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Abstract

The poverty rate among veterans in US has increased over the past decade, according

to the U.S. Department of Veterans Affairs (2015). Thus, it is crucial to veterans

who live below the poverty level to get sufficient benefit grants. A study on prudently

managing health benefit grants for veterans may be helpful for government and policy-

makers making appropriate decisions and investments. The purpose of this research is

to find an underlying group structure for the veterans’ benefit grants dataset and then

estimate veterans’ benefit grants sought using incomplete data. The generalized linear

mixed cluster-weighted model based on mixture models is carried out by grouping

similar observations to the same cluster. Finally, the estimates of veterans’ benefit

grants sought will provide reference for future public policies.

iv



Acknowledgements

Firstly, I would like to express sincere appreciation to my supervisor, Dr. Paul

McNicholas, for his continuous encouragements, guidance and support, without which

this work at McMaster University would not be possible. It is my pleasure to study

and work under his supervision.

Secondly, I would like to thank my co-supervisor, Dr. Petar Jevtic, for his support

and suggestions towards the completion of my thesis, and Dr. Tatjana Milijkovic, for

suggesting this interesting data on veterans’ health benefit grants.

I also would like to thank my committee members Dr. Shui Feng and Dr. Peter

Macdonald for accepting to be my thesis examiners and for their invaluable discussion,

ideas, and feedback.

Then I would like to thank Dr. Sunny Wang, for her recommendation, encourage-

ment and support all the time, with which I gain more confidence to keep challenging

and improving myself.

I would like to thank my friends, classmates and professors I met at McMaster

University and my roommates in Hamilton for their encouragement and assistance.

Finally, I want to thank my family, especially my parents, for all their love, care,

and understanding. Without their support, I am not able to have this valuable

experience studying in Canada.

v



Contents

Abstract iv

Acknowledgements v

1 Introduction 1

2 Data Structure 3

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Monthly Income across Different Groups . . . . . . . . . . . . . . . . 6

2.3 Benefit Grants with Monthly Income across Different Groups . . . . . 7

3 Methodology 10

3.1 Finite Mixture Models . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Cluster-Weighted Model (CWM) . . . . . . . . . . . . . . . . . . . . 11

3.3 Generalized Linear Mixed CWMs . . . . . . . . . . . . . . . . . . . . 12

3.4 Likelihood and Parameter Estimation . . . . . . . . . . . . . . . . . . 14

3.4.1 EM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.2 EM Convergence Criterion . . . . . . . . . . . . . . . . . . . . 19

3.5 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

vi



4 Analysis of Veterans’ Benefits Data 22

4.1 Generalized Linear Mixed CWMs . . . . . . . . . . . . . . . . . . . . 22

4.2 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Conclusions and Future Work 31

Bibliography 33

vii



List of Figures

2.1 Boxplots illustrating the monthly income for each value of the variables

Spouse, Widow and Gender, respectively. . . . . . . . . . . . . . . . . 6

2.2 Boxplot illustrating the monthly income in each age group. . . . . . . 7

2.3 Boxplots illustrating the benefit grants for each value of the variables

Spouse, Widow and Gender, respectively. . . . . . . . . . . . . . . . . 8

2.4 Boxplot illustrating the benefit grants in each age group. . . . . . . . 9

4.1 Boxplots illustrating the difference between clusters in age, monthly

income and benefit grants, respectively. . . . . . . . . . . . . . . . . . 24

4.2 Boxplots illustrating the difference between clusters in monthly income

(left) and benefit grants (right) with respect to the variable Gender. . 25

4.3 Boxplots illustrating the difference between clusters in monthly income

(left) and benefit grants (right) with respect to the variables Spouse

and Widow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Boxplots illustrating the comparisons between true (left) and expected

(right) benefit grants for the uncensored and censored groups. . . . . 27

4.5 Boxplots illustrating the comparisons between true (left) and expected

(right) benefit grants in each cluster. . . . . . . . . . . . . . . . . . . 27

viii



4.6 Boxplot illustrating the comparisons between expected benefit grants

for censored observations in each cluster. . . . . . . . . . . . . . . . . 28

4.7 Boxplots illustrating the comparisons between true (left) and expected

(right) benefit grants with respect to the variable Gender in each cluster. 29

4.8 Boxplots illustrating the comparisons between true (left) and expected

(right) benefit grants with respect to the variable Spouse and Widow

in each cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

ix



Chapter 1

Introduction

As of the end of 2010, the US Census Bureau recorded that the percentage of living

veterans has increased to 7.3% of the total population (U.S. Department of Veterans

Affairs, 2010). The poverty rate among veterans has also increased over the past

decade. This is evidenced by Essenburg and Hanson (2014), where they stated that

veterans poverty increased nearly 1 percentage point from 2007 to 2009, to 6.3 percent.

