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catholique MonAvenir. Mme Brigitte Cazabon, tu m’as inspiré à poursuivre
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Abstract

The study of mathematical anxiety has seen an increased importance in the
past few decades in the field of mathematical education. As this topic is of
great interest in education research, this thesis investigates the previous con-
tributions made by other researchers via a literature review of mathematical
education papers. Furthermore, a literature review of mathematical models
of learning is presented. In the hopes of closing the gap between these two
streams of research, this thesis conducts a study of mathematical anxiety at
the first year university level through a survey and data analysis, and proposes
a theoretical model of learning. Throughout the data analysis, the prevalence,
effects, and correlates of mathematical anxiety are examined. Using a ver-
sion of the Mathematical Anxiety Rating Scale refined by Plake & Parker in
1982, factors such as gender, high school performance, and program choices
are shown to be correlated to mathematical anxiety, as is consistent with pre-
vious literature. On the other hand, the model of learning offers a theoretical
perspective in understanding the relationship between knowledge, effort, and
anxiety, and how these variables interact during a learning experience. This
model suggests that given an individual’s aptitude, drive, and susceptibility for
anxiety, that they may reach various levels of knowledge, effort, and anxiety
throughout an academic term.

Key words. Mathematical anxiety, mathematical model of learning,
mathematical education.
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Foreword

I wanted to make a small note about how this thesis came to be. Over the
years, my experiences as a teaching assistant have allowed me to work with
many students. Among these students, there were many that exhibited a fear
of mathematics and this fear greatly inhibited their learning. I encountered
more and more students with that fear and many of them would say they
hated mathematics or that the course they were taking would be the last
they’d ever take. It became evident that mathematical anxiety was not just a
social construct or stigma associated to students without a “math brain”.

This realization inspired me to pursue my passion, both as an academic
and an educator, to study this phenomenon. At first, I was not sure how I
would go about the study of mathematical anxiety as many researchers have
done experiments and longitudinal studies on this topic. I then stumbled
upon the comments and criticism by Preece in [20]. In this note, they discuss
mathematical modeling of learning and the works of Anderson, [2], and Hicklin,
[13]. This intrigued me, and I was now interested in the idea of studying the
effects of mathematical anxiety via the modeling of learning.

As such, this thesis is driven by curiosity, passion for mathematics, and the
desire to help students overcome this phenomenon of mathematical anxiety.
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Chapter 1

Introduction

The past few decades have seen an increase in the importance of mathematics
education. Academic journals such as the Journal for Research in Mathemat-
ics Education (JRME), the Journal of Educational Research, and the Journal
of Educational Psychology among many others, have multitudes of papers fo-
cused particularly on the teaching and learning of mathematics. Over the
years, this research has lead to evolution in the field by shaping mathematics
curricula and educators teaching techniques. Despite the many advancements,
there are still many obstacles that students face when studying mathematics.
In particular, the term Mathematical Anxiety (MA) has become prominent
in mathematics education. Richardson & Suinn (1972) stated that, “Math-
ematical anxiety involves feelings of tension and anxiety that interfere with
the manipulation of numbers and the solving of mathematical problems in a
wide variety of ordinary life and academic situations” [23]. Recently, there
has been a greater awareness surrounding the existence and consequences of
mathematical anxiety in students, and thus, there have been studies that have
explored this phenomenon.

Throughout the years, the study of mathematical modeling of learning has
also been a field of interest. In fact, there have been a variety of papers written
on the development of mathematical models of learning. Researchers such as
Atkinson and Shiffrin (1965), Hicklin et al. (1965),[12], Hicklin (1976),[13],
Anderson (1983),[2], and Pritchard (2008),[21], have proposed models to de-
scribe the learning process via memory function, mastery learning, content
acquisition, and teaching styles. These models have offered insight into how
individuals interact with their environment and learn.

Despite mostly being distinct areas of research, there is an obvious con-
nection between these different streams. More precisely, the development of
models of learning could be enhanced by including motivational factors such

10
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as the effects of mathematical anxiety. As such, the first of three objectives of
this thesis will be to present a literature review on the previous research done
on mathematical anxiety and mathematical models of learning. The second
objective will be to analyze data collected at McMaster University to inves-
tigate mathematical anxiety in students enrolled in first year university level
mathematics courses. Finally, the third objective will be to propose a theo-
retical model that could describe the interaction between knowledge, effort,
and anxiety. With these three goals, this thesis will hopefully begin to bridge
the gap between the qualitative research of mathematical education and the
quantitative results of models of learning. A list of important acronyms used
throughout this thesis can be found in Appendix A.

1.1 Literature Review

1.1.1 Mathematical Education Research

The advancements that have been made in the field of education since the
nineteen-fifties have been significant. They have lead to new and innovative
ways to teach mathematics and have improved the ways in which students
learn. Here, the main literary contributions, particularly related to the study
of anxiety and learning, are presented and discussed. In the early literature,
most research dealt with the theme of general anxiety or test anxiety.

Many researchers have found that test anxiety does affect learning. As
an example, in [16], Mandler & Sarason conducted a study that consisted of
having participants sorted into groups by level of anxiety and randomly into
subgroups (success, failure and neutral). Subsequently, participants would un-
dergo six trials of various tests such as the Kohs Block Design and the Digit
Symbol Test. Later, the participants were told that they had either done very
well, very poorly, or nothing at all regardless of their actual performance. Over-
all, they found that groups with low anxiety performed better on the trials.
Moreover, being told that they had either succeeded or failed improved scores
for the low anxiety group, but hindered the performance for the participants
with high anxiety [16].

This suggests that individuals are both affected by their levels of anxiety
and their perception of their achievements. This result is consistent with the
interference model whereby test anxiety reduces performance by inhibiting rec-
ollection of prior knowledge [11]. Other researchers have conducted studies on
test anxiety that are also consistent with the interference model (see [14],[29]).

Contrary to the interference model, there is also the concept of the deficits
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model in which poor performance is not caused by test anxiety but rather that
the opposite is true [11]. This deficits model, considered in the work of Tobias
(1985), [28], suggests that poor performance is a result of insufficient study
habits or test taking skills, and that test anxiety develops because of this.

Despite the detrimental effects of anxiety, researchers have also suggested
that anxiety could act as a motivating factor and lead to improvement. This
was one of the results of the experiment of Mandler & Sarason in [16]. They
found that the high anxiety participants were driven to improve over the course
of the six trials.

Moreover, arousal theorists, such as Hebb (1955),[10], suggest that there
is an optimal level of arousal in terms of performance. In other words, anxi-
ety, among other factors, could be motivating and lead to improvement in an
individual’s performance.

Though many researchers have been inclined to suggest that mathematical
anxiety is a specific subset of test anxiety, research on mathematical anxiety
has flourished since the early 1970’s. In [26], Suinn found that approximately
thirty percent of students had problems with mathematics anxiety. Many
studies have suggested that mathematical anxiety is so severe that students
may even choose to avoid mathematics altogether. In fact, researchers, such
as Richardson & Suinn, 1972 (later Betz, 1978 and Meece, Eccles & Wigfield,
1990) have found that mathematics anxiety has affected course enrollment as
well as students career plans.

Due to the prevalence of mathematical anxiety, Frank C. Richardson &
Richard M. Suinn developed the Mathematics Anxiety Rating Scale (MARS)
in [23]. This scale is a tool to measure a student’s level of anxiety when tak-
ing on a mathematical task. The MARS is a 98 item questionnaire of math
related situations in which students rate their anxiety on a scale from 1 (no
anxiety) to 5 (very high anxiety) [23]. The MARS has since been used in many
research experiments as a measuring tool to both assess mathematical anxiety
and to verify treatments. Not only has the MARS been widely utilized in the
literature, it has also been revised, adapted and verified by other researchers.
For instance, in [27], published in 1979, Suinn refined the scale for adolescents,
and in [7], Brush conducted a study of the validation of the MARS. Brush
concluded that the study was successful in correlating with students with neg-
ative attitudes towards mathematics and in differentiating between different
groups of students [7].

Furthermore, in [19], Plake & Parker created and verified the validity of
a more concise version of the MARS. This concise version consists of only
24 items is an efficient index of statistical and mathematical anxiety and is
significantly correlated (0.98) with the results of the full MARS [19].

12
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In their paper, they also conduct a factor analysis to analyze the nature
of the items in the MARS. This analysis identified two important categories
for the items, namely Learning Mathematics Anxiety and Mathematics Eval-
uation Anxiety. Thus, this solidifies the distinction between anxiety related
to learning mathematics and related particularly to test anxiety. This is also
consistent with a previous study, [24], by Rounds & Hendel (1980), who found
two dominant factors (Mathematics Test Anxiety and Numerical Anxiety) of
the original MARS in their factor analysis.

Having sufficient means to measure mathematical anxiety, many researchers
have contributed to the literature by investigating the nature of mathemati-
cal anxiety and who it affects. Thoughout the literature, it is apparent that
mathematical anxiety affects students across all levels of study. In fact, as
the meta-analysis by Hembree [11] confirms, mathematical anxiety has been
exhibited by students from grade three all the way to the postsecondary level
of education. More precisely, in [18], the authors conducted their experiment
for young adolescent students in grades seven through nine. Similarly, in 2003,
Sherman & Wither wrote their paper on a longitudinal study conducted with
students from grades six through ten in schools in Adelaide, Australia. In
[5], Betz focused primarily on the prevalence of mathematical anxiety in col-
lege students. In [3], Ashcraft and Kirk also focused on undergraduate level
students in their investigation of the relationship between working memory,
mathematical anxiety and performance.

These studies have found many correlates, predictors, and consequences of
mathematical anxiety. In [5], Betz confirms that mathematical anxiety does
occur regularly in college students. Further, the author finds that the level of
mathematical anxiety does vary within different subgroups of students. As an
example, Betz found that the biological sex of an individual made a difference
in the way mathematical anxiety had an influence on that person in certain
classes, such as psychology and math. This finding is consistent with other
studies, such as Fennema and Sherman (in [9], and is confirmed later by Hem-
bree’s (1990) meta-analysis, that considered gender and mathematical anxiety.
However, it is important to note, that Meece et al. find that mathematical anx-
iety does not affect the achievement of boys and girls differently, but rather the
students report different levels of mathematical anxiety. In [18], the authors
also found that a student’s expectation of their own achievement had a big ef-
fect on their level of anxiety. Thus, student perceptions and self-expectancies
can have a direct influence on their levels of mathematical anxiety. Moreover,
Ashcraft and Kirk found that mathematical anxiety inhibits working memory,
thereby slowing down performance [3]. In essence, throughout the literature,
many different findings have arisen on the nature of mathematical anxiety and
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how it affects individuals of all levels.
In their meta-analysis on the topic of mathematical anxiety, [15], Ma states

that arousal theory could lead to the assumption that performance can be de-
picted as an inverted U shape when considering the effects of anxiety. However,
in most papers that investigate the effects of anxiety, authors use methods of
statistical analysis and linear correlation coefficients to describe its relationship
with performance.

Many studies have shown that there is a significant negative correlation
between these two phenomenon. Hembree’s meta-analysis of 151 studies con-
firms this fact and finds negative correlations across all levels of study (-0.3 or
more for younger students and -0.27 or more for tertiary students) [11]. Due
to this finding, Hembree concludes that mathematical anxiety does impede
performance as, “higher achievement consistently accompanies reduction in
mathematics anxiety” [11]. What is surprising however, is that according to
the author, there is not sufficient evidence to suggest that poor performance
leads to mathematics anxiety. In [15], the author also makes note of this ap-
parent negative correlation between achievement and mathematical anxiety.

Similarly, Sherman & Wither’s (2003) longitudinal study, [25], found that
there was a negative correlation between mathematics anxiety and mathe-
matics achievement. Nonetheless, the authors data suggests that they reject
the hypothesis that mathematics anxiety impedes mathematics achievement
in subsequent years. This finding certainly questions the results of previous
studies.

Despite this fact, it is important to note that Sherman and Wither’s experi-
ment gathered information on students mathematical anxiety from one year to
the next. Contrarily, other studies were measuring the effect of mathematical
anxiety in discrete experiments over short periods of time and this could be
the cause of the difference. Thus, this finding does not necessarily contradict
the previous results, but rather suggests that mathematical anxiety may have
a more immediate effect and may not affect the performance of a student a
year later.

These findings, among others, suggest that there is still a need to establish
a causal relationship between mathematical anxiety and mathematics achieve-
ment. It is obvious from the results of the previous studies that a negative
correlation is certainly present. However, the direction of this relationship has
not yet been determined. Does mathematical anxiety cause poor performance?
Does poor mathematics achievement cause mathematical anxiety? Even more,
is there a more complicated relationship at work here? Perhaps the relation-
ship can better be described by more dynamic properties. In fact, this has
been suggested in [15], where the author states, “the relationship can change

14
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dramatically for students with different social and academic background char-
acteristics”. This is one of the theories that motivates the development of the
theoretical model in a subsequent chapter.

1.1.2 Models of Learning Research

Just as there have been advances in mathematics education research, there
have been many papers from divers fields written on the subject of model-
ing learning and content acquisition. These papers have allowed researchers to
better understand the nature of human learning and how people acquire knowl-
edge. Notable contributions to this research have been made by Atkinson &
Shiffrin (1965), Hicklin et al (1965, 1976), Anderson (1983) and Pritchard
(2008). Though each of these studies took a slightly different approach, their
work is helpful in motivating derivations of new models of learning. These
papers will be compared and contrasted to discuss their contributions to the
literature, as well as motivate the derivation of a new mathematical model of
learning.

