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Abstract

Model-based clustering is a probabilistic approach that views each cluster as a com-

ponent in an appropriate mixture model. The Gaussian mixture model is one of the

most widely used model-based methods. However, this model tends to perform poorly

when clustering high-dimensional data due to the over-parametrized solutions that

arise in high-dimensional spaces. This work instead considers the approach of com-

bining dimension reduction techniques with clustering via a mixture of generalized

hyperbolic distributions. The dimension reduction techniques, principal component

analysis and factor analysis along with their extensions were reviewed. Then the afore-

mentioned dimension reduction techniques were individually paired with the mixture

of generalized hyperbolic distributions in order to demonstrate the clustering perfor-

mance achieved under each method using both simulated and real data sets. For a

majority of the data sets, the clustering method utilizing principal component anal-

ysis exhibited better classification results compared to the clustering method based

on the extending the factor analysis model.
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Chapter 1

Introduction

Classification is a procedure in which group membership labels are assigned to unla-

beled observations. A group can be a class or a cluster. Having prior knowledge of

observation labels and the degree in which this information is used, can lead to the

following three types of classification: supervised, semi-supervised, and unsupervised

(McNicholas, 2016). Cluster analysis is unsupervised classification, where the labels

for all observations are missing or are treated as such.

A typical way to define a cluster is as a group of observations such that the obser-

vations in a particular group are more similar to one another than they are to the

observations present in any alternative groups. Using such a definition is problematic

because taken at the extreme each observation is defined as its own cluster (McNi-

cholas, 2016). Instead it is more prudent if one thinks of a cluster as a component

in a suitable mixture model (Tiedeman, 1955; Wolfe, 1963). The use of a mixture

model or a family of mixture models for clustering is known as model-based clustering

(McNicholas, 2016).

The onset of the information age has resulted in large improvements to the amount of
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data that can be stored and a rapid increase in the rate at which this data can be gen-

erated. Both these developments have resulted in the term “Big Data” being coined.

Big Data sources are typically associated with high-dimensional variables of mixed

type which are produced in rapid succession (Daas et al., 2015). The focus herein will

be on model-based clustering of high-dimensional data. Clustering high-dimensional

data using traditional model-based approaches has proven to be difficult due to a phe-

nomenon known in literature as the curse of dimensionality (Bellman, 1957). This

“curse” refers to the over-parametrized solutions that are returned from estimating

parameters over a high-dimensional space (Bouveyron and Brunet-Saumard, 2014).

The works by (Scott and Thompson, 1983; Huber, 1985) have demonstrated it is

more pragmatic to implement clustering techniques in a lower dimensional space as

opposed to the original space. Consequently, an appropriate measure to address the

issue of dimensionality is considering dimension reduction techniques.

This thesis is a continuation of the earlier work begun by Bouveyron and Brunet-

Saumard (2014), who used Gaussian mixture approaches to cluster high-dimensional

data. This work further develops their contributions by pairing dimension reduc-

tion techniques alongside clustering using the mixture of hyperbolic distributions

(MGHD). In particular, the approach of using principal component analysis for di-

mension reduction in addition to clustering using MGHD will be compared against

the mixture of generalized hyperbolic factor analyzers (MGHFA) model. The mix-

ture of generalized factor analyzers (MFA) model simultaneously clusters the data

and reduces the dimensionality within each cluster locally. The MGHFA model is an

extension of the MFA model which incorporates the generalized hyperbolic distribu-

tion. Model-based clustering will be carried out using the MGHD model in favor of

2
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the conventional Gaussian mixture model because it is able to produce more favor-

able results when the clusters are asymmetrical or skewed. Furthermore, the MGHD

exhibits a great deal of modelling flexibility as a result of its index parameter (see

Chapter 2 for details).

The remainder of this thesis will be organized as follows: in Chapter 2, the theory

behind mixture models, relevant distributions, and popular dimension reduction tech-

niques will be discussed. In Chapter 3, parameter estimation, model selection, and

classification assessment will be overviewed. In Chapter 4, R software (R Core Team,

2017) will be used to demonstrate the classification performance achieved when using

dimension reduction approaches in conjunction with model-based clustering methods.

Lastly, Chapters 5, will end with a general discussion on the highlighted methods and

suggestions for future work.

3



Chapter 2

Content

2.1 Mixture Models

A finite mixture model is a convex linear combination of two or more probability

density functions. Let X be a p-dimensional random vector. The probability density

function of a mixture model is given by

f(x|ϑ) =
G∑
g=1

πgfg(x|θg), (2.1)

where fg(x|θg) is the density function for the gth component, πg are the mixing

proportions, and ϑ = (π1, π2, ..., πG,θ1,θ2, ...,θG) is the vector of parameters. The

following assumptions are made: πg > 0 for g ∈ {1, 2, ..., G}, and
∑G

g=1 πg = 1. By

convention, the component densities f1(x|θ1), f2(x|θ2), ..., fG(x|θG) come from the

same family of distributions and f(x|ϑ) is known as the G-component finite mixture

density (McNicholas, 2016).

