
Rigorous defect control and the numerical solution

of ordinary differential equations

RIGOROUS DEFECT CONTROL AND THE NUMERICAL

SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

BY

JOHN M. ERNSTHAUSEN

a thesis

submitted to the school of computational science and engineering

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

msc of computational science and engineering

© Copyright by John M. Ernsthausen, October 2017

All Rights Reserved

MSc of Computational Science and Engineering(2017) McMaster University

(School of Computational Science and Engineering) Hamilton, Ontario, Canada

TITLE: Rigorous defect control and the numerical solution of

ordinary differential equations

AUTHOR: John M. Ernsthausen

School of Computational Science and Engineering

McMaster University, Hamilton, Ontario, Canada

SUPERVISOR: Nedialko S. Nedialkov

NUMBER OF PAGES: xv, 134

ii

Dedication

This thesis is dedicated to software craftsmanship and understanding

through computer experiments.

iv

Abstract

Modern numerical ordinary differential equation initial-value problem (ODE-IVP)

solvers compute a piecewise polynomial approximate solution to the mathematical

problem. Evaluating the mathematical problem at this approximate solution defines

the defect. Corless and Corliss proposed rigorous defect control of numerical ODE-IVP.

This thesis automates rigorous defect control for explicit, first-order, nonlinear

ODE-IVP. Defect control is residual-based backward error analysis for ODE, a special

case of Wilkinson’s backward error analysis. This thesis describes a complete software

implementation of the Corless and Corliss algorithm and extensive numerical studies.

Basic time-stepping software is adapted to defect control and implemented.

Advances in software developed for validated computing applications and advances

in programming languages supporting operator overloading enable the computation of

a tight rigorous enclosure of the defect evaluated at the approximate solution with

Taylor models. Rigorously bounding a norm of the defect, the Corless and Corliss

algorithm controls to mathematical certainty the norm of the defect to be less than

a user specified tolerance over the integration interval. The validated computing

software used in this thesis happens to compute a rigorous supremum norm.

The defect of an approximate solution to the mathematical problem is associated

with a new problem, the perturbed reference problem. This approximate solution is

v

often the product of a numerical procedure. Nonetheless, it solves exactly the new

problem including all errors. Defect control accepts the approximate solution whenever

the sup-norm of the defect is less than a user specified tolerance. A user must be

satisfied that the new problem is an acceptable model.

vi

Acknowledgements

I extend my gratitude and appreciation with a few professional acknowledgements. I

owe the success of my Masters of Science project to Prof. Ned Nedialkov, my mentor

and supervisor. Thank you for believing in me. I would also like to thank my thesis

committee Prof. Jacques Carette (Chair) and Prof. David Earn whose comments and

suggestions have improved the presentation of this document. Our Computational

Science and Engineering graduate director Bartek Protas with our administrative

assistants Tina Thorogood and Diana Holmes helped me to navigate the requirements.

I appreciate that Gary Guangning Tan shared his thesis template and his time in deep

conversation about our academic projects. Shawn X. Li and I engaged the real world

in a software development internship at the McMaster University spin-off EnviroSim

Associates Ltd. I appreciate Shawn’s technical insight, pragmatic approach, and help

in my first build of SOLLYA. I am grateful to Reza Zolfaghari for his comments and

suggestions on a draft of this thesis.

Rob Corless presented a seminar talk, “Optimal Backward Error and the Leaky

Bucket”, at McMaster University on 8 October 2015. This talk inspired my thesis

topic.

I am grateful to the government of Canada for the privilege to study in Canada. I

appreciate the hospitality of the Canadian people.

vii

I have a couple of personal acknowledgements. I’m grateful to Jaleen Grove for a

super environment for academic work. Thank you for opening your home to me. I’m

grateful to Michelle Fielding. I couldn’t overstate all you have done for me. Thank

you Michelle. I pray manifold blessings return to you!

viii

Notation and abbreviations

Notation

u Approximate solution

Ck
(
Ω,Rd

)
k-times, continuously differentiable, mappings from domain Ω into range Rd

∆u Defect evaluated using approximate solution u

δu Deviation evaluated using approximate solution u

(p, r) Taylor model of degree k

with Taylor polynomial p of degree k and interval remainder bound r

t0 Initial integration time

tend Final integration time

TOL Tolerance

u′
(
t
)

First derivative of u with respect to t

d
dt
u
(
t
)

First derivative of u with respect to t

R The field of real numbers

Rd The d-dimensional normed linear (vector) space over the field of real numbers

‖v‖ The norm of a vector v ∈ Rd

‖v‖J The supremum norm of a mapping t ∈ J 7→ v(t) ∈ R

‖v‖J ,∞ The infinity norm of a mapping t ∈ J 7→ v(t) ∈ Rd

ix

δ A rigorous upper bound on ‖v‖J ,∞

r
def
= [r, r] An interval

r Left endpoint of an interval r
def
= [r, r]

r Right endpoint of an interval r
def
= [r, r]

Acronyms and Abbreviations

ADAMS ADAMS method

API Application Programming Interface

CRK Continuous Runge–Kutta

C++ Object oriented C language

DAE Differential Algebraic Equation

multistep Linear multistep Method

ODE Ordinary Differential Equation

ODE-IVP Ordinary Differential Equation Initial-Value Problem

PID Proportional-Integral-Derivative

RDC CRK Relaxed Defect Control

Runge–Kutta Runge–Kutta method

RPA Rigorous Polynomial Approximation

SDC CRK Strict Defect Control

SDCV CRK Strict Defect Control with Validity check

TDD Test Driven Development

Taylor series Taylor series method

UML Unified Modelling Language

x

Software and Problem Solving Environments

FADBAD++ Automatic differentiation package [5, 92]

INTLAB The INTLAB package [83]

MATLAB The MATLAB problem solving environment [63]

ODETS Numerical ODE-IVP solver developed in this thesis

SOLLYA The SOLLYA package [12, 13]

TADIFF Automatic differentiation package [6]

xi

xii

Contents

Abstract v

Acknowledgements vii

Notation and abbreviations ix

1 Introduction 1

2 Background 15

2.1 The mathematical ODE-IVP problem 16

2.2 Residual-based backward error analysis 19

2.3 Defect control . 22

2.4 Backward error analysis . 25

2.5 Asymptotic defect control . 29

2.5.1 The asymptotic defect control problem 30

2.5.2 Discrete Runge–Kutta methods 31

2.5.3 Continuous Runge–Kutta methods 32

2.5.4 Constructing continuous Runge–Kutta methods I 33

2.5.5 Constructing continuous Runge–Kutta methods II 35

xiii

2.6 Guaranteed defect control . 42

2.7 Stepsize control . 45

2.8 Global error and condition . 48

3 Taylor models 53

3.1 Interval arithmetic . 56

3.2 Taylor models . 64

3.3 Computing the supremum norm . 66

3.4 Class Tmodel . 67

4 Automating rigorous defect control 75

4.1 Input and driver . 76

4.2 Phase I: Compute an approximate solution 76

4.3 Phase II: Bound the defect . 80

4.4 Phase III: Accept/reject step . 84

4.5 Initial stepsize . 85

4.6 ODETS software . 86

4.6.1 Build requirements . 87

4.6.2 Requirements and Specification by Example 87

4.6.3 Algorithm overview . 88

4.6.4 The class structure of ODETS 91

5 Numerical results and discussions 95

5.1 Test cases . 95

5.2 Adaptive time-stepping study . 96

5.3 Performance study . 106

xiv

5.4 Defect width study . 108

5.5 Initial value problems solved . 110

5.5.1 Three DETEST examples . 111

5.5.2 Restricted two-body model . 111

5.5.3 Forced Brusselator . 112

5.5.4 Discussion . 113

6 Conclusions and future work 115

6.1 Conclusions . 115

6.2 Future work . 119

xv

Chapter 1

Introduction

We investigate rigorous defect control for explicit, first-order, nonlinear ordinary

differential equation initial-value problem (ODE-IVP) from its mathematical foundation

to its complete software implementation. This thesis is a software development project

that automates rigorous defect control for the numerical solution of ODE-IVP, a stepsize

control strategy based on the defect. We document an extensive battery of numerical

studies designed to exhaustively test our software and record the results from these

studies. The research outcomes identify stepsize control as a future need.

Corless and Corliss proposed rigorous defect control of ODE-IVP over 25 years

ago [17]. Defect control is residual-based backward error analysis for ODE, a special

case of Wilkinson’s backward error analysis [18], which we shall explain in Chapter 2.

Residual-based backward error analysis is a remarkably straightforward procedure

and a powerful point of view.

Modern numerical ODE-IVP solvers compute a piecewise polynomial approximate

1

2 CHAPTER 1. INTRODUCTION

solution [34, 40, 85]

t ∈ [t0, tend] 7→ u
(
t
)
=
(
u1
(
t
)
, . . . , ud

(
t
))
∈ Rd (1.1)

to the mathematical ODE-IVP or reference problem

x′
(
t
)
= f

(
t, x
(
t
))
, x

(
t0
)
= x0 ∈ Rd, t ∈ [t0, tend]. (1.2)

As the notation suggests, the computed approximate solution is globally continuously

differentiable. Compute at this approximate solution

∆u
(
t
)def
= u′

(
t
)
−f
(
t, u
(
t
))
, ∆u

(
t0
)def
= u

(
t0
)
−x0, t ∈ [t0, tend]. (1.3)

We call a continuous ∆u a defect. Whenever ∆u is only piecewise smooth, we call it a

deviation, and we distinguish it from the continuous defect with the notation δu. The

mathematical notion of defect can be traced back at least to Cauchy [18, p. 509].

For the sake of concreteness, we use ‖ ·‖∞ to represent the infinity norm for vectors

in Rd and the induced matrix norm for matrices throughout this thesis. For the sake

of mathematical completeness, we use the infinity norm in functional spaces. The

infinity norm of a continuous path t ∈ J 7→ x
(
t
)
=
(
x1
(
t
)
, . . . , xd

(
t
))
∈ Rd over a

closed, bounded interval J ⊂ R is

‖x‖J ,∞
def
= max

i=1,...,d
max
t∈J
|xi(t)|. (1.4)

We may write the norm (1.4) as ‖x‖∞ or simply ‖x‖ whenever identifying the under-

lying vector space is clear from the context.

3

Let’s consider defect control. Let TOL be a given user specified tolerance. Locally,

a rigorous defect control approach selects a stepsize such that the sup-norm of the

defect over the step is bounded by TOL. This approach introduces a mesh to partition

the interval [t0, tend]

t0 < t1 · · · < tN = tend (1.5)

and generates a discrete approximation xn = u(tn) at each associated mesh point in

(1.5). We refer to the sequence of continuation points (tn, xn) as a skeletal solution,

{(
tn, xn

)}N
n=0

, t0 < t1 < . . . < tN = tend. (1.6)

At a continuation point (tn, xn), the algorithm, as yet to be specified, computes an

approximate solution u to the local numerical ODE-IVP

u′
(
t
)
= f

(
t, u
(
t
))
, u

(
tn
)
= xn, ‖∆u‖[tn,tn+1],∞ ≤ TOL. (1.7)

A local perturbed reference problem is a perturbation of the reference problem by the

defect at the approximate solution,

u
′(
t
)
= f

(
t, u
(
t
))

+∆u
(
t
)
, u

(
tn
)
= xn + ∆u

(
tn
)
, t ∈ [tn, tn+1] (1.8)

that associates the local defect with the local problem (1.7). The local approximate

solution is the exact solution of the perturbed reference problem (1.8), even if it is

tainted with representation and approximation errors.

A reference problem, a perturbed reference problem, and an engineered problem

4 CHAPTER 1. INTRODUCTION

are concepts from backward error analysis which we shall explain in Chapter 2.

Rigorous defect control identifies a solution so that ‖∆u‖[tn,tn+1],∞ ≤ TOL holds to

mathematical certainty. Consequently, concatenating this sequence of local approx-

imate solutions into the continuous numerical solution (1.1) joined at the skeletal

points (1.6), the approximate solution solves exactly the global numerical ODE-IVP

u′
(
t
)
= f

(
t, u
(
t
))

+∆u
(
t
)
, u

(
t0
)
= x0 + ∆u

(
t0
)
, ‖∆u‖[t0,tend],∞ ≤ TOL. (1.9)

In rigorous defect control, the norm of the defect is controlled rigorously to be within a

user specified tolerance. The user must validate that the perturbed reference problem

is a nearby problem. A nearby problem by definition is as valid an ODE-IVP model as

the reference problem, a model that is usually an approximation in modelling space

anyhow.

Evaluating the reference problem (1.2) at the approximate solution u defines the

defect (1.3) and the perturbed reference problem (1.9). While we never construct the

perturbed reference problem in practice, we know its exact solution u.

The mathematical community often thinks of the mathematical reference problem

as determined. However, the mathematical model may in fact denote an approximation

to the reality it seeks to model. Backward error analysis relaxes the requirement that

the reference problem be solved, and it instead solves exactly a nearby perturbed

reference problem. Solving the engineered problem provides the exact solution of the

perturbed reference problem. If the defect is smaller than the perturbations inherent

in the modelling context, then the solution provided by the engineered problem can

be considered completely satisfactory [18].

Defect control will control a measure of the defect to be less than TOL so that

5

Figure 1.1: Justification for the validity of the perturbed reference problem.

defect control is residual based backward error analysis. We illustrate this situation in

Figure 1.1.

From a practical point of view, MATLAB solvers ode45 and ode113 provide

numerical solutions to ODE-IVP without concern about the defect. The local forward

error is computed differently for the Runge–Kutta code ode45 than for the ADAMS

code ode113. The defect easily distinguishes the quality of the numerical solutions.

For example, consider the logistic model.

Logistic model: We applied ode45 and ode113 to the logistic model

x′
(
t
)
= x

(
t
)
−x
(
t
)
x
(
t
)
, x

(
0
)
= 0.2, t ∈ [0, 5]. (1.10)

6 CHAPTER 1. INTRODUCTION

We solve and plot the ode45 numerical solution of (1.10) with MATLAB code

f = @(t,x) x - x.*x;

options = odeset(’Reltol’, 1.0e-3, ’Abstol’, 1.0e-6);

sol = ode45(f, [0,5], 0.2, options);

t = RefineMesh(sol.x, 15);

[z, dotz] = deval(sol, t);

figure(1),plot(t,z)

We solve and plot the ode113 numerical solution of (1.10) with MATLAB code

f = @(t,x) x - x.*x;

options = odeset(’Reltol’, 1.0e-3, ’Abstol’, 1.0e-6);

sol = ode113(f, [0,5], 0.2, options);

t = RefineMesh(sol.x, 15);

[z, dotz] = deval(sol, t);

figure(1),plot(t,z)

The plots agree to graphical accuracy, the overlay is not shown. These MATLAB

codes follow Corless and Fillion [18, Section 12.2] and method RefineMesh from

Corless and Fillion [18, Section 12.2.2] inserts additional evaluation points between

the continuation points.

function [refinedMesh] = RefineMesh(coarseMesh, nRefine)

if nargin == 1

nRefine = 4;

end

n = length(coarseMesh);

[m1, m2] = size(coarseMesh);

h = diff(coarseMesh);

refinedMesh = repmat(coarseMesh(1:end-1).’, 1, nRefine);

refinedMesh = (refinedMesh+(h.’)*[0:nRefine-1]/nRefine).’;

refinedMesh = [refinedMesh(:);coarseMesh(end)];

if m1<m2

refinedMesh = refinedMesh.’;

end

end

7

We compute the absolute defect for the logistic model:

f = @(t,x) x - x.*x;

options = odeset(’Reltol’, 1.0e-6, ’Abstol’, 1.0e-11);

sol = ode113(f, [0,5], 0.2, options);

t = RefineMesh(sol.x, 15);

[z, dotz] = deval(sol, t);

deltaz = dotz - f(t, z);

figure(1),semilogy(t,abs(deltaz),’o:’,’MarkerSize’,2,’MarkerFaceColor’,’r’)

set(gca,’fontsize’,16),axis([0, 5, 0.0, 1.0])

xlabel(’t’),ylabel(’absolute residual’),xticks([0:1:5])

The tolerances control the defect. We compute the relative defect by replacing deltaz

in the MATLAB code with the relative defect.

deltaz = dotz./f(t, z) - 1;

Plots indicate that ode45 is less faithful than ode113 when solving the logistic model,

an assessment which is possible by comparing, in this case, deviations. The defect

easily distinguishes the quality of the numerical solutions!