There are a number of federal and state benefit programs and services offered by

the Department of Veterans Affairs (DVA) for eligible veterans who may be disabled

or have low income after serving in the active military service. With an increasing

number of benefit programs and services implemented, the number of uninsured veter-

ans has decreased in recent years. Thus, appropriate benefit programs are important

for veterans, especially for those who live below the poverty level.

In ND, benefit programs are carried out under the supervision of the Administra-

tive Committee of Veterans Affairs (ACOVA). Limited funds are available to eligible

veterans and their families. To manage the funds well, thereby helping government

make reasonable decisions, the problem of evaluating the level of benefit grants for
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veterans in ND becomes very crucial. This thesis extends a statistical approach, the

generalized linear mixed cluster-weighted model (CWM), to deal with the missingness

(right-censoring) in the data. The aim of this research is to estimate the benefit needs

for veterans in ND, so that more accurate assessment of future needs is available.

The data collected on health benefit grants of applications include right censored

observations. More details about how censoring is defined and its related topics can be

found in Miller (1976); Koul et al. (1981); Le (1997); Guiahi (2001); Miller Jr (2011).

In the financial assessments of benefit grants, the amount of payments are defined to

be right censored if the benefit grants required exceed the amount limited. Some works

that has used expectation-maximization (EM) algorithm (Dempster et al., 1977) to

deal with censoring can be found in Chauveau (1995); Qin et al. (2011); Park and

Lee (2012).

This thesis is organized as follows. Chapter 2 gives a brief overview of the data set.

In Chapter 3, a family of CWMs and algorithms for parameter estimation as well as

model selection is presented. Model analysis and discussions are given in Chapter 4.

This thesis ends by conclusions and future work in Chapter 5.

2



Chapter 2

Data Structure

2.1 Background

The data were provided by ND DVA on dental benefits grants from the year 2000 to

2010. Besides dental benefits, there are other categories of medical benefits offered:

dentures, hearing, optical, and special. However, only a small amount of data were

collected for these four categories and hence they are not considered herein.

Benefit grants are only available for a capped or a limited amount, which has

been changed at different times. From the year 2000 to 2010, the dental benefit cap

experienced several adjustments. The benefit cap was $500 by the end of 2004, while

it was increased to $750 as of early January of 2006. By November of 2007, it was

increased to $1000.

For any application, if the amount claimed exceeds the present benefit limit, then

the applicant will only be reimbursed an amount corresponding to the benefit limit.

In this situation, the benefit grants for this application will be recorded as capped, i.e.,

right-censored. The amounts of benefits granted for each application were adjusted for

3
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inflation using the Consumer Price Index published by the Bureau of Labor Statistics,

US Department of Labor (Miljkovic and Barabanov, 2015).

The data set consists of 575 observations with 311 uncensored and 264 censored.

There are 9 variables considered in total, with their descriptions listed in Table 2.1.

Table 2.1: Description of variables in the ND DVA data set with the corresponding
field values in the database.

Variable Name Description

ApplicantTBLPK Applicant’s unique non-identifiable ID

InfPaid The amount of benefits granted adjusted by inflation

CencID Uncensored benefit grants (0) / Censored benefit grants (1)

AppYear Application year (2000-2010)

Age Applicant’s age

Gender Male (0) / Female (1)

IncomeLevel Applicant’s monthly income

Spouse Primary beneficiary-veteran (0) / Spouse of a living veteran (1)

Widow Not widowed (0) / Widowed-widow or widower (1)

Each applicant can submit more than one application if they have several dental

appointments. There are 368 different applicants. The variables Spouse and Widow

both describe the status of an individual receiving benefit grants. The spouse of a

veteran can only use the grant if the veteran is alive.

Of a total of 368 applicants, 98.0% have monthly income less than $1400 and the

monthly income of 46.5% applicants is below $800. The highest monthly income is

$2600. In all, one female and 33 male applicants are reported to have zero monthly

4
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income.

The range of applicants’ age is from 23 to 94 years, and divided into five age groups.

Table 2.2 gives the number of applications classified in each of the age groups.

Table 2.2: The number of applications classified in each of the age groups.

Age [23, 50) [50, 60) [60, 70) [70, 80) [80, 94]

Frequency 74 210 118 117 56

Notably, 87.1% applications came from applicants whose age is greater than or

equal to 50. There are only three applicants over 90 years old and six applicants

under 40.

