x)

∑
l′∈Z

∫
Ex

∣∣∣∣∣∑
j∈J

cj(e
2πiaj l − 1)e2πibjyχE(x+ l′, y)

∣∣∣∣∣
2

dy

= 2
∑
l∈D(x)

∥∥∥∥∥∑
j∈J

cj(e
2πiaj l − 1)e2πibjyχE(x+ l′, y)

∥∥∥∥∥
2

≤ 2B
∑
l∈D(x)

∑
j∈J

|cj|2|e2πiaj l − 1|2, (by the initial hypothesis)

= 2B
∑
j∈J

|cj|2
( ∑
l∈D(x)

|e2πiaj l − 1|2
)

≤ 2B

(
sup
j∈J

∑
l∈D(x)

|1− e2πiaj l|2
)∑

j∈J

|cj|2

< 2B

(
A

2B + 2

)∑
j∈J

|cj|2 by (4.3)

=
BA

B + 1

∑
j∈J

|cj|2.

That is

2
∑
l∈Z

∫
Ex

∣∣∣∣∣∑
j∈J

cj(e
2πiaj l − 1)e2πibjyχE(x+ l, y)

∣∣∣∣∣
2

dy ≤ BA

B + 1

∑
j∈J

|cj|2 (4.5)
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Therefore, ∥∥∥∥∥∑
j∈J

cje
2πiaj le2πibjyχE(x+ l, y)

∥∥∥∥∥
2

JV (x)

≤
(

BA

B + 1

)∑
j∈J

|cj|2 + 2

∥∥∥∥∥∑
j∈J

cje
2πibjyχE(x+ l, y)

∥∥∥∥∥
2

JV (x)

.

That is, ∥∥∥∥∥∑
j∈J

cje
2πiaj le2πibjyχE(x+ l, y)

∥∥∥∥∥
2

JV (x)

≤ BA

B + 1

∑
j∈J

|cj|2 + 2B
∑
j∈J

|cj|2,

so that ∥∥∥∥∥∑
j∈J

cje
2πiaj le2πibjyχE(x+ l, y)

∥∥∥∥∥
2

JV (x)

≤
(

BA

B + 1
+ 2B

)∑
j∈J

|cj|2. (4.6)

To prove the other inequality, observe that

A
∑
j∈J

|cj|2 ≤

∥∥∥∥∥∑
j∈J

cje
2πibjyχE(x+ l, y)

∥∥∥∥∥
2

JV (x)

=
∑
l∈Z

∫
Ex

∣∣∣∣∣∑
j∈J

cje
2πibjyχE(x+ l, y)

∣∣∣∣∣
2

dy

=
∑
l∈Z

∫
Ex

∣∣∣∣∣∑
j∈J

(
cje

2πibjy − cje2πiaj le2πibjy + cje
2πiaj le2πibjy

)
χE(x+ l, y)

∣∣∣∣∣
2

dy

≤ 2
∑
l∈Z

∫
Ex

∣∣∣∣∣∑
j∈J

cj

(
1− e2πiaj l

)
e2πibjyχE(x+ l, y)

∣∣∣∣∣
2

dy

+2
∑
l∈Z

∫
Ex

∣∣∣∣∣∑
j∈J

cje
2πiaj le2πibjyχE(x+ l, y)

∣∣∣∣∣
2

dy

That is,

A
∑
j∈J

|cj|2≤ 2
∑
l∈Z

∫
Ex

∣∣∣∣∣∑
j∈J

cj

(
1− e2πiaj l

)
e2πibjyχE(x+ l, y)

∣∣∣∣∣
2

dy

+2

∥∥∥∥∥∑
j∈J

cje
2πiaj le2πibjyχE(x+ l, y)

∥∥∥∥∥
2

JV (x)

40



and by (4.5), we have that

A
∑
j∈J

|cj|2 ≤
AB

B + 1

∑
j∈J

|cj|2 + 2

∥∥∥∥∥∑
j∈J

cje
2πiaj le2πibjyχE(x+ l, y)

∥∥∥∥∥
2

JV (x)

so that, (
A

2B + 2

)∑
j∈J

|cj|2 ≤

∥∥∥∥∥∑
j∈J

cje
2πiaj le2πibjyχE(x+ l, y)

∥∥∥∥∥
2

JV (x)

(4.7)

Finally, by combining (4.6) and (4.7), we have that

(
A

2B + 2

)∑
j∈J

|cj|2 ≤

∥∥∥∥∥∑
j∈J

cje
2πiaj le2πibjyχE(x+ l, y)

∥∥∥∥∥
2

JV (x)

≤
(

AB

B + 1
+ 2B

)∑
j∈J

|cj|2

Thus {e2πiaj le2πibjyχE(x + l, y) : j ∈ J} is a Riesz sequence in JV (x) for a.e x ∈ [0, 1]

with uniform Riesz constants A
2B+2

, and AB
B+1

+ 2B, and again by using Theorem 4.1.1,

we conclude that the set E(Λ̃) forms a Riesz sequence in L2(E) with Riesz constants
A

2B+2
, and AB

B+1
+ 2B.

Remark 4.2.7. Note that if E ⊂ R2 is bounded, or more generally, if the projection of

E onto the x − axis is bounded, the set D(x) above is contained in a finite set D ⊂ Z.
Since the function x 7→

∑
l∈D

|e2πixl − 1|2 is continuous and vanishes on Z, there exists a

δ > 0 such that ∑
l∈D

|e2πixl − 1|2 < A

2B + 2

if x ∈ [0, 1) and each x satisfies |x| < δ or |x − 1| < δ. Thus the condition (4.3) will

hold if we choose aj, j ∈ J , with |aj| < δ or |aj − 1| < δ.

4.3 Results on Frames of Exponentials

Theorem 4.3.1. Let E ⊂ R2 be a measurable set of finite Lebesgue measure. Let (bj)j∈J

be a sequence of real numbers and define

Λ = {(k, bj) ∈ R2 : k ∈ Z, j ∈ J}.
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Suppose E(Λ) is a frame for L2(E) with frame constants A,B > 0. Then, we have the

following: For a.e x ∈ [0, 1],∑
l∈Z

χE(x+ l, y) ≤ 1, for a.e y ∈ R. (4.8)

Proof. Assume that E(Λ) is a frame for L2(E) with frame constants A,B, and suppose

that (4.8) fails. Then there exists some positive measurable sets S ⊂ [0, 1] × R, such

that, ∑
l∈Z

χE(x+ l, y) > 1, for all (x, y) ∈ S. (4.9)

This means that, there exist distinct integers l1, and l2 such that

χE(x+ l1, y).χE(x+ l2, y) = 1, for all (x, y) ∈ F,

where F is some measurable subset of S, otherwise, for any distinct integers l1, and l2 ,

χE(x+ l1, y).χE(x+ l2, y) = 0, for a.e (x, y) ∈ S.

