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Abstract

Strings are very simple yet very applicable data structures. Their ap-

plicability ranges from modelling DNA, to modelling protein sequences, to

information retrieval, to web page searches, and many more. Due to their

simplicity, there are few structural properties that could be exploited for

analysis of string algorithms and their auxiliary data structures. Thus, from

the beginning, researchers paid utmost attention to periodic properties of

strings, such as runs which are maximal fractional periodicities.Though first

conjectured in 1999 by Kolpakov and Kucherov, the runs conjecture that

there are fewer runs than the length of the string was only settled in 2015 by

Bannai et al. via specific Lyndon roots referred to as L-roots. This method

allows mapping of runs to the starting points of its L-roots that form mutu-

ally disjoint subsets of the indices of the string. This relationship between

runs and maximal Lyndon factors (substrings) of a string is not coincidental,

as Bannai et al. used the knowledge of all maximal Lyndon factors with

respect to an order and its inverse to compute all runs in linear time. Thus,

computing the all maximal Lyndon factors efficiently becomes of importance.
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In this thesis, we review the fundamental properties of Lyndon strings, in-

cluding the famous Lyndon factorization and its linear solution due to Duval.

In addition to that we explore a new and conceptually simple data structure

called Lyndon array and its relationship to the suffix array. Finally, we dis-

cuss 2015 Baier’s algorithm for sorting suffixes that identifies and sorts in

phase 2 the maximal Lyndon factors in O(n log(|Σ|)) steps for a string of

length n over an alphabet Σ. We examine the fact that Baier’s algorithm

sorts the suffixes by sorting the maximal Lyndon factors, and present a dif-

ferent, potentially faster algorithm for phase 2. Our goal was to gather all

the relevant well known and some unpublished facts about Lyndon strings

and their relationship to runs. In addition we present a novel O(n log(n))

recursive algorithm for computing Lyndon arrays that may be competitive

with Baier’s for strings with large alphabets.
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Chapter 1

Introduction

1.1 Maximum-number-of-runs problem

Repetitions, or tandem repeats, in strings is one of the most basic and well

studied characteristics of strings, with various theoretical and practical ap-

plications. In combinatorics on words, the study of strings began with an

investigation of periodic properties of strings and periodicity of various kinds

is still an intensive research focus in several application areas such as data

compression, pattern matching, and computational biology. One of intensely

studied problem concerns the maximum number of runs.

A notion of run succinctly captures the idea of a maximal fractional

repetition. A repetition in x starting at position i is a substring ur =

x[i..i + r|u| − 1], r ≥ 2, where x[j] = x[j + k|u|] for every k ∈ 0..r − 1 and

every j ∈ i..|u| − 1. We call u the generator or root, |u| the period of
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the repetition, and r the exponent. We refer to a repetition where r = 2 as

a square, and a repetition where r = 3 as a cube. Such a repetition can be

represented by an integer tuple (start, end, period), i.e. (i, i+r|u|−1, |u|). A

maximal repetition is a repetition that can neither be extended left nor

right, i.e. a repetition ur = x[i..i+r|u|−1] such that neither x[i−|u|..r|u|−1]

nor x[i..i+ (r + 1)|u| − 1] is a repetition ur+1.

Main [1] showed that we need to compute runs, i.e. maximal

fractional periodicities in order to capture all the repetitions in a string

x. A run u in a string x[1..n] is a substring urt = x[i..i + r|u| + r − 1],

where ur is a repetition, t is a proper prefix of u, and no repetition of period

|u| begins at position i− 1 of x or ends at position i+ r|u|+ |t|. Moreover,

it is required that u is primitive. The string u is called the generator or the

root of the run, t is the tail; such a run can be generally represented by a

3-tuple (start, end, period), i.e. (i, i + r|u| + |t|, |u|). For example, in the

string baaba aba abb, the underlined run is encoded by (3, 10, 3), and its root

aba is repeated twice, with the last repeat being incomplete (ab only).

The critical observation that a run encapsulates t adjacent maximal rep-

etitions with the same period implies that there are at most as many runs

as repetitions. Further, by computing all runs we are implicitly computing

all repetitions [2].

Crochemore [3] showed in 1981 that the order of the number of maximal

repetitions in a string of length n is Θ(n log(n)). In 1999, Kolpakov and

Kucherov [4] showed that the order of the maximum number of runs over all

5
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strings of length n, denoted as ρ(n), is O(n), without determining an explicit

constant, and conjectured that ρ(n) ≤ n. Rytter [5, 6] determined such a

constant in 2006, and the following years witnessed a tightening of the lower

and upper bounds for the limit of ρ(n)/n, see [7, 8, 9, 10, 11, 12, 13, 14, 15].

In 2015, the conjecture was proven by Bannai et al. [16] who showed that

ρ(n) ≤ n − 1, and ρ(n) ≤ n − 3 for n ≥ 5. Their approach maps each run

to the starting positions of its L-roots. For two distinct runs, the sets of the

starting positions of their respective L-roots are mutually disjoint subsets of

the indeces of the string, and so ρ(n) ≤ n. L-roots of a run are all Lyndon

non-trivial right cyclic shifts of the root.

Deza and Franek investigated ρd(n), the largest number of runs over all

strings of length n with exactly d distinct symbols. Similarities between

ρd(n) and the largest diameter ∆(d, n) over all polytopes of dimension d

having n facets triggered the formulation of the d-step conjecture for strings

stating that ρd(n) ≤ n − d, see [17]. The proposed d-step approach proved

that the following statements are equivalent ρd(n) ≤ n− d for all d and

n and ρd(2d) ≤ d for all d, and that ρd(2d) is achieved for all d by, up

to relabelling, a unique string. Considering binary strings, based on the

method of L-roots, Fischer et al. [18] showed that ρ2(n) ≤ d22n/23e. While

it is widely believed that ρd+1(n) ≤ ρd(n), and thus that ρ(n) = ρ2(n),

no such results are known. In [19], Deza and Franek refined Bannai et al.’s

method and proved the main d-step conjecture and highlighted the structural

properties of run-maximal strings. Besides strengthening by one the upper
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bound to ρ(n) ≤ n − 4 for n ≥ 9, these structural properties may provide

preliminary substantiation for the hypothesis that ρ(n) ≤ n− dlog2 ne.

Previously, the Main/Kolpakov-Kucherov algorithm was the only known

linear-time algorithm for computing all the runs in a given string x. The

algorithm was complex and depend for its worst-case behaviour on the use of

Farachs algorithm, which is also complex and not space-efficient, for linear-

time computation of suffix trees [2]. Since 2003, several recursive linear time

algorithms for sorting suffixes emerged, all based on Farach’s approach, see

e.g. [20, 21, 22].

Computation of Lyndon array has recently become of interest since Ban-

nai et al. showed that it could be used to efficiently compute all the runs

in a given string. Lyndon array λ = λx[1..n] of a given nonempty string

x = x[1..n] gives at each position i the length (or, equivalently, the end po-

sition) of the longest Lyndon word starting at i. In essence, in 2003 Hohlweg

and Reutenauer characterized maximal Lyndon words in a string x [23], and

showed that the Lyndon array of x is the NSV (next smaller value) array

of the inverse suffix array. The NSV algorithm can be implemented using

a stack and performs in linear time. Since suffix array can be computed in

linear time (see e.g. [20]), Lyndon array can be computed in linear time.

Thus, computing Lyndon array boils down to sorting suffixes, yet another

application of the prolific suffix atrrays.

Since 2003 three worst-case linear-time suffix array construction algo-

rithms, [21], have been available for use in the computation of the LZ factor-
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ization , but even after the substitution of suffix arrays for suffix trees in the

all-runs algorithm, significant complications remain. For instance, the algo-

rithm still requires at least 13n bytes of space for the input string of length

n. Further, it appears that due to their recursive nature the linear-time al-

gorithms are not in practice the fastest suffix array construction algorithms

available [24].

For more details and additional results concerning runs in strings we refer

to [16] and references therein.

1.2 Preliminaries

Definition 1.1. An alphabet
∑

is a set of symbols (or characters). A

finite string x over the alphabet
∑

is a finite sequence of symbols from the

alphabet. The number of the symbols in the sequence is the length of the

string; |u| denotes the length of the string u. A string with no symbols, i.e.

of length 0, is referred to as an empty string and is denoted by the symbol ε.

In this thesis, word is a synonym for string.

Alphabet Strings
{a} ε,a,aa,aaa
{a,b} ε,ab,aab,abab,bba

Table 1.1: Examples of alphabets and strings

Definition 1.2. The notation x = x[1..n] indicates a string of length n.

The [ ] indexing (starting from 1) is used to indicate a substring where the

8



Ph.D. Thesis - A Paracha Computing & Software, McMaster University

indices are the starting and ending positions: x[i..j] indicates the substring

of x from the position i to the position j. A concatenation of u = u[1..n]

and v[1..m] denoted as uv is defined as uv = x[1..n + m] where x[i] = u[i]

for any i ∈ 1..n and x[i] = v[i− n] for any i ∈ n+ 1..n+m.

String Length Substrings
aab 3 {a,ab }

ababaab 7 {ab,baab,abaab}
ababababbaa 11 {ab,ab,bbaa}

Table 1.2: Examples of strings and substrings

Let u = ababaab and v = ababababbaa then uv = ababaabababababbaa.

Definition 1.3. If x = uvw, then u, v, and w are factors ( substrings,

subwords) of x, and furthermore, u is a prefix and w is a suffix of x. If

u 6= ε, then u is a non-trivial prefix, while ε is a trivial prefix of any string.

If u 6= x, then u is a proper prefix of x. Similarly if v 6= ε, it is referred to

as a non-trivial suffix, while ε is a trivial suffix of any string. If u 6= x, u is

referred to as a proper prefix, similarly for proper suffix. If x = uv = wu

for some u, v, and w, then u is a border of x. Note that every nonempty

string has an empty border. A string with no non-trivial border is called

unbordered.

Definition 1.4. If x = uv for some u and v, then vu is said to be the a

rotation (or a conjugate) of x. A rotation vu of uv is said to be non-trivial

if both u and v are nonempty.

9
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String Prefix Suffix Border
ccababcc cc cc cc
ccabab cc ab ε

1236767123 123 123 123

Table 1.3: Examples of prefixes, suffixes and borders

String Conjugate
aba baa

aababab ababaab

Table 1.4: Examples of strings and their conjugates

Definition 1.5. Let x = x[1..n] and consider a substring x[i..j], 1 ≤ i <

j < n. The substring x[i..j] is a trivial right cyclic shift of x = x[i..j].

The substring x[i+ 1..j + 1] is a right cyclic shift of the substring x[i..j] iff

x[i] = x[j+ 1]. The right cyclic shifts of higher order are defined recursively:

x[i + k..j + k] is a right cyclic shift of x[i..j] iff x[i + k − 1..j + k − 1]

is a right cyclic shift of x[i..j] and x[i + k..j + k] is a right cyclic shift of

x[i+ k − 1..j + k − 1].

Thus

Observation. x[i + k..j + k] is a right cyclic shift of x[i..j] iff for any

0 ≤ k1 < k, x[i+k1..j+k1] is a right cyclic shift of x[i..j] and x[i+k..j+k]

is a right cyclic shift of x[i+ k1..j + k1].

A left cyclic shift is defined similarly, so

Observation. x[i − k..j − k] is a left cyclic shift of x[i..j] iff for any

0 ≤ k1 < k, x[i− k1..j − k1] is a left cyclic shift of x[i..j] and x[i− k..j − k]

is a left cyclic shift of x[i− k1..j − k1].

10
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Example 1.6. All right cyclic shifts of the prefix abba of string x = abbaabc.

Moreover, if x[i+k..j+k] is a right cyclic shift of x[i..j], then x[i..j] is a left

cyclic shift of x[i + k..j + k] and vice versa. Note that a left or right cyclic

shift of x[i..j] is a rotation of x[i..j].

Definition 1.7. A concatenation of k copies of a string u is denoted as uk

and referred to as a power of order k, k ≥ 1. Thus, uk = u · · ·u︸ ︷︷ ︸
k times

. A power

of order 2, u2, is referred to as a square, a power of order 3, u3, as a cube.

A string x is primitive if it is not a power of order k for any k ≥ 2.

String Square Cube
aabca ...aabcaaabca... ...aabcaaabcaaabca...

a aa aaa
ab ...ababa... ...ababab

Table 1.5: Examples of non-primitive strings

Definition 1.8. A very important notion is that of a period of a string: p

is a period of x = x[1..n] iff x[i] = x[i+ p] for any 1 ≤ i ≤ n− p.

Note that if p is a period of x, then x = ukv where |u| = p, k ≥ 1, and

v is a proper, not necessarily non-trivial, prefix of u. It follows, that if p is a

minimal period of x, then x[1..p] must be primitive. Further note that any

rotation and so any cyclic shift of a primitive string must again be primitive.

A string x is periodic if for some p, 1 ≤ p < |x|, p is a period of x, and if it

is not periodic, it is said to be aperiodic.

11
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Observation. (a) For every p, 1 ≤ p < |u|, p is a period of u iff u has a

border of size p.

(b) u is aperiodic iff u is unbordered.

(c) if u has a border, then u has a border of size < 1
2
|u|.

Proof. (a) and (b) are straightforward. We shall show (c). Let u1 be a border

of u. If |u1| < 1
2
|u|, then we are done. If the size of u1 is too big, the prefix

u1 of u and the suffix u1 of u overlap – let u2 be their intersection. Then

u2 is again a border of u and is smaller that u1. Either the size of u2 is

sufficiently small, and we are done, or it is still too big and we can repeat

the process. At each step we are producing a smaller border, so in finitely

many steps we must produce a border that does not overlap.

With the basic definitions concerning strings, we can define more complex

structures and notions: we already defined a run and its roots. We can now

see that a run (s, e, p) can be viewed also as a right cyclic shift of its root

x[s..s+ p− 1] at least by p positions: ba
︷ ︸︸ ︷
aabaabab b→ ba

︷ ︸︸ ︷
aabaabab b→

ba
︷ ︸︸ ︷
aabaabab b→ ba

︷ ︸︸ ︷
aabaabab b→ ba

︷ ︸︸ ︷
aabaabab b→ ba

︷ ︸︸ ︷
abaabab b.