The applicants include 287 males and 81 females. Table 2.3 gives the partition of

applicants with respect to the variables Spouse, Widow, and Gender.

Table 2.3: The number of applications are partitioned with respect to the variables
Spouse, Widow, and Gender.

Not widowed (0) Widowed (1)

Total Male (0) Female (1) Total Male (0) Female (1)

Veteran (0) 309 283 26 33 2 31

Spouse (1) 26 2 24 0 0 0

Almost all of the applicants indicated as either spouses of living veterans or wid-

owed are female. There are 24 females among 26 applicants who are spouses of living

veterans and 31 widows among 33 widowed applicants.

5
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2.2 Monthly Income across Different Groups

In Figure 2.1, it is observed that the monthly income of applicants who are spouses of

living veterans is higher than that of the veterans. The monthly income of widowed

applicants is lower than those are not widowed. Further, female applicants have a

higher average monthly income, whereas monthly income of the a few male applicants

is relatively high.

Figure 2.1: Boxplots illustrating the monthly income for each value of the variables
Spouse, Widow and Gender, respectively.

The plot of Figure 2.2 shows that applicants whose age is greater or equal to 80

6
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achieve the highest average as well as the highest median monthly income. Applicants

in the age group between 60 to 70 have the second highest average and also median

monthly income.

Figure 2.2: Boxplot illustrating the monthly income in each age group.

2.3 Benefit Grants with Monthly Income across

Different Groups

The benefit grants change differently along the monthly income for applicants across

different groups. In Figure 2.3, it is observed that the average benefit grants are

generally the same for applicants who are veterans or who are spouses of living vet-

erans. The same situation occurs between male and female applicants. However, a

few female applicants, widowed applicants or those who are spouses of living veterans

sought relatively high benefit grants. In addition, it is found that widowed applicants

have low monthly income as well as low benefit grants sought.

7
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Figure 2.3: Boxplots illustrating the benefit grants for each value of the variables
Spouse, Widow and Gender, respectively.

The plot of Figure 2.4 shows the second highest monthly income applicants in the

age group between 60 to 70, which is observed from Figure 2.2, sought the highest

benefit grants, while applicants over 80 with the highest monthly income sought

relatively low benefit grants.

8
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Figure 2.4: Boxplot illustrating the benefit grants in each age group.
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Chapter 3

Methodology

3.1 Finite Mixture Models

Finite mixture models are considered as a powerful tool for clustering and classifi-

cation in recent decades (McLachlan and Peel, 2000; McNicholas, 2016a). In direct

applications of finite mixture models (see Titterington et al., 1985), the objective is to

model the data as a mixture probability distribution, with each mixture component

corresponding to a cluster. However, some have argued that it is not always the case

that a component corresponds to a cluster (see McNicholas, 2016a,b).

Let X be a random vector, which comes from a population with G subgroups.

Then the density function of X can be written

f(x|ϑ) =
G∑

g=1

πgfg(x|θg), (3.1)

where πg > 0 are called the mixing proportions, such that
∑G

g=1 πg = 1, fg(x|θg)

is the gth component density, and ϑ = (π1, π2, . . . , πG,θ1,θ2, . . . ,θG) denotes the

10



M.Sc. Thesis - Xiaoying Deng McMaster - Mathematics and Statistics

vector of all parameters.

3.2 Cluster-Weighted Model (CWM)

Consider data of the form (x1, y1), . . . , (xn, yn) so that each observation is a realization

of the pair (X, Y ) defined on some sample space Ω, where X is a vector of covariates

and Y is a response variable. Assume that Ω can be partitioned into G groups,

Ω1,Ω2, . . . ,ΩG. Extended from traditional finite mixture models, the CWM is a

flexible family of mixture models for fitting the joint distribution p(x, y) of a random

vector (X, Y ) given by

p(x, y) =
G∑

g=1

p(y|x,Ωg)p(x|Ωg)πg, (3.2)

where πg > 0,
∑G

g=1 πg = 1, p(y|x, ·) is the conditional distribution of Y given X and

p(x|·) is the marginal distribution of X.

The original formulation of the CWM dates back to the linear Gaussian CWM

(Gershenfeld, 1997), where (X, Y ) is assumed to be real-valued, both Y |X and X

follow a Gaussian distribution, and the relationship between Y and X is linear. Wedel

(2002) called CWMs saturated mixture regression models. Ingrassia et al. (2012b)

proposed that the model is considered as nested in the linear Gaussian CWM when

both p(y|x,Ωg) and p(x|Ωg) are Gaussian. Moreover, Ingrassia et al. (2012a) proposed

the Student-t CWM under the assumptions that both Y |X and X are t-distributed.