That is,

χE(x+ l1, y) = 1, and χE(x+ l2, y) = 0,

or

χE(x+ l1, y) = 0, and χE(x+ l2, y) = 1 for a.e (x, y) ∈ S,

which is a contradiction to (4.9). Consider the function, g0 ∈ JV (x), defined by

g0(l, y) =


χF (x, y), if l = l1

−χF (x, y), if l = l2

0, otherwise.
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Then for all (x, y) ∈ F , we have have that,

∑
j∈J

∣∣∣∣∣
〈
g0, e

2πibjyχE(x+ l, y)

〉
JV (x)

∣∣∣∣∣
2

=
∑
j∈J

∣∣∣∣∣∑
l∈Z

∫
R
g0(l, y)e−2πibjyχE(x+ l, y)dy

∣∣∣∣∣
2

=
∑
j∈J

∣∣∣∣∣
∫
R
e−2πibjy

(∑
l∈Z

g0(l, y)χE(x+ l, y)

)
dy

∣∣∣∣∣
2

= 0.

Thus, for a.e x ∈ [0, 1], {e2πibjyχE(x + l, y) : j ∈ J} is not complete in JV (x), hence

not a frame for JV (x). Therefore, by Theorem 4.1.1, the collection E(Λ) is not a frame

for L2(E), which contradicts our assumption. Hence, we conclude that, if the collection

E(Λ) forms a frame of L2(E) with frame constants A,B > 0, then, for a.e x ∈ [0, 1],

(4.8) holds.

The theorem below is a special case where (aj)j∈J ⊂ R as given in Theorem 4.1.1, are

chosen to be zero.

Theorem 4.3.2. Let E ⊂ R2 be a measurable set of finite Lebesgue measure. Let (bj)j∈J

be a sequence of real numbers and define

Λ = {(k, bj) ∈ R2 : k ∈ Z, j ∈ J}.

Then the following statements are equivalent:

(a) The set E(Λ) forms a frame of L2(E) with frame constants A,B > 0.

(b) (i) For a.e x ∈ [0, 1],
∑
l∈Z

χE(x+ l, y) ≤ 1 for a.e y ∈ R.

(ii) The collection {e2πibjy : j ∈ J} forms a frame for L2(Ex) with uniform frame

constants A,B > 0 where Ex := {y ∈ R :
∑
l∈Z

χE(x+ l, y) = 1}.

Proof. Assume (a) holds. Then by Theorem 4.3.1, we have that (b)(i) holds. Also, if

(a) holds, by Theorem 4.1.1, the collection

{e2πibjyχE(x+ l, y) : j ∈ J}
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forms a frame for JV (x) with uniform frame constants A,B > 0 for a.e x ∈ [0, 1]. The

latter means that, for a.e x ∈ [0, 1],

A||g||2 ≤
∑
j∈J

∣∣〈g, e2πibjyχE(x+ l, y)〉
∣∣2 ≤ B||g||2, for every g ∈ JV (x). (4.10)

Then, for a.e x ∈ [0, 1], we have

∑
j∈J

∣∣∣∣∣
〈
g, e2πibjyχE(x+ l, y)

〉
JV (x)

∣∣∣∣∣
2

=
∑
j∈J

∣∣∣∣∣∑
l∈Z

∫
Ex

g(l, y)e−2πibjyχE(x+ l, y)dy

∣∣∣∣∣
2

=
∑
j∈J

∣∣∣∣∣
∫
Ex

(∑
l∈Z

g(l, y)χE(x+ l, y)

)
e−2πibjydy

∣∣∣∣∣
2

=
∑
j∈J

∣∣∣∣∫
Ex

h(y)e−2πibjydy

∣∣∣∣2

=
∑
j∈J

∣∣∣∣∣
〈
h, e2πibjy

〉
L2(Ex)

∣∣∣∣∣
2

,

where

h(y) =
∑
l∈Z

g(l, y)χE(x+ l, y).

That is,

∑
j∈J

∣∣∣∣∣
〈
h, e2πibjy

〉
L2(Ex)

∣∣∣∣∣
2

=
∑
j∈J

∣∣∣∣∣
〈
g, e2πibjyχE(x+ l, y)

〉
JV (x)

∣∣∣∣∣
2

, for a.e x ∈ [0, 1].

(4.11)

We also see that for a.e x ∈ [0, 1],

‖h‖2
L2(Ex) =

∫
Ex

∣∣∣∣∣∑
l∈Z

g(l, y)χE(x+ l, y)

∣∣∣∣∣
2

dy (4.12)

=

∫
Ex

∑
l∈Z

|g(l, y)|2 dy, (by using (b)(i)) (4.13)

= ||g||2JV (x). (4.14)
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By (4.11), and (4.14), we see that (4.10) can be written as

A||h||2 ≤
∑
j∈J

|〈h, e2πibjy〉|2 ≤ B||h||2, for a.e x ∈ [0, 1], (4.15)

for h ∈ L2(Ex). Hence (ii)(b) also holds.

Conversely, suppose that (b)(ii) holds, then (4.15) holds. In addition, if (b)(i) holds,

the (4.15) is equivalent to (4.10) by (4.14) and (4.11). Now, by using Theorem 4.1.1, we

have that (4.10) implies (a).

In the theorem below, we give a condition for choosing the sequence (aj)j∈J ⊂ R, such

that E(Λ̃) as defined in Theorem 4.3.3 forms a frame for L2(E) given that (bj)j∈J ⊂ R
is chosen so that E(Λ) defined in Theorem 4.3.2 forms a frame for L2(E).

Theorem 4.3.3 (Frame perturbation result). Let E ⊂ R2 be a measurable set of

finite Lebesgue measure. Define

D(x) = {l ∈ Z,
∫
R
χE(x+ l, y)dy > 0}.

Let (bj)j∈J be a collection of real numbers and suppose that the collection E(Λ) forms a

frame for L2(E) with frame constants A,B > 0 where

Λ = {(k, bj) ∈ R2 : k ∈ Z, j ∈ J}.

Let (aj)j∈J be another collection of real numbers in [0, 1) such that

sup
x∈[0,1]

sup
j∈J

∑
l∈D(x)

|1− e−2πiaj l|2 < A

2B + 2
, (4.16)

then the set E(Λ̃) forms a frame L2(E) with frame constants A
2B+2

, and AB
B+1

+ 2B where

Λ̃ = {(aj + k, bj) ∈ R2 : k ∈ Z, j ∈ J}.

Proof. By Theorem 4.1.1, E(Λ) forms a frame for L2(E) with frame constants A,B > 0

if and only if {e2πibjyχE(x + l, y) : j ∈ J} forms a frame for JV (x) with uniform frame
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constants A,B > 0. The latter means that,

A||g||2 ≤
∑
j∈J

∣∣∣∣∣
〈
g, e2πibjyχE(x+ l, y)

〉
JV (x)

∣∣∣∣∣
2

≤ B||g||2, a.e x ∈ [0, 1] (4.17)

for every g ∈ JV (x). Observe that, using the inequality, |a+ b|2 ≤ 2|a|2 +2|b|2, for a, b ∈
C, we have

∑
j∈J

∣∣∣∣∣
〈
g, e2πiaj le2πibjyχE(x+ l, y)

〉
JV (x)

∣∣∣∣∣
2

=
∑
j∈J

∣∣∣∣∣∑
l∈Z

∫
Ex

g(l, y)e−2πiaj le−2πibjyχE(x+ l, y)dy

∣∣∣∣∣
2

=
∑
j∈J

∣∣∣∣∣∑
l∈Z

∫
Ex

(
e−2πiaj l − 1 + 1

)
g(l, y)e−2πibjyχE(x+ l, y)dy

∣∣∣∣∣
2

≤ 2
∑
j∈J

∣∣∣∣∣∑
l∈Z

∫
Ex

(e−2πiaj l − 1)g(l, y)e−2πibj lχE(x+ l, y)dy

∣∣∣∣∣
2

+2
∑
j∈J

∣∣∣∣∣∑
l∈Z

∫
Ex

g(l, y)e−2πibj lχE(x+ l, y)dy

∣∣∣∣∣
2

.