Definition 1.9. A repetition (s, e, p) in x = x[1..n] is the substring x[s..e]

so that x[s..e] = x[s..s+p−1]k for some integer k ≥ 2, where x[s..s+p−1] is

the root of the repetition. If moreover the repetition cannot be extended left,

i.e. either s < p+ 1 or x[s− p..s− 1] 6= x[s..s+ p−1], and if the repetition

cannot be extended right, i.e. either e > n−p or x[e+1..e+p] 6= x[s..s+p−1],

then we speak of maximal repetition.

12
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The maximum number of maximal repetitions in any string x is known

to be Θ(n log(n)) [15]. A maximal repetition again can be seen as a right

cyclic shift of its root, but in comparison to runs, the number of shifts must

be a multiple of the size of the root, the period.

String Repetitions Runs
...abbaabba... { abba,abb,bba} abbaabba

dabcabcabcad { abc,bca,cab } abcabcabc

Table 1.6: Examples of repetitions and runs

Definition 1.10. An order or ordering � of a alphabet
∑

is a total order-

ing of
∑

as a set,i.e it is a binary relation pocessing the following properities:

• Reflexive: a � a for any a ε
∑

• Antisymmetric: For any a , b ε
∑

a � b and b � a implies a = b

• Transitive: If a ≺ b ≺ c, then a ≺ c

• Total: For any a,b,c ε
∑

, a � b or b � a

The order ≺ is typically extended to a total lexicographic order of all

strings over the alphabet
∑

by a simple rule that x ≺ y iff either x is a

proper prefix of y or x[i] ≺ y[i] while x[1..i− 1] = y[1..i− 1], while x � y iff

x ≺ y or x = y.

Definition 1.11. For a string x = uv, vu is a rotation of x. If v and u are

both non-empty, the rotation is said to be non-trivial. A string is Lyndon if

it is strictly lexicographically smaller than any of its non-trivial rotations.

13
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Alphabet Order Lexicographic order
{a,b} a ≺ b aa ≺ aab ≺ aba ≺ b ≺ baa
{a,b,c} a ≺ b ≺ c ab ≺ abb ≺ abbc ≺ abc ≺ acbc
{a,b,c} a ≺ c ≺ b acbc ≺ ab ≺ abc ≺ abb ≺ abbc

Table 1.7: Examples of lexicographic order of strings over a given alphabet

The investigation of Lyndon strings, in the combinatorics on words com-

munity called Lyndon words, was initiated by Lyndon who was looking for

a suitable description of generators of free Lie algebras, [25].

x:Word Rotations Lexicographical Order (≺) Lyndon
abb abb,bba,bab abb ≺ bab ≺ bba x is Lyndon
aba aba,baa,aab aab ≺ aba ≺ baa x is not Lyndon

abab abab,baba,abab,baba abab ≺ baba x is not Lyndon

Table 1.8: Examples of Lydon words

One of the basic properties of Lyndon words is that every word is uniquely

factorisable as a non-increasing concatenation of Lyndon words. The fol-

lowing theorem, though not stated in [26] explicitly, follows from the work

presented there:

Theorem 1.12 (Lyndon decomposition theorem, Chen+Fox+Lyndon, 1958).

For any string x, there are unique Lyndon strings u1, ...,uk so that ui+1 ≺ ui
for any 1 ≤ i < k, and x = u1u2 . . .uk .

As there exists a bijection between Lyndon words over an alphabet of cardi-

nality k and irreducible polynomials over Fk, [27], lots of results are known

14
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about this factorization: the average number of factors, the average length

of the longest factor [28] and of the shortest [29]. Several algorithms deal

with Lyndon factorization. Duval gives in [30] an algorithm that computes,

in linear time and in-place, the factorization of a word into Lyndon words.

In [31] an algorithm generating all Lyndon words up to a given length in

lexicographical order is presented. This algorithm runs in a constant average

time.

As far as we know, the first to consider the problem of computation

of maximal Lyndon factors (substrings) at every position of a string were

Hohlweg and Reutenauer, [23]. From their work it follows that

Theorem 1.13. For a string x[1..n], x[i..i+ k] is a maximal Lyndon factor

of x iff x[i..n] ≺ x[i+ j..n] for any 1 < j ≤ k, while x[k + 1..n] ≺ x[i..n].

Definition 1.14. An integer array Lx[1..n] is called Lyndon array of string

x if Lx[i] = the length of the maximal Lyndon factor of x starting at the

position i.

Lyndon Factors:

a b b a b a b a a a b a

Lyndon array:

3 1 1 2 1 2 1 4 3 2 1 1

From [23], it follows that the Lyndon array of a string can be computed

from the inverse suffix array in linear time using the stack-based NSV (Next

15
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Smaller Value) algorithm. For a string x[1..n], the suffix array gives the

lexicographic order of suffixes of x, i.e. sx[i] = j if the suffix x[i..n] is the

j-th suffix in the lexicographic order. The inverse suffix array s−1
x [j] = i iff

sx[i] = j. Therefore, the complexity of computing the Lyndon array boils

down to the complexity of sorting suffixes as computation of the inverse suffix

array from the suffix array can be simply done in Θ(n) time and space.

i SA[i] ISA[i] SSA[i]

1 12 7 $
2 11 6 a$
3 8 11 auga$
4 10 9 ga$
5 5 5 issauga$
6 2 10 ississauga$
7 1 8 mississauga$
8 7 3 sauga$
9 4 12 sissauga$
10 6 4 ssauga$
11 3 2 ssissauga$
12 9 1 uga$

Table 1.9: Suffix Array and Inverse Suffix Array of string s=mississauga$.

Suffixes of a string of length n can be sorted simply and in-place by

brute force in O(n2) – thus there is a simple O(n2) algorithm to compute

the Lyndon array that requires O(n) memory. With some extra effort and

more memory, they can be naturally sorted in O(n log(n)) via an iterative

algorithm, so there is anO(n log(n)) algorithm to compute the Lyndon array.

In 2003 three linear-time suffix sorting algorithms were introduced.The
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two most practical were by Kärkkäinen and Sanders, [21], and by Ko and

Aluru, [21].

In 2015, [24, 32], Baier presented O(n log(|Σ|)) algorithm for sorting

suffixes for strings over the alphabet Σ. Hence, for a bounded or sorted

alphabet, it is a linear-time algorithm, and it is the first such algorithm

which is non-recursive. Recently, we proposed in [33] a potentially faster

algorithm for phase 2 of Bair’s method that computes Lyndon array from

a partially sorted Lyndon grouping array in linear time. We discuss this in

Chapter 5.

Construction of suffix array is computationally hard. Lots of work has

been done to make this more time and space efficient. Various approaches

use the relation between suffixes of the same string and rely on three main

techniques:

Prefix doubling

Sort the suffixes by their first character establishing a sorted context, followed

by a more fine grained ordering by using the lexicographic rank of the suffixes

implying context doubling / prefix doubling.The technique has asymptotic

time complexity of O(n log(n)).

Recursion

The suffixes of the input string x are devided into two groups G1 and G2;

a new string y is built so that the order of its suffixes corresponds to the

order of suffixes in G1, its suffixes are sorted recursively. From the order of

the suffixes in G1, the order of suffixes in G2 can be computed in linear time.
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Then the two groups are merged together in linear time. Since the length of

y is an integer fraction of the lengths of x, the overall complexity is O(n).

Induced Copying

The idea of typing suffixes is the same as in recursive algorithms, but instead

of using recursion, efficient string sorting techniques are used to obtain the

order of specially typed suffixes.

18



Chapter 2

Lyndon Words and Lyndon

roots of runs

2.1 Lyndon Words

Lyndon words are named after mathematician Roger Lyndon who intro-

duced them 1954 under the name of standard lexicographic sequences. There

are several mutually equivalent properties of Lyndon words:

Lemma 2.1. For any non-trivial non-empty word x, the following are equiv-

alent:

(a) x is Lyndon

(b) x ≺ x[i..n] for any 2 ≤ i ≤ n

(c) x[1..i] ≺ x[i+1..n] for any 1 ≤ i < n
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(d) There exists 1 ≤ i < n so that x[1..i] and x[i+1..n] are Lyndon.

The standard factorization of x is such a pair of Lyndon words x[1..i],

x[i+1..n] is the longest.

Lemma 2.2. u is Lyndon ⇒6⇐ u is unbordered ⇒6⇐ u is primitive

Proof. Lyndon ⇒ unbordered – assume that u has a non-overlapping border

v. Than u = vwv. Let r ≥ 0 be maximal such that w = vrw1. Then

u = vr+1w1v. Then vr+2w1 is lexicographically smaller than vr+1w1v, a

contradiction with u = vr+1w1v being Lyndon.

Lyndon 6⇐ unbordered – for instance cab is unbordered, but it is not Lyndon.

unbordered ⇒ primitive – assume that u is not primitive, then u = vr for

some v and some r ≥ 2. Then v is a border of u.

unbordered 6⇐ primitive – for instance, aba is primitive, but it has a non-

trivial border a.

The fact that the standard factorization of a Lyndon word can be ex-

tended to a factorization of an arbitrary word follows from the Chen, Fox,

and Lyndon paper 1958 [26], though it is not stated there explicitly. It is

also often referred to as standard Lyndon factorization.

Theorem 2.3 (Lyndon decomposition theorem, Chen+Fox+Lyndon, 1958).

For any string x, there are unique Lyndon strings u1, ..., uk so that ui+1 ≺ ui

for any 1 ≤ i < k, and x = u1u2...uk .

In 1983, Duval [30] proposed an elegant liner time algorithm to compute
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the Lyndon factorization of a word. In the following we briefly describe the

main ideas of the algorithm.

Let A be a finite alphabet totally ordered by ≺, and let � denote the

lexicographical ordering induced on A∗. The conjugacy class of a word w

is the set of all words uv such that w = vu, i.e. all rotations of w. Then

Lyndon words are all minimal elements in the conjugacy classes.

For example if A = {0, 1} with 0 ≺ 1, then the 14 Lyndon words of length

at most 5 in lexicographic ordering are: 0, 00001, 0001, 00011, 001, 00101,

0111, 00111, 01, 01011, 011, 0111, 01111, 1 .

Denote by a and z the minimal and the maximal letter in the alphabet

A, and by v(b) the letter following b 6= ε in the total ordering of A. If w is

a word of the form w = ubzh, with b 6= z, then we denote by P (w) the word

uv(b).

Consider a fixed integer n. Duval’s algorithm computes, from a given Lyndon

word w, the next Lyndon word N(w) of length at most n in two steps.

Algorithm

Input: An integer n, and a Lyndon word w 6= z of length at most n.

Step 1: Compute the word v = D(w) = whw′, where h ≤ 1 and w′ is a

proper prefix of w defined by n = h|w|+ |w′|.

Step 2: Compute the word P (v).

output: P (D(w)).

Duval proved that N(w) = P (D(w)). The implementation of the algorithm
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is quite straightforward. [34] We will revisit the algorithm when discussing

computation of Lyndon arrays.

Applications of Lyndon Words

There are many applications of Lyndon words in algebra and combinatorics,

such as:

1. They are used to describe the generators of the free Lie algebras – the

original motivation Lyndon investigated them.

2. They are used as a special case of Hall sets.

3. Lyndon words have applications to semigroups, pattern matching, and

representation theory of certain algebras.

All of these applications make use of the combinatorial properties of Lyndon

words, in particular the factorization theorem. Lyndon word naming classifies

highly periodic strings by the conjugacy of their periods and uses the Lyndon

word as the class representative.Once the Lyndon word naming has been

performed, a string can be represented by the name of its period’s class and its

LWpos, the position at which the Lyndon word first occurs in the string. For

example: the strings T1 = abbaabbaabbaabbaab and T2 = aabbaabbaabbaabbaa

are in the same class and the class representative is aabb. LWpos of T1 is 3

while LWpos of T2 is 0 since it begins with the Lyndon word that represents

its period [35].

Lyndon bracketing is another significant mechanism for Lyndon factor-

ization.
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Definition 2.4. Let Lk(n) : set of k-ary Lyndon words of length n.

If w is in Lk(n) then γ(w) is called Lyndon Bracketing of w given by:

γ(w) =


w if |w| = 1

[γ(l), γ(m)] otherwise where σ(w) = (l,m)

Example 2.5. [a, [a, [b]]]

2.2 Periodicity

If x[i] = x[i+p] for all i ∈ [1..|x|−p], then x has a period p. Every period

of a string corresponds to a border. Below are some of the most frequently

used lemmas concerning periodicities.

Lemma 2.6. (Lothaire 2002, Section 8.1.1). If v is a border of w , then w

has a period |w|−|v|. Conversely, if w has a period p , then w[1..|w|−p] is

a border.

For example the string:

1 2 3 4 5 6 7 8 9 10

x = a b a a b a b a a b

has borders abaab and ab, hence corresponding periods 5 and 8 respectively.

The analysis of periodicity often involves strings of more than one period, or

periodic strings that overlap.

Lemma 2.7. (Lothaire 2002, Section 8.1.1). If x has periods p and q such

that q < p ≤ |x|, then the border of x of length |x|−q has a period p−q.
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Lemma 2.8. (Lothaire 2002, Section 8.1.3). If x has a period p and there

exists a substring u of x with p ≤ |u| that has a period q, where q divides p,

then x has a period q.

The following Periodicity Lemma is quite well-known with many conse-

quences. For instance, it played a major role in the investigation of FS-

double-squares in [36].

Lemma 2.9. Periodicity Lemma (Fine and Wilf 1965; Lothaire 2005). If

x has periods p and q, and p+q ≤ |x|+ gcd(p, q), then x also has a period

gcd(p, q).

For example, the string:

1 2 3 4 5 6 7 8 9 10 11 12 13

x = a b a a b a a b a a b a a

has length n = 13, and periods p = 6 and q = 9. Since d = gcd(p, q) = 3 and

p + q = 15 < n + d = 16, the Periodicity Lemma allows us to infer that the

string also has a period d = 3.

Periodicity Lemma is one of the most important results in combinatorics

on words featuring in many correctness proofs of string algorithms.

Lemma 2.10. (Lothaire 2002, Lemma 8.1.2). If x = uvw, and uv and

vw have period p ≤ v, then x has period p.

Lemma 2.11. (Simpson 2007, Section 1). If x = uvw, where uv has period

p, vw has period q, and p+ q ≤ v + gcd(p, q), then x has period gcd(p, q).
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Lemma 2.12. (Synchronization Principle). If a string x is primitive, and

u is a proper prefix of x = uv, then vu 6= x, or equivalently, x is not equal

to any of its non-trivial rotations.

