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Abstract

Let Q C R? be a measurable set of finite positive measure (not necessarily bounded).
Let (cj);?:l be a given collection of vectors in R¢, and let H be the dual lattice of a full
rank lattice K C R%. For A € RY, let ey denote the exponential

ex(z) = 2™ 1 e RY
It is known that, the collection
E(A) :={ex: A€ A},

where A = {(¢;+h) eR?: h € H,j € {1,...,k}}, forms Riesz basis on  C R? if the
domain (2 is a k-tile domain and if, in addition, it satisfies an extra arithmetic property,
called the admissibility condition. The theory of shift invariant spaces generated by the
full rank lattice K plays an important role to analyze and solve the above problem.
The main goal of this thesis is to study a variant of the problem above where the dual
lattice H is replaced by a non-full rank lattice in R%. In particular, given an at most
countable index set J and a collection of vectors (c;);e; C R? we examine the existence

of Riesz sequences, frames and Riesz bases of the form
E(A) :={ex: A€ A},

where A = {(c;+h) €R?: he H, je€ J},onQ CR?as above, and H, a non-full rank
lattice in R%. Our results are obtained using an extention of the theory of shift invariant

subspaces of L?(R?), where the shifts are now generated by a non-full rank lattice in
R,
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1 Introduction

The study of the existence of Riesz Basis and frames of exponentials under the action
of full rank lattices has some known results. Let Q C R? be a measurable set of finite

Lebesgue measure. For each k € Z4, let e;, denote the exponential
er(x) = 2™k x e RY,

The following theorems (taken from [5] and [6]) give the necessary and sufficient condi-
tions for which the collection E(Z?) := {e, : k € Z} is a Riesz sequence and a frame in
L3(9).

Theorem 1.0.1. Let Q C R? be a measurable set of finite Lebesque measure. The
collection E(Z%) forms a Riesz sequence in L?(Q) if and only if

0< Z Xo(z+m) <M, foraeuxcel[0,1]7 (1.1)

meZzZ4

where the constant M < oo.

Theorem 1.0.2. Let Q C R? be a measurable set of finite Lebesque measure. The
collection E(Z%) forms a frame for L*(Q) if and only if

Z Xqlx+m) <1, foraexel0, 1]%. (1.2)

mezZd

The proof of Theorem 1.0.1 and Theorem 1.0.2 is given in [5].

We now turn to a more difficult problem. Let Q C R? be a measurable set of finite
Lebesgue measure. Given a full rank lattice H C R? and J, an at most countable index
set, we define the set of frequencies A C R? by A := {(¢; +h) e R*: h € H, je J},

for (¢;);es, some collection of vectors in R%. Let ey denote the exponential

ex(z) = ¥ g e RY



The problem of the existence of such collection of vectors (c;);c; C RY, such that
E(A) :={ex: A€ A},

forms a Riesz basis and a frame in L*(Q) is well analyzed in [1] and [9].

In [9], Kolountzakis establised that, all bounded multi-tile domains support Riesz
Basis of exponentials. The latter, in his paper, posed an open problem concerning the
case where the domains are unbounded. This open problem was well investigated in [1].
The authors in [1] showed that, in the case where the domains are unbounded, there is
the need for an extra condition, which they called ”admissibility”. The authors in [1]
a gave proof of their result via the theory of shift invariant spaces. After a successful
proof of their result using both the multitile at level £ on the full lattice A and the
admissibility conditions, they realized by way of an example that, this extra condition,
that is, the admissibility condition, is too strong a condition as this example (Example 3.3
in [1]) showed that, an unbounded k—tile measurable domain of finite positive measure
supports Riesz basis of the form {e., 44 : h € H,j € {1,...,k}} without being admissible.

In this thesis, we seek to examine the existence of Riesz sequences and frames of
exponentials on measurable sets of finite Lebesgue measure (not necessarily bounded),
under the action of non-full rank lattices. In particular, we seek to investigate the
following problem:

Let ©Q C R be a measurable set of finite Lebesgue measure and H C R be a non-full
rank lattice. Let (c¢;);jes be a given collection of vectors in R? associated with the set of

frequencies

A={(c;+h)€eR?: he H, jeJ}.
We ask the question, under which condition(s) does the collection
E(A) :={ex: A€ A},

form a Riesz sequence and a frame in L*()?
In Chapter 2, we consider some basic definitions of the keywords in the thesis, and
also, we took a look at the background of the thesis.

The Paley-Wiener spaces associated with the set €2, is defined by
PWqo={feL*RY: felL*0)}

We use subspaces of PWq, which are the family of shift invariant spaces that we are of

10



our interest. Note that, if we let
N = Span{ecj+hXQ the Haj € J})

then the subspace
V= spcm{f,f € N}

is invariant under translations by the non-full rank lattice H. This motivates our study
in Chapter 3 of subspaces of L?(R?) which are invariant under translations by a non-full
rank lattice H. We consider there, without loss of generality and for simplicity, non-full
rank lattices of the form Z" x {0}%™ where n € Z with 1 < n < d. Our goal here
is to extend some of the results in the theory of shift-invariant subspaces of L?(R%)
developed by Ron and Shen in [13] and also by Marcin Bownik in [3]. This theory plays
an important role in the study of Riesz sequences and frames and has applications in
shift-invariant systems, Weyl-Heisenberg systems, affine (wavelet) systems, and Gramian
matrices. An important result which we obtained from the extention of the theory of
shift invariant subspaces of L*(R?) is given by Theorem 3.2.10. This theorem reduces the
problem of checking whether a system in closed subspaces of L?(R?) is a Riesz sequence
or frame to analyzing the fibers in closed subspaces of L?(Z" @ RI™).

In Chapter 4, we use Theorem 3.2.10 to establish the link between the extended
theory of shift invariant spaces and our main problem which was analyzed in R% We
later considered some examples of our problem, on some bounded subsets of R2.

In Chapter 5, we use basic changes of variables to extend some of the results that
we proved with the lattice Z" x {0}97" to systems generated by general non-full rank

lattices in R%. We conclude by stating a more general result on the above problem.

11



2 Preliminaries and Background

We shall give definitions of some of the keywords in this thesis. Later in this Chapter,

we will also consider the background problem of this thesis.

2.1 Basic Definitions and Notations

Definition 2.1.1 (Non-full rank Lattice). H C R is a non-full rank lattice if
there exists a d x d invertible matriz Q such that H = Q[Z" x {0}47"].

Definition 2.1.2 (Bessel sequence). Let H be a Hilbert space. A countable family of
elements {f;}je; C H is a Bessel sequence for H if there exists B > 0 such that

D I 9)P< Blgllg, Vg e H. (2.1)
jed
Definition 2.1.3 (Frame). Let H be a Hilbert space. A countable family of elements
{fi}ies CTH is a frame for H if there exists constants A, B > 0 such that

Allglig: < D I 9)P< Bllglis, Vg € H. (2.2)
jeJ
The constants A and B are called frame bounds. In particular, A is called the lower

frame bound and B is the upper frame bound. They are not unique.

Definition 2.1.4 (Riesz Sequence). Let H be a Hilbert space. A countable family of
elements {f;}jes C H is a Riesz sequence for H if there exists constants A, B > 0 such

that
2

< B g’ V() e (). (2.3)

) jeJ

A e’ <

jeJ

> il

jeJ

The constants A and B are called Riesz bounds. In particular, A is called the lower

Riesz bound and B is the upper Riesz bound. They are also not unique.

12



Definition 2.1.5 (Riesz Basis). A Riesz basis for H is the family of the form {Ue;}’°

=1

where {ej};il s an orthonormal basis for H and U : H — H s a bounded bijective

operator.

Theorem 2.1.6. Let H be a Hilbert space. A countable family of elements {f;};es C H

is a Riesz basis for H if and only if {f;}jc; C H is both a frame and a Riesz sequence

for H.
Proof. See Theorem 3.6.6 in [12]. O

Some General Notations:
Throughout this thesis, we will denote |S| as the Lebesgue measure of the measurable
set S and denote #(S) as the number of elements in the set S.
Also denote by det(Q), the determinant of the matrix Q and denote by J, an at most
countable index set.

We denote by f , the Fourier transform of the integrable function f : R? — C, with
f& = [ fla)e ™ da,
R4
and also, we denote by f, the inverse Fourier transform of f, with
fla)=[ feerm=tde,
Rd

where x - £ is the inner product of x, £ € R?.

2.2 Background Problem

In this section, we state and observe the background problem. The problem is stated
with full rank lattices. For the details of the background problem, one may look at [1].

Let us start by considering the definitions below which have been taken from [1].

Definition 2.2.1. A C R? is a full lattice if there exist a d x d invertible matriz M
so that A := MZ?. A Fundamental Domain with respect to the lattice A = MZ? is
given by D = MTY. The dual lattice of A = MZ?, denoted by H is given by

H={heR": (h\) €Z" for all X € A}.

13



Definition 2.2.2 (Multitiling). Let k be a positive integer. We say a measurable set
Q C R? multi-tiles R at level k on a lattice A C R if for almost every w € D,

ZXQ(U)—i—)\) =k.

A€A

Given a measurable set Q C R?, and a lattice A C R?, for every w € D, we denote
Ap(Q)=A,:={AeA: w+ e Q}.

Definition 2.2.3 (Admissibility). Let Q C R? be a measurable set of finite measure
and A C R?, be a full lattice. We say that Q is admissible for A if there exist a
vector v € H and a number n € N; such that for almost every w € D, the numbers
{{v,\) 1 A€ Ay} are distinct elements (mod n). We will emphasize on the dependance

on n and v.

Theorem 2.2.4. Let Q C R? be a measurable set of finite measure and A C R, a full
lattice with dual lattice H. If

(i) 2 multi-tiles RY at level k by translation on the lattice A C R?,
(i) Q is admissible for A ,

then, there exist ay,...,ar € R%, such that the set E(H;ay,...,ay) is a Riesz basis for
L2(S2), where

E(H;ay,...,a5) = {e™@v . pe g j=1,.. k}.

Theorem 2.2.4 is the Main Result obtained in [1] and was proved via shift invariant

spaces.

Definition 2.2.5 (Shift Invariant Space). A closed subspace V C L*(R?) is a H— shift
mvariant if f €'V, then
T.f eV, Yhe H

where Ty, f(x) = f(x — h) for every x € R%

14



Definition 2.2.6 (Paley-Wiener Spaces). The Paley- Wiener Space are family of shift

wmvariant spaces which we are interested in. These spaces are defined by

PWo={feL*RY: feL*(Q)}.

The following theorem is a result obtained in [1] using the concept of shift invariant
spaces. The Main Result in [1] was proved by translating the background problem into
part (i) of Theorem 2.2.7. Then, by using the fact that Theorem 2.2.7 (i) and (ii) are
equivalent, the proof of Theorem 2.2.4 is given by using Theorem 2.2.7 (ii).