4
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2.2 Mixtures of Multivariate Gaussian

distributions

Gaussian mixture models (GMMs) are widely used in clustering applications because

data following a mixture of multivariate normal densities have spherical clusters cen-

tered around their means with higher density for points closer to the mean (Fraley

and Raftery, 2002). The density function for a GMM can be written as follows:

f(x|ϑ) =
G∑
g=1

πgφ(x|µg,Σg), (2.2)

where

φ(x|µg,Σg) =
1√

(2π)p|Σg|
exp

{
− 1

2
(x− µg)

′
Σg
−1(x− µg)

}
(2.3)

is the probability density function of a multivariate Gaussian distribution with mean

µg and variance-covariance matrix Σg. Parameter estimation for the GMM model

is carried out using the expectation-maximization algorithm. GMMs perform poorly

when the data exhibits departures from the assumptions of normality such as skewness

or outliers (Juárez and Steel, 2010).

2.3 Generalized Inverse Gaussian Distributions

The generalized inverse Gaussian (GIG) distribution was first formalized by Good

(1953) but its development can be traced back to Halphen (1941). At the time of its

development, the GIG was known as the Halphen Type A distribution. Barndorff-

Nielsen and Halgreen (1977) outlined the statistical properties that resulted in the

5
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GIG distribution that is used today. Consider a random variable W following a GIG

distribution with parameters a, b ∈ R+, λ ∈ R, then its probability density function

for w > 0 can be written as:

q(w|a, b, λ) =
(a/b)λ/2wλ−1

2ηKλ

√
ab

exp

{
− aw + b/w

2

}
, (2.4)

where Kλ is the modified Bessel function of the third kind (see Appendix A for details)

with index parameter λ, and the parameters a and b control concentration via
√
ab

and scaling via
√
a/b (Koudou et al., 2014; Browne and McNicholas, 2015).

Figure 2.1: Densities of GIG distributions with various parameterizations.

Setting ψ =
√
ab and η =

√
a/b can result in a more interpretable parameterization

which expresses the concentration and scale parameters explicitly (Koudou et al.,

6
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2014; Browne and McNicholas, 2015). This parameterization is represented by:

h(w|ψ, a, b, λ) =
(w/η)λ−1

2ηKλ(ψ)
exp

{
− ψ

2

(
w

η
+
η

w

)}
. (2.5)

The GIG is a highly versatile distribution with special cases consisting of widely

used distributions (Jorgensen, 2012; Browne and McNicholas, 2015), i.e., the gamma

distribution (b > 0, λ > 0) and the inverse Gaussian distribution (λ = −1/2).

2.4 Mixtures of Generalized Hyperbolic

Distributions

The generalized hyperbolic (GH) distribution was introduced by Barndorff-Nielsen

(1977) with the intention of modeling aeolian sand deposits and dune movements.

McNeil et al. (2015) has written the probability density of the GH distribution as

follows:

f(x|ϑ) =

[
χ+ δ(x,µ|∆)

ψ + γ
′
∆−1γ

](λ−p/2)/2

×
[ψ/χ]λ/2Kλ−p/2

(√
[ψ + γ

′
∆−1γ][χ+ δ(x,µ|∆)]

)
(2π)p/2|∆|1/2Kλ(

√
χψ) exp{(µ− x)′∆−1γ}

, (2.6)

where ϑ = (µ,γ,∆, λ, χ, ψ, ) is the set of parameters. Kλ is the modified Bessel

function of the third kind with index parameter λ. The location and skewness pa-

rameters are given by µ and γ respectively, while the concentration parameters are

given by χ and ψ. The squared Mahalanobis distance between x and µ is denoted by

δ(x,µ|∆) = (x−µ)
′
∆−1(x−µ), where ∆ is the positive definite scale matrix with

7
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the constraint |∆| = 1. The GH distribution can be defined in terms of a normal

variance-mean mixture with a GIG mixing distribution using the following relation:

X = µ+Wγ +
√
WV , (2.7)

where W ∼ GIG(ψ, χ, λ) is a GIG random variable and V ∼ N(0,∆) is a latent mul-

tivariate Gaussian random variable (Hammerstein, 2010; McNicholas, 2016). Anal-

ogous to the GIG distribution several distributions can be recovered as special or

limiting cases of the GH distribution. Some well known examples include the skew-t