Soon after, Ingrassia et al. (2014) defined a family of twelve CMWs, nested in the

linear t-CWM, for model-based clustering. Subedi et al. (2013) developed a CWM

11
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analogue of the mixture of factor analyzers model and this, in turn, permits high-

dimensional data. The polynomial Gaussian CWM was then proposed by Punzo

(2014) to model a nonlinear distribution on Y |X. Building on the work on Punzo and

McNicholas (2016), Punzo and McNicholas (2017) consider a contaminated version

of the CWM.

3.3 Generalized Linear Mixed CWMs

An extension is proposed by Ingrassia et al. (2015), where the conditional distribution

Y |X is assumed to be the exponential family and the covariates X are assumed to

be of mixed-type (continuous and finite discrete). In this case, a Gaussian distribu-

tion is used for continuous covariates in the model and the product of multinomial

distributions is used for the finite discrete covariates.

Let U be a p-variate vector of continuous covariates and V be a q-variate vector

of finite discrete covariates with levels c1, . . . , cq. The vector of covariates X = (U,V)

is defined in d dimensions with d = p+ q. The joint probability can be written as

p(x, y;ϑ) =
G∑

g=1

q(y|x; ξg)p(u;ψ∗g)p(v;ψ∗∗g )πg, (3.3)

where q(y|x; ξg) is the conditional distribution of Y given X with parameter ξg,

p(u;ψ∗g) is the marginal distribution of U with parameterψ∗g, p(v;ψ∗∗g ) is the marginal

distribution of V with parameter ψ∗∗g , πg are as previously defined and ϑ denotes the

set of all parameters in the model.

The response variable Y is assumed to be generated from the exponential family in

a generalized linear model, more related details can be found in McCullagh and Nelder

12
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(1989); Wedel and DeSarbo (1995); Dobson and Barnett (2008). For each group Ωg,

the conditional distribution q(y|x; ξg) is modeled with the parameter vector βg and

an additional parameter λg, which is given by

q(y|x; ξg) = q(y|x;βg, λg) = exp
{yη(x;βg)− b[η(x;βg)]

a(λg)
+ c(y, λg)

}
, (3.4)

where a(·), b(·), and c(·) are specified functions satisfying E(Y ) = µ = b′[η(x;βg)]

and Var(Y ) = b′′[η(x;βg)]a(λg). In addition, a(λg) > 0, and η(x;βg) = ηg = βgx

is the canonical function. There is a monotone and differentiable link function g(·)

providing the relationship between a linear combination of unknown parameters βg

and the expected value µg, i.e. ηg = g(µg). For more details about modeling the con-

ditional distributions of discrete responses, see Ingrassia et al. (2015). In this thesis,

the continuous response variable Y is assumed to be generated from the Gaussian

distribution.

Let y1 and y2 denote the vectors of uncensored and censored observations, respec-

tively. Assuming ỹ2 is the vector of unknown values which are censored to vector y2,

X is considered to be partitioned into X = (X1
X2

) corresponding to uncensored and

censored observations. Under the assumption of the Gaussian distribution, and that

Y |X ∼ N(Xβg, σ
2
g), then the conditional density q(y|x;βg, σg) can be written as

(2π)−n/2(σ2)−n/2 exp

{
−
[(y1 −X1βg)

′(y1 −X1βg) + (ỹ2 −X2βg)
′(ỹ2 −X2βg)]

2σ2

}
.

(3.5)

With respect to a vector of continuous covariates U following the Gaussian distri-

bution, the density function p(u;ψ∗g) is modeled with the mean µg and covariance

13
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matrix Σg, which is thus given by

p(u;ψ∗g) = φ(u;µg,Σg) =
1

(2π)p/2|Σg|1/2

{
exp

(
− 1

2
(u− µg)

>Σ−1g (u− µg)
)}

. (3.6)

The density function p(v;ψ∗∗g ) for a vector of q finite discrete covariates V is given by

the product of q conditionally independent multinomial distributions of parameters

αgr, where αgr = (αgr1, . . . , αgrcr)
′, αgrs > 0 and

∑cr
s=1 αgrs = 1, r = 1, . . . , q. For

each observation, only one of the probabilities αgrs in αgr is valid. The density

function p(v;ψ∗∗g ) can then be expressed as p(v;αg), where αg = (α′g1, . . . ,α
′
gq)
′, see

Ingrassia et al. (2015). The generalized linear mixed CWM can be written in the

form

p(x, y;ϑ) =
G∑

g=1

q(y|x;βg, λg)φ(u;µg,Σg)p(v;αg)πg, (3.7)

where q(y|x;βg, λg), φ(u;µg,Σg), p(v;αg) are density functions as defined above.