Theorem 2.2.7. Let Q C R? be a k — tile measurable set of finite measure. Given
o1, ..., o € PWa, we define

dr(w+A) br(w + M)

where \; = X\j(w) for j = 1,...,k are the k values of A that belongs to A,,. Then the

subsequent statements are equivalent:
(i) The set @y = {In¢;: he H, j=1,...k} is a Riesz basis for PWy,.

(i) There exist A, B > 0 such that for almost every w € D,
Allz|* < | Twz|* < Bl

for every x € C*.

Moreover, in this case, the Riesz bounds are given as

A= inf |T|?, and B = sup||T,|*.
weD weD

15



3 Shift Invariant spaces and Non-full
rank lattice of R

In this chapter, we will start by stating our main problem which was introduced earlier
in Chapter 1. In the second section, we will study the extended theory of shift invariant
subspaces of L?(R?) under the action of a non-full rank lattice. The last section is the
Gramian concept of frames and Riesz sequences. The non-full rank lattice H, is chosen

to be Z" x {0}4=" without loss of generality and for simplicity.

3.1 Statement of the Main problem

Given a sequence (a;);e; C R? | we consider the associated set of frequencies A C R?
defined by
A={(a;+k)eR: keZ" x {0}, jeJ} (3.1)

and the set of exponentials with frequencies in A,
E(A) :={ex: A€ A},

where
ex(x) = e yr e RY

Main Problem :
Let E C RY be a measurable set of finite measure. Can we find a sequence (a;);e; C RY
such that E(A) forms a Riesz sequence or a frame for L*(E) ?

Analogous to [1], we analyze the above problem by looking at its equivalent statement
in the fibers of L2(R%). In the next section, we will take a look at subspaces of L*(R?)
which are invariant under the action of a non-full rank lattice Z" x {0}¢—™.

Both Section 3.2 and 3.3 of this thesis are analogous to Chapter 1 and Chapter 2 of [3].
We give a generalization of the Results obtained in Chapter 1 and Chapter 2 of [3].

16



3.2 Shift Invariant Spaces

The main goal of this section is achieved in Theorem 3.2.10. The proof of Theorem 3.2.10

is given mainly by using Proposition 3.2.9. Let us start by considering some definitions.

Definition 3.2.1. A closed subspace V' C L*(RY) is Z"™ x {0} —shift invariant if for
every f € V, we have
Ti.f €V, VkeZ"x {0},

where Ty f(x) = f(xz — k) for every x € RY.

We will denote by D the set [0,1]". The Hilbert space L*(Z™ & R?™) is the usual

L? space associated with the Haar measure dz» ® dy on R%. In particular, if F €

L*(Z™ ® R4™™), then
1P =3 [ IPew

lezm

The Hilbert space of square integrable vector functions denoted by
H = L*(D, L*(Z" ® R"™))

consists of all vector valued measurable functions ® : D — L*(Z" & R?™) whose norm

is given by:
91 = [ 18 s s < .

The fact that the vector valued measurable function ® : D — L*Z" @ R™) is
measurable means that ®~1({) is measurable for any U open subset of L?*(Z" @ RY™).

This is equivalent to the property that Ve > 0,
{x € D,||®(x) — &> < e} (3.2)

is a measurable set for fixed ®, € L?*(Z" & R4™"). & is weakly measurable if z
(®(x), F) is a measurable scalar function for each F' € L*(Z" @ R4™).

Lemma 3.2.2. The vector valued function ® : D — L*(Z" ®R4™") is measurable if and

only if it is weakly measurable.

Proof. Firstly, suppose that ® measurable. Given any continuous function

g: LA(Z" R = C,

17



we have that ¢g='(U) is open, where U is an open subset of C. Therefore,
(9o @)~ (U) = {z € D,g(®(x)) €U} = {x € D, ®(x) € g~ (U)}

is measurable since g~ (U) is open. Hence go ® is measurable. In particular if we define
g(®(x)) = (®(x), F), for any F € L*(Z" ®R4™), then can conclude that z — (®(z), F)
is a measurable scalar function.

To show the converse, choose an orthonormal basis {e;} in L*(Z" & R%™"). Then

19 () = ®ol* = Y [(B(x) — o, ;)" = Y [(®( —(@o,e)*. (33)

JEN JEN

Assume @ is weakly measurable then z — (®(x),e;) is measurable. Therefore by using
the properties of measurable functions and (3.3), we have that ||®(z) — ®g||* is a measur-
able function. Hence, (3.2) is a measurable set. This means that ® : D — L*(Z"®RI ™)

is measurable. ]
Proposition 3.2.3. The mapping T : L*(RY) — H defined for f € L*(R?) by
Tf:D— L*Z" ® R,

and

Tf(a:)z{f(a:+l,y)} ae x €D,
(Ly)ezr@RI—n

is an isometric isomorphism between L*(R?) and H. Furthermore, for any f € L?*(R%),
k € Z", we have
TTif(z) = e *™* T f(z) for a.e x € D. (3.4)

18



Proof.
IT$1 = [ 17 £0) annacnyd

[ [\ byPdus,
D Z"@Rd*"
where dh := dz» ® dy

Hence,

1Tl = [ 3 [ 1 L Pdyds
lezn

- / . /R |f (@, y)Pdydz

= / ) |f(xy)Pdady, (by Fubini / Tonelli)
R

=|f ||2L2(Rd), (by Plancherel’s Identity).

Also, given any g € H, we define f € L*(R?) by its Fourier transform which is given
by f(z+1,y) = 9(7)| @ y)eznori-—n for a.e x € D, so that T f(z) = g()|u,). Thus, the
mapping 7 is onto. Clearly, we also have that the mapping 7 is one-to-one. Therefore,
T is indeed an isometric isomorphism between L?(R?) and H.

0

Definition 3.2.4. A range function is a mapping
J:D — {closed subspaces of L*(Z" @ Rd_")}.

For x € D, let P(x) : L*(Z" ®R¥™) — J(x) be the associated orthogonal projections
onto J(x). We say that J(x) is measurable if these projections are weakly operator

measurable i.e.  — (P(r)a,b) is a measurable scalar function for each a,b € L*(Z" @
Rd—n).

For a given range function J(x), we define the subspace M; of H as
M;={peH: ¢(x)€c J(z) for a.e. x € D}. (3.5)

Lemma 3.2.5. Given any (¢;);en C My with ¢; — ¢ in H for i — oo, there exists a
subsequence ¢, such that ¢;, (z) — ¢(z) in L*(Z" & RT™) as j,, — oo for a.e x € D.

19



Proof. The fact that ¢; — ¢ in H means that Ve > 0, there exists J such that

Therefore there exist j, € N such that

[ 1850) = 60) sy < 27
keN keN
- ZH% — 6(0) B goonydn < o
keN
= Z H(D]k - >HL2(Z"®R‘I ) < 00 for a.e T € D.
keN

= hm | P, (x) — qﬁ(x)”%g(zn@w,n) =0 forae ze€D.
o=

]

Remark 3.2.6. Suppose J(x) is a range function (not necessarily measurable). Then
My defined in (3.3) is a closed subspace of H.

Proof of Remark 3.2.6. Given any (¢;)jen C My with ¢; — ¢ in H for i — oo, we
will have to show that ¢ € M;. Now, (¢;) C M; means that ¢;(z) € J(z) for a.e x € D.
Therefore, by Lemma 3.2.5, for a.e x € D, there exists a subsequence ¢;, converging
pointwise to ¢ in L*(Z" & RY™™); i.e ¢y, (x) — ¢(x) in L*(Z" & R¥™) as i; — oo for a.e
x € D. Since J(x) is closed, ¢(x) € J(x) for a.e. € D. Hence ¢ € M;. Therefore M,
is closed.

O]

Lemma 3.2.7. Let J(x) be a measurable range function with associated projection P(z).
Let P be the orthogonal projection of H onto M ;. Then for any ¢ € H,

(Po)(z) = P(x)(p(x)) for a.e xz € D. (3.6)

Proof. Define P’ : H— H by

P'o(z) = P(z)(6(x)).

First all we show that P(x)(¢(x)) is measurable. We do this by showing that = —

20



(P(z)(¢(z)), F) is measurable for any F' € L*(Z" @ R¥ ™). Consider an orthonormal
basis {ex}32, € L*(Z™ @ R*™). Then we can write

so that

Since both ¢(z) P(x) are measurable, we have that
z— (¢(z),er) and = — (P(x)ex, F)

are measurable. Thus z — (P(z)(¢(z)), F') is measurable. Since ||P(x)(¢(x))] <
|6(x)|| < oo, for ¢ € H, we have that P(z)(4(x)) belongs to H. Next, (P')? = P’
as P(z) has this property for a.e z € D. Also, for any ¢» € H we have that

Poi) = [ (Pota), via)ds
= [ Pla)ota). vds
- [ t6la). Py
- [ @) Pu@)as
— (6, P').

Hence P’ is also self adjoint. Therefore P’ is an orthogonal projection whose range
we shall call M’. If we consider any g € M’, then g(z) € J(z) for a.e. x € D, since
P(z) is the projection onto J(z). Therefore, we have that M’ C M. To prove the other

21



containment, let us suppose that there exist a nonzero v € M, which is orthogonal to
M'. Then,

0— /D (P(2)(9(2)), ¥(a))da
- [ ). P@y @),

for all ¢ € H, which implies that P(z)y(z) = 0 for a.e z € D. Therefore, (z) =
P(x)y(z) =0 for a.e x € D which is a contradiction. Hence M’ = M. O

Corollary 3.2.8. Suppose M; = My for some measurable range functions J and K

with associated respective projections, P and Q. Then J(x) = K(z) for a.e x € D.

Proposition 3.2.9. A closed subspace V- C L*(RY) is Z™ x {0}*"—shift invariant if
and only if
V ={feL*RY: Tf(x) € Jy(x) for a.e v € D} (3.7)

where Jy is a measurable range function. The correspondence between V and Jy is
one-to-one under the convention that the range functions are identified if they are equal

almost everywhere. Furthermore, if
V =3span{T.f: ke Z" x {0} fec A} (3.8)
for some countable A C L*(R?), then for almost every x € D,
Jv(z) =span{Tf(x) : [ € A}, (3.9)

Therefore by (3.4), V. C L*(R?) is shift invariant if and only if M := TV C His a
closed subspace under multiplication by exponentials i.e. ¢(-) € M = e?™0kg(.) € M

for all k € Z"™, where - represent a generic variable.

Proof of proposition 3.2.9. Suppose V = span{T.f : k € Z", f € A} is shift
invariant. Let M = TV and let Jy (z) be given by (3.9). Consider any ¢ € M. Then,

we can find some sequence (¢;) converging to ¢ such that
T ‘¢ € span{Ty.f : f € Ak € Z"}.
Using (3.4), we see that ¢;(x) € Jy(z). By Remark 3.2.6, we conclude that ¢ € M.

