
Evaluating the e�ectiveness of web

application testing techniques using

automated tools

EVALUATING THE EFFECTIVENESS

OF WEB APPLICATION TESTING

TECHNIQUES USING AUTOMATED

TOOLS

BY

WEAAM A. ALRASHED

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTING

AND SOFTWARE

AND THE SCHOOL OF GRADUATE STUDIES

OF MCMASTER UNIVERSITY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF APPLIED

SCIENCE

c© Copyright by Weaam Alrashed, February 2018

All Rights Reserved

Master of Applied Science (2018) McMaster University

(Software Engineering) Hamilton, Ontario, Canada

TITLE: Evaluating the e�ectiveness of web

application testing techniques using

automated tools

AUTHOR: Weaam A. Alrashed

B.Sc (Information Technology)

King Saud University

Riyadh, Kingdom of Saudi Arabia

SUPERVISOR: Dr. Douglas G. Down

NUMBER OF PAGES: xi, 93.

ii

To my beloved Father "AbdulMohsen"

Wish you were here..

To my wonderful Mother "Madawey"

Who always encourages me to pursue my dreams..

To "AbdulAziz Al-Muammar"

You shall never be forgotten..

Abstract

The heterogeneous structure and dynamic nature of web applications have

made the testing procedure a challenge. Producing high-quality web appli-

cations can be performed by conducting appropriate testing techniques. As

a result, several white-box and session-based testing techniques have been

proposed in the literature. In this work, the performance and e�ectiveness of

these testing techniques are evaluated in terms of fault detection on a simu-

lated PHP online bookstore. The testing techniques are examined with the

use of PHPUnit, xDebug and Selenium automated testing tools. We believe

that combining the testing techniques with appropriate automated testing

tools (PHPUnit and Selenium) can be e�ective in terms of fault detection

and time spent to construct and run test cases on PHP web applications. The

results show that some testing techniques are preferred. We also identify cat-

egories of faults that are amenable to detection by each of the techniques,

as well as categories of faults that are di�cult to detect by any of the tech-

niques. Moreover, using the automated tools has helped in automating the

conduct of the tests and in reducing the time required to perform them.

iv

Acknowledgements

I would like to acknowledge the people who have helped me throughout the

exceptional journey of my Master degree. I am grateful to so many for their

guidance and support.

I extend my sincerest gratitude to Dr.Douglas Down, my supervisor, for

his guidance, encouragement and valuable critiques. His willingness to give

his time so generously has been crucial in the completion of my thesis and it

was a real privilege for me to share his exceptional knowledge.

My sincere thanks also go to Dr.Areej AlWabil, who has always been an

inspiration to me for her dedication and hard work.

I would like to o�er my special thanks to Matthew Dawson, who helped

in completing an important phase of the testing procedure. Also, special

thank you for all the participants who have taken out the time to complete

the study.

Similarly, I thank my support system: Hailah, Manoree, Mishary, Ab-

dulrahman and Feras who provided emotional support that has enriched all

facets of my life, and for that I am so thankful.

To my mother, Madawey, I sincerely thank you - your belief in me has

made this journey possible.

To my father, Abdulmohsen, who is always in my heart- you are missed.

v

Contents

Abstract iv

Acknowledgements v

1 Introduction 1

1.1 Problem statement . 2

1.2 Thesis overview . 3

1.3 Literature Review . 5

2 Methodology 12

2.1 Procedures . 12

2.1.1 Web site creation . 12

2.1.2 Model creation . 14

2.1.3 Path expressions . 16

2.1.4 Fault seeding . 17

2.1.5 Participants . 20

2.1.6 Testing the web application 20

2.2 Testing techniques . 23

2.2.1 WB1 . 23

2.2.2 WB2 . 30

2.2.3 US1 . 37

vi

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

2.2.4 US2 . 39

2.2.5 Hybrid approach HYB (WB2+US1) 41

2.3 Data Collection Tools . 42

2.3.1 PHPUnit . 42

2.3.2 Selenium . 43

2.3.3 xDebug . 44

2.4 Data Analysis . 45

2.4.1 User Data . 45

2.4.2 Test suite creation . 46

3 Discussion 47

3.1 Testing techniques results . 47

3.1.1 WB1 testing technique 48

3.1.2 WB2 testing technique 49

3.1.3 US1 testing technique 55

3.1.4 US2 testing technique 57

3.1.5 HYB (WB2 + US1) technique 64

3.2 Testing techniques metrics . 67

3.2.1 Test suite coverage metric 68

3.2.2 Code coverage metric 69

3.2.3 Fault detection metric 70

3.3 Scalability . 71

3.4 Threats to validity . 72

4 Future Work 74

5 Conclusion 76

Appendices 82

vii

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

A List of seeded faults 83

B Web application UML model 87

C User session source code 90

viii

List of Figures

2.1 Screenshots of the web application. 14

2.2 A partial view of the constructed UML model for the �Busi-

ness� category page. 15

2.3 A partial view of the UML model constructed for the �Check

future books� page. 16

2.4 A screenshot of the �Checkout� page. 24

2.5 A partial view of the constructed UML model for the �History�

and �Business� category page. 27

2.6 A partial view of the UML model for �Shop available books�

from the �Business� category page. 33

2.7 User session request sample. 37

2.8 Example of US2 procedure. 39

3.1 US2 mixing session requests. 58

3.2 URL extracted from the WB2 technique and matched with

equivalent URL from US1 sessions. 65

3.3 Fault detection capability of the HYB technique when com-

pared to the US1 and WB2 techniques. 66

ix

List of Tables

2.1 Types of fault considered in web application testing. 18

2.2 Di�erent testing frameworks for PHP. 43

3.1 A comparison between the testing techniques in terms of test

suite code coverage. 68

3.2 A comparison between the testing techniques in terms of PHP

code coverage. 69

3.3 A comparison between the testing techniques in terms of fault

detection. 71

A.1 Faults seeded in the web application. 83

x

Listings

2.1 A valid test case for the First Name input �eld. 25

2.2 An invalid test case for the First Name input �eld. 25

2.3 WB1 code sample. 28

2.4 WB2 code sample. 34

2.5 xDebug code sample to start code coverage. 45

2.6 xDebug code sample to stop code coverage. 45

2.7 xDebug code sample to retrieve the code coverage data. 45

3.1 Testing variable type. 53

C.1 A sample of a user session. 91

xi

Chapter 1

Introduction

In the past decade, web applications have been adopted in various domains

because of their availability and extensive range of functionalities. It has

been reported in [4] that there were around 3.26 billion Internet users in 2016.

That number has grown in 2017 to be about 3.74 billion users. This huge

number of Internet users shows the importance of providing dependable and

high-quality web applications. Performing adequate and appropriate testing

using di�erent testing techniques can reveal faults and ensure the provision

of reliable web applications to end users.

Web applications tend to generate dynamic web pages and elements. To

accommodate these dynamic features some techniques and tools have been

proposed to aid in the automated testing of the PHP scripting language, such

as PHPUnit [12] and Selenium [10]. The former is used as a unit testing

framework specialized for testing applications written in PHP, whereas the

1

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

latter is used in the acceptance testing phase to replay the behaviour of a

user automatically by controlling the browser, �lling input �elds of forms with

values and navigating links between pages. It has several components that

include: Selenium Webdriver, Selenium RC, Selenium Grid and Selenium

IDEs. Selenium has been introduced comprehensively in [8] where its various

components that support di�erent testing scenarios are illustrated.

We next provide a problem statement, an overview of the thesis and a

literature review that presents similar testing techniques and related work in

this domain.

1.1 Problem statement

Testing of web applications has always been a challenging task, due to their

complex and compound structure. This heterogeneous structure is largely

due to a combination of di�erent languages interacting with each other when

developing the client and server sides. The client-side is often composed of

HTML to display the content of web pages, CSS to manage the layout and

style of HTML pages and JavaScript to contribute in creating dynamic and

animated content. On the server-side, PHP is one of the most popular script-

ing languages because it supports the creation of interactive pages [5], [18].

Testing these dynamic web applications can be costly and time consuming.

Thus, a need has arisen for specialized and automated testing techniques and

tools that take into account this dynamic nature. Moreover, studies have not

adequately covered the techniques and tools that are specialized in detecting

2

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

speci�c types of faults in PHP web applications.

The main contribution of this thesis is to provide recommendations on the

e�cacy of some previously proposed testing techniques used in the detection

of speci�c faults of di�erent types and severities. Also, an overview of the

automated tools used during the testing process is provided to help developers

and testers interested in the testing of web applications written in the PHP

language.

1.2 Thesis overview

In this work, the performance of some previously proposed testing techniques

is evaluated in terms of fault detection on a simulated online bookstore writ-

ten in PHP when used with the PHPUnit, xDebug and Selenium testing

tools. We believe that combining the testing techniques with the appro-

priate automated testing tools can be e�ective in terms of fault detection

and time spent to construct and run test cases on PHP web applications.

These techniques are two white-box techniques (WB1 and WB2) introduced

by Ricca and Tonella in [2] and two additional session-based testing tech-

niques (US1 and US2) proposed by Elbaum et al. in [1] and [26] with one

more hybrid approach that combines white-box and session-based techniques

(WB2+US1).

Our approach is as follows. First, a UML model is manually generated

to construct the test cases for two white-box testing techniques (WB1 and

3

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

WB2). Although the tools ReWeb and TestWeb used by Ricca and Tonella in

[2] and [3] to create the UML model automatically are not publicly available,

the guidelines described in [3] on how to create and produce the model are

manually followed. Second, path expressions are extracted from the model

to generate test cases for white-box techniques. Third, the simulated online

bookstore is seeded with di�erent types of faults to be examined by users in

order to generate the test cases for user session-based techniques (US1 and

US2). Finally, a hybrid (HYB) technique that is a combination of white-box

and session-based techniques is evaluated.

The coverage metric is considered in measuring and reporting the covered

test cases in a test suite and the covered lines of code in an application using

PHPUnit and xDebug [19], respectively. The number and types of faults

that have been discovered by each technique are reported and faults that

have not been revealed by each technique are discussed in detail, with a goal

of identifying the kinds of faults that may be di�cult to detect with the

proposed techniques.

The contribution of the employed tools to the proposed techniques is

clearly visible in that they conduct the tests automatically, in particular

they are fast and reliable. The coverage for both the test suite and the code

is done automatically with the help of the PHPUnit and xDebug [19] tools.

PHPUnit asserts that the content of a web page or the elements of a form

exist and whether URL links, input �elds and messages from an application

are present as expected. xDebug is used as an extension for the debugging of

PHP applications in general and provides code coverage results for web-based

applications in particular.

4

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

The tools are extremely helpful, especially with the WB2 and US1 tech-

niques, since they are the most e�cient techniques in revealing faults when

conducting the automated tests. Although it takes some time to write the

tests in PHPUnit and Selenium, the bene�ts are signi�cant if the web ap-

plication will not undergo frequent modi�cations. The code of the test case

itself is reproducible, it can be modi�ed for multiple uses and previously

written test cases can be reused. If there is a need to simply change the

input values of a test case, then the old values of the input �elds in previous

tests can be replaced by the new values without the need to write a new test

case. In addition, human intervention is not required as the tools help in

automating the conduct of the tests. The overall approach is time e�cient,

accurate and cost-e�ective.

To the best of our knowledge, this approach has not been implemented

before and reporting results can provide insight on its e�ectiveness for PHP

web applications and in which scenarios each technique would be bene�cial.

1.3 Literature Review

In any software development life cycle, testing is considered to be a funda-

mental procedure. A product must not be delivered without being tested.

This ensures the delivery of a high-quality product by discovering and elim-

inating faults of di�erent severities. However, some organizations could be

under market pressure to release software or an application as soon as possi-

ble. This could a�ect the testing phase by not being able to test the product

5

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

properly. Therefore, a need for reliable and automated testing methodologies

arises.

During the past years, several tools and techniques have been introduced

for testing web applications. These testing procedures and tools concentrate

more on the validation of non-functional requirements while only a few of the

available techniques validate functional requirements (as reported by Elbaum

et al. in [1]).

In e�orts to �ll this gap, a number of tools and techniques have been

proposed. Capture and replay methodology is one of the popular examples of

these tools that validate functional requirements. This approach records user

behaviour for an application. When the program starts running, the input

and interaction of a human tester or a user is recorded and is automatically

replayed later in regression or functional testing without human intervention.

Some examples of the type of tools that support capture and replay are IBM

Rational Functional tester [17] and Selenium IDE [10].

The study in [22] proposed a web application test model, WATM, for

representing, analyzing and testing the data �ow of web applications. The

proposed model is composed of the object model, where each web application

artifact is represented as an object, and the structural model showing the data

�ow between the web application artifacts. After the WATM is constructed,

a data �ow testing methodology is implemented, and test cases are extracted.

This approach aims to ease the testing of complex web applications.