Defect plots indicate that the defect rendered for a general problem by MATLAB

solvers ode45 and ode113 will not be continuous. Enright and Yan [38] construct

continuous output Runge–Kutta (CRK) methods, and the defect at the approximate

solution generated with these methods render a continuous defect, which we explain

in Section 2.5.

Standard ODE-IVP solvers estimate the local forward error. Forward error esti-

mation often depends on the solver as it is part of the solver’s design, and the error

estimate depends on the particular problem. Local forward error estimators can under-

estimate the true local error. The solver accepts this overshoot error estimate, because

the error estimator indicates the estimate is within tolerance when the true error is

8 CHAPTER 1. INTRODUCTION

greater than tolerance. That’s being fooled. Interval methods for ODE-IVP solvers

compute rigorous bounds on the solution, but it is challenging to keep the bound tight

[73, 75, 79]. Enright illustrates that replacing traditional error estimators with defect

control separates concerns for universal comparison of approximate solutions from the

engineered problems applied to compute them [24]. We offered this illustration on the

logistic model.

Taylor models: Our approach to rigorous defect control uses Taylor models and

interval arithmetic to compute a rigorous, tight upper and lower enclosure for the

true, mathematical defect. Hence, defect control cannot be fooled. A Taylor model is

an interval analysis technique based on Taylor arithmetic with remainder. Neumaier

discusses the properties and merits of Taylor forms in his review article [80]. Taylor

forms use the truncated Taylor series approximation. Taylor models implement Taylor

forms in a special way that aims to reduce overestimation of the rigorous remainder

bound [58, 67, 68, 82].

A Taylor model of degree k represents a function v as a couple
(
p, r
)
:

(
p, r
)

means v(t)− p(t) ∈ r
def
= [r, r] for all t ∈ [a, b]. (1.11)

The function t ∈ [a, b] 7→ v
(
t
)
∈ R is a member of the function class Ck+1

(
[a, b],R

)
.

We select approximations p ∈ P to v from a
(
k + 1

)
-dimensional subspace P of

Ck+1
(
[a, b],R

)
, the polynomials of degree k. For example, in Figure 1.2, we depict

the Taylor model
(
p, r
)

of degree 4 for sin(t) on [0, π/2]. Here p(t) = t− 0.1667 t3 is

the Taylor series approximation to sin(t) at 0 of degree 4 and the remainder bound is

r = [−0.0797, 0.0797]. The graph and Taylor model are computed using INTLAB [83].

9

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

t

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

1.3

Figure 1.2: Taylor model of degree 4 for sin(t)

The approximation statement sin(t) ∈ p(t) + r on [0, π/2] in (1.11) holds, and it is

observed graphically in Figure 1.2.

Joldes [61] generalized Taylor models to Rigorous Polynomial Approximation

(RPA) and designed a new tool based on Chebyshev series approximations. The

approximation subspace are the polynomials of degree k in a certain polynomial basis.

The most common representation for a polynomial p is a monomial basis shifted by t0;

that is, p(t) =
∑k

i=0 ci
(
t− t0

)i
. Other bases are available such as Newton, Bernstein,

and Chebyshev. We apply her theoretical results, and we extend her freely available

codes distributed in the SOLLYA package [12, 13]. The SOLLYA tool implements RPA

in one independent variable, and it implements a rigorous supremum norm.

Defect control literature: Hull [59] and Stetter [93, 94] established conditions

that guarantee the existence of a continuously differentiable interpolant u that satisfies

a perturbed reference problem and the indirect asymptotic relationship

‖∆u‖ ≤ σ(t) TOL,

10 CHAPTER 1. INTRODUCTION

for some scalar mapping σ on [t0, tend], depending on the method as well as the problem,

such that |σ| ≤ c where c is independent of the problem and the method. For Stetter,

the path u and the defect ∆u may not be computable.

Stetter considers the asymptotic form of σ for interpolation schemes that can be

associated with ADAMS method [45]. In Hanson and Enright [50], Stetter’s analysis

is extended to interpolation schemes used in existing software, and numerical results

are presented to verify the Stetter σ condition is satisfied over a realistic range of

tolerances, opening an investigation into defect control.

Enright’s asymptotic defect control is an efficient and effective defect control

strategy, and it happens to be the first serious numerical implementation of defect

control [24]. Asymptotic defect control extends to delay differential equations [30, 31,

51, 87, 97], Volterra integro-differential equations [84], ODE boundary value problems

[35, 63, 88], and differential-algebraic equations [66, 81].

Enright with his coworkers and students developed asymptotic defect control. The

pioneering articles Hanson and Enright [50], Higham [53, 54, 55], Enright [23, 24, 25,

26, 29], Enright and Hayes [32], and Enright and Yan [38], support the statements in

the previous paragraph, and they illustrate defect control designed for implementation

into high performance computing software [33] and into problem solving environments

[27, 28]. Enright focused on defect control based on the infinity-norm. Kierzenka and

Shampine [63] developed an inexpensive estimate of the defect in 2-norm.

Enright starts with a discrete Runge–Kutta method and designs a CRK method

for non-stiff problems [38] based on procedures for continuous extensions developed

in [34, 40, 85]. A CRK method generates a continuously differentiable, piecewise

polynomial approximate solution to the ODE-IVP that is defined for all values of the

11

independent variable in the range of interest. Enright constructs special CRK methods

of order p that have local error of order p+ 1 where the maximizer for the maximum

magnitude of the defect is computable ahead of time and problem independent. The

CRK method and the estimate of the maximum magnitude of the defect are tightly

connected. Classic textbooks [2, 45, 46] discuss the construction and justification of

traditional discrete Runge–Kutta methods.

Enright’s asymptotic defect control has a 30 year development history, and the

author acknowledges that the explanation in Section 2.5 omits interesting aspects of

that history such as a theoretical cost per step analysis and a cost comparison analysis

for the CRK methods which Enright designed. Enright quantifies the reliability of

CRK methods through several novel measures which our discussion omits. Enright

developed asymptotic defect control for several general-purpose numerical methods

in classes of ordinary differential equations such as differential-algebraic equations,

Volterra integro-differential equations, delay differential equations, and ODE boundary

value problems which we omit from our discussion. The interested reader is invited to

investigate the cited literature. On the other hand, the discussion in Section 2.5 offers

a detailed explanation of state-of-the-art asymptotic defect control. Enright and Yan

[38] explain the construction of a general CRK method.

Stepsize control literature: Defect control requires stepsize control, and, in this

thesis, basic time-stepping software is adapted to defect control and implemented.

The Lund PID stepsize controller generalizes the familiar elementary stepsize controller

[46, 90, 91]. Bergsma [7] investigated three stepsize controllers based on the radius of

convergence for Taylor series methods.

12 CHAPTER 1. INTRODUCTION

Our approach: Our approximate solution begins as a Taylor expansion of degree k.

We construct the Hermite approximate solution from the Taylor approximate solution,

the interpolant of the solution and derivative at both endpoints of the integration

interval. The Hermite interpolant is the exact solution of the perturbed reference

problem associated with the defect of the Hermite interpolant. Thus, we locally know

the Taylor model of degree
(
k + 2

)
for the approximate solution u,

(
u,0
)
. We run the

Taylor model for the Hermite approximate solution through the code list of the defect

u′− f
(
t, u
(
t
))

in SOLLYA to compute the Taylor model of degree
(
k + 2

)
for its defect,

this requires that the ODE right hand side f ◦ s ∈ Ck+3
(
R,Rd

)
where s

(
t
)
=
(
t, u
(
t
))

.

The real-valued coefficients of the approximation polynomial and the ODE right hand

side must be represented in machine format F , and representing the coefficients in

machine format introduces rounding and truncation errors. Nonetheless, the Taylor

model of the defect accounts for all errors.

Let’s review the process. Rigorous defect control occurs over three phases:

Phase I. Compute a Hermite approximate solution based on the Taylor series

solution which is necessary for the defect of the Hermite approximate

solution to be continuous, a desirable property. This step involves floating-

point arithmetic.

Phase II. Bound the defect of the Hermite approximate solution. This phase rigor-

ously bounds the sup-norm of the defect, and it involves Taylor models

which are based on interval arithmetic.

Phase III. Accept or reject the predicted step based on the sup-norm of the defect

evaluated at the Hermite approximate solution less than TOL. This step

involves only floating-point arithmetic.

13

A rejected step can reuse the Taylor series solution on the newly predicted step.

Thesis outline: Chapter 2 discusses background topics related to rigorous defect

control including an exposition of the mathematical ODE-IVP, backward error analysis,

asymptotic defect control, and the rationale for guaranteed ODE defect control proposed

by Corless and Corliss. Chapter 3 introduces Taylor models. Each component of

the defect is a mapping over a closed bounded interval into the real numbers, and

we represent it as a Taylor model so that we can tightly and rigorously bound the

sup-norm of the mapping. The SOLLYA package [12, 13] does the heavy lifting in

our software implementation. Chapter 4 implements rigorous defect control. We

discuss the algorithm in three phases. Chapter 5 discusses our numerical experiments.

We hope our Taylor model software will be generally used. We chose our example

problems because they challenge existing stepsize controllers. Chapter 6 concludes

the thesis with a Conclusions and future work chapter. Several open problems are

discussed in this thesis, including the need for establishing improved time-stepping

software in the future. Finally, we provide a detailed Bibliography on the literature

involving defect control.

14 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This chapter collects basic definitions, theorems, and background material on defect

control. The material is meant to help the reader understand the mathematics behind

the algorithms implemented in our software. The reader may confidently omit this

chapter on a first reading.

Defect control is residual-based backward error analysis, and, replacing traditional

forward error with the defect, it uses the defect in stepsize control. Rigorous defect

control captures all error information. In this chapter, we discuss two approaches to

defect control, asymptotic defect control and guaranteed defect control.

The Gröbner-Alexeev nonlinear variation-of-constants formula [18, p. 537] relates

the defect to the global error through the derivative of the true solution of the reference

problem with respect to its initial condition along the computed exact solution of

the perturbed reference problem, whenever the vector field has a continuous first

derivative. The Gröbner-Alexeev formula enables us to justify faithfully ensuring a

measure of the defect less than TOL for problems of large global error. With a small

amount of extra computational effort, the global error and an estimate of the condition

15

16 CHAPTER 2. BACKGROUND

number are accessible with defect control [29].

2.1 The mathematical ODE-IVP problem

A given mathematical ODE-IVP

x′(t) = f
(
t, x(t)

)
, x(t0) = x0, t ∈ [t0, tend] (2.1)

with x ∈ Rd is an example of a reference problem, the model problem.

A k-path x over the interval [t0, tend] is a mapping x ∈ Ck([t0, tend],Rd); that is,

x has d components xi which are k-times, continuously differentiable, real-valued

functions over the interval [t0, tend]. We interchangeably denote the first ordinary

derivative of the path x by x′(t) and by d
dt
x(t).

The solution of the reference problem (2.1) has one independent variable t, must

be continuously differentiable on the domain of definition [t0, tend], must take values

in real d-dimensional space Rd, must satisfy the differential equation, and must satisfy

the initial condition at t0. More succinctly, the solution x of an ODE initial-value

problem is a 1-path over [t0, tend] that satisfies the defferential equation and the initial

condition. We require the existence and uniqueness of solution to build our arguments.

Theorem 1 (Existence and uniqueness of ODE-IVP solution). Define the solution ball

B def
=
{(
t, x
)
| t∗ ≤ t ≤ t∗ + T, ‖x− x∗‖∞ ≤M

}
⊂ R× Rd

for any positive, real constants T and M , and any fixed but arbitrary point
(
t∗, x∗

)
.

2.1. THE MATHEMATICAL ODE-IVP PROBLEM 17

Restricting T and M , if necessary, suppose the vector field f is continuous on B and

‖f‖ is bounded on B by A. Further, suppose f satisfies

‖f
(
t1, x1

)
−f
(
t2, x2

)
‖ ≤ L ‖x1 − x2‖ for all

(
t1, x1

)
,
(
t2, x2

)
∈ B,

a Lipschitz condition in x uniformly in t near the arbitrary but fixed point
(
t∗, x∗

)
with Lipschitz constant L. If T − t∗ ≤M/A, then there exists a unique, continuously

differentiable solution x of the local ODE-IVP reference problem

x′
(
t
)
= f

(
t, x(t)

)
, x

(
t∗
)
= x∗, t ∈ [t∗, t∗ + T] (2.2)

such that (t, x(t)) ∈ B for all t ∈ [t∗, t∗ + T].

A statement of Theorem 1 and its proof can be found in [45, Lemma 7.1, p.32 and

Theorem 7.3, pp. 33–34].

The following assumption is required to extend the local solution.

Assumption 2. Suppose the assumptions of Theorem 1 hold at
(
t0, x0

)
. The local

solution through x0 at t0 can be extended to the interval [t0, tend].

Under the assumptions of Theorem 1, the vector field is continuous and bounded

on B. If the local solution un to (2.2) evaluated at the final time t∗ + T satisfies(
t∗ + T, un

(
t∗ + T

))
∈ B, then the local solution can be continued to the right of t∗+T .

Define
(
tn, xn

)def
=
(
t∗ + T, un

(
t∗ + T

))
. It is natural to call

(
tn, xn

)
a continuation point.

The global solution t ∈ [t0, tend] 7→ u(t) ∈ Rd is a pasting or continuation of the local

solutions un.

18 CHAPTER 2. BACKGROUND

t0 t1 t2
. . .

tn

x0

x1

x2

xn

t ∈ R

u
(t

)
∈
R
d

Figure 2.1: Graphically illustrate relationship between the global solution u and the
skeletal solution (2.4) as well as the relationship between global solution and local
solution.

The construction introduces a mesh to partition the interval [t0, tend]

t0 < t1 · · · < tN = tend. (2.3)

The sequence of continuation points (tn, xn) on the mesh (2.3) generates a skeletal

solution,

{(
tn, xn

)}N
n=0

, t0 < t1 < . . . < tN = tend. (2.4)

We illustrate the continuation process of constructing a global solution from local

solution as well as the relationship between the local solution and the skeletal solution

in Figure 2.1.

The continuation process outlined in this section translates into a strategy for the

2.2. RESIDUAL-BASED BACKWARD ERROR ANALYSIS 19

numerical solution of ODE-IVP. This process is followed by most classical numerical

solvers. Classic texts [2, 22, 45, 46] discuss the construction and justification of the

discrete algorithms sometimes used to design continuous output methods. We will not

review them here.

Modern numerical solvers construct a convenient, computable approximate solution

which may not be the true solution [34, 40, 85]. Examples of modern solvers are the

continuous output methods such as the continuous Runge–Kutta method, multistep

method, and Taylor series method. A continuous output method is a modern solver

that is designed to output a global, continuously differentiable approximate solution

with the same order as the underlying numerical method [34, 85].

The next section considers a general presentation of the residual and discusses the

modern solver as an engineered problem. The defect is the residual for an ODE.

2.2 Residual-based backward error analysis

We consider the residual in this section, a remarkably straightforward procedure and

a powerful point of view. The mapping ϕ specifies a reference problem

d ∈ D 7→ ϕ
(
d
)
∈ S (2.5)

whose inputs d in data space D are mapped into outputs s in solution space S, its

codomain [18]. Points in output space can be sets, enabling us to consider solutions

that are not unique. Whenever the reference problem (2.5) can be expressed with an

20 CHAPTER 2. BACKGROUND

implicit function of data and output, we may write

d ∈ D 7→ ϕ
(
d
)
=
{
s | ρ

(
d, s
)
= 0
}
∈ S. (2.6)

The function ρ is a defining function and ρ
(
d, s
)
= 0 is a defining equation.

Suppose a given reference problem has true solution s = ϕ(d) for given input d

which satisfies the defining equation ρ
(
d, s
)
= 0, but it is difficult to determine the

true solution. The reference problem can be deliberately modified to construct a

convenient, computable approximate solution, ŝ. The computed solution ŝ is the exact

solution of a modified problem ϕ̂(d); that is, ŝ = ϕ̂(d). In the parlance of Wilkinson’s

backward error analysis, we call the conveniently computable modified problem ϕ̂(d)

an engineered problem. The residual r at ŝ, the computed solution of a modified

problem, is defined by

r = r(ŝ) = ρ
(
d, ŝ
)
. (2.7)

We procedurally obtain the residual by substituting the exact solution of a modified

problem ϕ̂(d) into the defining equation. We can rearrange Equation (2.7) to realize

a new defining equation ρ̃
(
d, ŝ
)def
= ρ

(
d, ŝ
)
−r(ŝ) = 0. When such a construction is

possible, its associated problem

ϕ̃
(
d
)
=
{
s | ρ̃

(
d, s
)
= 0
}

(2.8)

is the reverse-engineered problem. The easily computed solution generated by the

engineered problem is an exact solution to the reverse-engineered problem. See Corless

2.2. RESIDUAL-BASED BACKWARD ERROR ANALYSIS 21

and Fillion [18, p. 29] for an example when such a construction is not possible.