In 1965, R. C Atkinson and R. M. Shiffrin wrote, [4], on Mathematical
Models for Memory and Learning. In this work, they develop and propose
models to explain retention phenomena by assuming that there are distinct
differences between short-term and long-term memory systems. This particu-
lar assumption is still valid in more recent research such as Anderson (1983).

Atkinson & Shiffrin’s models seek to describe a content acquisition situation
whereby the individual is presented with a certain number of incoming stimuli
(coloured cards, words, etc) for a brief period of time and then are asked to
recall the list. By making specific assumptions, the authors set out to predict
the probability of a correct response given the length of the list and the test
position.

When the individual is presented with the stimulus, it is said to enter the,
“sensory buffer”. Next, the items enter what the authors call the, “memory
buffer”. At this stage, items can be recalled instantly unless they did not prop-
erly enter the buffer. However, consistent with theory on short-term memory,
only a finite number of items may be stored here at once. Thus, as items enter
the buffer, others may be pushed out. These items may be lost or forgotten,
and could also enter the long-term store (LTS). Furthermore, items that have
been lost or forgotten have been removed from the buffer regardless of their
state in the long-term store.

The models derived depend mainly on the different assumptions made on
the transition of items to the long-term store. The first of three models consid-
ers the case where items can be recalled perfectly from the LTS. That is, items
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that have been stored once and only once in LTS, and that can be retrieved
perfectly. The second model assumes that retrieval of information from the
LTS is not perfect. In this case, the item that the individual is trying to recall
is not in the buffer, and there is a search process to find it in the LTS. As
such, the probability of finding the item decreases as the number of items in
the LTS increases. Finally, the third model they present is identical to the sec-
ond in terms of the imperfect retrieval of the items in the LTS. However, if the
item cannot be recalled, the search may disrupt the items in the buffer. Thus,
though this model is a probabilistic one and depicts only the probability of an
item from a list being recalled, it provides a good foundation for assumptions
about how an individual’s memory works.

In 1965, Hicklin et al., describe the growth and decline between individ-
uals and their environment in regards to their intelligence via a theoretical
framework. In particular, there is a state of dynamic equilibrium whereby
individuals react with their environment to acquire a level of intellectual de-
velopment. Moreover, the authors suggest that there is a state of equilibrium
between individual and environment due to a small fractional loss of what has
been acquired by the individual, which may or may not be reacquired by the
environment.

The authors compare the results provided by their solution curves to pre-
vious works and find that there is a fair level of agreement to empirical data.
Some of the conclusions are that individuals acquire about fifty percent of their
knowledge by age four, the maximum occurs between the ages of twenty and
twenty-five and that by age fifty-five, the intellectual level has reverted to that
of a thirteen year old.

The model derived by Hicklin et al. depicts intelligence over an individual’s
lifetime given an aptitude constant and a loss rate constant. In fact, this level
depends only on the ratio of the acquisition rate and the loss rate constants
[12]. With this fact, the concepts of early and late bloomers is realistic, as the
age of maximum intellectual level would change accordingly. This theory does
not specify any particular rate of decline or age of maximum development,
though other theorists have suggested various ages. Hicklin et al. simply
suggest that at some point, whether it be at age twenty-five, thirty, or fifty,
the individual who remains in a standard environment will eventually reach a
maximum after which it will begin to decline.

A special case of their model is noted and is useful in describing the growth
of ability, however it does not provide the point at which an individual reaches
their maximum status. This model also does not account for the loss of ability
in later years. This particular special case also arises in the work of Anderson
in [2].
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In [13], another paper by Hicklin, a model for mastery learning based on dy-
namic equilibrium theory is proposed. Mastery learning is a process whereby,
“Individuals of different aptitude reacting in an ideal environment to the same
total quantity of material will ultimately reach the same mastery status, or
gain equal increments of status starting from the same base, in time spans
inversely proportional to the aptitude” [13].

Learning in itself is a psychological process, and thus, there have been
contributions to models of learning in the field of psychology. Anderson (1983)
developed a neuromathematical model to describe the information acquisition
process and how it may be applied to science content acquisition. In particular,
the author presents a model which describes content acquisition inspired by
the workings of the central nervous system’s (CNS) ability to process new
information via short and long term memory.

The model accounts for both the internal state of the learner and the
characteristics of the information. In order to describe the content acquisition
process, there are three rate functions that are established, namely the stability
function, the instability function, and the gain function. The stability function
describes the fact that there is limited space available in short term memory,
whereas the instability function represents the familiarity one develops with a
learning task as time goes on and how this makes learning easier. Finally, the
gain function describes how the learner would acquire information.

Anderson’s model can result in three distinct learning curves. If the gain
function is large enough, despite the modulation factor’s effect, the learning
curve will continue to grow. This result depicts a simple learning task that the
learner’s abilities can withstand. However, if the gain function coefficient is
equal to the stability decay coefficient, the equation of net gain can be written
as equation (B.3.11), and the learning curve would approach an asymptote and
saturate as is the result of the special case (see equation (B.2.7)) of the model
derived by Hicklin et al. in [12]. In the final case, the gain function is not large
enough to outweigh the effects of the modulation factor and the curve of the
net gain would be bowed. This would represent a difficult learning experience
whereby the learner’s capacity would not be able to support the demand of
the task.

Throughout their paper, Anderson also gives estimates for the values of
constants and parameters by referring to empirical data. Furthermore, the
author verifies the accuracy of the predictions of the model by experiment
with seventh or eighth grade students (I.Q. of 100-140). They presented tape-
recorded information to students with two possible topics, biology of Hydra
or human health. After periods of 2-10 minutes, students were asked to recall
and write down as many statements from the presentations as possible. In
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general, the modulation factor’s effect suggests that adolescents would benefit
from short time periods of information transferral, as there is a peak amount
of time that occurs when students are able to perform best. This experiment
showed that there was a remarkable correlation between the predicted values
of Anderson’s neuromathematical model and the empirical data.

Though the model is quite accurate, there are still some limitations that
arise. For instance, motivation and fatigue factors have not been accounted
for in Anderson’s model. Furthermore, the model itself only describes a short
interval of time of a few minutes to a half an hour, thus, it does not present
the long term behaviour of learning. Despite these limitations, this type of
psychological theory can surely be applied to mathematics learning in partic-
ular.

Whereas the previous papers discussed presented models which take into
account the aptitude of the learner and the characteristics of the information
to be acquired, in [21], Pritchard et al. proposes a model inspired by three
different teaching methods and an individual’s prior knowledge base. This
is an interesting approach as it reinforces that diverse teaching methods will
lead to different results in learning. Though this particular model is applied
to physics students, this model is certainly relevant in the scope of this paper.

In particular, Pritchard et al. propose three different models that vary
depending on the style of teaching, More precisely, the authors consider the
following learning theories. The first theory is tabula rasa, which suggests,
“that the mind can be seen as a blank slate which is imprinted with knowl-
edge initially through experience” [21]. The second, constructivism theory,
considers, “the notion that new knowledge is “constructed” from associations
involving knowledge, and thus that increased prior knowledge should positively
affect the rate of learning” [21]. The third and final theory that Pritchard et al.
make note of is tutoring, which is considered as, “one-on-one expert mentoring
that is tailored to the particular student” [21].

Using those learning theories, the authors model the student’s knowledge
after a particular amount of instruction. In order to do this, the authors par-
tition the test domain into what is known and what is unknown. Throughout
the paper, a pure memory model, a simple connected model, a connected-
ness model, and a tutoring model are derived. These models (described in
more detail in the appendix B.4), suggest that depending on the motivating
philosophy, the learning of the individual changes.

In particular, in the pure memory model, the individual’s learning slows
as knowledge increases due to the fact that they are trying to memorize infor-
mation presented to them. Contrarily, the connectedness model suggests that
new knowledge is associated to prior knowledge and thus, students learn faster
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when they have more knowledge. Furthermore, tutoring results in the fastest
learning as the tutor can focus on what the student does not know [21]. In
general, they find that if the individual has a good base of prior knowledge,
the tutoring model is the most effective as the learning process can be more
efficiently directed.

Though all of these researchers have taken different approaches appropriate
for their fields of study, each of these models can provide insight for future
development of models of learning. Most importantly, these models motivate
certain assumptions to be made in a subsequent chapter to propose another
model of learning including the effects of mathematical anxiety.
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Chapter 2

Analysis of Survey

In order to investigate the level of mathematical anxiety present in students,
an online survery was administered. This survey was approved by the Mc-
Master Research Ethics Board on June 2nd, 2016 and data was collected in
the Summer 2016 and Fall 2016 terms at McMaster University. A copy of the
survey that participants answered can be found in Appendix C.

2.1 Hypotheses

Based on the previous research in mathematics education, some hypotheses can
be made about what might arise from the survey data. These main hypotheses
are listed below.

1. Mathematical anxiety will be higher in female survey participants.

2. The higher the academic achievement in students in high school, the
lower the level of MA.

3. The higher the expectation of achievement in students, the higher the
MA.

4. The higher the current grades of the students, the lower the level of MA.

5. Students not enrolled in a STEM program will exhibit higher levels of
MA.

6. Items on the MARS that deal with examinations or numerical anxiety
will foster more anxiety than course preparation items.
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2.2 Participants

The online survey was advertised to students enrolled in first year mathematics
courses at McMaster University by professors via their course websites and also
via email from the Undergraduate Office of the Department of Mathematics
and Statistics. Volunteers then participated by following the link to the survey
administered via LimeSurvey.

Over the course of both terms, a total of 155 volunteers completed the
survey. There were 18 participants who were enrolled in a course during the
Summer term and 137 participants during the Fall term. With only 155 volun-
teer participants, the response rate was low since the total number of students
enrolled in first year mathematics courses at McMaster University is usually
around 1000 students.

Of these participants, 107 (4 Summer, 103 Fall) were female, 45 (14 Sum-
mer, 31 Fall) were male, and 3 (Fall) preferred not disclose their gender. The
gender distribution of the students can be seen in Figure 2.1. Note that in this
paper, gender is considered to be the way that an individual identifies, and it
is not analogous to biological sex. In today’s society, gender is considered to
be a spectrum as opposed to a binary, and thus, participants were allowed to
not respond to this survey item.

Figure 2.1: Distribution of Participants by Gender

Participants varied between 17-46 years of age, however, most participants
were 18 years old (Mage = 18.6). Figure 2.2 shows the distribution of partici-
pants’ age.

The participants came from a variety of programs and were enrolled in at
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Figure 2.2: Distribution of the Age of Participants in the Summer and Fall
2016 terms

least one of thirteen first year mathematics courses. Table 2.1 and Figure 2.3
show the breakdown of participants according to their program of study and
the courses they were enrolled in. Here, it is noted that there is an uneven
distribution of students from different programs. For example, there are many
students from the Life Sciences and only one from the Computer Sciences
program. Furthermore, there is a lack of students enrolled in Math 1K03, a
grade twelve equivalent calculus course, whereas many of the participants were
enrolled in Math 1LS3, calculus for the Life Sciences.

2.3 Method

The MA survey consisted of four main sections to gather data from the par-
ticipants. First, participants were asked to provide demographic information
such as age, gender, program of study, and course in which they were enrolled.
Second, participants self-reported their grades from their previous high school
course, their expectation for the current course, as well as any grades that
they had received so far throughout the term. The third section consisted of
the revised Mathematics Anxiety Rating Scale (MARS), refined by Plake &
Parker (1983), where participants were asked to rate their feelings of anxiety
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Program Summer Fall Total
Business 1 14 15

Engineering 8 0 8
Life Sciences 0 47 47

Other 3 32 35
Computer Sciences 1 0 1

Kinesiology 0 5 5
Math and Stats 3 37 40

Physics, Chemistry or Biology 2 2 4

Total 18 137 155

Table 2.1: Distribution of Survey Participants by Program and Term

Figure 2.3: Barplot of the Distribution of the Participants by Course

about each statement on a scale from 1 (low anxiety) to 5 (high anxiety). The
lowest score possible is 24, whereas the highest is 120. Below are the questions
from the revised MARS which may later be referred to as “MARS1-MARS24”
for convenience.
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Revised MARS Questions

1. Watching a teacher work an algebraic equation on the blackboard.

2. Buying a math textbook.

3. Reading and interpreting graphs or charts.

4. Signing up for a course in Statistics.

5. Listening to another student explain a math formula.

6. Walking into a math class.

7. Looking through the pages in a math text.

8. Starting a new chapter in a math book.

9. Walking on campus and thinking about a math course.

10. Picking up a math textbook to begin working on a homework assignment.

11. Reading the word “Statistics”.

12. Working on an abstract math problem, such as: “if x = outstanding bills,
and y = total income, calculate how much you have left for recreational
expenditures”.

13. Reading a formula in chemistry.

14. Listening to a lecture in math.

15. Having to use the tables in the back of a math book.

16. Being told how to interpret probability statements.

17. Being given a homework assignment of many difficult problems which is
due the next class meeting.

18. Thinking about an upcoming math test one day before.

19. Solving square root problems.

20. Taking an examination (quiz) in a math class.

21. Getting ready to study for a math test.
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22. Being given a “pop” quiz in a math class.