Note that, since E(Λ) is a frame for L2(E), for a.e x ∈ [0, 1], we have the inequality∑
l∈Z

χE(x+ l, y) ≤ 1, for a.e y ∈ R.

Therefore, we write the set Ex := {y ∈ R :
∑
l∈Z

χE(x+ l, y) = 1} as disjoint union of

El
x := {y ∈ R : χE(x+ l, y) = 1}.

Using this fact together with the Cauchy−Schwarz inequality, we obtain
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2
∑
j∈J

∣∣∣∣∣∑
l∈Z

∫
Ex

(e−2πiaj l − 1)g(l, y)e−2πibj lχE(x+ l, y)dy

∣∣∣∣∣
2

= 2
∑
j∈J

∣∣∣∣∣∣
∑
l∈D(x)

∫
Ex

(e−2πiaj l − 1)g(l, y)e−2πibj lχE(x+ l, y)dy

∣∣∣∣∣∣
2

= 2
∑
j∈J

∣∣∣∣∣∣
∑
l∈D(x)

(e−2πiaj l − 1)

∫
Ex

g(l, y)e−2πibjyχE(x+ l, y)dy

∣∣∣∣∣∣
2

≤ 2
∑
j∈J

( ∑
l∈D(x)

∣∣e−2πiaj l − 1
∣∣2)( ∑

l∈D(x)

∣∣∣∣∫
Ex

g(l, y)e−2πibjyχE(x+ l, y)dy

∣∣∣∣2)

≤ 2 sup
j∈J

( ∑
l∈D(x)

∣∣e−2πiaj l − 1
∣∣2)∑

j∈J

∑
l∈D(x)

∣∣∣∣∫
Ex

g(l, y)e−2πibjyχE(x+ l, y)dy

∣∣∣∣2

= 2 sup
j∈J

( ∑
l∈D(x)

∣∣e−2πiaj l − 1
∣∣2) ∑

l∈D(x)

∑
j∈J

∣∣∣∣∣∑
k∈Z

∫
El

x

g(k, y)ψl(k)e−2πibjyχE(x+ k, y)dy

∣∣∣∣∣
2

,

where ψl(k) := δl(k)χE(x+ k, y).

Hence,

2 sup
j∈J

( ∑
l∈D(x)

∣∣e−2πiaj l − 1
∣∣2) ∑

l∈D(x)

∑
j∈J

∣∣∣∣∣∑
k∈Z

∫
El

x

g(k, y)ψl(k)e−2πibjyχE(x+ k, y)dy

∣∣∣∣∣
2

= 2 sup
j∈J

( ∑
l∈D(x)

∣∣e−2πiaj l − 1
∣∣2) ∑

l∈D(x)

∑
j∈J

∣∣∣∣∣
〈
gψl, e

2πibjyχE(x+ k, y)

〉
JV (x)

∣∣∣∣∣
2

≤
(

2AB
2B+2

) ∑
l∈D(x)

‖gψl‖2
JV (x) by (4.15) and (4.16)

=

(
2AB
2B+2

)
‖g‖2

JV (x).

That is,

2
∑
j∈J

∣∣∣∣∣∑
l∈Z

∫
Ex

(e−2πiaj l − 1)g(l, y)e−2πibj lχE(x+ l, y)dy

∣∣∣∣∣
2

≤
(

2AB

2B + 2

)
‖g‖2

JV (x). (4.18)
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Therefore,

∑
j∈J

∣∣∣∣∣
〈
g, e2πiaj le2πibjyχE(x+ l, y)

〉
JV (x)

∣∣∣∣∣
2

≤
(

AB

B + 1
+B

)
‖g‖2

JV (x). (4.19)

To prove the other inequality, again see that

A||g||2 ≤
∑
j∈J

∣∣∣∣∣
〈
g, e2πibjyχE(x+ l, y)

〉
JV (x)

∣∣∣∣∣
2

=
∑
j∈J

∣∣∣∣∣∑
l∈Z

∫
Ex

g(l, y)e−2πibjyχE(x+ l, y)dy

∣∣∣∣∣
2

=
∑
j∈J

∣∣∣∣∣∑
l∈Z

∫
Ex

(
1− e−2πiaj l + e−2πiaj l

)
g(l, y)e−2πibjyχE(x+ l, y)dy

∣∣∣∣∣
2

≤ 2
∑
j∈J

∣∣∣∣∣∑
l∈Z

∫
Ex

(
1− e−2πiaj l

)
g(l, y)e−2πibjyχE(x+ l, y)dy

∣∣∣∣∣
2

+2
∑
j∈J

∣∣∣∣∣∑
l∈Z

∫
Ex

g(l, y)e−2πiaj le−2πibjyχE(x+ l, y)dy

∣∣∣∣∣
2

.

Therefore by (4.18), we conclude that

A||g||2 ≤
(

AB

B + 1

)
‖g‖2 + 2

∑
j∈J

∣∣∣∣∣
〈
g, e2πiaj le2πibjyχE(x+ l, y)

〉
JV (x)

∣∣∣∣∣
2

so that

∑
j∈J

∣∣∣∣∣
〈
g, e2πiaj le2πibjyχE(x+ l, y)

〉
JV (x)

∣∣∣∣∣
2

≥ 1

2

(
A− AB

B + 1

)∑
j∈J

‖g‖2 (4.20)

=

(
A

2B + 2

)∑
j∈J

‖g‖2 (4.21)

Therefore by (4.19) and (4.21),

(
A

2B + 2

)
‖g‖2 ≤

∑
j∈J

∣∣∣∣∣
〈
g, e2πiaj le2πibjyχE(x+ l, y)

〉
JV (x)

∣∣∣∣∣
2

≤
(

AB

B + 1
+ 2B

)
‖g‖2.

(4.22)
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Thus {e2πiaj le2πibjyχE(x+l, y) : j ∈ J} is a frame for JV (x) for a.e x ∈ [0, 1] with uniform

frame constants A
2B+2

, and AB
B+1

+ 2B, and again by using Theorem 4.1.1, we conclude

that the set E(Λ̃) forms a frame for L2(E) with frame constants A
2B+2

, and AB
B+1

+2B.

Following Theorem 2.1.6, we combine the results obtained in Riesz sequences and

frames as follows:

Theorem 4.3.4 (Riesz Basis). Let E ⊂ R2 be a measurable set of finite Lebesgue

measure. Let (bj)j∈J be a sequence of real numbers and define

Λ = {(k, bj) ∈ R2 : k ∈ Z, j ∈ J}.

