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Lay Abstract

We study an algebraic object that describes intersections of certain geometric spaces.
An algorithm or formula for computing this object for a given geometric space is not
known in general. We provide a technique for computing this algebraic object in a
special case.
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Abstract

In this thesis, we define and describe the rings of conditions of rank 1 spherical ho-
mogeneous spaces G/H . A procedure for computing the ring of conditions of a spheri-
cal homogeneous space in general is not known. For the special case of rank 1 spherical
homogeneous spaces, we give a proof of the unpublished result of A. Khovanskii that
the ring of conditions is isomorphic to the cohomology ring of a certain compactification
of G/H . We illustrate this result through the fully worked example of An \ {0}.
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Chapter 1

Introduction

The ring of conditions has its context within the larger tradition of enumerative geom-

etry and Schubert calculus. For a given geometric space, one can ask how many objects

within it satisfy a certain condition or set of conditions. A classic example of such a

question was posed by Hermann Schubert, who asked: How many lines in C3 inter-

sect four given lines? Such a question is representative of more general problems in

enumerative geometry, which ask how many points exist in a particular intersection.

In simple cases, the number of geometric objects satisfying certain conditions can be

computed using grade school mathematics. More complex problems, however, require

sophisticated techniques. Chasles, for example, constructs a formal algebra of condi-

tions on conics [17]. A central idea of his work is that, with this language, one may

express certain conditions as linear combinations of others, i.e., as being generated by a

set of more basic conditions. Then the objects which satisfy the basic conditions also

satisfy the generated conditions.

The ring of conditions is an instance of this algebraic approach to intersection theory

and enumerative geometry. An important observation is that the ring product is not al-

ways well-defined; however, in [ [11] Theorem 6.3], De Concini and Procesi prove that

the product structure is defined for a spherical homogeneous space. A procedure for

actually computing this ring for a given spherical homogeneous space is not known in

general. Partial results exist; for example, in [22], Strickland computes the ring of condi-
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tions of an adjoint semisimple algebraic group G over the field C of complex numbers,

considered as a G×G-homogeneous space. In this thesis, we consider spherical homo-

geneous spaces G/H for a connected reductive group G and closed subgroup H ⊆ G.

The intended contribution of this thesis is to record an unpublished observation by

Askold Khovanskii: namely, that the ring of conditions of certain spherical homoge-

neous spaces is isomorphic to the cohomology ring of a certain compactification of that

space. This leads to a conjecture about rank 1 spherical varieties, where the situation is

greatly simplified.

The structure of the thesis is as follows. In Chapter 2, we provide an overview of

fundamental objects from algebraic geometry and provide the background necessary

for our discussion of spherical geometry. In Chapter 3, we illustrate the definitions in

the case of the rank 1 spherical homogeneous space An \ {0}. Chapter 4 introduces the

ring of conditions, as well as its connection to cohomology. In Chapter 5, we present

an observation of Khovanskii, as mentioned above. We also provide a fully worked out

example by computing the ring of conditions of An \ {0}.
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Chapter 2

Preliminaries

This chapter provides the background for the remainder of this thesis. In Section 2.1,

we introduce relevant foundational objects from algebraic geometry. In Section 2.2, we

recall relevant definitions for discussion of homogeneous spaces of algebraic groups. In

Section 2.3, we give a brief account of the Luna-Vust theory of spherical embeddings.

Some of the combinatorial data associated to spherical homogeneous spaces and their

embeddings can be thought of as a generalization of the combinatorial data associated

with toric varieties. We will use one of the spherical embeddings of An \{0} to compute

its ring of conditions in Chapters 4 and 5.

2.1 Basic algebraic geometry

In this section we collect basic notions from algebraic geometry. For simplicity, we will

work throughout over the field C of complex numbers. The majority of the definitions

introduced from this section are from Milne’s introductory text on algebraic geometry

[19].

Definition 2.1.1. [19] Let S be a finite collection of polynomials in C[x1, x2, ..., xn]. We

call the set of common zeros in Cn of the polynomials in S an algebraic set in Cn, or

simply, an algebraic set. When speaking of the algebraic set associated to a particular S,

we refer to it as the vanishing locus V (S) of S.
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An object that connects points in Cn with elements of C[x1, ..., xn] is the set of poly-

nomials that are zero on a particular subset of points in Cn.

Definition 2.1.2. [19] Let W be a subset of Cn. The defining ideal of W , I(W ), is the set

of polynomials in C[x1, x2..., xn] that vanish on W .

We next define an important quotient ring whose elements are equivalence classes

that can be identified with polynomial functions from an algebraic subset V to C.

Definition 2.1.3. [19] Let V be an algebraic set in Cn and let I(V ) denote its defining

ideal. The coordinate ring of V is C[V ] = C[x1, x2, ..., xn]/I(V ).

We will consider algebraic subsets as topological spaces with the Zariski topology.

Definition 2.1.4. [19] A topological space (V, τ) is quasicompact if every open cover of X

has a finite subcover.

Note that we do not require the topological space to be Hausdorff.

Definition 2.1.5. [19] Let V be an algebraic set in Cn and consider the coordinate ring

C[V ] of V . Any function f ∈ C[V ] defines a function (p 7→ f(p)) : V → C, where p ∈ V .

We call such functions (p 7→ f(p)) regular.

A continuous map φ : W → V of algebraic sets is regular if each of its components φi

is a regular function.

The next three definitions allow us to state the definition of an algebraic variety very

cleanly.

Definition 2.1.6. [19] A pair (V,OV ) consisting of a topological space V and a sheaf of

C-algebras on V is called a C-ringed space, or just a ringed space.

Definition 2.1.7. [19] An algebraic prevariety over C is a C-ringed space (X,OX) such

that X is quasicompact and such that every point x ∈ X has an open neighborhood

U ⊆ X for which (U,O|U) is isomorphic to the ringed space of regular functions on an

algebraic set over C.
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Definition 2.1.8. [19] An algebraic prevariety (X,OX) is separated if for every pair of

regular maps φ1, φ2 : Z � X with Z an affine algebraic variety, the set {z ∈ Z |φ1(z) =

φ2(z)} is closed in Z.

Definition 2.1.9. [19] An algebraic variety over C is a separated algebraic prevariety over

C.

We will equip all algebraic varieties, or simply varieties, with the Zariski topology,

unless otherwise stated. One of the most important examples is affine space. Although

the n-dimensional affine space has a vector space structure, we will emphasize its defi-

nition as an algebraic variety.

Definition 2.1.10. Let n > 0 be a positive integer. We view affine space of dimension n

over C, denoted An(C) or An, as the algebraic set V ({0}).

We will often be interested in varieties that cannot be decomposed into smaller van-

ishing loci. We formalize this notion as follows.

Definition 2.1.11. [19] An algebraic variety X is irreducible iff it is irreducible as a topo-

logical space; i.e., it is nonempty and not the union of two proper closed subsets.

We will also be interested in varieties with the following property.

Definition 2.1.12 ( [9] Definition 3.4.3.). A variety V is complete if for every variety Z,

the projection map πZ : V × Z → Z is a closed map in the Zariski topology.

We will later use rational functions on a variety to help establish a correspondence

between geometric and combinatorial objects.

Definition 2.1.13. [24] Let V be an algebraic subset of Cn. We say f
g
, where f, g ∈ C[V ],

is a rational function. We denote the set of rational functions defined on V by C(V ).

We will need a discussion of divisors later on, and so we introduce some necessary

terminology here. In addition, normality of an algebraic variety is a hypothesis that we

will need to study the spherical embeddings of a spherical homogeneous space.

Definition 2.1.14. [19] A normal ring is an integral domain R that is integrally closed in

its field of fractions.
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A variety is normal if we can locally associate to it normal rings. Formally, we have

the following.

Definition 2.1.15. [19] A variety V is normal if the stalk OV,v is a normal ring for all

v ∈ V .

One of our most important examples is the following.

Definition 2.1.16. [13] Let V be a vector space over C. We denote by GL(V ) the group

of automorphisms of V , called the general linear group. If V is finite-dimensional, then

GL(V ) ∼= GLn(C), the set of n× n invertible matrices over C.

Certain prime divisors of normal varieties will be a key piece of the construction of

combinatorial objects for spherical embeddings.

Definition 2.1.17. [19] Assume that X is a normal and irreducible algebraic variety. A

prime divisor of X is an irreducible subvariety of codimension 1.

2.2 Spherical Geometry

In this section, we give basic definitions necessary for our study of the rings of con-

ditions of spherical varieties. An excellent introduction to spherical geometry can be

found in notes on the subject by Brion [5].

Definition 2.2.1. [5] An algebraic group is an algebraic variety G equipped with the

structure of a group, such that the multiplication map

µ : G×G→ G, (g, h) 7→ gh

and the inverse map

ι : G→ G, g 7→ g−1

are morphisms of algebraic varieties.
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A natural refinement of this idea is to consider algebraic groups that are also affine

varieties.

Definition 2.2.2. [5] A linear algebraic group is an algebraic groupG that is also a Zariski-

closed set in Cn for some natural number n.

By convention, we say that a linear algebraic group G is connected iff it is irreducible

as an algebraic variety [20].