23. Waiting to get a math test returned in which you expected to do well.

24. Taking an examination (final) in a math course.

The fourth and final section of the survey was used to learn about the
student awareness when considering the resources available at McMaster Uni-
versity. For instance, participants had to answer whether they had heard
about, and if they would attend the Math Help Centre, the Student Wellness
Centre, and Student Accessibility Services. The Math Help Centre is available
to students on weekdays and provides free Teaching Assistant help to students
enrolled in all first year mathematics courses. The Student Wellness Centre
provides support to students who may need counselling or help adjusting to
university life. Finally, the Student Accessibility Services allow students with
disabilities, either physical or learning, to seek assistance with their courses
via note taking help, or test taking arrangements etc. These services can be
very helpful to students if they are struggling with MA or simply need more
support during their studies. As such, we found it important to know whether
the students’ awareness correlated in any way with their achievement or level
of MA.

2.4 Findings

In this section, we outline the notable results of the analysis of the data col-
lected via the mathematical anxiety survey. In order to perform this analysis,
the statistical program R was utilized. The results of the survey will shed light
on the nature of MA in students enrolled in first year courses at McMaster
University. Furthermore, these findings may help to provide a foundation for
the assumptions that are to be made to derive a theoretical model later in this
paper. More precisely, we seek to pinpoint any possible trends in the data to
identify precursors or indicators of MA in the participants.

2.4.1 Age

As is expected of students enrolled in first year courses in university, most
of the students were around 18 years of age. However, due to different cir-
cumstances such as avoidance and time constraints, some students may take
their mathematics courses later in their post-secondary education. Thus, there
were some outliers in the data as there were some more mature students (aged
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25-46) present in the variety of the participants. These data points were not
removed as they reflect the diversity that is present in students enrolled in
first year mathematics courses. Despite this variability in the age of the par-
ticipants, this did not seem to affect the level of mathematical anxiety of the
students. In fact, where there were many participants of the same age, the
level of MA varied significantly and thus, there were no notable trends that
arose from studying MA by age. Figure 2.4 shows the level of mathematical
anxiety by age.

Figure 2.4: Level of Mathematical Anxiety by Age

2.4.2 Gender

Through the analysis of the data, a significant trend in MA was present when
considering the gender of the participants. In fact, females exhibited a much
higher level of mathematical anxiety than did males. Also, there is an outlier
present in the data since one female participant exhibited a much lower level
of mathematical anxiety that falls below the first quartile. This can be seen
in Figure 2.5.

26



M.Sc. Thesis - S. Spilotro McMaster University - Mathematics

Figure 2.5: Level of Mathematical Anxiety by Gender

However, it is important to note that those who did not disclose their
gender had less predictable levels of MA. That being said, the overall result
that females exhibit higher levels of MA than do males is consistent with the
findings of Hembree’s meta-analysis (1990). Not only can this trend be seen
in Figure 2.5, but it can also be seen through the average response for each
of the MARS questions. This is quite remarkable as there are no questions
for which males exhibited higher mathematical anxiety than females. A graph
of the average level of MA per question of the MARS by gender appears in
Figure 2.6.

This graph is somewhat noisy and so, Figure 2.7 shows a loose fitting trend
to the data to illustrate the significant difference in the mathematical anxiety
of female and male participants. Since there were only three participants that
did not disclose their gender, the green curve for non-binary participants has
been omitted from this figure as it was not possible to create a smooth curve
for that data.

Despite the apparent trend that arises when analyzing the results of the
data in terms of gender, it is important to note that this trend may be a
byproduct of the socialization of the participants. More precisely, female par-
ticipants could be more likely to admit to their feelings of anxiety, whereas
male participants may feel pressured to not admit to theirs as is reported by
Meece et al. (1990). Furthermore, there has been a very notable stigma sur-
rounding women’s abilities in mathematics for many years, and this could very
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Figure 2.6: Average Level of Mathematical Anxiety for each Question of the
MARS by Gender

Figure 2.7: Plot of the General Trend of Mathematical Anxiety by Gender on
each MARS Question

well contribute to their heightened sense of mathematical anxiety. Moreover,
there was no trend for the participants who did not report their gender. This
suggests another facet of today’s society in that individuals may not identify
with a strict binary. Thus, though the results related to gender are consistent
with the literature, there may be another explanation for the differences, such
as society pressures, personality (see Alcock (2014)) or the individual’s use of
left or right hemispheres of the brain.
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2.4.3 Program

When investigating the level of MA by program of study, there is an apparent
difference between programs. However, there could be many reasons for this
distinction, such as the students’ exposure to mathematics or the familiarity
the students should have with the subject within their field of study. For
instance, it is possible to assume that students that are enrolled in a program
of study where mathematics is necessary (example: engineering) will have a
lower MA compared to those who do not need mathematics as much (example:
social work). Whatever the reason may be, Figure 2.8 shows the variation in
the average MA by program of study. From this figure, it is possible to see that
among the participants in the study, the Computer Science program seems to
have the highest MA, whereas the Engineering program seems to have the
lowest.

Figure 2.8: Level of Mathematical Anxiety by Program

It is important to note that there was only one participant in the computer
science program. Moreover, this particular observation was part of the summer
term. Thus, not only is this number biased as it is not an average, but the
level of mathematical anxiety could be amplified due to the student needing to
take a summer course. If more computer science students had participated in
the survey, it could have possibly decreased the average level of mathematical
anxiety of this program. Thus, if the assumption is made that the average
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MA of the computer science program would be lower with more participants,
the “other” category now exhibits the highest level of MA. This would be
reasonable based on previous research, and the fact that students that do not
need to do a lot of mathematics within their program, could exhibit much
higher levels of mathematical anxiety. In particular, the “other” category
encompasses students enrolled in social science programs such as psychology,
neuroscience and behaviour and other programs where they must take at least
one mathematics (or statistics) course.

2.4.4 Grades

In terms of the grades section of the dataset, there are three variables that are
taken into consideration. Namely, high school average (HSA), expectation for
the course (EXP) and the grades so far (GSF) are three variables examined. It
is important to investigate the relationship between each of these variables and
MA as they may indicate which grades are the best indicators of MA. Identi-
fying which types of grades foster trends in MA could help to distinguish what
factors should be taken into account when deriving a mathematical model.

To analyze the level of MA, HSA, EXP and GSF were considered indepen-
dent variables. Mathematical anxiety was considered the dependent variable,
and linear models were fitted. While studying these models, it is in fact pos-
sible to notice some trends. Particularly, there is a statistically significant
(p = 0.002186) negative correlation between HSA and MA (see Figure 2.9a),
as well as a statistically significant (p = 0.0001451) slight negative trend be-
tween EXP and MA (see Figure 2.9b). On the other hand, there is no apparent
trend in the GSF case, thus, the plot was omitted. As we would expect current
grades to affect MA, we note that this lack of correlation could be attributed
to participants not having received many, if any, grades in their courses at the
time that they answered the survey.

Furthermore, after observing the significant relationship between HSA and
MA, further statistical procedures were utilized to investigate this trend. Pre-
cisely, the Cook’s distance of each model was computed to reveal any influential
points that may have skewed the data. In fact, in the HSA versus MA model,
there were a few data points that had relatively high Cook’s distances. The
Cook’s distance is a measure of the influence of data points in a dataset. If
this distance is too large, this point is said to have a high influence on the
trend of the data.

In Figure 2.10, the Cook’s distance of the MA vs HSA model can be seen.
Here, there are a few points that are past the red cutoff line. The height of this
cutoff was determined by 4 divided by the total number of observations (155)
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(a) Level of MA by HSA

(b) Level of MA by EXP

Figure 2.9: Levels of Mathematical Anxiety by High School Average and Ex-
pectation

minus the number of items minus one. This value was chosen to be consistent
with common statistical procedures for determining a cutoff for the Cook’s
distance. The observations with a large Cook’s distance have the ability to
skew the trend in the data. The reason for this is that the influencial points
are different than the others in some way. In fact, upon investigation, the
influencial points in the high school average versus mathematical anxiety case
were of the nature that the participant either had a high level of mathematical
anxiety with high achievement in high school, or the opposite. As such, these
influencial points were removed to compare the difference in the trend with
and without these points. When removing these influencial points, the p-value
is improved (p = 0.0002976), thus the trend is statistically significant.

Figure 2.11 shows the trend when the most influencial points are removed.
In this case, it does create two outliers in the data, however the trend does
become more consistent and apparent. Despite these outliers, it seems rea-
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Figure 2.10: Cook’s Distance of Model for MA vs HSA

sonable to remove this influencial point to see that the negative correlation
between mathematical anxiety and high school average is significant and per-
sists. Similar analysis was conducted with the expectation variable. Since
removing the influencial points did not result in a significant difference for the
case of expectation, the plot was omitted from this section.

Figure 2.11: Comparison of MA vs HSA Model With and Without the Influ-
encial Point
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2.4.5 Factors

While conducting the factor analysis of the dataset, the importance and influ-
ence of each of the twenty-four MARS questions was investigated. From the
summary of the principal component analysis, eighty percent of the variability
in the dataset could be captured by nine principal components. It would thus
be possible to reduce the dimensions of the dataset and still account for the
variability of the data. When analyzing the loadings provided by the factor
analysis, it is clear that the first component is a weighted average of all the
MARS questions. The second component, however, is influenced by questions
MARS20 and MARS22 (positive effect) versus MARS2 and MARS4 (negative
effect). To investigate further, the topics of these questions were noted. In
particular, MARS22 and MARS24 refer to situations in which students must
take a quiz/exam. On the other hand, MARS2 and MARS4 consider prepara-
tions for courses, such as buying a textbook or signing up for a course. This
confirms the hypothesis that questions relating to examinations or tests foster
more mathematical anxiety compared to questions pertaining to preparation
for a course. Furthermore, the third principal component is heavily weighted
by MARS12. This question relates to abstract mathematics problems and so,
it provides another category. In essence, the MARS questions can be par-
titioned into text/examination anxiety, mathematical and numerical anxiety,
and course preparation. This is consistent with previous literature in the field
(see [24]).

2.4.6 Analysis of Resource Section

In this section, a short analysis of the resource section of the survey is pre-
sented. This section includes questions that participants answered related to
their knowledge and willingness to attend certain services available at Mc-
Master University. One of the reasons for including this section in the survey
was for the Research Ethics Board. For participants filling out a survey about
mathematical anxiety, it was important to provide them with knowledge of the
resources available to them on campus to help with this obstacle. In particu-
lar, participants were asked whether they knew about the Math Help Centre,
Student Wellness Centre, and Student Accessibility Services, and whether they
would attend these available services. Furthermore, it was also included for in-
vestigation purposes to see if there is a trend between participants’ knowledge
of these resources and their own mathematical anxiety levels. This confirms
that questions regarding examinations or tests foster more mathematical anx-
iety, whereas topics dealing with preparation for a course are less likely to lead
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to mathematical anxiety.
In fact, there is a slight trend in the data. First, participants that did

have knowledge of the resources available on campus exhibited lower levels of
mathematical anxiety. Though it is not implied here that there is a causal
relationship in one way or another, it is noted that this is a very interesting
correlation. Furthermore, it suggests that institutions should advertise these
resources to students so that they may reach out if need be.

In Figure 2.12, boxplots of the level of mathematical anxiety by knowledge
of the Math Help Centre, Student Wellness Centre, and Student Accessibility
Services, is presented. Here, it is apparent that the participants that have
knowledge of those services exhibit a lower level of mathematical anxiety.

On the other hand, in the examination of participants’ willingness to attend
those services, there was not a significant trend in the level of mathematical
anxiety. This is somewhat unexpected as the previous result would suggest
that the participants willingness to attend these services would coincide with
their level of mathematical anxiety. However, as this is not the case and the
boxplots do not provide much insight, these have been omitted from the thesis.

Figure 2.12: Level of Mathematical Anxiety by Knowledge of Services

34



M.Sc. Thesis - S. Spilotro McMaster University - Mathematics

2.5 Summary and Notes on Hypotheses

Here, the hypotheses that were presented in Section 2.1 are discussed. Fur-
thermore, notes are made on why they may or may not be confirmed by the
survey data.

1. It is possible to confirm the first hypothesis that female participants
would exhibit higher levels of mathematical anxiety. In this survey, the
female participants did report higher levels of mathematical anxiety over-
all. The average level of anxiety per question was also higher for female
participants for every single MARS item. Whether this result was due
to female participants being more inclined to admit to their feelings of
anxiety, or that females are more affected by the stigma that they are not
strong in mathematics, this result is consistent with previous research in
the field.

2. There was an apparent and statistically significant trend that arose from
analyzing high school average versus mathematical anxiety. As high
school average increased, the level of mathematical anxiety decreased
in participants. This further confirms the negative correlation between
academic achievement and mathematical anxiety reported in previous
research.

3. There was a slight and statistically significant negative correlation be-
tween student expectation and level of mathematical anxiety. Although
it was not as significant as the trend between high school average and
mathematical anxiety, this result still suggests that students’ perceptions
and self-expectations affect their level of mathematical anxiety.

4. Contrary to the hypothesis, the data did not suggest that mathematical
anxiety was significantly correlated with the grades the participants had
received so far. However, it is noted that participants may not have had
any grades at the time that they completed the survey.

5. For mathematical anxiety by program, at first glance, it seems that the
hypothesis is incorrect. However, upon further review of the data and
knowing that only one student from the computer science program par-
ticipated in the study, it seems that this hypothesis could still be proven
true. In fact, if the computer science program had better representation,
it could lower the average mathematical anxiety of that program, and
the “other” category would now hold the highest level of mathematical
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anxiety. As such, there is room for further investigation to confirm or
deny this hypothesis.

6. Based on the factor analysis conducted, it does seem that the loadings
suggest that items regarding examination or numerical/abstract prob-
lems foster high levels of mathematical anxiety, whereas questions related
to preparation for a course foster lower levels of mathematical anxiety.