3.4 Likelihood and Parameter Estimation

The EM algorithm is used for parameter and incomplete data estimation. In this

thesis, both the labels of observations and the censored data are considered as incom-

plete data to estimate. The EM algorithm iterates between two steps: an expectation

step (E-step) and an maximization step (M-step). It is achieved as follows: consider

n independent observations (x1, y1), . . . , (xn, yn). Then, the likelihood function can

be written as

L(ϑ) =
n∏

i=1

p(xi, yi,ϑ) =
n∏

i=1

G∑
g=1

q(yi|xi;βg, λg)φ(ui;µg,Σg)p(vi;αg)πg. (3.8)

14
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Define an indicator vector zi = (zi1, . . . , ziG)′ as the component membership of

observation i, where

zig =


1, if (xi, yi) comes from Ωg,

0, otherwise.

(3.9)

In this case, the likelihood function Lc for complete-data {xi, yi, zi; i = 1, . . . , n}

can be written as

Lc(ϑ) =
n∏

i=1

G∏
g=1

[q(yi|xi;βg, λg)φ(ui;µg,Σg)p(vi;αg)πg]
zig , (3.10)

and the complete-data log-likelihood lc is given by

lc(ϑ) =
n∏

i=1

G∏
g=1

ln[q(yi|xi;βg, λg)φ(ui;µg,Σg)p(vi;αg)πg]
zig

=
n∑

i=1

G∑
g=1

zig[ln q(yi|xi;βg, λg) + lnφ(ui;µg,Σg) + ln p(vi;αg) + ln πg]. (3.11)

The EM algorithm implemented is to estimate parameters and unknown obser-

vations zig. At the start of the EM algorithm, all parameters, the values of com-

ponent membership and the censored data need to be initialized. The initialization

of all parameters is denoted by ϑ(0). The EM algorithm iteratively alternates be-

tween E and M steps until parameter estimates are converged. In each (k + 1)th

iteration, the E-step calculates the expected value of lc(ϑ) given the observed data

(x1, y1), . . . , (xn, yn) and parameter estimates ϑ(k) from the previous kth iteration.

The conditional expectation of missing data zig is defined by a new term τig, thus,

15
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given by

Eϑ(k) [zig|(xi, yi)] = τ
(k)
ig

:=
q(yi|xi;β

(k)
g , λ

(k)
g )φ(ui;µ

(k)
g ,Σ(k)

g )p(vi;α
(k)
g )π

(k)
g

p(xi, yi;ϑ
(k))

. (3.12)

In the (k+ 1)th iteration of the M-step, it maximizes the conditional expectation

of lc(ϑ), i.e., Q(ϑ;ϑ(k)), with respect to ϑ, and obtains the new parameter estimates

ϑ(k+1). Now, Q(ϑ;ϑ(k)) is written as

Q(ϑ;ϑ(k)) =
n∑

i=1

G∑
g=1

τ
(k)
ig ln πg +

n∑
i=1

G∑
g=1

τ
(k)
ig ln q(yi|xi;βg, λg)

+
n∑

i=1

G∑
g=1

τ
(k)
ig lnφ(ui;µg,Σg) +

n∑
i=1

G∑
g=1

τ
(k)
ig ln p(vi;αg). (3.13)

The updates for πg, µg, Σg and αgr can be computed by

π(k+1)
g =

∑n
i=1 τ

(k)
ig

n
, (3.14)

µ(k+1)
g =

∑n
i=1 τ

(k)
ig ui∑n

i=1 τ
(k)
ig

, (3.15)

Σ(k+1)
g =

∑n
i=1 τ

(k)
ig (ui − µg)

T (ui − µg)∑n
i=1 τ

(k)
ig

, (3.16)

α(k+1)
gr =

∑n
i=1 τ

(k)
ig v

rs
i∑n

i=1 τ
(k)
ig

. (3.17)

The updates for βg and λg in (3.13) are computed in the following. Under the
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conditional Gaussian distribution in (3.5), the conditional density function for each

observation q(yi|xi;βg, λg) is given by

q(yi|xi;βg, σg) = (2πσ2
g)−1/2 exp

{
−

[(yi − xiβg)
2]