Proof. Assume by contradiction that x = uv = vu for non empty strings u

and v. Without loss of generality, suppose that |u| < |v|. Since u and v are

prefixes of x, u is a prefix of v and vu is a factor of v2. Since v is a prefix

of uv, v = unu′ for a prefix u′ of u and an integer n, and uv = un+1u′ is

a factor of un+2. By Periodicity Lemma, x has a period gcd(|u|, |v|) and is

not primitive, hence a contradiction.

2.3 Periodicitiy And Lyndon Roots

When periodicities in words are considered, then two notions are central:

the period, which gives the least amount by which a word has to be shifted

in order to overlap with itself, and the shortest border, which denotes the

least (nonempty) overlap of a word with itself. Both of these notions are

related to each other, for example the length of the shortest border of a word

w is not larger than the period of w, and hence, the period of an unbordered

word is its length, moreover, the shortest border itself is always unbordered.

Deeper dependencies between the period of a word and its unbordered

factors have been investigated for decades, see for instance [37]. These two

properities of words plays important role in string searching algorithms, data

compression, codes and also in computational biology for sequence assembly
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of superstrings and in serial data communications systems.

As discussed previously, a run can be considered a system of at least |r|

right cyclic shifts of its root r. Since the root r is primitive, one of the shifts

must be Lyndon. So, every non-trivial right cyclic shift of the root of a run

is called Lyndon root. Note that a run can have more than one Lyndon root:

Lyndon roots are underscored ab ab ab a. Lyndon roots had been investigated

for some time and played the major role in bounding the number of cubic

runs, i.e. runs where the root repeats three times or more, [38].

In a cubic run of period p, consider the first Lyndon root. The Lyndon

root starts in the root. The next p right cyclic shifts of the first Lyndon root

is again a Lyndon root. Thus a cubic run has a Lyndon square whose both

parts are Lyndon roots of the the run. Assign the run the end point of the

first Lyndon root and call it a handle of the run. Now we can argue that each

handle is unique, i.e. for two different runs the handles must be different.

Assume that two different runs have the same handle. Since the runs overlap

significantly, they have to have different periods as otherwise they would be

the same run. Let r1 denote the run with the larger period, and r2 the one

with the shorter period. Since they both have the same handle, we have
r1︷ ︸︸ ︷

a.. a...ba...b︸ ︷︷ ︸
r2

..b two Lyndon squares. Thus, the left part of the shorter square

(for r2) is a border of the left part of the longer square (for r1), a contradiction

with the fact that it must be Lyndon.

Thus, Lyndon roots were considered for runs before Bannai et al. [16],

however there was always a problem with the fact that two interleaved runs
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can have Lyndon roots starting in the same positions: consider the two runs

baba (overlined) and abaaba (underlined) babaaba. The Lyndon root of baba

is babaaba and the Lynbdon roots of abaaba are baba aba.

Definition 2.13. Consider a string x = x[1..n]. The substring x[i..j] is a

maximal Lyndon factor at position i if x[i..j] is Lyndon and for every k,

j < k ≤ n, x[i..k] is not Lyndon.

The substring x[i..j] is a non-extendible Lyndon factor at position i if it is

a maximal Lyndon factor in xy for any y.

Note that ab is a maximal Lyndon factor at position 4 of a string abbab.

But it is not non-extendible since the maximal Lyndon factor at position 4

of a string abbabb is abb. On the other hand consider ab at position 1 of

the string abaa, it is non-extendible Lyndon factor. The reason it is non-

extensible is that the string aa following ab is lexicographically smaller than

ab so by Lemma 2.1 no Lyndon word could start with abaa. The Bannai

et al. resolved the problem of Lyndon roots of different runs sharing the

same starting position by providing a mechanism to make every Lyndon root

non-extendible.

For this argument, we consider that each string is terminated by a lexi-

cographically smallest sentinel symbol $. Furthermore we fix a total order of

the alphabet ≺. Let ≺−1 denote the reverse order. Consider a run (s, e, p)

in a string x[1..n]. The substring x[e−p+1..e] is the last right cyclic shift

of the root. Compare the two symbols x[e−p+1] and x[e+1], note that the

latter could be the sentinel symbol $. Also not that they must be different,
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if they were not, we could shift the root one more position to the right, so

the run could not end in e. If x[e−p+1] ≺ x[e+1], we chose ≺−1, otherwise

we choose ≺. We only consider the Lyndon roots with our chosen order. If

we chose ≺−1, it was because x[e+1] ≺ x[e−p+1] i.e. x[e−p+1] ≺−1 x[e+1]

and so the Lyndon roots of the run with respect to ≺−1 are non-extendible.

If we chose ≺, it was because x[e−p+1] ≺ x[e+1] and so again all the Lyn-

don roots of the run with respect to ≺ are non-extendible. As a technicality,

though important, if the run starts with a Lyndon root, that root is not

considered. This assumption does not cause any problems since when a run

starts with a Lyndon root, there is another Lyndon root available.

The Lyndon roots selected by the above rules are thus referred to as L-

roots of the run. It is now easy to see that an L-root of a run r1 and an

L-root of a distinct run r2 cannot start at the same position: if they started

with the same position, they must be Lyndon with respect to the same order,

either ≺ or ≺−1, but then they are both non-extendible, but one is shorter,

a contradiction. Hence each run can be assigned the starting positions of all

its L-roots and the subsets of string indeces are disjoint. It follows that the

maximum number of runs, i.e. ρ(n) is bounded by the length of the string.

Bannai et al. presented a linear algorithm to compute all runs in a string

if Lyndon array of the string with respect to ≺ and ≺−1 are given. They

noted that it is the only linear algorithm to compute all runs without first

computing the Lempel-Ziv factorization of the string. Thus, for the algorithm

to be “competetive”, one needs to be able to compute efficiently and in linear
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time the Lyndon array for a given string and the order of its alphabet.

In [23] Hohlweg and Reutenauer gave a global characterization of maximal

Lyndon factors of a string.

Lemma 2.14. Let x = x[1..n] be a string over an alphabet A that is totally

ordered by ≺. A substring x[i..j], 1 ≤ i ≤ j ≤ n is a maximal Lyndon

factor of x with respect to ≺ iff x[i..n] ≺ x[k..n] for any i < k ≤ j and

x[j+1..n] ≺ x[i..n].

The same lemma can be re-phrased to make use of suffix and inverse suffix

arrays.

Lemma 2.15. Let x = x[1..n] be a string over an alphabet A that is totally

ordered by ≺ and let suf−1[1..n] be the inverse suffix array of x. A substring

x[i..j], 1 ≤ i ≤ j ≤ n is a maximal Lyndon factor of x iff suf−1[i] < suf−1[k]

for any i < k ≤ j and suf−1[j+1] < suf−1[i].
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Chapter 3

Existing Algorithms to

calculate Lyndon Arrays

According [16], the number of all the runs in a given string x is is com-

putable in linear time from the Lyndon arrays λ≺x and λ≺
−1

x . In this chapter

we will present four different algorithms for computing λx. On occasions, it

may be better to consider the array Lx[i] = i+ λx − 1 instead of λx. Note

that Lx[i] is the index of the last character of the maximal Lyndon factor

starting at i, i.e. x[i..L[i]] is a maximal Lyndon factor of x and has a length

of λx[i].
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3.1 Background Information

Here we make various observations that apply to the algorithms presented

later in the chapter.

Observation 3.1. Let x = w1w2 · · ·wk be the Lyndon decompostion [26,

30] of x, with Lyndon words w1 ≥ w2 ≥ · · · ≥ wk. Then every Lyndon word

x[i..L[i]] of length λ[i] is a substring of some wh, h ∈ 1..k.

Proof. For some h ∈ 1..k−1, consider wh with nonempty proper suffix vh,

and for some t ∈ 1..k−h, consider wh+t with nonempty prefix uh+t. Since

wh is a Lyndon word, wh < vh, and by lexorder, uh+t ≤ wh+t. Thus

vh > wh ≥ wh+t ≥ uh+t, and so vhwh+1 · · ·wh+t−1uh+t cannot be a

Lyndon word for any choice of h or t.

Therefore, to compute λx or Lx it suffices to consider separately each

distinct elementwh in the Lyndon decomposition of x. Hence, without loss of

generality suppose x is a Lyndon word and write it in the form x1x2 · · ·xm,

where for each r ∈ 1..m, |xr| = `r and

xr[1] ≤ xr[2] ≤ · · · ≤ xr[`r], (3.1)

while for 1 ≤ r < m,

xr[`r] > xr+1[1]. (3.2)
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We call xr a range in x and the boundary between xr and xr+1 a drop.

Observation 3.2. Let i be a position in x that corresponds to a position

j ∈ 1..`r within a range xr; that is i =
∑r−1

r′=1 `r′+j.

(a) If xr[j] = xr[`r], then L[i] = i.

(b) Otherwise, L[i] = i′, where i′ is the final position in some range xr′ , r
′ ≥

r; that is, i′ =
∑r′

s=1 `s.

Proof. (a) is an immediate consequence of (3.1) and (3.2). To prove (b),

suppose that x[i..L[i]] is a maximum-length Lyndon word, where L[i] falls

within range r′ but L[i] < i′. Since by (3.1) x[L(i)] ≤ x[L[i]+1], there are two

consecutive Lyndon words x[i..L[i]],x[L[i]+1] that by the Lyndon decom-

position theorem [26] can be merged into a single Lyndon word x[i..L[i]+1].

Thus x[i..L[i]] is not maximum-length, a contradiction.

We see then that if xr[j] < xr[`r], then xr[j..`r] is a Lyndon word:

1 2 3 4 5 6 7 8 9 10 11 12 13

x = a a a b | a a b | a b | a a b b

L = 13 13 4 4 9 7 7 9 9 13 13 12 13

(3.3)

More generally, a “reverse engineering” result [39]:

Observation 3.3. Let Lx be the Lyndon array of a string x[1..n] on Σ =

{a, b}, with x 6= bman−m for any m ∈ 0..n. Then x is determined uniquely

by Lx.
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Proof. Let n′ be the smallest index such that for every i ∈ n′..n, there exists

no j < i such that L[j] = i; if there is no such n′, let n′ = n+1. If n′ ≤ n,

x[n′..n] ← an−n
′+1. By observation 3.2, for every i < n′ such that L[i] = i,

x[i]← b. For all other i, x[i]← a.

The division of x into ranges has the useful consequence that ranges can

be compared without necessarily requiring that all positions be compared:

Observation 3.4. Suppose strings x and y are expressed in terms of their

ranges: x = x1x2 · · ·xm, y = y1y2 · · ·yn. Suppose further that for some

least integer r ∈ 1..min(m,n), xr < yr (respectively, xr > yr). Then x < y

(respectively, x > y).

Proof. If xr < yr, then either

(a) xr is a nonempty proper prefix of yr; or

(b) there is some least position j such that xr[j] < yr[j].

In case (a), if r = m, then x is actually a prefix of y, so that x < y, while

if r < m, then by (3.2), xr+1[1] < yr[|xr|+1], and again x < y. In case (b)

the result is immediate. The proof for xr > yr is similar.

Also useful for our algorithms is the following simple property:

Observation 3.5. Within range xr, let i∗ denote the greatest value of i ∈

1..`r−1 such that xr[i] < x[`r]. Then for every i ∈ 2..i∗, L[i−1] ≥ L[i].
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3.2 Basic Algorithms

3.2.1 Folklore – Iterated MaxLyn Algorithm

For a string x of length n, prefix table π[1..n] is an integer array in

which for every iε1 . . n, π[i] is the length of the longest substring beginning

at position i of x that matches a prefix of x. Given a nonempty string x on

alphabet Σ, let us define x′ = x$, where the sentinel $ < µ for every letter

µ ∈ Σ.

Observation 3.6. x is a Lyndon word if and only if for every i ∈ 2 . . n,

x′[1 + k] < x′[i+ k], where k = π[i].

This result forms the basis of the algorithm given in Figure 3.1 that

computes the length max ∈ 1 . . n − ` + 1 of the longest Lyndon factor at a

given position j in x[1..n]. Its efficiency is a consequence of the instruction

i← i+k+1 that skips over positions in the range i+1 . . i+k−1, effectively

assuming that for every position j in that range, j+π[j] ≤ i+k. the following

lemma justifies this assumption.

Lemma 3.7. Suppose that for some position i in a Lyndon word x[1..n],

k = π[i] ≥ 2. Then for every j ∈ i+ 1 . . i+ k − 1, π[j] ≤ i+ k − j.

Proof. The result certainly holds for i+ k = n+ 1, so we consider i+ k ≤ n.

Assume that for some j ∈ i+ 1 . . i+ k − 1, π[j] > i+ k − j. It follows that

x[1 . . i+ k − j + 1] = x[j . . i+ k], (3.4)
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while x[j − i + 1 . . k] = x[j . . i + k − 1]. Since x is Lyndon, therefore

x[1 + k] ≺ x[i+ k], and so we find that

x[j − i+ 1 . . 1 + k] ≺ x[j . . i+ k]. (3.5)

From (3.4) and (3.5) we see that x[1..k + 1] has suffix x[j − i + 1..k + 1]

satisfying x[j − i + 1..k + 1] ≺ x[1..i + k − j + 1], x[1..k + 1] has suffix

x[j − i+ 1..k+ 1] ≺ prefix x[1..i+ k− j + 1], contradicting the assumption

that x is Lyndon.

Simply repeating MaxLyn at every position j of x gives a simple, fast

O(n2) time and O(1) additional space algorithm to compute λx.

Figure 3.1: Algorithm MaxLyn

Recent work on the prefix table [40, 41] has confirmed its importance as

a data structure for string algorithms. In this context it is interesting to find

that Lyndon words x can be characterized in terms of πx:
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Observation 3.8. Suppose x = x[1 . . n] is a string on alphabet Σ. Then x

is a Lyndon word over Σ if and only if for every i ∈ 2 . . n,

(a) i+ πx[i] < n+ 1; and

(b) for every j ∈ i+ 1 . . i+ πx[i]− 1, j + πx[j] ≤ i+ πx[i].

3.2.2 Recursive Duval Factorization

By observation 3.1, whenever x = x[1..n] is a Lyndon word, we know that

λx[1] = n. Thus computing the Lyndon decomposition x = w1w2 · · ·wk,

w1 ≥ w2 ≥ · · · ≥ wk, allows us to assign λ[ij] = |wj|, where ij is the first

position of wj , j = 1, 2, . . . , k.