(Murray et al., 2014) the variance-gamma (McNicholas et al., 2017), and the normal-

inverse Gaussian (Karlis and Santourian, 2009). Browne and McNicholas (2015) as

well as Hu (2005) noted that using the GH distribution for the purposes of model-

based clustering requires relaxing the constraint |∆| = 1. However, relaxing this

assumption results in the model being unidentifiable. This means that two or more

parametrizations correspond to the same probability distribution making inference

about the true parameters difficult. Browne and McNicholas (2015) introduced the

parametrization ω =
√
ψχ and η =

√
χ/ψ. This leads to another parametrization of

the GH distribution:

f(x|ϑ) =

[
ω + δ(x,µ|Σ)

ω +α
′
Σ−1α

](λ−p/2)/2

×
Kλ−p/2

(√
[ω +α

′
Σ−1α][χ+ δ(x,µ|Σ)]

)
(2π)p/2|Σ|1/2Kλ(

√
ω) exp{(µ− x)′Σ−1α}

, (2.8)

where Σ is the scale matrix and α is the skewness parameter. Browne and McNicholas

(2015) use the parametrization in (2.8) for the mixture of generalized hyperbolic

8
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distributions (MGHD). Parameter estimation for the MGHD model is carried out

using the expectation-maximization algorithm.

2.5 Principal Component Analysis

Principal component analysis (PCA) was first proposed by Pearson (1901) and was

further developed by Hotelling (1933). Hotelling described it as a method which

aimed at reducing the dimensionality of the data while retaining as much of the

variability as possible. The classical view of principal components is as orthogonal

linear transformations of the original data (Bouveyron and Brunet-Saumard, 2014).

Consider a random vector X = (X1, X2, ..., Xp) with covariance matrix Σ. Let λ1 ≥

λ2 ≥ ... ≥ λp ≥ 0 be the ordered eigenvalues of Σ, and let e1, e2, ..., ep be the

corresponding eigenvectors. Then the ith principal component can be written as:

Yi = ei1X1 + ei2X2 + ...+ eipXp, (2.9)

for i = 1, 2, ..., p. Where the ith principal component is the linear combination of the

Xi’s with maximum variance conditional on it being orthogonal to the first i−1 com-

ponents (Johnson and Wichern, 2007). The variance of the kth principal component

is given by λk. Consequently, the proportion of total variation explained by the first

k principal components is given by:

∑k
i=1 λi∑p
i=1 λi

. (2.10)

9
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An important consideration when using PCA for statistical analysis is determining

how many principal components to retain in the model. This is typically addressed

by considering the amount of total sample variance explained (Johnson and Wichern,

2007).

2.6 Mixtures of Generalized Hyperbolic Factor

Analyzers

2.6.1 Factor Analysis

Factor analysis is another popular dimension reduction technique that was introduced

by Spearman (1904) and its statistical properties were outlined by Bartlett (1953),

and Lawley and Maxwell (1962). Factor analysis sets out to reduce the dimensionality

of the p observed variables by substituting them with q latent factors where q < p.

An important consideration is that the q latent factors must account for a sufficient

amount of the variability originally explained by the p observed variables (McNicholas,

2016). Consider p-dimensional random variables X1,X2, ...,Xn. Assume there are q-

dimensional latent factors U1,U2, ...,Un, then the factor analysis model is given by:

Xi = µ+ ΛUi + εi, (2.11)

for i = 1, 2, ..., n, where Λ is a p × q matrix of factor loadings. The latent factor is

denoted by Ui ∼ N(0, Iq), with error terms given by εi ∼ N(0,Ψ), where Ψ is a p× p

diagonal positive definite matrix. Furthermore, it is assumed that both the Ui and εi

are independently distributed, moreover, they are independent of each other. Hence,

10
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the marginal distribution of Xi under the factor analysis model is N(µ,ΛΛ
′
+ Ψ).

2.6.2 Mixtures of Factor Analyzers

The factor analysis approach can be extended to the mixture of factor analyzers model

which assumes that:

Xi = µg + ΛgUig + εig, (2.12)

with probability πg, for g = 1, ..., G (Ghahramani and Hinton, 1997; McLachlan and

Peel, 2000). This approach was further extended to develop the mixture of generalized

hyperbolic factor analyzers model (MGHFA, see Tortora et al. (2015) for details). The

density can be described by:

f(x|ϑ) =
G∑
g=1

πgfh(x|θg), (2.13)

where fh(x|θg) is as defined in equation (2.8) and θg = (µg,Σg,αg, ωg, λg) with scale

matrix for component g defined by, Σg = ΛgΛ
′
g+Ψg. The parameters for the MGHFA

model are estimated using the alternating expectation-conditional maximization al-

gorithm.