2σ2
g

}
, (3.18)

and the complete-data log-likelihood of the conditional density function is

n∑
i=1

G∑
g=1

τ
(k)
ig ln q(yi|xi;βg, λg)

=
n∑

i=1

G∑
g=1

τ
(k)
ig

[
− 1

2
ln(2πσ2

g)−
(yi − xiβg)

2

2σ2
g

]

=
n∑

i=1

τ
(k)
ig

[
− 1

2
ln(2πσ2

g)

]
−
∑n

i=1 τ
(k)
ig (yi − xiβg)

2

2σ2
g

=
n∑

i=1

τ
(k)
ig

[
− 1

2
ln(2πσ2

g)

]
−
∑n

i=1 τ
(k)
ig (y2i − 2β′gx

′
iyi + β′gx

′
ixiβg)

2σ2
g

. (3.19)

Therefore, the conditional expectation of the complete-data log-likelihood function

defined as the part of Q-function in (3.13), is given by

n∑
i=1

G∑
g=1

τ
(k)
ig

[
− 1

2
ln(2πσ2

g)

]
−
∑n

i=1 τ
(k)
ig (ỹ2i − 2β′gx

′
iỹi + β′gx

′
ixiβg)

2σ2
g

, (3.20)

where ỹi and ỹ2i be the vectors of the expected values for the observations yi and y2i ,

which are defined as

ỹi =


yi, if yi are uncensored (yi ∈ y1)

A, if yi are censored (yi ∈ y2)

, (3.21)
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and

ỹ2i =


y2i , if yi are uncensored (yi ∈ y1)

B, if yi are censored (yi ∈ y2)

. (3.22)

Here, A and B respectively indicate the first and the second moments of the

censored observations y2, conditional on the non-censored observations and current

parameter estimates. Note that A and B are expressed as the weighted sums of

Ag and Bg, respectively. Given the observed data and the current estimates of the

parameters, the E-step is to calculate A and B written as

A = E(Y2|y1, τ g,βg, σg) =
G∑

g=1

τ gAg, (3.23)

B = E(Y′2Y2|y1, τ g,βg, σg) =
G∑

g=1

τ gBg, (3.24)

where τ g = (τ1g, τ2g, . . . , τng) are defined as the weighted parameters, such that∑G
g=1 τ g = 1, each gth component Ag and Bg are given by

Ag = X2βg + σgf
(y2 −X2βg

σg

)
, (3.25)

Bg = ‖X2β‖2 + σg(X2βg + z)′f
(y2 −X2βg

σg

)
+ n2σ

2
g , (3.26)

where f(x) = ϕ(x)/Φ(x),

φ(x) =
1√
2π
e−x

2/2, Φ(x) =

∫ ∞
x

ϕ(t)dt,

and ‖ · ‖ is the Euclidean norm.
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To maximize (3.20) in the M-step of (3.13) given the current values A and B with

respect to βg and σg, and it is equivalent to independently maximize each of the G

expressions. The updates for βg and σ2
g are given by

β(k+1)
g =

∑n
i=1 τ

(k)
ig (x′iỹi)∑n

i=1 τ
(k)
ig (x′ixi)

, (3.27)

(σ2
g)(k+1) =

∑n
i=1 τ

(k)
ig (ỹ2i − 2β′gx

′
iỹi + β′gx

′
ixiβg)∑n

i=1 τ
(k)
ig

. (3.28)

3.4.1 EM Initialization

Choosing the starting values for the EM algorithm is an important procedure because

it could heavily affect the convergence of the EM algorithm. The earlier work done

for setting initial values can be found in Biernacki et al. (2003); Karlis and Xekalaki

(2003). In this thesis, a standard approach used is to generate a random initialization

of τ
(0)
i = (τ

(0)
i1 , . . . , τ

(0)
iG )′, i = 1, . . . , n, and values τ

(0)
i1 , . . . , τ

(0)
iG generated are summing

to one. This approach is called random soft initialization. Finally, the vector τ̂
(0)
i

which gives the highest observed-data log-likelihood among 10 repeated trials will be

selected.

3.4.2 EM Convergence Criterion

The Aitken acceleration (Aitken, 1926) at the kth iteration is given by

a(k) =
l(k+1) − l(k)

l(k) − l(k−1)
, (3.29)
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where l(k) is the log-likelihood value from the kth iteration. The Aitken acceleration

used is to get the asymptotic estimate of the log-likelihood in the (k + 1)th iteration

given by Böhning et al. (1994) as

l(k+1)
∞ = l(k) +

1

1− a(k)
(l(k+1) − l(k)). (3.30)

Based on this, Lindsay (1995) proposed that the convergence of the EM algorithm

is considered to be reached when the difference between the log-likelihood and its

estimated asymptotic value is sufficiently small, which is written by

l(k+1)
∞ − l(k+1) < ε, (3.31)

where ε is small positive real number. McNicholas et al. (2010) suggested that the

algorithm can be stopped when

l(k+1)
∞ − l(k) < ε, (3.32)

provided the difference is positive.