2.6 Limitations

In terms of limitations, it is important to note that the size of the dataset
was troublesome. The lack of response lead to a total of only 155 participants
across all first year mathematics courses. Considering the size of the classes,
this is not a significant proportion of students and we must take this into
consideration when making conclusions about the results.

Due to this lack of response, there may be biases of underrepresentation of
certain populations. For instance, in total, there were significantly more female
participants than there were male participants (107 vs 45). Unfortunately, this
is not reflective of the demographics of the courses.

Furthermore, there were some classes that were not represented in the
sample. Notably, Math 1K03 students did not participate in the survey. This
could be a significant problem as students in Math 1K03, a course for Advanced
Functions and Calculus, could have exhibited high levels of MA which would
have provided more insight into the nature of MA.

Moreover, not only were courses misrepresented, but programs were also
lacking representation. As mentioned previously, the computer science pro-
gram is represented by one participant only. Thus, this does not allow for a
valid representation of the level of MA in that particular program.

Another limitation of this dataset is that students were not able to accu-
rately report their current grades in the course. It is likely that being able to
record the current results of the students on the assessements in the course
could provide even more information about how their mathematical anxiety
is affecting their performance. Thus, it would have been beneficial to gather
this data over a longer period of time, while keeping track of individualized
data for each student. In other words, a time series dataset could be of ben-
efit in the future. With time series data, it may be possible to see how MA
changes throughout a term, and this might shed more light on the nature of
MA. Particularly, if the students were asked to answer the MARS a few times
throughout the term in association with their grades, it could lead to a model

36



M.Sc. Thesis - S. Spilotro McMaster University - Mathematics

with better predictive capabilities as opposed to simple correlational analysis.
Furthermore, this time series data could certainly help in the derivation and
validation of theoretical models of learning like the models to be presented and
analyzed in the following chapters of this paper.
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Chapter 3

Theoretical Models

In the literature, authors have taken characteristics of the learner, informa-
tion, and teaching methods into account in the derivation of their models.
In the following sections, a variety of mathematical models will be proposed
to explain the interaction between the knowledge, the effort, and the anxiety
an individual gains and exhibits throughout a term. First, Anderson’s model
(B.3.10) will be considered and modified to account for motivational factors.
Then, inspired by the work of Anderson (1983), another model will be devel-
oped. Subsequently, through the use of a system of differential equations, a
new theoretical model will be proposed. Having outlined the assumptions of
this model, an analysis, and critique of the model will be conducted. Then,
the validity and appropriateness of the predictions will be discussed.

3.1 Model I

One of the limitations of Anderson’s model is that motivational factors are
not taken into account [2]. As was discussed in the mathematics education
literature, anxiety can be seen as a motivating factor. Here, it is proposed
that parameters for levels of mathematical anxiety and personal drive or effort
could be incorporated into Anderson’s model.

In order to include a parameter for both mathematical anxiety and effort,
it is important to consider the components of the model derived by Anderson
in [2]. Firstly, the function S(t), (B.3.2), represents the stability of short-term
memory (STM). This function describes the decline in STM capacity. On the
other hand, the function I(t), (B.3.4), describes the decline in instability. More
precisely, it accounts for the decline in instability as the learner becomes more
familiar with a learning task. For convenience, as references will be made to
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the equations, a more detailed summary of Anderson’s model derivation can
be found in Appendix B.3.

For this particular model, simplifying assumptions will be made to incor-
porate new parameters into Anderson’s model. These assumptions are listed
below.

1. The level of mathematical anxiety (µ) and a learner’s drive/effort (ε) are
considered constants.

2. The level of mathematical anxiety is assumed to affect the stability of
short-term memory and thus will be taken into account in the stability
funtion (B.3.2).

3. The learner’s drive or effort is assumed to affect the instability term in
the sense that the more effort made, the greater the decline of instability
of a learning task. Thus, it will be taken into account in the instability
function (B.3.4).

Due to the above assumptions, it is possible to simply fit two new pa-
rameters to Anderson’s model. This would result in the following equations
((3.1.1), (3.1.2)) that could be tested with empirical data similar to the data
that Anderson used to verify the predictive capabilities of their model.

S = S0e
−α·β·ρ·µ

κ
t. (3.1.1)

I = I0e
−λεt, (3.1.2)

Essentially, by incorporating these new parameters into Anderson’s model,
mathematical anxiety and effort simply speed up the decline in stability, and
the decline in instability of the CNS of the individual. Thus, a larger level
of mathematical anxiety would impede the capacity of short term memory,
making it harder to acquire knowledge. On the other hand, a higher level of
effort would allow the individual to become more familiar with the learning
task in a shorter period of time.

This model is limited since it depicts the behaviour of the CNS in the pro-
cess of content acquisition. In this sense, it only describes a very short period
of time span of minutes to approximately a half an hour [2]. Thus, even with
the parameters for mathematical anxiety and effort, this model does not ap-
propriately describe behaviour over the period of a school term. Furthermore,
the assumption that mathematical anxiety and effort are constants throughout
an experiment is too much of a simplification, thus creating a need to propose
another model.
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3.2 Model II

When studying the work of Anderson (1983), it is possible to draw parallels
between the stability and instability functions, and how anxiety and effort
would theoretically affect knowledge. Inspired directly by the derivation of
Anderson’s model, the following model is proposed to describe the effect of
effort and anxiety on the acquisition of knowledge during the early stages of a
learning experience. Therefore, it is assumed that time is finite and does not
account for learning over a lifetime.

Before making note of the necessary assumptions, the notation that will be
used for this model is outlined. The three variables of the model considered
here are knowledge (K), level of anxiety (A), and level of effort (E). The
three functions for these variables will then form the function for the net
gain of information, denoted N(t). There are several parameters to describe
the characteristics of the learner and the characteristics of the content to be
acquired that will be taken into account in this model. A list of the parameters
is given below.

• learner’s aptitude (α)

• learner’s expectation (ε)

• learner’s personal drive (δ)

• learner’s susceptibility for anxiety (σ)

• learner’s previous knowledge (ρ)

• characteristic of the content (γ)

For this model, differential equations will be written for each of the vari-
ables, and then, they will be solved individually. Some assumptions for the
derivation of these differential equations are presented next.

1. Knowledge is considered to be the content that the individual has ac-
quired over time. Thus, knowledge is strictly increasing over time.

2. The net gain (N(t)) will represent the effects of effort and anxiety on the
individual’s acquisition of information.

3. Anxiety is assumed to decrease over time as in this derivation, it is
assumed that anxiety decreases as knowledge increases. This said, the
anxiety function is analogous to the stability function from [2].
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4. It is assumed that effort decreases over time as the individual becomes
more comfortable with the course content, and does not need to provide
more effort seeing as they have acquired enough knowledge to support
the gain of new information. Thus, the effort function is inspired by the
instability function from Anderson’s model.

3.2.1 Knowledge Function

The rate of increase of knowledge is proportional to the amount of knowledge
the individual has K. Further, it is assumed that as the aptitude, α, and drive,
δ, of an individual increase, so too would the rate of increase of knowledge K ′.
However, this increase would be slowed depending on the characteristics of
the information, γ. Thus, the rate of change of knowledge would be given by
equation (3.2.1).

dK

dt
=
αδ

γ
K (3.2.1)

Solving the above yields the equation for the knowledge of the individual
at time t. In this equation (3.2.2), K0 denotes the initial amount of knowledge
the learner has when going into the learning experience.

K = K0e
αδ
γ
t (3.2.2)

3.2.2 Effort Function

Next, the rate of change of effort, E ′, is outlined. In this case, effort is con-
sidered to decrease over time, proportional to itself, as the individual gains
more knowledge and can make more connections to the new information to
be acquired. This is consistent with the constructivism theory presented in
[21]. The rate of decrease of effort would be higher with high susceptibility
for anxiety, σ, and the characteristics of the information to be acquired, γ.
Furthermore, the rate of decrease would be slowed by the individual’s drive, δ,
and their expectations of themselves, ε. Thus, equation (3.2.3) gives the rate
of change of effort over time.

dE

dt
= −γσ

δε
E (3.2.3)

Solving this differential equation leads to the solution curve for effort in
equation (3.2.4). Here, E0 denotes the initial effort level of the individual.
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E = E0e
− γσ
δε
t (3.2.4)

3.2.3 Anxiety Function

In this model, the anxiety function mimics the stability function from An-
derson’s model. As such, anxiety is assumed to decrease over time as the
individual is gaining knowledge. Furthermore, the rate of decrease of anxiety
would be proportional to the product of itself. This rate of decrease would
be higher for individuals with higher aptitude, α, and would be slowed by
their susceptibility for anxiety, σ, and the characteristics of the information,
γ. Therefore, the rate of change of anxiety is given by equation (3.2.5).

dA

dt
= − α

σγ
A (3.2.5)

When solving this differential equation with A0 as the initial level of anxi-
ety, the solution for the level of anxiety over time is given by equation (3.2.6).

A = A0e
− α
σγ
t (3.2.6)

3.2.4 Net Gain Function

As was done in Anderson’s paper from 1983, the three functions derived above
will be used to form the net gain function. This function is the net gain of
information the individual acquires by time t after taking into account the
effects of effort and anxiety. The net gain function will be the product of the
knowledge function and the difference between the effort and the anxiety func-
tions. Thus, as was the case in [2], there is a modulation effect on knowledge
gained. Therefore, we borrow the term modulation factor to describe E − A.
Equation (3.2.8), decribes the net gain of information over time.

N(t) = K0e
αδ
γ
t
(
E0e

− γσ
δε
t − A0e

− α
σγ
t
)

(3.2.7)

For a more concise notation, let ν = αδ
γ

, let λ = γσ
δε

and let β = α
σγ

. Also,
for simplicity, take E0 = A0 = 0. The net gain function can now be written as
equation (3.2.8).

N(t) = K0e
νt
(
e−λt − e−βt

)
(3.2.8)

In order for this model to make practical sense, certain conditions must be
met. First, effort must always be greater than anxiety so that the net gain

42



M.Sc. Thesis - S. Spilotro McMaster University - Mathematics

does not become negative. Furthermore, the rate of decay of effort has to be
smaller than the rate of decay of anxiety (λ < β).

This model can result in three different curves for the net gain, depending
on the nature of the parameters. In the first case, the increase in knowledge
is large enough that the effect of the modulation factor is negligeable. The
second possibility is that the rate of increase of knowledge is equal to the
rate of decrease of effort, and this causes a saturation of the net gain at an
asymptote. Finally, if the effect of the modulation factor is too great, then the
net gain would reach its maximum and then decrease. These three cases can
be seen in Figure 3.1.

Figure 3.1: Three Possible Shapes of Model II

The biggest shortcoming of this model is that it only describes the learn-
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ing situation in the early stages. In order to describe a learning situation
throughout the course of an academic term, other cases must be considered.
In particular, the assumptions that knowledge is always increasing, and that
effort and anxiety are always decreasing, are aspects that need to be revised.
As is suggested in the mathematical education literature, mathematical anx-
iety has a dynamic nature and thus, these assumptions do not lead to the
best description for the relationship between these variables over an extended
period of time.

3.3 Model III

Prior to deriving the next model and proposing appropriate prototype func-
tions, it is important to outline the assumptions that will be made to build the
foundation of our theoretical model. The model will seek to explain the short
term interactions between the following variables: proportions of knowledge
(K), effort (E), and anxiety (A). Throughout the derivation of Model III, the
variables represent proportions of knowledge, effort, and anxiety even if it is
referred to as a level. The interaction between variables will be described by
a model composed of a system of three differential equations for the rates of
change of each of the three variables. Each of these variables will be assumed
to vary throughout the term. In particular, the variables can increase and de-
crease over time because they are considered to be proportions. In particular,
as the term progresses, there is more content to be learned from every new lec-
ture, thus the proportion of knowledge can decrease. In this sense, knowledge
is not strictly increasing. Finally, since the model will describe the interactions
between the variables throughout a semester, time is finite. It is noted here
that depending on the time scale, not all individual’s will be able to reach the
equilibrium that they could reach if they had unlimited time. Table 3.1 lists
the parameters of the model.

Three main parameters representing the learner’s characteristics will be
taken into account, namely, the individual’s aptitude, their drive and their
susceptibility for anxiety. There will be three other parameters, K̃, Ẽ, and
Ã, that represent the critical values of each variable. In theory, these crit-
ical values would be dependent on some of the individual’s characteristics,
the difficulty of the course, and the state of the learning environment. These
six parameters will have values between zero and one. Finally, the maximum
proportion of knowledge, effort, and anxiety are denoted by K̄, Ē, and Ā re-
spectively. For all simulations, figures, and bifurcation diagrams these three
parameters will be given a value of one. However, for the sake of future mod-
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Parameter Meaning

α Individual’s aptitude

δ Individual’s drive

σ Individual’s susceptibility for anxiety

K̃ Critical level of knowledge with respect to anxiety

Ẽ Critical level of effort with respect to knowledge

Ã Critical level of anxiety with respect to effort

K̄ Maximum proportion of knowledge

Ē Maximum proportion of effort

Ā Maximum proportion of anxiety

Table 3.1: Model III Parameters

ifications to the model, they are left as parameters in the definition of the
system. Since the critical level of the variables depend on the individual, they
are necessarily less than the maximum proportion of knowledge, effort and
anxiety. Thus, a necessary condition is that K̄ > K̃, Ē > Ẽ, and Ā > Ã.