11



Chapter 3

Methodology

3.1 Likelihood

The likelihood function serves as a basis for making inferences about the unknown

model parameters through utilizing maximum likelihood estimators. In general, the

log-likelihood function is used to find the maximum likelihood estimates because it is

easier to differentiate than the original likelihood function. Since log(x) is an increas-

ing monotonic function, maximizing the log-likelihood is equivalent to maximizing the

likelihood function. Consider n p-dimensional unlabelled observations (x1,x2, ...,xn)

that we wish to separate into G similar groups. Let (z1, z2, ..., zn) represent the unob-

served labels for each observation where zi = (zi1, zi2, ..., ziG). Then the model-based

clustering log-likelihood for the set of observations (x1,x2, ...,xn) is given by,

L(ϑ|x) =
n∑
i=1

log

( G∑
g=1

πgf(xi|θg)
)
. (3.1)

12
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In this instance the goal of clustering is to determine the value of the missing la-

bel zi for each observation xi. This makes maximizing the log-likelihood difficult

since information about the group labels (z1, z2, ..., zn) is missing. Together the sets

(x1,x2, ...,xn) and (z1, z2, ..., zn) form the complete-data set (Bouveyron and Brunet-

Saumard, 2014). The model-based clustering complete-data log-likelihood is given

by,

lc(ϑ; x, z) =
n∑
i=1

G∑
g=1

zig log(πgf(xi|θg)), (3.2)

where zig = 1 if the ith observation belongs to the gth cluster and zig = 0 other-

wise. The parameters in the proposed model can be estimated using the expectation-

maximization (EM) algorithm (Dempster et al., 1977). The EM algorithm is one of

the most popular methods for parameter estimation in the presence of missing data

or unobserved variables.

3.2 Parameter Estimation

3.2.1 EM Algorithm

The EM algorithm is an iterative process that alternates sequentially between the

E-step and the M-step, until convergence. The E-step consists of determining the

expected value of the complete data log-likelihood given the observed data and the

current parameter estimates. The expected log-likelihood of complete data is denoted

by:

E[lc(ϑ; x, z)|ϑ(h)] =
G∑
g=1

n∑
i=1

zig
(h) log(πgf(xi|θg)), (3.3)

13
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where ϑ(h) denotes the estimate for ϑ after the hth iteration and zig
(h) = E[zig =

1|xi,ϑ(h)] (Bouveyron and Brunet-Saumard, 2014). During the M-step, the expected

log-likelihood from the previous step is maximized and the current estimate of ϑ is

updated for the next iteration. A remarkable feature about the EM algorithm is that

each iteration guarantees the log-likelihood function must remain the same or show

improvement until the desired stopping criterion is reached.

3.2.2 AECM Algorithm

A variation of the EM algorithm is the expectation-conditional maximization (ECM)

algorithm which was first established by Meng and Rubin (1993). Overall the ECM

is similar to the EM algorithm but with one key distinction: the maximization step

is replaced by multiple conditional maximization (CM) steps (McNicholas, 2016). A

modified version of the ECM algorithm is alternating expectation-conditional maxi-

mization (AECM) algorithm (Meng and Van Dyk, 1997). This version of the algo-

rithm allows the basis for incomplete data to vary for each conditional maximization

step (Murray et al., 2014). The AECM algorithm is particularly useful for models like

the mixture of hyperbolic factor analyzers model, which has its source of incomplete

data stem from both the unknown group labels, {z1, z2, ..., zn} and the unobserved

factors, {u1,u2, ...,un}.

3.2.3 Method Initialization

In consideration of detecting the global optimum it is necessary to start with a good

choice the initial values (ϑ0) for the model and for several iterations to be run; in order

to compensate for the effects of random initializations (McLachlan et al., 2002). A

14
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commonly used initialization method is the k-means clustering algorithm (Hartigan

and Wong, 1979). The objective of the k-means algoritm is to partition a set of

observations into k clusters such that the distances between points within clusters

and the cluster centers are minimized.

3.2.4 Convergence

One widely used stopping criterion for the EM algorithm is a measure based on lack

of improvement in the log-likelihood. That is:

lr+1 − lr < ε, (3.4)

where lr is the observed log-likelihood value for the rth iteration and ε is some ar-

bitrarily small value. The stopping criterion for the AECM algorithm uses Aitken’s

acceleration (Aitken, 1926), which estimates the asymptotic maximum of the log-

likelihood. Aitken’s acceleration at iteration r can be written as:

ar =
l(r+1) − l(r)

l(r) − l(r−1)
(3.5)

and the asymptotic estimate of the log-likelihood at iteration the r + 1 is:

l(r+1)
∞ = l(r) +

1

1− a(r)
(l(r+1) − l(r)), (3.6)