Hence M C M.

22



Take any 1) € M; which is orthogonal to M. Then for any ¢ € TV and k € Z", we have
that e >™@*¢(x) € TV. Hence,

0= [ (€ ota), vio)ds
- /D e (5(2), 3 (2))

Therefore, if we let F' € L'(D) to be defined by F(z) = (¢(z), 1 (z)) then all the Fourier
coefficients of F' will be zero and thus F(z) = 0 for a.e z € D. Hence ¢(z) € Jy (x)* for
a.e x € D. Since ¥(z) € Jy(x), we conclude that U(z) = 0 for a.e x € D. Thus, there
is no non-zero ¢ € M; which is orthogonal to M, and therefore M = M.

We finally show that Jy () given by (3.9) is measurable. Let P denote the orthogonal
projection of H onto M, and let P(x) be the associated orthogonal projection onto
Jy(z). Take any ¢ € H, then (I —P)1) is orthogonal to M. We conclude using the above
argument that ¢ (z) — Py (z) € Jy(x)* for a.e z € D. Therefore,

P(z)(¢(x)) = P(z)(Py(z)) = Py(zx) for a.e x € D (3.10)

as Py(x) € Jy(x) for a.e x € D with M = M.
Take any function a = ¢(x) € L*(Z"™ ® R¥™). Since Pt(r) is a measurable function by

(3.6), we have that x — P(x)a is measurable. Thus, Jy is measurable.

Conversely, suppose Jy (z) is a measurable range function, then by Remark 3.2.6,
V=T"M,

is a closed shift invariant space. By Lemma 3.2.7, it is easy to see that V satisfies (3.7).
The one-to-one correspondence between V' and Jy () is as a result of Corollary 3.2.8.
O

Theorem 3.2.10. Let A C L*(R?) be countable.

1. The family {Tyf : k€ Z", f € A} is a frame for V with frame constants A, B
if and only if for a.e x € D, {Tf(z) : f e A} C L3 (Z" ® R¥™) is a frame for
Jy (x) with positive constants A,B.

2. The family {Tyf : k€ Z", f € A} is a Riesz sequence in V with Riesz constants
A, B if and only if for a.e x € D, {T f(x) : f € A} C L*(Z" ® R¥™) is a Riesz
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sequence in Jy (x), with Riesz constants A, B.

Lemma 3.2.11. Let A C L?(R%) be countable and V as in (3.8). Then for all g € V,

we have that
S S (g =Y /D (T F (), To(a)) P

feAkezn feA

Proof of Lemma 3.2.11. Let k € 7", f € A and g € V. Then, we have that, for a.e
reD,

(Tnf.9) = (TTif Tg)
- /D (TTof (x), To(x))dz

~ [T, Totads by (34
= [ T @), oo
DL P = | [ T @), Totw)dal
= [ R @, where F(@) = (Tf(2), To(o)
~ |E ()

This implies that,

STUTf 9P =D |F(k)]? = /D |F(z)|?dz by (Plancherel’s Identity).

kezn kezn

Thus,

Z](ka,QHQZ/D]<7'f(x),7'g(:1:)>|2dx

kezn
ad 3 Gl =3 [ |(Tf @) g(@) s
feAkerr fea’D

]

Proof of Theorem 8.2.10 (1). Suppose that {T f(z): f € A} C L*(Z" @ RI™) is

a frame of Jy (z) with frame constants A, B for a.e x € D. Then for a.e x € D, we have
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that,
AlTg@)I5, <Y T f(x), Tg(x))’< B Tg(x)|3, (3.11)

feA

for any g € V. By integrating (3.11) over D, we obtain
A [ 1T ar < [ (T4 Tote)Pds < B [ [ Tow)]f, o
feA

By Proposition 3.2.9 and Lemma 3.2.11, we obtain

Alglly <D Y KTf.9)P< Bllgll?. (3.12)

feEA ke

which means that {T,f: k€ Z", f € A} is a frame for V with frame constants A, B.

Conversely, suppose {Ti.f : k € Z", f € A} is a frame for V with frame constants A, B.
This means (3.12) holds. We want to show that {T f(z): f € A} C L*(Z" ®R™) is
a frame of Jy (x) with frame constants A, B for a.e x € D. Let {dy,ds,...} be a dense
subset of L?(Z" @ R?™). Then we are to show that,

AIP(@)dil* < Y (T f(x), P(2)d)P< B|| P(x)d;|? (3.13)
feA

for any 2 € N, for a.e x € D.

Suppose (3.13) fails, then there exists a measurable set S C D, with |S| > 0, such
that for some iy € N, either

LY T f(@), Px)di) P > Bl P()d;?, or

feA

2. ) [T f(x), P(x)diy)|* < A|| P(x)ds, || for x € S.
feA
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Let g € V be given by Tg(z) = xs(x)P(z)d;,. If for example (1) happens, then

SN KTt ) = Z/D (T f(x), Tg(z))|*dz, by Lemma 3.2.9

feAkezn feA

= | D UT (@), Tyg(x))Pde

Dtea

= | D UTf(x), P(x)di,)*dz

S fea

- B /D x5 (@) | TP()ds |

- B /D 1T o) |z

= Bl|g|l3,, by Proposition 3.2.9.

which is a contradiction to (3.12). If (2) happens, we obtain a contradiction by a similar

computation. ]

Proof of Theorem 3.2.10 (2). Let Cy pycznx.a be a sequence with only finitely many

nonzero terms. Then by the Plancherel’s Theorem,

Z Z ICapl* = / Z ICs(x)|*dz, where Cy(x) = Z Cope ™ x € D. (3.14)
D

feAkezn feA keZn

Also see that

2 2

= Z Z CouonTThf

feAkezn

_ Z Z C(k7f)6727rixk7'f

feA ke

=D _Ci(@)Tf

JeA

_ /D "¢ (@) T ()

feA

> > ConTif

feAkezr

2

by (3.4)

2

2

dx
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2

dx (3.15)

o> CunTit

feAkezn

> Ci(a)

feA

-
Suppose {7 f(z) : f € A} forms a Riesz sequence for Jy (z) for a.e x € D with Riesz
constants A, B > 0. Then for a.e x € D, we have that

AY G @P <) _Cr@a)Tf@)> <BY ICs(x (3.16)

feA feA feA

Integrating (3.16) over D, for a.e x € D, we obtain

/Z|cf 2dx</D||Zcf )T f(z)|| dx<B/Z|Cf )|2da (3.17)

feA feA feA

and using (3.14) and (3.15) gives

A Cwpl <D0 D ConThfIP<BY D Chpl (3.18)

feAkezm feA kezn feAkezn

which means that {T}.f : k € Z", f € A} is a Riesz sequence for V' with Riesz constants
A, B.

Conversely suppose {Tyf : k € Z", f € A} forms a Riesz sequence in V' with Riesz
constants A, B > 0. Then by (3.14) and (3.15) , we have that (3.17) holds. Take any
family of functions {M; € L>(D) : f € A} with My = 0 except for finitely many f.
As a consequences of the Lusin’s Theorem, there exists sequence of trigonometric poly-
nomials, call it {Cj(f)}ieN, such that

1€ oo < Myl forallieN,fe A

. (3.19)
Cj(f)(:z) — My(z), i— o0, foraezeD,feA

By using (3.19) and the Lebesgue Dominated Convergence Theorem, (3.17) yields the

inequalities
A/wa |d:c</HZMf )T f(x ||2d:c<B/Z\Mf )2dz  (3.20)
feA feA feA

Let (d')ien where d'=(d})sea be dense in £2(A). We can assume, for each 7, d = 0 for
finitely many f. The family {7 f(x) : f € A} forming a Riesz sequence for Jy (x) with
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Riesz constants A, B for a.e x € D means that,

AN | P < (1D S diT f(@)|* < BY |dy|* foralli €N for aexe€D.  (3.21)
feA feA feA

Suppose now that (3.21) fails, then there exists a measurable set S C D, with |S| > 0,

such that for some iy € N, either

LD dpTf(@))? > BY | |d¢f*, or

feA feA
2. 1> dyTf(x)|> < A |dy|* forz € S.
feA feA

Consider the family of functions M; = diz’xg and assume for example that (1) holds

then,

2

> diexs(@)T f(x)

dx:/
Dl rea

>B/Z|d’°| dz

feA

=5 [ 3 dps(o)fda

feA

=B [ Y |My(x)ldx

Dtea

ZMf f(x)

feA

which contradicts (3.20). O

Remark 3.2.12. Theorem 3.2.10 reduces the problem of checking whether
{Tuf : keZ™x {0} fe A}

is a frame, or a Riesz sequence in a subspace of L?(R?) to analyzing the fibers in subspaces
of L*(Z™ ® R*™) parameterized by D, the base space.

3.3 The Gramian Concept

The goal of this section is achieved in Theorem 3.3.3, which is a corollary of Theorem

3.2.10.
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Consider the vectors {t; : j € J} C L*(Z™ ® R™"), define the operator
K:02(J) — L*(Z" ® R

by K(C) = ZCjtj for {C;}jes € £2(J) and C; = 0 except for finitely many j's.

jeJ
If K extends to bounded operator, then the adjoint of K, K*: L*(Z" ® R¥™") — (2(J)
is given by K*(a) = {(a,t;) }nes for a € L*(Z™ & R%™). This is because,

(KC,a) = () _Cjt;,a)

jeJ

- ch<tjva>

jed

= Ci{aty)

= (C, {a,1;))
= (C,K"a)

Definition 3.3.1. For a.e x € D, consider the vectors {t; : j € J} C L*(Z/ & R*™).
The Gramian associated with the collection {t; : j € J},

G:2(J)— 2(J)
1s defined by G = K*K and the dual Gramian
G:LA(Z"®R"™) = LX(Z" @ R™)
is defined by G = KK*.

By letting {e;}52, be the canonical orthonormal basis for £2(.J), the jk-th entry of the

matrix representation of G is

ij = <K*K€k,€j>
= (Key, Ke;)
= (tg, t;) for j, k € J.

Remark 3.3.2. If G as in the above is a bounded operator on (*(J) then it is self adjoint.
Also, if G is a bounded operator on L*(Z" & RE™) then G is self adjoint. In summary,
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if either G, G, K or K* is bounded, then ||G|| = |G| = |K*||> = || K|]* < co.

Theorem 3.3.3. Let A = {f; : j € J} C L*R?). For fized x € D, let G(z) and
G(z) denote the Gramian and the dual Gramian of {T f;(z) : j € J} C L*(Z" ® R*™)

respectively. Then,

1. {Tyf; - k € Z™,j € J} is a frame with frame constants A,B for its cosed linear

span if and only if
Alla])? < (G(z)a,a) < Bllal? (3.22)

for a € span{T f;(x):j € J}, for aex € D.