Algorithm RDuval make use of the above given observation recursively,

by assigning λ[ij] ← |wj |, then removing the first letter ij from each wj to

form w′j , to which the Lyndon decomposition is applied in the next recursive

step. This process continues until each Lyndon word is reduced to a single

letter.

The time required for RDuval is bounded above by n times the maximum

depth of the recursion, thus O(n2) in the worst case — consider, for example,

the string x = an−1b. However, to estimate expected behaviour, we can make

use of a result of Bassino et al. [42].

Given a Lyndon wordw, the factorizationw = uv is called the standard

factorization of w if u and v are both Lyndon words and v is of maximum

size. They then show that if w is a binary string (Σ = {a, b}), the average
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length of v is asymptotically 3|w|/4. Thus each recursive application of

RDuval yields a left Lyndon factor of expected length |w|/4 and a remainder

of length 3|w|/4 to be factored further. It follows that the expected number

of recursive calls of RDuval is O(log4/3 n). The following lemma is a proof of

the time complexity for binary strings

Lemma 3.9. On binary strings RDuval executes in O(n log4/3 n) time on

average.

Example 3.10. For

1 2 3 4 5 6 7 8 9 10 11 12

x = a a b a a b b a b b a b

λ = 12 2 1 9 3 1 1 3 1 1 2 1

the factors considered are first 1–12, then

• 2–3 and 4–12 in the first level of recursion;

• 3, 5–7, 8–10 and 11–12 in the second level;

• 6–7 and 9–10 in the third;

• 7 and 10 in the fourth.

The positions are assigned as follows: λ[1]← 12;λ[2]← 2,λ[4]← 9;λ[3]←

1,λ[5]← 3,λ[8]← 3,λ[11]← 2;λ[6]← 1,λ[9]← 1;λ[7]← 1,λ[10]← 1.
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3.2.3 NSV Applied to the Inverse Suffix Array

Definition 3.11. Given a string x[1..n] on an ordered alphabet Σ, NSV =

NSVx[1..n] is the next smaller value array of x if and only if for every

i ∈ 1..n, NSV[i] = j, where

(a) for every h ∈ 1..j−1, x[i] ≤ x[i+h]; and

(b) either i+j = n+1 or x[i] > x[i+j].

Example 3.12.

1 2 3 4 5 6 7 8 9 10

x = 3 8 7 10 2 1 4 9 6 5

NSVx = 4 1 2 1 1 5 4 1 1 1

NSVx can be computed in Θ(n) time using a stack. We are focusing

on the main observation touched in [23], that λx can be computed merely

by applying NSV to the inverse suffix array ISAx. Below is a very simple

Θ(n)-time, O(n)-space algorithm for this calculation

procedure NSVISA(x[1 . . n]) : λx[1 . . n]
Compute SAx (see [43, 44])
Compute ISAx from SAx in place (see [44])
λx ← NSV(ISAx) (in place)

Figure 3.2: Apply NSV to ISAx

Presented here are the lemmas and the proof of the observation .
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Theorem 3.13. For a given string x = x[1..n] and total order ≺, let ISA =

ISA≺x. Then for every i ∈ 1..n, the substring x[i..j] is a maximal Lyndon

factor with respect to ≺ if and only if

(a) for every h ∈ i+1..j, ISA[j] < ISA[h]; and

(b) either j = n or ISA[j+1] < ISA[i].

The following well-known result is needed to prove Lemma 3.15:

Lemma 3.14 (Duval, Lemma 1.6, [30]). Suppose x ∈ Σ+, where Σ is an

alphabet totally ordered by ≺. Let x = uru1b, where u is nonempty, r ≥ 1,

u1 a possibly empty proper prefix of u, and the letter b 6= u[|u1|+1].

(a) If b ≺ u[|u1|+1], then u is a maximal Lyndon prefix of xy for any y;

(b) if b � u[|u1|+1], then x is Lyndon with respect to ≺.

For a given string x[1..n], let sx(i) = x[i..n] denote the suffix of x be-

ginning at position i. When clear from context we write just s(i).

Lemma 3.15. Consider a string x = x[1 . . n] over alphabet Σ with ordering

≺. Let x[i . . j] be the maximal Lyndon factor of x starting at i. Then

sx(i) ≺ sx(k) for every k ∈ i+1..j and either j = n or sx(j+1) ≺ sx(i).

Proof. Because x[i . . j] is Lyndon, therefore for any i < k ≤ j, x[i . . j] ≺

x[k . . j] and so s(i) ≺ s(k). If j = n, we are done. So we may assume j < n,

and we want to show that s(j+1) ≺ s(i). Suppose then that s(j+1) 6≺ s(i).

Since s(i) and s(j+1) are distinct, it follows that s(i) ≺ s(j+1). If we let

d = lcp(s(i), s(j+1)) + 1, two cases arise:
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(a) 0 ≤ d ≤ j − i.

Here i ≤ i + d ≤ j. Thus x[i . . i+d−1] = x[j+1 . . j+d] and x[i+d] ≺

x[j+1+d], and so for j < k ≤ j+1+d, x[i . . j+1+d] ≺ x[k . . j+1+d].

Since x[i . . j] is Lyndon, x[i . . j] ≺ x[k . . j] and so x[i . . j+1+d] ≺

x[k . . j+1+d] for any i < k ≤ j. Thus x[i . . j+1+d] is Lyndon, con-

tradicting the assumption that x[i . . j] is the maximal Lyndon factor

starting at i.

(b) 0 < j − i ≤ d.

Let d = r(j − i) + d1, where 0 ≤ d1 < j − i. Then r ≥ 1 and

x[i . . j+1+d] = uru1b where u = x[i . . j],

u1 = x[j+r(j−i)+1 . . j+r(j−i)+d1−1] = x[j+r(j−i)+1 . . j+d−1]

is a prefix of x[i . . j], and x[i+d] ≺ x[j+1+d], so that by Lemma 3.14 (b),

x[i . . j+1+d] is Lyndon, contradicting the assumption that x[i . . j] is

the maximal Lyndon factor starting at i.

Thus s(j+1) ≺ s(i), as required.

Lemma 3.16 describes the property of being a maximal Lyndon factor of

a string x in terms of relationships between corresponding suffixes.

Lemma 3.16. Consider a string x = x[1 . . n] over an alphabet Σ with an

ordering ≺. A substring x[i . . j] is a maximal Lyndon factor of x with respect

to ≺ if and only if sx(i) ≺ sx(k) for every k ∈ i+ 1..j and either j = n or

sx(j+1) ≺ sx(i).
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Proof. Let (A) denote {x[i . . j] is a maximal Lyndon factor of x} and let

(B) denote {s(i) ≺ s(k) for any 1 ≤ k ≤ j and s(j+1) ≺ s(i)}. Then (A)

⇒ (B) follows from Lemma 3.15, so we need to prove that (B) ⇒ (A).

Suppose then that (B) holds, and let x[i . . k] be the maximal Lyndon factor

of x starting at position i. If k < j, then by Lemma 3.15, s(k+1) ≺ s(i), a

contradiction since k+1 ≤ j. If k > j, then by Lemma 3.15, s(i) ≺ s(j+1)

because j+1 ≤ k, which again gives us a contradiction. Thus k = j and

x[i . . j] is a maximal Lyndon factor of x.

Now we reformulate Lemma 3.16 in terms of the inverse suffix array ISA of

x using the relationship that s(i) ≺ s(j)⇐⇒ ISA[i] < ISA[j], thus yielding

Theorem 3.13, as required. Hence the Lyndon array can be computed in a

simple three-step algorithm, as shown in Figure 3.2, that executes in Θ(n)

time and uses only one additional array of integers.

3.2.4 NSV∗: A Variant of NSV Algorithm

The algorithm uses an approach to the computation of λx that makes

use of a variant of the NSV idea. The processing identifies ranges in a single

left-to-right scan of the given string x, making use of two range comparison

routines, COMP and MATCH. COMP compares adjacent individual ranges

xr and xr+1, returning δ1 ∈ {−1, 0,+1} according to whether xr < xr+1,

xr = xr+1, or xr > xr+1. MATCH similarly returns δ2 ∈ {−1, 0,+1}

for adjacent sequences of ranges. The whole algorithm is based on the idea
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encapsulated in Lemma 3.16. It processes the string x from left to right

using a stack. At each iteration, the top of the stack (say, j) is compared

with the current index (say, i). In particular, we need to compare sx(i)

with sx(j), where sx(i) = x[i..n] denotes the suffix of the input string x

beginning at position i. As long as sx(i) � sx(j), NSV∗ pushes the current

index and continues to the next. When sx(i) ≺ sx(j), it pops the stack and

puts appropriate values in the corresponding indices of λx. As noted above,

ranges are employed to expedite these suffix comparisons.

Two auxiliary integer arrays, nextequal and period are maintained.

Whenever a suffix of a previous range at position j equals the current range

at position i, the algorithm assigns nextequal[j]← i before i is pushed onto

the stack. Then when a later MATCH yields δ2 = 0, the value of period

— that is, the extent of the following periodicity — may need to be set or

adjusted, as shown in the following example:

Example 3.17.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x = a a a b a a b a a b a a b a b

nextequal = 0 5 0 0 8 0 0 11 0 0 0 14 0 0 0

period = 0 12 0 0 9 0 0 6 0 0 0 4 0 0 0

A straightforward implementation of COMP and MATCH could require

a number of letter comparisons equal to the length of the shortest of the

two sequences of ranges being matched, so that in the worst case O(n2 log n)
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time would be required. However, by performing Θ(n)-time preprocessing,

we can compare two ranges in O(σ) time, where σ = |Σ| is the alphabet size.

Another approach to this suffix comparison problem is under way, which also

achieves run timeO(n log n) by maintaining a simple data structure requiring

O(n log n) space.
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Chapter 4

Our Novel Algorithm

There are several linear algorithms to sort the suffixes of a string. Cur-

rently, the fastest and most efficient one is due to Nong, Zhang, and Chan, [20].

There one can find the references to other linear time algorithms for suffix

sorting. An interesting question is whether Lyndon array can be computed

without fully sorting all the suffixes.

4.1 Background Information

Weiner [45] was the first one to introduce suffix tree and showed that it can

be constructed in O(n) time for a constant sized alphabet. This construction

and its analysis are nontrivial.

A constant sized alphabet is an alphabet of size at most C where C is a

fixed constant. A binary alphabet is an example of a constant sized alphabet
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if the fixed constant C ≥ 2. Generally, it takes O(m log(m)) to sort an

alphabet of size m. As Weiner’s algorithm requires sorting of the alphabet

of the input string, if the alphabet were not of a constant size, the algorithm

would in fact execute in O(n log(n)) time in the worst case.

Since then, considerable efforts had been made in the design of linear time

suffix tree constructions, but, prior to Farach, all algorithms developed had

been variants of the original approach of Weiner [45]. The main question was

how to deal with arbitrarily large alphabets and this problem was successfully

addressed by Farach [46]. Below is the general scheme of this approach:

1. Given string X of length n. Compute a reduced string Y of size 1
2
n

in at most C1
1
2
n steps for a constant C1.

2. Make a recursive call to Y that works in C 1
2
n steps and returns a suffix

tree for Y .

3. Compute To, odd suffix tree of X from suffix tree of Y in C2
1
2
n steps

for a constant C2.

4. From To compute the even suffix tree Te of X in C3 ≤ 1
2
n steps for a

constant C3.

5. Merge the two suffix trees into one in C4
1
2
n steps for a constant C4.

6. Return the tree.

As long as C1 +C2 +C3 +C4 ≤ C, then the algorithm works in at most

Cn steps. Or, in another words, as long as all steps 1, 3-6 are linear, the

overall algorithm is linear.

45



Ph.D. Thesis - A Paracha Computing & Software, McMaster University

Suffix tree is a powerful data structure with numerous applications in

computational biology, [47] and elsewhere, [48, 49]. It can be constructed in

linear time in the length of the string [46]. On the other hand, suffix array

[50, 51] is the lexicographically sorted array of the suffixes of a string. It

contains much the same information as the suffix tree, in a more implicit

form while being a simpler and a more compact data structure for many

applications. Due to the more explicit structure and the direct linear-time

construction algorithms, theoreticians tend to prefer suffix trees over suffix

arrays. Practitioners, on the other hand, often use suffix array, because they

are more space-efficient and simpler to implement, [22]. Keeping that in

mind, below is a scheme for suffix array construction using Farach’s approach.

1. Given string X of length n. Divide the suffixes of x to two disjoint

groups, G1 and G2 in at most C1 n steps, for some constant C1.

2. Compute a reduced string Y of size ≤ p
q
n for some 1 ≤ p < q in at

most C2
p
q
n steps, for some constant C2.

3. Make a recursive call to Y that at most in C p
q
n steps computes the

suffix array for Y .

4. Compute suffix array G1 from suffix array of Y in at most C3
p
q
n steps

for some constant C3.

5. From the suffix array of G1 compute the suffix array of G2 in at most

C4
p
q
n steps for some constant C4.

6. Merge G1 and G2 in at most C5 n steps for some constant C5.
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7. Return the suffix array.

As long as all steps 1-2, 4-5 are linear, the overall algorithm is linear, or,

more precisely, as long as C1q+C2p+C3p+C4p+C5q
q−p ≤ C, the algorithm executes

in at most C n steps.

Our novel algorithm to compute Lyndon array of a string is based on

this approach. This approach had been successfully followed by all linear

algorithms for suffix sorting to date, except the latest one by Baier[24]. The

worst-case complexity of our algorithm is Θ(|x| log(|x|)).

Below are the basic notions and ideas used in our proposed algorithm.

Definition 4.1. Let x = x[1..n] be a string and let A(x), the string’s alpha-

bet be ordered by ≺.

(1) A position i ∈ 1..n is first-ascending if either

(1a) i = 1 and x[i] � x[i+1], or

(1b) x[i− 1] � x[i] � x[i+1];

(2) A position i ∈ 1..n is ascending if either x[i−1] � x[i] or x[i] � x[i+1];

all other positions are called descending.

(3) A range j..k, 1 ≤ i ≤ j ≤ n is an ascending range if every position

i ∈ j..k is ascending. It is called a maximal ascending range if

either j = 1 or j−1 is a descending position,and either k = n or k+1

is a descending position.