McNicholas et al. (2010) considers the algorithm to have reached its exiting condition

when,

lr+1
∞ − lr < ε. (3.7)

15
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3.3 Predicted Classifications

Once the desired stopping criterion is achieved and parameter estimation is com-

plete, the predicted group labels are retrieved from the a posteriori probability that

observation xi belongs to the gth component:

ẑig =
π̂gfg(xi|ϑ̂g)∑G
h=1 π̂hfh(xi|ϑ̂h)

, (3.8)

for i = 1, ..., n and g = 1, ..., G. The numerical values for these a posteriori classi-

fications can be designated as “soft” or as “hard” depending on the nature of the

problem. “Soft” classifications consider the ẑig as each observation’s probability of

belonging to each component; where as “hard” classifications restrict the ẑig ∈ {0, 1}

(McNicholas, 2016). In practice, if one wishes to convert the a posteriori classifica-

tion from “soft” to “hard”, this can be done so using maximum a posteriori (MAP)

classifications, where

MAP{ẑig} =

 1 if g = argmaxh{ẑih},

0 otherwise.
(3.9)

3.4 Model Selection

Penalized likelihood approaches such as the Bayesian information criterion (BIC;

Schwarz (1978)) are used for determining the number of components used for model-

based clustering. BIC is given by:

BIC = 2l(ϑ̂)− ρ logn (3.10)

16
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where ρ is the number of free parameters in the model, n is the number of observations,

and l(ϑ̂) is the optimized log-likelihood value. The use of the BIC for selecting the

number of components in a mixture model has been supported by Leroux (1992) and

Keribin (2000). The BIC can be used for selecting the number of latent factors in the

factor analysis model. Simulation studies by Lopes and West (2004) corroborate the

use of BIC in selecting the number of latent factors.

3.5 Performance Assessment

The adjusted Rand index (ARI), introduced by Hubert and Arabie (1985) is the typ-

ically used method for assessing classification performance in model-based clustering.

The ARI stems from the Rand index (Rand, 1971), which is the ratio of pairwise

agreements to the total number of pairs. The Rand index can take on any value from

0 to 1, where 1 is indicative of perfect class agreement. The main drawback with the

Rand index is that it has a positive expected value under random classification. The

ARI was designed to compensate for this and it is defined as:

ARI =
index− expected index

maximum index− expected index
. (3.11)

Analogous to the Rand index, an ARI value of 1 refers to a perfect class agreement.

However, this time the expected value of the ARI under random classification is 0.

Negative values for the ARI are possible if the classifications are worse than what

would be expected by random classification.
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Chapter 4

Application

In this chapter, model-based clustering experiments were conducted utilizing both real

and simulated data. The class labels were treated as missing and all data sets were

scaled. The R package MixGHD created by Tortora et al., (2015) contains the func-

tions: MGHD and MGHFA, which were used to implement the MGHD and MGHFA

methods respectively. These clustering methods were initialized using the k-means

algorithm with the best fitting models being chosen via the BIC. The number of prin-

cipal components retained for each analysis was contingent upon a threshold of 85

percent of the proportion of variance being explained. The classification performance

for these approaches was then assessed using the ARI.
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4.1 Simulated Studies

4.1.1 Twonorm Data

The twonorm data set contained 20 numerical attributes over 7400 observations and

it was simulated using two classes from the multivariate distribution with unit covari-

ance (Breiman, 1996). The first class had mean vector (a, a, ..., a) while the second

class had mean vector (−a,−a, ...,−a), where a = 2√
20

. The MGHFA model was

fitted to data for G = 1, 2, ..., 5 components and q = 1, 2, ..., 5 latent factors. The BIC

selected G = 2 components with q = 2 latent factors, and the associated model had

an excellent classification performance (Table 4.2; ARI = 0.914). Next, the MGHD

model was applied to the first 16 principal components with BIC selecting G = 2

components. The aforementioned components explained roughly 85 percent of the

total variation in the data. The corresponding model had an excellent classification

performance (Table 4.2; ARI = 0.915).

Table 4.1: Cross-tabulation of the true versus predicted class labels for model-based
clustering on twonorm data.

cluster
label A B
Type I 3630 73
Type II 87 3610

(a) MGHFA

cluster
label A B
Type I 3641 62
Type II 101 3596

(b) PCA & MGHD

Table 4.2: ARI values and misclassification rates (MCR), based on predicted classifi-
cations for the unlabelled observations, for the MGHFA and PCA & MGHD models.

MGHFA PCA & MGHD
ARI 0.914 0.915
MCR 0.022 0.022
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Figure 4.2: Projection of the clustered twonorm data in the 2 first principal compo-
nents of PCA.