6

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

Benedikt et al. [6] presented a testing tool, VeriWeb, that traverses the

paths in a web site automatically and discovers the dynamic pages and their

content, such as the elements and components of forms. It also uses the

SmartPro�les concept, which �lls out the elements of a form with values

automatically. This concept was proposed to aid in �lling forms without the

need for a human tester to do so. The limitation of VeriWeb is that it can fail

in detecting some navigational paths because it has a limit on the number of

paths that it can traverse.

Another tool, Apollo, by Artzi et al. [7], has been implemented to help

in the discovery of faults in PHP web applications. The concept is based

on a technique that automates the creation of tests. This technique uses

symbolic execution, where a program is examined to determine which input

values resulted in the execution of a certain segment of a program. The

technique also supports concrete execution where a program navigates one

control �ow path with a particular input value. In addition, Apollo is used to

automatically provide input values for web application elements then report

their behaviour for any potential issues that may occur such as execution

failures (missing �le or incorrect MySQL query, etc.) or HTML failures

that will be detected by the use of an HTML validator. Finally, the tool

uses an oracle (HTML validator) to compare the output of a given HTML

document to prede�ned HTML syntax and report the errors in a bug report

repository. Apollo was tested on six PHP web applications available online

and resulted in e�ectively revealing some execution and HTML malformed

faults, including invalid HTML syntax (an open tag without a closing tag

or missing tags). However, the tool has some limitations such as it can

be tested only on PHP web applications and is not applicable with other

7

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

scripting languages. Also, it considers restricted sources of input parameters

as it obtains them from POST, GET and REQUEST arrays only.

Another automated system was proposed by Girgis et al. in [9] for testing

web applications. This automated approach collects the content of HTML

pages consisting of HTML tags, links and page names. After that, the data

is retrieved and examined for possible errors. The errors include defective

links (broken links or links that redirect to invalid pages), orphan pages or

cookies errors. The system is made up of four main units, Web navigation,

HTML analyzer, link execution and error checking. This system was tested

on a web application that was seeded with certain types of faults and resulted

in revealing all of the injected faults. This system, however, has not been

tested against errors related to web forms as this feature is not supported.

The e�ectiveness of the system cannot be generalized to all web applications

as it was only tested on one case study.

Ricca and Tonella [2] have proposed a white-box testing technique which

is based on UML (Uni�ed Modeling Language). This model-based technique

automatically transforms the complex structure of a web application into a

model in order to ease its validation by generating test cases based on the

representation of the model. The technique utilizes a UML model and data

�ow capabilities and uses a basic path testing approach to generate the test

cases. It consists of two tools, ReWeb and TestWeb, where the former is

used to produce a UML model of a given web application and the latter is

implemented to help in generating the test cases from the model provided

by the ReWeb tool. Although the tools appear to be powerful, no available

online releases of them have been provided. This technique, however, requires

8

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

the intervention of a human tester in generating the input values to run the

test cases. In some cases, this might be costly.

Another technique, proposed by Elbaum et al. in [1], is based on the use

of logged user session data to create test cases and input values to carry

out tests, removing the need for a human tester to produce the test cases

and the input values. This approach has been suggested to be used as a

new method when testing web applications without the necessity to inspect

the source code of the product under consideration. The concept of the

technique relies on user interactions in the system � the visited links and

provided input. The logged user session data consists of the URLs that

have been visited along with the (name-value) attributes that are recorded

in the access log of the server. The study compares the e�ectiveness of

two white-box testing techniques proposed previously in [2], two session-

based techniques and one hybrid approach that combines the capabilities

of both techniques. The study showed that the white-box techniques and

session-based techniques are e�ective in terms of fault detection and that

they complement each other. This user session-based approach provides an

important contribution to the generation of test cases. Its main strength can

be seen through the time and energy required to produce input values for

test cases. Also, it does not depend completely on the source code of the web

application as it gathers data from user sessions, in comparison to white-box

testing that depends entirely on the source code to create the test cases, see

Mendes and Mosley [11].

9

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

Further studies by Sampath et al. in [15] and [21] have considered the

approach of using user sessions that were logged by the server. The studies

have analyzed user session data to investigate the e�cacy of concept analysis.

This approach reduces the test suite size by selecting some of the logged

user sessions. The test suite size is reduced by choosing user sessions (test

cases) that cover all of the system's requests. Also, test cases that cover

requests that were not covered by the previously selected user sessions were

also considered. The authors have also introduced some heuristics such as the

one-per-node heuristic, the test-all-exec-requests and the k-limited heuristic

for test case selection. The studies conclude that the result of the coverage

of this approach is similar when compared to the original test suite, which

consists of the original (unreduced) set of user sessions. They also �nd that

their approach fails to detect some of the faults detected by the original test

suite.

In [13], De Jesus et al. have proposed an additional technique that is

based on the tasks to be performed by a web application. This approach

generates test cases by analyzing a web application model that includes all of

the available valid paths to perform a speci�c task. It leverages the use of the

logged sessions of the developer when conducting di�erent tasks in the GUI

(Graphical User interface) of an application with the help of the UsaTasker

tool [14]. Several graphs are produced by extracting the navigational routes

performed by the developer and documented by the tool when testing the

application. The study concludes that this task-based approach can provide

relatively high coverage in relation to functional requirements.

10

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

In [20], Di Lucca et al. have developed an object-oriented model structure

for web applications. This model representation facilitates the testing of each

unit of a web application and provides an approach to test the integration

of these units as a group. A set of tools for testing the web application has

also been proposed, composed of an analyzer, a repository for storing the

web application model, test cases, test log and associated database, a test

case generator and a test case executor. The approach and tools have been

evaluated on a case study to examine their e�ectiveness. The study concludes

that the presented approach and tools have helped in conducting some of the

testing events in an automated manner. However, the general correctness

and usefulness has not been veri�ed beyond a single case study.

Another study, performed by Milani et al. in [16], explored the e�ciency

of combining automated crawler abilities to automatically traverse the web

application and provide the available paths. The test cases were written

manually by a tester using Selenium [10] tool. The proposed approach has

been executed on four open source web applications through the develop-

ment of a tool called Testilizer. It has been reported that the proposed tool

and methodology provided an increase in fault detection and coverage when

compared to the original test suite, consisting of test cases (web application

paths) constructed and written manually.

11

Chapter 2

Methodology

2.1 Procedures

In this section an overview of the development of a web application, the UML

model creation, the fault seeding procedure, recruiting participants and the

web application testing methodology are discussed.

2.1.1 Web site creation

A simulation of an online bookstore is constructed using the PHP scripting

language, MySQL for database management, HTML for the layout of the web

pages and JavaScript for creating dynamic content. The web application is

12

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

hosted locally on an Apache web server. A number of functionalities have

been built into the web application. Users can navigate di�erent categories:

History, Business, Children, Science, Cooking, and Sports. They can also

purchase the available books in these categories. Moreover, they can check

the future books that will be available in three di�erent categories, and can

contact the bookstore via the �Contact Form� page. In addition, the website

provides the possibility to navigate to an �About us� page, to view the �My

Cart� page and to purchase books by navigating to the �Checkout� page.

Finally, a user can delete any previously added books in their cart. Some

screenshots of the web application can be seen in Figure 2.1. The �rst screen-

shot in Figure 2.1a shows the available functionalities of the web application

while Figure 2.1b shows the available books for purchase in the �Business�

category. This page shows the book cover, the name of the book, its price

and a quantity �eld to add the required quantity of the desired books in

the cart. The size of the web application is considered to be small. It has

basic functionalities but is still su�cient to conduct the tests and evaluate

the testing techniques. There are 21 pages with around 3000 lines of code.

Among these pages, 14 are written in the PHP language with a total of 387

lines of code.

Two procedures are conducted in order for the study to be performed:

�rst, fault seeding the web pages then testing of the faulty web application

by users.

13

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

(a) Index page.

(b) �Business� category page.

Figure 2.1: Screenshots of the web application.

2.1.2 Model creation

A UML model for the web application is created manually based on the

guidelines provided by Ricca and Tonella in [3] to represent the functionalities

in a clear and simpli�ed manner. The model consists of nodes and edges,

where the former represents the web application objects such as the web

pages and forms while the latter represents the relationships among these

14

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

objects and how pages are generated dynamically. Appendix B shows the

constructed model representing the whole web application. After the creation

of the model, path expressions are produced to represent the routes that the

user might visit when exploring the web application as proposed by Beizer

in [27]. The partial UML model shown in Figure 2.2 represents the �Business�

category page of the web application that was provided earlier in Figure 2.1b.

Figure 2.2: A partial view of the constructed UML model for the �Business�

category page.

15

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

In Figure 2.2, x1 represents the option of �Shop available books� from

the side menu, which can be one of the six categories (History, Business,

Children, Science, Cooking, and Sports). These paths help in creating the

test suite, so the tester will not neglect any potential route when writing the

test cases. A detailed description of the path expressions is outlined in the

next section.

2.1.3 Path expressions

The path expressions are generated from the UML model given in Figure 2.3.

Figure 2.3: A partial view of the UML model constructed for the �Check

future books� page.

16

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

This model represents a partial representation of the �Check future books�

functionality in the web application and its path expression can be con-

structed as follows: e1 e33 e34 e35 e36 . After that, the path expression is

then transformed to a test requirement which is a set of URLs and (name-

value) pairs to form a test case to be executed on the web application.

1. e1: http://localhost:8888/online_shopping/index.php (open the

main page)

2. e33: http://localhost:8888/online_shopping/Book_Search.php (se-

lect �Check future books� option)

3. e34 e35: http://localhost:8888/online_shopping/Search.php?

query=0 (select �Select a category� option)

4. e36: http://localhost:8888/online_shopping/Search.php?query=

0&find=Find (click �Find� button)

2.1.4 Fault seeding

In order to evaluate the testing techniques, a web application with some

faults is needed. An experienced student participated in the fault seeding

procedure. The need for a participant who has no knowledge about the

testing techniques and the project is essential to minimize any types of bias

that may occur if the faults were to be seeded with prior knowledge about

the test cases. If the tester is the same individual who is seeding the faults

and writing the test cases, then these injected faults may be selected and

added unconsciously in a manner that is more likely to be detected by these

written test cases. This process involved modifying some parts of the code of

17

http://localhost:8888/online_shopping/index.php
http://localhost:8888/online_shopping/Book_Search.php
http://localhost:8888/online_shopping/Search.php?query=0
http://localhost:8888/online_shopping/Search.php?query=0
http://localhost:8888/online_shopping/Search.php?query=0&find=Find
http://localhost:8888/online_shopping/Search.php?query=0&find=Find

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

the simulated online bookstore in order to create a failure. The participant

was instructed on how to perform this procedure by providing a detailed

description of the required types of faults (Table 2.1). These fault types

follow those recommended in [1] and [26].

Table 2.1: Types of fault considered in web application testing.

Fault types De�nition

Scripting faults 1. Addition/deletion of variable de�nitions (such as.

variable type and links).

2. Changing the values and rearranging the conditions

of execution.

3. Changing the prede�ned values of variables.

4. Function calls addition/removal.

Forms faults The name of the form or prede�ned values for a name.

Database query faults The modi�cation of a query expression. Such modi�ca-

tions could have an e�ect on which table to access and

which �elds within a table to retrieve data from, or in

searching for values related to key or record values.

The participant was also encouraged to consider seeding faults where the

detection is at di�erent levels (simple, medium, hard) and to keep them as

realistic as possible. These modi�cations have caused di�erent types of faults

in the website. This procedure is essential to evaluate the e�ectiveness of the

techniques in terms of fault detection.

The participant e�ectively seeded 63 faults. Three of these faults were

ignored as they were not relevant (an explicit list of the seeded faults is pro-

18

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

vided in Appendix A). Also, nine more faults were discovered while revising

the website and were added to the seeded faults. So, the total number of

faults was 69.

It is a challenge to �nd a knowledgeable participant who can understand,

analyze and examine the source code and the di�erent types of faults then

inject these faults in the appropriate locations in the web application. This

critical task, if conducted properly, can provide high quality results about the

performance of the testing techniques applied. The knowledge of the partici-

pant in the various fault types and the language of the written code is crucial

in performing the study and evaluating the testing techniques accurately. If

this task is not conducted correctly, seeded faults could be injected such that

they all represent one level of severity (all the seeded faults are simple to

detect or very hard to detect). Also, the number of faults injected could

be small due to the minimal knowledge that the seeder has about the fault

types and where they should properly be seeded. As a result, the evaluation

of the testing techniques could be compromised. It has been observed that

describing the code for the participant, providing clear guidelines on how

to conduct the fault seeding procedure and explaining the di�erent types of

fault have been bene�cial in achieving the desired results and have greatly

helped in expediting the time spent to perform this procedure.

One important observation about the fault seeding procedure was that,

the work that has been conducted on fault classi�cation for web-based ap-

plications seems to be limited. A clear and descriptive standard list of the

di�erent fault types for web applications would be a valuable addition.