The hypothesis that a linear algebraic groupG is reductive will be of great importance

for applying results on the rings of conditions of spherical varieties by De Concini and

Procesi in Chapters 4 and 5.

Definition 2.2.3. [20] A linear algebraic group G is reductive if it does not contain any

closed normal unipotent subgroup.

Common examples of reductive linear algebraic groups are GLn(C) and SLn(C). An

example of a group which is not reductive is the Borel subgroup of GLn(C) of upper

triangular matrices.

Definition 2.2.4. [20] Let G be a connected linear algebraic group. A Borel subgroup of

G is a maximal element under inclusion of the set of closed solvable subgroups of G.

Classic examples of Borel subgroups are the subgroups of upper, respectively, lower

triangular matrices in GLn(C).

Definition 2.2.5. [5] A variety X is homogeneous if it is equipped with a transitive action

of an algebraic groupG. A homogeneous space is a pair (X, x), whereX is a homogeneous

variety, and x ∈ X is a base point.

A very useful classification of all possible homogeneous spaces is stated by Brion as

follows.

Fact 2.2.6. [5] The homogeneous spaces (X, x) with respect to the action of an algebraic group

G are exactly the quotient spaces G/H , where H := Gx, the stabilizer of x with respect to the

same action of G as defines (X, x) as a homogeneous space. The base point of G/H is the coset

H .
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We will need some terminology associated to representations of groups, as follows.

Definition 2.2.7. [13] Let V be a finite-dimensional vector space over C, and let G be a

group. A representation of G is a homomorphism ρ : G → GL(V ) from G to the general

linear group of V .

We will require the characters of group representations to algebraically generate cones,

which we will see later are the building blocks of fans for spherical embeddings.

Definition 2.2.8. [25] Let G be a group. The group of characters of G, denoted X, is the

set Hom(G,C∗).

2.3 Spherical Geometry and Luna-Vust Theory

In this section, we define spherical homogeneous spaces, spherical embeddings, and

give a very condensed account of the Luna-Vust theory of spherical embeddings. The

theory of spherical varieties can be thought of as a non-abelian analogue of toric vari-

eties, and the combinatorial data appearing in the classification results of Luna and Vust

are reminiscent of the fans which classify toric varieties. We begin with some combina-

torial preliminaries.

In order to construct the combinatorial data of fans for spherical varieties, we will

require the B-semi-invariant rational functions on their corresponding spherical homoge-

neous space G/H .

We begin with the following fundamental definition.

Definition 2.3.1. [5] Let G be a connected reductive group over C. Fix a Borel subgroup

B ⊆ G. Let G/H be a homogeneous space for some closed subgroup H ⊆ G. We say

G/H is spherical if the action of B on G/H has an open dense B-orbit.

Example 2.3.2. Let G = SL2(C) and consider the closed subgroup H given by

H :=


1 a

0 1

 ∈ SL2 : a ∈ C

 .

8



Let B denote the Borel subgroup of upper triangular matrices in SL2(C). It is not hard to

see that SL2(C) acts transitively on A2 \ {0} and that the stabilizer of [1 0]T is H . Thus the

homogeneous space SL2(C)/H is isomorphic to A2 \ {0}. One can check that there is a dense

open B-orbit given by

U =


x
y

 ∈ A2 : y 6= 0

 ,

so SL2(C)/H is an example of a spherical homogeneous space.

Spherical varieties contain spherical homogeneous spaces as a dense open G-orbit.

Definition 2.3.3 ( [18] Introduction). A spherical embedding is a normal G-variety X with

a G-equivariant open embedding G/H ↪→ X . We also refer to X as a spherical variety.

For what follows, we let X denote the group of characters of B.

Definition 2.3.4. [18] Let G/H be a spherical homogeneous space, and let B ⊆ G be a

Borel subgroup. A rational function on G/H , f ∈ C(G/H)∗ is B-semi-invariant if there

is a χ ∈ X such that, for all g ∈ B, g · f = χ(g)f . We denote the set of such functions

C(G/H)(B).

It is not hard to see that if f, g ∈ C(G/H)(B) then f · g ∈ C(G/H)(B), so C(G/H)(B) is

a group under (pointwise) multiplication.

Special instances of spherical varieties include toric and flag varieties, as we now

explain. Let G = TC ∼= (C∗)n be a complex torus. In this case G is abelian and the Borel

subgroupB is equal toG, i.e. B = G = (C∗)n. LetX be a toric variety with torusG = TC.

Then, by definition, there exists an open dense TC-orbit in X . Since B = TC, this implies

X is a spherical variety.

Example 2.3.5. Let G be a complex reductive linear algebraic group, and let B denote a Borel

subgroup. Consider the flag variety G/B. Then the well-known Bruhat decomposition G/B =∐
w∈W Bw̃B (where W is the Weyl group of G and w̃ ∈ N(T ) denotes a choice of representative

of w ∈ W = N(T )/T ) implies that there is an open dense B-orbit in G/B given by the so-called

“open Bruhat cell” Bw0B, where w is the longest element in the Weyl group. Hence G/B is a

spherical homogeneous space (and also a spherical variety).
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With these preliminaries in place, we summarize below the Luna-Vust classification

of spherical embeddings, as presented by Knop in [18]. Throughout, G will be a con-

nected reductive group and B ⊆ G a Borel subgroup. In what follows, G/H denotes a

spherical homogeneous space with open dense B-orbit Bx0.

The aim of the Luna-Vust classification is to determine combinatorial data associated

to G/H uniquely identifying the spherical embeddings for a fixed G/H . It is easiest to

begin the classification with simple spherical embeddings, defined as follows.

Definition 2.3.6 ( [18] §2). A spherical embedding G/H ↪→ X is simple if X contains

exactly one closed G-orbit.

Example 2.3.7. An example of a simple spherical embedding is the inclusion A2 \ {0} ↪→ A2.

This is because the only closed G-orbit that X contains is {0}.

To state the classification result of Luna and Vust, we require some terminology. We

begin with the combinatorial objects.

Cones form a general class of combinatorial objects that have independent use in

areas such as convex geometry and optimization. In the context of algebraic geometry,

we translate information about algebraic varieties into information about their combi-

natorial counterparts, which is often more convenient to work with.

For the following, let V denote a vector space over Q.

Definition 2.3.8. [18] A cone is a subset C of V which is closed under addition and

multiplication by Q+ := {q ∈ Q | q ≥ 0}.

For the classification results of Luna and Vust and for our construction of fans for

specific spherical embeddings, we will require that cones be strictly convex, in the fol-

lowing sense.

Definition 2.3.9. [18] A cone C is strictly convex if it does not contain a nontrivial linear

subspace; i.e., C ∩ (−C) = 0.

Definition 2.3.10. [18] The relative interior C◦ of a cone C, is C with all proper faces

removed.
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We will also use some algebraic data, as follows.

Definition 2.3.11. [18] A valuation of a normal variety X is a map ν : C(X)∗ = C(X) \

{0} → Q satisfying

(1) ν(f1 + f2) ≥min{ν(f1), ν(f2)}whenever f1, f2, (f1 + f2) ∈ C(X)∗,

(2) ν(f2f2) = ν(f1) + ν(f2) for all f1, f2 ∈ C(X)∗, and

(3) ν(C∗) = 0.

In particular, we are interested in the G-invariant valuations of a G-variety X .

Definition 2.3.12. [18] A valuation ν of a G-variety X is G-invariant if ν(g · f) = ν(f)

for all g ∈ G and any f ∈ C(X)∗. We denote the set of G-invariant valuations on X by

V(X).

In the theory of fans associated to toric varieties, one of the natural ingredients is

the lattice associated to the torus. In the spherical setting, we use the lattice of B-semi-

invariant functions. In fact, we can define a homomorphism from the multiplicative

group C(G/H)(B) to the group X of characters of B by

f ∈ C(G/H)(B) 7→ χf (2.3.12)

where χf is the (unique) character in X satisfying g · f = χf (g)f , assumed to exist in

Definition 2.2.4. It is straightforward to see that (2.3.12.) is a homomorphism of groups.

Definition 2.3.13 ( [18] §1 discussion). Fix a spherical homogeneous space G/H . We let

Λ = Λ(G/H) denote the imagine in X of the homomorphism C(G/H)(B) → X defined

by (2.3.12). Since Λ is a subgroup of a lattice, it is a free, finitely generated abelian group.

We have the following simple lemma.

Lemma 2.3.14. The homomorphism defined by f 7→ χf induces an isomorphism

C(G/H)(B) \ {0}/C∗ ∼= Λ.

Proof. Suppose f1, f2 ∈ C(G/H)(B) \ {0} have the same image, i.e. χf1 = χf2 . Then it
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follows that f1
f2
∈ C(G/H)(B) \ {0} has associated character the identity, i.e.

g · (f1

f2

) =
χf1(g)

χf2(g)
(
f1

f2

) =
f1

f2

In other words, f1
f2

is B-invariant, i.e. it is constant on B-orbits. Since G/H is spherical,

there is an open dense B-orbit in G/H , so in fact f1
f2

is constant on all of G/H . Hence

f1 = λf2 for some constant λ 6= 0 ∈ C.