4.1.2 Ringworm Data

The ringworm data set contained 20 quantitative features over 7400 instances and it

was simulated using two classes from the multivariate distribution (Breiman, 1996).

The first class had a zero mean vector and a covariance matrix with 4’s along its

main diagonal, and 0’s on the off diagonal entries. The second class had mean vector

(a, a, ..., a) and a unit covariance matrix. The MGHFA model was fitted to the data

resulting in the BIC selecting G = 2 components and q = 1 latent factors. The

corresponding model had an excellent classification performance (Table 4.4; ARI =

0.934). Roughly 87 percent of the total variation in the data is accounted for by

the first 17 principal components. As a results, the MGHD model was applied to

the first 17 principal components, resulting in a model with excellent classification

performance (Table 4.4; ARI = 0.927).
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Table 4.3: Cross-tabulation of the true versus predicted class labels for model-based
clustering on ringworm data.

cluster
label A B
Type I 3558 106
Type II 18 3718

(a) MGHFA

cluster
label A B
Type I 3565 99
Type II 38 3698

(b) PCA & MGHD

Table 4.4: ARI values and misclassification rates (MCR), based on predicted classifi-
cations for the unlabelled observations, for the MGHFA and PCA & MGHD models.

MGHFA PCA & MGHD
ARI 0.934 0.927
MCR 0.017 0.018

Figure 4.3: Projection of the clustered ringnorm data in the 2 first principal compo-
nents of PCA.
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4.1.3 Waveform Data

This data was retrieved from the UCI machine learning repository. The data con-

tained 21 attributes measured over 5000 observations (Breiman, 1996). Each obser-

vation was generated from added noise attributes with mean 0 and variance 1. The

observations can be split into three equal partitions according to wave type. The

MGHFA model was fitted to this data resulting in the BIC selecting G = 3 com-

ponents and q = 1 latent factors. The associated model had a poor classification

performance (Table 4.6; ARI = 0.531). Roughly 86 percent of the total variation in

the data was explained by the first 12 components. Consequently, the MGHD model

was fitted to the first 12 principal components with BIC selecting G = 3 components.

The resulting model had a better classification performance (Table 4.6; ARI = 0.601)

compared to the approach using MGHFA.

Table 4.5: Cross-tabulation of the true versus predicted class labels for model-based
clustering on waveform data.

cluster
label A B C
Type I 1261 251 145
Type II 79 1420 148
Type III 189 101 1406

(a) MGHFA

cluster
label A B C
Type I 1247 199 211
Type II 79 1454 114
Type III 55 95 1546

(b) PCA & MGHD

Table 4.6: ARI values and misclassification rates (MCR), based on predicted classifi-
cations for the unlabelled observations, for the MGHFA and PCA & MGHD models.

MGHFA PCA & MGHD
ARI 0.531 0.601
MCR 0.183 0.151
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Figure 4.4: Projection of the clustered waveform data in the 2 first principal compo-
nents of PCA.

4.2 Real Data

4.2.1 Wine Data

This data set is available in the pgmm library (McNicholas et al., 2011) for R. The

data contained 27 chemical and physical measurements on three types of wine, namely

Barolo, Grignolino, and Barbera. There were 178 observations of these three types of

wine which were all cultivated in the same region of Italy (Forina et al., 1986). Fitting

the MGHFA model to this data resulted in the BIC selecting G = 3 componenets

and q = 1 latent factors. The corresponding model has a fairly good classification

performance (Table 4.8; ARI = 0.714). Implementing PCA revealed that the first 12

principal components accounted for roughly 85 percent of the total variation in the

wine data. Based on this the MGHD model was initiated using the first 12 principal
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components and this resulted in a model with a very poor classification performance

(Table 4.8; ARI = 0.365) compared to the MGHFA approach.

Table 4.7: Cross-tabulation of the true versus predicted class labels for model-based
clustering on wine data.

cluster
label A B C
Barolo 50 9 0
Grignolino 2 62 7
Barbera 0 0 48

(a) MGHFA

cluster
label A B
Barolo 57 2
Grignolino 53 18
Barbera 0 48

(b) PCA & MGHD

Table 4.8: ARI values and misclassification rates (MCR), based on predicted classifi-
cations for the unlabelled observations, for the MGHFA and PCA & MGHD models.