Then the following statements are equivalent:

(a) The set E(Λ) forms a Riesz basis in L2(E) with Riesz constants A,B > 0.

(b) For a.e x ∈ [0, 1],

(i)
∑
l∈Z

χE(x+ l, y) ≤ 1 for a.e y ∈ R,

(ii) A ≤ |Ex| ≤ B,

(iii) the collection {e2πibjy : j ∈ J} forms a Riesz basis in L2(Ex) with uniform

Riesz constants A,B > 0 where Ex := {y ∈ R :
∑
l∈Z

χE(x+ l, y) = 1}.

Theorem 4.3.5 (Riesz Basis). Let E ⊂ R2 be a measurable set of finite Lebesgue

measure. Define

D(x) = {l ∈ Z,
∫
R
χE(x+ l, y)dy > 0}.

Let (bj)j∈J be a collection of real numbers and suppose that the collection E(Λ) forms a

Riesz basis in L2(E) with Riesz constants A,B > 0 where

Λ = {(k, bj) ∈ R2 : k ∈ Z, j ∈ J}.

Let (aj)j∈J be another collection of real numbers in [0, 1) such that

sup
x∈[0,1]

sup
j∈J

∑
l∈D(x)

|1− e−2πiaj l|2 < A

2B + 2
, (4.23)

then the set E(Λ̃) forms a Riesz basis L2(E) with Riesz constants A
2B+2

, and AB
B+1

+ 2B

where Λ̃ = {(aj + k, bj) ∈ R2 : k ∈ Z, j ∈ J}.
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4.4 Examples with some bounded subsets of R2

The Beurling Density. For h > 0 and x ∈ Rd, we denote by Qh(x) the closed cube

centered at x with side length h. Let Λ = {λj}j∈J ⊂ Rd be uniformly discrete, i.e we

assume that |λj − λk| ≥ α > 0 for all λj 6= λk. We denote by

D+(Λ) = lim
h→∞

sup
x∈Rd

sup #(Λ ∩Qh(x))

hd

D−(Λ) = lim
h→∞

inf
x∈Rd

inf #(Λ ∩Qh(x))

hd

the upper and lower Beurling density of Λ, respectively.

Proposition 4.4.1. Let Λ = {(k, bj) ∈ R2 : k ∈ Z, j ∈ J} . Let D+((bj)) and D−((bj))

be the upper and lower Beurling density of (bj)j∈J ⊂ R respectively. Then

1. D+((bj)) = D+(Λ)

2. D−((bj)) = D−(Λ)

Proof. Let Qh(x, y) := Ih(x)× Ih(y) for some h > 0, be a square of side h centered at

(x, y) ∈ R2 where Ih(x) and Ih(y) are closed intervals both with length h, centered at x

and y respectively. Then it is easy to see that

#{(k, bj), (k, bj) ∈ Qh(x, y)} = #{k ∈ Z, k ∈ Ih(x)} ×#{bj, bj ∈ Ih(y)}.

Therefore, by using the definition of D+(Λ), we have that

D+(Λ) = lim
h→∞

sup
(x,y)∈R2

sup #({(k, bj)} ∩Qh(x, y))

h2

= lim
h→∞

sup
(x,y)∈R2

sup #({k} ∩ Ih(x))

h
× lim

h→∞
sup
y∈R

sup #({bj} ∩ Ih(x))

h

= D+(Z)×D+((bj))

= D+((bj)), since D+(Z) = 1.

A similar proof is used for (2) with

D−((bj)) := lim
h→∞

inf
y∈R

inf #({bj} ∩ Ih)
h

.
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Theorem 4.4.2. Let Λ = {λj : j ∈ J} ⊂ R be uniformly discrete and let E ⊂ R be an

interval. For the system E(Λ) to be a frame for L2(E), it is necessary that D−(Λ) ≥ |E|,
and it is sufficient that D−(Λ) > |E|.

Theorem 4.4.3. Let Λ = {λj : j ∈ J} ⊂ R be uniformly discrete and let E ⊂ R be

an interval. For the system E(Λ) to be a Riesz sequence in L2(E), it is necessary that

D+(Λ) ≤ |E|, and it is sufficient that D+(Λ) < |E|.

Proof of 4.4.2 and 3.4.3. See [14].

Example 4.4.4 (Disk). Consider the disk E ⊂ R2 of radius r > 0 centered at the origin

(0, 0); that is

E = {(x, y) ∈ R2, x2 + y2 ≤ r2}.

Let (bj) be uniformly discrete sequence of real numbers associated with

Λ = {(k, bj) ∈ R2 : k ∈ Z, j ∈ J}.

We investigate the existence of Riesz sequences and frames of the form E(Λ) on the

domain E, for fixed r > 0.

x

y

−1
2

1
2

−1 1

Frames:

We claim that, the disk defined above will support a frame if r ∈ (0, 1
2
]. Suppose r > 1

2
,

then we see that, the non-overlapping condition (frame necessary condition) in Theorem

4.3.1 fails. Secondly, for each x ∈ [−1
2
, 1

2
], we find the sets

Ex := {y ∈ R :
∑
l∈Z

χE(x+ l, y) = 1}.
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It is seen from the above diagram that,

Ex =

[
−
√
r2 − x2 ,

√
r2 − x2

]
, for |x| ≤ r,

and

Ex = ∅, when r < |x| ≤ 1

2
,

with Lebesgue measure, |Ex| = 2
√
r2 − x2. We now look for the largest of each of the

sets Ex for a.e x ∈ [−1
2
, 1

2
].

Clearly, sup
x∈[− 1

2
, 1
2

]

|Ex| = 2r. Therefore, by Theorem 4.4.2, if D−(bj) > 2r, the set

{e2πibjy : j ∈ J}

will form a frame on Ex defined above, for a.e x ∈ [−1
2
, 1

2
] with uniform frame bounds

A,B. Hence, by Theorem 4.3.2 and Proposition 4.4.1, if

r ∈
(

0,
1

2

]
, and D−(Λ) > 2r,

the collection E(Λ) will form frame on the disk E = {(x, y) ∈ R2, x2 + y2 ≤ r} with

frame bounds A,B.

Riesz sequences:

For each x ∈ [−1
2
, 1

2
], we find the sets

Ex := {y ∈ R :
∑
l∈Z

χE(x+ l, y) ≥ 1}.

Again, it is seen from that diagram above that, for each x ∈ [−1
2
, 1

2
],

Ex =

[
−
√
r2 − x2 ,

√
r2 − x2

]
.

We also claim that, the disk defined above will support a Riesz sequence with Riesz con-

stants A,B, if r > 1
2
. As before, suppose that r = 1

2
. Then Ex =

[
−
√

1
4
− x2 ,

√
1
4
− x2

]
,

with

inf
x∈[− 1

2
, 1
2

]
|Ex| = inf

x∈[− 1
2
, 1
2

]
2

√
1

4
− x2 = 0. (4.24)
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By Theorem 4.2.1, for the disk E to support a Riesz sequence with Riesz constants A,B,

it is necessary that

A ≤ |Ex| ≤ B, for a.e x ∈
[
− 1

2
,
1

2

]
.