Given specific data d, a specific modified problem is ϕ̂(d). We write a generic

modified problem as ϕ̂. We follow this convention for reference problem, modified

problem, and engineered problem throughout this thesis.

Example 3. The logistic model

x′
(
t
)
= x− x2, x

(
0
)
= 1/2

considered in Corless and Corliss [17] is an ODE-IVP reference problem. Suppose an

engineered problem returns the approximate solution

u
(
t
)
=

1

2
+

1

4
t− 1

96
t3, t ∈ [0, h0].

Compute the defect. The defect in initial condition is zero and

∆u
(
t
)
= u′

(
t
)
−u
(
t
)
+u
(
t
)2

=
1

32
t2
(

1− 1

6
t2 +

1

288
t4
)
.

The defect is the residual (2.7), and it is the defining function. The perturbed reference

problem is

x′
(
t
)
= x− x2 +

1

32
t2
(

1− 1

6
t2 +

1

288
t4
)
, x

(
0
)
= 1/2.

and u exactly solves this perturbed reference problem.

The reference problem (2.6) and the reverse-engineered problem (2.8) are different

in the input data, and the difference is the residual. This observation, illustrated in

22 CHAPTER 2. BACKGROUND

the following diagram, is the thrust of Wilkinson’s backward error analysis; that is,

we depict the backward error ∆d in the diagram (2.9). 1

d

d+ ∆d

s

ŝ

ϕ

∆d
ϕ̂

ϕ

∆s

(2.9)

Reflecting back refers to reflecting the forward error ∆s back into the backward error

∆d; that is, we find a ∆d such that ϕ
(
d+ ∆d

)
= ϕ̂

(
d
)
. The smallest reflection is

called the backward error. In Section 2.4, we precisely define the backward error, and

we prove that the backward error in residual-based backward error analysis is the

residual.

We apply the theory developed in this section to control the backward error during

the numerical solution of ODE-IVP, a process called defect control. Defect control is

the topic of the next section.

2.3 Defect control

Given the mathematical ODE-IVP reference problem (2.1) and a tolerance parameter

TOL, suppose Assumption 2 holds. Construct the global numerical solution in a

continuation procedure analogous to the construction done in Section 2.1 for the exact

solution; that is, suppose approximate solutions ûj and steps Tj, for j = 1, . . . , n, are

1 Inspired by Higham [57, p. 7], but labeled to reflect our notation.

2.3. DEFECT CONTROL 23

computed to the local ODE-IVP reference problem,

x′
(
t
)
= f

(
t, x
(
t
))
, x

(
tj−1

)
= xj−1, t ∈ [tj−1, tj−1 + Tj]

with an engineered problem ϕ̂. Set the final time tn
def
= tn−1 + Tn, and evaluate the

next continuation point
(
tn, xn

)def
=
(
tn, û

n
(
tn
))

. Evaluating the local reference problem

at v denoting ûn defines the defect ∆v at v which is computed as

∆v
(
t
)def
= v′

(
t
)
−f
(
t, v
(
t
))
, t ∈ [tn−1, tn] and ∆v

(
tn−1

)def
= v
(
tn−1

)
−xn−1. (2.10)

The approximate solution must be differentiable to compute the defect. The defect

describes the extent to which the first derivative of the approximate solution v′ fails

to satisfy tangency with f , and it describes the extent to which v fails to satisfy the

initial condition. Certainly, ∆v
(
tj
)
= 0 for all j with a possible exception at j = 0.

The data space for the local reference problem is

D def
=
{
d | d =

(
f, tn−1, tn, xn−1

)}
, tn

def
= tn−1 + Tn,

and the local reference problem in terms of the defect as the defining equation is

d ∈ D 7→ ϕ
(
d
)def
=
{
v
(
d
)
| ∆v

(
t
)
= 0 for t ∈ [tn−1, tn], ∆v

(
tn−1

)
= 0
}
. (2.11)

24 CHAPTER 2. BACKGROUND

We write the approximate solution v as v
(
d
)

to emphasize the dependence of it on

the reference problem data. From (2.8), the reversed-engineered problem is

ϕ̂
(
d
)
=

v | v
′(t)−f(t, v(t))−∆v

(
t
)
= 0 for t ∈ [tn−1, tn],

v
(
tn−1

)
−xn−1 −∆v

(
tn−1

)
= 0

 . (2.12)

The approximate solution from the engineered problem v is the exact solution of the

reverse-engineered problem (2.12).

We adopt Enright’s defect control idea: Control the magnitude of the true defect

‖∆v‖ by controlling the stepsize Tn. Defect control is stepsize control [17]. We solve

exactly the local numerical ODE-IVP

v′
(
t
)
= f

(
t, v
(
t
))

+∆v
(
t
)
, v

(
tn−1

)
= xn−1 + ∆v

(
tn
)
, ‖∆v‖[tn−1,tn],∞ ≤ TOL. (2.13)

We want to take a step as large as possible that rigorously satisfies ‖∆v‖ ≤ TOL. This

is theoretically possible. Indeed, we have ‖v(tn−1)− xn−1‖ = ‖∆v(tn−1)‖ < TOL. The

defect is continuous – it is a polynomial. By continuity, there is some maximal stepsize

0 < T ≤ tend such that ‖∆v(t)‖ ≤ TOL, for t ∈ [tn−1, tn−1 + T].

A local approximate solution might not induce a global continuous defect. A

deviation is a defect that is only locally continuous, and a deviation is distinguished

in notation from a defect with a lower case delta, δ. We chose the absolute operator

∆u for our discussion as it is somewhat easier to evaluate. The relative operator δu

can be used, and it is preferable over the absolute error when the modelling context

demands the proper choice of scale [18, p. 21]. The relative operator evaluates the

2.4. BACKWARD ERROR ANALYSIS 25

relative defect, and it is defined componentwise

δiv(t)
def
=

d
dt
vi(t)− fi(t, v(t))

fi(t, v(t))
=

d
dt
vi(t)

fi(t, v(t))
− 1 (2.14)

whenever each component of the vector field f is not zero.

The next section pursues a deeper understanding of backward error analysis.

2.4 Backward error analysis

In this section, we consider a powerful framework for error analysis which is the

theoretical foundation for defect control. We highlight relevant results from graduate

textbooks by Corless and Fillion [18, Chapter 1] and Higham [57, Chapter 1].

An algorithm is a finite sequence of basic operations leading to an approximate

solution ŝ of the mathematical problem s = ϕ(d). An algorithm may deliberately alter

the reference problem to make computation easier or even possible, and the process

defines a modified problem or engineered problem ϕ̂. The approximate solution ŝ is the

exact solution of an engineered problem ϕ̂; that is, ŝ = ϕ̂(d). Whenever solutions of a

modified problem capture the expected characteristics of the reference problem, we

say the engineered problem is a nearby problem.

Example 4. Apply the quadratic formula to find all roots of a quadratic polynomial

ρ
(
x, η
)
= η2 − 2xη + x2

for an arbitrary, but fixed real x. The reference problem is, given an arbitrary but

26 CHAPTER 2. BACKGROUND

fixed real value for x,

d =
(
1,−2x, x2

)
7→ s =

{
η | ρ

(
x, η
)
= 0
}
.

The solution algorithm applies the quadratic formula to find the roots

s =
{
η ∈ R | η2 − 2xη + x2 = 0, x ∈ R

}
=
{
x
} def

= x.

By convention, we flatten the set for singleton as in the last equality. Check that x

satisfies the defining equation. The modified problem, here the quadratic formula, in

exact arithmetic exhibits the exact solution.

We depict the relationship between the reference problem ϕ and its true solution s

along with the modified problem ϕ̂ and its solution ŝ in diagram (2.15):

d s

ŝ

ϕ

∆s
ϕ̂

(2.15)

We need norms to compare solutions and measure error. Error can be measured in

absolute error or relative error, and the solutions being compared are expected to be

members of a normed linear space.

An example of a normed linear space is the space of continuously differentiable

1-paths under the infinity-norm. If P def
=
{
x | x ∈ C1

(
[0, 1],Rd

)}
and ‖ · ‖ is the

infinity-norm in Equation (1.4), then
(
P , ‖ · ‖

)
is a normed linear space. The space

2.4. BACKWARD ERROR ANALYSIS 27

of polynomials of degree at most k is a
(
k + 1

)
-dimensional normed linear space. In

fact, it is a finite-dimensional subspace of P .

Consider members v̂ and v from the space of continuously differentiable 1-paths

under the infinity-norm, (P , ‖ · ‖). The absolute error ∆v is

∆v = v̂ − v.

If vi 6= 0, then the relative error δv is defined componentwise as

(
δv
)
i
=
v̂i − vi
vi

.

We have the equality

v̂ = v + ∆v = v
(
1 + δv

)
where (v δv)i

def
= vi δvi

from the absolute and relative error statements whenever vi 6= 0.

Given any real number ε positive, an absolute ε-neighborhood near v is defined by

{
v̂ = v + ∆v such that ‖∆v‖ < ε

}
whereas a relative ε-neighborhood near v is defined by

{
v̂ = v

(
1 + δv

)
such that ‖δv‖ < ε

}
.

28 CHAPTER 2. BACKGROUND

We depict the (relative) backward error δd in the diagram (2.16). 2

d

d
(
1 + δd

)
s

ŝ

ϕ

δd ∈ E
(
d, ε
) ϕ̂

ϕ

∆s

(2.16)

The absolute forward error ∆s compares solutions s and ŝ

∆s = s− ŝ = ϕ(d)− ϕ̂(d).

It measures the distance between solutions. The backward error measures distance

between problems. Given data d and a tolerance ε, the backward error is the smallest

(relative) perturbation δd in the equality set E
(
d, ε
)
,

E
(
d, ε
)def
=
{
δd | d̂ = d

(
1 + δd

)
, ‖δd‖ < ε, ϕ

(
d̂
)
= ϕ̂(d)

}
.

In general, the equality set E
(
d, ε
)

depends on d and ε. The backward error is

be
(
d, ε
)def
= inf

δd∈E(d,ε)
‖δd‖ (2.17)

in the extended sense; that is, the backward error is ∞ whenever E
(
d, ε
)

is empty.

The process of bounding the backward error is called backward error analysis and

inclusively considers all data errors and computation errors simultaneously.

Let the problem data d and tolerance ε be given, and choose an engineered problem

2 Inspired by Higham [57, p. 7], but labeled to reflect our notation.

2.5. ASYMPTOTIC DEFECT CONTROL 29

ϕ̂ to construct numerical solution ŝ
def
= ϕ̂(d). The backward error in residual-based

backward error analysis is the smallest residual. Indeed, choose a fixed but arbitrary

perturbation δŝ from the equality set E
(
d, ε
)
. By definition, d̂

def
= d

(
1 + δŝ

)
is a

member of the relative ε-neighborhood near d such that ϕ
(
d̂
)
= ϕ̂(d). By construction,

a solution of the engineered problem ϕ̂(d) is a solution of the reverse-engineered

problem whose residual δŝ is defined in (2.7). The definition of backward error (2.17)

is the smallest residual from the solutions of engineered problem ϕ̂(d) satisfying the

tolerance condition.

In defect control, the reverse-engineered problem has a unique solution according

to Theorem 1. It follows that the backward error in defect control is the defect. The

following two sections consider two approaches to defect control.

2.5 Asymptotic defect control

In this section, we explain Enright’s asymptotic defect control for a computable,

continuous output Runge–Kutta (CRK) method, where the approximate solution and

the defect are computable. The design of the method enabled Enright to identify an

asymptotically correct maximizer of the defect ahead of time so that an inexpensive,

asymptotic estimate of the maximum defect can be computed for the purpose of

defect control on each integration step. The estimate is controlled with an adaptive

time-stepping algorithm to remain less than a user specified tolerance. Results show

that the estimate is near optimal on a wide range of non-stiff problems, but it is not

rigorous in our sense.

30 CHAPTER 2. BACKGROUND

2.5.1 The asymptotic defect control problem

Enright requires the fixed, but arbitrary, tangent vector field f to be Lipschitz to

justify his asymptotic approach. Theorem 1 holds under the Lipschitz assumption,

but we must assume Assumption 2 holds. Given a user specified tolerance TOL,

the engineered problem in this section is the continuous output Runge–Kutta (CRK)

method, and we will define these methods in this section. The numerical solution (1.1)

to the mathematical reference problem (1.2) is a piecewise polynomial, continuously

differentiable, approximate solution u constructed from local polynomial, approximate

solutions un to the local reference problem (2.2). Denote the exact solution to the nth

local reference problem by xn. In our discussion, we freely refer to the right endpoint

of the interval [tn−1, tn−1 + hn] as tn
def
= tn−1 + hn. The local approximate solution is

always continuously differentiable.

Enright’s approximate solution un for his CRK method is a fixed optimal order

interpolant which means that un agrees with the local solution xn to O
(
hp+1
n

)
and its

derivative agrees with the derivative of the local solution to O
(
hpn
)

on [tn−1, tn].

Enright implemented CRK methods. He applied a stepsize control strategy to

control his estimate estn by adjusting stepsize hn to assure that estn ≤ TOL on

each step. An adaptive time-stepping algorithm selects the stepsize sequence hn to

improve regularity and computational stability [90, 91]. Stepsize control is the topic of

Section 2.7. The distribution of points in the mesh (1.5) where xn
def
= un(tn) defines a

skeletal solution
{(
tn, xn

)}N
n=0

as defined in (1.6). Starting at the continuation point(
tn−1, xn−1

)
with stepsize hn, let’s follow Enright to determine the next continuation

point and the next local approximate solution un. In a bootstrapping technique, he

extends discrete Runge–Kutta formula to a suitable continuous extension [29].

2.5. ASYMPTOTIC DEFECT CONTROL 31

2.5.2 Discrete Runge–Kutta methods

A classical pth-order, s-stage, discrete Runge–Kutta formula determines intermediate

approximations to the solution at times tn−1 + crhn

Xr = xn−1 + hn

s∑
j=1

ar,jkj, kr = f
(
tn−1 + crhn, Xr

)
, r = 1, . . . , s. (2.18)

The discrete approximation to the solution at tn is

xn = xn−1 + hn

s∑
j=1

ωjkj. (2.19)

This discrete approximate solution is order p+ 1 which means that (2.19) satisfies

xn = xn−1 + hn

s∑
j=1

ωjkj = xn(tn) +O
(
hp+1
n

)
. (2.20)

Some discrete Runge-Kutta methods have a
(
p− 1, p

)
formula pair, the order p+ 1

approximation (2.20) and a second, inexpensive, order p approximation

x̃n = xn−1 + hn

s∑
j=1

ω̃jkj = xn(tn) +O
(
hpn
)
.

The step is taken with the higher order discrete approximate solution
(
tn, xn

)
in a

practice called local extrapolation, and this practice is known to improve the accuracy

of the solution.

The “first same as last” design practice saves one function evaluation. The

evaluations of f
(
tn−1, xn−1

)
and f

(
tn, xn

)
in the stages will save one function evaluation

on the next step. Sometimes the first same as last design practice can be used in

32 CHAPTER 2. BACKGROUND

the second order p approximation and, as a consequence, will make the second order

p approximation less computationally expensive. This is the case for the embedded

Runge–Kutta methods rkf 2(3) and dopri5 [45, pp. 170-171].

2.5.3 Continuous Runge–Kutta methods

Enright introduces s̃ additional stages ks+1, ks+2, . . . , ks+s̃ to construct the local

approximate solution un on [tn−1, tn]. The intermediate points

Xs+r = xn−1 + hn

s+s̃∑
j=1

as+r,jkj, ks+r = f
(
tn−1 + cs+rhn, Xs+r

)
, r = 1, . . . , s̃ (2.21)

enable him to construct polynomials of degree at most p+ 1,

τ ∈ [0, 1] 7→ bj
(
τ
)
∈ R, bj

(
τ
)
=

p+1∑
r=0

βj,rτ
r, (2.22)

that define this CRK method

un
(
t
)
= xn−1 + hn

s+s̃∑
j=1

bj
(
τ
(
t
))
kj, t ∈ [tn−1, tn] 7→ τ

(
t
)def
=
(
t− tn−1

)
/hn. (2.23)

Observe τ
(
t
)
∈ [0, 1]. The additional s̃ stages and the polynomial coefficients βj,r are

not uniquely determined by the underlying discrete Runge–Kutta method.