3.5 Model Selection

The criterion used for model selection is the Bayesian information criterion (BIC)

(Schwarz et al., 1978), which does not underestimate the number of components in

a mixture model (Leroux et al., 1992), and also consistently estimates the number of

mixture components under certain regularity conditions (Keribin, 2000).
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The form of the BIC is given by

BIC = 2lc(ϑ̂)− ρ log n, (3.33)

where lc(ϑ̂) is the maximized log-likelihood, ϑ̂ is the maximum likelihood estimate

of ϑ, ρ is the number of free parameters needed to be estimated, and n denotes the

number of observations. The model with the highest BIC is chosen as the best model

to fit the data.
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Chapter 4

Analysis of Veterans’ Benefits Data

4.1 Generalized Linear Mixed CWMs

The generalized linear mixed CWM is implemented in the R package flexCWM (Mazza

et al., 2017) for grouping unlabelled observations into clusters. To deal with the in-

complete (right-censored) data in the veterans’ benefits dataset, the package flexCWM

has been modified and the expected values of benefit grants are computed by using

the EM algorithm in Section 3.4 . With respect to the continuous response variable,

its conditional distribution is assumed to be Gaussian. Mixture components from

G = 1, . . . , 6 have been tried. To avoid convergence to a local maximum, the same

procedure for model selection was repeated 10 times. The BIC is used to select the

best model.

The best model selected consists of three components. The log-likelihood of the

model is computed to be −11988 and the value of BIC computed is −24630. One

component is considered to be identified as one cluster. Table 4.1 gives the details of

the difference between clusters.
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Table 4.1: The basic information in the discrete variables CencID, Gender, Spouse
and Widow for each cluster.

cluster 1 cluster 2 cluster 3

Uncensored (0) 131 (51.0%) 116 (57.4%) 64 (55.2%)

Censored (1) 126 (49.0%) 86 (42.6%) 52 (44.8%)

Male (0) 257 (100%) 187 (92.6%) 2 (1.7%)

Female (1) 0 (0%) 15 (7.4%) 114 (98.3%)

Primary beneficiary(veteran) (0) 257 (100%) 201 (99.5%) 73 (62.9%)

Spouse (1) 0 (0%) 1 (0.5%) 43 (37.1%)

Not widowed (0) 255 (99.2%) 202 (100%) 68 (58.6%)

Widowed (1) 2 (0.8%) 0 (0%) 48 (41.4%)

Total 257 (44.7%) 202 (35.1%) 116 (20.2%)

It is observed that there are three clusters generated and each cluster includes

257, 202, 116 observations, respectively. Over 40% of each cluster is made up of

censored observations, with cluster 1 containing the most. The clusters 1 and 3 can

be respectively considered as the male and female group as cluster 1 are all males and

cluster 3 consists of 98.3% females. Cluster 2 is also predominantly male (92.6%).

Nearly all applicants grouped in clusters 1 and 2 are not widowed but are veterans. In

addition, it is also observed that applicants who identify as spouses of living veterans

or widowed are almost females in cluster 3.

Figure 4.1 shows further study on discovering the difference between clusters with

respect to age, monthly income and benefit grants. The solid line and the dashed line

in each boxplot represent the median and the mean, respectively.
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Figure 4.1: Boxplots illustrating the difference between clusters in age, monthly in-
come and benefit grants, respectively.

It is observed that the female group (cluster 3) has the highest monthly income

but the lowest benefit grants sought, which are observed to have a small age difference

with the male group indicated as cluster 1. The average monthly income of the male

group is slightly higher than that in the female group, and additionally, the male

group is asking for the highest benefit grants among three clusters. In cluster 2, which

is almost entirely male, applications came from the youngest applicants and 27.2%

applications reported zero monthly income, which attributes the monthly income to
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be the lowest among three clusters. In addition, applicants in cluster 2 with the

youngest age are likely to ask for high benefit grants.

The two plots of Figure 4.2 show that males grouped in cluster 1 have relatively

high monthly income and benefit grants sought compared to those in cluster 2, while

females grouped in cluster 3 also have relatively high monthly income but lower benefit

grants than those in cluster 2.