In the case where r = 1
2
, the lower Riesz constant A = 0 by (4.24), which is a contradic-

tion to A > 0. Hence, for Riesz sequences with Riesz constants A,B, we require that,

r > 1
2

in which case, |Ex| 6= 0, for each x ∈ [−1
2
, 1

2
]. We now look for the smallest of each

of the sets Ex for a.e x ∈ [−1
2
, 1

2
].

Clearly, inf
x∈[− 1

2
, 1
2

]
|Ex| = 2

√
r2 − 1

4
. Therefore, by Theorem 4.4.3, if D+(bj) < 2

√
r2 − 1

4
,

the set

{e2πibjy : j ∈ J}

will form a Riesz sequence on Ex defined above, for a.e x ∈ [−1
2
, 1

2
] with uniform Riesz

bounds A,B. Hence, by Theorem 4.2.3 and Proposition 4.4.1, if

r >
1

2
, and D+(Λ) < 2

√
r2 − 1

4
,

the collection E(Λ) will form Riesz sequence on the disk E = {(x, y) ∈ R2, x2 + y2 ≤ r}
with Riesz bounds A,B.

Example 4.4.5 (Rotated square). Let

Q0h =

[
−h
2
,
h

2

]
×
[
−h
2
,
h

2

]
,

A =

[
1√
2
− 1√

2
1√
2

1√
2

]
be a square of length h > 0 centered at (0, 0) and a rotation matrix respectively for some

h > 0 so that

Qh := AQ0h

is the rotated square. Let (bj) be uniformly discrete sequence of real numbers associated

with

Λ = {(k, bj) ∈ R2 : k ∈ Z, j ∈ J}.

We seek to investigate the existence of frame or Riesz sequence of the form E(Λ) on the
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rotated square Qh for some fixed h > 0.

Let P1

(
h
2
, h

2

)
, P2

(
− h

2
, h

2

)
, P3

(
− h

2
,−h

2

)
, P4

(
h
2
,−h

2

)
be the vertices of Qh. Then the

following are their respective images under A; P
′
1

(
0, h

√
2

2

)
, P

′
2

(
− h
√

2
2
, 0

)
, P

′
3

(
0,−h

√
2

2

)
,

and P
′
4

(
h
√

2
2
, 0

)
.

P
′
3

P
′
4

P
′
1

P
′
2

Frame: We claim that h ≤ 1√
2

is a necessary condition for Qh to support a frame

with frame constants A,B. Assume h > 1√
2
, then we see that, the non-overlapping con-

dition (frame necessary condition) in Theorem 4.3.1 fails.

By using the points P
′
1

(
0, h

√
2

2

)
and P

′
4

(
h
√

2
2
, 0

)
, we obtain the equation of the line

y = −x+
h
√

2

2
,

and by using the points P
′
3

(
0,−h

√
2

2

)
and P

′
4

(
h
√

2
2
, 0

)
, we obtain the equation of the

line

y = x− h
√

2

2
.
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Therefore, for each x ∈ [−1
2
, 1

2
], the sets

(Qh)x := {y ∈ R :
∑
l∈Z

χQh
(x+ l, y) = 1}

is given by

(Qh)x =

[
x− h

√
2

2
,−x+

h
√

2

2

]
, for |x| ≤ h√

2
,

and

(Qh)x = ∅, when
h√
2
< |x| ≤ 1

2
,

with Lebesgue measure, |(Qh)x| = −2x + h
√

2. We now look for the largest of each of

the sets (Qh)x for a.e x ∈ [−1
2
, 1

2
].

Clearly, sup
x∈[− 1

2
, 1
2

]

|(Qh)x| = h
√

2. Therefore, by Theorem 4.4.2, if D−(bj) > h
√

2, the set

{e2πibjy : j ∈ J}

will form a frame on (Qh)x defined above, for a.e x ∈ [−1
2
, 1

2
] with uniform frame bounds

A,B. Hence, by Theorem 4.3.2 and Proposition 4.4.1, if

h ≤ 1√
2
, and D−(Λ) > h

√
2,

the collection E(Λ) will form frame on Qh with frame bounds A,B.

Riesz sequence. From the diagram above, for each x ∈ [−1
2
, 1

2
], the sets

(Qh)x := {y ∈ R :
∑
l∈Z

χQh
(x+ l, y) = 1}

is given by

(Qh)x =

[
x− h

√
2

2
,−x+

h
√

2

2

]
.

We claim that, for Qh support a Riesz sequence with Riesz constants A,B, if h > 1√
2
.

As before, suppose that h = 1√
2
. Then (Q 1√

2
)x =

[
x− 1

2
,−x+ 1

2

]
with

inf
x∈[− 1

2
, 1
2

]
|(Q 1√

2
)x| = inf

x∈[− 1
2
, 1
2

]
(−2x+ 1) = 0. (4.25)
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By Theorem 3.2.1, for Qh to support a Riesz sequence with Riesz constants A,B, it is

necessary that

A ≤ |(Qh)x| ≤ B, for a.e x ∈
[
− 1

2
,
1

2

]
.

In the case where h = 1√
2
, the lower Riesz constant A = 0 by (4.25), which is a contra-

diction to A > 0. Hence, for Riesz sequences with Riesz constants A,B, we require that,

r > 1
2

in which case, |(Qh)x| 6= 0, for each x ∈ [−1
2
, 1

2
]. We now look for the smallest of

each of the sets (Qh)x for a.e x ∈ [−1
2
, 1

2
].

Clearly, inf
x∈[− 1

2
, 1
2

]
|(Qh)x| = h

√
2− 1. Therefore, by Theorem 4.4.3, if D+(bj) < h

√
2− 1,

the set

{e2πibjy : j ∈ J}

will form a Riesz sequence on (Qh)x defined above, for a.e x ∈ [−1
2
, 1

2
] with uniform

Riesz bounds A,B. Hence, by Theorem 4.2.3 and Proposition 4.4.1, if

h >
1√
2
, and D+(Λ) < h

√
2− 1,

the collection E(Λ) will form Riesz sequence on Qh with Riesz bounds A,B.
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5 Shifts generated by non-full rank

lattices in Rd

In this chapter, we extend the results obtained in Chapter 4 under the action of a general

non-full rank lattice.

5.1 Correspondence between shifts generated by

non-full rank lattices in Rd

Definition 5.1.1. We define a non-full rank lattice H ⊂ Rd by

H =

{ n∑
i=1

kivi : ki ∈ Z
}
, where vi, i = 1, ..., n are n linearly independent vectors in Rd.

Definition 5.1.2. A closed subspace M ⊂ L2(Rd) is H-invariant if

f ∈M then Thf ∈M ∀h ∈ H

where Thf(x) = f(x− h).

Given v1, ..., vn, n linearly independent vectors in Rd, we can choose additional vectors

vn+1, ..., vd such that the collection {vi}, i = 1, ..., d, forms a basis for Rd.