Enright chose coefficients so that the global numerical solution u is continuously

differentiable on [t0, tend]. Enright’s coefficients satisfy constraints

bj
(
1
)
= ωj, bs+r

(
1
)
= 0, k1 = f

(
tn−1, xn−1

)
, ks+1 = f

(
tn, xn

)
.

2.5. ASYMPTOTIC DEFECT CONTROL 33

for j = 1, . . . , s and r = 1, . . . , s̃. The next continuation point
(
tn, xn

)
is now defined.

2.5.4 Constructing continuous Runge–Kutta methods I

We follow Enright’s earliest construction in this section [24, 26].

Enright computes a polynomial τ ∈ [0, 1] 7→ G(τ) of degree at most p+ 1 satisfying

u
(
t
)
−x
(
t
)
= un

(
t
)
−xn

(
t
)
= G(τ)hp+1

n +O
(
hp+2
n

)
, t ∈ [tn−1, tn], (2.24)

as a linear combination

G(τ) = q1(τ)F1 + q2(τ)F2 + · · ·+ qm(τ)Fm (2.25)

of m fixed, computable polynomials qr of degree at most p+ 1 that depend only on

the CRK formula and Fr constants that depend only on the problem [24, p. 294].

Evaluate the true (absolute) defect at u. Find

∆u
(
t
)def
= u′

(
t
)
−f
(
t, u
(
t
))def

= un′
(
t
)
−f
(
t, un

(
t
))
, t ∈ [tn−1, tn], (2.26)

and

∆un
(
tn−1

)def
=

 u1
(
t0
)
−x0, n = 1,

0, n > 1.
(2.27)

The second part (2.27) of the defect definition depends upon machine format and

floating point truncation errors. We accept this error. Find un
(
tn
)
−xn = 0 for n > 1

34 CHAPTER 2. BACKGROUND

holds exactly as defined by the continuation processes and the design of CRK method.

Enright bounds (2.26) by constructing an asymptotic bound on its infinity norm. The

defect at the true solution satisfies

∆x
(
t
)def
=
(
xn′
(
t
)
−f
(
t, xn

(
t
)))
≡ 0, t ∈ [tn−1, tn].

Thus, the defect at the approximate solution u satisfies

∆u
(
t
)
=
(
un′
(
t
)
−f
(
t, un

(
t
)))
−
(
xn′
(
t
)
−f
(
t, xn

(
t
)))

, t ∈ [tn−1, tn].

Enright uses (2.24) and the Lipschitzian property of the tangent vector field to observe

∆u
(
t
)
=
(
un′
(
t
)
−xn′

(
t
))

+O
(
hp+1
n

)
=

d

dτ
G
(
τ
)
hpn +O

(
hp+1
n

)
which is the mathematical basis for effective asymptotic defect control [26, p. 161-162].

Of course, the point evaluation of G
(
τ
)

at t requires the mapping

t ∈ [tn−1, tn] 7→ τ
(
t
)def
=
(
t− tn−1

)
/hn

which depends upon hn. Enright is not appealing to this argument. Instead, the

maximizer of d
dτ
G is at a fixed τ ∗ independent of hn. This is a main point.

Observe from (2.24) and (2.25) that asymptotically the defect is a linear combina-

tion of the same m polynomials qr over each integration subinterval [tn−1, tn]. The

linear combination of problem dependent Fj at coefficients d
dτ
qj
(
τ ∗
)

could result in a

zero of d
dτ
G at τ ∗. Enright handles this potential source of error as part of the stepsize

selection strategy, and he chooses τ ∗ following the procedure in [24] to insure that τ ∗

2.5. ASYMPTOTIC DEFECT CONTROL 35

is near the maximum value of each d
dτ
qj. Enright estimates his (absolute) asymptotic

defect control estimates ‖∆un‖[tn−1,tn],∞ by

estn = ‖un′
(
τ ∗
)
−f
(
t, un

(
τ ∗
))
‖∞.

In the special case m = 1, the defect will (almost always) asymptotically be a

multiple of q1. In particular, the maximum value of the defect will occur at the

maximizer τ ∗ ∈ [0, 1] of q1 which is a fixed local extrema independent of the problem.

This defect control strategy is strict defect control (SDC CRK).

In case m > 1, Enright determines an evaluation point τ ∗ that is not near any zero

of q1, q2, . . . qm following the procedure in [24, p. 296]. This defect control strategy is

relaxed defect control (RDC CRK). Due to the linear combination (2.25), the evaluation

point depends on the problem and stepsize, making it difficult to choose a fixed

evaluation point that returns the defect maximizer over a wide class of applications.

2.5.5 Constructing continuous Runge–Kutta methods II

We follow Enright and Yan [38] in this section. Enright does RDC CRK for comparison

purposes, but he found sufficient numerical evidence to conclude that SDC CRK is

reliable. Here reliable is not rigorous. We restrict our attention to SDC CRK.

A crucial observation in Enright’s construction of SDC CRK methods compares all

interpolants in the same generalized Lagrange basis, a recent nomenclature introduced

in the mathematical literature to subsume the Lagrange basis concept for situations

requiring higher derivatives. Enright constructs an ordered, generalized Lagrange

bases
{
Q̂j

}p+1

j=0
for the purpose of interpolating values at tn−1, tn, and derivatives at

tn−1, tn, tn−1 + µrhn, for r = 1, . . . , p− 2 where t ∈ [tn−1, tn] 7→ Q̂j(t) ∈ R. Q̂0 is the

36 CHAPTER 2. BACKGROUND

unique polynomial of degree at most p+ 1 satisfying p+ 2 equations,

Q̂0(tn−1) = 1, Q̂0(tn) = 0, Q̂′0(tn−1) = 0, Q̂′0(tn) = 0,

Q̂′0(tn−1 + µrhn) = 0.
(2.28)

Q̂1 is the unique polynomial of degree at most p+ 1 satisfying p+ 2 equations,

Q̂1(tn−1) = 0, Q̂1(tn) = 1, Q̂′1(tn−1) = 0, Q̂′1(tn) = 0,

Q̂′1(tn−1 + µrhn) = 0.
(2.29)

Q̂2 is the unique polynomial of degree at most p+ 1 satisfying p+ 2 equations,

Q̂2(tn−1) = 0, Q̂2(tn) = 0, Q̂′2(tn−1) = 1, Q̂′2(tn) = 0,

Q̂′2(tn−1 + µrhn) = 0.
(2.30)

Q̂3 is the unique polynomial of degree at most p+ 1 satisfying p+ 2 equations,

Q̂3(tn−1) = 0, Q̂3(tn) = 0, Q̂′3(tn−1) = 0, Q̂′3(tn) = 1,

Q̂′3(tn−1 + µrhn) = 0.
(2.31)

Q̂3+k is the unique polynomial of degree at most p+ 1 satisfying p+ 2 equations,

Q̂3+k(tn−1) = 0, Q̂3+k(tn) = 0, Q̂′3+k(tn−1) = 0, Q̂′3+k(tn) = 0,

Q̂′3+k(tn−1 + µkhn) = 1, Q̂′3+k(tn−1 + µrhn) = 0, r 6= k.
(2.32)

The derivative in equations (2.28)-(2.32) is d
dt

. Enright found it convenient to scale the

basis and change variable to normalize the domain to the unit interval [0, 1]. With this

change of variable, the Q̂j will be polynomials in τ and will be independent of the step

2.5. ASYMPTOTIC DEFECT CONTROL 37

n and stepsize hn. Let Q0 = Q̂0, Q1 = Q̂1, and Qr =
(
1/hn

)
Q̂r, for r = 2, . . . ,

(
p− 2

)
.

The Q̂r will satisfy equations (2.28)-(2.32), if the Qr are defined by the following

equations where ′ denotes d
dτ

rather than d
dt

. From (2.23) and the chain rule, Enright

observes d
dt
Qr

(
τ
(
t
))

=
(
1/hn

)
d
dτ
Qr(τ). Q0 is the unique polynomial of degree at most

p+ 1 satisfying p+ 2 equations,

Q0(0) = 1, Q0(1) = 0, Q′0(0) = 0, Q′0(1) = 0, Q′0(µr) = 0. (2.33)

Q1 is the unique polynomial of degree at most p+ 1 satisfying p+ 2 equations,

Q1(0) = 0, Q1(1) = 1, Q′1(0) = 0, Q′1(1) = 0, Q′1(µr) = 0. (2.34)

Q2 is the unique polynomial of degree at most p+ 1 satisfying p+ 2 equations,

Q2(0) = 0, Q2(1) = 0, Q′2(0) = 1, Q′2(1) = 0, Q′2(µr) = 0. (2.35)

Q3 is the unique polynomial of degree at most p+ 1 satisfying p+ 2 equations,

Q3(0) = 0, Q3(1) = 0, Q′3(0) = 0, Q′3(1) = 1, Q′3(µr) = 0. (2.36)

Q3+k is the unique polynomial of degree at most p+ 1 satisfying p+ 2 equations,

Q3+k(0) = 0, Q3+k(1) = 0, Q′3+k(0) = 0, Q′3+k(1) = 0,

Q′3+k(µk) = 1, Q′3+k(µr) = 0, r 6= k.
(2.37)

Enright solved the linear system (2.33)-(2.37) in Maple. Let qr
def
= d

dτ
Qr.

38 CHAPTER 2. BACKGROUND

Enright makes several critical design choices. We slightly abuse notation by

dropping the n in un and xn to simplify notation to u and x. The intended meaning

should be clear from the domain.

The exact solution x to the local reference problem (2.2) was introduced in the

problem statement of this section. In a critical design choice, Enright introduces the

interpolant x̃ of degree at most p+ 1 that interpolates the exact local solution x at

tn−1, tn and the derivative of the exact local solution at tn−1, tn, tn−1 + µrhn, for

r = 1, . . . , p− 2. This polynomial x̃ has interpolation error

x
(
tn−1 + τhn

)
−x̃
(
tn−1 + τhn

)
=
x

(
p+2
)(
η
)(

p+ 2
)
!
hp+2
n τ 2

(
τ − 1

)2 p−2∏
r=1

(
τ − µr

)
, (2.38)

for some η ∈ [tn−1, tn] with τ ∈ [0, 1]. The evaluation points µ1, · · · , µp−2 denote the

method parameters cs+1, · · · , cs. The generalized Lagrange basis interpolates at these

values, and, consequently, Enright compares local interpolants at these values.

The stages (2.18) and (2.21) apply to general implicit Runge–Kutta formula.

Enright extensively tested explicit Runge–Kutta methods for non-stiff ODE although

he formulated and tested implicit Runge–Kutta formula to handle differential algebraic

equations [38]. A Runge–Kutta method is explicit whenever c1 = 0 and ar,j = 0 for

j ≥ r. An explicit Runge–Kutta method is computationally less expensive than an

implicit Runge–Kutta method, because there are no nonlinear equations to solve.

A critical design choice is to use the “first same as last” design. The conditions

k1 = f
(
tn−1, xn−1

)
and ks+1 = f

(
tn, xn

)
enable one function evaluation to be reused

after the first step.

The Runge–Kutta method admits an interpolant û that agrees with the true local

solution x to optimal order O
(
hp+1
n

)
and agrees with the derivative of the true local

2.5. ASYMPTOTIC DEFECT CONTROL 39

approximate solution to optimal order O
(
hpn
)
. The Runge–Kutta method requires

s+ 1 stage evaluations k1, k2, . . . , ks+1 where k1 = f
(
tn−1, xn−1

)
and ks+1 = f

(
tn, xn

)
.

Enright introduces s stages ks+1, ks+2, . . . , ks+s to construct a RDC CRK approximate

solution u that agrees with the true local solution x to optimal order O
(
hp+2
n

)
. The

associated defect of u has order O
(
hp+1
n

)
. Enright introduces p− 2 additional stages

ks+s+1, ks+s+2, . . . , ks+s+p−2 to construct the local SDC CRK approximate solution

u such that the contribution to the associated defect of u has order O
(
hp+2
n

)
. This

bootstrapping approach adjusts the interpolation points of the generalized Lagrange

basis µ1, · · · , µp−2 to identify derivatives
{
qr
}

of
{
Qr

}
such that

Dr
def
= max

τ∈[0,1]
|qr
(
τ
)
|, r = 1, 2, . . . , p− 1 (2.39)

satisfy D1 ≤ 2 and Dr/D1 < 1.

In a generalized Lagrange basis satisfying the constraints (2.39), Enright and

Yan [38, Section 2] asymptotically expand the approximate solutions of the previous

paragraph to mathematically and computationally justify that the defect satisfies the

asymptotic form

∆u
(
tn−1 + τhn

)
= q1

(
τ
)
F1h

p
n +

(
q̂1
(
τ
)
F̂1 + . . .+ q̂L

(
τ
)
F̂L
)
hp+1
n +O

(
hp+2
n

)
, (2.40)

where F1h
p
n = x

(
tn
)
−xn is the discrete local error associated with the current step,

and the linear span of the polynomials [q2, q3, · · · , qp+1] is contained in the linear span

of the polynomials [q̂1, q̂2, · · · , q̂L]. Enright applies the analysis in this paragraph to

ode45 from MATLAB, and he derived a new SDC CRK method sdc crk5.

The maximizer of q1 is τ ∗. Since q1 is independent of the problem, Enright observed

40 CHAPTER 2. BACKGROUND

as hn → 0 that the profile of ∆u, and consequently the norm of the local maximum

defect, is proportional to the fixed polynomial q1, independent of the problem and

step. Enright concludes

‖∆u‖[tn−1,tn],∞ = ‖∆u
(
tn−1 + τ ∗hn

)
‖∞ +O

(
hp+1
n

)

The asymptotic form of the defect (2.40) will demand stepsizes hn such that

‖hnq̂r‖∞ � ‖q1‖∞ (2.41)

The design constraints (2.39) ensure that the maximum value of q1 is less than 2 so

that the stepsize (2.41) can be large enough.

The following situation rarely happens but can occur. The discrete local error

|F1| is very small in magnitude. In this case, the first term in the asymptotic form

of the defect (2.40) is nearly zero, and the O
(
hp+1
n

)
terms contribute to the defect.

On these isolated steps, Enright reports that the actual maximum defect was smaller

than TOL, but the estimated value was not close to the true maximum defect value.

Enright introduces a validity check to detect this situation and a modified defect

control strategy SDCV CRK.

The validity check involves two additional defect evaluations, and hence two extra

function evaluations will be necessary on each step. Observe that q1
(
τ
)

is zero at

τ = 0, τ = 1, and |q1
(
τ ∗
)
| is maximum by definition of τ ∗. There exists by continuity

a first τ1 < τ ∗ and a first τ2 > τ ∗ such that

q1
(
τ1
)
= q1

(
τ2
)
= q1

(
τ ∗
)
/2

2.5. ASYMPTOTIC DEFECT CONTROL 41

which motivates the definitions

R1 =
∆u
(
tn−1 + τ1hn

)
∆u
(
tn−1 + τ ∗hn

) and R2 =
∆u
(
tn−1 + τ2hn

)
∆u
(
tn−1 + τ ∗hn

)
Evidently, R1 and R2 approach 1/2 as hn → 0. This justifies the Enright and Yan

validity check that R1 and R2 be in the interval [0.3, 0.7]. If the validity check is

satisfied on all steps, then the user can have increased confidence in the reliability of

the integration. Enright modified the SDC CRK strategy so that, when this check is

not satisfied, two additional defect evaluations are performed to determine a more

appropriate estimate of the maximum defect. These two extra evaluations together

with the two validity check evaluations and the first defect evaluation at the maximizer

τ ∗ of q1 give five evaluations of the defect. Enright in his defect control strategy

SDCV CRK chooses the largest absolute value of these values to be the estimate of the

maximum defect. The choices of these points to evaluate the defect depends upon the

SDC CRK method. The choices made in Enright and Yan [38] can be found in their

Figure 3 for sdc crk5, Figure 4 for sdc crk6, and Figure 5 for sdc crk8.

Finally, the estimate of the maximum defect in SDC CRK methods based on the

maximizer of q1 can be unreliable on problems where local errors do not dominate round-

off errors in the computations associated with the step. Enright and Yan graphically

depict the computational artifact and its resolution in Figure 2.2. Enright determined

a credible indication for round-off errors dominating local errors is that the defect

value near τ = 1 has magnitude comparable to the estimate ‖∆u
(
tn−1 + τ ∗hn

)
‖∞.

The strategy recommended in Enright and Yan [38, p. 250] to handle this case is to

“halt the integration with a warning suggesting a higher precision implementation of

the method or a lower order method be used”.