2. {Tyfj : k€ Z",5 € J} is a Riesz sequence with Riesz constants A,B if and only if
Alle]* < (G(2)e,c) < Blc||* (3.23)

for all c € (?(J), for a.e x € D.

Proof. 1. For fixed x € D, let t;(z) = T f;j(x). Then for any a € span{T f;(z) : j €
J},

(G(x)a,a) = (K*a, K"a)
= ((a,t;(x)), (a, t;(x)))
= (o ;@) (e t;(@)

jedJ
= a, ;)]
jedJ
Therefore, (3.22) can be written as
lal* <> " {a,t;(x))]* < Bllal)® for a.e z € D. (3.24)

jedJ

By Theorem (3.2.10), we have that (3.24) is equivalent to {1, f; : k € Z,j € J}

forming a frame with constants A, B.
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2. Also, for any ¢ € £2(J),

(G(x)e,c) = (Ke, Kc)

= || Kc|f?
= >_citi@)II”
jed
Therefore, (3.23) can be written as
Allc|]? < | chtj(a:)HQ < Bll¢|? for a.e v € D. (3.25)

jeJ

By Theorem (3.2.10), we have that (3.25) is equivalent to {Tf; : k € Z,j € J}
forming a Riesz sequence with Riesz constants A, B.
[
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4 Main Results.

In this chapter, we will analyze in the special case where d = 2, the main problem which
was stated in Section 3.1 of Chapter 3. We will state and give proofs of the results on
Riesz sequences and frames in Section 4.2 and 4.3 respectively. In the last section of this
chapter, we will consider some examples of bounded sets which demonstrate the results

obtained on Riesz sequences and frames.

Notations and Settings:
Let £ C R? be a measurable set of finite Lebesgue measure and A C R? be a discrete

set of frequencies. We associate with A the collection of exponentials
E(A):={ex: A e A}
where
ex(z,y) = MY for X € A, (z,y) € E,

and A.(z,y) is the inner product of A € A and (z,y) € E.
As a particular case of the theory developed in Chapter 3, we define the integer

translation on the x-axis by
Tif(x,y) = fle—ky), keZ, feL*R?,

and

A

Tf(x) = {f(x 1y

} for a.e x € [0, 1].

(Ly)€ZOR

For each z € [0, 1], we define the subset of Z & R, F(FE),, by
F(E), ={(ly) €eZaR: (z+1y) € E}.

Note that, If we let
Ve = {f e L*R? : feL*E)},
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Vi is invariant by any shift in R2, in particular, by the shifts T}, k € Z, defined above.

Proposition 4.0.1. Let E C R? be a measurable set of finite Lebesque measure. Then

the range function of Vi is characterised as
Jv(x) ={Tf(z) € L(Z®R): supp(Tf(x)) CF(E)s, fe Ve}.
Proof. For each z € [0,1], we set
K, ={Tf(x) € L*(Z®R): supp(Tf(x)) CF(E)., € Vg}.
Let g € K,, and define

flty) =D lt —2)g(ly)xs(ty),

I€Z
where )
1, ifx=I
r, ifl<z<i+4+3
Ui(z) = ?
—x, ifl— % <z<l
\ 0, otherwise
so that,

flz+Ly) =gl,y)xe@+1y).

If we define f as f in E, and zero in R2 \ E, then by using the definition of Vg, we
have that f € Vg. Hence, ’Tf(x) = fx+l,y) = g(l,y) € Jy(x) . This shows that
K, C Jy(x).
Conversely suppose that g € Jy (x). Then g € span{T f(z) : f € Vg}. This implies that
supp(g) C F(E),, thus g € K,. Therefore, Jy (z) C K,.

O]

4.1 The connection between Section 3.1 and Section
3.2

In this section, we give a corollary to Theorem 3.2.10 in the special case where d = 2
and n = 1, using Vg and Jy (z) defined above, as the shift invariant space and range

function respectively.
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Theorem 4.1.1. Let E C R? be a measurable set of finite Lebesque measure. Let (a;) e

and (bj);es be two sequences of real numbers and define
A= {(a; +kb;)€ER?® :keZje J}

Then, the following holds.

1. The set E(A) forms a Riesz sequence of L*(E) with Riesz constants A, B > 0 if
and only if for a.e x € [0, 1] the set {e*™le?™ iy p(x+1,y):j € J} C LA(Z®R)

also forms a Riesz sequence in Jy(x) with Riesz constants A, B >0 .

2. The set E(A) forms a frame of L?(E) with frame constants A, B > 0 if and only if
for a.e x € [0,1] the set {*™le>™ iy p(x+1,y):j € J} C LA(Z®R) also forms
a frame of Jy(x) with frame constants A, B > 0.

Proof. Let f; € Vg, j € J be defined by
fj = €(a;,b;)XE > J € J, (4.1)

and note that
E(A) ={ewf;: keZ,jeJ}.

By (3.4) in Chapter 3, we have that ekfj = fk?j Hence, the fact that
{exfi: keZ,jeJ}

forms a Riesz sequence (resp. frame) of L?*(F) is equivalent to the collection
{Tf;: kel,jeJ}

being a Riesz sequence (resp. frame) for V. By Theorem 3.2.10, the latter is equivalent

to

{Tfi(x): jel}
forming a Riesz sequence (resp. frame) for Jy (z) for a.e x € [0, 1]. Also,

~

Tf(z) = {f(x+1Ly)}ayezer
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and by using (4.1), we have that

A

f(ZL‘ + l,y) — 627ri(ajx+a'7l)627ribjyXE(l‘ + l, y>
— 627riajx627riajl€27ribjyXE(x + l7 y)

Therefore the set E(A) forms a Riesz sequence (resp. frame) of L?(E) with Riesz (resp.

frame) constants A, B > 0 if and only if, for a.e x € [0, 1], the sequence
{627rmjl€2ﬂbjyXE<l’ + l,y) ] c J}

also forms a Riesz sequence (resp. frame) of Jy (x) with Riesz (resp. frame) constants
A B>0. O]

4.2 Results on Riesz Sequences of Exponentials

Definition 4.2.1. Consider a measurable set S C R? and let w : S — [0,00) be a

measurable function. The norm on the w-weighted L? space on the set S, L2 (S) is
defined as

1125 ) = / @) Pu@)ds < oo

Theorem 4.2.2. Let E C R? be a measurable set of finite positive measure and for some
(aj,,b;,) € R? let A = {(aj, + k,b;,) e R* 1k €Z,j, € J} then the set E(A) is a Riesz
sequence L*(E) with constants A, B > 0 if and only if

ASZ/XE(x+l,y)dy§B for a.e x €]0,1].
R

IEZ

The theorem below is a special case where (a;);e; C R as given in Theorem 4.1.1, are

chosen to be zero.

Theorem 4.2.3. Let E C R? be a measurable set of finite Lebesque measure. Let (b;) e

be a sequence of real numbers and define
A= {(k,bj) €ER® :k€Z,je J}

Then the following statements are equivalent:

(a) E(A) forms a Riesz sequence in L*(E) with Riesz constants A, B >0 .
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(b) For a.e x € [0,1],
(i)
A< Z/XE(xH,y)dy < B, and
R

=
(ii) the set {e*™¥ : j € J} is a Riesz sequence in L3, (E,) with uniform Riesz
constants A, B > 0, where for each x € [0, 1],
E,:={yeR:) xe(x+1ly) >1},
leZ

and
F.(y) = ZXE(x +1,y), fory € E,.

EZ

Proof. Let {C;},c; be any sequence with finitely many non-zero terms and observe
2 2
> xe(r+1y)dy

that,
/EI lez.

L%, (Ex)
_ Z / Z Cj€27ribjy

2 Cj€27ribjy

jed

E Cj€27ribjy

jed

2

xe(x+ 1, y)dy

l€Z jeJ
2
= Z/ > Cie (x4 1Ly)| dy
l€Z z | jed
2
=D Cier™ iy p(x + 1y)
jes Jy (z)
that is,
2 2
> Cermit =D Cier™ iy p(x + 1,y) (4.2)
il L3 (B 7€) v (@)

Assume (a). Then (b)(i) holds by Theorem 4.2.2. By Theorem 4.1.1, we have that (a)
implies

{xp(x+1y):j € J}
forming a Riesz sequence in Jy(z) with uniform Riesz constants A, B > 0, for a.e
x € [0,1]. Using (4.2), the latter statement is equivalent to (b)(ii).
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Conversely, assume that (b) holds. Then by using (4.2), we have that (b)(ii) is equiv-

alent to the collection

{Xxp(x+1y):j e J}

forming a Riesz sequence in Jy(z) with uniform Riesz constants A, B > 0, for a.e
x € [0, 1]. The latter statement is equivalent to (a) by Theorem 4.1.1.
m

Remark 4.2.4. If E C R? is bounded, or more generally, if the projection of E onto

the x — axis is bounded, then

ZXE(x—i—l,y)SMfora.eyeR

leZ

for some M € N and we have

2 2 2

E Cj627ribjy

jeJ

<

E Cj€27ribjy

jeJ

< M

E Cj 627ribjy

jeT

L2(Ey) L3, (Ex) L2(Ey)

The above Remark leads to the an immediate corollary of Theorem 4.2.3.

Corollary 4.2.5. Under the previous assumptions, if E is bounded, or more generally,
if the projection of E onto the x — axis is bounded, the set E(A\) forms a Riesz sequence
in L*(E) with Riesz constants A, B > 0, if and only if for a.e x € [0,1], the set {e*Y :
j € J} is a Riesz sequence in L*(E,), with uniform Riesz constants A, B > 0, and
A < |E,| < B, where E, is as given in Theorem 4.2.3.

In the theorem below, we give a condition for choosing the sequence (a;);e; C R, such

that E(A) as defined in Theorem 4.2.6 forms a Riesz sequence in L?(E) given that

(b;)jes C R is chosen so that E(A) defined in Theorem 4.2.3 forms a Riesz sequence in
L*(E).

Theorem 4.2.6 (Riesz sequence perturbation result). Let E C R? be a measurable

set of finite Lebesque measure. Define

D(z) = {l e Z, /RXE(:C 1, y)dy > 0.

Let (bj);es be a collection of real numbers and suppose that the collection E(A) forms a
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Riesz sequence in L*(E) with Riesz constants A, B > 0 where
A= {(k,bj) €ER® :k€Z,je J}.

Let (aj);jes be another collection of real numbers in [0, 1) such that

, A
sup sup g |1 —e?™ait)? « (4.3)
wel0.1] €7 Sny 2B + 2
2 - - A
then the set E(A) forms a Riesz sequence in L*(F) with Riesz constants shsy and

22+ 2B where A = {(a; + k,b;) €ER? 1 k€ Z,j€J}.