Proposition 5.1.3. Given vectors v1, ..., vd, forming a basis for Rd, the linear mapping

S : L2(Rd)→ L2(Rd) defined for f ∈ L2(Rd) by

Sf(x) = f(Qx), x ∈ Rd

is an isomorphism, where the d× d matrix Q is given by

Qx =
d∑
i=1

xivi, x = (x1, ..., xd) ∈ Rd.
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The inverse corresponding to the operator S, S−1 is given by S−1f(x) = f(Q−1x).

Proof. First of all, we see that the d×d matrix Q given by Qx =
∑d

i=1 xivi is invertible

as the vectors vi ∈ Rd are linearly independent, and thus, det(Q) 6= 0. To show that S
is onto, given any f ∈ L2(Rd), we choose g ∈ L2(Rd) defined by g(x) = f(Q−1x) so that

Sg(x) = f(x). Also see that, for any f ∈ L2(Rd) we have that∫
Rd

|g(x)|2dx =

∫
Rd

|f(Q−1x)|2dx.

Using the change of variables y = Q−1x, we obtain

‖g‖2
L2(Rd) = det(Q−1)

∫
Rd

|f(y)|2dy <∞. (5.1)

It is also very easy to see thatKer(S) = {0}. Therefore the mapping S is an isomorphism

and S−1f(x) = f(Q−1x).

Lemma 5.1.4. Let S as in Proposition 5.1.3 and let H =

{ n∑
i=1

kivi : ki ∈ Z
}

. Then,

for every k ∈ Zn × {0}d−n and every h ∈ H,

TkSf(x) = SThf(x), f ∈ L2(Rd).

Proof. Let f ∈ L2(Rd). Then,

TkSf(x) = (Sf)(x− k) for x ∈ Rd, k ∈ Zn × {0}d−n

= f

(
Q(x− k)

)
for x ∈ Rd, k ∈ Zn × {0}d−n

= f(Qx−Qk) for x ∈ Rd, k ∈ Zn × {0}d−n

= f(Qx− h) for x ∈ Rd, h ∈ H

= Thf(Qx) for x ∈ Rd, h ∈ H

= SThf(x) for x ∈ Rd, h ∈ H.

Proposition 5.1.5. A closed subspace M ⊂ L2(Rd) is H-invariant if and only if the
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set M̃ defined by

M̃ = {Sf, f ∈M} (5.2)

is Zn × {0}d−n − invariant.

Proof. Assume the closed subspace M ⊂ L2(Rd) is H-invariant. Then given any

f ∈ M , Thf ∈ M , ∀h ∈ H. By (5.2), we conclude that SThf ∈ M̃ . Therefore we

can deduce from Lemma 5.1.4 that TkSf ∈ M̃ for all k ∈ Zn × {0}d−n. Thus M̃ is

Zn × {0}d−n − invariant.

Conversely suppose that M̃ is Zn × {0}d−n − invariant, then we have that TkSf ∈ M̃
for all k ∈ Zn × {0}d−n. Therefore by Lemma 5.1.4, we see that SThf also belongs to

M̃ . By (5.2), we conclude that Thf ∈M , ∀h ∈ H. Hence M is H-invariant.

5.2 Riesz sequences, Frames and non-full rank lattices

in Rd

The theorem below establishes relationship between Riesz sequences and frames that are

generated by the non-full rank lattice Zn×{0}d−n and a general non full rank lattice H.

Theorem 5.2.1. Let A ⊂ L2(Rd) be countable.

1. The family {Thf : f ∈ A, h ∈ H} is a Riesz sequence for M with Riesz constants

A,B > 0 if and only if {TkSf : f ∈ A, k ∈ Zn × {0}d−n} is a Riesz sequence of

M̃ with Riesz constants A∗ = A
det(Q)

> 0 and B∗ = B
det(Q)

> 0.

2. The family {Thf : f ∈ A, h ∈ H} is a frame for M with frame constants

A,B > 0 if and only if {TkSf : f ∈ A, k ∈ Zn × {0}d−n} is a frame of M̃ with

frame constants A∗ = A
det(Q)

> 0 and B∗ = B
det(Q)

> 0.

Proof.(1). Suppose {Thf : h ∈ H, f ∈ A} is a Riesz sequence of M with Riesz

constants A, B > 0. Then for every sequence {Cf ,h } indexed by A × H, with finitely

many non-zero terms, we have

A
∑
f∈A

∑
h∈H

|Cf,h|2 ≤

∥∥∥∥∥∑
f∈A

∑
h∈H

Cf,hThf

∥∥∥∥∥
2

≤ B
∑
f∈A

∑
h∈H

|Cf,h|2. (5.3)

Since ∥∥∥∥∥∑
f∈A

∑
h∈H

Cf,hThf

∥∥∥∥∥
2

=

∫
Rd

∣∣∣∣∣∑
f∈A

∑
h∈H

Cf,hThf(w)

∣∣∣∣∣
2

dw, (5.4)
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letting w = Qx, (5.3) becomes∥∥∥∥∥∑
f∈A

∑
h∈H

Cf,hThf

∥∥∥∥∥
2

= det(Q)

∫
Rd

∣∣∣∣∣∑
f∈A

∑
h∈H

Cf,hThf(Qx)

∣∣∣∣∣
2

dx

= det(Q)

∫
Rd

∣∣∣∣∣∑
f∈A

∑
h∈H

Cf,hf(Qx−QQ−1h)

∣∣∣∣∣
2

dx

= det(Q)

∫
Rd

∣∣∣∣∣∑
f∈A

∑
h∈H

Cf,hf
(

Q(x−Q−1h)

)∣∣∣∣∣
2

dx

= det(Q)

∫
Rd

∣∣∣∣∣∣
∑
f∈A

∑
k∈Zn×{0}d−n

Cf,kf
(

Q(x− k)

)∣∣∣∣∣∣
2

dx

= det(Q)

∫
Rd

∣∣∣∣∣∣
∑
f∈A

∑
k∈Zn×{0}d−n

Cf,kSf(x− k)

∣∣∣∣∣∣
2

dx

= det(Q)

∫
Rd

∣∣∣∣∣∣
∑
f∈A

∑
k∈Zn×{0}d−n

Cf,kTkSf(x)

∣∣∣∣∣∣
2

dx

= det(Q)

∥∥∥∥∥∥
∑
f∈A

∑
k∈Zn×{0}d−n

Cf,kTkSf

∥∥∥∥∥∥
2

.

That is, ∥∥∥∥∥∑
f∈A

∑
h∈H

Cf,hThf

∥∥∥∥∥
2

= det(Q)

∥∥∥∥∥∥
∑
f∈A

∑
k∈Zn×{0}d−n

Cf,kTkSf

∥∥∥∥∥∥
2

(5.5)

Therefore by (5.3), we obtain

A
∑
f∈A

∑
k∈Zn×{0}d−n

|Cf,k|2 ≤ det(Q)

∥∥∥∥∥∥
∑
f∈A

∑
k∈Zn×{0}d−n

Cf,kTkSf

∥∥∥∥∥∥
2

≤ B
∑
f∈A

∑
k∈Zn×{0}d−n

|Cf,k|2

(5.6)

with A∗ = A
det(Q)

> 0 and B∗ = B
det(Q)

> 0. Thus {TkSf : f ∈ A, k ∈ Zn × {0}d−n} is a

Riesz sequence of M̃ with Riesz constants A*, B*.