19

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

2.1.5 Participants

Twenty-one participants were recruited via an email that was sent to all stu-

dents in the Department of Computing and Software to request participation

in this study. The experiment received ethics approval and took place in an

o�ce at McMaster University. The volunteers ful�lled two roles. One par-

ticipant performed the fault seeding of the web application while the rest

conducted the testing of the faulty web application. Prior to conducting the

study, the participants were provided with a consent form that describes the

study, their role and that their participation was to be conducted anony-

mously. The participants were given the option to withdraw from the study

at any time. At the end of the study, the participants were provided with an

electronic copy of their consent.

2.1.6 Testing the web application

Twenty participants were asked to examine and test the faulty web applica-

tion. They were asked to enter random and non-personal data in the input

�elds of the website. Each session lasted no longer than 15 minutes. After

that, the navigated URL and (name-value) pairs that have been entered dur-

ing the session are extracted from the Apache access log. The data is then

used to evaluate the e�ectiveness of the fault detection capability of user

session testing techniques and whether these di�erent inputs can reveal any

of the injected faults. The user session testing techniques include US1 and

US2. The US1 testing technique directly replays user sessions performed on

20

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

a web application. The US2 technique combines di�erent user interactions

and produces new arti�cial user sessions to be replayed.

Conducting a study that requires the recruitment of participants is not

always a trivial task. However, the use of participants can provide some useful

insights on the e�ectiveness of the testing techniques in a more natural way

as the participants are real users of the web application. During the conduct

of the study, some participants tried to provide valid data in spite of the

fact that they were informed of the possibility of using erroneous data in the

input �elds. This in turn resulted in a minimal fault detection rate. User

sessions could have detected more faults if the participants had consider the

use of erroneous data in the input �elds without specifying the exact types of

these invalid data. Doing so can a�ect the correctness of the outcomes of the

tests. Furthermore, users who were asked to perform typical behaviour had

minimal fault detection rates when compared to users who were informed of

the possibility of providing invalid data that can cause the web application

to act in an abnormal manner. Users who provided invalid values managed

to reveal some faults related to unacceptable input values. However, it is

worth noting that natural user behaviour was able to reveal faults related to

invalid links and navigational issues.

The number of conducted sessions could have been increased if the web

application were hosted publicly and a link for the web application was sent

to participants in order for them to use the website at their convenience.

21

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

Lessons learned for conducting a study that requires the involve-

ment of participants The following points summarize the key lessons for

studies specialized in testing web applications involving participants.

• Studies that are based on user participation require ethics approval

that can take quite a while. Planning ahead regarding completing such

documents is advisable.

• It is important to explain the study to participants before the start

of the session. Making them understand the study itself is crucial to

obtain good results.

• The server should be con�gured to allow capturing user interactions in

the Apache access log.

• The web application should be hosted on a public or local server in

order to conduct the study.

• The process of seeding faults should be performed on a separate day

from when the user sessions are conducted. The web application should

be prepared before participants start to use it.

• Cookies regarding each user session should be erased before the start

of the next user session (this applies if the study is conducted locally

on one computer). This allows each user to have a unique session id

that di�erentiate each user.

22

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

2.2 Testing techniques

In this section the �ve techniques used for testing the web application are

explained.

2.2.1 WB1

This technique has been proposed by Ricca and Tonella in [2]. It constructs

the path expressions for the UML model and uses a tester to manually pro-

vide values for the input �elds. In this technique, textual di�erences are

ignored when testing dynamically generated pages. As a result, it only tests

the correctness of the generated web pages via the URL link without look-

ing at or comparing the content of the page itself to the original valid web

pages. For testing the input �elds, one random input value is selected when

testing each of the valid and invalid situations. The acceptable input values

for an input �eld that accepts three digits only are any set of numbers of

length three. The invalid values that can be tested are any letter from the

alphabet, a special character and digits of length four or more. The invalid

test cases depend on the knowledge of the tester and testing plan as there is

no speci�c methodology to be followed when constructing invalid test cases.

This is because the WB1 technique creates test cases based on the generated

path expressions that take into account testing one valid case and another

path that represents an invalid case. The input selection for each test case is

performed randomly by the tester based on the type of the input �eld (nu-

meric or letter input �eld). So, if the input �eld accepts only numeric values

23

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

then the tester selects one case that exercises the valid test case (a random

numeric value is chosen based on the knowledge of the tester). Another test

case examines the invalid situation where values are selected from the let-

ters or special characters category. An example can be seen in Figure 2.4,

a screenshot of the �Checkout� page that shows an input �eld First Name

that accepts only letters, where the minimum acceptable number of letters

is three and the maximum acceptable number of letters is �ve.

Figure 2.4: A screenshot of the �Checkout� page.

24

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

The valid test case for the First Name input �eld is shown in Listing 2.1.

Listing 2.1: A valid test case for the First Name input �eld.

1 public function test_Checkout_fname_valid()

2 {

3 $driver ->get("http://localhost:8888/online_shopping/Faulty/index.

↪→ php");

4 $driver ->findElement(WebDriverBy::XPath("//a[@href='MyCart.php']"))

↪→ ->click();

5 $driver ->findElement(WebDriverBy::name('checkout')) ->click();

6 $fname= $driver->findElement(WebDriverBy::name("fname")) ->sendKeys(

↪→ 'Weaam');

7 }

The invalid test cases are shown in Listing 2.2, which exercises the input

�eld against special characters and numbers. The invalid test cases can be

separated into two test cases but here they have been combined into one test

case.

Listing 2.2: An invalid test case for the First Name input �eld.

1 public function test_Checkout_fname_invalid()

2 {

3 $driver ->get("http://localhost:8888/online_shopping/Faulty/index.

↪→ php");

4 $driver ->findElement(WebDriverBy::XPath("//a[@href='MyCart.php']"))

↪→ ->click();

5 $driver ->findElement(WebDriverBy::name('checkout')) ->click();

6 $fname= $driver->findElement(WebDriverBy::name("fname")) ->sendKeys(

25

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

↪→ '1234%$#');

7 }

Null values (the empty string) are ignored in the case of an invalid state.

Circular links and navigational paths that appear in each page are also not

considered. Circular links connect the nodes in a model in a manner such

that the nodes could eventually form an in�nite loop of not being able to

provide the needed data or perform their required tasks. Navigational paths

are the links that are usually provided in the left-side or on the top of the

page to facilitate the movement between pages.

The test cases are generated according to the path expressions that were

produced based on the UML model that was constructed for the web appli-

cation used in this study (the complete model is provided in Appendix B).

Path expressions are essential for creating the test cases. A partial view of

the UML model can be seen in Figure 2.5. Values are generated and as-

signed to the input �elds by a human tester based on the aforementioned

guidelines that describe acceptable and unacceptable values for testing input

�elds. Then after generating all the test cases and assigning values to their

input �elds, the test suite is executed against the faulty web application.

This partial model represents two test cases and has been added here to

provide a clear description of the generation of these test cases. The �rst test

case exercises the available books for purchase in the �History� category. The

second test case exercises the available books for purchase in the �Business�

category and is described in detail in the WB2 technique discussed in the

next section. The path expression for the �rst test case is: e1 e2 e3 e4 e5,

26

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

Figure 2.5: A partial view of the constructed UML model for the �History�

and �Business� category page.

where e1 is the path from the entry node (index page), e2 is the selection

of the �rst choice �Shop available books� from the main menu, e3 represents

the selection of the �History� category page, e4 provides a valid input value,

1, in the quantity input �eld and �nally, e5 is the valid submit by clicking

on the �Add to cart� button.

27

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

The test cases are written in PHPUnit and Selenium, see Listing 2.3.

Listing 2.3: WB1 code sample.

1 public function test_History_Success()

2 {

3 $host = 'http://localhost:4444/wd/hub';

4 $capabilities = DesiredCapabilities::chrome();

5 $driver = RemoteWebDriver::create($host, $capabilities, 3000);

6 $driver->get("http://localhost:8888/online_shopping/Faulty/index.php

↪→ ");

7 $driver->findElement(WebDriverBy::XPath("//button[contains(.,'Shop

↪→ available books')]"))->click();

8 $driver->findElement(WebDriverBy::XPath("//a[@href='History.php']"))

↪→ ->click();

9 $driver->findElement(WebDriverBy::name("quantity"))->sendKeys(1);

10 $driver->findElement(WebDriverBy::name('add'))->click();

11 $driver->manage()->timeouts()->implicitlyWait = 10;

12 $currentURL1 = $driver->getCurrentURL();

13 $exp_url1 = "http://localhost:8888/online_shopping/Faulty/History.

↪→ php";

14 $this->assertEquals($exp_url1, $currentURL1);

15 }

Line 1 de�nes the name of the function, lines 3, 4 and 5 connect to the

server and launch the Chrome web browser to open the web page. Lines 6,

7, 8, 9 and 10 open the website index page by providing the URL, select the

menu option �Shop available books�, select the �History� category, add the

value 1 to the quantity input �eld and click on the �Add� button which adds

28

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

the desired book to the cart. Line 11 instructs the web driver to wait for 10

seconds, then line 12 gets the URL of the current page. In line 13, a variable

$exp_url is initialized and assigned a URL. Finally, line 14 compares the two

URLs and asserts if they are equal or not by providing a boolean result (true

if equal, false otherwise).

This technique is straightforward to implement. Nonetheless, providing

values manually by a human tester requires time and e�ort, especially if

there are many input �elds in the web pages and the web application size

is large. Using this technique with PHPUnit and Selenium is sometimes a

challenging task. Instead of spending time in installing these testing tools,

learning them and writing code to open, navigate pages and provide input

values, this could be done manually by a tester. However, if there is a need

to repeat the same tests, then doing it automatically through these tools

will de�nitely save time, cost and e�ort. In particular, the savings could be

signi�cant with medium and large scale web applications.

One of the limitations of this technique is that it does not consider textual

di�erences and only compares the URL of the dynamically generated page.

This can be problematic because if the content of the generated web page

is incorrect, it will compare the URLs only (URL of the valid original page

and URL of the generated page) and will decide that the generated page

is correct when it is not. Another limitation is that there are no provided

guidelines for the input values that should be used for both invalid and valid

cases. The tester is relied upon to select the data and perform the tests.

Also, null values (the empty string) are not considered, it is for the tester to

decide whether to include them or not.

29

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

This technique can be helpful if the tested website needs only to verify

the URLs of the pages. Implementing this with the aid of the automated

testing tools PHPUnit and Selenium can be bene�cial.

2.2.2 WB2

Conceptually, this technique does not di�er much when compared to WB1

except that it provides more thorough test cases and considers exercising a

random value that represents each group of the valid and invalid data sets.

These data sets are the prede�ned acceptable and unacceptable values in the

input �eld which can include for example, letters category, digits and special

characters categories. For example, if there is an input �eld that accepts

10 letters only, then the valid test case exercises one combination of any

10 characters. On the other hand, the invalid cases exercise a mixture of

letters less than 10 from the alphabet, combination of letters that are more

than 10, any number of the special characters class and any number of the

digits class. So, it takes into account testing various cases of input values for

the acceptable and unacceptable values in each input �eld. Moreover, the

textual di�erences when generating the dynamic pages are considered. This

is an important testing strategy as it assures that the generated page is valid

by checking its content and comparing it to the original page without making

a decision based only on its URL. The details on how the textual di�erences

were measured have not been provided. So in the absence of such information,

assumptions have been made to detect textual di�erences by asserting that

the desired text appears without looking at any additional content such as

the images of books. This of course requires a human tester to compare the

30

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

content of the generated page with the original saved web page. However,

comparing the textual content can be performed automatically with the use

of the automated tools PHPUnit and Selenium. The images included in the

web pages require a human tester to determine their presence or absence

because such a feature is not yet provided by PHPUnit or Selenium.

This technique also adopts the �boundary values testing� methodology for

testing the input �elds. The selection of input values is within the boundaries

of the data domain such as values that can be found in the maximum and

minimum of the boundaries of a given input domain [23]. So, if an input �eld

accepts numbers between two and 12 then the boundary test cases exercise

four valid situations and two invalid. For the valid test cases, the �rst case

tests the minimum acceptable number which is two, the second case tests a

number above the minimum such as three, the third case tests the maximum

acceptable value which is 12 and the fourth case tests a value below the

maximum number, such as 11. As for the two invalid test cases, one test

case that tests a value below the minimum such as one and another tests a

value above the maximum such as 13. The advantage of this methodological

approach is that it is time and cost e�ective as there is no need to test all

the values in the data set from 2 until 12 for the valid test cases. So, if the

test is successful/unsuccessful for the chosen values that lie within particular

input boundaries, then the test should pass/fail for all the other values that

are within these particular boundaries.

Testing null values is important to avoid any missing required data from

users. In addition, the approach �each condition/all conditions� is considered

as it tests the input �elds against null values (representing the empty string).