Proof. By Theorem 4.1.1, E(A) forms a Riesz sequence in L?*(F) with Riesz constants
A, B > 0 if and only if {e*™¥xp(z+1,y) : j € J} forms a Riesz sequence in Jy (z) with

uniform Riesz constants A, B > 0. The latter means that,

2

<BY P (44)

Jv(x) jeJ

A g <

jeJ

> e iy p(a +1,y)

jeJ

for any {c;};es € C2(J).
Observe that, using the inequality, |a + b]* < 2|a|* + 2|b|?, for a,b € C, we have

2 2
2mia;l 2mib; 27ria-l 27ib;
S el Pl -> /[ ey (e +1,y)| dy
jeJ leZ ]EJ
2
— E / ( 27rzajl627rzbjy o Cj627r7,bjy + CjBQﬂzbjy) XE(I + l,y) dy
leZ jedJ

2

<2} / ( sl 1) ™Vxp(z +1y)| dy
leZ jedJ
2
+2) / ;€™ xp(x + 1,y)| dy
leZ jeJ
= 22/ < it — 1) ™y p(x +1,y)| dy
l€Z jeJ
2
Z ;> p(x +1,y)
jeJ

Ju ()
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Further observe that, the term

2> [ 1 e

leZ jeJ

_QZ/ |Z (e2mieil — 1

leD(x) jeJ
<23 [ 1 ol =)
leD(x) z  jed
-2 2 3 [ 15 e -
leD(z) V'EZ jed
23 % / (¢2miast
leD(z) V'eZ JjeJ
—9 Z Z 27rm]l
leD(z) Il jeJ

<2B > ) ePlerit -

leD(z

=2B) ¢

jeJ

<25

) j€J

<l€D(:p

sup Z I1—

1€ 1eD (@)

A
2B |2
= <QB+2);|CJ|

= At

jeJ

That is

9 Z / 27r2a]l

leZ

jeJ
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— )™ xp(z +1',y)

— ez + 1, y)

— 1)y p(x + 1, y)

1)e?maY 2y g (x4 1, y)dy

27rzb]y‘ XE(x+l y)d

)e V2N " xpa + U y)dy
l'eZ

)e™ iV P p(x + 1, y)dy

2

dy

2

1/, (by the initial hypothesis)

°)

27riajl’2) Z |Cj’2

jedJ

|€27Tm7 o

by (4.3)
BA )
dy < 511 Z 5] (4.5)
jeJ




Therefore,
2

ch Qﬁza]l 2mibjy X (Q?"‘l,y)
jeJ

( )Z|cj|2+2

Jy ()
2

> e yp(x +1,y)

jeJ

Jy (z)
That is,
2
2miajl 2mibsy BA 2 2
che e xp(x + 1, y) §B Z‘C]‘ +QBZ|C]]
jEJ JV(QT) je cJ ]EJ
so that

che%rm]l 2mibjy X ($+l,’y)

jedJ Jv(z) jeJ
To prove the other inequality, observe that
2 2
il < [Soemnae )| =3 [ [ et 1] a
jeJ JjeJ Jy (z) lEZ T |j5ed
2
_ Z/ ( 27m'bjy - Cj€2m'ajl627ribjy + cjeQ’”“jle%ibjy) XE(x + 17 y) dy
leZ jeJ
<2) / ( 62”“”) ™y p(x +1,y)| dy
leZ jeJ
+2Z/ ZC e27rza]l627rzb]y (QZ' +1, y) dy
leZ jeJ
That is,
2
A ei’< 2 Z ( 62mjl> ey g +1y)| dy
jeJ leZ JjeJ
2
49 Z Cj€27riajl627ribjyXE(x +1, y>
jed Jv (x)
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and by (4.5), we have that

2

AZ|CJ|2— B+1Z|C]|2+2

jeJ JjeJ

ZC 627r7,a]l€27mb]yX (37 + l,y)
jeJ

Jy ()

so that,
2

2miajl 2mib;
E ;e ey p(x + 1, y)
jeJ

A
(s5) St =
jeJ

Finally, by combining (4.6) and (4.7), we have that

A 2
(23 + 2) 2l
jeJ

Thus {e?™aile?™ Yy p(z +1,y) : 7 € J} is a Riesz sequence in Jy (x) for a.e x € [0, 1]

A
542 and 24 B+1 + 2B, and again by using Theorem 4.1.1,

we conclude that the set E(A) forms a Riesz sequence in L?(E) with Riesz constants

AB
2B+2’ and g7 +2B. 0

Jv ()

2miajl  2mwib;
E cje™ e xp(x + 1, y)
jeJ

< (55 +28) Sl

Jy (x) jed

with uniform Riesz constants

Remark 4.2.7. Note that if E C R? is bounded, or more generally, if the projection of
E onto the © — axis is bounded, the set D(x) above is contained in a finite set D C Z.

Since the function x — 2™ _ 112 s continuous and vanishes on 7, there exists a
M

leD
6 > 0 such that

- A
2mixl 2
e — 1" <
; | " <3579

if v € [0,1) and each x satisfies |x| < & or |v — 1| < 0. Thus the condition (4.3) will
hold if we choose aj, j € J, with |a;| <6 or |a; — 1] < 4.

4.3 Results on Frames of Exponentials

Theorem 4.3.1. Let E C R? be a measurable set of finite Lebesque measure. Let (b;)jes

be a sequence of real numbers and define

A= {(k,bj) eR® :k€Z,je J}.
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Suppose E(A) is a frame for L*(E) with frame constants A, B > 0. Then, we have the
following: For a.e x € [0,1],

ZXE(x+l,y) <1, foraeyelR. (4.8)
lez

Proof. Assume that F(A) is a frame for L?(F) with frame constants A, B, and suppose
that (4.8) fails. Then there exists some positive measurable sets S C [0,1] x R, such
that,

ZXE(ZL‘ +1ly)>1, forall (z,y) €S. (4.9)

lEZ

This means that, there exist distinct integers [y, and [y such that

xe(x+1,y).xelx+1,y) =1, forall (z,y) € F,

where F' is some measurable subset of S, otherwise, for any distinct integers [y, and [5 ,

xe(x+1,y).xe(x+1,y) =0, for a.e (x,y) €S.
That is,
XE(.Z’ + ll,y) =1, and XE(x + l27y) =0,

or

XE'<*T + ll’y) =0, and XE(x + l27y) =1 for a.e (x,y) es,

which is a contradiction to (4.9). Consider the function, gy € Jy (z), defined by

XF(%?J% lfl:ll
gO(lay) = _XF<QU,y), if | = l2

0, otherwise.
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Then for all (z,y) € F, we have have that,

2

> =2 Z/Rgo(lyy)e‘gmb"ym(w+l,y)dy

<907 GQWibjyXE(x + l7 y)>

Jed Jv (z) jeJ |lez
2
= Z / e 2mibsy < Z 9oL y)xe(x +1, y)> dy
jeg |[/R lez
=0.

Thus, for a.e x € [0,1], {>®¥yg(x +1,y) : j € J} is not complete in Jy- (), hence
not a frame for Jy (z). Therefore, by Theorem 4.1.1, the collection E(A) is not a frame
for L?(E), which contradicts our assumption. Hence, we conclude that, if the collection
E(A) forms a frame of L?(E) with frame constants A, B > 0, then, for a.e z € [0, 1],
(4.8) holds. O

The theorem below is a special case where (a;);c; C R as given in Theorem 4.1.1, are

chosen to be zero.

Theorem 4.3.2. Let E C R? be a measurable set of finite Lebesque measure. Let (b;);e

be a sequence of real numbers and define
A= {(k,bj) €ER® :k€Z,je J}.

Then the following statements are equivalent:

(a) The set E(A) forms a frame of L*(E) with frame constants A, B > 0.

(b) (i) For a.e x € [0,1], ZXE(m—i—l,y) <1 for a.ey €R.
=

(ii) The collection {e*™¥ : j € J} forms a frame for L*(E,) with uniform frame

constants A, B > 0 where E, :=={y € R: ZXE(x +1ly) =1}
lez

Proof. Assume (a) holds. Then by Theorem 4.3.1, we have that (b)(i) holds. Also, if
(a) holds, by Theorem 4.1.1, the collection

(P p(x+1y):j € J}
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forms a frame for Jy (x) with uniform frame constants A, B > 0 for a.e x € [0,1]. The

latter means that, for a.e x € [0, 1],

Tib. 2
AllglP <> g, ™ xp(x +Ly))|” < Bllgll®, for every g € Jy(x).

jed

Then, for a.e x € [0, 1], we have

2.

jeJ

<g, ey p(x +1, y)>

Jy ()

g(l,y)e

—2mibjy

jeJ lEZ
4 2
— / h(y)e 2mi¥ dy
jeg 1V Ea
2
_ <h 627ribjy> ,
jeJ L2(Ba)
where
hy) = g(l.y)xelz+1Ly).
lez
That is,
) 2
Z <h762m'bjy> = Z <g7627ribjyXE<:L- + [’y)>
jeJ L?(Ez) jeJ @)

We also see that for a.e z € [0, 1],

Al sqe = [
E,

leZ

- /E ot

* leZ

= HgH?TV(m)'

44

> gl y)xe(r+1y)

2

dy

xe(r + 1, y)dy

(by using (b)(i))

2

) 6727Tibjydy

(4.10)

2

, foraexz €][0,1].

(4.11)

(4.12)

(4.13)

(4.14)



By (4.11), and (4.14), we see that (4.10) can be written as

AllRI[> <> [(h e ) < B||h||?, for aex € [0,1], (4.15)

jeJ

for h € L*(E,). Hence (ii)(b) also holds.
Conversely, suppose that (b)(ii) holds, then (4.15) holds. In addition, if (b)(i) holds,
the (4.15) is equivalent to (4.10) by (4.14) and (4.11). Now, by using Theorem 4.1.1, we
have that (4.10) implies (a).

[l

In the theorem below, we give a condition for choosing the sequence (a;);e; C R, such
that E(A) as defined in Theorem 4.3.3 forms a frame for L?(E) given that (b;);e; C R
is chosen so that F(A) defined in Theorem 4.3.2 forms a frame for L*(F).

Theorem 4.3.3 (Frame perturbation result). Let E C R? be a measurable set of

finite Lebesque measure. Define

D(z)={l € Z, /RXE(:L' +1,y)dy > 0}.