The model considered here is,

dK

dt
= C

(
α− (Ẽ − E)K

) (
K̄ −K

)
(3.3.1)

dE

dt
= C

(
δ + (Ã− A)E

) (
Ē − E

)
(3.3.2)

dA

dt
= C

(
σ + (K̃ −K)A

) (
Ā− A

)
. (3.3.3)

The variables K, E, and A are proportions. The constant rate C can be
used to scale time, and has dimensions 1

time
. For simplicity in analyzing the

model, let C = 1. However, note that if C is chosen accordingly, the time axis
could be scaled to represent the duration of an academic term. The model
then becomes,

dK

dt
=

(
α− (Ẽ − E)K

) (
K̄ −K

)
(3.3.4)

dE

dt
=

(
δ + (Ã− A)E

) (
Ē − E

)
(3.3.5)

dA

dt
=

(
σ + (K̃ −K)A

) (
Ā− A

)
. (3.3.6)

The differential equation (3.4.2) describes the rate of change of the pro-
portion of knowledge as it depends on the proportion of effort. In particular,
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the rate of change of knowledge is proportional to the difference between the
current level of knowledge and the maximum proportion, K̄. If knowledge
is zero, then the rate of change will be proportional to the product of the
learner’s aptitude α and the maximum amount of knowledge possible for that
learner, K̄. In the case where K̄ is one, this would then mean that the rate of
change would be proportional to the individual’s aptitude. Thus, if knowledge
is zero, it will then increase as its rate of change is positive, and knowledge will
not remain zero forever. Furthermore, it will not become negative. If effort
exceeds Ẽ, then the rate of change of knowledge is positive. However, if effort
is insufficient, depending on the individual’s aptitude, then the rate of change
of knowledge could become negative and thus, knowledge could decrease. If
the individual’s aptitude is zero, regardless of their level of effort, proportion
of knowledge will remain zero.

The differential equation (3.4.3), describes the rate of change of the propor-
tion of effort as it depends on the proportion of anxiety. This rate of change
is once again proportional to the difference between the current level of effort
and the maximum proportion of effort, Ē. If effort is zero, it is assumed that
the rate of change is proportional to the product of the drive of the individual
and the maximum amount of effort, Ē. Thus, effort will not remain zero. Once
effort is positive, if anxiety becomes too large, the rate of change of effort can
become negative, and hence, effort could decrease. Precisely, if anxiety exceeds
Ã, then, if the individual’s drive δ is low, the individual may not be able to
ignore their level of anxiety and the rate of change of effort would become
negative. Contrarily, if anxiety is sufficiently low, it will inspire the learner
and the rate of change will be positive. Moreover, if the individual’s drive is
zero, their proportion of effort will remain zero.

The last differential equation of the model is (3.4.4). This differential equa-
tion describes the rate of change of the proportion of anxiety as a function of
the individual’s proportion of knowledge, K. As was the case with the previ-
ous differential equations, the rate of change of anxiety will be proportional to
how much anxiety the individual has left to gain. That is, it is proportional
to the difference between the maximum level of anxiety and the current level
of anxiety. If anxiety is zero, then the rate of change of anxiety will be the
product of the learner’s susceptibility for anxiety, σ, and the maximal level of
anxiety, Ā. Here, if knowledge grows enough, depending on the individual’s
susceptibility for anxiety, the rate of change could become negative, and so
anxiety could decrease. However, if knowledge is too small, the rate of change
of anxiety would be positive and anxiety will increase. Similarly to the previ-
ous cases, if susceptibility for anxiety is zero, this individual’s level of anxiety
will remain zero.
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3.4 Analysis of Model III

In this section, an analysis of Model III is presented. Firstly, a verification of
the nature of the parameters will be done to validate the system of differential
equations. Then, conditions will be imposed on the parameters to ensure the
appropriateness of the model and assumption statements will be provided.
Subsequently, the equilibria will be listed, along with information about their
existence and stability. Finally, the dynamics of the model will be discussed
via bifurcation analysis.

A set of gifs were generated by plotting the solutions of Model III while
changing one parameter at a time. By changing each parameter, it was pos-
sible to see that the basic behaviour of the model makes practical sense. For
instance, by changing the individual’s aptitude, α, from zero to one, the solu-
tions for the level of knowledge and effort reach their maximum in a shorter
period of time, and the solution for the level of anxiety decreases. A similar
result ensues for changing the parameter representing the individual’s drive, δ.
Contrarily, when increasing the individual’s susceptibility for anxiety, σ, the
level of knowledge and effort decrease, whereas the level of anxiety increases.
As such, it is possible to conclude that the parameters in place for the indi-
vidual’s characteristics make practical sense in the way that they affect the
solution curves.

As for the critical level parameters K̃, Ẽ, and Ã, the gifs also support
the validation of how these affect the solutions. K̃, representing the critical
level of knowledge with respect to anxiety, slows the growth of knowledge and
effort, while increasing anxiety as the value of this parameter increases. This
makes sense as it represents the level of knowledge for which anxiety could
begin to decrease. The parameter Ẽ behaves in a similar fashion. Finally, the
parameter Ã, that represents the critical level of anxiety with respect to effort,
actually increases knowledge and effort as it grows, while decreasing the level
of anxiety. Once again, this makes sense as the larger Ã is, the more anxiety
helps to drive the individual’s effort.

3.4.1 Assumptions

In order for the model to be well-defined and make theoretical sense, some
assumptions must be made. Define the set (3.4.1) as,

S = {(K,E,A) ∈ R3 : 0 ≤ K ≤ K̄, 0 ≤ E ≤ Ē, 0 ≤ A ≤ Ā}. (3.4.1)
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The main assumption of the model ensures that the initial values of knowl-
edge, effort and anxiety are between zero and their maximum values,

(1) (K(0), E(0), A(0)) ∈ S.

With assumption (1), it is possible to prove that solutions do not become
negative, and that they do not exceed the maximum levels K̄, Ē, and Ā
respectively.

Since the parameters are positive, the proof that solutions do not become
negative is straightforward, and is outlined here. Considering the system of
differential equations,

dK

dt
=

(
α− (Ẽ − E)K

) (
K̄ −K

)
(3.4.2)

dE

dt
=

(
δ + (Ã− A)E

) (
Ē − E

)
(3.4.3)

dA

dt
=

(
σ + (K̃ −K)A

) (
Ā− A

)
, (3.4.4)

if K = 0, then dK
dt

= (α)(K̄), and as aptitude is between zero and one, and
the maximum proportion of knowledge is positive, the solution curve would
increase. The same argument applies for both the rate of change of the pro-
portions of effort and anxiety.

To prove that solutions cannot exceed the maximum value of the variables,
assume that ∃ a constant solution where K = K̄, and the solutions for E
and A are in set (3.4.1). If ∃ a set of initial conditions (Kt̄, Et̄, At̄) for which
K(T̄ ) = K̄, then this solution would intersect with the constant solution.
If this is the case, this contradicts the uniqueness of solutions. The same
arguments persist for the solutions of variables E and A. Thus, it is not
possible for a solution, whose initial conditions are in the set (3.4.1) to exceed
the maximum values of the variables.

Statements (i)-(iv) are not necessary assumptions, but rather important
conditions for the parameters of the model that allow for different dynamics.
Their importance and relevance will be explained in more depth in subsequent
sections.

(i) α− ẼK̄ < 0 so that K ′ can be negative.

(ii) δ + (Ã− Ā)Ē < 0 so that E ′ can be negative.

(iii) σ + (K̃ − K̄)Ā < 0 so that A′ can be negative.

(iv) Ā > Â > Ã and Ē > Ẽ > Ê so that K+ and E+ exist.
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3.4.2 Existence of Equilibria

In table 3.2, the values of the variables that allow for each differential equation
to be equal to zero are listed.

K ′ = 0 E ′ = 0 A′ = 0

K̄ Ē Ā

K̂ = α
Ẽ−Ē Ê = δ

Ā−Ã Â = σ
K̄−K̃

K+ = α(Ā−Ã)

Ẽ(Ā−Ã)−δ E+ = δ(K̄−K̃)

σ−Ã(K̄−K̃)
A+ = σ(Ẽ−Ē)

α−K̃(Ẽ−Ē)

K∗ E∗ A∗

Table 3.2: Values of the Variables to Equate the Differential Equations to Zero

However, some of the values above are not feasible. From assumption (1), it
is known that K̄ > K̃. Thus, the equilibrium K̂ < 0 and so, as it does not make
sense to have a negative value for an individual’s proportion of knowledge, K̂
does not exist.

K+, E+, and A+ are defined as follows: K+ = α

Ẽ−Ê , E+ = δ

Â−Ã , and

A+ = σ

K̂−K̃ . With this definition, it is possible to see that A+ does not exist,

as it depends on K̂.
Furthermore, for K+ and E+ to be positive, the following inequalities must

be true: Ẽ > Ê and Ã < Â. This confirms the statement (iv) that was noted
previously.

Finally, since Ē > Ẽ, this implies that it is not possible to have a value
other than K̄ if effort is equal to Ē. In Table 3.3, the possible equilibrium
points are listed and their conditions for existence are noted.

The equilibria of the system occur when all three differential equations are
equal to zero (i.e. K ′ = 0, E ′ = 0, and A′ = 0).

The equilibrium E6 = (K∗, E∗, A∗) will be referred to as the “interior”
equilibrium as it does not include any of the bar or hat values. Summarizing
the conditions for existence of this equilibrium is much more complex compared
to the other equilibrium points. Thus, a more detailed analysis of the existence
conditions will now be presented. In particular, the system below must be
solved to find the possible values of K∗, E∗, and A∗.
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Equilibrium Point Existence Condition(s)

E1 = (K̄, Ē, Ā) Always exists.

E2 = (K̄, Ê, Ā) Exists if Ē > Ê.

E3 = (K̄, Ē, Â) Exists if Ā > Â.

E4 = (K̄, E+, Â) Exists if Ā > Â > Ã and σ
Ã
< K̄ − K̃ < σ.

E5 = (K+, Ê, Ā) Exists if Ē > Ẽ > Ê and δ < Ā− Ã < δ
Ẽ

.

E6 = (K∗, E∗, A∗) Existence conditions to be discussed below.

Table 3.3: Equilibrium points and their existence conditions.

α− (Ẽ − E∗)K∗ = 0 (3.4.5)

δ + (Ã− A∗)E∗ = 0 (3.4.6)

σ + (K̃ −K∗)A∗ = 0 (3.4.7)

When rearranging and solving the system of equations above to solve for
K∗, E∗, and A∗, the following expressions are obtained,

K∗ =
α

Ẽ − E∗

E∗ =
δ

A∗ − Ã
A∗ =

σ

K∗ − K̃
.

From these expressions, a few conditions for the existence of this equilib-
rium arise. Notably, the following inequalities, K̄ > K∗ > K̃, Ē > Ẽ > E∗,
and Ā > A∗ > Ã, must hold true. In order to solve for any of the values, it
is necessary to first find the value of one of the variables. Thus, the equations
are rearranged in order to write an expression only in terms of parameters and
K∗. The left hand side of the quadratic (3.4.8) will be referred to as f(K∗).

(ÃẼ + δ)(K∗)2 − (αÃ+ σẼ + δK̃ + ÃẼK̃)K∗ + ασ + αÃK̃ = 0. (3.4.8)

To find the possible values of K∗, f(K∗) = 0 must be solved. The solutions
of this quadratic are complicated to analyze due to the number of parameters.
However, the Descartes Rule of Signs can be useful here. By the Descartes
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Rule of Signs, since f(K∗) has two sign changes, there are either two or zero
positive real roots. When considering f(−K∗), there are zero sign changes,
and thus, the Descartes Rule of Signs indicates that this quadratic has no
negative real roots. As such, this equilibrium could exist when the solutions
to (3.4.8) are in the set (3.4.1), and yield values of E∗ and A∗ with those same
properties.

Using Maple [1], it is possible to see that there are parameter values that
yield interior equilibrium points. In order to verify this, the function f(K∗) is
plotted for given parameter values to see if the x-intercepts are between zero
and K̄. Subsequently, Maple is used to calculate the corresponding values of
E∗ and A∗ to see if they are in the set (3.4.1). Thus, by investigation, it is
possible to find two interior equilibrium points of the form (K∗, E∗, A∗) given
certain values of the parameters of the model. However, by studying various
sets of parameters, only one interior equilibrium has all three values in the set
(3.4.1).

3.4.3 Stability of Equilibria

To find the stability of the equilibria, the Jacobian of the system was computed.
Next, the eigenvalues of the Jacobian at each of the equilibrium points were
found to establish conditions for stability of each respective equilibrium. For
an equilibrium to be stable, all of the real parts of the eigenvalues of the
Jacobian at that equilibrium must be negative. The conditions for stability of
each equlibrium (not including (K∗, E∗, A∗)) are summarized in Table 3.4.

There are a few important notes to make about some of the stability con-
ditions above. For instance, in the case of the first two equilibrium points, if
statements (ii) or (iii) hold, these stability conditions cannot be satisfied. In
this case, if (ii) or (iii) are true, then equilibrium E1 and E2 are both unstable.
However, if (ii) and (iii) are not true, then it is possible that equilibrium E1 or
E2 could be stable, and their stability depends on the first condition in each
case. On one hand, if K̄(Ẽ − Ē) − α < 0 holds, then E1 is stable. If only
K̄(Ẽ − Ê)− α < 0 is true, then E2 would be stable. Moreover, given certain
parameters, local stability is possible for both of these equilibrium points at
once. However, under further scrutiny, it seems that when this is the case, E2

does not exist as not all variable values are in the set 3.4.1 (i.e. Ē < Ê). In
Figure 3.2a and Figure 3.2b, there are examples of parameter sets, with initial
condition (0, 0, 0), for which the solutions converge to E1 and E2 respectively.