31

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

In particular, the test suite is produced by covering the input �elds in which

for each input �eld, a test case is generated that has a random acceptable

value assigned to the �rst input �eld while the other �elds are assigned the

null value. The random acceptable value is any value that is valid to be used

in the input �eld and is accepted by prede�ned instructions such as if there

is an input �eld that accepts digits only, then the random accepted value is

any digit. This step is repeated for all of the input �elds found in the page.

After that, one more test case is added to the test suite where all of the

input �elds are assigned a random acceptable value. Finally, the test suite is

executed against the web application. This method is bene�cial in detecting

the �elds that accept null values when they should not. It also provides the

tester with clear instructions on how to test the input �elds against the null

value. It is thus easier for the tester to conduct the tests in a systematic

manner.

This procedure requires time, cost and provides extra test cases for ev-

ery input �eld. If the web application is large, then this can be both time

consuming and costly.

Figure 2.6 shows a partial view of the UML model. The full UML model

can be seen in Appendix B. This partial model represents the task of adding

a book from the �Business� category. The path expression is e1 e2 e8 e9 e10,

which illustrates the paths needed for navigating to the �Business� page. The

test requirement for the path expression is as follows:

1. e1: http://localhost:8888/online_shopping/index.php (open the

main page).

32

http://localhost:8888/online_shopping/index.php

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

2. e2: click on the option �Shop available books� from the menu.

3. e8: http://localhost:8888/online_shopping/Business.php (select

the �Business� category).

4. e9: http://localhost:8888/online_shopping/shopB.php?quantity=

1&name=Predictably+Irrational+Book (select the desired book by

adding the valid quantity, 1, in the quantity �eld).

5. e10: (click on the �Add� button to add the book to the cart).

Figure 2.6: A partial view of the UML model for �Shop available books� from

the �Business� category page.

33

http://localhost:8888/online_shopping/Business.php
http://localhost:8888/online_shopping/shopB.php?quantity=1&name=Predictably+Irrational+Book
http://localhost:8888/online_shopping/shopB.php?quantity=1&name=Predictably+Irrational+Book

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

The test suite is written in PHPUnit and Selenium, a sample of the code

is given in Listing 2.4. This code shows one test case for successfully adding

a book from the �Business� category. Line 1 de�nes the name of the function,

lines 3, 4 and 5 connect to the server and launch the Chrome web browser

to open the web page. Lines 6, 7 and 8 open the website index page by pro-

viding the URL, select the menu option �Shop available books�, then select

the �Business� category. Lines 9-14 check if the page contains the given book

names. Lines 15-20 assert that the book names in the page match the given

names via the �assertEquals� method. Line 21 adds the �rst book to the

cart. After that, lines 22-24 compare the retrieved URL with the expected

URL that the web page should navigate to after adding a book.

Listing 2.4: WB2 code sample.

1 public function test_Business_Success()

2 {

3 $host = 'http://localhost:4444/wd/hub';

4 $capabilities = DesiredCapabilities::chrome();

5 $driver = RemoteWebDriver::create($host, $capabilities, 3000);

6 $driver->get("http://localhost:8888/online_shopping/Faulty/index.php

↪→ ");

7 $driver->findElement(WebDriverBy::XPath("//button[contains(.,'Shop

↪→ available books')]"))->click();

8 $driver->findElement(WebDriverBy::XPath("//a[@href='Business.php']")

↪→) ->click();

9 $bookName1= $driver->findElement(WebDriverBy:: XPath("//h5[contains

↪→ (.,'Predictably Irrational Book')]"));

10 $bookName2= $driver->findElement(WebDriverBy::XPath("//h5[contains

↪→ (.,'The Obstacle is the way')]"));

34

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

11 $bookName3= $driver->findElement(WebDriverBy::XPath("//h5[contains

↪→ (.,'The Silent Language of Leaders Book')]"));

12 $bookName4= $driver->findElement(WebDriverBy::XPath("//h5[contains

↪→ (.,'Good to Great Book')]"));

13 $bookName5= $driver->findElement(WebDriverBy::XPath("//h5[contains

↪→ (.,'The undoing project A friendship that changed our minds')

↪→]"));

14 $bookName6= $driver->findElement(WebDriverBy::XPath("//h5[contains

↪→ (.,'This I know marketing lessons from under the influence')]

↪→ "));

15 $this->assertEquals('Predictably Irrational Book', $bookName1->

↪→ getText());

16 $this->assertEquals('The Obstacle is the way', $bookName2->getText()

↪→);

17 $this->assertEquals('The Silent Language of Leaders Book',

↪→ $bookName3->getText());

18 $this->assertEquals('Good to Great Book', $bookName4->getText());

19 $this->assertEquals('The undoing project A friendship that changed

↪→ our minds', $bookName5->getText());

20 $this->assertEquals('This I know marketing lessons from under the

↪→ influence', $bookName6->getText());

21 $driver->findElement(WebDriverBy::name('add'))->click();

22 $currentURL1 = $driver->getCurrentURL();

23 $exp_url1 = "http://localhost:8888/online_shopping/Faulty/Business.

↪→ php";

24 $this->assertEquals($exp_url1, $currentURL1);

25 }

35

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

The WB2 technique is powerful in that it considers various cases when

testing the web application, in particular when testing the input �elds. These

cases include: considering null values when testing the input �elds as part of

the �each condition/all conditions� strategy, the performance of �boundary

values testing� for input �elds and the textual di�erences are taken into

account to avoid a �true negative� situation. This situation means that when

comparing two pages with the same URLs but di�erent content, this can

result in a positive outcome which indicates that the result is true but in fact

it should be false. However, if the URLs and content are both being compared

to the original page then this situation can be avoided. Comparing the URLs

only for the generated pages is an insu�cient indicator and textual di�erence

should be considered.

One limitation of this methodology is that when comparing images in

the web pages as part of the textual di�erences, the presence of a human

tester is required to assure the validity and existence of the images in the

pages. Moreover, writing these thorough test cases requires time and e�ort.

With large scale projects, this technique can be overwhelming even though

it provides high coverage for all possible test cases. Another limitation is

the production of input values for testing the input �elds as this can take

some time to be generated. Using the automated testing tools PHPUnit

and Selenium with this technique can save time, cost and e�ort if the web

application is planned to be tested again in the future.

36

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

2.2.3 US1

This technique relies on collecting user sessions after using the web appli-

cation. All user requests (the URL and name-value pairs) are recorded in

the Apache access log as http requests, see Figure 2.7. This is performed by

con�guring the server to enable the collection of Get requests in the access

log, where the activities of users on the server are reported.

:1-"GET/Shop/Children.php" sessionid:50efe364372e

:1-"GET/Shop/shopC.php?id=11&quantity=1&name=Harry+potter&

price=15" sessionid:50efe364372e

Figure 2.7: User session request sample.

This user session-based approach has been presented by Elbaum et al.

in [1] to overcome the limitation of the high cost in generating di�erent

input values by a human tester when exercising the web application, as in

the WB1 and WB2 techniques. The US1 technique provides a variety of

input selections that exercise the input �elds in the web application without

the need for a human tester to generate inputs. This avoids the potential high

cost and is time-e�cient. After users complete the sessions, the collection

of their requests is done by viewing the server access log then replaying the

sessions against the faulty web application. The test suite is constructed by

writing the sessions in PHPUnit and Selenium, see a sample of a test case

for a user session in Appendix C.1.

37

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

This code represents a replay of a user session that has been extracted

from the server's access log after it has been analyzed. After the analysis

phase, the required data is considered and the session is transformed to be

written in PHPUnit and Selenium code. Finally, during the execution of this

test case, a human tester monitors the session and reports any discovered

faults.

The US1 technique provides the bene�t of having available test data

without the need to generate it. Having said that, extracting the data from

the access log and �ltering the required (name-value) pairs are not trivial

tasks. Also, one disadvantage of this technique is that it relies mainly on user

input. As a consequence, if users provide input values that are not relevant or

are not bene�cial for the test then this technique can be ine�ective. Moreover,

having a huge number of sessions does not guarantee e�ective fault detection.

Some user sessions can be redundant as similar actions are often performed.

It has been observed that users who were encouraged to provide erroneous

data in the input �elds, their sessions detected more faults than the users who

were not encouraged to do so. Replaying the sessions with the help of the

automated tools is an overwhelming task, especially with user session-based

techniques. An alternative approach is to use the automated Selenium IDE

to view the required website by providing its URL, then perform the tests

and save them for future use. This IDE, however, can only be installed as an

add-on in the Firefox browser. This tool can help in avoiding the enormous

time spent in writing all user interactions in PHPUnit and Selenium.

38

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

2.2.4 US2

Conceptually, US2 is analogous to US1, in that it relies on user sessions

to test the web application. However, US2 does not replay user sessions

directly but mixes requests from two sessions together in order to generate

a new arti�cial test case to replay. The reason for this is to �nd if there are

any undetected faults that might be uncovered through the use of con�ict

users requests and whether they �nd hidden faults that the aforementioned

techniques (WB1, WB2 and US1) cannot reveal. The con�ict users requests

include con�icting data that are simultaneously provided by di�erent users

when using the web application. In our case this situation is not considered

due to how the sessions were conducted. That is, only one user at a time can

use the web application and after the session ends another user can start.

Although the con�ict users situation does not apply to our web application,

the evaluation of this technique is still considered to explore the other types

of fault that it might discover.

(a) User sessions requests. (b) Mixing two sessions requests.

Figure 2.8: Example of US2 procedure.

39

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

Let U represent a set of sessions U1 . . . Um. Ux, where x ∈ { 1 . . . m },

contains several requests r ∈ { r1 · · · rn } as can be seen in Figure 2.8a.

The US2 procedure consists of the following steps:

1. Select a random session Ua from the pool of user sessions.

2. Select a random request ri, where 1 < i < n, in session Ua then copy

all of the requests beginning from request r1 to ri. The request ri can

be a URL only or a URL along with its (name-value) pairs.

3. Select a random session Ub, where b 6= a and search for a request rj

with identical URL as request ri.

4. Copy all of the requests that follow request rj and append them after

request ri.

5. Finally, session Ua is marked as used. This procedure will be repeated

until all of the sessions in U are marked as used. See Figure 3.1 for a

visual description of this procedure.

Note that when applying the US2 procedure after selecting session Ua, the

requests that follow ri are ignored when combined with rj. These requests

can di�er from the given user requests and can be bene�cial in revealing

some types of fault that the other requests cannot. Applying this technique

on a large number of sessions with an enormous number of requests can be

impractical due to the time required to implement it.

It may have been worthwhile to modify the study to allow several par-

ticipants to use the web application simultaneously. However, this requires

having several computers available on site because in our case the web ap-

40

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

plication was hosted locally. One solution to this issue could be considered

which is performing the study remotely via hosting the web application on

a public server. Doing so eliminates the need for multiple computers at one

location. Also, the number of available books in the database should be

modi�ed and an appropriate validation for the number of allowable books

for purchase should be added.

2.2.5 Hybrid approach HYB (WB2+US1)

In this technique, presented in [1] and in [26], user session data from US1 is

used along with the test requirements generated by the WB2 technique. In

the �rst study [1], WB1 is used with US1, not WB2. However, in the second

study [26], WB2 is used with US1. Here, we opted to use WB2 (because it

provides thorough test cases) with US1 to perform the HYB approach.

Each of these generated test cases in the WB2 technique is translated

into a URL request. After that, each URL is matched with similar requests

in user sessions. Finally, the empty attributes of the URLs are �lled with the

appropriate values obtained from requests in US1 sessions. This procedure is

performed on all of the WB2 path expressions until all of these test require-

ments are marked as used. Thus, a set of executable test cases is produced.

The purpose of combining the two techniques (WB2 and US1) is to maxi-

mize the use of white-box testing techniques by using the comprehensive test

cases. Filling the empty attributes in the test requirements of WB2 with

US1 values might minimize the cost of generating input values by a tester.

Moreover, it is of interest to explore the fault detection e�ectiveness of using

41

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

two approaches together. Also, it is of interest to examine if the HYB tech-

nique can detect not only the faults that have been detected by the WB2 and

US1 techniques individually but other faults that these techniques separately

could not reveal.

Implementing the HYB technique does not involve a lot of e�ort because

the same code written in PHPUnit and Selenium for the test cases that

belong to WB2 is used by simply replacing the input values to match those

provided by US1.

2.3 Data Collection Tools

In this section a description is provided of the tools used in the case study.

2.3.1 PHPUnit

PHPUnit [12] is a testing framework for PHP applications that was released

in the year 2004. Its main speciality is in Unit testing, where each individual

unit of the source code is tested to ensure that it is working as expected.

PHPUnit provides assertions methods used to state if content exists and

functions that decide if the result is correct or not based on given values.