Let (b;)jes be a collection of real numbers and suppose that the collection E(A) forms a
frame for L*(E) with frame constants A, B > 0 where

A={(k,bj) €ER® :k€Z,je J}

Let (a;)jes be another collection of real numbers in [0,1) such that

, A
sup sup |1 —e?mail)2 « (4.16)
z€[0,1] j€J leDZ(:x) 2B + 2
then the set E(A) forms a frame L?(E) with frame constants w2 QB+2’ and AL Yoy B+ 2B where

A={(a;+kb)eR? keZjeJ}

Proof. By Theorem 4.1.1, F(A) forms a frame for L?(F) with frame constants A, B > 0

if and only if {e>™®¥Yyp(z +1,y) : j € J} forms a frame for Ji (x) with uniform frame
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constants A, B > 0. The latter means that,

Allgl < >

jedJ

< Bl|g||?>, aez€][0,1] (4.17)

<9, ey p(x + 1, y)>

Jv ()

for every g € Jy(x). Observe that, using the inequality, |a+b|? < 2|a|*>+2[b|?, for a,b €
C, we have

<g7 eZﬂiajZQQﬂibjyXE(l, + l, y)>

jeJ Jy (z)
2
=SS [ ottt e Ly
JeJ | l€Z z
2
=212 / (e_maﬂ — 1+ 1)9(l,y)6‘2’”bjy><1;(x + 1, y)dy
JjeJ | lEZ e
2
<2 Y| [ ) o+ 4y
jeJ | l€eZ z
2
#2307 [ alte S ete + Loy
jeJ | lez z

Note that, since E(A) is a frame for L?(E), for a.e x € [0, 1], we have the inequality

ZXE(x—i—l,y) <1, foraeyeR.
lez

Therefore, we write the set £, :={y € R: Z Xe(r +1,y) = 1} as disjoint union of
IeZ.

E,:={yeR:xg(z+ly) =1}
Using this fact together with the Cauchy—Schwarz inequality, we obtain
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2

22

Z/ —27rzaj _ (l y) —27rzb]lX (x+l,y)dy

jeJ | l€Z
2
_ 22 Z / —27rza] o (l y> 2mb]lXE($+l,y)dy
j€J |leD(x)
2
=2) | Y (el — / g(l,y)e ™ Vx gz + 1, y)dy
j€J |1eD(x) By

2
g(l,y)e >y g (x + 1, y)dy )

2

SQZ( Z ‘6 2mial _1‘2

jeJ MleD(x) )

SQSUP( Z }6 2mia l _1}2

jeJ

(leD

(l, y)e iy gz + 1, y)dy

leD(x ]E l
2
:2s.up( > et 1|2> 2. 2 Z/ (k, y)u(k)e ¥ xp(x + k,y)dy|
7€7 N\ ieD(@) leD(x) j€J | keZ

where ¢;(k) := & (k)xr(z + k. y).

Hence,

maj _ 2 7Tij
23up<z le? )ZZZZ/E g(k,y)hi(k)e ™V x g (x + k,y)dy

7€7 N\ ieD(a) eD(x) j€J | kel

2

_2SUp( Z ‘6 2miazl ) Z Z <g¢l,€2ﬂibjyXE($+k,y)>
l

i€t leD(z) eD(z) j€J Jv ()

< (55452) S llgwil3y @ by (4.15) and (4.16)
leD(x)
- (221%452) 9115, )
That is,
’ 2AB

2SS [t gt ista L) < (g ol (419
jeJ | lez
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Therefore,

2

jedJ

2
AB )
<(gop 8l @)

To prove the other inequality, again see that

<g’ 627Tiajl€27ribjyXE($ 4 l, y)>

Jv ()

2

Allgl? <)

jeJ

-

<g, ey p(x + 1, y)>

Jy (x)

2

> / g(l,y)e ™y p(x + 1, y)dy

jeJ | ez
2
=>. > / (1 —e7Pma! +€2”“”>g(l,y)eQ”bjyxE(chrl,y)dy
jeJ | ez Y Be
2
<230 (3 [ (1- et Tt + Loy
jeJ ez Y Ba
2
+23 1> / g(ly)e 2ol e My p(x + 1, y)dy| -
jeJ ez Y Ba

Therefore by (4.18), we conclude that

AB
Al < (505 lal? +2 %

<g7 627riajl627ribjyXE(x + l, y)>

jEJ JV(x)
so that
‘o AB
S (g emteminsrin) |2 i(a- g Sl a2
jeJ JV(x) _]EJ
A 2
~(353) Xl (4.21)
jed

Therefore by (4.19) and (4.21),

(3553 Il <X

jeJ

<g’ eQm'ajleQﬂ'ibjyXE(x + l, y)>
Jy (x)
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Thus {e?™le2™biyy p(x+1,y) : j € J} is a frame for Jy () for a.e x € [0, 1] with uniform

frame constants ; BA+2, and é‘fl + 2B, and again by using Theorem 4.1.1, we conclude
that the set E(A) forms a frame for L?(E) with frame constants 54— 2B+2’ and 42 o) B 4+2B. O

Following Theorem 2.1.6, we combine the results obtained in Riesz sequences and

frames as follows:

Theorem 4.3.4 (Riesz Basis). Let E C R? be a measurable set of finite Lebesgue

measure. Let (b;)jcs be a sequence of real numbers and define
A={(kb)eR?® :keZjeJ}

Then the following statements are equivalent:
(a) The set E(A) forms a Riesz basis in L*(E) with Riesz constants A, B > 0.

(b) For a.e x € [0,1],

(i) ZXE(:I:—i—l,y) <1 foraeyeR,
=

(i) A<|E,[ < B,
(iii) the collection {€*™®i¥ . j € J} forms a Riesz basis in L*(E,) with uniform

Riesz constants A, B > 0 where E, :={y € R: ZXE(x +1,y) =1}

lEZ

Theorem 4.3.5 (Riesz Basis). Let E C R? be a measurable set of finite Lebesgue

measure. Define
D)= {l e Z, / xe(@ +Ly)dy > 0},

Let (b;)jes be a collection of real numbers and suppose that the collection E(A) forms a
Riesz basis in L*(E) with Riesz constants A, B > 0 where

A={(kb;)€ER?® :k€Z,jE J}

Let (a;)jes be another collection of real numbers in [0,1) such that

, A
sup sup |1 — e ?mail)2 « (4.23)
z€[0,1] j€J leDZ(I) 2B +2
then the set E(A) forms a Riesz basis L*(E) with Riesz constants 2B+2, and 45 B+1 +2B

where A = {(a; +k,b;) €ER? 1 k€ Z,j€J}

49



4.4 Examples with some bounded subsets of R?

The Beurling Density. For h > 0 and # € R?, we denote by @Q(x) the closed cube
centered at r with side length h. Let A = {)\;};c; C R? be uniformly discrete, i.e we
assume that [\; — A\g| > a > 0 for all \; # ;. We denote by

D*(A) = lim sup sup #(A N Qn(x))

h—00 ;.cRd hd

D~ (A) = lim inf inf #(A N Qn(7))

h—o0 zeR4 hd

the upper and lower Beurling density of A, respectively.

Proposition 4.4.1. Let A = {(k,b;) e R? : k€ Z,j € J} . Let D*((b;)) and D~((b;))
be the upper and lower Beurling density of (b;);e; C R respectively. Then

1. D*((b,)) = D¥(A)
2. D=((b;)) = D~(A)

Proof. Let Qp(x,y) := In(x) x I(y) for some h > 0, be a square of side h centered at
(z,y) € R? where I;,(z) and I;,(y) are closed intervals both with length &, centered at x

and y respectively. Then it is easy to see that

#{(k,b5), (k,b;) € Qu(z,y)} = #{k € Z,k € In(x)} x #{b;, b; € In(y)}.
Therefore, by using the definition of D (A), we have that

sup #({(k, b;)} 0 Qn(z,y))

D*(A) = lim sup

h—o00 (z,y)ER2 h?
i sup SREARIOLE) g SR AU 0 L)
h—ro00 (z,y)ER2 h h—00 yecRr h
= D™(Z) x D™((b;))
= D" ((b;)), since D(Z) = 1.
A similar proof is used for (2) with
DA =

20



Theorem 4.4.2. Let A = {)\; : j € J} C R be uniformly discrete and let E C R be an
interval. For the system E(A) to be a frame for L*(E), it is necessary that D~ (A) > |E|,
and it is sufficient that D~ (A) > |E)|.

Theorem 4.4.3. Let A = {\; : j € J} C R be uniformly discrete and let E C R be
an interval. For the system E(A) to be a Riesz sequence in L*(E), it is necessary that
DT (A) < |E|, and it is sufficient that D (A) < |E|.

Proof of 4.4.2 and 3.4.3. See [14]. ]

Example 4.4.4 (Disk). Consider the disk E C R? of radius r > 0 centered at the origin
(0,0); that is
E={(z,y) € R? 2° +y* <r?}.

Let (b;) be uniformly discrete sequence of real numbers associated with

A={(k,b;))€ER?® :k€Z,jeEJ}

We investigate the existence of Riesz sequences and frames of the form E(A) on the

domain E, for fized r > 0.

Frames:
We claim that, the disk defined above will support a frame if r € (0, %] Suppose r > %7
then we see that, the non-overlapping condition (frame necessary condition) in Theorem

4.3.1 fails. Secondly, for each x € [—%, %], we find the sets

E, := {yGR:ZXE(a:+l,y):1}.

IEZ
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It is seen from the above diagram that,

E,=|—Vr2—a2 Vr2—a2 |, for |z| <7,

and

1
E, =0, when r <|z| < Y

with Lebesgue measure, |E,| = 2v/r? —22. We now look for the largest of each of the

sets E, for a.e z € [—3, 3.
Clearly, sup |E,| = 2r. Therefore, by Theorem 4.4.2, if D~ (b;) > 2r, the set

{ezmbﬂ'y cjeJ}

will form a frame on E, defined above, for a.e x € [—%, %

A, B. Hence, by Theorem 4.3.2 and Proposition 4.4.1, if

| with uniform frame bounds

1
re (0, 5], and D™ (A) > 2r,

the collection E(A) will form frame on the disk E = {(z,y) € R?, 2%+ y* < r} with
frame bounds A, B.

Riesz sequences:

For each z € [—3, 3], we find the sets

E,o={yeR:> xe(z+1y) =1}

leZ

Again, it is seen from that diagram above that, for each = € [—%, %],

b= [ v v

We also claim that, the disk defined above will support a Riesz sequence with Riesz con-

stants A, B, ifr > % As before, suppose that r = % Then E, = {—\/l — 22, \/%1 — 2 } ,

4

1
inf |E,|= inf 2¢/-—22=0. (4.24)
z€[-3,2 z€[-3,3 4

272

with
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By Theorem 4.2.1, for the disk E to support a Riesz sequence with Riesz constants A, B,

it is necessary that

11
A<|E, < B, foraexc¢€ [—5,5] :

In the case where r = %, the lower Riesz constant A = 0 by (4.24), which is a contradic-

tion to A > 0. Hence, for Riesz sequences with Riesz constants A, B, we require that,

r > % in which case, |E,| # 0, for each € [—3, 5]. We now look for the smallest of each
of the sets E, for a.e x € [—3, 1].