The rank of a spherical homogeneous space is of central importance to us in study-

ing the ring of conditions of spherical varieties. In particular, the structure of rank 1

spherical varieties is relatively well understood, as we discuss in Chapter 5.

Definition 2.3.15. [18] The rank of a spherical homogeneous space G/H is the rank of

Λ = Λ(G/H). Similarly, if G/H ↪→ X is a spherical embedding, the rank of the spherical

variety X is the rank of G/H .

Definition 2.3.16 ( [18] §1 discussion). Let G/H be a spherical homogeneous space and

Λ defined as above. Then we define Q = Q(G/H) := Hom(Λ,Q).

We now construct a map from the set of G-invariant valuations V to Q =Hom(Λ,Q).

This will allow us to think of V as a subset of the vector space Q. More precisely, suppose

ν ∈ V is a G-invariant valuation on C(G/H)∗. Restricting to the B-semi-invariants, we

immediately obtain a map

ν|C(G/H)(B)\{0}
: C(G/H)(B) \ {0} → Q.

By the assumption (2) in Definition 2.3.8., the above is a homomorphism of additive

groups, and by assumption (3) in the same definition, it induces an additive homomor-

phism

%ν : C(G/H)(B) \ {0}/C∗ ∼= Λ→ Q

Thus %ν ∈ Q as desired. This correspondence defines a map

% : V→ Q, ν 7→ %ν . (2.3.15)
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The following fact says that % : V→ Q as defined above is an embedding.

Fact 2.3.17 ( [18] Corollary 1.8.). Let X be a G-spherical variety with dense open G-orbit

G/H ↪→ X . Then the map V(X)→ Q(G/H) defined by ν 7→ %ν is injective.

We next focus attention on certain divisors of G/H . We say a subset Z of G/H is

B-stable if B · Z ⊆ Z.

Definition 2.3.18. [25] The palette ofG/H , denoted D(G/H), is the set ofB-stable prime

divisors of G/H . An element D ∈ D(G/H) is called a colour. When the homogeneous

space G/H is understood, we denote D(G/H) by D.

Given a prime divisorD ∈ D(G/H), let νD denote the standard valuation on C(G/H)∗

associated to D, namely νD(f) := the order of vanishing of f along the divisor D.

Now let Y ⊆ X be a G-orbit associated to a spherical embedding G/H ↪→ X . Asso-

ciated to Y we may define several sets, as follows.

D(X) := {B-stable prime divisors of X},

DY (X) := {B-stable prime divisors of X which contain Y },

BY (X) := {νD ∈ V(X) |D ∈ DY (X) is G-stable}, and

FY (X) := {D ∩G/H |D ∈ DY (X) is not G-stable}.

When X is a simple embedding and Y its unique closed G-orbit, we sometimes omit

the subscript Y . The following is an important first step in the classification of spherical

embeddings.

Fact 2.3.19 ( [18] Theorem 2.3.). A simple G/H-embedding X is uniquely determined by the

pair (B(X),F(X)).

Motivated by the above, now we wish to describe such pairs (B(X),F(X)) combi-

natorially, using the notions we have recently introduced. We first introduce a certain

cone in Q =Hom(Λ,Q).

Definition 2.3.20. [18] Let X be a G-spherical variety, and let Y be a closed G-orbit of

X . Then we define the cone CY (X) ⊆ Q as follows:

13



CY (X) = the cone generated by {%(νD) |D ∈ FY (X)} and {%(νD) | νD ∈ BY (X)}.

We denote by CcY (X) the pair (CY (X),FY (X)).

In the case when G/H ↪→ X is a simple embedding and so there is a unique closed

G-orbit Y , we sometimes write C(X) = CY (X) and Cc(X) = CcY (X).

These pairs CcY (X) = (CY (X),FY (X)) are instances of the following combinatorial

objects.

Definition 2.3.21. [18] A strictly convex coloured cone, or SCCC, is a pair (C,F), where

C ⊆ Q and F ⊆ D, satisfying

(1) C is a strictly convex cone.

(2) C is generated by ρ(F) and finitely many elements of V.

(3) The relative interior of C intersects V nontrivially.

(4) The set ρ(F) does not contain 0.

Fact 2.3.22 ( [18] Theorem 3.1 proof). The pair CcY (X) satisfies all the conditions required to

be a SCCC.

The next results imply that, in the case of simple embeddings, B(X) can be recovered

from C(X) := CY (X) and F(X).

Fact 2.3.23 ( [18] §2). Each νD ∈ B(X) is uniquely determined by the corresponding ray Q+νD

in C(X).

Fact 2.3.24 ( [18] Lemma 2.4.). The rays Q+νD with νD ∈ B(X) are exactly the extremal rays

of C(X) which do not contain an element of ρ(F(X)).

We can now state the classification of simple spherical embeddings in terms of the

combinatorial data of strictly convex coloured cones.

Fact 2.3.25 ( [18] Lemma 2.4.). The correspondence X 7→ Cc(X) is a bijection between isomor-

phism classes of simple embeddings and strictly convex colored cones.

We now wish to state the classification for the general case.
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Definition 2.3.26 ( [18] §3.). A pair (C0,F0) is called a face of the coloured cone (C,F) if

C0 is a face of C, C◦0 ∩ V 6= ∅, and F0 = F ∩ ρ−1(C0).

The idea is that we can glue SCCC’s along faces in such a way that the gluing process

preserves the geometric data.

We have the following.

Definition 2.3.27. A [18] coloured fan F is a (non-empty) collection of coloured cones

(C,F) such that:

(1) Every face of a cone in F is also in F.

(2) Any element ν ∈ V lies in the interior of at most one cone.

Let G/H be a spherical homogeneous space and G/H ↪→ X a spherical embedding.

For such an embedding X , denote F(X) := {CcY (X) |Y ⊆ X is a closed G-orbit}.

We are now ready to state the main classification result of Luna and Vust.

Fact 2.3.28 ( [18] Theorem 3.3.). The mapX 7→ F(X) induces a bijection between isomorphism

classes of spherical embeddings for a fixed G/H and strictly convex coloured fans.

We conclude this section by summarizing the procedure for computing the fan F(X)

corresponding to a spherical embedding G/H ↪→ X .

1. Enumerate G-orbits of X induced by this choice of embedding. (Each G-orbit

corresponds to a cone in Q.)

2. Compute the group X of characters of B.

3. Compute the set C(G/H)(B) of B-semi-invariant rational functions on G/H .

4. Compute the image Λ ⊆ X of the homomorphism C(G/H)(B) → X defined by

f 7→ χf .

5. Compute V(G/H), the set of G-invariant valuations of G/H .

6. Compute the image of V(G/H) in Q :=Hom(Λ,Q) under the map ν 7→ %ν .
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7. For each G-orbit Y of X , find all B-stable prime divisors D1, D2, ..., D` containing

Y . This set is DY (X).

8. Compute CY (X) = the cone generated by {%(νD1), ..., %(νD`
)} in Q.

9. Among the B-stable prime divisors D1, D2, ..., D` containing Y, determine for each

Dj whether Dj is also G-stable. Thus, compute FY (X) = {D ∈ DY (X) |D is not

G-stable}. Let CcY (X) = (CY (X),FY (X)).

10. Repeat steps 1. - 9. for each closed G-orbit, and glue the cones together to produce

the fan corresponding to X .

This procedure always terminates due to the fact that, for a given spherical homoge-

neous space G/H , any spherical embedding of it contains only finitely many G-orbits

[ [7] Abstract].
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Chapter 3

The Example of An \ {0}

In this chapter, we illustrate the Luna-Vust theory recounted in Chapter 2 for the specific

case of the affine space minus the origin, An \ {0}. The simplest case n = 2 is described

first, and we then generalize to n ≥ 2.

3.1 The Spherical Homogeneous Space A2 \ {0}

As a warm-up, we compute some of the combinatorial data described in Chapter 2

which are associated to the spherical homogeneous space A2 \{0}. Let G = SL2(C), and

let B ⊆ SL2 be the Borel subgroup consisting of upper triangular matrices. Define the

subgroup H ⊆ G as

H :=


1 a

0 1

 ∈ SL2 : a ∈ C

 .

The action ofB onG/H is given by left multiplication. It is not hard to see that SL2(C)/H

can be identified with A2 \{0}, on which SL2(C) acts transitively, with Stab([1 0]T ) = H .

There are two B-orbits of A2 \ {0} under this action:

U =


x
y

 ∈ A2 : y 6= 0

 , D =


x

0

 : x 6= 0


17



The orbit U is open and dense in A2 \ {0}, and thus A2 \ {0} is spherical with respect

to this action. Note that D is closed. Since it is equal to the set of points that satisfy the

equation y = 0, it is a prime divisor. A brief computation shows that D is also B-stable.

In fact, it is the only B-stable prime divisor of A2 \ {0}. Therefore, when we construct

the fans associated to the spherical embeddings of A2\{0}, each fan will contain at most

one colour.

Let X denote the group of characters of B, which is isomorphic to Z by the map

n ∈ Z 7→ (χn : B → C∗), χn

a b

0 a−1

 = an.

The field of rational functions on A2 \ {0} is C(x, y). The B-semi-invariant rational

functions on A2 \ {0} are those of the form yn for n ∈ Z, up to multiplication by scalars.