Another feature that PHPUnit provides is Data providers. Data providers

are test methods which accept arbitrary arguments of data in an array to test

input �elds automatically. It also provides links navigation where each link

42

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

can be visited by providing its URL. Some of the other testing frameworks

are described in Table 2.2.

Table 2.2: Di�erent testing frameworks for PHP.

Framework name Description

Codeception [24] A PHP testing framework that enables the conduct of

Unit tests, Functional tests and Acceptance tests. Its

code is more descriptive than PHPUnit.

SimpleTest [25] A PHP framework that is similar to PHPUnit in its

functionalities. It conducts Unit tests only and is easy to

install and use when compared with PHPUnit. However,

unlike PHPUnit it is not integrated with many PHP

IDEs such as Netbeans and PHPStorm.

PHPUnit is chosen as it is the standard framework when testing PHP

applications. Furthermore, it is stable, well maintained and supports both

Windows and Linux operating systems.

2.3.2 Selenium

Selenium [10] is a tool developed for web application testing. It is commonly

used in the acceptance testing phase to replay the behaviour of a user auto-

matically by controlling the browser, �lling input �elds of forms with values

and navigating links. It is composed of various software tools that include:

43

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

Selenium WebDriver which launches the browser and controls it automati-

cally, Selenium RC which is a remote controller, and Selenium Grid which

can be used to run tests simultaneously on di�erent machines and di�erent

browsers with di�erent versions, as it supports the execution of distributed

tests. Selenium IDE is an add-on in the Firefox browser to conduct, capture

and replay user interactions. Selenium has been introduced comprehensively

in [8] where its various components that support di�erent testing scenarios

are explained.

2.3.3 xDebug

xDebug [19] is a PHP framework used as an extension for debugging PHP

applications. It provides the capability to automatically record and report

code coverage data. It is the most popular tool used to measure code cov-

erage of web applications. This tool is independent of both platform and

operating system. Other tools such as PHPUnit measure the code coverage

for PHP applications that are not considered to be web-based. xDebug is

believed to be the ideal tool for measuring and reporting code coverage for

web applications. The code coverage is calculated automatically by adding a

snippet of code that consists of two functions. The �rst function is provided

in Listing 2.5 and needs to be located at the beginning of the source code

or document to start calculating the code coverage data automatically. The

second function shown in Listing 2.6 is placed at the end of the page to stop

calculating the code coverage data. After the test suite �nishes, the result of

the coverage data is retrieved by providing the function in Listing 2.7.

44

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

Listing 2.5: xDebug code sample to start code coverage.

1 <?php

2 xdebug_start_code_coverage(XDEBUG_CC_UNUSED | XDEBUG_CC_DEAD_CODE);

3 ?>

Listing 2.6: xDebug code sample to stop code coverage.

1 <?php

2 xdebug_stop_code_coverage();

3 ?>

Listing 2.7: xDebug code sample to retrieve the code coverage data.

1 <?php

2 xdebug_get_code_coverage();

3 ?>

The result of the code coverage reports the lines of code that have been

executed or not by the test suite. It provides the line number and next to it

the following numbers: [1] indicates that this line has been executed and [-1]

means that the line has not been executed.

2.4 Data Analysis

2.4.1 User Data

User activities, including navigating the web pages, adding/deleting a book

and providing input data in the web page �elds when using the website were

45

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

logged in an Apache access log �le as URL and (name-value) pairs. This has

been achieved by adding a session/cookie snippet in the PHP source code

to log user activities and identify each session by providing a unique session

id for each user using the website. This procedure is essential to distinguish

each user session and to log the URLs and (name-value) pairs used in the

session-based testing techniques.

2.4.2 Test suite creation

To eliminate any kind of bias, the test cases have been created before looking

at the faults that have been seeded in the website. These test cases are

written in the PHP programming language via PHPUnit and executed using

Selenium server. These tools are used to conduct the tests automatically.

Human intervention has not been eliminated completely as it is essential in

monitoring the tests and writing down the encountered faults during and

after the testing process.

46

Chapter 3

Discussion

3.1 Testing techniques results

This section provides the outcomes achieved by each testing technique. These

testing techniques represent Ricca & Tonella white-box (WB1 and WB2),

user session (US1 and US2) and hybrid HYB (WB2+US1) approaches. Also,

the e�ectiveness of each testing technique is discussed with respect to the

following metrics: test suite coverage, code coverage and fault detection.

47

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

3.1.1 WB1 testing technique

By applying the guidelines described in Section 2.2.1 on how to create the

required test cases, a test suite of size 47 was constructed for the WB1

technique. This test suite size was relatively small when compared to the

WB2 testing technique and the other session-based testing techniques.

The result of running the test suite for the WB1 technique against the

faulty web application discovered 28 faults from a total of 69 faults. The

types of faults detected include: the invalid links to navigate from one page

to the other forming an independent path (by looking at the UML model,

links that include at least one new path through the graph) and illegal input

values in some of the input �elds. The illegal input values were some special

characters such as ($&#% . . .) in text or numeric input �elds, numbers in

text input �elds and letters in numeric input �elds. Moreover, buttons with

faulty behaviour (buttons that redirect to a wrong page after clicking on

them) were also detected.

On the other hand, the number of faults that were not detected totalled

41. These faults include: latency in loading the page (the loading of a page

takes longer than expected after performing a task such as after clicking on

the �Add to cart� button in the �Sports� page to add a book, the page takes

too long to add the book in the cart and refresh the page), the generation

of the invalid content that was retrieved from a table in the database to be

displayed in the dynamically generated pages, and circular links. In addi-

tion, cascading faults that depend on performing a speci�c task �rst then

conducting another task could not be discovered. This is because the �rst

48

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

defective task masked the later task. An example of this can be described as

follows: testing the deletion of a book from the �History� category was not

possible because the addition of a book task could not be performed, due to

a fault in the add button where books could not be added to the cart. Fur-

thermore, defective and broken links between pages were di�cult to detect

because links between pages are not tested as per the limitations of the WB1

testing technique. Also, each independent path is tested in isolation (in a

separate test case), making it impossible to detect such faults. Finally, null

values and boundary values for each input �eld were not discovered as the

technique does not exercise such types of input values. By boundary values,

we mean that each input �eld accepts a speci�c length of input values and

any other length is considered a fault.

3.1.2 WB2 testing technique

As expected, the test suite size of WB2 was larger than WB1. The WB2

technique produced 98 test cases, the larger size being due to the adoption

of the input selection approaches �boundary values� and �each condition/all

conditions�. The result of running the test suite against the faulty web ap-

plication revealed a total of 61 faults. In addition to the faults that WB1

revealed, WB2 discovered some additional faults, including circular links be-

tween pages and faults related to database requests and data retrieval, as

it considers textual di�erences, which helps in detecting these faults. Fur-

thermore, the null values and the unacceptable lengths of values for each

input �eld were also discovered via the �each condition/all conditions� and

�boundary values� testing strategies.

49

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

Eight faults were not detected, representing cascading faults in the func-

tionality of the links or buttons within a page, latency in loading of a page

and navigational errors. The other undetected faults were related to unvali-

dated buttons, logic faults and input types.

White-box (WB1 and WB2) testing techniques summary

WB1 detected faults: This technique has e�ectively detected the

faults related to the invalid links found in the independent paths. So, if

only the independent paths of the web application need to be tested, then

WB1 is an appropriate approach.

WB2 detected faults: The strength of this technique is in its ability

to uncover all unacceptable lengths of values used as inputs in the input

�elds. Also, invalid values of input �elds (unacceptable characters and null

values) and wrongly generated pages (pages with content di�erent than the

original page) were also e�ectively discovered. This strength is due to having

a clear methodical approach when testing the web application functionalities.

WB2 unique detected faults: Nine unique1 faults were detected us-

ing the WB2 technique, divided between invalid input values and invalid

boundary values.

1unique: a fault that has been detected by this technique only.

50

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

Faults that WB2 could not reveal: Our work suggests that the

following categories of faults cannot be detected by the WB2 technique.

1. Cascading faults.

2. Some logic faults related to the session/cookie data that require the

user to set the session then perform a task. The user will encounter an

error if the session data is not set. Otherwise, they will not encounter

any error and will be able to perform the required task. One example

of this case can be seen in the �History� category when the user fails

to add a book. However, if the user starts the session by �rst adding

a book from the �Business� category and then trying to add another

book from the �History� category in the same test case (session), then

the user will be able to add a book from the �History� category because

the session was already set.

The WB2 technique cannot detect such faults because it tests indepen-

dent paths and each test case represents an individual session where

each category is tested independently.

3. Navigational errors in links when navigating between pages. If there

are broken links or links that redirect to incorrect pages, then these

faults cannot be detected due to the testing of independent paths only.

4. Input �eld type. If a hidden input �eld is changed to a di�erent type

then this cannot be detected because the technique will check whether

the �eld is present or not (textual di�erences) without considering its

type.

5. Unvalidated buttons that redirect to a page/link when a prerequisite

step should be performed before proceeding such as allowing the redi-

rection to the �Checkout� page in the case of an empty cart.

51

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

6. Latency faults.

Enhancements to the WB2 technique to reveal undetected faults

The following are suggested enhancements to the WB2 technique that may

address the undetected faults described earlier.

1. Cascading faults. It seems to be di�cult to discover such faults in

general not because of a limitation in the testing technique or the au-

tomated tools but because of the nature of such faults. However, tools

(such as Eclipse) that can trace faults in the order that they appear

could be bene�cial in revealing these types of faults.

2. Some logic faults related to the session/cookie data. These faults could

be revealed if the test case can include two or more independent paths in

the same test case. The test can be done twice with the path sequence

being tested in di�erent order. This can be performed by �rst opening

the page of the �History� category then adding the desired book by

clicking on the �Add to cart� button. Continuing in the same test case,

proceed by opening the �Business� category page and adding any book

by clicking on the �Add to cart� button. In the second test case, start

with adding the desired book from the last selected category in the �rst

test case which is the �Business� page. Then end the second test case

by adding any book from the �rst selected category �History� in the

�rst test case. This strategy uncovers the session data issue if found in

one of the pages.

3. Navigational errors between pages. Testing the navigational links can

be considered when preparing the test cases to be able to reveal such

52

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

faults. This suggestion can be applied by testing the links related to

other pages that appear in one page. For example, all the links related

to di�erent pages that appear in the �History� page can be tested by

traversing these links when conducting the �History� test case. Testing

these links can reveal whether it is possible or not to reach the other

pages from the �History� category page without any issues.

4. Input �eld type.

Listing 3.1: Testing variable type.

1 public function test_variable_type()

2 {

3 $driver-> get("http://localhost:8888/online_shopping/index.php"

↪→);

4 $currentvalue = $driver-> findElement(WebDriverBy::id('element'

↪→))-> getAttribute('type');

5 $exp_value = "number"; \\or could be "text"

6 $this->assertEquals($exp_value, $currentvalue);

7 }

A methodology for testing the type of input �elds should be added to

the testing strategies adopted by the WB2 technique in order to reveal

such faults. This methodology can be performed automatically by the

automated testing tools (PHPUnit and Selenium) where functions that

are specialised in checking the type of an input �eld are supported. The

method ��ndElement� in Listing 3.1, line 4, locates a speci�c element

in a web page by its id or name. After locating the desired element, the

�getAttribute� method retrieves the type of a variable then compares

the resulting variable type with the expected type. The method �as-

53

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

sertEquals� performs this comparison and asserts whether the expected

type matches the type retrieved.

5. Unvalidated buttons. Including a button validation strategy can be

helpful in revealing these faults. In our case, for example, this strategy

should check if the cart is empty or not. If it is empty then the checkout

button should not redirect to the �Checkout� page.

6. Latency faults. These types of faults can be revealed by testing di�er-

ent/identical functionalities provided in a page in the same test case

rather than testing one function in each test case. This can be per-

formed by selecting a number of desired books in the same category

and adding them to the cart. This makes the automated test case

pause for some time (might be seconds or more, depending on the la-

tency). This pause between tasks related to the execution of one test

case allows the tester to be aware of any issue when adding multiple

books in one session.

The testing procedure is performed semi-automatically � the test itself is

conducted automatically. However, uncovering a latency fault requires the

presence of the tester to monitor the execution of the test case to check the

latency between the performed tasks. This might be performed automatically

by setting a speci�c time to wait and if the task was not completed by the

time speci�ed then there is a latency fault. This can be achieved by utilizing

the functionalities provided in PHPUnit and Selenium.

The results showed that WB2 discovered all the faults that WB1 revealed.

Therefore, it is recommended to use WB2 when test requirements consider

textual di�erences, circular links and a variety of input values. Focusing on

54

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

using WB2 is both time and cost e�cient. The reason for this conclusion

is that the two techniques are similar in concept, the only di�erence is that

WB2 provides more detailed, in-depth testing and considers a wide variety

of input selections. However, if test requirements ignore textual di�erences,

circular links and input �elds that need to be tested by the �boundary values�

and �each condition/all conditions� testing strategies, then WB1 is su�cient.