1
Clearly, inf |E,[=24/r*— T Therefore, by Theorem 4.4.3, if D¥(b;) < 24/r? — 1,
z€[—3,5]

272
the set
{e¥™ibiv . j € J}

will form a Riesz sequence on E, defined above, for a.e € [—1, 1] with uniform Riesz

bounds A, B. Hence, by Theorem 4.2.3 and Proposition 4.4.1, if

1 1
r>g and D*(A) <24/r?— 7

the collection E(A) will form Riesz sequence on the disk E = {(z,y) € R?, 22 +y? < r}
with Riesz bounds A, B.

Example 4.4.5 (Rotated square). Let

—h h —h h
Qon = [775} X [775];

be a square of length h > 0 centered at (0,0) and a rotation matriz respectively for some
h >0 so that

Qn = AQon

is the rotated square. Let (bj) be uniformly discrete sequence of real numbers associated
with
A={(k,b;)€ER?® :k€Z,jEJ}

We seek to investigate the existence of frame or Riesz sequence of the form E(A) on the
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rotated square Qy, for some fized h > 0.

Let P, (%, %), I (—%, %), Py (—%, —’—5), b, (%, —%) be the vertices of (J;,. Then the

/

following are their respective images under A; P (0, M) , Py (— %5, 0) , Py ( , —%5) ,

2
and P, (%5,0).

/

Py

/

Py

Frame: We claim that A < \/Li is a necessary condition for @), to support a frame
with frame constants A, B. Assume h > %, then we see that, the non-overlapping con-

dition (frame necessary condition) in Theorem 4.3.1 fails.

By using the points Pll (0, %) and Pi (%5, O), we obtain the equation of the line

hv/2

y=—r+—

and by using the points Pé (O, —%) and P; (%5, 0), we obtain the equation of the

line
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Therefore, for each z € [—1, 1], the sets

(Qh)ﬂﬁ = {y eR: ZXQh(x+l7y> - 1}

leZ
is given by
hv/2 h h
(Qn)z = [m——\/_ ,—x—i——\/_ ], for |z] < —,
2 2
and
(@) =0, when - <Js] < 3
=0, when — < |z| < =,
h NG 5
with Lebesgue measure, |(Q4).] = —22 + hv/2. We now look for the largest of each of
the sets (Q), for a.e z € [—1,1].
Clearly, sup |(Qn).] = hV/2. Therefore, by Theorem 4.4.2, if D~(b;) > hv/2, the set
sel-1.4

{e%ibﬂ'y e J}

will form a frame on (@), defined above, for a.e z € [—3, 1

A, B. Hence, by Theorem 4.3.2 and Proposition 4.4.1, if

| with uniform frame bounds

1
h<—, and D~ (A) > hV2,
G (A)

the collection E(A) will form frame on @), with frame bounds A, B.

Riesz sequence. From the diagram above, for each = € [—%, %], the sets

(Qh)$ = {y eER: ZXQh(x+l7y> = 1}

lEZ

is given by
2 '

(@Qn)e = {x 5

We claim that, for Q)5 support a Riesz sequence with Riesz constants A, B, if h > \/LE

M

As before, suppose that h = \/Li Then (Q 1), = {:{: — % ,—T + % } with

inf  [(Qu).|= inf (—2¢+1)=0. (4.25)

sel-341 VR sel-14)
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By Theorem 3.2.1, for ), to support a Riesz sequence with Riesz constants A, B, it is

necessary that

11
A<|(Qn):] < B, foraexce [—5,5] .

In the case where h = \/Li’ the lower Riesz constant A = 0 by (4.25), which is a contra-

diction to A > 0. Hence, for Riesz sequences with Riesz constants A, B, we require that,

r > £ in which case, [(Qr).] # 0, for each 2 € [—3, 3]. We now look for the smallest of

each of the sets (Q), for a.e z € [—1,1].

Clearly, inf |(Qn).] = hV2 — 1. Therefore, by Theorem 4.4.3, if D*(b;) < hv/2 — 1,
~202]

the set

{e%ibﬁ'y cjeJ}

will form a Riesz sequence on (Q), defined above, for a.e z € [—%, 5] with uniform

Riesz bounds A, B. Hence, by Theorem 4.2.3 and Proposition 4.4.1, if
1
h>—, and DT(A) < hV2—1,
v (™)

the collection F(A) will form Riesz sequence on @), with Riesz bounds A, B.
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5 Shifts generated by non-full rank
lattices in R?

In this chapter, we extend the results obtained in Chapter 4 under the action of a general

non-full rank lattice.

5.1 Correspondence between shifts generated by

non-full rank lattices in R?

Definition 5.1.1. We define a non-full rank lattice H C R? by

{ Z kv k; € Z}, where v;, i = 1,...,n are n linearly independent vectors in RY.

Definition 5.1.2. A closed subspace M C L*(R?) is H-invariant if

feM then T,f e M Yhe H
where Ty, f(x) = f(z — h).

Given vy, ..., vn, n linearly independent vectors in R?, we can choose additional vectors

Upi1, -, Vg such that the collection {v;}, i =1, ..., d, forms a basis for R<.

Proposition 5.1.3. Given vectors vy, ...,v4, forming a basis for R?, the linear mapping

S : L*(RY) — L2(RY) defined for f € L*(R?) by
§1(x) = f(Qr), € R

15 an tsomorphism, where the d x d matrix Q s given by

d
Qr = invi, r=(r1,..,24) € R%

o7



The inverse corresponding to the operator S, S~ is given by S™' f(x) = f(Q 'x).

Proof. First of all, we see that the d x d matrix Q given by Qx = Zle x;v; is invertible
as the vectors v; € R? are linearly independent, and thus, det(Q) # 0. To show that S
is onto, given any f € L*(R?), we choose g € L?(R?) defined by g(x) = f(Q 'z) so that
Sg(x) = f(x). Also see that, for any f € L*(R?) we have that

[ at@par = [ ir@ o)

Using the change of variables y = Q 'z, we obtain
1911Z2@ay = det(Q7") [ [ f(y)*dy < oo. (5.1)
(R) R

It is also very easy to see that Ker(S) = {0}. Therefore the mapping S is an isomorphism

and 7' f(z) = f(Q ')
[l

Lemma 5.1.4. Let S as in Proposition 5.1.3 and let H = {Zkﬂ)Z sk € Z}. Then,
i=1

for every k € Z" x {0}4=" and every h € H,
TiSf(x) = SThf(z), fe€ L*(RY).
Proof. Let f € L?*(R%). Then,

TiSf(x) = (Sf)(x — k) for z € Rd’k e 7" x {O}d—n
= f(Q@ - k‘)) for x € Rd, ke 7" x {O}d—n

= f(Qfl? - Qk) for z € Rd, ke 7" x {O}d—n

= f(Qx —h) for t e R, he H
=T, f(Qu) for eRheH
= ST, f(x) for ze€R% heH.

]

Proposition 5.1.5. A closed subspace M C L*(R?) is H-invariant if and only if the
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set M defined by
M ={Sf, fe M} (5.2)

is Z" x {0}¢™" — invariant.

Proof. Assume the closed subspace M C L?(R%) is H-invariant. Then given any
fe M, T,f € M, Vh € H. By (5.2), we conclude that ST,f € M. Therefore we
can deduce from Lemma 5.1.4 that TxSf € M for all k € Z" x {0}4™. Thus M is
Z" x {0}~ — invariant.

Conversely suppose that M is Z" x {0}97" — invariant, then we have that T,Sf € M
for all k € Z" x {0}% ™. Therefore by Lemma 5.1.4, we see that ST}, f also belongs to
M. By (5.2), we conclude that T, f € M, Yh € H. Hence M is H-invariant. H

5.2 Riesz sequences, Frames and non-full rank lattices
in R?

The theorem below establishes relationship between Riesz sequences and frames that are

generated by the non-full rank lattice Z" x {0}9~" and a general non full rank lattice H.

Theorem 5.2.1. Let A C L*(R?) be countable.

1. The family {Trf : f € A, h € H} is a Riesz sequence for M with Riesz constants
A, B > 0 if and only if {T};;Sf : f eA keZ"x {O}d_”} is a Riesz sequence of

M with Riesz constants A* = det(Q) > (0 and B* = > 0.

2. The family {Tnf : f € A, h € H} is a frame for M with frame constants
A, B > 0 if and only if {Tka  feA ke Z” x {0Y="Y is a frame of M with
>0 and B* = > 0.

T

frame constants A* = det( o)

Proof.(1). Suppose {T,f : h € H, f € A} is a Riesz sequence of M with Riesz
constants A, B > 0. Then for every sequence {Cy,, } indexed by A x H, with finitely

det( Q)

many non-zero terms, we have

<BY (el (53)

feAheH

Z Z CrnIhnf

feEAheH

N

AN el <

feEAheH

Since

DO CnTuf (w)

feAheH

Z Z CinThf

feAheH
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letting w = Qu, (5.3) becomes

> > e, hThf = det(Q) / > CnTif(Qu)

feAheH feAheH
2
:det(Q)/ chf,hf(QiU—QQ_lh) dx
R feAheH
2
:det(Q)/ ZZcfhf( 1h)> dx
RY e AheH

2

:det(Q)/ >y cf,kf(Q(g;—k)> dx
RY | re A keznxfoyi—n
2

:det(Q)/ > Y CuSfa—k)| da
RY | fe A keznx {0)d—n
2

= det(Q) /R d Yo Y CuTiSf(x)| de

JEA keZn x{0}d—n

2

= det(Q) Z Z CriTeSf

feAkezn x{0}d—n

That is,
) 2

=det(Q) > Y CTiSf (5.5)

fEA kezn x{0}d—n

Z Z CinThf

feAheH

Therefore by (5.3), we obtain

2
AT YT el <det(Q) >0 D CRuSE| <BY L > [Cl

fEA kezn x{0}d—n fEA kezn x{0}d—n feAkezn x{0}d—n
(5.6)

with A* = - ( ;> 0and B* = 7 > 0. Thus {T3xSf: fe€ A keZ"x {0} "}isa

Riesz sequence of M with Rlesz constants A* B*.
Conversely suppose {TkS f: feA ke Z” x {0}47 "} is a Riesz sequence of M with

Riesz constants A* = > (0 and B* = > (. Then (5.6) holds. Using (5.5), wi

det( ) det( )
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see that (5.6) becomes

<BY ) sl (5.7)

feAheH

AN el <

feAheH

Z Z CepnTnf

feEAheH

Therefore, {T),f : f € A, h € H} is a Riesz sequence for M with Riesz constants A, B.