The B-character associated to yn is χn. Thus Λ = X and is generated by y, and Q =

Hom(Λ,Q) is isomorphic to Q, which is spanned by

χ∗ : Λ→ Q, χ∗1(y) = 1.

We now wish to compute the set of G-invariant valuations, V and its image in Q. Con-

sider the valuation ν : C(A2 \ {0})∗ → Q that sends f ∈ C(A2 \ {0})∗ to its total degree.

That is, if we write f = f1(x,y)
f2(x,y)

for polynomials f1, f2, then

ν(f) = mindeg f1 −mindeg f2,

where mindeg f denotes the minimum among the degrees of monomials which appear

in f . From this definition it follows that ν(y) = 1, so %(ν) is identified with χ∗1. Another

G-invariant valuation ν ′ can be defined by

ν ′(f) = deg f2 − deg f1

which satisfies ν ′(y) = −1, which means %(ν ′) = −χ∗1.
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Hence we may conclude that the image of the map V → Q given by ν 7→ %ν is all of

Q, i.e., the valuation cone is all of Q = Hom(Λ,Q) ∼= Q.

Informally, the idea is that the cone R adds to A2 \ {0} “limit points near the origin”,

and −R adds to A2 \ {0} “limit points near infinity”. This is explained in more detail in

the next section. The coloured fans for A2 \ {0} are listed in Table 1 in Section 3.3 after

our discussion of the general-n case.

3.2 The Case of An \ {0}

Let G := SLn(C), or simply SLn, and let B ⊆ G denote the Borel subgroup of upper

triangular matrices in SLn. Treating points in An as column vectors, both SLn and B act

on An and An \ {0}, respectively, by left matrix multiplication.

Claim 3.2.1. The action of SLn on An \ {0} defined by (g, z) 7→ g · z is transitive.

Proof. It suffices to show that for each w = [w1w2 · · ·wn]T ∈ An\{0} there exists g ∈ SLn
such that g · e1 = w, where e1 denotes the first standard basis vector in An.

Let w = [w1w2 · · ·wn]T ∈ An \ {0}. Certainly it is the case that we can choose the first

column of g to be w itself. Now the question is whether we can complete the set of

columns of g to a basis. This follows from the “Building Up” lemma of linear algebra.

Consider H := StabSLn(en), where en denotes the nth standard basis vector. We have

that

H =


 C 0

∗ 1

 | C ∈ SLn−1(C)


where ∗ represents a 1 × (n − 1) vector whose entries are arbitrary. Note that H is a

closed subgroup of G, since it is a stabilizer subgroup [5]. Since SLn is a linear algebraic

group, by Corollary 2.2.6., SLn/H ∼= An \ {0} is a homogeneous space.

Claim 3.2.2. The homogeneous space SLn/H is spherical with respect to the action of SLn by

left matrix multiplication.
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Proof. We need to show that SLn/H ∼= An \ {0} has an open dense B-orbit. To see this,

it would suffice to show that {xn 6= 0}, since {xn 6= 0} = B · en. For the first inclusion,

B · en ⊆ {xn 6= 0} since, for all b ∈ B, b = [bij] has the property bij = 0 if i > j. Moreover,

bnn 6= 0 since B is invertible. Conversely, {xn 6= 0} ⊆ B · en, since, given any column

vector x = [x1 x2 · · · xn]T with xn 6= 0, there exists b ∈ B whose nth column is x and

such that B · en = x.

Next, we compute the valuation cone associated to An \ {0}. Toward this, we deter-

mine the B-semi-invariant rational functions on G/H . Consider the character group of

B,

X := Hom(B,C×) =




b11 b22 · · · b1n

0 b22 · · · b2n

...
... · · · ...

0 0 · · · bnn

 7→ bα1
11 b

α2
22 · · · bαn

nn | αi ∈ Z


∼= Zn−1

As discussed in Chapter 2, another ingredient of the fans is the set of B-stable prime

divisors of SLn/H . In the case of SLn/H = An \ {0}, the complement of the open dense

B-orbit B · en is D := {xn = 0}.

We first check that {xn = 0} is a prime divisor of G/H . It suffices to show that its

intersection with an open dense subset U ofG/H is irreducible of codimension 1. Define

U := {x1 6= 0} ∼= A1\{0}×An−1. ThenD∩U = {x1 6= 0, xn = 0}. Consider the coordinate

ring C[U ] = C[x0, x1, ..., x
−1
1 ]. The defining ideal of D ∩U in U is I(D ∩U) = 〈xn〉, which

is a prime ideal in C[U ]. Thus the closure of D is irreducible in An \ {0}. Therefore D

is irreducible of codimension 1 in An \ {0}. Moreover, D is B-stable by the following

computation. Let x = [x1 x2 · · · xn−1 0]T ∈ D, and let b ∈ B. Then

B · x =


∗ ∗ · · · ∗

∗ · · · ...

0 · · · ∗

∗

 ·

x1

x2

...

0

 ∈ {xn = 0}
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Since An \ {0} = (B · en) tD, the set D(An \ {0}) of B-stable prime divisors consists of

the single element D, i.e. D(An \ {0}) = {D}. In particular, our coloured cones in this

case can have at most one colour.

We now wish to enumerate the possible spherical embeddings G/H ↪→ X and con-

struct the corresponding fan for each X . It turns out that these spherical embeddings

consist exactly of the following: An \ {0}, An, Bl0(An), Pn \ {0}, Pn, and Bl0(Pn). In

Definition 5.2.19, we formally define the blowup construction, of which Bl0(An) and

Bl0(Pn) are examples.

To proceed with the enumeration, we determine the B-semi-invariant functions on

An \ {0}. We have the following.

Claim 3.2.3. C(An \ {0})(B) =span{zkn | k ∈ Z}, where zn denotes the nth coordinate on An.

Proof. Let T denote the maximal torus in B. Any rational function f(z1,...,zn)
g(z1,...,zn)

which is B-

semi-invariant must be T -semi-invariant, but the only such are the Laurent monomials

f = zβ11 z
β2
2 · · · zβnn where βi ∈ Z for all i. Now suppose such a monomial f is B-semi-

invariant. Concretely, this means that for all b = [bij] ∈ B such that bij = 0 for i > j, we

have

(b11z1 + b12z2 + · · ·+ b1n)β1(b22z2 + b23z3 + · · ·+ b2n)β2 · · · (bnn−1zn)βn) = χf (b)z
β1
1 z

β2
2 · · · zβnn .

Such an equality can only hold for all b ∈ B if β1 = β2 = · · · = βn−1 = 0, i.e. f = zβnn ,

βn ∈ Z. Moreoever, in this case we see that zβnn is indeed B-semi-invariant, with χf (b) =

b−βnnn . The claim follows.

The proof of the claim in fact shows that the lattice Λ =image(C(An\{0})(B)/C∗) ⊆ X

is in fact the Z-span of the character χn, where χn(b) = bnn. In particular, Λ ∼= Z and we

conclude that rank(An \ {0}) = 1.

Next, we compute the valuation cone (i.e. the image of V = V(An \ {0}) in Q). As in
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the case of A2 \ {0} in the previous section there are two G-invariant valuations

ν(
f

g
) = mindeg f −mindeg g

ν ′(
f

g
) = deg g − deg f

and these map to +χ∗n and −χ∗n, respectively. Hence we conclude that the valuation

cone is Q, as in the n = 2 case. Using the above data for An \ {0}, we now give the

classification of the six possible spherical embeddings An \ {0} ↪→ X , and in addition

we explicitly describe each of the embeddings corresponding to the possible coloured

cones.

We first classify the possible coloured cones. First, since Q ∼= Q in this case, the only

possible 1-dimensional cones are the half-rays R and −R. Moreover, as noted above,

the only possible colour is D = {zn = 0} in An \ {0}, which has associated valuation νD

with %νD = χ∗n. Thus the only coloured cone that can possibly have a non-empty set of

associated colours is R. These considerations imply that the possible coloured cones for

spherical embeddings of An \{0} are the six which are pictured in the rightmost column

in Table 1.

We claim that these six coloured cones correspond to the spherical varieties An \{0},

An, Bl0(An), Pn \ {0}, Pn, and Bl0(Pn). To see this, we now compute explicitly the

coloured cone associated to each of the above six embeddings following the method

outlined in Chapter 2. We start with the spherical embedding An \ {0} ↪→ An \ {0} = X

itself. The only G-orbit is An \ {0}. Moreover, there are no B-stable divisors containing

the whole G-orbit, so DY (X) = ∅ and hence BY (X) = FY (X) = ∅, also. So we obtain

(0, ∅) as the coloured cone for An\{0}. Informally, this is because we have added nothing

to our original space in considering An \ {0} as a spherical variety over itself.

Next we compute the coloured fan corresponding to the spherical embedding An \

{0} ↪→ An = X . The unique closed G-orbit is Y := {(0, 0, ..., 0)} = {0}. The unique

B-stable prime divisor is D = {zn = 0}, which contains Y . Thus DY (An) = {D}. Since

D is not G-stable, BY (X) = ∅ and FY (X) = {D}. It is not hard to see that %νD is χ∗n. Thus
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CY (X) = R ⊆ Q, where R ⊆ Q denotes the cone generated by χ∗n. Thus the coloured

cone associated to An is (R,D), which corresponds to adding a limit point at the origin

to An \ {0}.