3.1.3 US1 testing technique

The US1 test suite size was 20, representing the total number of sessions

conducted by the participants. Running the test suite resulted in 57 faults

being detected from a total of 69.

The number of undetected faults was 12. Comparing the revealed faults

to the list of faults, the majority of defect types that were revealed were

related to issues with circular links, broken links when navigating between

pages, invalid database requests (requests that return incorrect results) and

invalid input values. The invalid inputs include special characters, letters in

numeric �elds, numbers in a �eld that requires only letters, null values and

some invalid boundary values. In addition, US1 was able to reveal latency

faults that WB1 and WB2 could not reveal. This is because US1 has no

constraints on the users when testing the functionalities of the web pages

in one test case (session). In other words, users can test more than one

functionality (either the same or di�erent) in the same session. Consequently,

this reveals the time it takes to execute each task. However, in WB1 and

WB2 if there are multiple occurrences of the same button that executes the

55

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

�Add to cart� function, then only one of these buttons is tested randomly.

One example of such a situation is that some users added di�erent books

from the same category �Sports� during the same session, that uncovered

a latency defect by the tester noticing how long it took to accomplish the

task. The presence of the tester reporting the timing of each test case has

aided in the process of uncovering this latency fault. It can be challenging

to automate the whole process because the test cases are written manually

and there is no available function or tool that evaluates the time spent by

each task to be completed.

To automate the procedure of detecting a latency fault, a suggestion for

tool development is discussed next. The tool should accept a web site URL

to allow the tester to open, view and perform tasks in a web page. It should

also include a stopwatch to measure the elapsed time spent by each task

upon completion and a �eld that accepts a prede�ned completion time for

each task provided by the tester. Finally, a function is required to compare

the completion time of each task (using the stopwatch) with the time that

was set by the tester. If the task completion time is less than or equal to the

prede�ned time, then there is no latency fault. Otherwise, there is a latency

fault. Moreover, additional faults were revealed by US1 but not by WB1 or

WB2 such as a change to a variable type from hidden to integer. This fault

was revealed due to the presence of the tester either by checking the Apache

access log for the input �elds attribute that appears with the URL or when

replaying the sessions with the ability to view the web pages during the test.

Human intervention was necessary when applying this technique as it is im-

plemented in a semi-automated manner where the tester writes the code of

the test suite to be executed by the automated tool and then monitors the

56

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

replayed sessions.

The faults that were not revealed represent a combination of invalid input

values (special characters, letters, numbers and null values) that users did not

provide as an input during their use of the web application. Furthermore,

cascading faults and another faults that were related to invalid boundary

values were also not detected.

3.1.4 US2 testing technique

The US2 test suite size was 20 and it revealed 54 faults that were similar to

the types of fault that were detected by US1. These faults were related to

some invalid values provided in input �elds (special characters, letters and

numbers), broken links, invalid circular links, latency in loading of a page

and some invalid boundary and null values.

The number of undetected faults was 15. These were related to some

invalid boundary values, invalid values and some faulty links. It is worth

noting that the number and types of fault detected depend on the user be-

haviour when navigating the web pages and when providing input values.

To our surprise, the US2 technique revealed less faults than US1. Looking

through this, it seems to be caused by the fact that all of the requests that

follow request ri in session Ua were discarded when mixing the requests of

two sessions. As can be seen in Figure 3.1, the requests that follow r3 in ses-

sion U1 were discarded when combined with the requests from session U8 to

57

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

Figure 3.1: US2 mixing session requests.

make the new session U1. The discarded requests could have revealed some

of the missing faults that US2 could not discover.

Session-based (US1 and US2) testing techniques summary

US1 detected faults: The strength of this technique is in detecting

issues related to invalid circular links, navigation links and latency faults.

US1 unique faults: US1 was able to discover six unique faults that

the white-box techniques (WB1 and WB2) could not reveal. These faults

are as follows:

1. Two broken links (redirecting from the �About us� to the �History� and

58

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

the �Cooking� pages).

2. Latency fault. This involved adding more than one book in the same

session. This was not discovered by WB2 because it tested one valid

case of adding a book and another invalid case of adding an invalid

quantity of a book. Each test case was performed in isolation.

3. The dropdown menu (Javascript code) was not clickable to navigate

from the �History� page to other pages.

4. Input �eld type. A type that relates to a hidden �eld was changed to

be an integer when it should be hidden.

5. Logic fault.

Faults that US1 could not reveal: Based on our work, the following

categories of faults cannot be detected by the US1 technique.

1. Some invalid boundary values and invalid input values (special char-

acters, letters values in �elds that are restricted to numeric/numeric

values in �elds that are restricted to letters).

2. Unvalidated buttons that redirect to a page/link when a prerequisite

step should be performed before proceeding. An example is redirecting

to the �Checkout� page in the case of an empty cart.

3. Cascading faults.

59

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

Enhancements to the US1 technique to reveal undetected faults

Here, we provide some suggested improvements to the US1 technique to

address the undetected faults.

1. Some invalid boundary values and invalid input values. These types

of fault can be revealed by providing a general list of the invalid input

types to consider when testing the various input �elds. A document

that illustrates the list of input �elds and which invalid types to consider

when testing a particular �eld can be helpful to guide users in the

testing process. Suppose that there are two input �elds to test in a

web page. The �rst input �eld is �rst name (accepts letters only not

less than three and not longer than 10), the second is phone number

(accepts numbers only of length 10). The document should include the

following invalid cases when testing these input �elds. For evaluating

the invalid cases of �rst name, the participant can examine any number,

any special characters, and letters of length less than three and more

than 10. For evaluating the invalid cases of phone number, consider any

combination of letters, any special characters, and any numeric values

less/more than 10.

2. Unvalidated buttons. Including a button validation strategy can be

helpful in revealing such faults. In our case, for example, this strategy

can check if the cart is empty or not. If it is empty then the �Checkout�

button should not redirect to the �Checkout� page.

3. Cascading faults. With these types of fault, it seems to be di�cult to

discover in general not because of a limitation in the testing technique

or the automated tools but because of the nature of such faults.

60

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

Insights about the US1 and US2 techniques are summarized in the fol-

lowing points:

1. The number of detected faults depends primarily on the input values

provided by users during their use of the web application. So, if users

did not exercise the input �elds with invalid data that reveals faults,

then the number of detected faults could be low. To overcome this issue,

providing users with a clear and detailed description of the various types

of input �elds and the invalid values that need to be considered when

testing those input �elds would achieve a higher rate of fault detection.

2. Normal user behaviour which represents the input of valid data -that

users insert in their normal operation- could be bene�cial in revealing

certain types of faults. Normal user operation should not be considered

to be problematic. It could be in some cases when the types of faults

require invalid data to reveal it -which is sometimes provided in abnor-

mal users behaviour -. Suppose for example, there is an input �eld that

accepts numbers only. A user acts normally and adds any number in

the input �eld, he then receives an error message that informs him that

the input is invalid when it is not. This normal behaviour revealed a

fault by using valid data. Therefore, these types of faults could never

be revealed by invalid data "abnormal" users behaviour.

3. It was also noticed that some requests were not tested in session Ua in

the US2 sessions generation procedure. This is due to all of the requests

that were ignored and as a result not being added to the test case.

These requests are located after request ri in session U1 as illustrated

previously in Figure 3.1. This could be an issue if the discarded requests

had values that were not available in any other test case that could

61

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

reveal speci�c types of defects. One solution to this can be achieved

by creating two new sessions then test each separately. First, combine

the requests located above request ri with all of the requests that are

located below request rj. Second, combine the requests located below

request ri with all of the requests that are located below request rj.

This might help in discovering all of the faults that US2 missed in the

originally proposed procedure.

Clearly, the suggested solution will result in an increase in the test

suite size, and the corresponding cost and e�ort when conducting the

expanded methodology.

4. US2 requires a lot of e�ort and it is time consuming to generate new

sessions from the sessions pool. On top of that, it revealed less faults

than US1 and the types of discovered faults were not di�erent than

what US1 revealed.

5. US2 could be bene�cial in capturing con�icts in users request. For

example, having one available book to purchase while two users are

simultaneously trying to add it to their carts. However, this could not

be measured as the web application was not developed to capture such

a situation.

6. The procedure of selecting a random request ri in session Ua can be

done automatically with the help of a tool rather than manually. The

tool should accept a �le that has all of the requests related to one

session then select a random line. This process could eliminate any

bias when selecting the random request and adds more formalism to it.

The procedure of creating the test cases in US2 has been shown by Elbaum

et al. in [1] and [26]. In [1], there was no clear indication on what to do with

62

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

the last session Ub that remained unused after applying the US2 procedure.

In the results, they showed that the test suite was one session smaller when

compared to the US1 test suite size. In [26], however, the procedure of

creating US2 test cases stated that if there is a session with request ri selected

and no viable request rj, then the session is directly used as in US1. So, this

makes the test suite size of US2 match the number of directly used sessions

in US1.

Applying the two procedures (replaying the unused session and not using

it at all) showed that, with regards to fault detection, adding the unused ses-

sion had no e�ect in terms of �nding additional faults. The reason for this is

that the session itself (the session that was left) had three di�erent selected rj

requests which were added to several previous sessions when performing the

US2 procedure. Selecting a similar request rj that matches request ri indi-

cates that all of the requests that follow the selected request rj are combined

with the request ri. This demonstrates that all of the requests in this re-

maining session were used and all of the faults that were there were reported

by the previously generated test cases (sessions).

US2 seems to be a powerful technique in revealing the con�ict between

di�erent requests made by di�erent users. That is the reason behind combin-

ing requests to examine the behaviour of the application in such a situation.

An example of this behaviour is if there are two requests from two di�erent

users trying to purchase the last copy of a book at the same time. The US2

procedure reveals how the web application behaves in such a situation and

whether it reacts as expected. However, this situation was not evaluated in

the designed web application. It is one of the features to be considered for

63

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

future work. The US2 procedure could be used if there was a need to mea-

sure the con�icting requests from multiple users simultaneously, taking into

account the suggested enhancement. However, as mentioned earlier, this will

introduce higher cost and overhead to the system if applied. If there are no

such situations to evaluate, then the US1 technique is su�cient.

3.1.5 HYB (WB2 + US1) technique

The test suite size for the HYB technique was 99 test cases. The total number

of faults detected was 51 faults. Combining the two techniques showed that

the total number of revealed faults was less than when compared to each of

the techniques individually.

The types of faults that were uncovered were a mixture of some invalid

values, broken links, latency in loading of a page, buttons with faulty be-

haviour and logic faults. The number of undetected faults was 18. The types

of the undiscovered faults were the same as the revealed faults. The reason

behind this is because either the URL request for the web page was not ex-

amined (because it was not recorded in the Apache access log as a request

from users) or users did not provide such input to uncover such faults.

The HYB technique utilizes the translated URLs of the test requirements in

the WB2 technique. In other words, it uses the URLs that are provided by

the WB2 and US1 techniques. Figure 3.2 consists of two URLs: �rst, a test

requirement transformed to a URL and its empty (name-value) attributes in

the WB2 technique. The second is, a matching URL from the Apache access

log related to a user session in US1.

64

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

Figure 3.2: URL extracted from the WB2 technique and matched with equiv-

alent URL from US1 sessions.

These URLs illustrate a test case of the �Science� category page when

purchasing a book. The second URL that was extracted from the Apache

access log represented the purchasing of a book titled �The Sea� with an

id equal to 25 and a quantity of 1. If this user session URL did not exist,

then the test requirement URL constructed by the WB2 technique will be

discarded. This occurs because the attributes of the �rst URL that represent

the WB2 test requirement will have no values to be �lled by the user session

URL. As a result, this test requirement of WB2 will not be tested and faults

related to this page will not be recorded.

Hybrid testing technique summary It was noticed that this technique

did not provide a clear delineation among the types of detected and unde-

tected faults. Moreover, using the US1 and WB2 techniques separately is

recommended as each technique has a unique strategy in revealing speci�c

types of faults. Using them in the HYB approach seems to remove the unique

properties of these individual techniques.

65

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

Figure 3.3: Fault detection capability of the HYB technique when compared

to the US1 and WB2 techniques.

Figure 3.3 shows a detailed comparison of the fault detection capabilities

of the HYB technique when compared to the US1 and WB2 techniques.

• Region A represents the faults detected by the WB2 technique only.

The HYB technique failed to detect any of the faults that were only

revealed by the WB2 technique. This is because these faults were

related to input �elds values, whereas HYB relies on US1 for values to

�ll the attributes in WB2 test requirements. In addition, not all of the

test requirements (URLs) of WB2 could be covered because the user

sessions exercised some of the test requirements.

• Region B represents the faults detected by the US1 technique only.