42 CHAPTER 2. BACKGROUND

Figure 2.2: Plot of defect vs τ (scaled by its local extremum) for sdc crk6 on a typical step
where roundoff-error is comparable to truncation error as τ → 1.0. Plot on left is when the defect is
evaluated in double precision. Plot on right is when the same defect is evaluated using extended
precision. This figure is from [38, p. 250, Fig. 2].

Asymptotic defect control estimates the range of the defect by evaluating the defect

at the asymptotic maximizer τ ∗ and at possibly several more points tn−1 + τjhn with

τj ∈ [0, 1]. The next section applies interval analysis to defect control and rigorously

bounds the range of the defect on [tn−1, tn].

2.6 Guaranteed defect control

Guaranteed defect control is not only defect control, it is rigorous defect control. It

computes a rigorous enclosure of the defect at the approximate solution, but, unlike its

asymptotic defect control counterpart, it does not consider the engineered problem’s

details or how the approximate solution was constructed. The approximate solution

need not be piecewise polynomial, but it could be.

Guaranteed defect control requires an estimate of some appropriate norm, usually

the infinity norm [17]. One way to estimate the infinity norm is to obtain a rigorous

2.6. GUARANTEED DEFECT CONTROL 43

Figure 2.3: Inner and outer enclosures of the defect. This figure is from [17, Figure 4].

bound on the range of the defect. Corless and Corliss [17] recognise that the problem

of bounding the range of a function is a well studied problem in interval analysis.

The Corliss tutorial [20] and the Corliss outlook article [21] on defect control orient

the reader to relevant interval techniques applicable to defect control. Corless and

Corliss suggest to use tight bounds on the range of the defect using natural interval

extensions, monotonicity, concavity, mean value forms, and Taylor forms [17]. As part

of the computation of a tight enclosure for ‖∆u‖[tn−1,tn],∞, they suggest to evaluate ∆u

at tn−1, tn, the midpoint
(
tn − tn−1

)
/2, and on the entire interval of the integration

step. This approach enables the computation of both inner and outer enclosures to

confirm the tightness of the enclosures as illustrated in Figure 2.3.

The dotted line in Figure 2.3 represents the true defect ∆u. The lower and upper

enclosures of ∆u are represented as curves. The outer enclosure must contain the

lower and upper enclosure over the integration interval [tn−1, tn], but it may include

some overestimation. The inner enclosure is an interval that may include some

44 CHAPTER 2. BACKGROUND

underestimation. The set difference between the outer and the inner enclosures is an

indication of the tightness with which the range of ∆u has been enclosed.

The Corless and Corliss [17] defect control algorithm enumerated in Algorithm 1

computes an (outer) enclosure δ of the true defect over the integration interval [tn−1, tn].

The directives “reduce” or “increase” invoke an adaptive time-stepping algorithm, a

special piece of software discussed in Section 2.7, but the stepsize control strategy

for determining a step hn for which ‖∆u‖[tn−1,tn],∞ ≤ TOL is not specified in their

algorithm.

Algorithm 1: Defect-controlled algorithm
Input: f , t0, tend, x0, TOL
Output: The nodes count N ,

Nodes t0, t1, . . . , tN = tend,
Continuously differentiable u which exactly solves u′

(
t
)
= f

(
t, u
(
t
))

+∆u
(
t
)
,

Guarantee that ‖∆u‖[tn−1,tn],∞ ≤ TOL for all t ∈ [t0, tend].
1 h := Initial trial step

forall Steps n = 0, . . . , N do
2 break if tn > tend

Compute un
(
t
)
, a continuous approximate solution on tn−1 ≤ t ≤ tn−1 + h

Define the defect ∆un
(
t
)
:= un′

(
t
)
−f
(
t, un

(
t
))

Evaluate enclosure δ of ∆un
(
t
)

if |δ| > TOL then
3 reduce h and repeat

4 else if |δ| � TOL then
5 increase h and repeat
6 else
7 accept step hn ← h and tn ← tn−1 + hn
8 end
9 end

Corless and Corliss build their algorithm based on the premise that “The modeler can

choose a stepsize to control the size of the defect and to guarantee that no error larger

than those already made in the modeling process will be introduced by the solution

process [17].”

2.7. STEPSIZE CONTROL 45

Guaranteed defect control solves the local numerical ODE-IVP (2.13) to mathe-

matical certainty. Consequently, the approximate solution exactly solves the global

numerical ODE-IVP (1.9). Rigorously controlling a measure of the defect to be less

than a user specified tolerance is rigorous defect control.

The adaptive time-stepping algorithm in a numerical ODE method controls stepsize

based on an error estimate, and it indirectly controls the stability of the numerical

integration. An adaptive time-stepping algorithm is a “separate piece of software that

should be carefully analyzed and implemented [90]”, and they are considered in the

next section.

2.7 Stepsize control

The “elementary” stepsize controller [89] is a heuristic based on the assumption that

error r is proportional to hk,

‖rn‖ = ϕn−1 h
k
n−1 (2.42)

for stepsize h, and the assumption ϕ is slowly varying as the process moves from step

n− 1 to step n; that is, assume

ϕn ≈ ϕn−1. (2.43)

The elementary controller seeks to achieve ‖rn‖ = TOL. We want the predicted step to

be as large as possible and maintain ‖rn‖ ≤ TOL for all steps h < hn with ‖rn‖ = TOL

46 CHAPTER 2. BACKGROUND

for step hn. The elementary controller is designed so the approximation

TOL

‖rn−1‖
=
‖rn‖
‖rn−1‖

=
ϕn h

k
n

ϕn−1 hkn−1
≈
(

hn
hn−1

)k
(2.44)

holds. Taking the approximation as exact, rearrange (2.44) to find

hn
hn−1

=

(
TOL

‖rn−1‖

)1/k

.

A safety factor θ < 1 is introduced, and we have the stepsize controller

hn =

(
θ TOL

‖rn−1‖

)1/k

hn−1. (2.45)

Here k is p or p+ 1 where p is the order of the local error estimator rn. If the order

of convergence for the method is p, then take k = p+ 1 for an error-per-step control.

Take k = p for error-per-unit-step control [90, p. 2].

The stepsize selector (2.45) is designed to predict a next stepsize based on the

evaluation of the asymptotic estimate rn−1 of the local error. It does not matter if

the current step was accepted or rejected the stepsize estimator (2.45) is used in both

cases. Good codes have the safety factors different in rejected and accepted steps.

The assumptions for the elementary stepsize control fit into Enright’s asymptotic

defect control model. Enright [24] and Higham [54] use the elementary controller

where, after each step, whether successful or not successful, the newly proposed stepsize

hn+1 is chosen according to (2.45) with θ = 0.9.

Guaranteed defect control constructs an approximate solution for the reference

problem. We know the approximate solution exactly solves the perturbed reference

2.7. STEPSIZE CONTROL 47

problem. We draw an analogy between the traditional use of (2.45) in forward error

control and defect control to infer a stepsize controller. We use Taylor models to

represent the defect over each step. We want to control the defect with stepsize. The

rn−1 in (2.45) is the defect, and the k is the degree of the Taylor model.

Hairer and Wanner [46] presented PID controllers from a continuous controller

point of view which aided understanding. Here P is the proportional controller, I is

the integral controller, and D is the differential controller. Hairer and Wanner explain

the ability to simultaneously invoke these aspects and their influence on the stability

of the process. Gustafsson, Lundh, and Söderlind presented the PI controller [44]. In

a sequence of papers [89, 90, 91], Söderlind unified the controller theory around the

asymptotic assumption and extended the theory to include digital filters.

Authors investigated PI controllers for Runge–Kutta methods obtaining a good

deal of numerical experience, see articles by Gustafsson, Lundh, and Söderlind [44],

Gustafsson [42] on explicit Runge–Kutta, Gustafsson [43] on implicit Runge–Kutta,

as well as articles deSwart and Söderlind [95], Hall [47, 48], Hall and Higham [49], and

Higham and Hall [56] on constructing error estimators for implicit Runge–Kutta.

An alternative approach to controllers consider the radius of convergence of the

series, see Chang and Corless [10] and Bergsma [7]. Bergsma [7] investigated three

special stepsize controllers based on radius of convergence for Taylor series methods

for their suitable performance in reentry problems from aerospace engineering.

The next section considers estimating the condition number for an ODE-IVP and

introduces a technique that estimates the global error. Enright [29, p. 9] proves that

this estimate of the global error can be used to improve the accuracy of the numerical

solution.

48 CHAPTER 2. BACKGROUND

2.8 Global error and condition

The analysis in this section follows Enright [29, p. 8-9]. Assume s is the true solution

to the mathematical ODE-IVP reference problem (1.2), and assume the approximate

solution u defined in (1.1) satisfies the perturbed reference problem (1.9). The absolute

forward error is ε
(
t
)
= s
(
t
)
−u
(
t
)
.

Enright constructs a companion ODE-IVP, which is a reference problem for the

absolute error. He proposes to solve the companion ODE-IVP with the same algorithm

applied to obtain the approximate solution u of the engineered problem, and calls its

approximate solution E. Evaluate ∆E, the defect for the companion ODE-IVP at E.

Enright points out three major consequences of this analysis. Let’s investigate.

The first consequence: Rearrange the absolute forward error relationship. Find

s
(
t
)
= ε
(
t
)
+u
(
t
)

upon solving the absolute forward error identity for s. Differentiate

the absolute forward error. The companion ODE-IVP is

ε′
(
t
)
= c
(
t, ε
(
t
))
, ε

(
t0
)
= 0, t ∈ [t0, tend] (2.46)

where vector field c is defined as

c
(
t, ε
(
t
))def

= f
(
t, ε
(
t
)
+u
(
t
))
−u′
(
t
)
. (2.47)

Because s
(
t
)
= ε
(
t
)
+u
(
t
)

and s is the solution to the mathematical ODE-IVP reference

problem, Enright’s definition of c follows from the analysis

ε′
(
t
)
+u′
(
t
)
= s′

(
t
)
= f

(
t, s
(
t
))

= f
(
t, ε
(
t
)
+u
(
t
))
.

2.8. GLOBAL ERROR AND CONDITION 49

Enright recommends to solve the companion ODE-IVP with the same algorithm ap-

plied to obtain the approximate solution u of the engineered problem, and call its

approximate solution E. Evaluate ∆E, the defect for the companion ODE-IVP at E.

Find E exactly solves

E ′
(
t
)
= c
(
t, E
(
t
))

+∆E
(
t
)
, E

(
t0
)
= 0, ‖∆E‖[t0,tend],∞ ≤ τ, (2.48)

the perturbed reference problem for the companion for the ODE-IVP. This determines

τ , given the algorithm and step sizes used to compute u.

Enright demonstrates on test problems that τ ≥ ‖∆E‖[t0,tend],∞ is much smaller

than TOL. Enright determines τ by sampling ‖∆E
(
t
)
‖∞ on each step. In Table 2.1,

we report U, the maximum global error associated with u in units of TOL. We

also report UPE, the maximum global error associated with u + E in units of TOL.

Enright determined both global error by computing the true global error at 100 sample

points per step, and we are reporting in Table 2.1 his results found in article [29].

Enright’s results show a remarkable improvement in the global error between these two

approximate solutions in these two case studies. The Lorenz system at TOL = 10−8

and orders 6 and 8 is an exception.

The second consequence: The approximate solution u+ E satisfies the perturbed

reference problem for the companion ODE-IVP with defect ∆E. In symbols, find

E ′
(
t
)
+u′
(
t
)

= c
(
t, E
(
t
))

+∆E
(
t
)
+u′
(
t
)

= f
(
t, E
(
t
)
+u
(
t
))
−u′
(
t
)
+∆E

(
t
)
+u′
(
t
)

= f
(
t, E
(
t
)
+u
(
t
))

+∆E
(
t
) (2.49)

by the definition of the vector field c. The approximate solution u+ E satisfies the

50 CHAPTER 2. BACKGROUND

Lorenz tend = 15 pred. prey tend = 40

order tol U/UPE U/UPE

5

10−2 4400 / 470 3.7 / 0.002

10−4 190000 / 50 7.3 / 0.009

10−6 190000 / 170 11.4 / 0.004

10−8 1800000 / 6800 14.4 / 0.041

6

10−2 4200 / 290 2.2 / 0.0006

10−4 280000 / 310 4.6 / 0.001

10−6 150000 / 320 2.5 / 0.001

10−8 150000 /20000 3.5 / 0.008

8

10−2 5500 / 70 9.5 / 0.0009

10−4 16000 / 8.2 6.1 / 0.002

10−6 14000 / 420 6.1 / 0.003

10−8 20000 /48000 14.4 / 2.0

Table 2.1: Compare the true global error sampled at 100 points per step between the
approximate solution u and the improved approximate solution u+ E measured in
units of TOL. Results from [29, Table 3 p. 290 and Table 4 p.291].

perturbed reference problem (1.9) including its initial condition, and it is experimentally

shown to be an improvement over the approximate solution u.

The third consequence: Enright uses the approximate solution E which exactly

solves (2.48) to estimate the condition of the mathematical ODE-IVP reference problem.

The estimate relies on proving the inequality

‖ε
(
t
)
‖ ≤ K

(
t
)
TOL (2.50)

where K reflects the sensitivity of the exact solution s of the reference problem (1.2)

with respect to perturbations. Enright appeals to the variation of constants formula

to prove (2.50), and he refers the reader to the excellent discussion on the variation of

2.8. GLOBAL ERROR AND CONDITION 51

constants formula found in [45, Chapter I.14]. Certainly,

κ
def
= max

t∈[t0,tend]
K
(
t
)

(2.51)

can act as a condition number for the ODE-IVP reference problem. Enright computes

a lower bound κε,

κε
def
= max

t∈[t0,tend]
‖ε
(
t
)
‖/TOL. (2.52)

He realized that an effective estimate of the conditioning of the ODE-IVP reference

problem is

κE
def
= max

t∈[t0,tend]
‖E
(
t
)
‖/TOL. (2.53)

The effectiveness of this estimate depends upon an accurate approximate solution E

to the absolute error ε and the sharpness of the defect estimate ‖∆u‖ ≤ TOL.

Corless and Fillion [18, Section 12.3.2] discuss the condition of an ODE-IVP in the

tangent space with the equation of first variation, and the result (2.50) is in the last

two display lines on page 530. This approach assumes a convergence result. The

Gröbner-Alexeev approach, including the following theorem, is considered by Corless

and Fillion [18, Section 12.3.3].

Theorem 5 (Gröbner-Alexeev nonlinear variation-of-constants formula). Assume s

is the solution to the mathematical ODE-IVP reference problem (1.2) and assume z is

52 CHAPTER 2. BACKGROUND

the solution of

z′
(
t
)
= f

(
t, u
(
t
))

+γv
(
t, z
(
t
))
, z

(
t0
)
= x0. (2.54)

If f is continuously differentiable, then

z
(
t
)
−s
(
t
)
= γ

∫ t

t0

G
(
t, τ, z

(
τ
))
v
(
τ, z
(
τ
))
dτ (2.55)

where the matrix function G is given by

Gij

(
t, τ, z

(
τ
))def

=
∂si
∂x0,j

(
t, τ, z

(
τ
))

and acts as a condition number, that is, as a quantity dictating how γv
(
t, z
(
t
))

will be

magnified over the interval of integration [t0, tend].

Gröbner-Alexeev applies to the perturbed reference problem (1.9) with ∆u
(
t0
)
= 0,

γ
def
= 1/‖∆u‖[t0,tend],∞, and the special defect perturbation v

(
t, z
(
t
))def

= ∆u
(
t
)

in (1.9).

The mathematical form of global error and its relationship to the defect is given in

(2.55). We immediately see that the global error can be very large even though the

defect is very small. This phenomenon happens for chaotic problems.

The articles [15, 16, 52] and the references therein offer an introduction to the

“shadowing” technique and assign meaning to the computed solution of chaotic problem.

The “shadowing” technique is a forward error approach to chaotic problems. Corless

and Fillion [18, p. 206] state that the defect “provides a cheap and reliable alternative

to the so-called “shadowing” techniques for chaotic problems”.

Chapter 3

Taylor models

Taylor models often, but not always, reduce overestimation and excess width as the

degree of the Taylor polynomial increases [72, p. 137]. We provide supporting evidence

for this heuristic, and we aim to intuitively understand the meaning of the statement.

A rigorous algorithm returns a bound such that the true mathematical solution

is in that bound. For example, a rigorous algorithm for computing
√

2 may return

a bound [1.414, 1.415]. The result is rigorous because the mathematical statement
√

2 ∈ [1.414, 1.415] is true. Synonyms for rigorous commonly used in the literature

are validated, reliable, and verified.