Now consider the embedding An \ {0} ↪→ Pn \ {0} = X , where we view points in Pn

as having homogeneous coordinates [z1 : z2 : · · · : zn : w] and the embedding is given by

(z1, ..., zn) 7→ [z1 : z2 : · · · : zn : 1]. Then Y = {w = 0} is the unique closed G-orbit. Note

also that Y is itself a B-stable prime divisor. Hence DY (X) = {Y } and BY (X) = {νY }

and FY (X) = ∅ since Y is G-stable. Thus the cone for Pn \ {0} is (−R, ∅).

For the spherical embedding An\{0} ↪→ Pn = X , the two closedG-orbits are {w = 0}

and {[0 : 0 : · · · : 1]}. The cones corresponding to {w = 0} and {[0 : 0 : · · · : 1]} can be

computed by the same reasoning as for the cases of Pn \ {0} and An, given above. Thus

the two coloured cones in the coloured fan of Pn are (R,D) and (−R, ∅).

Next consider the spherical embedding An\{0} ↪→ Bl0(An) = X given by identifying

An \ {0} with the complement in Bl0(An) of the exceptional divisor E at the origin.

Here, the unique closed G-orbit is Y = E, which is also a B-stable prime divisor. Thus

DE(X) = {E}, BE(X) = {νE}, and FY (X) = ∅ in this case. Since %(νE) = χ∗1, the cone

for Bl0(An) is (R, ∅).

Lastly, for the spherical embedding An \ {0} ↪→ Bl0(Pn) = X , the closed G-orbits are

{w = 0} and E. Using the same reasoning as above, the coloured cones for Bl0(Pn) are

(R, ∅) and (−R, ∅).

Table 1. Spherical embeddings for the homogeneous space An \ {0}

Variety Closed G-orbits Coloured cones Coloured fan

An \ {0} An \ {0} (0, ∅)

An {0} (R,D)

Bl0An E (R, ∅)

Pn \ {0} {w = 0} (−R, ∅)

Pn {w = 0}, {0} (R,D), (−R, ∅)

Bl0Pn {w = 0}, E (R, ∅), (−R, ∅)
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Chapter 4

The Ring of Conditions

In this chapter, we introduce the ring of conditions of spherical varieties. We review

the Kleiman Transversality Theorem and introduce basic geometric notions underlying

the definition of the ring of conditions. We also briefly discuss foundational work of De

Concini and Procesi [11] related to the ring of conditions for symmetric varieties. (In [10]

De Concini remarks that their arguments proceed verbatim for spherical varieties.)

4.1 The Ring of Conditions

In this section we define the ring of conditions. We need some preliminaries. Recall

that the dimension of an irreducible algebraic variety X over C equals trdegCC(X), the

transcendence degree of C(X) over C [19].

Definition 4.1.1. [16] Two irreducible algebraic subvarieties Y, Z of an algebraic variety

X intersect properly if either Y ∩ Z = ∅ or each component of Y ∩ Z has dimension

dim(Y ) + dim(Z)− dim(X).

Definition 4.1.2. [24] An irreducible algebraic variety X is regular at a point p if the local

ring OX,p is regular. If X is regular at each point p ∈ X , then we say that X is regular.

Definition 4.1.3. [16] Two irreducible algebraic subvarieties Y, Z of an algebraic va-

riety X intersect transversally if Y ∩ Z is regular and each irreducible component has
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dimension dim(Y ) + dim(Z)− dim(X).

We are interested in whether we can move an algebraic subvariety by translation to

make a non-transversal intersection transversal. We need the following.

Definition 4.1.4. Let Y be an algebraic subvariety of a spherical homogeneous space

X with respect to the action of an algebraic group G. A general translate gY of Y is the

translate of Y by an element g ∈ G on Y , where g is allowed to range over an open

dense subset of G.

Let G be a connected algebraic group and X a homogeneous space with respect to

G. Let Y, Z be two subvarieties of X . Then there exists a general translate gY of Y such

that gY ∩ Z is proper, and also transversal if Y, Z are smooth. Formally, we have the

following well-known result of Kleiman:

Theorem 4.1.5. [16] Let G be a connected algebraic group, and let X be a homogeneous space

with respect to G. Let Y, Z be algebraic subvarieties of X . Then:

(1) there exists an open dense subset U ofG such that, for each rational point g ∈ U , the translate

gY and Z intersect properly, and

(2) in characteristic zero, and for Y, Z smooth, there exists an open dense subset U of G such

that, for each rational point g ∈ U , gY and Z intersect transversally.

We now proceed to a definition of the (additive) group of conditions. For what fol-

lows, the reader may refer to the discussion in [11], §6.2 for details. We again consider a

homogeneous space G/H of dimension n and two subvarieties Y, Z ⊆ G/H of comple-

mentary dimension. If we assume G to be a connected group, then it can be seen [ [11]

§6.2] using the Kleiman transversality theorem that for g in a nonempty open subset

of G, the number of points in the intersection gY ∩ Z is finite, and, in fact, a constant

number, a ∈ N. This motivates the following definition.

Definition 4.1.6. Let G be a connected algebraic group and X a homogeneous space

with respect toG. Let Y, Z be subvarieties ofX and assume that Y, Z ⊂ X are of comple-

mentary dimension. We define the intersection index< Y,Z > to be< Y,Z >:= #(gY ∩Z)

for a general translate gY of Y .
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We begin to put a formal algebraic structure on geometric objects with the following

definition.

Definition 4.1.7. Let X be a projective variety over C. An algebraic cycle Z of dimension

n, or an n-cycle, is an element of the free abelian group of irreducible subvarieties of X

of dimension n, i.e., Z =
∑

i niZi, where Zi ⊂ X irreducible and dimZi = n, and ni ∈ Z.

By linearity, we can extend the definition of intersection index to arbitrary cycles of

complementary dimension. Denote by L k(G/H) the group of cycles in G/H of dimen-

sion k, and denote by L n−k(G/H) the group of cycles in G/H of dimension n − k. Let

< Y,Z > be their intersection index, as defined above. Now define

Bk(G/H) := {Y ∈ L k(G/H) | < Y,Z >= 0 for all Z ∈ L n−k(G/H)}.

We then define Ck(G/H) := L k(G/H)/Bk(G/H). Finally, we construct the group of

conditions as the graded abelian group C∗(G/H) =
⊕n

k=0C
k(G/H). If Y is a cycle in

G/H , we denote its equivalence class in C∗(G/H) by {Y }.

Kleiman’s Transversality Theorem guarantees that for generic g ∈ G, the intersection

gY ∩ Z of irreducible subvarieties Y, Z is proper for g in a nonempty open set of G/H .

Then, if it were the case that in some (possibly smaller) open subset U the equivalence

class [gY ∩ Z] is constant for all g in U and depends only on Y and Z, then we could

define the product structure on C∗(X) by the formula {Y } · {Z} = {gY ∩Z} for g in this

open set. In general, however, this product is not well-defined. For example, consider

G = C3 acting on itself by translation. Then two lines in C3 are equivalent iff they are

parallel. Take the intersection of the surface xy = z and generic translates of the plane

x = 0. These planes have the parametrized form x = λ. Then a generic intersection of

these two objects is given by xλ = z, which is a family of lines that are not necessarily

parallel—i.e., that are inequivalent.

Remarkably, for spherical homogeneous spaces, the intersection product is always

well-defined [11]. Moreover, in [11], De Concini and Procesi relate the ring of condi-

tions of a so-called symmetric variety G/H and the cohomology rings of its equivari-

ant compactifications. In [10], De Concini remarks that their arguments for symmetric
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varieties proceed verbatim for arbitrary spherical homogeneous spaces. A priori, we

might expect these constructions to be related by their definitions in terms of algebraic

cycles; for a spherical variety X of a spherical homogeneous space G/H , and for any k-

dimensional cycle Z =
∑
ciZi, one can define the cycle Z in X as

∑
ciZi, where Zi is the

closure in X of Zi ⊂ G/H . The cycle Xi then defines an element in the cohomology ring

H∗(X). De Concini and Procesi make this connection rigorous in their manuscript [11].

Specifically, denote by S the set of all smooth equivariant compactifications of G/H

defined in Section 5.1. This set admits the partial ordering defined such that a com-

pactification Xσ is greater than Xπ iff there exists a map Xσ → Xπ that commutes with

the G-action. This map induces a map of cohomology rings H∗(Xπ) → H∗(Xσ) [11].

Moreover, we have the following.

Fact 4.1.8. [11] The ring of conditions C∗(G/H) is isomorphic to the direct limit over the set S

of the cohomology rings H∗(Xπ).