(4) A range j..k, 1 ≤ i ≤ j ≤ n is a descending range if every position

i ∈ j..k is descending. It is called a maximal descending range if
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j−1 is an ascending position, and k+1 is an ascending position.

(5) A range i..j is an AD range if there is a i ≤ k ≤ j such that i..k is a

maximal ascending range, k+1..j is either a maximal descending range

if k < j, and either j = n or j+1 is a first-ascending position.

Classification of ascending and descending positions and ranges depends

on the order ≺ of the alphabet A(x). 4.1 illustrates the classification of

positions.

a
b

c
d

e

c
b

a

d
c

d

f
e

1 2    3    3   4   5   6 7    8    9 10 11  12 

Figure 1: Illustration of position classification for a string abccdefecbadd
Ascending positions are indicated in bold, first ascending positions are underlined,

descending positions are in gray, maximal ascending ranges are circled, maximal descending
range is circled in a dotted line. The natural order of the letters is used.

0.3 τ-Pairing

Consider a string x = x[1..n] over an ordered alphabet (A,�). The τ -pairing consists of
partitioning 1..n into AD-ranges. Each AD-range is then partition into disjoint pairs of
positions. If the last position in the AD-range could not be paired, then it is paired with
the first-ascending position of the next AD-range, or with $ if it is the very last position of a
string. The position in which a τ -pair starts is labeled black, the position in which a tau-pair
ends is labeled white.

Note that most of the τ -pairs do not overlap; if two τ -pairs overlap they overlap in a
position which is first-ascending, and which is both labeled as black and white. Moreover, a
τ -pair can be involved in at most one overlap. For an illustration, see Fig. 0.3.

a
b b

a
b

a
b

black position

white position

black-and-white position

Figure 2: Illustration of τ -pairs of a string abbabab

The τ -pairs are ordered lexicographically based on the ordering � of A: (a, b) � (c, d) iff
a ≺ c or (a = c and b ≺ d). (a, b) � (c, d) iff (a, b) � (c, d) or (a = c and b = d).

0.4 τ-alphabet

Let x be a string and let A(x) be ordered by �. We create a new alphabet τ(A(x)) by
assigning each τ -pair a new symbol not from A(x), i.e. so that A ∩ τ(A(x)) = ∅.

Figure 4.1: Illustration of position classification for a string abccdefecbadd
Ascending positions are indicated in bold, first-ascending positions are

underlined, descending positions are in gray, maximal ascending ranges are
circled, maximal descending range is circled in a dotted line. The natural

order of the symbols is assumed.
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Observation 4.2. 1. A string always starts with an ascending range.

2. An ascending range of length 1 consists of a single first-ascending po-

sition and can occurr only at the beginning or the end of a string.

3. A string may not have any descending range; for instance all binary

strings consist entirely of ascending ranges.

4.2 τ-pairing

The τ -pairing consists of partitioning 1..n into AD-ranges; each AD-range

is then partition into disjoint pairs of positions. If the last position in the AD-

range could not be paired, then it is paired with the first-ascending position

of the next AD-range, or with the position n+1 containing $, if it is the very

last position of a string. The τ -pair consists of the pair of symbols at those

two positions. The position in which a τ -pair starts is labeled black, the

position in which a τ -pair ends is labeled white. The symbol τ2(x) denotes

the set of all τ -pairs of x, while B(x) denotes the set of all black positions of

x (black and black-and-white), W(x) denotes the set of all white positions

of x (white and black-and-white), while ¬B(x) denotes the set of non-black

positions, i.e. the pure white ones, and ¬W(x) denotes the set of non-white

poisitions, i.e. the pure black ones.

Most of the τ -pairs do not overlap; if two τ -pairs overlap, they overlap

in a position which is first-ascending, and which is both labeled as black

and white. Moreover, a τ -pair can be involved in at most one overlap. For
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an illustration, see Fig. 4.2. In this example, the set of τ -pairs τ2(x) =

{(a, b), (b, a)}.

a
b

c
d

e

c
b

a

d
c

d

f
e

1 2    3    3   4   5   6 7    8    9 10 11  12 

Figure 1: Illustration of position classification for a string abccdefecbadd
Ascending positions are indicated in bold, first ascending positions are underlined,

descending positions are in gray, maximal ascending ranges are circled, maximal descending
range is circled in a dotted line. The natural order of the letters is used.

0.3 τ-Pairing

Consider a string x = x[1..n] over an ordered alphabet (A,�). The τ -pairing consists of
partitioning 1..n into AD-ranges. Each AD-range is then partition into disjoint pairs of
positions. If the last position in the AD-range could not be paired, then it is paired with
the first-ascending position of the next AD-range, or with $ if it is the very last position of a
string. The position in which a τ -pair starts is labeled black, the position in which a tau-pair
ends is labeled white.

Note that most of the τ -pairs do not overlap; if two τ -pairs overlap they overlap in a
position which is first-ascending, and which is both labeled as black and white. Moreover, a
τ -pair can be involved in at most one overlap. For an illustration, see Fig. 0.3.

a
b b

a
b

a
b

black position

white position

black-and-white position

Figure 2: Illustration of τ -pairs of a string abbabab

The τ -pairs are ordered lexicographically based on the ordering � of A: (a, b) � (c, d) iff
a ≺ c or (a = c and b ≺ d). (a, b) � (c, d) iff (a, b) � (c, d) or (a = c and b = d).

0.4 τ-alphabet

Let x be a string and let A(x) be ordered by �. We create a new alphabet τ(A(x)) by
assigning each τ -pair a new symbol not from A(x), i.e. so that A ∩ τ(A(x)) = ∅.

Figure 4.2: Illustration of τ -pairs of a string abbabab
The ovals indicate the τ -pairs

The τ -pairs are ordered lexicographically based on the ordering ≺ of

A(x): (a, b) � (c, d) iff a ≺ c or (a = c and b ≺ d). (a, b) E (c, d) iff

(a, b) � (c, d) or (a = c and b = d).

In our example, the order of τ2(x) is simple: (a, b) � (b, a).

4.3 τ-alphabet

Let x be a string and let A(x) be ordered by ≺. We create a new alphabet

τ(A(x)) by assigning each τ -pair from the set τ2(x) a distinct symbol not

from A(x), i.e A(x) ∩ τ(A(x)) = ∅ and |τ(A(x))| = |τ2(x)|.

For a τ -pair (a, b), let r(a, b) be the corresponding element from τ(A(x)),

while for B ∈ τ(A(x)), p(B) = (a, b) is the corresponding τ -pair, i.e.
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p(r(a, b)) = (a, b) and r(p(B)) = B. Thus,

τ2(x)
r

�
p
τ (A(x))

The order of the alphabet τ(A(x)) is induced by the order / of the τ2(x)

and thus we will us the same symbol for the ordering of the alphabet τ(A(x))

and for the lexicographic ordering of strings over τ(A(x)), thus for A,B ∈

τ(A(x)), A / B iff p(A) / p(B).

4.4 τ-reduction

For a string x = x[1..n] with an alphabet A(x) ordered by ≺, the string

τ(x) is a string over the alphabet τ(A(x)) that is created by replacing each

τ -pair of x with the corresponding symbol from τ(A(x)).

For any i ∈ 1..|τ(x)|, b(i) = j where j is the starting (and hence black)

position in x of the τ -pair corresponding to the symbol in τ(x) at position

i, while t(j) assigns each black position of x the position in τ(x) where the

corresponding τ -symbol is, i.e. b(t(j)) = j and t(b(i)) = i. Thus,

1..|τ (x)|
b

�
t
B(x)
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τ(x) is defined as concatenation of symbols from τ(A(x)) assigned to all

τ -pairs of x, thus, A(τ(x)) = τ(A(x)). For a substring x[i..j] of x where

i and j are both black positions, τ(x[i..j]) is the concatenation of symbols

from τ(A(x)) assigned to consecutive τ -pairs of x starting with the τ -pair

(x[i],x[i+1]) and ending with the τ -pair (x[j],x[j+1]).

Example 4.3. In Fig. 4.3 the τ -reduction of abbabab is illustrated. We

assign the τ -symbol A to τ -pair (a, b) and the τ -symbol B to τ -pair (b, a).

So, τ(abbabab) = ABAA

Let for a τ -pair (i, i+1), sτ (i, i+1) is the corresponding element from τ(A(x)), while for
B ∈ τ(A(x)), pτ (B) = (i, i+1) is the corresponding τ -pair, i.e. pτ (rτ (i, i+1)) = (i, i+1) and
rτ (pτ (B)) = B.
The order of the alphabet τ(A(x)) is induced by the order � of the τ -pairs and thus we
will us the same symbol for the ordering of the alphabet τ(A(x)) and for the lexicographic
ordering of strings over τ(A(x)).

0.5 τ-reduction

For a string x = x[1..n] with an alphabet A(x) ordered by �, the string τ(x) is a string
over τ(A(x)) that is created by replacing each τ -pair of x with the corresponding letter from
τ(A(x)).
For any i ∈ 1..|τ(x)|, bτ (i) = j where j is the starting (and hence black) position in x of
the τ -pair corresponding to the symbol in τ(x) at position i, while tτ (j) assigns each black
position of x the position in τ(x) where the corresponding τ -symbol is, i.e. bτ (tτ (j)) = j
and tτ (bτ (i)) = i.

In Fig. 0.5 the τ -reduction of abbabab is illustrated. Note that the τ -pairs of x lexicograph-
ically ordered are: (a, b) (b, a), thus we assign them τ -symbols A B. So, τ(abbabab) = ABAA
and

rτ =
τ -symbols A B

τ -pairs (a, b) (b, a)

pτ =
τ -pairs (a, b) (b, a)

τ -symbols A B

bτ =
indeces of τ(x) 1 2 3 4

indeces of x 1 3 4 6

tτ =
indeces of x 1 3 4 6

indeces of τ(x) 1 2 3 4

a
b b

a
b

a
b

A A AB

1        2         3         4        5        6        7

Figure 3: Illustration of τ -reduction of a string abbabab

The next lemma explains why we call it τ -reduction as it shortens the length of the string
to which it is applied.

Observation 7. For any string x, 1
2 |x| ≤ |τ(x)| ≤ 2

3 |x|.

Figure 4.3: Illustration of τ -reduction of a string abbabab

r =
τ -symbol A B

τ -pair (a, b) (b, a)

p =
τ -pair (a, b) (b, a)

τ -symbol A B

b =
positions of τ(x) 1 2 3 4

poitions of x 1 3 4 6

t =
positions of x 1 3 4 6

positions of τ(x) 1 2 3 4
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The most important properties of τ -reduction is that

(a) 1
2
|x| ≤ |τ(x)| ≤ 2

3
|x|

Proof. There are two extremes. One, when all τ -pairs are disjoint.

Then |τ(x)| = 1
2
|x| as there are 1

2
|x| such τ -pairs if |x| is even, or

1+1
2
|x| of |x| is odd. The other extreme is when every τ -pair intersects

with some other τ -pair. Since each τ -pair intersects with exactly one

other τ -pair and in exactly one position, two intersecting τ -pairs form a

unique triple of positions of x, and these triples are mutually disjoint,

and so there are at most 1
3
|x| such triples and hence there are 2

3
|x|

such intersecting τ -pairs. The value of |τ(x)| must lie between these

two extremes.

Example 4.4. Let x - bab bab bab consists of τ -pairs (underlined) that

intersect: bab bab bab

τ(abbabab) = ABAA, note that |x| = 7 and |τ(x)| = 4, so 2
3
|x| = 2

3
7 =

14
3
> 12

3
= 4 = |τ(x)| > 3.5 = 1

2
|x| .

(b) Any maximal Lyndon factor of τ(x) corresponds in a unique way to a

maximal Lyndon factor of x.

(c) The Lyndon array of τ(x) can thus be extended to a partially filled

Lyndon array of x.
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We are aiming at establishing that τ -reduction preserves certain maximal

Lyndon substrings, so we need to establish first a relationship between Lyn-

don substrings and suffixes of a string and then between maximal Lyndon

substrings and suffixes.

Fact 4.5. x[i..j] is a Lyndon susbstring of x = x[1..n] if and only if x[i..n] ≺

x[k..n] for any i < k ≤ j.

The relationship between maximal Lyndon susbstrings and the suffixes

of a string was first introduced in [23] and it is quite natural:

Lemma 4.6. Let x = x[1..n] be a string and let its alphabet A(x) be ordered

by ≺. For any 1 ≤ i ≤ j ≤ n, the substring x[i..j] is a maximal Lyndon

susbstring of x if and only if x[i..n] ≺ x[k..n] for any i < k ≤ j and either

j = n or x[j+1..n] ≺ x[i..n].

First we show that τ -reduction preserves relationships of certain suffixes

of x.

Lemma 4.7. Let x = x[1..n] and let τ(x) = τ(x)[1..m]. Let 1 ≤ i ≤

j ≤ n. If i and j are both black positions, then x[i..n] ≺ x[j..n] implies

τ(x)[t(i)..m] � τ(x)[t(j)..m].

Proof. Since i and j are both black posititions, both t(i) and t(j) are defined

. Let i1 = t(i) and j1 = t(j).
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• Case when x[i..n] is a prefix of x[j..n].

Then j < i. Moreover, x[j..j+n−i+1] = x[i..n] as x[i..n] is a border of

x[j..n]. If j+n−i+1 is a black position, then τ(x)[t(j)..t(j+n−i)+1] =

τ(x)[t(i)..m−1] and x[j+n−i+1] is τ -paired with x[j+n−i+2] while

x[n] is τ -paired with $, and so τ(x)[t(i)..m] � τ(x)[t(j)..m].

If j+n−i+1 is a white position, then τ(x)[t(i)..m] = τ(x)[t(j)..t(j+n−i)],

and so τ(x)[t(i)..m] is a prefix of τ(x)[t(j)..m], therefore τ(x)[t(i)..m]�

τ(x)[t(j)..m].

• Case when x[i] ≺ x[j].

Then τ(x)[i1] = p(x[i],x[i+1]) and τ(x)[j1] = p(x[j],x[j+1]). Since

x[i] ≺ x[j], we have τ(x)[i1]�τ(x)[j1] and so τ(x)[t(i)..m]�τ(x)[t(j)..m].

• Case when for some `, x[i..i+`−1] = x[j..j+`−1] while x[i+`] ≺ x[j+`].

(a) Case i+`−1 is white.