MGHFA PCA & MGHD
ARI 0.714 0.365
MCR 0.101 0.579

4.2.2 Satellite data

The satellite data was collected from the UCI machine learning repository. The data

contained 36 quantitative attributes measured over 4435 observations. Observations

were collected with the goal of being able to classify 3 × 3 neighbourhoods based

on a central pixel (Srinivasan, 1993). This data set contained six classes: red soil,

cotton crop, grey soil, damp grey soil, soil with vegetation stubble, and very damp

grey soil. Applying the MGHFA model to this data leads to the BIC selecting G =

6 components and q = 1 latent factors. The corresponding model gives a poor

classification performance (Table 4.11; ARI = 0.397). Using PCA we found that

about 89 percent of the total variation in the data is explained by the first three
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principal components. As a result the MGHD model was applied using the first three

principal components with BIC selecting G = 6. The associated model had a better

classification performance (Table 4.11; ARI = 0.496) than the MGHFA approach.

Table 4.9: Cross-tabulation of the true versus predicted class labels for model-based
clustering on Landsat Satellite data using MGHFA.

cluster
label A B C D E F
Red Soil 910 0 0 12 141 9
Cotton Crop 0 324 0 151 4 0
Grey Soil 0 0 721 9 104 127
Damp Soil 0 0 255 17 72 71
Very Damp Soil 58 29 0 68 261 54
Vegetation Stubble 0 1 560 19 131 327

Table 4.10: Cross-tabulation of the true versus predicted class labels for model-based
clustering on Landsat Satellite data using MGHD & PCA.

cluster
Red Soil 526 0 15 511 20 0
Cotton Crop 0 416 0 0 63 0
Grey Soil 6 0 875 4 75 1
Damp Soil 1 0 125 4 262 23
Very Damp Soil 23 30 1 0 393 23
Vegetation Stubble 0 0 29 0 430 579

Table 4.11: ARI values and misclassification rates (MCR), based on predicted classi-
fications for the unlabelled observations, for the MGHFA and PCA & MGHD models.

MGHFA PCA & MGHD
ARI 0.397 0.496
MCR 0.423 0.370
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Chapter 5

Conclusions

In this thesis, the clustering of high-dimensional data using the MGHFA approach

was compared against the procedure utilizing PCA for feature extraction followed by

clustering using the MGHD. This analysis was conducted by applying the aforemen-

tioned methods to both simulated and real data.

For the two data sets simulated from the multivariate normal distribution the ap-

proach of using PCA & MGHD demonstrated ARI’s comparable to that of the

MGHFA approach. Executing either approach on these data resulted in excellent

classification performances with over 95 percent class agreement. For the waveform

data set, both the associated models had relatively poor classification performances

with the PCA & MGHD approach displaying a slightly higher ARI.

For the wine data set, using the MGHFA model resulted in a good classification perfor-

mance while the quality of the partition obtained by using the PCA & MGHD model

was disappointing. For the satellite data set the PCA & MGHD model performed

slightly better than the MGHFA model but the respective classification performances

for both approaches was quite poor.
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Overall, the PCA & MGHD method performed just as well or better than the MGHFA

method for most of the data sets. However, caution must be exercised when utilizing

PCA for dimension reduction in conjunction with clustering tasks. This is because,

as noted by Bouveyron and Brunet-Saumard (2014), PCA was not designed to take

into account the clustering scheme and this may lead to sub-optimal partitioning

of the data. Possible future research directions could consist of the using MGHD

together with other dimension reduction techniques such as variable selection or sub-

space methods. These approaches can simultaneously find partitions and reduce the

dimensionality of the data.
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Appendix A

Bessel Functions

In general, Bessel functions are the canonical solutions y(x) of the Bessel differential

equation:

x2
d2y

dx2
+ x

dy

dx
+ (x2 − λ2)y = 0,

for an arbitrary complex number λ. The solutions of the Bessel equation are called

modified Bessel functions of the first and second kind when the domain of x includes

the complex numbers (Abramowitz and Stegun, 1968). The modified Bessel function

of the second kind, also known as the modified Bessel function of the third kind, can

be expressed as follows:

Kλ(x) =
π

2

I−λ(x)− Iλ(x)

sin(λπ)
,

where Iλ(x) is the modified Bessel function of the first kind obtained from the Bessel

differential equation using the power series approach.

Iλ(x) =
∞∑
m=0

1

m! Γ(m+ λ+ 1)

(x
2

)2m+λ

.
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Kλ(x) is an exponentially decaying function with a singularity at x = 0 (Abramowitz

and Stegun, 1968) that are an important component of the generalized inverse Gaus-

sian and the generalized hyperbolic distributions.
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The Indian Journal of Statistics, Series A, 62(1), 49–66.

Koudou, A. E., Ley, C., et al. (2014). Characterizations of gig laws: A survey.

Probability Surveys, 11, 161–176.

Lawley, D. N. and Maxwell, A. E. (1962). Factor analysis as a statistical method.

Journal of the Royal Statistical Society. Series D (The Statistician), 12(3), 209–

229.

Leroux, B. G. (1992). Consistent estimation of a mixing distribution. The Annals of

Statistics, 20(3), 1350–1360.