The HYB technique failed to reveal all of the faults that were detected

by US1 only. The majority of these faults were related to circular links,

navigation links and a change in the type of an input �eld. These

66

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

faults were not part of the WB2 test requirements that HYB uses in

its procedure.

• Region C represents the faults uncovered by both techniques (WB2

and US1).

The HYB technique was able to reveal some of the faults uncovered

by both techniques. The faults that were not revealed include some

URL links for faulty pages that were not recorded in the Apache access

log by US1 sessions. So, these URLs could not be matched with an

equivalent WB2 test requirement.

• Region D represents the undetected faults by both techniques.

The HYB technique failed to detect the faults that both techniques

could not reveal. As mentioned earlier, HYB relies on the test require-

ments of WB2 and the matched URL requests of US1 logged in the

Apache access log. If either of the two techniques could not detect

these types of faults, then HYB could also not detect it.

3.2 Testing techniques metrics

The e�ectiveness of each testing technique can be reported through the fol-

lowing metrics: test suite coverage, PHP code coverage and fault detection.

For each technique, the result of performing the test suite is summarized in

Tables 3.1, 3.2 and 3.3, respectively. Table 3.1 reports the coverage percent-

age of the total number of executed lines corresponding to each test suite.

Table 3.2 shows the total number of PHP lines executed by each technique

and Table 3.3 provides the number of faults detected by each technique. More

67

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

details regarding these metrics are provided in the following sections.

3.2.1 Test suite coverage metric

Table 3.1 lists each testing technique, the test suite size (number of test

cases), the lines of code corresponding to each test suite and the coverage

percentage obtained for each test suite. It can be observed that the WB1

technique had the least code coverage of 84.76% when compared to the other

testing techniques. The WB2 technique performed slightly better with a

coverage of 89.55%.

Table 3.1: A comparison between the testing techniques in terms of test suite

code coverage.

Testing technique Test suite size Lines of code Test suite coverage

(line coverage%)

WB1 47 715 84.76%

WB2 98 1646 89.55%

US1 20 1209 98.76%

US2 20 1173 99.32%

HYB (WB2 + US1) 99 1255 99.04%

68

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

On the other hand, the user session-based techniques (US1 and US2)

achieved higher test suite coverages of 98.76% and 99.32%, respectively. The

HYB technique achieved a coverage of 99.04% which is higher than WB1,

WB2 and US1 but less than US2.

3.2.2 Code coverage metric

Table 3.2 provides the PHP code coverage of each technique. This coverage

has been achieved by executing the test suite related to each testing technique

on the web application. The code coverage for the techniques is similar, with

WB1 achieving the highest coverage of 68.73%.

Table 3.2: A comparison between the testing techniques in terms of PHP

code coverage.

Testing technique PHP code coverage

(PHP line %)

WB1 68.73%

WB2 55.56%

US1 57.88%

US2 55.81%

HYB (WB2 + US1) 57.36%

One of the di�erences in the metrics when comparing the test suite cov-

erage with the code coverage is that the test suite metric was measured

automatically by PHPUnit. On the other hand, the PHP code coverage was

69

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

measured semi-automatically by xDebug. Upon the completion of each test

suite, the tester had to extract the results of the coverage data and report the

number of executed lines manually, then calculate the code coverage result.

The coverage percentage, however, does not guarantee better detection of

faults. It provides an indicator of how many and which lines of code have

been executed by each technique. The test suite code coverage provides an

overview of the number of lines related to each test suite that were executed

when running the test suite itself. In other words, it shows which lines of

the test cases have been executed. The code coverage, however, shows the

number of lines related to the web application pages that were executed when

running the test suite.

3.2.3 Fault detection metric

Table 3.3 lists each testing technique, its test suite size, number of faults

detected by each technique and number of unique faults that each technique

was able to reveal. The WB2 technique outperformed the other techniques

in revealing 61 faults out of 69.

On the other hand, the WB1 technique detected the lowest number of

faults. The WB2 and US1 techniques were able to reveal some unique faults

that the other techniques could not reveal. A detailed list of these unique

faults was discussed in the previous sections.

70

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

Table 3.3: A comparison between the testing techniques in terms of fault

detection.

Testing technique Test suite size # of detected faults # of unique detected

faults

WB1 47 28 -

WB2 98 61 9

US1 20 57 6

US2 20 54 -

HYB (WB2 + US1) 99 51 -

3.3 Scalability

In this section an overview regarding the testing techniques usage in large

scale web applications is discussed.

Ricca & Tonella testing techniques Evaluating Ricca & Tonella test-

ing techniques revealed that the WB2 technique has achieved high testing

coverage and fault detection rates. This is because it performs a detailed

and in-depth testing approach. Although the testing technique is bene�cial

in detecting faults, it introduces a large test suite size if applied on a large

scale web application. The test suite size increases dramatically when the

web application size increases. Also, the cost of generating various input

values by a tester to �ll the input �elds will increase when the test suite size

increases.

71

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

User session testing techniques The US1 technique achieved a higher

fault detection rate when compared to the US2 technique. The US1 technique

can be used on a large scale web application because the size of its test suite

will depend on the number of user sessions performed. One great advantage

that the US1 technique presents is the generation of input values. These

values will be provided by the users of the web application while performing

the testing procedure. This eliminates the need for a tester to provide such

input data used to exercise the input �elds. Although this is an advantage,

it is important to know that detecting faults will depend on the quality of

input values provided by users and types of faults found in the application.

3.4 Threats to validity

One of the limitations of this study is related to the process of seeding

faults in the web application under consideration. This procedure was es-

sential in the evaluation of the testing techniques. Natural faults could have

been a better approach rather than seeded faults. However, �nding a web

application with many functionalities written in PHP with naturally occur-

ring faults was not a viable possibility.

Another limitation is related to the session-based testing techniques (US1

and US2). User involvement is critical in the evaluation of such techniques.

During the execution of the sessions, users were provided with some guidance

on how to navigate the pages of the web application and what to include in

the input �elds (valid or invalid data) in an e�ort to achieve as realistic user

sessions as possible. However, there are clearly potential issues with this

72

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

testing environment.

Moreover, a limitation related to the generated UML in the white-box tech-

niques is presented. In the absence of the ReWeb and TestWeb tools that

were provided by Ricca & Tonella in [2] to automatically generate the UML

model, the UML model used in this study was manually constructed. The

threat was reduced by carefully following the guidelines on how to generate

the UML model in [3].

73

Chapter 4

Future Work

We would like to examine the e�ectiveness of using the Selenium IDE tool

with the US1 technique when conducting the tests. Improvements could be

expected if users are able to perform the sessions using the Selenium IDE

tool. After the user completes the session, the tester will export the session

in the form of PHPUnit code to be executed later. This will eliminate the

need for manually writing the code.

The US2 technique was suggested because it could be useful in revealing

the faults caused by con�ict requests made by di�erent users simultaneously.

This situation will be considered for future work when implementing the web

application.

Moreover, a new approach to merge the requests that belong to di�er-

ent sessions will be evaluated when implementing the US2 technique. This

74

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

approach might consider adding the neglected requests that followed the re-

quest ri which was observed earlier in the proposed US2 procedure.

75

Chapter 5

Conclusion

E�ective testing of web applications requires the performance of systematic

approaches that are properly conducted to help in the process of detect-

ing faults. Evaluating the testing techniques in our work revealed that the

WB2 and US1 techniques appear to be the most e�ective compared to other

techniques in terms of fault detection.

The WB2 technique outperformed the WB1, US1, US2 and HYB ap-

proaches in terms of fault detection. Although the WB2 technique was able

to reveal the highest number of faults, it has introduced a larger test suite

size compared to the WB1, US1 and US2 techniques. Also, WB2 requires

the manual generation of input values to �ll the input �elds to be able to

conduct the tests.

76

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

As for the US1 technique, it has provided a smaller test suite size than

WB1, WB2 and HYB with a fault detection rate less than the rate achieved

by WB2 but higher than the WB1, US2 and HYB techniques. The values

used in exercising the input �elds were obtained from the user sessions. These

user sessions can provide useful testing values if users are guided on which

(valid and invalid) input types to consider when testing the web application.

It was observed that with US1, it could be more appropriate to use the

Selenium IDE tool to avoid manually writing the test suite as PHPUnit and

Selenium code.

US1 and WB2 techniques have both proved to operate better when used

separately than being used in a hybrid form. Each technique has its unique

strategy in revealing di�erent types of faults. However, using these techniques

in the HYB approach seems to remove the unique properties of each.

Using the automated tools PHPUnit and Selenium has helped in automat-

ing the conduct of the tests and reduced the time and e�ort required.

77

Bibliography

[1] Elbaum, S., Karre, S., & Rothermel, G. (2003, May). Improving web

application testing with user session data. In Proceedings of the 25th

International Conference on Software Engineering (pp. 49-59). IEEE

Computer Society.

[2] Ricca, F., & Tonella, P. (2001, July). Analysis and testing of web appli-

cations. In Proceedings of the 23rd international conference on Software

engineering (pp. 25-34). IEEE Computer Society.

[3] Ricca, F., & Tonella, P. (2001). Understanding and restructuring Web

sites with ReWeb. IEEE MultiMedia, 8(2), 40-51.

[4] Stevens, J. (2017, August 18). Internet Statistics & Facts (Includ-

ing Mobile) for 2017. Retrieved December 11, 2017, from https://

hostingfacts.com/internet-facts-stats-2016/.

[5] Programming Language Usage. (2017). [online] Available at:

https://trends.builtwith.com/framework/programming-language

[Accessed 11 December 2017].

78

https://hostingfacts.com/internet-facts-stats-2016/
https://hostingfacts.com/internet-facts-stats-2016/
https://trends.builtwith.com/framework/programming-language

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

[6] Benedikt, M., Freire, J., & Godefroid, P. (2002). VeriWeb: Automati-

cally testing dynamic web sites. In In Proceedings of 11th International

World Wide Web Conference (WWW2002).

[7] Artzi, S., Kiezun, A., Dolby, J., Tip, F., Dig, D., Paradkar, A., &

Ernst, M. D. (2010). Finding bugs in web applications using dynamic

test generation and explicit-state model checking. IEEE Transactions on

Software Engineering, 36(4), 474-494.

[8] Bruns, A., Kornstadt, A., & Wichmann, D. (2009). Web application

tests with selenium. IEEE software, 26(5).

[9] Girgis, M. R., Mahmoud, T. M., Abdullatif, B. A., & Zaki, A. M. (2014).

An Automated Web Application Testing System. International Journal

of Computer Applications, 99(7), 37-44.

[10] Selenium Browser Automation. [online] Available at: http://www.

seleniumhq.org/ [Accessed 11 December 2017].

[11] Mendes, E., & Mosley, N. (2006). Web engineering. Berlin: Springer.

[12] Welcome to PHPUnit!. [online] Available at: https://phpunit.de/

[Accessed 11 December 2017].

[13] de Jesus, F. R., de Vasconcelos, L. G., & Baldochi, L. A. (2015, April).

Leveraging task-based data to support functional testing of web applica-

tions. In Proceedings of the 30th Annual ACM Symposium on Applied

Computing (pp. 783-790). ACM.

[14] Vasconcelos, L. G., & Baldochi Jr, L. A. (2012). Usatasker: A task def-

inition tool for supporting the usability evaluation of web applications.

In Proc. of the IADIS Internat. Conf. WWW/Internet (pp. 307-314).

79

http://www.seleniumhq.org/
http://www.seleniumhq.org/
https://phpunit.de/

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

[15] Sampath, S., Greenwald, A. S. & Pollock, L. (2004). Towards De�ning

and Exploiting Similarities in Web Application Use Cases through User

Session Analysis.

[16] Milani Fard, A., Mirzaaghaei, M., & Mesbah, A. (2014, September).

Leveraging existing tests in automated test generation for web applica-

tions. In Proceedings of the 29th ACM/IEEE international conference

on Automated software engineering (pp. 67-78). ACM.

[17] IBM. (2016, January 01). Rational Functional Tester. [online] Available

at: http://www-03.ibm.com/software/products/en/functional

[Accessed 11 December 2017].

[18] PHP. [online] Available at: https://www.w3schools.com/php/ [Ac-

cessed 16 December 2017].

[19] xDebug.org. (2017). xDebug - Debugger and Pro�ler Tool for PHP. [on-

line] Available at: https://xdebug.org/ [Accessed 18 December 2017].

[20] Di Lucca, G. A., Fasolino, A. R., Faralli, F., & De Carlini, U. (2002).

Testing web applications. In Software Maintenance, 2002. Proceedings.

International Conference on (pp. 310-319). IEEE.

[21] Sampath, S., Sprenkle, S., Gibson, E., Pollock, L., & Greenwald, A. S.

(2007). Applying concept analysis to user-session-based testing of web

applications. IEEE Transactions on Software Engineering, 33(10).