Since x[i..i+ `− 1] = x[j..j+ `− 1], it follows that j+ `− 1 is

also white. Hence both i+ `− 2 and j + `− 2 are black and

τ(x)[i1..t(i+`−2)] = τ(x)[j1..t(j+`−2)].

τ(x)[t(i+̀−2)+1] =


p(x[i+`−1],x[i+`]) if i+`−1 is black & white,

p(x[i+`],x[i+`+1]) if i+`−1 is pure white

and

τ(x)[t(j+̀−2)+1] =


p(x[j+`−1],x[i+`]) if j+`−1 is black & white,

p(x[j+`],x[i+`+1]) if j+`−1 is pure white.

(α) τ(x)[t(i+̀−2)+1] = p(x[i+̀−1],x[i+̀ ]) and τ(x)[t(j+̀−2)+1] =
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p(x[j+`−1],x[j+`]).

Since x[i+`−1] = x[j+`−1] and x[i+`] ≺ x[j+`], we get

τ(x)[t(i+`−2)+1] � τ(x)[t(j+`−2)+1], and so τ(x)[i1..n] �

τ(x)[j1..n].

(β) τ(x)[t(i+̀−2)+1] = p(x[i+̀−1],x[i+̀ ]) and τ(x)[t(j+̀−2)+1] =

p(x[j+`],x[j+`+1]).

Since i+`−1 is black & white, we have x[i+`−2] � x[i+`−1] ≺

x[i+`]. Since j+`−1 is pure white and x[i+`−2] = x[j+`−2]

and x[i+`−1] = x[j+`−1], we have x[j+`−2] � x[j+`−1] �

x[j+`]. Thus, τ(x)[t(i+`−2)+1]� τ(x)[t(j+`−2)+1] and so

τ(x)[i1..n] � τ(x)[j1..n].

(γ) τ(x)[t(i+̀−2)+1] = p(x[i+̀ ],x[i+̀ +1]) and τ(x)[t(j+̀−2)+1] =

p(x[j+`+1],x[j+`]).

Since j+`−1 is black & white, we have x[j+`−2] � x[j+`−1] ≺

x[j+̀ ]. Since i+̀−1 is pure white and x[i+̀−2] = x[j+̀−2] and

x[i+̀−1] = x[j+̀−1] and, we have x[i+̀−2] � x[i+̀−1] � x[i+̀ ],

and so x[j+̀ ] � x[j+̀−1] = x[i+̀−1] � x[i+̀ ], a contradiction.

This case cannot happen.

(δ) τ(x)[t(i+̀−2)+1] = p(x[i+̀ ],x[i+̀ +1]) and τ(x)[t(j+̀−2)+1] =

p(x[j+`],x[j+`+1]).

Since x[i+`] ≺ x[j+`], we get τ(x)[t(i+`−2)+1]� τ(x)[t(j+

`−2)+1] and so τ(x)[i1..n] � τ(x)[j1..n].

(b) Case i+`−1 is not white.
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Since x[i..i+`−1] = x[j..j+`−1], it follows that j+`−1 is also

not white. Thus both are pure black and so τ(x)[i1..t(i+`−2)] =

τ(x)[j1..t(j+`−2)]. τ(x)[t(i+`−2)+1] = p(x[i+`−1], x[i+`]) and

τ(x)[t(j+`−2)+1] = p(x[j+`−1],x[j+`]). Therefore, τ(x)[t(i+

`−2)+1] � τ(x)[t(j+`−2)+1] and so τ(x)[i1..n] � τ(x)[j1..n].

Lemma 4.8 shows that τ -reduction preserves certain maximal Lyndon

substrings of x.

Lemma 4.8. Let x = x[1..n] and let τ(x) = τ(x)[1..m]. Let 1 ≤ i < j ≤ n.

Let x[i..j] be maximal Lyndon susbtsring of x, and let i be a black position.

Then


τ(x)[t(i)..t(j)] is Lyndon if j is black

τ(x)[t(i)..t(j−1)] is Lyndon if j is not black.

Proof. Let us first assume that j is black.

Let i1 = t(i), j1 = t(j) and consider k1 so that i1 < k1 ≤ j1. Let k =

b(k1). Then i < k ≤ j and so x[i..n] ≺ x[k..n] by Lemma 4.5. Hence,

τ(x)[t(i)..m] � τ(x)[t(k)..m] by Lemma 4.7. Therefore, τ(x)[t(i)..t(j)] is

Lyndon.

Now assume that j is not black.

Then j−1 is black and x[i..j−1] is Lyndon, so as in the previous case,

τ(x)[t(i)..t(j−1)] is Lyndon.
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Now we can show that τ -reduction preserves some maximal Lyndon sub-

strings of the string.

Theorem 4.9. Let x = x[1..n] and let τ(x) = τ(x)[1..m]. Let 1 ≤ i <

j ≤ n. Let x[i..j] be a maximal Lyndon substring of x, and let i be a black

position.

Then


τ(x)[t(i)..t(j)] is a maximal Lyndon substring if j is black

τ(x)[t(i)..t(j−1)] is a maximal Lyndon substring if j is not black.

Proof. By the Lemma 4.8, we know that in both cases the respective sub-

string is Lyndon. Thus, we only need to show its maximality.

Since x[i..j] is maximal, x[j+1..n] ≺ x[i..n]. We also know that x[i] ≺ x[j].

• First assume that j is a black position.

Hence we want to show that τ(x)[t(i)..t(j)] is a maximal Lyndon sub-

string. Since j is black, (x[j],x[j+1]) is a τ -pair. Since x[j+1..n] ≺

x[i..n], x[j+1] � x[i].

(a) If x[j] � x[i] � x[j+1] � x[j+2], then j+1 is black and t(j)+1 =

t(j+1) and so τ(x)[t(j+1)..m] � τ(x)[t(i)..m] and so τ(x)[t(j)+

1..m]� τ(x)[t(i)..m], giving the maximality of τ(x)[t(i)..t+ τ(j)].

(b) If x[j] � x[i] � x[j+1] � x[j+2], then τ(x)[t(i)] = p(x[i],x[i+1]),

and τ(x)[t(j)] = p(x[j],x[j+ 1]), and τ(x)[t(j) + 1] = p(x[j+

2],x[j+3]). Thus, τ(x)[t(j)+1] � τ(x)[t(i)], and so τ(x)[t(j)+

1..m] � τ(x)[t(i)..m], giving the maximality of τ(x)[t(i)..t(j)].
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• Assume that j is not black.

Hence we want to show that τ(x)[t(i)..t(j−1)] is a maximal Lyndon

substring. j−1 and j+1 are both black and t(j−1)+1 = t(j+1). Hence,

τ(x)[t(j+1)..m]�τ(x)[t(i)..m] and so τ(x)[t(j−1)+1..m]�τ(x)[t(i)..m],

giving the maximality of τ(x)[t(i)..t(j−1)].

Note that Theorem 4.9 gives a procedure for computing partially filled

Lyndon array of x from Lyndon array of y:

Theorem 4.10. Let λy[1..m] be the Lyndon array of y = τ(x), where x =

x[1..n] and let all values of λy be known. Let λx[1..n] be the Lyndon array

of x. For any black i ∈ 1..n,

λx[i] =


j−i+1 if j is black

j−i otherwise

where j = b
(
λy[t(i)]+t(i)−1

)
These properties indicate the structure of our algorithm:

1. compute τ -reduction of x of size ≤ 2/3n.

2. Make a recursive call that returns the Lyndon array of τ(x).

3. Expand the Lyndon array of τ(x) to a partial Lyndon array of x.

4. Compute the missing values in the partial Lyndon array.

5. Return the fully computed Lyndon array of x.

Since steps 1, 3, and 5 are linear and since the reduction of the size of x is at

least 1/3, this scheme’s overall complexity really depends on the complexity

of step 4, which, at this point we can do at best in Θ(n log(n)).
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A challenging problem is how to compute the missing values efficiently.

It is due to this step of the algorithm (step 4.), that the overall complexity so

far is Θ(n log(n)). When the τ -pairs to not overlap, then each missing value

can be computed in constant time, and hence the overall algorithm performs

in linear time. Have a look at the following example:

Example 4.11. Let x=abababab

Figure 4.4: Illustration of τ -reduction of a string abababab

In Fig. 4.4 the τ -reduction of abababab is illustrated. We assign the τ -

symbol A to τ -pair (a, b). So, τ(abababab) = AAAA. λτ(x) = {1, 1, 1, 1}.

λx = {2, , 2, , 2, , 2, } from the partially filled Lyndon array we can compute

λx = {2, 1, 2, 1, 2, 1, 2, 1} in linear time.

Other “easy” cases where the algorithm tends to be linear include:

1. Strings with all ascending ranges.

2. Strings with all descending ranges.
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4.5 How to compute the Missing Values

In the above given algorithm the most furtive step is to find the missing

values in the partially filled Lyndon array for the given string x of length n.

As the τ -reduction gives us a string of length between 1/2n and 2/3n, we

end up in having between 1/2n and 1/3n of missing values in the Lyndon

array.

Below is a description as how to compute the missing values which gives

the worst case complexity. Missing values are always computed starting from

the right hand side, i.e. the end of the partially filled Lyndon array. So, at

each position i being processed, we assume to have the Lyndon array entries

for all j, i + 1 ≤ j ≤ n. Also note, that for an index i we are trying to

compute the missing value λ[i], we have available λ[i− 1].

4.5.1 Cases when determining λ[i] takes a constant time

• If x[i] � x[i+ 1], then λ[i] = 1.

Since we are assuming that x[n + 1] = $, the latter case includes the

case when i = n.

• If x[i] � x[i + 1] and either L[i + 1] = n or L[i + 1] = L[i − 1], then

λ[i] = λ[i+ 1] + 1.

Note that x[i..L[i + 1]] is Lyndon because x[i] � x[i + 1], so the real

question is if it is maximal. Since L[i + 1] ≤ L[i] ≤ L[i − 1], then

L[i− 1] = L[i] = L[i+ 1].
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4.5.2 Cases when determining λ[i] may take O(i) steps

Figure 4.5: Illustration of computing the missing value at position ??

This situation arises when x[i] � x[i+1], L[i+1] < n and L[i−1] > L[i+1].

Again, x[i..L[i + 1]] is Lyndon, but it may not be maximal. Consider a

situation when the unknown value λ[i] is followed by at least two maximal

Lyndon factors denoted LA1 = x[j1..L[j1]], ..., LAm = x[jm..L[jm]]. Note

that LA1 � LA2 � LA3 � · · · � LAm and that j1 = i+ 1. Then the Lyndon

factor x[i..L[i+ 1]] must be compared to LA2 in min{λ[j1] + 1,L[j2]} steps.
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If x[i..L[j1]] � x[j2..L[j2], we can stop and set L[i] = L[j1]. However, if

x[i..L[j1]] ≺ x[j2..L[j2], then x[i..L[j2]] is Lyndon and we have to continue.

We have to compare x[i..L[j2]] to x[j3..L[j3]] to find out whether we need to

extend x[i..L[j2] or not, possibly all the way to comparison of the Lyndon

factor x[i..L[jm−1]] to x[jm..L[jm]].

Note, that we do not have to go past L[i− 1], so it may limit how far we

need to go. So, it is not necessarily O(i), but it may. Fig. 4.5 illustrates this

situation with 4 maximal Lyndon factors following x[i].

The above analyzes suggests that the complexity of filling of the missing

values may in fact be O(n2). Before we prove that it is Θ(n log(n)), we go

over a few examples how the filling of the missing values work.

4.6 Working Examples

4.6.1 Example 1: Simple Case

Consider x = abbabab

τ(abbabab) = ABAA with τ - symbol A representing τ -pair (a,b)

and τ - symbol B representing τ -pair (b,a)

λτ(x) = { 2,1,1,1 }

λx = { 3, ?, 1, 2, ?, 2, ? }

Now find the missing values:

• We start with i = n : case 4.5.1 applies here, and so λ[7] = 1
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• We continue with i = 5: case 4.5.1 again applies here as x[5] = b �

x[6] = a and so λ[5] = 1

• We continue with i = 2: case 4.5.2 applies here as x[2] = x[3]. Since

L[1] = 3, we set λ[2] = 1

Thus, the complete Lyndon array for the given string x is { 3, 1, 1, 2, 1, 2, 1 }.

4.6.2 Example 2: Complex Case

Consider x = baabbabab

the τ -pairing is (b, a)(a, a)(b, b)(a, b)(a, b). We assign (a, a) = A, (a, b) = B,

(b, a) = C, and (b, b) = D. Thus, τ(baababab) = CADBB. The recursive

call will return the Lyndon array of CADBB, i.e. { 1, 4, 1, 1, 1 } which is

expanded to the partial Lyndon array of x { 1, 8, ?, 1, ?, 2, ?, 2, ? }

By the case 4.5.1 as x[i] � x[i+ 1], the missing values λ[9], λ[7], λ[5] are all

1, i.e. we have { 1, 8, ?, 1, 1, 2, 1, 2, 1 }.

The hard case 4.5.2 is for i = 3:
[
aa[b][b][ab][ab]

]
where the brackets indicate

the maximal Lyndon factors. Since x[3] = a � x[4] = b, we can extend

x(a)[b] to a Lyndon factor [ab], i.e. we have
[
a[ab][b][ab][ab]

]
. Now, since

[ab] � [b], we can extend [ab][b] to [abb], i.e. we have
[
a[abb][ab][ab]

]
. Now,

since [abb] � [ab] we can stop since [abb] is maximal and hence λ[3] = 3

corresponding to [abb].
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4.6.3 Example 3: More Complex Case

Consider x = baaababab

the τ -pairing is (b, a)(a, a)(a, b)(a, b)(a, b). We assign (a, a) = A, (a, b) = B,

(b, a) = C. Thus, τ(baaababab) = CABBB. The recursive call will return

the Lyndon array of CABBB, i.e. { 1, 4, 1, 1, 1 } which is expanded to the

partial Lyndon array of x { 1, 8, ?, 2, ?, 2, ?, 2, ? }

By the case 4.5.1 as x[i] � x[i+ 1], the missing values λ[9], λ[7], λ[5] are all

1, i.e. we have { 1, 8, ?, 1, 1, 2, 1, 2, 1 }.

The hard case 4.5.2 is for i = 3:
[
aa[ab][ab][ab]

]
where the brackets indicate

the maximal Lyndon factors. Since x[3] = a � x[4] = a, we can extend

x(a)[ab] to a Lyndon factor [aab], i.e. we have
[
a[aab][ab][ab]

]
. Now, since

[aab] � [ab], we can extend [aab][ab] to [aabab], i.e. we have
[
a[aabab][ab]

]
.