A Taylor model of degree k represents a function f over T as a couple
(
p, r
)

(
p, r
)

means f(t)− p(t) ∈ r = [r, r] for all t ∈ T . (3.1)

The Taylor model polynomomial p can be a Chebyshev or a Taylor approximation of

degree k to f , and Taylor models carefully compute the bound r for the Taylor form.

Taylor models resolve the increasing degree problem. Consider the approximate

53

54 CHAPTER 3. TAYLOR MODELS

solution in Example 3,

u
(
t
)
=

1

2
+

1

4
t− 1

96
t3, t ∈ [0, h0].

It has defect

∆u
(
t
)
= u′

(
t
)
−u
(
t
)
+u
(
t
)2

=
1

32
t2 − 1

192
t4 +

1

9216
t6.

Notice the degree of the local, polynomial approximate solution is 3, and the degree

of the defect is 6. Exact Taylor arithmetic doubles the degree of the defect because

of the squared term in the vector field. The degree of the Taylor polynomial is fixed,

and higher order terms arising in Taylor arithmetic are enclosed in the Taylor model

bound.

The SOLLYA algorithms [12, 13] compute Taylor models and implement Taylor

model arithmetic. More generally, the SOLLYA package computes a rigorous polynomial

approximation (RPA) of a given real-valued function in one independent variable. Joldes

[61], a SOLLYA coauthor, advanced rigorous algorithm from interval arithmetic to

polynomial approximation (Chebyshev and Taylor) with RPA where the approximating

polynomial is not restricted to be Taylor. Joldes justifies the SOLLYA algorithms in

her thesis [61]. For functions involving more than one independent variable, Berz and

Makino [8, 9, 69, 67, 68, 70, 71] simultaneously compute the Taylor model polynomial

and the Taylor model bound to obtain a tight rigorous enclosure in space and time.

SOLLYA can evaluate real-valued functions at intervals and compute rigorous

supremum norm. The function must involve only basic functions, and it must be

sufficiently smooth. All the basic functions SOLLYA resolves are listed in Table 3.1.

55

+ − · / ◦
sin asin cos acos tan atan

exp exp m1 log log 2 log 10 log 1p

sinh asinh cosh acosh tanh atanh

abs erf erfc sqrt pow

Table 3.1: Basic functions implemented in SOLLYA

The recent release of this freely available software package is timely for our project.

The SOLLYA package implements RPA through a command line interface. We extend

the freely available SOLLYA codes in this thesis to compute Taylor models using

operator overloading in the C++ programming language without going through the

command line interface.

To rigorously bound the defect of ODE initial-value problems, write a generic

template for the tangent vector field. A generic template implementing the vector field

function is used for automatic differentiation, Taylor model arithmetic, and floating

point arithmetic. Of course, each component of the vector field must be an elementary

function.

This chapter introduces interval arithmetic, Taylor forms and Taylor models,

and our SOLLYA interface C++ class, class Tmodel. We address interval arithmetic,

overestimation, excess width, and Taylor models without pursuing an axiomatic

approach to the topic of interval analysis. The interested reader can find a thorough

treatment of this material in the Moore, Kearfott, and Cloud introductory book [72],

the foundations article by Rall [82], the interval analysis notation standard by Kearfott,

Nakao, Neumaier, Rump, Shary, and Van Hentenryck [62], and the review article [80].

56 CHAPTER 3. TAYLOR MODELS

3.1 Interval arithmetic

An interval x is identified with the (nonempty) set of points between its lower bound

x ∈ R and its upper bound x ∈ R,

x =
{
x ∈ R | x ≤ x ≤ x

}
.

An interval is closed and nonempty. A degenerate interval x contains a single element

x, and we agree, by convention, to identify [x, x] with x.

A box of dimension d denoted x
def
= [x, x] generalizes intervals to finite dimensional

space, and it is identified with the (nonempty) set of points between its lower bound

x ∈ Rd and its upper bound x ∈ Rd,

x =
{
x ∈ Rd | x ≤ x ≤ x

}
.

A vector x ∈ Rd is contained in a box x if and only if x ≤ x ≤ x; that is, x ∈ [x, x]

if and only if the statement x ≤ x ≤ x holds componentwise, xi ∈ [xi, xi]. We say

that x is degenerate if x = x. By convention, a degenerate box [x, x] is identified

with the vector x. The set of all boxes of dimension d is denoted by IRd, and we

write dimx = d for the dimension of Rd where x ⊂ Rd. The width of a box x is

widx = x − x ≥ 0, its radius is radx = 1
2
widx = 1

2

(
x− x

)
, and its midpoint is

midx = 1
2

(
x+ x

)
.

Denote the set of basic functions in Table 3.1 by B. Interval libraries compute tight

bounds for the range of a basic function over a given interval [61]. The justification is

straightforward for monotonic functions; that is, functions which are either increasing

or decreasing as the independent variable increases. Given any monotonic increasing

3.1. INTERVAL ARITHMETIC 57

function f over an interval x, f
(
x
)
= [f

(
x
)
, f
(
x
)
]. For example, take the exponential

function f
(
x
)
= exp

(
x
)

on x = [x, x]. Then f
(
x
)
= [exp

(
x
)
, exp

(
x
)
]. A piecewise

monotonic example is only slightly more complicated to justify. For example, consider

the interval-valued absolute value function defined on intervals by

abs
(
x
)
=
{
|x| | x ∈ x

}
.

We define the mignitude and absolute value of an interval to express abs as an interval.

The mignitude of an interval x is the number

〈x〉 = min
{
|x| | x ∈ x

}
,

and the real-valued absolute value of an interval x is the number

|x| = max
{
|x| | x ∈ x

}
.

Then the interval-valued absolute value mapping of an interval x is the interval

abs
(
x
)
= [〈x〉, |x|].

The class of basic functions B is used to build up more complicated functions. Any real–

valued function expressed by a finite number of arithmetic operations and compositions

with basic functions and constants is called an elementary function.

Authors traditionally list intervals based on expressions for their endpoints for the

addition, subtraction, product, and quotient interval operations, but these formulae

are consistent with the treatment of any other basic function. The proof requires a

58 CHAPTER 3. TAYLOR MODELS

characterization: A point x is contained in interval x if and only if x ≤ x ≤ x. The

sum of two intervals x and y is the set

x + y
def
=
{
x+ y ∈ R | x ∈ x and y ∈ y

}
= [x+ y, x+ y]. (3.2)

The difference of two intervals x and y is the set

x− y
def
=
{
x− y ∈ R | x ∈ x and y ∈ y

}
= [x− y, x− y]. (3.3)

The product of two intervals x and y is the set

x · y def
=
{
xy ∈ R | x ∈ x and y ∈ y

}
= [minS, maxS], (3.4)

S =
{
xy, xy, xy, xy

}
. We sometimes write x · y more compactly as xy. Finally, the

quotient of two intervals x and y such that 0 /∈ y is the set

x/y
def
=
{
x/y ∈ R | x ∈ x and y ∈ y

}
= x ·

(
1/y

)
, (3.5)

where

1/y =
{

1/y ∈ R | y ∈ y
}

= [1/y, 1/y].

Since all operation definitions (3.2), (3.3), (3.4), and (3.5) have the same general form,

we can summarize them,

x� y
def
=
{
x� y ∈ R | x ∈ x and y ∈ y

}
, (3.6)

3.1. INTERVAL ARITHMETIC 59

where � stands for any of the four binary operations introduced. We rigorously know

the range of values taken by � because we know the endpoint formulae. Hence, we

know rigorous bounds for the four binary operations.

Given a real-valued function f on the box x of dimension d, we would ultimately

like to know the precise range of values taken by f(x) as x varies through x. In other

words, we would like to find the image of the set x under the mapping f :

f
(
x
)def
=
{
f(x) ∈ R | x ∈ x ⊆ Rd

}
. (3.7)

We sometimes denote f
(
x
)

in (3.7) by range
(
f,x

)
.

Suppose that IP and IQ are interval spaces (sets of intervals on the real line), and

d ∈ ID ⊂ IP 7→ f
(
d
)
⊂ IQ is an operator defined on a domain ID in IP which takes

on values in IQ. The result of applying f to x ∈ ID is an interval y ∈ IQ, denoted

by y = f
(
x
)
, and f is called an interval-valued function or interval mapping. An

interval-valued function has an interval domain, if z ∈ ID implies x ∈ ID for each

subinterval x ⊂ z of z [82, Rall, p. 227].

An interval mapping f is an interval extension of f , if for degenerate interval

arguments, f agrees with f ,

f
(
[x, x]

)
= f

(
x
)
. (3.8)

In other words, if the arguments of f are replaced by degenerate intervals, then the

left-hand side of (3.8) is a degenerate interval identified with the value of f at x. The

interval extension may not evaluate to a degenerate interval causing (3.8) to fail. The

interval extension of a given real-valued function is never unique [72, Exercise 5.8].

60 CHAPTER 3. TAYLOR MODELS

Obtain the particular natural interval extension f of a real-valued function f by (a)

replacing the real variable x with an interval variable x and (b) the real arithmetic

operations with corresponding interval operations.

An interval-valued function f on the box x of dimension d is inclusion isotonic if

y ⊆ x⇒ f
(
y
)
⊆ f

(
x
)
.

The symbol ⊆ is evaluated componentwise. An inclusion isotonic mapping [72, Moore,

Kearfott, and Cloud, Definition 5.4] is exactly the same concept as an inclusion

monotone function [82, Rall, Definition 2.2]. If f over the domain Ix is an inclusion

isotonic interval extension of f , then y ∈ Ix implies f
(
y
)
⊆ f

(
y
)
, a statement called

the fundamental theorem of interval analysis.

Taking n = 2, the interval operations (3.2), (3.3), (3.4), and (3.5) satisfy

y1 ⊆ x1, y2 ⊆ x2 ⇒ y1 � y2 ⊆ x1 � x2. (3.9)

Equation (3.9) can be used to prove polynomials of degree k are inclusion isotonic. A

rational interval function is an interval-valued function whose values are defined by a

specified finite sequence of interval arithmetic operations (3.6). All rational interval

functions are inclusion isotonic [72, Lemma 5.1]. In particular, the natural interval

extension of a real-valued polynomial of degree k is inclusion isotonic.

An interval enclosure of f on the box T 0 is an inclusion isotonic interval-valued

function f on the box T 0, with f
(
T
)

defined for all T ⊆ T 0, having the property

3.1. INTERVAL ARITHMETIC 61

that

f
(
t
)
∈ f

(
t
)

for all t ∈ T 0. (3.10)

Hence, f
(
T
)
⊆ f

(
T
)

for all T ⊆ T 0. The interval enclosure property is weaker than

the interval extension property.

Given a real-valued function f on the box x0 of dimension d, suppose f is an

inclusion isotonic interval extension of f with f
(
x
)

defined for x ⊆ x0. Moore,

Kearfott, and Cloud justify the definition of excess width with the following argument

[72, Definition 6.4]. If x, y in Ix0 are intervals satisfying x ⊆ y, then there is an

interval e with e ≤ 0 ≤ e such that y = x + e and wid
(
y
)
= wid

(
x
)
+wid

(
e
)
.

Because f is an inclusion isotonic interval extension of f with f
(
T
)

defined for

T ⊆ x0, we have f
(
x
)
= f

(
x
)
+e
(
x
)

for some interval-valued function e
(
x
)

with

wid
(
f
(
x
))

= wid
(
f
(
x
))

+wid
(
e
(
x
))

. We call

wid
(
e
(
x
))

= wid
(
f
(
x
))
−wid

(
f
(
x
))

the excess width of f
(
x
)
.

As an application of excess width, let’s define tight interval bound. Suppose we have

two inclusion isotonic extensions f 1 and f 2 of a real-valued function f on the interval

x. Then range
(
f,x

)
⊂ b1 = f 1

(
x
)

and range
(
f,x

)
⊂ b2 = f 2

(
x
)
. An interval bound

b1 with excess width e1 is tighter than the interval bound b2 with excess width e2

whenever wid
(
e1

(
x
))
< wid

(
e2

(
x
))

. Interval techniques identify a tight interval

bound b such that range
(
f,x

)
⊆ b without appealing to the calculus.

For reasons that will become apparent, we write two algebraically equal real-valued

62 CHAPTER 3. TAYLOR MODELS

polynomials of degree k in the standard power basis and in Horner form:

p(t) = p0 + p1t+ p2t
2 + · · ·+ pkt

k, t ∈ T 0 ⊆ R, (3.11)

and

h(t) = p0 + t
(
p1 + t

(
p2 + · · ·+ t

(
pk
)
· · ·
))
, t ∈ T 0 ⊆ R. (3.12)

Consider the respective natural interval extension polynomials p corresponding to

(3.11) and h corresponding to (3.12) of degree k with Pj
def
= [pj, pj] = pj:

p(t) = P0 + P1t + P2t · t + · · ·+ Pkt · t · · · t, t ⊆ T 0,

and

h(t) = P0 + t
(
P1 + t

(
P2 + · · ·+ t

(
Pk
)
· · ·
))
, t ⊆ T 0. (3.13)

The Horner form usually gives tighter estimates on range
(
p, t
)

and never gives worse

estimates [72, p. 48].

We close with two examples. The following example [72, p. 38] illustrates a cause

of overestimation:

Example 1. Consider the real-valued mapping

h
(
x
)
= x2, x ∈ R.

3.1. INTERVAL ARITHMETIC 63

If x = [x, x], it is evident that the set

h
(
x
)
=
{
x2 | x ∈ x

}
can be expressed as

h
(
x
)
=


[
x2, x2

]
, 0 ≤ x ≤ x,[

x2, x2
]
, x ≤ x ≤ 0,[

0,max
{
x2, x2

}]
, x ≤ 0 ≤ x.

Certainly [−1, 1]2 = [0, 1], whereas [−1, 1] · [−1, 1] = [−1, 1] so that x2 is not the same

as x · x. However [−1, 1] does contain [0, 1]. The overestimation when we compute a

bound on the range of x2 as x · x is due to a phenomenon called interval dependency.

Indeed, if we assume x ∈ x is an unknown number, then (a) when we form the product

x · x, the x in the second factor is exactly the same as the x in the first factor (b)

in the interval product x · x, it is assumed that the values in the first factor and the

values in the second factor vary independently.

The next example [72, p. 43] illustrates that interval extensions for algebraically

equivalent real-valued mappings may not be equal.

Example 2. Consider the real-valued function

f
(
x
)
= x

(
1− x

)
, x ∈ [0, 1].

f is algebraically equal to the real-valued function

g
(
x
)
= x− x2, x ∈ [0, 1].

64 CHAPTER 3. TAYLOR MODELS

Validate with calculus that f([0, 1]) = g([0, 1]) = [0, 1/4]. Form interval-valued exten-

sions of f and g:

F
(
x
)
= x ·

(
[1, 1]− x

)
, x = [x, x] ⊆ [0, 1],

and

G
(
x
)
= x− x2, x = [x, x] ⊆ [0, 1].

Putting x = [0, 1], we compute that [−1, 1] = G
(
x
)
6= F

(
x
)
= [0, 1]. Notice both cases

overestimate range
(
f, [0, 1]

)
= [0, 1/4].

3.2 Taylor models

Rational interval functions and Taylor forms offer methods for the construction of

inclusion isotonic interval-valued functions. The following assumption is required for

Taylor forms:

Assumption 3. Let f be over T 0, f ∈ Ck+1
(
T ∩ T 0,R

)
for any interval T ∈ IT0,

and f (k+1) an interval inclusion of f (k+1) on T .

Intervals T and T 0 are convex, and the intersection T ∩ T 0 is also convex. On the

other hand, we assume Assumption 3 to construct a Taylor form. The process starts

with the interval version of Taylor’s theorem from real analysis.

Theorem 4 (Taylor theorem). Let Assumption 3 hold. Then, for t and t0 in T ∩T 0,

3.2. TAYLOR MODELS 65

we have

f
(
t
)
−

k∑
j=0

1

j!
f (j)
(
t0
)(
t− t0

)j∈ 1(
k + 1

)
!
f (k+1)

(
T
)(
T − t0

)k+1
. (3.14)

Rall [82, p. 288] proved the interval Taylor theorem. Recall the definition of Taylor

model in (3.1). Assumption 3 is not explicit in the definition of Taylor model. On the

other hand, the assumption is required to compute the interval Taylor bound in the

Taylor theorem.