The above theorem shows that C∗(G/H) can be computed in terms of cohomology

rings, but the result is not computationally effective in all cases, since a priori one must

consider all possible equivariant compactifications. However, in some situations, it can

be seen that it suffices to consider only one equivariant compactification. This is the

subject of the next and last chapter of this thesis.
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Chapter 5

On the Ring of Conditions of a Rank 1

Spherical Variety

In this last chapter we record in Theorem 5.1.4 an unpublished observation of Khovan-

skii which simplifies the result of De Concini-Procesi (Theorem 4.2.1) in some special

cases. We also formulate a question regarding the rings of conditions of rank 1 spheri-

cal varieties which is motivated by Theorem 5.1.4. Finally, we illustrate the result using

the example of An \ {0}.

5.1 The Main Result

The analysis of G-equivariant compactifications is central in the work of De Concini

and Procesi, as well as for Khovanskii’s observation, so we begin with the following

definition.

Throughout this chapter, we let G be a connected reductive linear algebraic group

over C.

Definition 5.1.1. Let G/H be a spherical homogeneous space with respect to G. A G-

equivariant compactification of G/H is a G-equivariant embedding G/H ↪→ X where X is

a complete G-variety, and the image of the embedding is open and dense in X .
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Following [15], we focus on compactifications that satisfy certain intersection condi-

tions with respect to a given cycle. The definition below is modelled after [ [15] §4].

Definition 5.1.2. Let G/H be a spherical homogeneous space, and let Y ⊆ G/H be an

irreducible subvariety of G/H of dimension k. We say that a G-equivariant compactifi-

cation G/H ↪→ X is a good compactification of G/H with respect to Y if the closure Y of Y

in X has proper intersection with the boundary X \ (G/H).

The above definition concerns the behaviour of a compactification of G/H in con-

nection with a fixed subvariety Y . We wish to analyze compactifications that behave

well for (appropriately chosen representatives of) all elements of the cohomology ring.

More precisely, we define the following.

Definition 5.1.3. Let G/H be as above. We say that a G-equivariant compactification

G/H ↪→ X satisfies condition (RC) if

(1) X is smooth and complete,

(2) any element in the cohomology ring H∗(X) can be represented by a cycle
∑
ni[Yi],

ni ∈ Z, where each Yi is an irreducible subvariety of X and Yi ∩G/H 6= ∅, and

(3) G/H ↪→ X is a good compactification of G/H with respect to Y for any irreducible

subvariety of G/H .

The following is a simple and unpublished observation which we learned from Kho-

vanskii. The statement and the proof are a simplified version of the more general con-

siderations of De Concini-Procesi [ [11] Theorem 6.3]. Specifically, Khovanskii’s obser-

vation gives a sufficient condition for the direct limit appearing in [ [11] Theorem 6.3] to

be computable using a single compactification as opposed to a directed set thereof. The

point of the discussion later on is then to find appropriate compactifications of rank 1

spherical homogeneous spaces to which Theorem 5.1.4. can be applied.

Theorem 5.1.4. Let G be a connected reductive linear algebraic group, and let G/H be a spher-

ical homogeneous space with respect to G. Suppose G/H ↪→ X is a G-equivariant compact-

ification of G/H satisfying condition (RC). Then the ring of conditions C∗(G/H) of G/H is

isomorphic to the cohomology ring H∗(X).
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Proof. We start by defining a map φ : H∗(X) → C∗(G/H). Let a ∈ H∗(X) be a ho-

mogeneous element. Then by assumption (2) of Definition 5.1.3., we may represent

a by a cycle
∑
ni[Yi], ni ∈ Z, such that each Yi is an irreducible subvariety of X and

Yi ∩ G/H 6= ∅. Since G/H is open and dense in X , this means Yi = Yi ∩ G/H where

the closure is taken in X . We would like to define φ(a) =
∑
ni(Yi ∩G/H) in the ring of

conditions C∗(G/H). First we claim that φ is well-defined. To see this, suppose
∑
n′iY

′
i

is another cycle representing a, such that each Y ′i is an irreducible subvariety of X and

Y ′i ∩G/H 6= ∅. By a similar argument Y ′i = Yi ∩G/H . We must show that

∑
ni{Yi ∩G/H} =

∑
n′i{Y ′i ∩G/H} ∈ C∗(G/H).

By definition of the equivalence relation in the group of conditions, it suffices to show

that for any cycle D in G/H of complementary codimension we have that

〈
(D,

∑
ni(Yi ∩G/H))

〉
=

〈
(D,

∑
n′i(Y

′
i ∩G/H))

〉
. (5.1.5)

Without loss of generality we can assume D is an irreducible subvariety of G/H . Con-

sider the closure D of D in X , and let [D] denote its class in H∗(X). Since X satisfies the

condition (RC),D, Yi, Y ′i for all i intersectX \(G/H) properly. Then by [ [11] Proposition

6.1, Corollary 4.6, discussion following], 〈D,
∑
ni(Yi ∩G/H)〉 is equal to the evaluation

of the cup product [D] ∪ a against the class of a point in H∗(X), and the same is true of

(D,
∑
n′i(Y

′
i ∩G/H)). Hence φ is well-defined.

We next argue that φ is injective. Let a ∈ Hr(X), a 6= 0. Then since X is smooth

and complete there exists b ∈ HdimR(X)−r(X) of complementary degree with a ∪ b 6= 0.

Let a ∪ b = n · p where p denotes the class of a point and n ∈ Z, n 6= 0. Then, as in

the argument given above for the well-definedness of φ, [ [11] Corollary 6.1] shows that

〈φ(a), φ(b)〉 = n 6= 0. Hence φ(a) 6= 0, so φ is injective.

Now we claim φ is a ring homomorphism. Since φ is additive and by assumptions (2)

and (3), it suffices to check that for a = [Y ], b = [Z] in H∗(X) where Y, Z are irreducible

subvarieties in G/H (not necessarily of complementary dimension) that φ([Y ] ∪ [Z])
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is equal to the product of φ([Y ]) and φ([Z]) in C∗(G/H). By definition of φ, φ([Y ]) =

{Y ∩G/H} = {Y } and similarly φ([Z]) = {Z}. By definition of the product in C∗(G/H),

the product of {Y } and {Z} is {Y ∩ gZ} for g ∈ G such that Y and gZ intersect properly

in G/H . Since [gZ] = [Z] for any g ∈ G, to prove φ is a ring homomorphism, it therefore

suffices to show there exists g ∈ G such that Y ∩ Z is proper. By assumption (3), both Y

andZ have proper intersection withX\(G/H) and so we may apply [ [11] Corollary 6.1]

and we obtain the result. Finally, surjectivity of φ immediately follows from assumption

(2).

To relate the above theorem to the case of certain spherical varieties, it will be useful

to have the following lemma.

Lemma 5.1.5. Using the same notation as above, let G/H ↪→ X be a G-equivariant compacti-

fication of G/H such that

(a) X is smooth and complete,

(b) X \ (G/H) is a (finite) union of G-orbits, each of which is a hypersurface, and

(c) any element in the cohomology ring H∗(X) can be represented by a cycle
∑
ni[Yi], ni ∈ Z,

where each Yi is an irreducible subvariety of X and Yi ∩G/H 6= ∅.

Then G/H ↪→ X satisfies condition (RC).

Before proving Lemma 5.1.5, we observe that the following is an immediate conse-

quence of Theorem 5.1.4 and Lemma 5.1.5. This is the result which directly links the

above considerations with the rank 1 spherical varieties, as we explain further below.

Corollary 5.1.6. Let G be a connected reductive linear algebraic group, and let G/H be a spher-

ical homogeneous space with respect to G. Suppose G/H ↪→ X is a G-equivariant compactifica-

tion satisfying

(1) X is smooth and complete,

(2) any element in the cohomology ring H∗(X) can be represented by a cycle
∑
ni[Yi], ni ∈ Z,

where each Yi is an irreducible subvariety of X and Yi ∩G/H 6= ∅, and

(3) the boundary X \ (G/H) = D1 t D2 t · · · t D` is a finite union of G-orbits Di where

each Di is a hypersurface in X . Then the ring of conditions C∗(G/H) of G/H is isomorphic to

H∗(X;C).
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We note that it is also possible to prove Corollary 5.1.6 without invoking Theorem

5.1.4. We give a sketch of the argument, which is similar to that of Theorem 5.1.4,

here. The point is that the codimension-1 condition on the components of the boundary

makes it particularly simple to see that the relevant intersections can be “moved off the

boundary”. Indeed, suppose G/H −→ X is a G-equivariant embedding satisfying the

hypotheses of Corollary 5.1.6. We wish to define a homomorphism H∗(X)→ C∗(G/H).

Proceeding as in the proof of Theorem 5.1.4, in order to prove well-definedness, given

a cohomology class a =
∑
ni[Yi] =

∑
n′i[Yi]

′ we wish to show that (5.1.5) holds for an

arbitrary irreducible subvariety D ⊆ G/H of complementary dimension. We now claim

that to prove the equality it would in fact suffice to prove the following.

Claim 5.1.7. For two irreducible subvarieties D and Y in G/H of complementary di-

mension, there exists and open dense subset U of G such that D ∩ gY lies entirely in

G/H , i.e. D ∩ gY = D ∩ gY for g ∈ U .

This in turn means that the number of points contained in D ∩ gY is precisely the

class of a point paired against [D] ∪ [Y ] in H top(X), and in particular is independent of

the choice of representative of [Y ]. Thus the map a 7→
∑
ni{Yi∩ (G/H)} is well-defined.