Lopes, H. F. and West, M. (2004). Bayesian model assessment in factor analysis.

Statistica Sinica, 14(1), 41–67.

Mangasarian, O. L., Street, W. N., and Wolberg, W. H. (1995). Breast cancer diag-

nosis and prognosis via linear programming. Operations Research, 43(4), 570–577.

McLachlan, G. and Peel, D. (2000). Mixtures of factor analyzers. In Proceedings of

the Seventh International Conference on Machine Learning, pages 599–606.

McLachlan, G. J., Bean, R., and Peel, D. (2002). A mixture model-based approach

to the clustering of microarray expression data. Bioinformatics, 18(3), 413–422.

McNeil, A. J., Frey, R., and Embrechts, P. (2015). Quantitative Risk Management:

Concepts, Techniques and Tools. Princeton University Press.

33



M.Sc. Thesis - Thinesh Pathmanathan McMaster - Mathematics and Statistics

McNicholas, P., Jampani, K., McDaid, A., Murphy, T., and Banks, L. (2011). pgmm:

Parsimonious gaussian mixture models. R package version, 1(1).

McNicholas, P. D. (2016). Mixture model-based classification. CRC Press.

McNicholas, P. D., Murphy, T. B., McDaid, A. F., and Frost, D. (2010). Serial

and parallel implementations of model-based clustering via parsimonious gaussian

mixture models. Computational Statistics & Data Analysis, 54(3), 711–723.

McNicholas, S. M., McNicholas, P. D., and Browne, R. P. (2017). A mixture of

variance-gamma factor analyzers. In S. E. Ahmed, editor, Big and Complex Data

Analysis, pages 369–385. Springer.

Meng, X.-L. and Rubin, D. B. (1993). Maximum likelihood estimation via the ECM

algorithm: A general framework. Biometrika, 80(2), 267–278.

Meng, X.-L. and Van Dyk, D. (1997). The EM algorithm-an old folk-song sung to

a fast new tune. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 59(3), 511–567.

Murray, P. M., Browne, R. P., and McNicholas, P. D. (2014). Mixtures of skew-t

factor analyzers. Computational Statistics & Data Analysis, 77, 326–335.

Pearson, K. (1901). Principal components analysis. The London, Edinburgh and

Dublin Philosophical Magazine and Journal, 6(2), 566.

R Core Team, R. (2017). R: A Language and Environment for Statistical Computing.

Version 3.3.3. R Foundation for Statistical Computing, Vienna, Austria. URL:

https://www. R-project. org.

34



M.Sc. Thesis - Thinesh Pathmanathan McMaster - Mathematics and Statistics

Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods.

Journal of the American Statistical Association, 66(336), 846–850.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics,

6(2), 461–464.

Scott, D. W. and Thompson, J. R. (1983). Probability density estimation in higher

dimensions. In Computer Science and Statistics: Proceedings of the fifteenth sym-

posium on the interface, volume 528, pages 173–179. North-Holland, Amsterdam.

Sigillito, V. G., Wing, S. P., Hutton, L. V., and Baker, K. B. (1989). Classification

of radar returns from the ionosphere using neural networks. Johns Hopkins APL

Technical Digest, 10(3), 262–266.

Spearman, C. (1904). The proof and measurement of association between two things.

The American Journal of Psychology, 15(1), 72–101.

Tiedeman, D. (1955). On the study of types. In S. B. Sells, editor, Symposium on

Pattern Analysis, pages 1–14, Randolph Field, TX: Air University. U.S.A.F. School

of Aviation Medicine.

Tortora, C., McNicholas, P. D., and Browne, R. P. (2015). A mixture of generalized

hyperbolic factor analyzers. Advances in Data Analysis and Classification, 10(4),

423–440.

Wolfe, J. H. (1963). Object Cluster Analysis of Social Areas. Master’s thesis, Univer-

sity of California.

35


	Abstract
	Acknowledgements
	Introduction
	Content
	Mixture Models
	Mixtures of Multivariate Gaussian distributions
	Generalized Inverse Gaussian Distributions
	Mixtures of Generalized Hyperbolic Distributions
	Principal Component Analysis
	Mixtures of Generalized Hyperbolic Factor Analyzers
	Factor Analysis
	Mixtures of Factor Analyzers


	Methodology
	Likelihood
	Parameter Estimation
	EM Algorithm
	AECM Algorithm
	Method Initialization
	Convergence

	Predicted Classifications
	Model Selection
	Performance Assessment

	Application
	Simulated Studies
	Twonorm Data
	Ringworm Data
	Waveform Data

	Real Data
	Wine Data
	Satellite data


	Conclusions
	Bessel Functions
	Bibliography