Now, since [aabab] ≺ [ab] we can extend [aabab] to [aababab] and we can

stop. Hence aababab is maximal and λ[3] = 7 corresponding to [aababab],

i.e. we end with
[
a[aababab]

]
. Note that this is a case when L[i − 1] = n

and so it does not help to limit the process.

4.7 The complexity of the algorithm

In the section 4.5 we described how the missing values are computed and

went over a few examples in section 4.6. Since in the worst case computing of

a missing value for i can take O(i), it seems that computing all O(n) missing

values (there are between 1/2n to 1/3n missing values) may take O(n2) steps.
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In this section we shall establish that in fact it takes Θ(n log(n)) steps in the

worst case to compute all the missing values.

When in case 4.5.2 we are comparing x[i..L[jk]] with x[jk+1..L[jk+1]] we

have to “step” on some (or may be all) of the indices of jk+1..L[jk+1]. Thus,

in order to “step” on an index j for the first time, we must be dealing with

a missing value at an index i1 that is at least as far from the beginning of

LA1 as i is from the beginning of LA1, where LA1 is the smallest maximal

Lyndon factor containing i (let r be the distance): .....i1 ...︸︷︷︸
r

[ ...︸︷︷︸
r

j.....]......

To step on j for the second time, we must be dealing with a missing value

for an index i2 that is a far from the beginning of LA2, which is the next

smallest maximal Lyndon factor containing j, etc. Thus, n ≥ 2rk ≥ 2r and

so r ≤ log(n), i.e. we “step” on each index at most O(log(n)) times giving

the overall complexity as O(n log(n)) steps. Note, that this is a natural

consequence of the fact that maximal Lyndon factors must be nested.

In order to establish that the complexity is Θ(n log(n)), we give an ex-

ample of a string that will force that many steps.

Let u1 be a Lyndon string over an alphabet Σ1. Let a1 6∈ Σ1 and define

a1 ≺ b for any b ∈ Σ1. Let u2 = a1a1u1u1 and let Σ2 = {a1} ∪ Σ1, ...,

ui+1 = aiaiuiui and Σi+1 = {ai} ∪ Σi, for i ≤ k. Let x = akakukuk.

Note that |u2| = 2|u1| + 2, |u3| = 2|u2| + 2 = 22|u1| + 2 ∗ 2, |u4| = 2|u3| +

2 = 23|u1| + 2 ∗ 3, ..., |uk| = 2|uk−1| + 2 = 2k−1|u1| + 2 ∗ (k − 1), and so

|x| = 2k|u1| + 2 ∗ k. Every second occurrence of ai is an index of a missing

value and every processing of it is the case 4.5.2 forcing a comparison of
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[aiui] with [ui], i.e. we are guaranteed to “step” on the indices of the second

occurrence u1 k-times and k = log( |x|−2∗k
|u1

). Thus, the complexity of the

process for filling in the missing values is Θ(n log(n)).
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Chapter 5

Linear Time Suffix Sorting By

Baier

Suffix arrays have been used as significant data structure in broad spec-

trum of applications including data compression, indexing, retrieval , sorting

and text processing. Computation of suffix array for a given string is not

an easy task. [52] states the following criteria to be fulfilled by every suffix

array construction algorithm:

• Minimal asymptotic runtime: linear time complexity.

• Fast runtime in practice, tested on real world data.

• Minimal space requirements, space usage for the suffix array and the

text itself in an optimal way.

Although the paper was published in 2007, no suffix array construction
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algorithm truly meets the above mentioned criteria. In the succeeding sec-

tions we will review the recent work in SACAs (Suffix Array Construction

Algorithm) by Baier.

5.1 History

Started as an open question by Weiner [45] Can suffix trees be constructed

in linear time? , Farach [46] settled the open problem by building suffix trees

for integer alphabets in linear time. After the introduction of suffix array by

Manber and Myes in 1993, most of the attention had been diverted to them.

Recently the research became more focused on time and space efficient

algorithms for the construction and sorting of suffix arrays due to their in-

creasing demand in the large scale applications like web searching and genome

database, where the magnitude of huge datasets is measured often in billions

of characters. The fastest linear SACA among all the latest results obtained

so far is the KA algorithm from Aluru and Ko, [21].
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Table 5.1 below summarizes some of the significant work done in the area

so far.

Year Researcher Achievement

1973 Weiner Introduced and used
1996 Grossi and Italiano suffix trees as a powerful data
1997 Gusfield structure with numerous applications.
1973 Weiner All of them worked
1976 McCreight to prove Suffix trees
1995 Ukkonen can be constructed in
1997 Farach linear time in the
2000 Farach-Colton et al. length of the string.
1992 Gonnet et al.
1993 Manber and Myers Introduced Suffix array
1994 Burrows and Wheeler as a space efficient
2002 Abouelhoda et al. substitute for suffix trees.
2003 Karkkainen and Sanders All worked towards
2003 Kim et al. developing linear-time
2005 Ko and Aluru algorithms for suffix array construction
2005 Joong Chae Na inspired by Farach’s approach.
2009 Wai Hong Chan Invented two new linear

Ge Nong time suffix sorting algorithms
Sen Zhang using the induced sorting principles.

2011 C Hohlweg, C Reutenauer Used NSV to sort suffixes in linear time.

Table 5.1: Evolution of Linear Time Suffix Sorting Algorithms

5.2 Linear-time Suffix Sorting

I believe, that the biggest step in suffix sorting history was made by

Nong et al. in 2009. They invented two new algorithms using the induced

sorting principle [21]. One of those algorithms, called SA-IS [20], was able
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to outperform most of the superlinear algorithms that were known to “work

good in practice’’, while guaranteeing asymptotic linear runtime and almost

optimal space requirements. As a consequence, SA-IS is the currently fastest

known linear-time SACA that is able to fulfill almost all of the requirements

noted by Puglisi et al. [52], and stays the candidate to beat.

In 2015, Baier presented a linear-time algorithm that directly sorts the

suffixes of a string, the first such algorithm that is not recursive. Since his

algorithm as a first step groups the suffixes according to the first letter with

the groups being in the lexicographic order, his algorithm is not truly linear.

For a general alphabet Σ of the input string that would need to be sorted

first, the complexity is O(n log(|Σ|)). But for strings over slowly growing

alphabets (e.g. if Σ ⊂ {1, 2, 3, ...}, and maxΣ ≤ |x|), they can be sorted in

O(n) time in a simple bucket sort and so the overall complexity is O(n).

In fact, his approach implicitly gives quite a bit more: it includes an

elementary algorithm for computing what turns out to be a partially sorted

version of the Lyndon array, and then shows how this can be used to sort

the suffixes, [24].

Baier introduces the concept of suffix group G ,which is the main ingre-

dient in his algorithm.

5.2.1 Suffix Groups

A suffix group G with a group context u is defined as a set G ⊆ 1..n such

that u is a prefix of all suffixes in G, i.e. if i ∈ G, then u is a prefix of x[i..n].
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The index set of a given string x is divided into suffix groups G1, ..., Gm
such that all the group prefixes of G1, ..., Gm differ. For any i, j ∈ 1..m,

Gi < Gj if the group context of Gi is lexicographically smaller than the group

context of Gj . Within such a partition, group(i) identifies the suffix group

to which the index i belongs.

5.3 Basic Sorting Principle

Baier’s algorithm is divided into two phases:

5.3.1 Phase I

In this phase, suffixes are divided into groups while the group contexts

are being sorted. When the process ends, all the suffixes s(i) sharing the

same prefix x[i..̂i) must be placed in the same group, where î is the first

index after i so that s(̂i) ≺ s(i) and where x[i..j) denotes x[i..j−1]. The

groups themselves must be ordered by their group contexts at all times. A

group G ′ is said to be of a lower order than a group G ′′, if the context of G ′

is lexicographically smaller than that of G ′′.

5.3.2 Phase II

Sorted groups from the last phase are used here to finally sort the suffixes.

After the first phase, all the suffixes in a lower order group are lexicograph-

ically smaller than all the suffixes from a higher order group, so to achieve
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a total sort of all suffixes, it is sufficient to have the suffixes in each group

sorted properly. The groups are sorted from the lowest to the highest order,

i.e. from left to right. The process starts with the lowest order group, i.e.

the group that consists only of a single suffix s(n) = $ and so the process

starts with having all the suffixes in the lowest order group in proper order.

By the end of the ith iteration, all suffixes within the ith group should be

sorted. The order of the lower order groups helps determine the order in the

group being ordered and the algorithm uses the greedy approach for that.

Baier’s implemented this phase using a kind of dynamic programming ap-

proach akin to the group context doubling (i.e. prefix doubling). We will

discuss this phase in more details in the next chapter.

5.4 Asymptotic Complexity Of The Algorithm

Main tasks of the algorithm based on the above mentioned sorting prin-

ciple are:

• Build initial groups.

• Iterate them in descending group order.

• Compute previous smaller suffixes.

• Rearrange them.

To implement the algorithm, Baier used five arrays of size n. The initial

setup of those arrays can be performed in linear time using bucket sort (if

the alphabet of the string allows it, as we discussed in 5.2, otherwise it would
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require O(n log(n)) time) and further iterations using a character count table

which requires O(n) time. After then, the next biggest step is group sorting

which also happens in O(n). All remaining operations which required sorting

within the group G takes O(G) time.

This leads to the overall complexity of both the two phases to be O(n).

The overall space complexity is O(n) words.These are the proposed com-

plexities, when implemented for a real world problem it leads to a number of

downsides. The actual implementation turned out to be very complex and

not too efficient in comparison to other SACAs.

Table 5.2 below shows the performance comparison of Baier’s algorithm

with the existing SACAs.

Algorithm Resource Runtime Extra Working Space

divsufsort [53] O(nlogn) O(1)
SA-IS [54] O(n) O(logn) + max2n
KA [55] O(n) O(logn) + 4.16n
DC3 [56] O(n) O(logn) + max24n

GSACA [57] O(n) O(1) + 12n

Table 5.2: Performance Comparison of SACAs, [24]

However, Baier was the first one to come up with an algorithm not based

on Farach’s approach, by sorting suffixes directly via sorting maximal Lyndon

factors – in the next chapter we will explain how. He opened the doors

towards non-recursive linear algorithms for suffix sorting, and for finding and

sorting maximal Lyndon factors in a direct fashion. He also explores a lot in

terms of previous and next smaller values, he hints to a stack based approach
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for lexicographically smaller suffixes.He shows that group membership of a

suffix can be computed on-the-fly during the computation of lexicographically

smaller suffixes. He also provides a cache friendly implementation of phase

2 to achieve a faster algorithm, [24].
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Chapter 6

Our Modification to Phase II of

Baier’s Algorithm

6.1 Background Information

In the last chapter, we discussed Baier’s algorithm that directly sorts the

suffixes of a string, the first such algorithm that is not recursive. In fact, his

approach implicitly gives quite a bit more: it includes an algorithm for com-

puting what turns out to be a partially sorted version of the Lyndon array.

For strings over alphabets that can be sorted in linear time in the length of

the input string, phase I represents an elementary linear-time algorithms for

computing Lyndon array. Note, that Bair does not explicitly use the term

Lyndon in his thesis nor in the paper [24, 32]. In phase two, this partially

sorted array is used to order all suffixes, as discussed in the previous chapter.

76



Ph.D. Thesis - A Paracha Computing & Software, McMaster University

At the same time, it is known that the Lyndon array can be computed in

linear time from the inverse suffix array, see Chapter 3.

In this chapter, we encompass those aspects of his work to establish the

linear equivalence of certain ordering of maximal Lyndon factors and of fully

sorted suffixes and provided an alternative algorithm for Phase II. We are

here concerned with the second phase of Baier’s algorithm and with the

relationship between the groups of suffixes and the maximal Lyndon factors

is explored in detail.

6.2 Linear Equivalence of Suffix and Partially

Sorted Lyndon Arrays

In this section, we introduce data structures that are linearly equivalent

to the suffix array, which means that there is a true linear-time algorithm

computing the structure from the suffix array and a true linear-time algo-

rithm computing the suffix array from the structure. The structures we are

introducing are to formalize the intuitive notion of “partially ordered Lyndon

array”. These structures are two-dimensional arrays Lyndon Grouping array,

Partially Sorted Lyndon Array, and Sorted Lyndon Array. A very superficial

view of these arrays is summarized below:

1. Make the suffix groups −→ Lyndon Grouping Array.

2. Sort the suffix groups according to their context −→ Partially Sorted

77



Ph.D. Thesis - A Paracha Computing & Software, McMaster University

Lyndon Array.

3. Sort the indices within each group −→ Sorted Lyndon Array.

The definition of Lyndon array was previously given in Chapter 1, we are

putting it here again for a quick reference The Lyndon array was introduced

in [58] — it is closely related to the Lyndon tree of [23]:

Definition 6.1. For a given string x = x[1..n], the Lyndon array of x is an

integer array L[1..n] such that L[i] = j if and only if j is the length of the

maximal Lyndon substring at i.

6.2.1 Lyndon Grouping Array

Let x = x[1..n] be a string of length n. The Lyndon grouping array of x

is a two-dimensional integer array L[1..2][1..n] such that

1. L1[1..n] is a permutation of 1..n;

2. if L2[i] > 0, then the maximal Lyndon substring starting at L1[i] has

length L2[i];

3. if L2[i] = 0, then the maximal Lyndon substring starting at L1[i]

has length L2[j] where j is the greatest integer less than i such that

L2[j] > 0.
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1 2 3 4 5 6 7 8 9 10 11 12

a b a b b a b b a b b a

11 1 3 1 1 3 1 1 3 1 1 1

indices

string

Lyndon array

12 3 6 912 4 5 7 8 10 11
Lyndon grouping array

1 3 0 0111 0 0 0 0 0 0

Group Ga
with context of 

length 1, a

Group Gabb
with context of 

length 3, abbGroup Gababbabbabb
with context of length 

11, ababbabbabb

Group Gb 
with context of 

length 1, b

IL1 :

λ :

IL2 :

Figure 6.1: A Lyndon grouping array for ababbabbabba

In the above example for the string x = ababbabbabba there are four

groups: a group Gb with the context b, a group Gababbabbabb with the context

ababbabbabb, a group Ga with the context a, and finally a group Gabb with

the context abb as a, b, abb, and ababbabbabba are all the maximal Lyndon

factors of x.