Conversely suppose {TkSf : f ∈ A, k ∈ Zn×{0}d−n} is a Riesz sequence of M̃ with

Riesz constants A∗ = A
det(Q)

> 0 and B∗ = B
det(Q)

> 0. Then (5.6) holds. Using (5.5), we
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see that (5.6) becomes

A
∑
f∈A

∑
h∈H

|Cf,h|2 ≤

∥∥∥∥∥∑
f∈A

∑
h∈H

Cf,hThf

∥∥∥∥∥
2

≤ B
∑
f∈A

∑
h∈H

|Cf,h|2. (5.7)

Therefore, {Thf : f ∈ A, h ∈ H} is a Riesz sequence for M with Riesz constants A,B.

(2). Suppose {Thf : f ∈ A, h ∈ H} is a frame for M with frame constants A,B.

Then

A‖ g‖2 ≤
∑
f∈A

∑
h∈H

|〈g, Thf〉|2≤ B‖ g‖2, ∀g ∈M . (5.8)

See that

〈g, Thf〉 =

∫
Rd

g(w)Thf(w)dw (5.9)

If we let w = Qx then (5.9) becomes

〈g, Thf〉 = det(Q)

∫
Rd

g(Qx)Thf(Qx)dx, h ∈ H

= det(Q)

∫
Rd

g(Qx)f(Qx− h)dy, h ∈ H

= det(Q)

∫
Rd

Sg(x)Sf(x− k)dx, k = Q−1h ∈ Zn × {0}d−n

= det(Q)

∫
Rd

Sg(x)TkSf(x)dx, k = Q−1h ∈ Zn × {0}d−n

= det(Q)〈Sg, TkSf〉, k = Q−1h ∈ Zn × {0}d−n.

Therefore, ∑
f∈A

∑
h∈H

|〈g, Thf〉|2= |det(Q)|2
∑
f∈A

∑
k∈Zn×{0}d−n

|〈Sg, TkSf〉|2. (5.10)

Also, using the change of variables w = Qx, we obtain

‖g‖2
L2(Rd) =

∫
Rd

|g(w)|2dw = det(Q)

∫
Rd

|Sg(x)|2dx = det(Q)‖ Sg‖2. (5.11)
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By (5.8), (5.10) and (5.11), we have that

A

det(Q)
‖ Sg‖2 ≤

∑
f∈A

∑
k∈Zn×{0}d−n

|〈Sg, TkSf〉|2≤
B

det(Q)
‖ Sg‖2. (5.12)

Therefore, {TkSf : f ∈ A, k ∈ Zn × {0}d−n} is a frame of M̃ with frame constants

A∗ = A
det(Q)

and B∗ = B
det(Q)

.

Conversely, suppose that {TkSf : f ∈ A, k ∈ Zn × {0}d−n} is a frame of M̃ with

frame constants A∗ = A
det(Q)

and B∗ = B
det(Q)

. Then, (5.12) holds. By (5.10) and (5.11),

we have that (5.12) become (5.8). Hence {Thf : f ∈ A, h ∈ H} is a frame for M with

frame constants A,B.

We now state a consequence of Theorem 5.2.1 in relation to our main problem. We

will let H and Q as in Definition 5.1.1 and Proposition 5.1.3 respectively throughout

Corollary 5.2.2 and Theorem 5.2.3.

Corollary 5.2.2. Let Ω ⊂ Rd be a measurable set of finite Lebesgue measure. Let

(cj) ⊂ Rd and aj := Q−1cj be given sequences associated with the set of frequencies

Λ = {(cj + h) ∈ Rd : h ∈ H, j ∈ J}, (5.13)

Λ̃ = {(aj + k) ∈ Rd : k ∈ Zn × {0}d−n, j ∈ J}. (5.14)

Then the set E(Λ) forming a Riesz sequence (resp. frame) for L2(Ω) with Riesz (resp.

frame) constants A,B, is equivalent to the set E(Λ̃) forming a Riesz sequence (resp.

frame) for L2(E), where E := QTΩ, with Riesz (resp. frame) constants Adet(Q),

Bdet(Q).

Proof. Define the shift invariant spaces VΩ and VE by

VΩ = {f ∈ L2(Rd), suppf̂ ⊆ Ω}

VE = {g ∈ L2(Rd), suppĝ ⊆ E}.
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Also, define fj ∈ VΩ by f̂j = ecjχΩ. Then, the fact that collection

E(Λ) = {ecj+h, h ∈ H, j ∈ J}

= {ehecj , h ∈ H, j ∈ J}

= {ehf̂j, h ∈ H, j ∈ J}

= {T̂hfj, h ∈ H, j ∈ J}

is a Riesz sequence (resp. frame) in L2(Ω), is equivalent to the collection

{Thfj, h ∈ H, j ∈ J} (5.15)

forming a Riesz sequence (resp. frame) in VΩ. Now, for gj(x) = fj(Qx), we have that

ĝj(ξ) =

∫
Rd

fj(Qx)e−2πix·ξdx =
1

det(Q)

∫
Rd

fj(w)e−2πiQ−1w·ξdw =
1

det(Q)
f̂j([Q

−1]T ξ)

Thus,

ĝj(x) =
1

det(Q)
f̂j([Q

−1]Tx)

=
1

det(Q)
ecj([Q

−1]Tx)χΩ([Q−1]Tx)

=
1

det(Q)
e2πi〈cj , [Q−1]T x〉χQT Ω(x)

=
1

det(Q)
e2πi〈Q−1cj , x〉χQT Ω(x)

=
1

det(Q)
e2πi〈aj , x〉χE(x)

Hence, the fact that collection

E(Λ̃) = {eaj+k, k ∈ Zn × {0}d−n, j ∈ J}

= {ekeaj , k ∈ Zn × {0}d−n, j ∈ J}

= {det(Q)ekĝj, k ∈ Zn × {0}d−n, , j ∈ J}

= {det(Q)T̂kgj, k ∈ Zn × {0}d−n, j ∈ J}
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is a Riesz sequence (resp. frame) in L2(E), is equivalent to the collection

{det(Q)Tkgj, k ∈ Zn × {0}d−n, j ∈ J} (5.16)

forming a Riesz sequence (resp. frame) in VE.

By Theorem 5.2.1, (5.15) is a Riesz sequence (resp. frame) in VΩ with Riesz (resp.

frame) constants A,B if and only if {Tkgj, k ∈ Zn×{0}d−n, j ∈ J} is a Riesz sequence

(resp. frame) in VE, with Riesz (resp. frame) constants A
det(Q)

, B
det(Q)

. But the collection

{Tkgj, k ∈ Zn × {0}d−n, j ∈ J}

is a Riesz sequence (resp. frame) in VE, with Riesz (resp. frame) constants A
det(Q)

, B
det(Q)

if and only if (5.16) is a Riesz sequence (resp. frame) in VE, with Riesz (resp. frame)

constants Adet(Q), Bdet(Q).