(2). Suppose {Tnf : f € A, h € H} is a frame for M with frame constants A, B.
Then

Al gl? <> g Tuf)P< Bl gl’, Vg e M. (5.8)
feEAheH
See that
(0.105) = [ atw)Tf(w)do (5.9)
Rd

If we let w = Qx then (5.9) becomes

(9, Thf) = det(Q) /R 9(QTWf(Qu)de, b € H
~det@ [ o(Qu)fQe=mis. b € B
= det(Q) /Rd Sg(x)Sf(x — k)dz, k=Q 'heZ" x {0}
= det(Q) g Sg(x)ThSf(x)dz, k=Q 'heZrx {0}

= det(Q)(Sq, Ti:Sf), k=Q 'heZ"x {0}

Therefore,

YD g Tuf)P=det(@QP Y > [Sg. TiSfH. (5.10)

feAheH feAkeznx{0}d—n

Also, using the change of variables w = Qz, we obtain

9l = [ lotw)Pdu = det(Q) [ So(o)Pde = der(@ SqlF. (.11
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By (5.8), (5.10) and (5.11), we have that

A B
i SIPEY Y USenSNPS sl Sl (512

feA keznx{0}d—n

Therefore {T,Sf: f € A, k€ Z" x {0} "} is a frame of M with frame constants
AT = det( y and B* = det(Q) .
Conversely, suppose that {T}Sf: fe A keZx {0} "} is a frame of M with
det 7 and B = det . Then, (5.12) holds. By (5.10) and (5.11),
we have that (5.12) become (5.8). Hence {Thf . f €A he H}is a frame for M with

frame constants A, B. n

frame constants A* =

We now state a consequence of Theorem 5.2.1 in relation to our main problem. We
will let H and Q as in Definition 5.1.1 and Proposition 5.1.3 respectively throughout
Corollary 5.2.2 and Theorem 5.2.3.

Corollary 5.2.2. Let Q C R be a measurable set of finite Lebesque measure. Let

(¢;) CR? and a; := Q '¢; be given sequences associated with the set of frequencies
A={(c;+h)€ER?: he H, jeJ}, (5.13)
A={(a;+k)eR?: kezZ"x {0} jeJ} (5.14)

Then the set E(A) forming a Riesz sequence (resp. fmme) for L*(Q) with Riesz (resp.
frame) constants A, B, is equivalent to the set E(A) forming a Riesz sequence (resp.
frame) for L*(E), where E := Q'Q), with Riesz (resp. frame) constants Adet(Q),
Bdet( Q).

Proof. Define the shift invariant spaces Vi, and Vg by
Vo = {f € L*(R?),suppf C 0}

Ve = {g € L*(R?), suppg C E}.
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Also, define f; € Vo by fj = ec;Xa- Then, the fact that collection

E(A) = {ec;sn, he H,j € J}
= {enee;, he H,j € J}
= {enf;, he H,j € J}
={T,f;, he H,j € J}

is a Riesz sequence (resp. frame) in L%((2), is equivalent to the collection
{T.fj, he H,j e J} (5.15)

forming a Riesz sequence (resp. frame) in V. Now, for g;(z) = f;(Qx), we have that

~

! A1Q e

gA](é‘) — /Rd fj(Qx)e’W”gd:c _ Q) o fj(w>6727riQ—lw-§dw —

det(Q)

Thus,

Hence, the fact that collection

BE(A) = {eq 5, k€ Z" x {0}, j e J}
= {ereq,, k € Z" x {0}, j € J}
— {det(Q)exg;, k€ Z" x {0}4",,j e J}
= {det(Q)Tig;, k € Z" x {0}, j € J}
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is a Riesz sequence (resp. frame) in L?(E), is equivalent to the collection
{det(Q)Tvg;, k € Z" x {0}, j € J} (5.16)

forming a Riesz sequence (resp. frame) in V.
By Theorem 5.2.1, (5.15) is a Riesz sequence (resp. frame) in Vi, with Riesz (resp.
frame) constants A, B if and only if {Tyg;, k € Z" x {0}?™", j € J} is a Riesz sequence

(resp. frame) in Vg, with Riesz (resp. frame) constants #{Q), #{Q). But the collection

{Thg;, k€2 x {0}, jeJ}

is a Riesz sequence (resp. frame) in Vg, with Riesz (resp. frame) constants ﬁ@, %

if and only if (5.16) is a Riesz sequence (resp. frame) in Vg, with Riesz (resp. frame)

constants Adet(Q), Bdet(Q).

Therefore, the set E(A) forming a Riesz sequence (resp. frame) for L?*(2) with Riesz
(resp. frame) constants A, B, is equivalent to the set E(A) forming a Riesz sequence
(resp. frame) for L?(E), where E := Q'Q with Riesz (resp. frame) constants Adet(Q),

Bdet(Q). O
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6 Conclusion

The problem of existence of Riesz basis and frames of the form {e,;r : h € H,j € J} on
a measurable domain € C R? of finite positive measure, for some collection of vectors
(¢j); € R and H, the dual lattice of a full rank lattice K C R, is well investigated by
the authors in [1] and [9]. In the case where the domain 2 is bounded, Kolountzakis in
9], established that, 2 must be a multitile domain at level & € Z* on the full lattice K, in
which case, the index set J = {1, ..., k}. Later in [8], Kolountzakis posed an open problem
concerning the case where the domain €2 is unbounded. He asked whether the unbounded
k-tile domain € is sufficient enough for the collection {e,1n : h € H,j € {1,...,k}} to
form a Riesz basis on this unbounded 2.

The authors of [1], in an attempt to answer the question by Kolountzakis, examined
this problem and discovered that, in the case where €2 is unbounded, there is the need
for an extra arithmetic property, which they called the admissibility condition. The
authors in [1] a gave proof of their result via the theory of shift invariant spaces. After
a successful proof of their result using both the multitile at level £ on the full lattice
A and the admissibility conditions, they realized by way of an example that, this extra
condition, that is, the admissibility condition, is too strong a condition as this example
(Example 3.3 in [1]) showed that, an unbounded k—tile measurable domain of finite
positive measure supports Riesz basis of the form {e., 4 : h € H,j € {1,...,k}} without
being admissible.

In this thesis, we considered the case where H C R? is a non-full rank lattice, and
analyzed the conditions for which the collection {ch+h, h € H,j € J} forms a Riesz
sequence or a frame on 2 C R? as above, for some collection of vectors (¢;); C R%, J, an
at most countable index set.

We started by defining a non-full rank lattice H C R by H := QG,,, where Q is
some d X d invertible matrix, and G, = Z" x {0}4™". Without loss of generality, we
chose H as Z™ x {0}¢™" to obtain the following results on Riesz sequences and frames
in R?, via shift invariant spaces under the action of a non-full rank lattice Z" x {0}4~".

An important result which we obtained from the extention of the theory of shift
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invariant subspaces of L?(R?) is given by Theorem 3.2.10. This theorem reduces the
problem of checking whether a system in closed subspaces of L?(R?) is a Riesz sequence
or frame to analyzing the fibers in closed subspaces of L*(Z" & R% ™). We obtained
a corollary of Theorem 3.2.10 but worked in R2 This corollary establishes the link
between the extended theory of shift invariant spaces and our main problem which was
analyzed in R2.

The results on Riesz sequences are seen in Theorem 4.2.2, Theorem 4.2.3 and Theorem
4.2.6. In particular, Theorem 4.2.2 gives a necessary and sufficient condition for which
the collection E(A) to form a Riesz sequence in L?(E) with constants A, B > 0, where
A = {(aj, + k,b;,) € R* : k € Z,j, € J} . Theorem 4.2.2 tells us a necessary
and sufficient condition for the collection E(A), where A is as above, to form a Riesz
sequence in L*(E) with constants A, B > 0 for a single choice of j € J. Now, in the case
where a; # 0 for any j € J, it was hard to directly obtain results on Riesz sequences
of the form F(A) in L*(E), where A = {(a; + k,b;) € R* : k € Z,j € J}. This
motivated us to initially work with the case where a; = 0 for any j € J, and the results
on Riesz sequences in this case was obtained in Theorem 4.2.3. In particular, Theorem
4.2.3 reduces the problem to the real line case which already has some known results on
Riesz sequences. We later gave a proof of the case where a; # 0 for any j € J, using
the knowledge about the choice of (b;); C R (which comes from Theorem 4.2.3) and in
addition, choosing (a;); C R such that |a;| < 6 or |a; — 1| < § for some 6 > 0, where
D(z) is as given in Theorem 4.2.6.

The results on frames are also seen in Theorem 4.3.1, Theorem 4.3.2 and Theorem
4.3.3. We started by stating a necessary condition for which the collection F(A) forms a
frame for L?(E) with frame constants A, B > 0 where A = {(k,b;) € R? : k € Z,j € J}.
In Theorem 4.3.2, we gave a sufficient condition in the real line case, for the collection
E(A), A as above to form a frame. Again, we reduced our argument to the real line, as
there are some known results on frames with intervals. As before in the case of Riesz
sequences, to give a proof on frames in the case where a; # 0 for any j € J, we used
the knowledge about the choice of (b;); C R (which comes from Theorem 4.3.2) and in
addition, choosing (a;); C R such that |a;| < 6 or |a; — 1| < § for some 6 > 0, where
D(x) is as given in Theorem 4.3.4.

We combined the hypotheses of both Riesz sequences and frames to give results on
Riesz bases. This is seen in Theorem 4.3.4 and Theorem 4.3.5.

As an illustration of our results, we considered the disk in R? of radius » > 0, and

the rotated square at angle 7, of side length i > 0, as examples. These are both

66



bounded domains, and the sets F, from Theorem 4.2.3 and Theorem 4.3.2 are intervals.
Therefore, via the already known density results on Riesz sequences and frames, we gave
conditions for which both the disk and the rotated square will admit Riesz sequences
and frames of exponentials of the form F(A), where A is as given in Example 4.4.4 and
Example 4.4.5.

We finally established a correspondence between the domain Q C R? and £ C R? and
obtained that, the collection F(A) forming a Riesz sequence (resp. frame) for L*(Q)
with Riesz (resp. frame) constants A, B, is equivalent to the collection E(A) forming a
Riesz sequence (resp. frame) for L?*(F), with Riesz (resp. frame) constants Adet(Q),

Bdet(Q) where the set of frequencies A, and A are given by
A={(c;+h)€eR?: he H, jeJ},

A={(a;+k)eR: kezZ"x {0} jeJ}

with F:= Q" (¢;); C R? and a; := Q" '¢;.

There are still many unsolved questions concerning the existence and the construction
of Riesz sequences, frames and Riesz bases of exponentials on a measurable subset of R?
of finite positve measure. We hope to have shed some light on some particular aspects

of this problem in this thesis.
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