Thus a Lyndon grouping array just partitions the positions of a string

into groups determined by identical maxLyn (an abbreviation for maximal

Lyndon used in this chapter) substrings: all indices in the same group are

starting positions of the same maxLyn substring. We denote a group with the

context u as Gu. Note that the Lyndon grouping array is not unique; that

is, for a given x there may exist several such arrays with different orderings

of the groups and different orderings of the indices in the groups.

The following lemma proves linear correspondance of Lyndon array from
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the given Lyndon grouping array.

Lemma 6.2. Let L[1..2][1..n] be a Lyndon grouping array of x = x[1..n].

Then the Lyndon array L of x can be computed from L[1..2] in O(n) steps.

Proof. Replacing zeros in L2 with the value at the start of each group yields

L[L1[i]] = L2[i] for all i ∈ 1..n:

for i = 1 to n do

if L2[i] 6= 0 then m← L2[i]

L[L1[i]]← m

Note that the Lyndon array may provide a weaker information than a

Lyndon grouping array in the sense that the Lyndon array can be computed

from a Lyndon grouping array in linear time, but we do not know at this

point how to compute a Lyndon grouping array from the Lyndon array in

linear time.

6.2.2 Partially Sorted Lyndon Array

A partially sorted Lyndon array of x is a Lyndon grouping array whose

groups are sorted in ascending lexicographic order; that is,

4. For i < j such that L2[i] > 0, L2[j] > 0, x
[
L1[i]..L1[i]+L2[i]−1

]
≺

x
[
L1[j]..L1[j]+L2[j]−1

]
.
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1 2 3 4 5 6 7 8 9 10 11 12

a b a b b a b b a b b a

11 3 1 1 3 1 1 1

indices

string

Lyndon array

12 2 4 5 7 8 10 11
partially sorted Lyndon 
array1 1 0 0 0 0 0 0

3 1 1

3 6 9

3 0 0

1

1

11

Group Ga
with context of 

length 1, a Group Gabb
with context of 

length 3, abb

Group Gababbabbabb
with context  of length 

11, ababbabbabb

Group Gb 
with context of 

length 1, b

IL1 :

λ :

IL2 :

Figure 6.2: A partially sorted Lyndon array for ababbabbabba

In Figure 6.2 the determinants a, ababbabbabb, abb, and b of the groups

are sorted in ascending lexicographic order. However, the indices within the

groups need not be in any particular order, though in our example they

happen to fall in the ascending order of positions. Like the Lyndon grouping

array, a partially sorted Lyndon array may not be unique as the indices in

the groups may be in any order.

6.2.3 Sorted Lyndon Array

A sorted Lyndon array of x is a partially sorted Lyndon array whose

indices are ordered within each group in the perfect order , i.e. according to

the lexicographical order of the corresponding suffixes; more precisely:

5. If L1[i] and L1[j] belong to the same group, then

i < j ⇐⇒ x
[
L1[i]..n

]
≺ x

[
L1[j]..n

]
.
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1 2 3 4 5 6 7 8 9 10 11 12

a b a b b a b b a b b a

11 3 1 1 3 1 1 1

indices

string

Lyndon array

12 11 8 5 2 10 7 4
sorted Lyndon array

1 1 0 0 0 0 0 0

3 1 1

9 6 3

3 0 0

1

1

11

Group Ga
with context of 

length 1, a Group Gabb
with context of 

length 3, abb

Group Gababbabbabb
with context of length 

11, ababbabbabb

Group Gb 
with context of 

length 1, b

IL1 :

λ :

IL2 :

Figure 6.3: The sorted Lyndon array of ababbabbabba

Along with the above mentioned arrays, we will be discussing three integer

arrays defined previously, but whose definition we provide here for a quick

reference:

(a) Given x = x[1..n], the integer array SA[1..n] is the suffix array of x iff

the entries of SA form a permutation of 1..n and for every 1 ≤ i < n,

x
[
SA[i]..n

]
≺ x

[
SA[i+1]..n

]
.

(b) The lcp array associated with SA is an integer array lcp[1..n] in which

lcp[i] is the size of the longest common prefix of x
[
SA[i]..n

]
and x

[
SA[i−

1]..n
]

for any 1 < i ≤ n.

(c) The inverse suffix array ISA[1..n] is an integer array such that SA[i] =

j iff ISA[j] = i.
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Note that if L[1..2][1..n] is a sorted Lyndon array of x, then in fact L1[1..n]

is a suffix array of x. Thus a sorted Lyndon array is unique, unlike a Lyndon

grouping array and a partially sorted Lyndon array. Therefore we speak of

the sorted Lyndon array of x.

1 2 3 4 5 6 7 8 9 10 11 12

a b a b b a b b a b b a

12 1 9 6 3 11 8 5 2 10 7 4

indices

string

suffix arraySA :

2 9 5 12 8 4 11 7 3 10 6 1 inverse suffix arrayISA : 

- 1 2 4 6 0 2 5 8 1 3 6 lcp arraylcp :

Figure 6.4: suffix array, inverse suffix array, and lcp array of ababbabbabba

Theorem 6.3. Let SA[1..n] be the suffix array of a string x = x[1..n]. The

sorted Lyndon array of x can be computed from x and SA in O(n) steps.

Proof. As just observed, the top array L1[1..n] is exactly the suffix array of x.

Thus we need to compute only L2[1..n]. First we compute the inverse suffix

array ISA from SA in O(n) steps. Then, as noted in [59] and explained in

[58], we compute the Lyndon array L[1..n] of x from ISA, also in O(n) steps,

using the next smaller value (NSV) algorithm. Thus we set L2[i] = L
[
L1[i]

]
for every i.

To complete the calculation, we need only set the L2 values to zero ex-

cept for the first entry in each group. For that we can use the O(n)-time

algorithm of Kasai et al. [60] to compute the lcp array. Then, for every i, if

lcp(L1[i],L1[i+1]) ≥ L2[i] and L2[i−1] = L2[i], we change the value of L2[i]
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to 0.

Several items need to be defined before our proof of Lemma 6.7. The

definitions are not in a formal form, but the structures are explained before

the proof to give a better understanding.

Definition 6.4. The delta operator is defined as follows: for i ∈ Gu,

∆(i) = i+ |u|. If ∆(i) ≤ n, then consider v, the maxLyn substring at the

position ∆(i). If u were lexicographically smaller than v, then uv would be

Lyndon, contradicting the maximality of u. Thus, v � u. It follows that for

i ∈ Gu


∆(i) = n+1, or

∆(i) ∈ Gv for some maxLyn v ≺ u, or

∆(i) ∈ Gu.

Definition 6.5. The groups form a partition of the set of indices. Using

the delta operator we define the ∆-refinement of this partition: let u, v

be maxLyn substrings of x so that v � u, then we define the subgroup

Gvu = {i ∈ Gu : ∆(i) ∈ Gv}, while we define the subgroup G$
u = {i ∈ Gu :

∆(i) = n+1}.

Definition 6.6. Each group Gu is a disjoint union of non-empty subgroups

Gvu for all maxLyn v � u and possibly G$
u. If i ∈ Gv1

u and j ∈ Gv2
u , and

v1 ≺ v2 � u, then x[i..n] ≺ x[j..n], as x[i..n] = uv1w1 for some w1, and

x[j..n] = uv2w2 for some w2. Since |G$
u| ≤ 1, if i ∈ G$

u and i 6= j ∈ Gu,

then x[i..n] ≺ x[j..n], as x[i..n] = u and x[j..n] = uw for some w. Thus,

if we separately perfectly order the subgroup Gvu for each maxLyn v ≺ u,
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then the group Gu will be perfectly ordered, as an important property of each

subgroup Gvu, v ≺ u, is the fact that a perfect order of the group Gv induces

a perfect order on Gvu: we simply let i precede j only if ∆(i) precedes ∆(j).

Similarly, a perfect order of G1
u, which is defined as the disjoint union of all

subgroups of Gu except Guu, induces a perfect order on Guu.

Example

Let x be a string , x = abb abb aa abb abb abb with Gabb = {1, 4, 9, 12, 15}.

G$
abb = {15}, Gaaabbabbabb

abb = {4}, Gabb
abb = {1, 9, 12} andGabb = G$

abb∪Gaaabbabbabb
abb ∪

Gabb
abb. A perfect order of G$

abb is 15, a perfect order of Gaaabbabbabb
abb is 4. The

elements of G$
abb will be listed first, the elements of Gaaabbabbabb

abb . The perfect

order of G$
abb∪Gaaabbabbabb

abb = {15, 4} determines the order of Gabb
abb = {1, 9, 12}.

Now, ∆(1) = 1+3 = 4, ∆(9) = 9+3 = 12, and ∆(12) = 12+3 = 15. Thus,

12 goes before 1, and then goes 9, i.e. the perfect order of Gabb is 15, 4, 12,

1, 9.

Lemma 6.7. Let L[1..2][1..n] be a partially sorted Lyndon array of a string

x = x[1..n]. Then in O(n) steps we can order the items in the groups to

obtain the sorted Lyndon array.

Proof. We can achieve the desired ordering of L[1..2][1..n] by computing the

suffix array SA of x and copying it into L1[1..n]. First, we compute triples

(I[i], G[i], SG[i]) for i ∈ 1..n, where I[i] = L1[i], G[i] represent group (we

are using integers 1..n to represent groups), and using ∆(i) we compute the
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subgroups (we are using integers 0..n to represent the subgroups). This can

be achieved in two traversals.

Then we use a radix sort to sort the triples to be ascending inG and within

each group to be ascending in SG. This can be achieved in six traversals.

In two traversals we can compute the inverse ∆ relation, i.e. i ∈ ∆−1(j) iff

∆(i) = j.

Then we traverse the inverse ∆ relation ∆−1 and record the indices as

we encounter them. As explained above, the perfect order of the previous

groups induces a perfect order on the current group via the ∆ operator.

Theorem 6.8. Let L[1..2][1..n] be a partially sorted Lyndon array of a string

x = x[1..n]. The suffix array SA[1..n] of x can be computed from x and L

in O(n) steps.

Proof. Using Lemma 6.7, we can compute the sorted Lyndon array L[1..2][1..n]

of x by perfectly ordering L. As previously noted, L[1][1..n] is then the suffix

array of x.

We have implemented in C++ the algorithm that computes from the par-

tially sorted Lyndon array the suffix array based on the proof of Lemma 6.7.

The source code can be accessed at

http://www.cas.mcmaster.ca/~franek/research/ub.cpp

In essence, it is an alternative algorithm for phase II of Baier’s algorithm.

The only difference is that it expects as the input x and a partially sorted

Lyndon array, while Baier’s phase II algorithm expects as the input x and
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the system of the groups after phase I is completed.

6.3 Comparison of the two approaches of com-

puting Lyndon array

Since 1998, when Farach presented the linear algorithm for suffix tree

construction, most of the following work was based on his approach. Baier

was the first one to propose a totally different approach to sorting suffixes.

Baier observed in [24, 32], that his algorithm was slower than the state-of-

the-art suffix sorting algorithms. He ascribed that to the early stages of the

existence of his non-recursive approach and conjectured that with time, the

approach would become more refined and thus faster.

Baier’s phase I algorithm is linear only for strings over alphabets that

can be sorted in linear time. Our algorithm for computing Lyndon array

presented in Chapter 4 works in Θ(n log(n)), so would be outperformed by

Baeir’s for any strings over constant alphabets (such as binary, ternary etc.).

However, if we consider strings over increasing alphabets that cannot be

sorted in linear time, Baier’s algorithm’s complexity becomes O(n log(n)),

while our algorithm works as before, the log factors kicks in based on the

structure of the string and not based on the alphabet of the string.

The proof of Theorem 6.3 actually shows how much extra work is needed

to get from the suffix array to a sorted Lyndon array. Thus, it seems to us

that computing a partially sorted Lyndon array is essentially a harder task
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than “plain sorting” of the suffixes. So, maybe, no algorithm for computing

a partially sorted Lyndon array can be as fast as sorting of suffixes, which

in no way detracts from Baier’s discovery of the deep connection hitherto

unnoticed between the order of maximal Lyndon substrings and the order

suffixes of a string.

In Fig. 6.5, the arrows represent “simple linear computation”. The dia-

gram summarizes the relationships among the various arrays we were inves-

tigating. The two arrows with ? represent open questions: Can a Lyndon

array be used in a simple linear computation to compute a Lyndon grouping

array? and Can a Lyndon grouping array be used in a simple linear com-

putation to compute a sorted Lyndon array?. Note that phase I of Baier’s

algorithm basically says Yes to both of these questions. However, it is not

using any Lyndon array or Lyndon grouping array, it just computes it di-

rectly from the string. Maybe, having a Lyndon array or Lyndon grouping

array can simplify the computation. From our point of view, having been

interested in computation of Lyndon arrays, answer to the first question is

much more interesting.

Lyndon 
array

Lyndon 
grouping

array
? ?

partially 
sorted
Lyndon 
array

sorted
Lyndon 
array

suffix
array

Theorem 3.11

Note 1

by definition

Lemma 3.10

by definitionLemma 3.2

Figure 6.5: Linear computation of Lydon grouping,partially sorted Lyndon
and sorted Lyndon arrays
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Chapter 7

Conclusion and Future Work

This thesis deals with Lyndon factors of a string and their relationships

with periodicities of the string, in particular runs. The contribution of the

thesis is twofold: first to collect and present in a unified fashion all the

various pieces of knowledge and results spread through many publications

concerning Lyndon strings and Lyndon arrays, and second, to provide a novel

way to compute the Lyndon array. The publication of Bair’s work during

my work on this thesis expanded the work to formalizing the intuitive notion

of partially sorted Lyndon array and lead to a novel algorithm for phase II

of Baier’s algorithm. Since both are implemented in C++, it is imperative

to continue with the research outlined in Chapter 6 and compare the two

implementations. The second imperative task is to provide new insight and

deal with 4.5.2 in more efficient way to bring the complexity of the algorithm

presented in Chapter 5 to O(n). The possible avenues to explore include to
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work with a partially ordered Lyndon array rather than the Lyndon array

with the additional information harnessed for reducing the complexity, or

computing some data structures in addition to the Lyndon array. The next

step will include the implementation of the algorithm and comparison of the

performance of my algorithm and phase I algorithm of Baeir’s.
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