When examining the stability of E3, it is possible to see that many sets of
parameters yield stability for this equilibrium point. This equilibrium consists
of the individual’s level of knowledge and effort reaching their maximum po-
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Equilibrium Stability Conditions

E1 = (K̄, Ē, Ā)

K̄(Ẽ − Ē)− α < 0

Ē(Ā− Ã)− δ < 0

Ā(K̄ − K̃)− σ < 0

E2 = (K̄, Ê, Ā)

K̄(Ẽ − Ê)− α < 0

Ē(Ā− Ã)− δ < 0

Ā(K̄ − K̃)− σ < 0

E3 = (K̄, Ē, Â)

K̄(Ẽ − Ē)− α < 0

Ē(Â− Ã)− δ < 0

(2Â− Ā)(K̄ − K̃)− σ < 0

E4 = (K̄, E+, Â)

K̄(Ẽ − E+)− α < 0

(2E+ − Ē)(Â− Ã)− δ < 0

(2Â− Ā)(K̄ − K̃)− σ < 0

E5 = (K+, Ê, Ā)

(2K+ − K̄)(Ẽ − Ê)− α < 0

(2Ê − Ē)(Ā− Ã)− δ < 0

Ā(K+ − K̃)− σ < 0

Table 3.4: Stability conditions for five equilibrium points (E1-E5) of Model III

(a) (b)

Figure 3.2: Solutions of Model III

Figure 3.2a shows the solutions converging to E1, whereas Figure 3.2b shows solu-
tions converging to E2, both starting from IC (0, 0, 0).

tential, K̄ and Ē respectively, whereas their anxiety attains the value Â. In
this sense, the stability conditions for E3 are often satisfied by the sets of pa-
rameters chosen. Figure 3.4 shows a set of parameters for which this particular
equilibrium is stable.

Furthermore, by investigating different sets of parameters, it is possible to
see that both E4 and E5 can be locally stable. In this case, the conditions for
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Figure 3.4: Solution of Model III converging to E3.

stability for both of these equilibria are all satisfied. Whether the individual
reaches E4 or E5 would depend on the initial conditions given in that particular
case. Figures 3.5a and 3.5b show the solutions of the model given a chosen set
of parameters and different initial conditions.

(a) (b)

Figure 3.5: Solutions of Model III

Figure 3.5a shows the solutions converging to E4 from IC (0.8, 0.5, 0.4) whereas
Figure 3.5b shows solutions converging to E5 from IC (0, 0, 0).

As for the stability of the interior equilibrium of the form (K∗, E∗, A∗), it is
difficult to determine analytically due to the complicated expressions derived
by solving for the values of the variables at this point. The Jacobian of the
system can still be used to provide insight. Particularly, when computing
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the Jacobian at the point (K∗, E∗, A∗), it is possible to find an expression for
the characteristic polynomial found by computing det(J∗ − λI). The roots
of this polynomial yield the eigenvalues of the Jacobian, which would provide
information on the stability of this interior equilibrium. The full expression
for the characteristic polynomial of the Jacobian at the interior equilibrium,
(B.1.1), can be found in the corresponding appendix, but for now, a concise
expression, (3.4.9), is given to facilitate discussion.

det(J∗ − λI) = λ3 − a1λ
2 − a2λ− a3 (3.4.9)

The expressions for the coefficients, a1, a2, and a3, are dependent on the
values of the parameters of the system. If it is possible to find the sign of
these coefficients, the Routh-Hurwitz criterion could be used to determine if
the equilibrium is stable. Unfortunately, due to the nature of the parameters,
it was not possible to definitively find the sign of these coefficients. Thus, an
analytical answer of whether or not the interior equilibrium is stable is not
feasible at this time. However, it is possible to do a numerical analysis to see
if this equilibrium is ever stable. Using Maple computation and a MATLAB
simulation, it seems that this equilibrium is never stable. Hence, though there
is the potential for an interior equilibrium, the model does not allow for it to
be stable.

3.4.4 Bifurcation Analysis

In this section, the software XPPAUT, [8], is used to create bifurcation dia-
grams in order to study the change in stability of the equilibria of the model.
Diagrams will be presented to show the bifurcations that occur when chang-
ing six of the model parameters, namely, α, δ, σ, K̃, Ẽ, and Ã. Table 3.5
the significance of different lines and colours are listed to facilitate reading
these diagrams. The specific parameter values used to generate each set of
bifurcation diagrams will be included in the Appendix B.1.

Type of Line Meaning
Red line Stable equilibrium

Black line Unstable equilibrium
Red and black overlapping lines One stable, one unstable equilibrium

Green dotted line Stable periodic orbits
Blue dotted line Unstable periodic orbits

Table 3.5: Meaning of Lines in Bifurcation Diagrams
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In the Figures 3.7a, 3.7d, and 3.7g, the bifurcation parameter used was the
individual’s aptitude, α. These diagrams exemplify the complex nature of the
dynamics of Model III. In particular, as α increases, there is a bifurcation from
E5 = (K+, Ê, Ā) to E4 = (K̄, E+, Â). Moreover, there is an interval for which
bistability between these two equilibrium points occurs. In this region, an
individual would be able to achieve different levels depending on their initial
conditions. Subsequently, E4 becomes the only stable equilibrium. Thus,
inceasing aptitude allows the individual to reach a higher level of knowledge, a
different level of effort, as well as a lower level of anxiety. In these diagrams, it
is also possible to see the existence of an interior equilibrium, when aptitude is
approximately 0.3, that is unstable. Other interesting dynamics also occur in
this series of bifurcation diagrams. Notably, there is the presence of a stable
periodic orbit when K is greater than one. Unfortunately, this is currently
irrelevant in the scope of Model III as it only considers values between zero
and one.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.7: Bifurcation diagrams as α, δ, and σ change from zero to one
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Next, in the second column including Figures 3.7b, 3.7e, and 3.7h, the
bifurcation parameter was the individual’s drive, δ. As delta increases from
zero to one, there are bifurcations from E5 = (K+, Ê, Ā) to E2 = (K+, Ê, Ā),
and then to E1 = (K̄, Ē, Ā). This implies that as the individual’s drive grows,
they may then succeed in increasing their level of knowledge and effort to
the maximum. Though anxiety remains at the Ā level, in order to see the
full effects of an increase in drive in the bifurcation diagrams, a sufficient
value of susceptibility of anxiety must be present. More precisely, if σ is low
enough (e.g. σ = 0.3), then the bifurcation that occurs leads to stability of
E3 = (K̄, Ē, Â) instead.

The third column in Figure 3.7 illustrates the bifurcations as the param-
eter for the susceptibility for anxiety, σ, of the individual increases from zero
to one. Once again, the dynamics here seem to be interesting and complex.
However, as is the case in the bifurcation diagrams of changing aptitude, these
most interesting results occur for values outside of the range of interest. The
important behaviour to note from these diagrams is that an increase in sus-
ceptibility for anxiety leads to a decrease in the level of effort and an increase
in the level of anxiety an individual may reach. In this case, it is equilibrium
point E3 = (K̄, Ē, Â) that is stable, and as σ increases, E2 = (K+, Ê, Ā)
becomes stable.

Another interesting result can be seen when K̃ is used as a bifurcation pa-
rameter. This special case is shown in the first column of Figure 3.8. Figures
3.8a, 3.8d, and 3.8g, show the change in knowledge, effort, and anxiety respec-
tively as K̃ increases from zero to one. Here, there is a very wide range of the
bifurcation parameter for which bistability of equilibrium points occurs. Thus,
depending on the initial conditions of the individual, their outcome could dif-
fer. In particular, for these parameter values, the stability shifts from only E3,
to bistability between E3 and E5, and finally to only E5. This demonstrates
that as K̃ increases, one’s level of knowledge is actually hindered. In fact,
as this parameter increases, the level of anxiety rises which in turn, restricts
the individual from attaining the maximum level of knowledge. In these di-
agrams, it is also possible to see that there is in fact an interior equilibrium
that is present, but that it is unstable.

In the second column of Figure 3.8, the bifurcation parameter used was Ẽ.
As this parameter increases, there is an interesting bifurcation that appears
when considering the level of knowledge. In particular, as it grows, the level
of knowledge decreases. Initially, it is equilibrium point E2 that is stable,
whereas as the parameter increases, E5 becomes the stable equilibrium. Yet
another interesting result occurs in the diagrams as there is the presence of an
unstable periodic orbit. This orbit, represented by the blue dotted line, only
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.8: Bifurcation diagrams as K̃, Ẽ, and Ã changes from zero to one

occurs when the level of knowledge is above one. Unfortunately, due to this
fact, this is not a relevant orbit. However, once again, this emphasizes the
potential of the model in that the dynamics are very complex.

The last set of bifurcation diagrams, Figures 3.8c,3.8f, and 3.8i, are gener-
ated by using Ã as the bifurcation parameter. In these figures, it demonstrates
that there is once again bistability between E5 and E4. As the bifurcation
parameter increases, E3 becomes the stable equilibrium point. Thus, as Ã
increases, the level of knowledge and effort increase, whereas the level of anx-
iety decreases. It is notable that there is also the appearance of an interior
equilibrium that is unstable.

After investigating the nature of the bifurcation diagrams given various
sets of parameters, it is clear that the dynamics of Model III are complex and
offer many different outcomes. The variety of dynamics speak to the potential
of the model and suggest that with some refinement even more predictions
could be made.
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3.4.5 Critique of Model III

A statistician named George Box once stated, “essentially, all models are
wrong, but some are useful” [6]. With this in mind, it is noted that Model
III does have its shortcomings, which will be discussed in this section. The
usefulness of the model is left to the discussion section of this thesis.

The first critique of the model is that the maximal values of the variables
(K̄, Ē, Ā) are easily reached. For instance, at times, when the aptitude of an
individual is low, they can still reach full knowledge in a short period of time. It
would be important to find a more definite range of parameters to better reflect
the nature of this phenomenon. Though this may be seen as a reflection of the
complex nature of the interaction between knowledge, effort, and anxiety, it
could be refined. Despite the fact that the model behaves appropriately when
changing one parameter at a time, the dynamics become difficult to predict
when several parameters change at once. Furthermore, the parameters were
chosen relative to one another and were not based on empirical data. In the
future, it would be interesting to try to validate the model using empirical
data to find more appropriate ranges for the parameters.

Another critique would be that there are very interesting dynamics that
occur outside the valid range of the variables. For instance, there are Hopf
bifurcations present when at least one of the variables are greater than one.
Thus, there are periodic orbits possible in the dynamics, however they are not
in a relevant interval. This said, in the future, it would be wise to refine the
model in the hopes that the system would result in these dynamics within an
appropriate range of the variables and parameters.

Moreover, the model could take into account even more characteristic pa-
rameters such as the individual’s expectation, the difficulty of the material,
and even their previous performance. For the first version of the model, it
was necessary to simplify the parameters being taken into consideration, but
more factors can be considered in the future. Furthermore, perhaps the values
for the critical levels of knowledge, effort, and anxiety, could depend on other
parameters instead of being independent. Thus, there is certainly room for
improvement on the level of the parameters of the model.

Finally, Model III is flawed in the fact that it does not predict a stable
interior equilibrium. Part of the theoretical motivation for the model is that
an individual be able to reach a level of knowledge, effort, and anxiety, that
is particular to their characteristics. However, though an interior equilibrium
can be found given certain sets of parameters, it fails to be stable. Thus, in
this sense, it seems that the model could be improved to allow for a more
realistic outcome.
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Chapter 4

Discussion

Through the development of Model III, the goal is to provide a theoretical
approach to understanding the relationship between the proportions of knowl-
edge, effort, and anxiety. Though these variables are not easily quantifiable,
the theory behind the model could one day allow for a better understanding
of how individuals react in learning situations. The model itself is reasonable
in its behaviour when varying the different parameters of the system. For
instance, as aptitude increases, the time it takes the individual to reach full
knowledge decreases. On the other hand, when the susceptibility for anxiety
becomes too great, the individual can no longer overcome this obstacle, and
they are unable to reach the level of full knowledge. In this sense, the initial
behaviour of the model is justifiable.

Not only does the model seem reasonable in the behaviour of its solutions,
but it also succeeds in the fact that it has several equilibria. Seeing as this
model describes a very complex situation, it is appropriate that the model have
a variety of outcomes for specific sets of parameters that could represent dif-
ferent individuals. In particular, the bistability that occurs for certain sets of
parameters suggests that individuals that have different initial levels of knowl-
edge, effort, and anxiety, could reach a better outcome than other individuals.
This could reflect a situation where a student might have to retake a course,
and thus, are beginning the term with a better understanding of the course
content, a higher level of effort, or even a lower level of anxiety.

With the presence of several feasible equilibria and the amount of param-
eters, the analysis of the model was quite challenging. Unfortunately, making
definite conclusions on the signs of certain analytical expressions such as the
eigenvalues of the Jacobian at the equilibrium points was not possible. Thus,
the analysis of the model involved a lot of numerical investigations, and ex-
aminations of bifurcation diagrams and diagrams of the system’s solutions for
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various sets of parameters.
Overall, the model itself is a step in the right direction to begin thinking

about this relationship and how individual’s effort and anxiety can affect their
level of knowledge. Seeing as motivational factors such as drive and suscepti-
bility for anxiety can greatly affect a person engaged in a learning experience,
Model III provides another perspective on the acquisition of knowledge. This
perspective may allow researchers to consider the affects of mathematical anx-
iety on learning in a more quantitative way.
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Chapter 5

Future Work

Due to the importance of mathematical education in today’s society, it is ev-
ident that there is a demand for more advancements in this field of research.
The previous literature and the data analysis performed in this paper prove
that mathematical anxiety is present in university students, particularly in first
year mathematics courses. However, despite these previous findings, there is
still a lack of understanding of the nature and causal direction of the correla-
tion between mathematical anxiety and mathematical achievement. Therefore,
there is a need to continue to investigate the dynamic nature of mathematical
anxiety and its predictors and effects.