Under Assumption 3, the (elementary) Taylor form of degree k is

f
(
T
)
=

k∑
j=0

1

j!
f (j)
(
t0
)(
T − t0

)j
+

1(
k + 1

)
!
f (k+1)

(
T
)(
T − t0

)k+1
, t0 ∈ T ∩ T 0 (3.15)

It follows from the Taylor theorem, that f defined by (3.15) is an interval enclosure

of f over T 0. The mapping f is defined by solving (3.14) for it. Indeed, rational

interval functions are inclusion isotonic. The structure of f is rational. It follows that

the natural interval extension f over the domain IT 0 is an inclusion isotonic interval

extension of f . The fundamental theorem of interval analysis says T ∈ IT 0 implies

f
(
T
)
⊆ f

(
T
)
. Moreover t ∈ T implies f(t) ∈ f

(
T
)
. All together, we have

f
(
t
)
∈ f
(
T
)
⊆ f

(
T
)

(3.16)

for all t ∈ T ⊆ T 0. Finally, (3.16) and f inclusion isotonic prove that f is an interval

enclosure of f over T 0. Taylor models often, but not always, reduce excess width as

the degree of the Taylor polynomial increases.

66 CHAPTER 3. TAYLOR MODELS

3.3 Computing the supremum norm

Under Assumption 3, we have a real-valued mapping f over T 0. We compute the

Taylor polynomial p denoting the polynomial of the Taylor form (3.14), and a rigorous

interval bound r = [r, r] of the remainder term of the Taylor form. Then f(t)−p(t) ∈

r = [r, r] for all t ∈ T 0. We seek a tight interval bound b on the supremum norm of

a Taylor model,

‖p‖∞ = sup
t
|p
(
t
)
| ∈ b. (3.17)

Then, on T 0, we have

max
{

0, b− abs
(
r
)}
≤ ‖f‖∞ ≤ b+ abs

(
r
)
, (3.18)

The bound we use is δ := b+ abs
(
r
)
. We have two rigorous options to obtain r which

use interval techniques (not calculus).

Interval evaluation uses Assumption 3. The natural interval extension of f is an

inclusion isotonic interval-valued function. Set r = f
(
T 0

)
. This estimate is known to

overestimate. To reduce overestimation with this approach, use the Taylor polynomial

p in place of the real-valued mapping f . SOLLYA implements Horner’s algorithm to

help eliminate excess width. This is the first approach.

The SOLLYA package has an internal method that computes a tighter interval

bound on the Taylor polynomial p than interval evaluation, the SOLLYA supremum

norm method. This method is described in Joldes [61]. This is a second approach.

We also acknowledge the point evaluation approach, which is not rigorous. Sample

p or f at points in T 0.

3.4. CLASS TMODEL 67

3.4 Class Tmodel

SOLLYA does the heavy lifting in our C++ class Tmodel where we extend SOLLYA func-

tionality using two C++ language features: generic templates and operator overloading.

Use class Tmodel to obtain a degree k Taylor model of a k + 1 times differential

mapping x ∈ R 7→ f
(
x
)
∈ R.

We built a convenient C++ class Tmodel to access SOLLYA. Let’s explore it. We

illustrate our SOLLYA interface with the exponential mapping centered at t0 = 0

exp
(
−t
)
∈ 1− t+

1

2
t2 − 1

6
t3 +

1

24
t4 − 1

120
[1, exp

(π
2

)
]t5, t ∈ [0,

π

2
] (3.19)

and the sin mapping centered at t0 = 0

sin
(
t
)
∈ t− 1

6
t3 +

1

120
[0, 1]t5, t ∈ [0,

π

2
]. (3.20)

We consider the Taylor models returned by SOLLYA for exp, sin, exp + sin, and exp · sin

over T 0 = [0, π
2
] of degree 4, 5, 6, and 7. Here, the sum and product of Taylor models

is an example of Taylor model arithmetic.

We must always initialize the software in main as follows:

#include <cstddef>
#include "Tmodel.hpp"
#include "SOLLYA/sollya.h"

int main()
{
sollya lib init();
/* Do something */
sollya lib close();
return 0;

}

68 CHAPTER 3. TAYLOR MODELS

The SOLLYA tool precision is measured in bits, and 64 bits is about double precision.

// Set tool precision for double
Tmodel tmp;
tmp.setToolPrecision(64);

Set the Taylor polynomial and its degree, the expansion point t0, and the interval

domain [t0, t1].

int k(2);
Tmodel p(k);

// Expand around t0, and work with interval [t0,t1]
double t0 = 0.0;
double t1 = 1.0;

// Coefficient of polynomial of x
double pC[] = {1.0, 1.0};

p.setPoly(k, pC, t0, t1);
p.setBound(0.0,0.0);

In the final line, the snippet initializes the remainder bound for the Taylor model.

Compute the bound b as defined in (3.17) with the Tmodel method computeSharpBound

which implements interval evaluation. Print the SOLLYA data structure.

p.computeSharpBound();
printf("\nTaylor model for p\n");
p.print();

Compute the bound b with the Tmodel method supnorm.

double bL(0.0), mid(0.0), bR(0.0);
p.supnorm(bL,mid,bR);
bound = fmax(fabs(bL), fabs(bR));

3.4. CLASS TMODEL 69

We plot output for our exp and sin examples. Arithmetic operations with Taylor

models result in Taylor models. Take addition for example,

f(t)− p1(t) ∈ r1, g(t)− p2(t) ∈ r2

results in

(
f(t) + g(t)

)
−
(
p1(t) + p2(t)

)
∈
(
r1 + r2

)
.

We plot enclosures for our examples. The upper blue curve in each plot is the graph

of the Taylor polynomial plus the bound, the lower curve is in each plot is the graph

of the Taylor polynomial minus the bound, the red curve is the graph of the Taylor

polynomial. The green curve is the graph of the true mapping. The upper-left plot

always corresponds to the mapping t ∈ [0, π/2] 7→ sin
(
t
)
. The upper-right plot always

corresponds to the mapping t ∈ [0, π/2] 7→ exp
(
−t
)
. The lower-left plot always

corresponds to the mapping t ∈ [0, π/2] 7→ sin
(
t
)
+ exp

(
−t
)
. The lower-right plot

always corresponds to the mapping t ∈ [0, π/2] 7→ sin
(
t
)
· exp

(
−t
)
. Figure 3.1 renders

four Taylor model plots of degree 4. Figure 3.2 renders four Taylor model plots of

degree 5. Figure 3.3 renders four Taylor model plots of degree 6. Figure 3.4 renders

four Taylor model plots of degree 7. Notice the graphs in each plot converge as degree

increases. This was the desired illustration.

70 CHAPTER 3. TAYLOR MODELS

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

t

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

1.3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

t

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

t

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

t

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 3.1: Taylor model plots of degree 4.

3.4. CLASS TMODEL 71

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

t

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

1.3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

t

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

t

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

t

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 3.2: Taylor model plots of degree 5.

72 CHAPTER 3. TAYLOR MODELS

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

t

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

1.3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

t

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

t

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

t

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 3.3: Taylor model plots of degree 6.

3.4. CLASS TMODEL 73

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

t

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

1.3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

t

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

t

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

t

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 3.4: Taylor model plots of degree 7.

74 CHAPTER 3. TAYLOR MODELS

Chapter 4

Automating rigorous defect control

Automating rigorous defect control means implementing the three phases introduced

in Chapter 1 for computing a global approximate solution. We discuss our software

design choices. Phase II relies on Taylor models implemented in the SOLLYA package

[12, 13] through our interface class Tmodel, we discussed class Tmodel in Chapter 3.

Our software ODETS combines our C++ classes into a numerical ODE initial-value

problem solver which automates rigorous defect control.

Standard ODE-IVP solvers control local forward error on each step, but this error

control can be deceived when the error estimate is smaller than the true forward

error. Validated ODE solutions use interval methods to compute rigorous bounds on

the numerical solution, but it is challenging to keep the rigorous bound tight. The

software package VNODE implements this approach [73, 75, 79].

75

76 CHAPTER 4. AUTOMATING RIGOROUS DEFECT CONTROL

4.1 Input and driver

We list a fully functional driver to ODETS in Figure 4.1 for solution of the Predator-

Prey example. The ODETS Predator-Prey driver requires setup, let’s explain the input.

Call ODETS with the interface method solve which requires several input parameters.

Of course, the initial time t, the dimension of the problem d, the initial point x,

and the final time tout are required. The nprt parameter requests output at this

number of points per integration step. The tprt parameter is ignored unless nprt is

zero. Otherwise tprt is a constant interval width between printed output. The first

two parameters are the two different types of the vector field: a TADIFF type and a

Tmodel type.

The SOLLYA verbosity parameter is defined in the SOLLYA documentation [12, 13],

and it controls SOLLYA output. Set SOLLYA verbosity to zero to eliminate all SOLLYA

chatter. The SOLLYA precision parameter is set to 64 bits for double precision.

4.2 Phase I: Compute an approximate solution

Given the initial condition xn−1 ∈ Rd at tn−1 ∈ R, stepsize hn, and order q, take a

step to tn = tn−1 + hn with the Taylor series method as the engineered problem; that

is, compute a Taylor series approximate solution v of degree k
def
= q + 2

v
(
t
)
= xn−1 + (xn−1)1(t− tn−1) + · · ·+ (xn−1)k(t− tn−1)k (4.1)

to the local ODE-IVP reference problem,

x′
(
t
)
= f

(
t, x
(
t
))
, x

(
tn−1

)
= xn−1, t ∈ [tn−1, tn].

4.2. PHASE I: COMPUTE AN APPROXIMATE SOLUTION 77

#include <cstddef>
#include "sollya.h"
#include "odets.hpp"

#define DIM 2

template <typename T>
void rhs(T t, const T * x, T * xp)
{
xp[0] = x[0] - 0.1*x[0]*x[1] + 0.02*t;
xp[1] =-x[1] + 0.02*x[0]*x[1] + 0.008*t;

}

int main(int argc, char* argv[])
{
// Set output style and precision
std::cout.precision(17);
std::cout << std::scientific;

sollya lib init();
sollya obj t zer = sollya lib constant from int(0);
sollya lib set verbosity(zer);
sollya obj t prercision = sollya lib constant from int(64);
sollya lib set prec(precision);

double tol = atof(argv[1]);
double order = atof(argv[2]);
int d(DIM);
double * x = new double[DIM];

int nprt(50);
double t(0.0), tout(40.0), tprt(0.001);

x[0] = 30.0;
x[1] = 20.0;

solve(rhs, rhs, t, d, x, tout, order, tol, nprt, tprt);

delete [] x;
sollya lib close();

return 0;
}

Figure 4.1: Predator-Prey driver to ODETS

78 CHAPTER 4. AUTOMATING RIGOROUS DEFECT CONTROL

The vector field f need not be analytic to compute a Taylor series approximate

solution. It does need to be k + 1 times continuously differentiable to compute the

coefficients (xn−1)r in (4.1) and rigorously bound the remainder term. The consistency

(or accuracy) order q has the traditional meaning [2, p. 40].

We rely on SOLLYA to evaluate the Taylor and the Hermite approximate solution.

Internally SOLLYA rigorously evaluates polynomials.

Taylor series methods are based on Taylor arithmetic [11], and they are thought

to be computationally expensive. This is not the case, but they are still much more

expensive than Runge–Kutta. With a judicious implementation, Taylor arithmetic

efficiently computes the Taylor coefficients (xn−1)j at tn−1.

Bendtsen and Stauning wrote automatic differentiation packages FADBAD++ and

TADIFF [5, 6, 92] in the C++ programming language which efficiently compute Taylor

coefficients. The flexibility of FADBAD++ and TADIFF derives from operator overloading

and generic programming. Automatic differentiation relies on the computational graph

of the vector field f . This computational graph is computed only once. Once computed,

the computational graph is called repeatedly to automatically generate the Taylor

series coefficients at different expansion points.

A tutorial explanation of automatic differentiation and Taylor series methods is

found in the introductory book Moore, Kearfott, and Cloud [72, Section 9.3] as well

as the tutorial article Chang and Corliss [11]. Baydin, Pearlmutter, Radul, Siskind [4]

offer a recent and advanced article on this topic, it details the forward and the reverse

modes.

A Taylor series approximate solution requires only floating-point arithmetic, and

automatic differentiation does not faithfully reproduced the true Taylor coefficients.

4.2. PHASE I: COMPUTE AN APPROXIMATE SOLUTION 79

The Taylor coefficients are possibly tainted with rounding errors [3, 14]. In defect

control, even an approximate solution based on tainted data is the exact solution of

the perturbed reference problem.

We wrote class TaylorExpansion, a C++ interface to TADIFF and a data man-

agement class. It generates the Taylor coefficients for our Taylor series method. Our

class handles vector valued ODE-IVP.

We assume a generic template implementing the ODE function. In Section 4.1, we

listed our driver for the Predator-Prey application where the vector field is codified as

follows:

template <typename T>
void fcn(T t, const T * x, T * xp)
{
xp[0] = x[0] - 0.1*x[0]*x[1] + 0.02*t;
xp[1] = -x[1] + 0.02*x[0]*x[1] + 0.008*t;

}

The vector field need not be polynomial, but this vector field is polynomial. With

tlast = tn−1 and xlast = xn−1, a typical application will require the following

method calls from class TaylorExpansion:

TaylorExpansion * tvf = new TaylorExpansion(d, k);
tvf->setCodeList(fcn);
tvf->getAllTaylorCoefficients(tlast, xlast, d, k, coeff);

// Get the last coefficient
tvf->getTaylorCoeff(k-1, d, k, coeff, last);

The d× k dimensional array coeff stores all of the Taylor series coefficients, and the

d-dimensional array last stores the kth degree Taylor series coefficients.

80 CHAPTER 4. AUTOMATING RIGOROUS DEFECT CONTROL

We make a design choice: The defect at the Taylor series approximate solution

(4.1) will have degree k, just as the Taylor series approximate solution has degree k. Our

class ApproximateSolution manages the d-dimensional, vector valued approximate

solution as well as its first derivative and the defect.

The defect at the Taylor series approximate solution v is not continuous, and,

technically, it is a deviation. The Hermite approximate solution u with xn = v(tn)

interpolates
(
tn−1, xn−1

)
, f
(
tn−1, xn−1

)
,
(
tn, xn

)
, and f

(
tn, xn

)
. Compute the Hermite

approximate solution,

u
(
t
)
= v
(
t
)
+

∆v
(
tn
)

hkn

(
t− tn−1

)k+1−
∆v
(
tn
)

hk+1
n

(
t− tn−1

)k+2
. (4.2)

This ensures ∆u
(
tn−1

)
= ∆u

(
tn
)
= 0. Hence, the defect at the Hermite approximate

solution is continuous.

4.3 Phase II: Bound the defect

We bound the defect. To do so, we implement the tight interval bound on the

supremum norm of a Taylor model from Section 3.3.

The approximate solution can be any smooth path. We are interested in the Taylor

series approximate solution or the Hermite approximate solution introduced in the

previous section. An approximate solution u will always be the exact solution of the

perturbed reference problem, even an approximate solution tainted with floating–point

errors. It follows that the error bound of the approximate solution is zero, and the

Taylor model of the approximate solution is known to mathematical certainty. We use

the SOLLYA package to evaluate the code list of x′ − f(t, x) with
(
u, [0, 0]

)
in Taylor

4.3. PHASE II: BOUND THE DEFECT 81

model arithmetic. The ith component of the result is the Taylor model
(
pi, ri

)
so

that, by definition, we have

∆ui
(
t
)
−pi
(
t
)
∈ ri for all t ∈ [tn−1, tn]

Compute (3.17), a rigorous enclosure bi = [bi, bi] of the supremum norm:

‖pi‖∞ = sup
t∈[tn−1,tn]

|pi
(
t
)
| ∈ bi

We have by (3.18)

max
{

0, bi − abs
(
ri
)}
≤ ‖∆ui‖∞ ≤ bi + abs

(
ri
)
.

The bound we use is

δi
def
= bi + abs

(
ri
)
. (4.3)

Call the method getSupNorm in class Tmodel to compute the upper bound (4.3) for

the defect. We apply the built-in SOLLYA supremum norm to compute a rigorous bi.

The rigorous bound ri is computed as the Taylor model for the defect is computed

by SOLLYA. We can obtain ri with interval evaluation or SOLLYA through interval

techniques (not calculus) as we discussed in Section 3.3. ODETS uses SOLLYA to

compute (4.3) through its supremum norm method.

It may seem curious that we computed the Taylor model for x′ − f(t, x) only

to bound the result, but the purpose of computing this Taylor model is indeed to

compute a rigorous tight bound (4.3). Recall that direct interval evaluation of the

82 CHAPTER 4. AUTOMATING RIGOROUS DEFECT CONTROL

defect x′ − f(t, x) will in general lead to overestimation.