We now proceed to prove the Claim above. Recall

X = G/H tD1 tD2 · · · tD`

where each Dj is a G-orbit and is a hypersurface in X , i.e. codimDj = 1. Let j be any

integer, 1 ≤ j ≤ l. From the proof of Lemma 5.1.5. we know that dim(Y ∩Dj) < dimY

and similarly dim(D∩Dj) <dim(D). Since Y andD are of complementary dimension in

X , applying the Kleiman Transversality Theorem to the subvarieties D ∩Dj and Y ∩Dj

in the G-homogeneous space Dj , we conclude that there exists and open dense subset

Uj of G such that for all g ∈ Uj , (D∩Dj)∩ g(Y ∩Dj) = ∅ = D∩ gY ∩Dj = ∅. Since there

are only finitely many Dj’s, and since each Uj is open and dense in G, the intersection
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U = U1 ∩ U2 ∩ · · · ∩ Ul is open and dense in G, and for all g ∈ U we have

D ∩ gY ∩ (
l⊔

j=1

Uj) = D ∩ gY ∩ (X \ (G/H)) = ∅,

as desired. This proves the Claim. We therefore get a well-defined map of vector spaces

H∗(X;C)→ C∗(G/H). The remainder of the argument is essentially the same as that of

Theorem 5.1.4. We now proceed to a proof of Lemma 5.1.5.

Proof of Lemma 5.1.5 We wish to prove that if the boundary Z := X \ (G/H) is a finite

union of hypersurfaces, then for any irreducible subvariety Y of G/H , Y ⊆ X intersects

Z properly. LetZ = D1tD2t· · ·tD` where eachDj is an irreducible hypersurface. Then

we wish to show Y ∩Dj is proper, for each j, 1 ≤ j ≤ l. Let d = dim(Y ) = dim(Y ). By

assumption, dim(Dj) = dim(X)−1. To see that the intersection Y ∩Dj is proper, we need

to show each irreducible component of Y ∩Dj is either ∅ or dim(Y ∩Dj) = dim(Y )− 1.

But this follows from the fact that Y ∩Dj (if non-empty) is a proper subvariety of Y and

that Dj is a hypersurface. �

In some cases of rank 1 spherical homogeneous spaces G/H , we have explicit de-

scriptions of G-equivariant compactifications of G/H which can be explicitly checked

to satisfy the conditions (1) - (3) of Corollary 5.1.6. holds. For instance, the example we

discuss in §5.4 in the case of An \{0}, analyzed in detail in §3.3.2. There, it turns out that

the embedding An \ {0} ↪→ Bl0(Pn) satisfies all of the conditions (a) - (c), thus allowing

us to compute C∗(An \ {0}) concretely.

More generally, in [1] and [6], Ahiezer and Brion classify spherical varieties of rank

1, and each states the following result, as recorded by Timashev in [23].

Theorem 5.1.8 ( [23] Proposition 30.4). The following conditions are equivalent:

(1) G/H is a spherical homogeneous space of rank 1.

(2) There exists a smooth complete embedding G/H ↪→ X such that X \ (G/H) is a union of

G-orbits of codimension 1.

33



The spherical compactifications of Theorem 5.2.1 evidently satisfy the conditions (1) and

(3) of Corollary 5.1.6. Thus, the only remaining question is whether or not the condition

(2) is also satisfied. In fact, the classification by Akhiezer of the rank 1 spherical vari-

eties gives an explicit list of all such varieties, so in principle it is possible to go through

the list and check each example to see whether condition (2) is satisfied. We record the

problem here for future work.

Problem. Determine, from Akhiezer’s list of all rank 1 spherical varieties, which ones

satisfy the condition (2) of Corollary 5.1.6.

A solution to the above problem would then naturally lead to a computation of the

ring of conditions of those rank 1 spherical varieties, following Corollary 5.1.6.

5.2 Example: An \ {0}

We now illustrate, using the example of An \ {0}, the technique for computing the ring

of conditions of a rank 1 spherical variety, as indicated in Theorem 5.1.4. We begin with

a few definitions. Khovanskii’s observation implies that we can explicitly compute the

ring of conditions of C∗(An \ {0}) by computing the cohomology ring of the spherical

embedding An \ {0} ↪→ Bl0(CPn), since Bl0(CPn) = An \ {0} t E t CPn−1 is smooth,

complete and is a union of An \ {0}with two prime divisors. The task that remains is to

compute the cohomology ring H∗(Bl0(CPn)) explicitly. Since Bl0(CPn) is a toric variety,

we may use the result of Jurkiewicz-Danilov, for which we need some preparation.

The affine variety (C∗)n is a group under component-wise multiplication. A torus T

is an affine variety isomorphic to (C∗)n, where T inherits a group structure under the

isomorphism.

Definition 5.2.1. A character of a torus T is a morphism χ : T → C∗ that is a group

homomorphism. For example, m = (a1, ...an) ∈ Zn gives a character χm : (C∗)n → C∗

defined by

χm(t1, .., tn) = tα1
1 · · · tαn

n
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One can show that all characters of (C∗)n arise this way (see [14] §16). Thus the group of

characters of (C∗)n is isomorphic to Zn.

For an arbitrary torus T , its characters form a free abelian group M of rank equal to

the dimension of T . By convention, we say that m ∈M gives the character χm : T → C∗.

Definition 5.2.2. A lattice is a free abelian group of finite rank.

Thus a lattice of rank n is isomorphic to Zn.

Definition 5.2.3 ( [9] Definition 1.1.3.). An (affine) toric variety is an irreducible (affine)

algebraic variety X , equipped with a complex-torus action, such that the torus T :=

(C∗)n has an orbit that is Zariski-open in X .

We now connect cones and affine toric varieties. Fix a pair of dual vector spaces MR

and NR. Our outline omits proofs. We refer the reader to [12] for a detailed discussion.

Definition 5.2.4 ( [9] Definition 1.2.1). A convex polyhedral cone in NR is a set of the form

σ = Cone(S) =

{∑
u∈S

λuu |λu ≥ 0

}
⊆ NR

where S ⊆ NR is finite. We say that σ is generated by S and that Cone(∅) = {0}.

A convex polyhedral cone σ is convex in the classical sense, meaning that x, y ∈ σ

implies λx + (1 − λ)y ∈ σ for all 0 ≤ λ ≤ 1 and is a cone, meaning that x ∈ σ implies

that λx ∈ σ for all λ ≥ 0. Since we only consider convex cones, the cones satisfying

Definition 5.4.4. will be called “polyhedral cones”. Basic examples of polyhedral cones

include the first quadrant in R2 and the first octant in R3.

Definition 5.2.5 ( [9] §1.2). The dimension dim σ of a polyhedral cone σ is the dimension

of the smallest subspace W = Span(σ) of NR containing σ. We call Span(σ) the span of

σ.

Recall that the pairing between MR and NR is denoted 〈, 〉.

Definition 5.2.6 ( [9] Definition 1.2.3). Given a polyhedral cone σ ⊆ NR, its dual cone is

defined by

σ∨ = {m ∈MR | 〈m,u〉 ≥ 0} ∀u ∈ σ.
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Duality possesses the following useful and important properties.

Definition 5.2.7 ( [9] Proposition 1.2.4.). Let σ ⊆ NR be a polyhedral cone. Then σ∨ is a

polyhedral cone in MR and (σ∨)∨ = σ.

Given m 6= 0 in MR, we get the hyperplane

Hm = {u ∈ NR | 〈m,u〉 = 0} ⊆ NR

and the closed half-space

H+
m = {u ∈ NR | 〈m,u〉 ≥ 0} ⊆ NR.

We say that Hm is a supporting hyperplane of a polyhedral cone σ ⊆ NR if σ ⊆ H+
m,

and we say H+
m is a supporting half-space. Note that Hm is a supporting hyperplane of σ

if and only if m ∈ σ∨ \ {0}.

We can use supporting hyperplanes and half-spaces to define faces of a cone.

Definition 5.2.8 ( [9] Definition 1.2.5.). A face of a cone of the polyhedral cone σ is τ =

Hm ∩ σ for some m ∈ σ∨, written τ � σ. Using m = 0 shows that σ is a face of itself, i.e.,

σ � σ. Faces τ 6= σ are called proper faces, written τ ≺ σ.

The faces of a polyhedral cone have the following properties.

Fact 5.2.9 ( [9] Lemma 1.2.6.). Let σ = Cone(S) be a polyhedral cone. Then:

(a) Every face of σ is a polyhedral cone.

(b) An intersection of two faces of σ is again a face of σ.

(c) A face of a face of σ is again a face of σ.

Definition 5.2.10 ( [9] §1.2). A facet of σ is a face τ of codimension 1, i.e., dimτ = dimσ−1.

An edge of σ is a face of dimension 1.

Definition 5.2.11 ( [9] §1.2). A polyhedral cone σ is strongly convex if the origin is a face

of σ.
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Let N and M be dual lattices with associated vector spaces NR = N ⊗Z R and MR =

M ⊗Z R. For Rn we usually use the lattice Zn.