This dynamic nature suggests that mathematical anxiety can affect indi-
viduals differently, and can have varying consequences. As such, a longitudinal
study that examines the nature of mathematical anxiety and its effects on in-
dividuals could be beneficial. More precisely, this study could gather time
series data to track the level of mathematical anxiety and performance of
students over the course of several terms across different programs and math-
ematics courses. Furthermore, this study should consider other factors such
as demographic information, sleep patterns, effort, and self-expectancies that
individuals exhibit in a learning situation. All of these factors could impact
levels of mathematical anxiety and performance and thus, this could shed light
on this complicated relationship.

As the model proposed in this paper is in its early stages, there is also a
lot of potential future work that can be done, along with other approaches
to modelling that could be utilized. The next important step to improve the
model would be to decide on appropriate measures for knowledge, effort, and
anxiety, to be able to provide a more precise range of parameters and variable
values. This refinement could potentially lead to more interesting dynamics,
which would better explain this complex interaction between knowledge, effort,
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and anxiety.
Particularly, the use of empirical data to validate the dynamics between

knowledge, effort, and anxiety would be beneficial to adapt and improve the
model. Thus, a well thought out longitudinal study could provide the empirical
data needed to verify the appropriateness of the theoretical model from this
paper.

Moreover, there are many other methods that could be exploited to refine
or expand on the model proposed here. Another avenue could be to investi-
gate the model used in epidemiology that describes the interaction between
susceptible, infected, and recovered individuals (i.e. the SIR model). More
precisely, it would be possible to describe acquisition of knowledge through
the effect of the individual’s state. In this sense, an individual hoping to ac-
quire knowledge would learn the content if it were successfully stored in long
term memory despite the effects of anxiety. An example of this could be to
have compartments for (a) content to be acquired, (b) content currently being
studied, (c) content acquired, and (d) content returned to the environment.
This fourth compartment would account for the information returned to the
environment as a result of being unsuccessfully stored due to the effects of
mathematical anxiety. Subsequently, depending on the proportion of content
acquired, the individual’s performance would be described by this proportion
and the level of mathematical anxiety that the individual exhibits.

In many cases, learning and anxiety do not have an immediate effect on the
individual. For instance, students may put in effort, study course material, and
only feel the effects of mathematical anxiety after they receive their grades.
This situation could potentially be accounted for in the model by exploring
delayed differential equations. Using this method of modelling could more
accurately depict the change in levels of knowledge, effort and anxiety by taking
into account the time it takes for individuals to undergo the self-regulation
process and understand their own comprehension of the course content.

Another potential area of improvement would be to incorporate randomness
into the model. In particular, stochasticity could be appropriate to account for
the variation in effort that individuals exhibit from week to week throughout
the term. This could be beneficial as students do not always provide a constant
change in effort from one week to the next due to balancing other classes, work,
and social interactions. As such, stochasticity would be an interesting addition
to the model to verify the dynamics given the uncertainty of human behaviour.
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Chapter 6

Conclusion

Evidently, there is still much work to be done in order to fully understand
the complex nature of learning. However, this thesis has provided a different
perspective by making a step to bridge the gap between educational research
and mathematical models of learning.

Through a brief literature review, some important contributions to research
in the field of mathematical education and in mathematical modelling have
been recognized. Notable findings, such as establishing the importance of
test anxiety and mathematical anxiety in student performance, investigating
the factors that affect mathematical anxiety, and developing tools used to
measure this particular type of anxiety, have been discussed. On the other
hand, various mathematical models of learning were presented in order to
provide a foundation for the proposal of a new model of learning.

Moreover, a statistical analysis has been conducted on a dataset collected
at McMaster University. This analysis has shown that mathematical anxiety
does, in fact, affect the students enrolled in first year courses at the university.
Not only does it affect the students at McMaster University, but mathematical
anxiety was shown to be correlated with factors such as gender, performance,
and even students’ program choices, all of which correspond to previous re-
search findings in the field.

Finally, models of learning were developed in order to further drive the
theoretical concept of how mathematical anxiety might affect the learning of
students. In particular, the model proposed by Anderson in [2], was first used
to suggest that mathematical anxiety and drive could be incorporated as pa-
rameters into his model. Subsequently, using the theory of Anderson’s model,
Model II was conceived to reflect the early stages of a learning experience.

Most importantly, Model III was developed to provide a theoretical frame-
work and suggest that the interaction between an individual’s level of knowl-
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edge, effort, and anxiety, is dynamic and changes throughout an academic
term. This model reflects the fact that an individual’s aptitude, drive, and
susceptibility for anxiety each have an effect on their output in a learning ex-
perience. The stability of the equilibria was discussed, and bifurcation analysis
was provided to emphasize the dynamics’ dependence on the parameters of the
model.

There are still many facets of this complex subject that have yet to be
discovered, and going forward, it is important to keep investigating the nature
of mathematical anxiety and its effects on learning in order to provide even
more insight. In fact, many students continue to suffer from this anxiety and
cannot appreciate the value and importance of mathematics. Overall, this
thesis will hopefully be used as a stepping stone to further drive research in
the field of mathematical education, and ultimately lead to new research that
will allow more students to discover the beauty of Mathematics.
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Appendix A

Acronyms

• MA - Mathematical Anxiety

• MARS - Mathematical Anxiety Rating Scale

• CNS - Central Nervous System

• STM - Short Term Memory

• LTS - Long Term Store

• STEM - Science, Technology, Engineering, and Mathematics

• HSA - High School Average

• EXP - Expectation

• GSF - Grades so Far
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Appendix B

Details of Models in the
Literature

In the following appendix sections, there are extra equations relevant to Model
III, and the models derived in the works of Hicklin et al. (1965), Anderson
(1983), and Pritchard et al. (2008), are presented. In the case that the reader
wishes to refer to the derivations of these models, they have been included
for convenience. Thus, these sections do not consist of original work and are
simply a reference to previous work conducted by other researchers on the
topic of mathematical models of learning. A list of acronyms is also provided.

B.1 Model III Extras

The full expression for the characteristic polynomial of the Jacobian at the
interior equilibrium (K∗, E∗, A∗) is given below.

det(J∗ − λI) = λ3 −
[
(2K∗ − K̄)(Ẽ − E∗) + (2Ẽ − Ē)(A∗ − Ã) + (2A∗ − Ā)(K∗ − K̃)− (α+ δ + σ)

]
λ2

− ((−(2K∗ − K̄)(Ẽ − E∗) + α− (2E∗ − Ē)(A∗ − Ã) + δ)((2A∗ − Ā)(K∗ − K̃)− σ)

− ((2K∗ − K̄)(Ẽ − E∗)− α)((2E∗ − Ē)(A∗ − Ã)− δ))λ (B.1.1)

− ((2K∗ − K̄)(Ẽ − E∗)− α)((2E∗ − Ē)(A∗ − Ã)− δ))((2A∗ − Ā)(K∗ − K̃)− σ)

−K∗E∗A∗(A∗ − Ā)(E∗ − Ē)(K̄ −K∗)

In Table B.1 the parameters used to generate the bifurcation diagrams in
Section 3.4.4 are provided. Note that all the bar parameters (K̄,Ē, and Ā),
are equal to one.
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Set of Diagrams Parameters

3.7a, 3.7d, 3.7g α ∈ (0, 1), δ = 0.1, σ = 0.3, K̃ = 0.6, Ẽ = 0.7, Ã = 0.5

3.7b, 3.7e, 3.7h α = 0.4, δ ∈ (0, 1), σ = 0.5, K̃ = 0.6, Ẽ = 0.7, Ã = 0.4

3.7c, 3.7f, 3.7i α = 0.3, δ = 0.4, σ ∈ (0, 1), K̃ = 0.6, Ẽ = 0.7, Ã = 0.4

3.8a, 3.8d, 3.8g α = 0.1, δ = 0.1, σ = 0.1, K̃ ∈ (0, 1), Ẽ = 0.8, Ã = 0.8

3.8b, 3.8e, 3.8h α = 0.1, δ = 0.2, σ = 0.5, K̃ = 0.6, Ẽ ∈ (0, 1), Ã = 0.4

3.8c, 3.8f, 3.8f α = 0.1, δ = 0.4, σ = 0.5, K̃ = 0.6, Ẽ = 0.7, Ã ∈ (0, 1)

Table B.1: Parameters for Bifurcation Diagrams

B.2 Hicklin et al. (1965)

In [12] Hicklin et al. present a model to describe content acquisition over
an individual’s lifetime. This situation is described by a system where (1)
represents the environment, (2) the individual and (3) the lost or forgotten
category. The richness of the environment is denoted N01. As the individual
acquires information, the environment is depleted. What has not yet been
acquired at time t is denoted N1, and N2 is the status of the individual at time
t. The current status of the individual is the difference between what they
have acquired and what has been lost.

To write the differential equation for N1, the rate of decrease in N1 is
assumed to be proportional to the information that has yet to be acquired N1,
thus Hicklin et al. write,

dN1

dt
= −k1N1. (B.2.1)

Solving this differential equation yields the solution,

N1 = N01e
−k1t. (B.2.2)

Here, this suggests that what is left to be assimilated depends on what
is initially present from the environment (N01), and on the aptitude of the
individual (k1).

To derive the expression for the status of the individual, Hicklin et al. make
the assumption that during a time interval ∆t, the individual gains N1k1 units
from the environment and loses N2k2 units to the lost category. This gives the
differential equation,

dN2

dt
= k1N1 − k2N2. (B.2.3)
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Rearranging and using (B.2.2) this differential equation has the solution,

N2 = N01
k1

k1 − k2

(e−k2t − e−k1t). (B.2.4)

Assuming that the individual is in a standard-unit environment, N01 can
be set to 1. Thus, the status of the individual at any time t can be described
by,

N2 =
k1

k1 − k2

(e−k2t − e−k1t). (B.2.5)

Hicklin et al. also find the percentage of growth at any time by finding the
maximum of N2, dividing equation (B.2.5) by that value, and multiplying it
all by 100. In doing so, it yields the curves given by,

Y =
100

C
(e−k2t − e−k1t), (B.2.6)

where C is a constant that can be determined by the maximum value of
N2 at the time of maximum development.

Moreover, an interesting result of the derivation of the model in the paper
by Hicklin et al., is that by assuming that the loss rate is zero (k2 = 0) in
equation (B.2.4), the equation becomes,

N2 = N01(1− e−k1t). (B.2.7)

B.3 Anderson (1983)

In [2], Anderson proposed a neuromathematical model for content acquisition.
This model was directly inspired by the workings of the CNS and the fact
that short term memory is limited. Based on this assumption, the author
derives three functions to compose the net gain function. These functions
are the stability function, the instability function, and the gain function. The
derivation of these functions that Anderson’s paper presented is outlined below.

B.3.1 Stability Function

In assuming that the stability of short term memory is limited, Anderson
proposes that the rate of decline of the stability is proportional to the amount
of activity in CNS related to STM, denoted S. Further, it is assumed that
as the quality (abstractness β) and quantity (rate of inflow ρ) of information
increase, so too would the decrease in stability. However, this decrease would
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be slowed for learner’s of higher aptitude, denoted κ. Thus, the author suggests
the following for the rate of decrease of stability,

− ds

dt
=
α · β · ρ

κ
S. (B.3.1)

Solving this differential equation yields the solution for the stability func-
tion S,

S = S0e
−α·β·ρ

κ
t. (B.3.2)

Here, S0 is the initial value of S at time t = 0 and t is the time since the
beginning of the learning experience.

B.3.2 Instability Function

Next, the instability function suggests that as the learning task continues,
the learner becomes more familiar with the task and the instability decreases.
Thus, the rate of change of instability is proportional to the instability I and
a rate of decay λ, yielding the following differential equation,

dI

dt
= −λI. (B.3.3)

Solving this differential equation gives,

I = I0e
−λt, (B.3.4)

where I0 is the initial value of the instability factor at time t = 0.

B.3.3 Modulation Factor

In order to account for the overall affect of the stability and instability factors,
Anderson uses a modulation factor, M , which is defined by the difference
between S and I.

M = S − I = S0e
−α·β·ρ

κ
t − I0e

−λt. (B.3.5)

Anderson provides a more concise notation where σ = α·β·ρ
κ

, which leads to
the following expression for M .

M = S − I = S0e
−σt − I0e

−λt. (B.3.6)
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B.3.4 Gain Function

Finally, the gain function is derived so that the rate of change of the gain is
proportional to N . Furthermore, the rate of change increases for learner’s with
higher κ, and decreases with more abstract material β and more information
ρ. Thus, the differential equation below is established,

dN

dt
=

κ

α′ · β · ρ
N. (B.3.7)

Solving the above leads to the gain function,

N = N0e
κ

α′·β·ρ t, (B.3.8)

where α′ is a constant of proportionality and N0 is the initial gain at t = 0.
Once again, this can be written in more concise form if γ = κ

α′·β·ρ ,

N = N0e
γt, (B.3.9)

B.3.5 Composite Function

Using all three functions, Anderson presents the composite equation (B.3.10),
where the gain function (B.3.9) is multiplied by the modulation factor (B.3.6),

Nt = N0e
γt(e−σt − e−λt). (B.3.10)

Certain conditions must be met to ensure that the net gain cannot be
negative. Notably, S > I for all time and the rate of decline of stability must
be smaller than the rate of decay of instability (σ < λ).