Figure 4.2: Boxplots illustrating the difference between clusters in monthly income
(left) and benefit grants (right) with respect to the variable Gender.

In Figure 4.3, it is observed that applicants who are spouses of living veterans or

who are not windowed have higher monthly income as well as benefit grants sought.
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Figure 4.3: Boxplots illustrating the difference between clusters in monthly income
(left) and benefit grants (right) with respect to the variables Spouse and Widow.

4.2 Model Evaluation

The expected benefit grants sought under the model are computed based on (3.25)

and (3.23) in Section 3.4. Figure 4.4 shows there is a big difference between the true

and the expected benefit grants sought and all censored observations are expected to

have higher benefit grants than before. The solid line and the dashed line in each

boxplot respectively represent the median and the mean of the benefit grants.
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Figure 4.4: Boxplots illustrating the comparisons between true (left) and expected
(right) benefit grants for the uncensored and censored groups.

Figure 4.5 shows that the difference between the true and the expected benefit

grants with respect to each cluster. It is observed that the female group cluster 3 has

the largest increase in benefit grants sought.

Figure 4.5: Boxplots illustrating the comparisons between true (left) and expected
(right) benefit grants in each cluster.

Furthermore, the benefit grants sought for the female group cluster 3 are expected

27



M.Sc. Thesis - Xiaoying Deng McMaster - Mathematics and Statistics

to have the highest average as well as the median by only considering the censored ob-

servations, which is followed by cluster 2 which includes a majority of male applicants

and the male group cluster 1 (Figure 4.6).

Figure 4.6: Boxplot illustrating the comparisons between expected benefit grants for
censored observations in each cluster.

In addition, the two plots of Figure 4.7 show that the benefit grants sought of

females are expected to increase more than males, which leads to a high benefit

grants increase for the female group cluster 3.
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Figure 4.7: Boxplots illustrating the comparisons between true (left) and expected
(right) benefit grants with respect to the variable Gender in each cluster.

Furthermore, in Figure 4.8, it is observed that the applicants who are spouses of

living veterans are expected to be higher than veterans and widowed female applicants

have relatively low benefit grants than those are not widowed.

Compared to the total amount of benefit grants observed, $333,472, the total

amount of benefit grants is expected to be $390,172.2. Therefore, the government

may need to provide more funds for benefit programs. The increase of benefit grants

($56,799.2) are expected to be attributed $23,596.4 to cluster 1, $19,238.1 to cluster

2 and $13,865.7 to cluster 3.
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Figure 4.8: Boxplots illustrating the comparisons between true (left) and expected
(right) benefit grants with respect to the variable Spouse and Widow in each cluster.
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Chapter 5

Conclusions and Future Work

The veterans’ benefits data are considered to be classified into three groups by using

the generalized linear mixed CWM under the Gaussian distribution with censored

data. One group includes male veterans who are almost all not widowed, one group

consists of non-widowed veterans who are mostly male. Another group is made up of

almost all female applicants and contains nearly all of the applicants who are spouses

of living veterans or widows. It is observed that this last (i.e., female) group has

the highest monthly income but the lowest benefit grants sought. The male group

with relatively high monthly income has the highest benefit grants sought. The group

including both female and male applicants (i.e., mostly male) has the lowest monthly

income, as applicants recorded as zero monthly income are included therein.

In general, the benefit grants sought, as estimated through the EM algorithm, are

expected to be larger than the observed values for the right-censored observations.

The increase in benefit grants sought for female applicants is greater than males, as it

is observed that the increase in benefit grants sought for cluster 3 (i.e., female group)

is the largest. In addition, the benefit grants sought for applicants who are spouses of
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living veterans are still expected to be higher than veterans, and those for applicants

who are not widowed are also expected to be higher than those widowed.

Besides, the application year also needs to be taken as an important consideration

if the benefit grants for applicants are expected to be increased or not, as the money

available may vary from year to year. In addition to the increasing benefit grants

sought for applicants with incomplete (right-censored) data, those with uncensored

benefit grants sought may also be considered to need more benefit grants, because it

is possible that applicants asking for low benefit grants actually require more. Further

analysis of these applicants — and all categories of applicants, in fact — is necessary

to gain a full understanding of the veterans’ benefits landscape.

In future work, besides the traditional linear CWM approach based on the Gaus-

sian assumption, some linear CWMs based on Student’s t or Gamma distributions

will be taken into consideration. Further, a polynomial Gaussian CWM could also be

tried. To deal with outliers, the use of contaminated CWM can be explored.
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