Definition 5.2.12 ( [9] Definition 1.2.14). A polyhedral cone σ ⊆ NR is rational if σ =

Cone(S) for some finite set S ⊆ N .

Below are two especially important types of strongly convex rational cones.

Definition 5.2.13 ( [9]). Definition 1.2.16.] Let σ ⊆ NR be a strongly convex rational

polyhedral cone.

(a) σ is smooth or regular if its minimal generators form part of a Z-basis of N ,

(b) σ is simplicial if its minimal generators are linearly independent over R.

Now we transition to semigroup algebras and affine toric varieties, en route to de-

scribing the correspondence between toric varieties and convex geometry.

Definition 5.2.14 ( [9] §1.1). A semigroup is a set with an associative binary operation

and an identity element.

Definition 5.2.15 ( [9] §1.1). A semigroup S is affine if, further, the following conditions

are satisfied:

(1) the binary operation is commutative,

(2) the semigroup is finitely generated, meaning that there is a finite subset A ⊆ S such

that NA = S, and

(3) the semigroup can be embedded in a lattice M .

Given a rational polyhedral cone σ ⊆ NR, the lattice points

Sσ = σ∨ ∩M ⊆M

form a semigroup. A key fact is that this semigroup is finitely generated.

Fact 5.2.16 ( [9] Proposition 1.2.17.). (Gordan’s Lemma). Let Sσ be defined as above. Then

Sσ = σ∨ ∩M is finitely generated and hence is an affine semigroup.
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Fact 5.2.17 ( [9] Theorem 1.2.18.). Let σ ⊆ NR ∼= Rn be a rational polyhedral cone with

semigroup Sσ = σ∨ ∩M . Then

Uσ = Spec(C[Sσ]) = Spec(C[σ∨ ∩M ])

is an affine toric variety. Further,

dimUσ = n⇔ the torus of Uσ is TN = N ⊗Z C∗ ⇔ σ is strongly convex.

Henceforth, we will always assume that σ ⊆ NR is strongly convex since we want

TN to be the torus of the affine toric variety Uσ.

Next, we discuss projective toric varieties.

Definition 5.2.18. [3] Let T be a torus. A projective toric variety is a projective variety

equipped with a torus action with T as an open orbit.

The canonical first example is CPn, which is a projective toric variety with torus

TCPn = CPn \ V (x0 · · ·xn) = {[a0 : ... : an] ∈ CPn | a0 · · · an 6= 0}

∼= {[1 : t1 : ... : tn] ∈ CPn | t1, ..., tn ∈ C∗} ∼= (C∗)n.

The standard action of TCPn on itself extends to an action on CPn, making CPn a toric

variety.

We now wish to describe the projective toric variety which allows us to compute the

ring of conditions of An \ {0}. This is the blowup Bl0(CPn) of CPn at the origin.

Definition 5.2.19. [3] The blowup of CPn at a point is the projectivization of the tauto-

logical line bundle over CPn.

We now define the fan corresponding to a toric variety.

Definition 5.2.20 ( [9] Definition 3.1.2.). A fan Σ ∈ NR is a finite collection of cones

σ ⊆ NR such that

(1) every σ ∈ Σ is a strongly convex rational polyhedral cone,

(2) for all σ ∈ Σ, each face of σ is also in Σ,
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Figure 1. The fan of CP2

e1 ρ1

e2

ρ2

−e1 − e2

ρ3

(3) for all σ1, σ2 ∈ Σ, σ1 ∩ σ2 is also a face of each. Further, if Σ is a fan, then Σ(r) is the

set of r-dimensional cones of Σ.

Let NR = Rn, where N = Zn has standard basis e1, ..., en. Set e0 = −e1− e2− · · · − en,

and let Σ be the fan in NR comprising the cones generated by all proper subsets of

{e0, ..., en}.

Fact 5.2.21 ( [9] Example 3.1.10.). This fan corresponds to CPn, considered as a toric variety.

We will compute the fan corresponding to the blowup of CPn at the origin as an

application of the following general subdivision procedure.

Definition 5.2.22 ( [9] Definition 3.3.13.). Let Σ be a fan inNR ∼= Rn. Let σ = Cone(u1, ..., un)

be a smooth cone in Σ, so that u1, ...un is a basis forN . Let u0 = u1 + · · ·+un and let Σ′(σ)

be the set of all cones generated by subsets of {u0, ..., un} not containing {u1, ..., un}.

Then

Σ∗(σ) = (Σ \ {σ}) ∪ Σ′(σ)

is a fan in NR called the star subdivision of Σ along σ.

Fact 5.2.23 ( [9] Proposition 3.3.15.). The fan Σ∗(σ) is a refinement of Σ, and the induced toric

morphism

ψ : XΣ∗(σ) → XΣ

makes XΣ∗(σ) the blowup of XΣ at the distinguished point γσ corresponding to the cone σ.
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We now construct the fan of the blowup of CPn at the origin. Let Σ′ be the fan

obtained from the fan Σ for CPn by the following process. Subdivide the cone σn by

inserting an edge Cone(−en). Then the resulting toric variety XΣ′ is the blowup of CPn

at the point V (σn).

Figure 2. The fan of Bl0(CP2)

e1 ρ1

e2

ρ2

−e1 − e2

ρ3

−e2

ρ4

We wish to compute the cohomology of the blowup of CPn at the origin. Results of

Jurkiewicz and Danilov gives concrete prescription of the cohomology of certain toric

varieties, as we now recall.

Definition 5.2.24 ( [9] §4.3 discussion). Let Σ be the normal fan of a toric variety XΣ.

Then XΣ is simplicial if every cone σ ∈ Σ is simplicial, i.e., the minimal generators of σ

are linearly independent over R.

Let XΣ be a complete and simplicial toric variety and fix a numbering ρ1, ..., ρr for

the rays in Σ(1). Also let ui be the minimal generator of ρi and introduce a variable xi for

each ρi. In the ring Z[x1, ..., xr], let I be the monomial ideal with square-free generators

defined as follows:

I = 〈xi1 · · ·xis | ij are distinct and ρi1 + · · ·+ ρis is not a cone of Σ〉

As defined above, I is called the Stanley-Reisner ideal. We also define a second ideal
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as follows. Let J be the ideal generated by the linear forms

r∑
i=1

〈mi, ui〉xi (5.3.25)

where m ranges over some basis of M .

Example 5.2.25. For the example of CP2, fix the basis e1, e2 for M . This toric variety has

the fan with rays ρ1, ρ2, ρ3 as in Figure 1. These rays have corresponding minimal generators

u1 = e1 , u2 = e2, u3 = −e1 − e2. Let x1, x2, x3 be the corresponding variables as above.

In this example, it is not hard to see that I is given by 〈x1x2x3〉 and the ideal J is equal to

〈x1 − x3, x2 − x3〉.

Example 5.2.26. For the example of Bl0(CP2), the fan has four rays ρ1, ρ2, ρ3, ρ4 as in Figure

2 with associated minimal generators e1, e2,−e1 − e2,−e2. Then the Stanley-Reisner ideal can

be seen to be I = 〈x1x3, x2x4〉 and the ideal J can be seen to be 〈x1 − x3, x2 − x3 − x4〉.

Since Bl0(CPn) is complete and smooth, we can compute H∗(Bl0(CPn)) using the

following result of Jurkiewicz-Danilov.

Fact 5.2.27 ( [9] Theorem 12.4.4.). Let XΣ be a smooth complete toric variety. For the polyno-

mial ring Z[x1, ..., xr] with variables indexed by ρ1, ..., ρr ∈ Σ(1), let I and J be the ideals in

Z[x1, ..., xr] as defined above. Then

H∗(X) ∼= Z[x1, ..., xr]/(I + J).

Example 5.2.28. In the case of CP2, the computations given in Example 5.3.25 show that

H∗(CP2;Z) ∼= Z[x1, x2, x3]/〈x1x2x3 = 0, x1 = x3, x2 − x3〉 ∼= Z[x]/〈x3〉.

Example 5.2.29. In the case of Bl0(CP2), the computations given in Example 5.3.26 show that

H∗(Bl0(CP2);Z) ∼= Z[x1, x2, x3, x4]/〈x1−x3, x2−x3−x4, x1x3, x2x4〉 ∼= Z[x, y]/〈x2, y(x+y)〉.

Example 5.2.30. In the case of Bl0(CP2), the fan for the blowup has rays e0 = −e1− e2−· · ·−

en, e1, e2, ..., en,−en. Let the variables corresponding to e0, ...en,−en be denoted by x0, ..., xn,

respectively, and denote by y the variable corresponding to the “exceptional divisor”, by which

we mean the vector (−en).
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Then the Stanley-Reisner ideal can be seen to be generated by the following two elements:

the degree n monomial x0x1 · · ·xn−1 and the degree-2 monomial xny. From the definition of the

ideal J , the generators for J are−x0 +x1, −x0 +x2, ...,−x0 +xn−1,−x0 +xn−y. This implies

that we have relations x1 = x0, ..., xn−1 = x0, and xn = x0 + y.

For simplicity, from now on re-label the variable x0 as just x. Then the Jurkiewicz-Danilov

theorem states that the cohomology of the blow-up is Z[x, y]/〈xn, y(x+ y)〉.
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