Therefore, the set E(Λ) forming a Riesz sequence (resp. frame) for L2(Ω) with Riesz

(resp. frame) constants A,B, is equivalent to the set E(Λ̃) forming a Riesz sequence

(resp. frame) for L2(E), where E := QTΩ with Riesz (resp. frame) constants Adet(Q),

Bdet(Q).
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6 Conclusion

The problem of existence of Riesz basis and frames of the form {ecj+h : h ∈ H, j ∈ J} on

a measurable domain Ω ⊂ Rd of finite positive measure, for some collection of vectors

(cj)j ⊂ Rd, and H, the dual lattice of a full rank lattice K ⊂ Rd, is well investigated by

the authors in [1] and [9]. In the case where the domain Ω is bounded, Kolountzakis in

[9], established that, Ω must be a multitile domain at level k ∈ Z+ on the full lattice K, in

which case, the index set J = {1, ..., k}. Later in [8], Kolountzakis posed an open problem

concerning the case where the domain Ω is unbounded. He asked whether the unbounded

k-tile domain Ω is sufficient enough for the collection {ecj+h : h ∈ H, j ∈ {1, ..., k}} to

form a Riesz basis on this unbounded Ω.

The authors of [1], in an attempt to answer the question by Kolountzakis, examined

this problem and discovered that, in the case where Ω is unbounded, there is the need

for an extra arithmetic property, which they called the admissibility condition. The

authors in [1] a gave proof of their result via the theory of shift invariant spaces. After

a successful proof of their result using both the multitile at level k on the full lattice

Λ and the admissibility conditions, they realized by way of an example that, this extra

condition, that is, the admissibility condition, is too strong a condition as this example

(Example 3.3 in [1]) showed that, an unbounded k−tile measurable domain of finite

positive measure supports Riesz basis of the form {ecj+h : h ∈ H, j ∈ {1, ..., k}} without

being admissible.

In this thesis, we considered the case where H ⊂ Rd is a non-full rank lattice, and

analyzed the conditions for which the collection {ecj+h, h ∈ H, j ∈ J} forms a Riesz

sequence or a frame on Ω ⊂ Rd as above, for some collection of vectors (cj)j ⊂ Rd, J, an

at most countable index set.

We started by defining a non-full rank lattice H ⊂ Rd, by H := QGn, where Q is

some d × d invertible matrix, and Gn = Zn × {0}d−n. Without loss of generality, we

chose H as Zn × {0}d−n to obtain the following results on Riesz sequences and frames

in R2, via shift invariant spaces under the action of a non-full rank lattice Zn × {0}d−n.

An important result which we obtained from the extention of the theory of shift
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invariant subspaces of L2(Rd) is given by Theorem 3.2.10. This theorem reduces the

problem of checking whether a system in closed subspaces of L2(Rd) is a Riesz sequence

or frame to analyzing the fibers in closed subspaces of L2(Zn ⊕ Rd−n). We obtained

a corollary of Theorem 3.2.10 but worked in R2. This corollary establishes the link

between the extended theory of shift invariant spaces and our main problem which was

analyzed in R2.

The results on Riesz sequences are seen in Theorem 4.2.2, Theorem 4.2.3 and Theorem

4.2.6. In particular, Theorem 4.2.2 gives a necessary and sufficient condition for which

the collection E(Λ) to form a Riesz sequence in L2(E) with constants A,B > 0, where

Λ = {(ajo + k, bjo) ∈ R2 : k ∈ Z, jo ∈ J} . Theorem 4.2.2 tells us a necessary

and sufficient condition for the collection E(Λ), where Λ is as above, to form a Riesz

sequence in L2(E) with constants A,B > 0 for a single choice of j ∈ J. Now, in the case

where aj 6= 0 for any j ∈ J, it was hard to directly obtain results on Riesz sequences

of the form E(Λ) in L2(E), where Λ = {(aj + k, bj) ∈ R2 : k ∈ Z, j ∈ J}. This

motivated us to initially work with the case where aj = 0 for any j ∈ J, and the results

on Riesz sequences in this case was obtained in Theorem 4.2.3. In particular, Theorem

4.2.3 reduces the problem to the real line case which already has some known results on

Riesz sequences. We later gave a proof of the case where aj 6= 0 for any j ∈ J , using

the knowledge about the choice of (bj)j ⊂ R (which comes from Theorem 4.2.3) and in

addition, choosing (aj)j ⊂ R such that |aj| < δ or |aj − 1| < δ for some δ > 0, where

D(x) is as given in Theorem 4.2.6.

The results on frames are also seen in Theorem 4.3.1, Theorem 4.3.2 and Theorem

4.3.3. We started by stating a necessary condition for which the collection E(Λ) forms a

frame for L2(E) with frame constants A,B > 0 where Λ = {(k, bj) ∈ R2 : k ∈ Z, j ∈ J}.
In Theorem 4.3.2, we gave a sufficient condition in the real line case, for the collection

E(Λ), Λ as above to form a frame. Again, we reduced our argument to the real line, as

there are some known results on frames with intervals. As before in the case of Riesz

sequences, to give a proof on frames in the case where aj 6= 0 for any j ∈ J, we used

the knowledge about the choice of (bj)j ⊂ R (which comes from Theorem 4.3.2) and in

addition, choosing (aj)j ⊂ R such that |aj| < δ or |aj − 1| < δ for some δ > 0, where

D(x) is as given in Theorem 4.3.4.

We combined the hypotheses of both Riesz sequences and frames to give results on

Riesz bases. This is seen in Theorem 4.3.4 and Theorem 4.3.5.

As an illustration of our results, we considered the disk in R2 of radius r > 0, and

the rotated square at angle π
4
, of side length h > 0, as examples. These are both
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bounded domains, and the sets Ex from Theorem 4.2.3 and Theorem 4.3.2 are intervals.

Therefore, via the already known density results on Riesz sequences and frames, we gave

conditions for which both the disk and the rotated square will admit Riesz sequences

and frames of exponentials of the form E(Λ), where Λ is as given in Example 4.4.4 and

Example 4.4.5.

We finally established a correspondence between the domain Ω ⊂ Rd and E ⊂ Rd and

obtained that, the collection E(Λ) forming a Riesz sequence (resp. frame) for L2(Ω)

with Riesz (resp. frame) constants A,B, is equivalent to the collection E(Λ̃) forming a

Riesz sequence (resp. frame) for L2(E), with Riesz (resp. frame) constants Adet(Q),

Bdet(Q) where the set of frequencies Λ, and Λ̃ are given by

Λ = {(cj + h) ∈ Rd : h ∈ H, j ∈ J},

Λ̃ = {(aj + k) ∈ Rd : k ∈ Zn × {0}d−n, j ∈ J}.

with E := QTΩ, (cj)j ⊂ Rd and aj := Q−1cj.

There are still many unsolved questions concerning the existence and the construction

of Riesz sequences, frames and Riesz bases of exponentials on a measurable subset of Rd

of finite positve measure. We hope to have shed some light on some particular aspects

of this problem in this thesis.
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