A special case of the net gain function can be written when σ = γ as,

Nt = N0[1− e(σ−λ)t]. (B.3.11)

Note that this special case is analogous to the special case derived in Hicklin
et al.’s 1965 paper.

B.4 Pritchard et al. (2008)

In [21], Pritchard et al. propose different models based on the type of teaching
methods used. In particular, three theories of learning motivated the develop-
ment of the models in the authors’ paper. The derivation of these models is
outlined subsequently.
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In Pritchard et al.’s models, the dependent variable is the student’s knowl-
edge after a certain amount of instruction. The authors divide the test domain
into what is known and what is unknown, denoted KT (t) and UT (t) respec-
tively. In this case, t is the amount of instruction the student has undergone.
A parameter α is used to denote the probability that a student remembers
what was taught. There are four models derived in Prichard et al.’s paper, all
of which are inspired by a different learning theory.

B.4.1 Pure Memory Model

Inspired by the tabula rasa learning theory, the pure memory model assumes
that a student has a blank slate before starting the learning experience. Thus,
the model represents rote memorization since α does not depend on the learner’s
prior knowledge. There are 4 assumptions for the derivation of this model, that
are listed below.

1. The bits of information are uniformly distributed over the test domain.

2. Only the fraction UT (t) of these bits are unknown and can be learned.

3. α is the probability that the student remembers the bits of information.

4. α does is not dependent on K or U .

These assumptions lead to the following differential equation for UT (t),

dUT (t)

dt
= −αmemoryUT (t). (B.4.1)

This differential equation has solution,

UT (t) = UT (0)e−αmemoryt. (B.4.2)

From this, since UT (t) = 1−KT (t), the solution for KT (t) is given by the
following equation,

KT (t) = 1− (1−KT0)e−αmemoryt. (B.4.3)

B.4.2 Simple Connected Model

The simple connected model uses the constructivism theory as motivation.
Thus, its base assumption is that students acquire new information by relating
it to knowledge they already have. In this sense, the more prior knowledge
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one has, the faster the student will learn. The same assumptions as above are
used for this model. However, the authors state that, “the learning rate is
now proportional to three factors: the probability UT (t) that the knowledge
nugget strikes an unknown region, the probability KT (t) that the appropriate
connecting knowledge is already known, and the probability that the nugget
will stick (i.e., the association will be constructed), αconnected” [21].

These assumptions lead to the following differential equation,

dUT
dt

= −αconnectedUT (t)KT (t) (B.4.4)

= −αconnectedUT (t)[1− UT (t)]. (B.4.5)

This differential equation is solved to yield a logistic function given by the
equation,

KT (t) =
1

1 + (1−KT0)e−αconnectedt/KT0

(B.4.6)

This model is appropriate to describe learning via peer to peer instruction.
On the other hand, a variation of this model is possible when considering
that the learning rate is proportional to knowledge that is external to the test
domain as opposed to KT (t). With this slight change, the following differential
equation and solutions arise.

dUT
dt

= −αconnexternalUT (t)Kexternal (B.4.7)

KT (t) = 1− (1−KT0)e−αconnexternalKexternalt (B.4.8)

In this model, Kexternal does not depend on the instruction t. Thus, it is
similar to the pure memory model.

B.4.3 Connectedness Model

This model is a mix of the two previous models. In fact, it is motivated in
part by the tabula rasa theory, and in part by the constructivist theory. It
mediates between the two pure models by introducing a parameter β for the
connectedness of the model. If β = 0, the model describes the pure memory
model, whereas if β = 1, it is represents the simple connected model. Since
a fraction β is connected, and the rest (1 − β) is pure memory, the following
differential equation is written,
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dUT
dt

= −UT (t)[αconnectedβK(t) + αmemory(1− β)]. (B.4.9)

Depending on whether the knowledge connected is internal or external,
two solutions occur. These solutions are displayed in equations (B.4.10) and
(B.4.12).

K
internal
T (t) = 1− (B.4.10)

(1−KT0)[αmemory(1− β) + αconnectedβ]

(1−KT0)αconnectedβ + [αmemory(1− β) +KT0αconnectedβ]exp{[αmemory(1− β) + αconnectedβ]t}
(B.4.11)

Kexternal
T (t) = 1− (1−KT0)exp{−[αmemory(1− β) + αconnectedβKexternal]t}

(B.4.12)

B.4.4 Tutoring Model

For this model, the main assumption is that a tutor can provide perfect in-
struction based on the prior knowledge of the student. Thus, the student need
not waste time to relearn what they already know. In this sense, the student
can acquire knowledge a the rate ka, which the authors refer to as the stu-
dent’s maximum assimilation rate. Since the learning is now independent of
K(t) and U(t), the learning rate is now uniform,

dUT
dt

= −ka. (B.4.13)

Solving this differential equation leads to the following solution,

KT (t) = ka(t− t0). (B.4.14)

With this solution, a student can learn a finite test domain in a finite time.
Note, here the authors restrict KT ≤ 1.
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Appendix C

Copy of Survey

In the pages that follow, there is a copy of the survey that participants could
access online via LimeSurvey. This survey includes demographic information,
self-reported grades, the revised MARS items by Plake & Parker, and a section
about the resources available at McMaster University.
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There are 38 questions in this survey 
Preamble and Consent 

Preamble Statement 

This survey is administered by Savannah Spilotro, Master's Candidate at the Department of 
Mathematics and Statistics at McMaster University. The purpose of the survey is to provide 
an overview of the level of mathematical anxiety that students exhibit while taking a first 
year mathematics course. Information gathered during this survey will be written up as a 
Master's Thesis. What we learn from this survey will help us understand the effect of ma-
thematical anxiety on learning. To learn more about the survey and the researcher’s study, 
particularly in terms of any associated risks or harms associated with the survey, how confi-
dentiality and anonymity will be handled, withdrawal procedures, how to obtain information 
about the survey’s results, how to find helpful resources should the survey make you uncom-
fortable or upset etc., please read the accompanying letter of information. This survey should 
take approximately 20 minutes to complete. People filling out this survey must be enrolled in 
a first year mathematics course at McMaster University.    

This survey is part of a study that has been reviewed and cleared by the McMaster Research 
Ethics Board (MREB). The MREB protocol number associated with this survey is [insert the 
MREB protocol number, e.g. MREB 2012 185].   You are free to complete this survey or not. 
If you have any concerns or questions about your rights as a participant or about the way the 
study is being conducted, please contact:      

McMaster Research Ethics Secretariat    
Telephone 1-(905) 525-9140 ext. 23142    
c/o Research Office for Administration, Development and Support (ROADS)    
E-mail: ethicsoffice@mcmaster.ca 

Consent to Participate  

Having read the above, I understand that by clicking the “Yes” button below, I agree to take 
part in this study under the terms and conditions outlined in the accompanied letter of in-
formation.* 
Please choose only one of the following: 

• !  Yes, I agree to participate 
• !  No, I do not agree to participate 
 
General Information 

Age?  
Please write your answer here:__________ 
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[]Gender? *  
Please choose only one of the following 

• !  Male 
• !  Female 
• !  Prefer to not answer 

Program? *  
Please choose only one of the following: 

• !  Life Sciences  
• !  Kinesiology 
• !  Business 
• !  Physics, Chemistry or Biology 
• !  Math and Stats 
• !  Engineering 
• !  Computer Science 
• !  Other   

Course? * 
Please choose only one of the following: 

• !  Math 1A03 
• !  Math 1B03 
• !  Math 1F03 
• !  Math 1K03 
• !  Math 1LS3 
• !  Math 1X03 
• !  Other   

What was your average in the most recent high school math course you’ve taken? 
Please choose only one of the following: 

• !  0-49% 
• !  50-59% 
• !  60-69% 
• !  70-79% 
• !  80-84% 
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• !  85-89% 
• !  90-94% 
• !  95-100%  

What grade do you expect in this course?  
Please choose only one of the following: 

• !  0-49% 
• !  50-59% 
• !  60-69% 
• !  70-79% 
• !  80-84% 
• !  85-89% 
• !  90-94% 
• !  95-100%  

If you have received marks so far, what is your average? 
Please choose only one of the following: 

• !  0-49% 
• !  50-59% 
• !  60-69% 
• !  70-79% 
• !  80-84% 
• !  85-89% 
• !  90-94% 
• !  95-100%  

Revised Mathematics Anxiety Rating Scale 
Please rate your feelings of anxiety on a scale of 1 (low anxiety) to 5 (high anxiety) in each of the 
cases below. 

Watching a teacher work an algebraic equation on the blackboard. *  
Please choose only one of the following: 

!  1  !  2  !  3  !  4  !  5 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Buying a math textbook. * 
Please choose only one of the following: 

!  1  !  2  !  3  !  4  !  5 

Reading and interpreting graphs or charts. * 
Please choose only one of the following: 

!  1  !  2  !  3  !  4  !  5 

Signing up for a course in Statistics. * 
Please choose only one of the following: 

!  1  !  2  !  3  !  4  !  5 

Listening to another student explain a math formula. * 
Please choose only one of the following: 

!  1  !  2  !  3  !  4  !  5 

Walking into a math class. * 
Please choose only one of the following: 

!  1  !  2  !  3  !  4  !  5 

Looking through the pages in a math text.  * 
Please choose only one of the following: 

!  1  !  2  !  3  !  4  !  5 

Starting a new chapter in a math book. * 
Please choose only one of the following: 

  !  1  !  2  !  3  !  4  !  5 
 
Walking on campus and thinking about a math course. * 
Please choose only one of the following: 

  !  1  !  2  !  3  !  4  !  5 

Picking up a math textbook to begin working on a homework assignment. * 
Please choose only one of the following: 

  !  1  !  2  !  3  !  4  !  5 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Reading the word “Statistics.” * 
Please choose only one of the following: 

  !  1  !  2  !  3  !  4  !  5 

Working on an abstract math problem, such as: “if x = outstanding bills, and y = total in-
come, calculate how much you have left for recreational expenditures.” *  
Please choose only one of the following: 

  !  1  !  2  !  3  !  4  !  5 

Reading a formula in chemistry. *  
Please choose only one of the following: 

  !  1  !  2  !  3  !  4  !  5 

Listening to a lecture in math. *  
Please choose only one of the following: 

  !  1  !  2  !  3  !  4  !  5 

Having to use the tables in the back of a math book.  * 
Please choose only one of the following: 

  !  1  !  2  !  3  !  4  !  5 

Being told how to interpret probability statements.  * 
Please choose only one of the following: 

  !  1  !  2  !  3  !  4  !  5 

Being given a homework assignment of many difficult problems which is due the next class 
meeting.  *  
Please choose only one of the following: 

  !  1  !  2  !  3  !  4  !  5 

Thinking about an upcoming math test one day before.  * 
Please choose only one of the following: 

  !  1  !  2  !  3  !  4  !  5 

Solving square root problems. * 
Please choose only one of the following: 

!  1  !  2  !  3  !  4  !  5 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Taking an examination (quiz) in a math class.  * 
Please choose only one of the following: 

  !  1  !  2  !  3  !  4  !  5 

Getting ready to study for a math test. * 
Please choose only one of the following: 

  !  1  !  2  !  3  !  4  !  5 

Being given a "pop" quiz in a math class. * 
Please choose only one of the following: 

!  1  !  2  !  3  !  4  !  5 

Waiting to get a math test returned in which you expected to do well. *  
Please choose only one of the following: 

!  1  !  2  !  3  !  4  !  5 
 
Taking an examination (final) in a math course. * 
Please choose only one of the following: 

  !  1  !  2  !  3  !  4  !  5 

Helpful Links for Dealing with Mathematical Anxiety 

If you're feeling overwhelmed by math anxiety or would like more help and support, there are 
many places on campus that can be of assistance. Here is a list of resources to help you cope with 
math anxiety or general concerns about school.  

• Math Help Centre (Hamilton Hall 104) : If you need math help for first year math courses, TAs 
are readily available in the centre to provide free help! See the link for hours of opera-
tion.  

• Student Wellness Centre : If you're in need of advice, counselling or helpful tips for dealing 
with stress, the student wellness centre located in the student centre can be of assistance.  

• Student Accessibility Services (SAS) : If you have difficulties due to a diagnosed disability or 
disorder, refer to the SAS webpage for more details on how to receive help.  

Did you know about the Math Help Centre? * 
Please choose only one of the following: 

• !  Yes 
• !  No 
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Would you seek help from the Math Help Centre? * 
Please choose only one of the following: 

• !  Yes 
• !  No 
Have you heard of the Student Wellness Centre? *  
Please choose only one of the following: 

• !  Yes 
• !  No 
Would you consider going to the Student Wellness Centre for help and advice? * 
Please choose only one of the following: 

• !  Yes 
• !  No 
Were you aware of the Student Accessibility Services? *  
Please choose only one of the following: 

• !  Yes 
• !  No 
If you were in need of assistance, would you make use of the Student Accessibility Services? * 
Please choose only one of the following: 

• !  Yes 
• !  No 

Thank you for taking this survey. Your answers are a valuable part of this research. 

Submit your survey. 
Thank you for completing this survey.
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