[22] Liu, C. H., Kung, D. C., & Hsia, P. (2000). Object-based data �ow

testing of web applications. In Quality Software, 2000. Proceedings. First

Asia-Paci�c Conference on (pp. 7-16). IEEE.

80

http://www-03.ibm.com/software/products/en/functional
https://www.w3schools.com/php/
https://xdebug.org/

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

[23] Periyasamy, J. Software Testing Tutorials - Manual and Automation

Questions Answers. [online] Available at: http://jobsandnewstoday.

blogspot.ca/2013/07/boundary-value-analysis-with-examples.

html/ [Accessed 25 December 2017].

[24] CodeCeption. [online] Available at:http://codeception.com/

quickstart [Accessed 30 December 2017].

[25] SimpleTest. [online] Available at:http://www.simpletest.org/ [Ac-

cessed 30 December 2017].

[26] Elbaum, S., Rothermel, G., Karre, S., & Ii, M. F. (2005). Leveraging

user-session data to support Web application testing. IEEE Transactions

on Software Engineering, 31(3), 187-202. doi:10.1109/tse.2005.36.

[27] Beizer, B. (1990). Software testing techniques (2nd ed.), Van Nostrand

Reinhold Co., New York, NY.

81

http://jobsandnewstoday.blogspot.ca/2013/07/boundary-value-analysis-with-examples.html/
http://jobsandnewstoday.blogspot.ca/2013/07/boundary-value-analysis-with-examples.html/
http://jobsandnewstoday.blogspot.ca/2013/07/boundary-value-analysis-with-examples.html/
http://codeception.com/quickstart
http://codeception.com/quickstart
http://www.simpletest.org/

Appendices

82

Appendix A

List of seeded faults

In Table A we provide an explicit list of the types of faults that were seeded

in the web application used in the study.

Table A.1: Faults seeded in the web application.

Page name Fault description

The �History� page 1. The processing of the �History� page was done in the

�Children� page (changing the value of the form action

to be performed in the �Children� page instead of the

�History� page).

2. The type of the variable price was changed to a dif-

ferent type which allowed the manipulation of its value.

3. The Java script dropdown menu was disabled to make

links unclickable to prevent navigation between pages.

83

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

4. The logic for validating the acceptable values of the

variable quantity disallowed the acceptance of any value

if the session/cookie was not set. That resulted in an

error message that appeared each time a user tried to

add a book.

The �Children� page The form action value was changed to redirect to a page

that did not exist instead of the �ShopC.php� page that

processed the (add/delete) books request.

The �Business� page The delete functionality was disabled to prevent the

deletion of books from the cart.

The �Science� page The form action value was changed to redirect to the

�Children� page if the user session was set and to the

�History� page otherwise.

The �Cooking� page The value of the price variable was not displayed.

The �Sport� page 1. The wrong category of books was shown due to a

fault in the retrieved table from the database.

2. Refresh interval took too long to process requests

which resulted in a latency fault.

3. The quantity variable accepted more than the allowed

value.

4. The variables name and price of books were not

displayed.

The �Check future

books� page

1. The �Business� and �Home & Garden� options in the

dropdown menu displayed invalid results.

84

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

2. Changing the array name for the variables quantity

and ISBN resulted in the invalid retrieval of results from

the database.

3. The �Back� button was not redirecting the user to

the previously visited page rather it was constructed to

go back two pages from the previously visited page.

The �Contact form�

page

1. The variable Phone accepted values that may contain

letters, special characters, null and have invalid length.

2. The variable Subject accepted values that contained

numbers and null values.

3. The variable User name accepted values that may

contain numbers, special characters and null values.

4. An invalid port was provided for sending emails.

The �My cart� page The button redirected to the �Checkout� page if the cart

was empty before performing any validation.

The �Checkout� page 1. The First name and Last name variables accepted

numbers, special characters and invalid (min, max)

length of values.

2. The Address variable accepted special characters and

invalid (min, max) length of values.

3. The City variable accepted numbers and special char-

acters.

4. The Phone variable accepted letters, special charac-

ters, null and invalid (min, max) length of values.

5. The Card number variable accepted letters, special

characters and invalid (min, max) length of values.

85

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

6. The CVC variable accepted letters, special charac-

ters, null and invalid (min, max) length of values.

7. The Expiration date variable accepted letters, special

characters, null and invalid (min, max) length of values.

The �About us� page The links for the �Cooking� and the �History� pages redi-

rected to a page that did not exist.

86

Appendix B

Web application UML model

In this appendix, we provide the complete UML model constructed for the

web application used in this study.

87

P1: Static page

 index page

P2: Dynamic page

 use = {x1}

P15: Dynamic page

 use = {x2}

P24: Dynamic page

 use = {x3}

P26: static page

 use = {x4}

P27: Dynamic page

 use = {x5}

Conditional Edge

 x1 = "History"

Conditional Edge

 x1 = "Business"

P3: Dynamic page

: Form

input = {x1,x2,x3,x4,x5}

Conditional Edge

 x1 = "Children"

Conditional Edge

 x1 = "Science"

Conditional Edge

 x1 = "Cooking "

: Form

e4
include

 input: quantity

 button: add to bag

valid
quantity

e5

P4 : Dynamic page

Show in cart

e7
delete

e6
invalid
quantity

e3

e1

e2

e8

P5: Dynamic page

: Form

e9
include

 input: quantity

 button: add to bag

valid
quantity

e10

P6 : Dynamic page

Show in cart

e12
delete

e11
invalid
quantity

P7: Dynamic page

: Form

e14
include

 input: quantity

 button: add to bag

valid
quantity

e15

e16
invalid
quantity

P8 : Dynamic page

e13

e17
delete

P9: Dynamic page

: Form

e19
include

 input: quantity

 button: add to bag

valid
quantity

e20

e21
invalid
quantity

P10 : Dynamic page

e22
delete

e18

P11: Dynamic page

: Form

e24
include

 input: quantity

 button: add to bag

valid
quantity

e25

e26
invalid
quantity

P12 : Dynamic page

e27
delete

P13: Dynamic page

: Form

e29
include

 input: quantity

 button: add to bag

valid
quantity

e30

e31
invalid
quantity

P14 : Dynamic page

e32
delete

e23 e28Conditional Edge

 x1 = "Sports"

e33 e47 e51 e52

Show in cart Show in cart Show in cart Show in cart

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

88

P1: Static page

 index

P2: Dynamic page

 use = {x1}

P15: Dynamic page

 use = {x2}

P24: Dynamic page

 use = {x3}

P26: static page

 use= {x4}

P27: Dynamic page

 use = {x5}

: Form

 input = {x1,x2,x3,x4,x5}

e1

e2 e33 e47 e51 e52

Conditional Edge

y1 = "Select a category"

Conditional Edge

 y1 = "Science"

Conditional Edge

 y1 = "Business"

Conditional Edge

 y1 = "Home & Garden"

e35

P16: Dynamic page

P17: Static page

e36
submit (find)

e37

P15 : Dynamic page

use = {x2}

e38 e41 e44

e34 include

: Form

input = {y1}

P18: Dynamic page

P19: Static page

e39
submit (find)

Back
e40

P15 : Dynamic page

use = {x2}

Back

P20: Dynamic page

P21: Static page

e42
submit (find)

Back
e43

P15 : Dynamic page

use = {x2}

P22: Dynamic page

P23: Static page

e45
submit (find)

Back
e46

P15 : Dynamic page

use = {x2}

: Form

e48

input = {z1,z2,z3,z4,z5}

P25: Static page

e49 submit
valid

e50

invalid

: Form

e53

input = {c1,c2,c3,c4,c5,c6,c7,c8}

P28: Static page

e54 submit
valid

e55

use = {y1} use = {y1} use = {y1} use = {y1}

include

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

89

Appendix C

User session source code

Source code written in PHPUnit and Selenium representing a sample of a

user session is provided here.

90

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

Listing C.1: A sample of a user session.

1 public function test_user()

2 { $driver->get("http://localhost:8888/online_shopping/Faulty/index.

↪→ php");

3 $driver->findElement(WebDriverBy::XPath("//button[contains(.,'Shop

↪→ available books')]"))->click();

4 $driver->findElement(WebDriverBy::XPath("//a[@href='Cooking.php']"))

↪→ ->click();

5 $driver->findElement(WebDriverBy::XPath("(//input[@name='add'])[4]")

↪→)->click();

6 $driver->findElement(WebDriverBy::XPath("(//input[@name='add'])[3]")

↪→)->click();

7 $driver->findElement(WebDriverBy::XPath("(//input[@name='add'])[5]")

↪→)->click();

8 $driver->findElement(WebDriverBy::XPath("//a[@href='MyCart.php']"))

↪→ ->click();

9 $driver->findElement(WebDriverBy::XPath("//a[@href='Book_Search.php

↪→ ']"))->click();

10 $driver->findElement(WebDriverBy::XPath("//button[contains(.,'Shop

↪→ available books')]"))->click();

11 $driver->findElement(WebDriverBy::XPath("//a[@href='Science.php']"))

↪→ ->click();

12 $driver->findElement(WebDriverBy::XPath("(//input[@name='add'])[4]")

↪→)->click();

13 $driver->findElement(WebDriverBy::XPath("//button[contains(.,'Shop

↪→ available books')]"))->click();

14 $driver->findElement(WebDriverBy::XPath("//a[@href='Science.php']"))

↪→ ->click();

15 $driver->findElement(WebDriverBy::XPath("(//input[@name='add'])[2]")

91

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

↪→)->click();

16 $driver->findElement(WebDriverBy::XPath("//a[@href='Book_Search.php

↪→ ']"))->click();

17 $driver->findElement(WebDriverBy::XPath("//button[contains(.,'Shop

↪→ available books')]"))->click();

18 $driver->findElement(WebDriverBy::XPath("//a[@href='Science.php']"))

↪→ ->click();

19 $driver->findElement(WebDriverBy::XPath("(//input[@name='add'])[5]")

↪→)->click();

20 $driver->findElement(WebDriverBy::cssSelector('span.text-danger'))->

↪→ click();

21 $driver->switchTo()->alert()->dismiss();

22 $driver->findElement(WebDriverBy::XPath("//button[contains(.,'Shop

↪→ available books')]"))->click();

23 $driver->findElement(WebDriverBy::XPath("//a[@href='Business.php']")

↪→)->click();

24 $driver->findElement(WebDriverBy::XPath("(//input[@name='add'])[5]")

↪→)->click();

25 $driver->findElement(WebDriverBy::XPath("//a[@href='MyCart.php']"))

↪→ ->click();

26 $driver->findElement(WebDriverBy::name('checkout'))->click();

27 $driver->findElement(WebDriverBy::XPath("(//input[@name='fname'])"))

↪→ ->sendKeys('Fern');

28 $driver->findElement(WebDriverBy::XPath("(//input[@name='lname'])"))

↪→ ->sendKeys('Marti');

29 $driver->findElement(WebDriverBy::XPath("(//input[@name='address'])"

↪→))->sendKeys('111 main street');

30 $driver->findElement(WebDriverBy::XPath("(//input[@name='city'])"))

92

M.A.Sc Thesis - Weaam Alrashed McMaster - Software Engineering

↪→ ->sendKeys('Hamilton');

31 $driver->findElement(WebDriverBy::XPath("(//input[@name='ph1'])"))->

↪→ sendKeys(811);

32 $driver->findElement(WebDriverBy::XPath("(//input[@name='ph2'])"))->

↪→ sendKeys(4717511);

33 $driver->findElement(WebDriverBy::XPath("(//input[@name='cardnum'])"

↪→))->sendKeys('4234561254368799D');

34 $driver->findElement(WebDriverBy::XPath("(//input[@name='CVC'])"))->

↪→ sendKeys(567);

35 $driver->findElement(WebDriverBy::XPath("(//input[@name='Exp1'])"))

↪→ ->sendKeys(88);

36 $driver->findElement(WebDriverBy::XPath("(//input[@name='Exp2'])"))

↪→ ->sendKeys(22);

37 $driver->findElement(WebDriverBy::name('checkout'))->click(); }

93

	Abstract
	Acknowledgements
	Introduction
	Problem statement
	Thesis overview
	Literature Review

	Methodology
	Procedures
	Web site creation
	Model creation
	Path expressions
	Fault seeding
	Participants
	Testing the web application

	Testing techniques
	WB1
	WB2
	US1
	US2
	Hybrid approach HYB (WB2+US1)

	Data Collection Tools
	PHPUnit
	Selenium
	xDebug

	Data Analysis
	User Data
	Test suite creation

	Discussion
	Testing techniques results
	WB1 testing technique
	WB2 testing technique
	US1 testing technique
	US2 testing technique
	HYB (WB2 + US1) technique

	Testing techniques metrics
	Test suite coverage metric
	Code coverage metric
	Fault detection metric

	Scalability
	Threats to validity

	Future Work
	Conclusion
	Appendices
	List of seeded faults
	Web application UML model
	User session source code