In closing of this section, consider the logistic model problem.

Example 1. Consider the logistic model

x′ = f(x) = x− x2, x(0) = 0.2, t1 = 0.4.

Compute the Taylor series,

v(t) = 0.2 + 0.16t+ 0.048t2 + 1.0667×10−3t3.

The first three Taylor coefficients are exact, but the last coefficient is rounded to 4

digits. Interpolating f
(
v(t1)

)
, rounded here to 4 digits, find

u(t) = v(t) + 1.5795×10−2t4 − 3.9486×10−2t5.

Evaluating x′ − (x− x2) with (u, [0, 0]), compute ∆u(t)− p(t) ∈ r,

p(t) = 1.3878×10−17t+ 1.0000× 10−10t2

+7.7898×10−2t3 − 2.0426×10−1t4 + 2.8849×10−2t5,

r = [−5.1923×10−5, 1.8090×10−17].

We plot the enclosures in Figure 4.2. The lower enclosure is ∆u(t) = p(t) + r, and

the upper enclosure is ∆u(t) = p(t) + r. Similar identifications hold for ∆v. The shape

of the deviation at v and the defect at u is typical for each local step. Here δ shows

the tight bound we use for ‖∆u‖∞. We mark this bound for the Hermite approximate

4.3. PHASE II: BOUND THE DEFECT 83

0 0.1 0.2 0.3 0.4
t

-2

0

2

4

6

8

10

12
10-4

Figure 4.2: Enclosures of ∆v(t) and ∆u(t)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
t

-2

0

2

4

6

8

10

12
10-4

Figure 4.3: Enclosures of ∆u(t) with bound

84 CHAPTER 4. AUTOMATING RIGOROUS DEFECT CONTROL

solution in Figure 4.3.

Let’s consider interval arithmetic evaluation of the vector field. We expect overes-

timation of the rigorous bound. Evaluating ∆u = u′ − (u− u2) in interval arithmetic

(3.9) gives

u([0, 0.4]) ∈ u = [0.2000, 0.2722]

u′([0, 0.4]) ∈ u′ = [0.1599, 0.2030]

∆u ∈ u′ −
(
u− u2

)
= [−0.0722, 0.0771]

While interval arithmetic evaluation is inexpensive to compute, the width can grow

unbounded for complicated f ’s. Find wid
(
[−0.0722, 0.0771]

)
is 1.4917 × 10−1, but

wid
(
r
)

is 5.1923×10−5. In this example, observe that Taylor models keep bounds tight.

4.4 Phase III: Accept/reject step

A step hn is accepted or rejected based on the decision logic of an adaptive time-

stepping algorithm. The elementary controller was considered in Section 2.7, and we

implement this adaptive time-stepping algorithm in ODETS.

Given a user specified tolerance TOL, we assume that δmax ≤ TOL, and we assume

that the Taylor remainder bound ri is in the interval [0,TOL] for all components. In

this case, the step is accepted, and we predict the next step with the elementary

controller

hn+1 ← 0.9hn

(
0.5TOL

δmax

)1/q

4.5. INITIAL STEPSIZE 85

else, we reject the step. If a step is rejected, we recompute δmax with stepsize

hn ← hn

(
0.25TOL

δmax

)1/q

that is, we repeat from Phase I. This involves computing a new Hermite approximate

solution based on the old Taylor approximate solution, and reevaluating x′− f(t, x) in

Taylor model arithmetic. The Hermite approximate solution depends on the stepsize,

but the Taylor coefficients need not be recomputed.

This phase of the algorithm validates the supremum norm of the defect is less than

TOL, and it validates the width of the Taylor model bound is less than TOL. The q is

the consistency order of the Taylor series method.

4.5 Initial stepsize

Watts [96] provides a history on the topic of initial stepsize selection, and his selection

algorithm is based on a second order Taylor series. Gladwell, Shampine, and Brankin

[39] also developed an automatic initial stepsize selection, and they demonstrate that

their initial stepsize selection leads to a robust and efficient integration. The Taylor

formula of degree k is

x
(
t0 + h

)
≈ x

(
t0
)
+x′
(
t0
)
h+ x′′

(
t0
)h2

2!
+ · · ·+ x(k)

(
t0
)hk
k!
. (4.4)

The local error of formula (4.4) is asymptotically

Ek = ‖x(k+1)
(
t0
) hk+1

(k + 1)!
‖∞. (4.5)

86 CHAPTER 4. AUTOMATING RIGOROUS DEFECT CONTROL

The authors [39, p. 179] postulate that the norm of the local error of any one-step

method of order p ≥ k can be approximated by E
(p+1)/(k+1)
k . Applying this postulate,

the largest step size H which leads to a local error (4.5) no larger than the given

tolerance TOL is given by

|H| =
(
(k + 1)!/‖x(k+1)

(
t0
)
‖∞
)1/(k+1)

TOL1/(p+1). (4.6)

Stepsize (4.6) is attributed in [39] to private discussions with H. J. Stetter. On the

other hand, Gladwell, Shampine, and Brankin [39, p. 175] point out the virtues and

pitfalls in this selector.

4.6 ODETS software

Our C++ software ODETS integrates unit tested modules implementing Phase I to

Phase III. ODETS implements the Corless and Corliss proposed rigorous defect control

algorithm, Algorithm 1. The user provides the input and driver as explained in

Section 4.1. We consider the design of the interface for ODETS.

Before we dive into our software implementation, let’s demonstrate that it works.

Consider again the defect controlled logistic equation x′ = x − x2 with final time

tend = 1000. The result is in Figure 4.4. The defect is rigorously controlled less than

TOL, and the stepsizes illustrate that they are controlled for numerical stability.

4.6. ODETS SOFTWARE 87

0 200 400 600 800 1000
t

-4

-2

0

2

4

6 10-11 solution error

0 200 400 600 800 1000
t

0

2

4

6

8

10
stepsize

0 200 400 600 800 1000
t

0.2

0.4

0.6

0.8

1
solution

0 200 400 600 800 1000
t

-1

0

1
10-10 defect enclosures

Figure 4.4: x′ = x− x2, x(0) = 0.2, order 15, TOL = 10−10

4.6.1 Build requirements

We build ODETS under Ubuntu Linux. This requires the gcc compiler, google-test for

unit testing, CMake for automated validation, and several Ubuntu packages required

by SOLLYA. An ODETS build depends on the software:

• SOLLYA [13] for computing Taylor models and supremum norm;

• FADBAD++/TADIFF [92] for computing Taylor coefficients.

4.6.2 Requirements and Specification by Example

This project followed Test-Driven Development (TDD) and unit testing practices,

Langr’s book [64] offers a helpful tutorial guide to software craftsmanship through

TDD and design patterns. The author reached out to Langr [65] for further insight

88 CHAPTER 4. AUTOMATING RIGOROUS DEFECT CONTROL

into requirements, and his reply assisted the following discussion.

Advising sessions translate into test scenarios. The author wrote unit tests with

Google Test [41]. Following Specification by Example practices [1], the author was

enabled to elevate unit tests to specify system behavior by grouping unit tests to

reflect test scenarios. The *nix utility CMake implemented automated validation

without changing specification. In effect, we get executable specifications. If the tests

all pass, then the product owner accepts the product.

These executable specifications are the central negotiating point with the product

owner, here my thesis committee. They describe end-to-end capabilities in the system,

and they describe all the core intended goals that people have for the system. They

are also the artifact describing best the capabilities of the system requested by the

customer. In one sense, they are living documentation. As long as all these tests pass,

we know the system does what the tests describe.

Our requirement aim is simple enough to state. We aim to deliver a rigorous defect

control ODE-IVP solver based on the Taylor series method that integrates seamlessly

into problem solving environments (MATLAB).

4.6.3 Algorithm overview

ODETS is a collection of C++ methods implementing rigorous defect control.

The stepping algorithm: The rationale for rigorous defect control proposed by

Corless and Corliss is implemented in the ODETS method solve. It tightly follows

Algorithm 1. We list an abbreviated illustration of solve in Figure 4.5 with actual

C++ snippets.

4.6. ODETS SOFTWARE 89

Input: Integration starts at the last known continuation point tlast, xlast, d

with xlast in Rd, final time tend, order, tolerance tol, and output specified by

nprt and tprt as in Section 4.1. The first two parameters are for the template

function f, the first f is type TADIFF and the second f is type Tmodel.

Initial stepsize: The initial stepsize H with p = k from (4.6) is used in ODETS.

The stepsize may be restricted to limit integration to the interval [t0, tend]. The main

advantage of this initial stepsize is that all the required information to compute this

initial stepsize is available from other necessary computations.

Minimal stepsize: We take a simple approach to the minimum stepsize. The

adaptive time-stepping algorithm is evaluated in double precision: The minimal

stepsize for any integration step is t
(
1 + 4ε

)
where ε is the machine epsilon in the

current precision.

Output: The SOLLYA print facility can be called on component i of the solution:

sol->s[i].print(); sol->p[i].print(); sol->d[i].print();

We designed solout listed in Figure 4.6 for ODETS output to support data collection.

This listing reveals the structure of the output. The variable err holds the supremum

norm of the defect of the Hermite approximate solution, and posneg is the sign of

the defect on the current subinterval [tn−1, tn].

Stepsize control permits efficient integration, and discourages closely spaced output

points. The input parameters nprt and tprt defined and described in Section 4.1

enables ODETS to evaluate the Hermite and Taylor approximate solution at equispaced

90 CHAPTER 4. AUTOMATING RIGOROUS DEFECT CONTROL

int num taylor coeff = order + 2;
int num hermite coeff = num taylor coeff + 2;
// Data structure to hold Taylor and Hermite coefficients
ApproximateSolution * taylor =
new ApproximateSolution(d, num taylor coeff);

ApproximateSolution * hermite=
new ApproximateSolution(d, num hermite coeff);

TaylorExpansion * tvf = new TaylorExpansion(d, num hermite coeff);
tvf->setCodeList(tadiff fcn);
tvf->getAllTaylorCoefficients(tlast, xlast, d, num hermite coeff,

coeff);
// Get the last coefficient
tvf->getTaylorCoeff(num taylor coeff-1, d, num hermite coeff, coeff,

last taylor coeff);
// Estimate first step, it can be no larger than htrial = tend-last
while(tlast < tend)
{
// Step and error computation
bool accepted = false;
while(!accepted)
{
// Set model data and domain and time
taylor->setSCoeff(d, num taylor coeff, coeff, tlast, ttrial);
toHermite(taylor, hermite, tvf, coeff, tlast, ttrial, htrial);
hermite->evalP(tmodel fcn);
hermite->evalD();

// Rigorous defect error model
err = getSupNormN(d, hermite->d, sup norm wk, 0);
if(err <= tol)
{
// predict accepted stepsize
accepted = true;
if(ttrial > tend) ttrial = tend;
// Local ODE output for times in [t {i-1}, t i]
// Get new skelatal point (tlast, xlast): Advance step!

}
else
{
// Compute rejected stepsize and repeat step.

}
}

}
}

Figure 4.5: Defect-controlled algorithm

4.6. ODETS SOFTWARE 91

points or at a fixed number of points per integration step. Defect control is rigorous,

and the defect remains less than TOL at each time in the integration step. No additional

error check is necessary.

4.6.4 The class structure of ODETS

ODETS is implemented as a collection of C++ classes. We describe the functionality of

the classes and the relationship between them.

In Figure 4.7, we draw UML class diagrams illustrating the class dependency

structure in ODETS. The arrow points to the class that instantiates it. We achieved a

clean expressive interface.

Class ApproximateSolution: An instance of class ApproximateSolution has a

solution s, its first derivative p, and its defect d at the solution. This class manages

these objects, and a knowledgeable programmer is responsible for their actual data.

Each component of each of these objects is an instance of class Tmodel, and we can

access them in that way.

ODETS: ODETS is a collection of C++ methods and functions implementing rigorous

defect control. The solve method implements the main integration algorithm. Output

method solout implements printing continuous output used for data collection in this

project. We discuss solout, the first step function getFirstStep, and the minimal

step function getHmin.

Previous sections discussed building the Hermite approximate solution (Phase

I) and adaptive time-stepping with the elementary controller (Phase III). ODETS

implements accepted steps with the function getAcceptedStep and rejected steps

with the function getRejectedStep. The predicted stepsize H with p = k from (4.6)

92 CHAPTER 4. AUTOMATING RIGOROUS DEFECT CONTROL

#include "odets.hpp"
#include <math.h>

void solout(double tout,
ApproximateSolution * hermite,
ApproximateSolution * taylor,
double err, double posneg, double tol)

{
double val(0.0);
int n = hermite->getN();

std::cout << "t =" << tout << ", ";
for(int i=0;i<n;i++)
{
hermite->getS(i, tout, val);
std::cout << val << ", ";

}
for(int i=0;i<n;i++)
{
hermite->getP(i, tout, val);
std::cout << val << ", ";

}
for(int i=0;i<n;i++)
{
hermite->getD(i, tout, val);
std::cout << val << ", ";

}
for(int i=0;i<n;i++)
{
taylor->getS(i, tout, val);
std::cout << val << ", ";

}
for(int i=0;i<n;i++)
{
taylor->getP(i, tout, val);
std::cout << val << ", ";

}
for(int i=0;i<n;i++)
{
taylor->getD(i, tout, val);
std::cout << val << ", ";

}
std::cout << posneg*err << ", ";
std::cout << tol << ", ";

}

Figure 4.6: Printing via SOLOUT from ODETS

4.6. ODETS SOFTWARE 93

Figure 4.7: Arrow points to the class that instantiates it.

is implemented in ODETS with the function getPredictedStep, but it is not called

in solve.

Class TaylorExpansion: An instance of class TaylorExpansion has considerable

functionality, we will cover the portion relevant to solve. This class generates the

code list for a type TADIFF function with the class method setCodeList, generates

all Taylor coefficients with getAllTaylorCoefficients, and retrieves a specific

Taylor coefficient with getTaylorCoefficient. The data array coeff instantiated

outside class TaylorExpansion and class ApproximateSolution helps to maintain

a clean interface.

Class Tmodel: The class Tmodel interfaces with SOLLYA. It can be applied to compute

a Taylor model in any application, including ODETS, with considerable functionality

and flexibility. All rigorous computations pass through class Tmodel.

The SOLLYA tool implements Taylor models in one independent variable, and it

implements a rigorous supremum norm. We described it’s user interface in Chapter 3.

94 CHAPTER 4. AUTOMATING RIGOROUS DEFECT CONTROL

Chapter 5

Numerical results and discussions

Our ODE-IVP solver ODETS fully automates rigorous defect control. We demonstrate

through computational experiments that rigorous defect control is possible, and defect

control is an effective error control strategy. We demonstrate that ODETS can solve

autonomous and non-autonomous ODE-IVP known to give adaptive time-stepping

strategies difficulty.

The next section defines our test cases. Additional model problems are discussed

and numerically solved in the final section of this chapter.

5.1 Test cases

We are interested in integration tests to distinguish adaptive time-stepping strategies

and evaluate performance. We choose the ill-conditioned Lorenz attractor and the

well-conditioned predator-prey model problems as our test cases.

95

96 CHAPTER 5. NUMERICAL RESULTS AND DISCUSSIONS

Lorenz: We test with the Lorenz attractor;

x′1 = x2 x3 − (8x1)/3, x1(0) = 36,

x′2 = 10 (x3 − x2), x2(0) = 15,

x′3 = x2 (28− x1)− x3, x3(0) = 15,

t ∈ [0, 15]. (5.1)

A constant linear transformation of variables applied to the Lorenz attractor in [29]

leads to the Lorenz attractor stated in [18, p. 514], where the initial condition is

x1(0) = 27, x2(0) = −8, x3(0) = 8, and the integration interval is [t0, tf] = [0, 20]. We

are testing with the vector field defined in [18, p. 514]. We use the integration interval

and transformed initial condition defined in [29]. As a result, a plot of our numerical

solution is visually comparable to the plot in [18, p. 514], and we can compare the

numerical performance between ODETS and the results in [29].

Predator-Prey: We test with the Predator-Prey model problem stated in [29];

x′1 = x1 − 0.1 x1 x2 + 0.02t, x1(0) = 30,

x′2 = −x2 + 0.02 x1 x2 + 0.008t, x2(0) = 20,
t ∈ [0, 40]. (5.2)

The final time tend in the paper is 4, but plots in that article indicate that tend should

be 40.

5.2 Adaptive time-stepping study

An adaptive time-stepping strategy is stepsize control, as discussed in Section 2.7.

We consider adaptive time-stepping strategies based on two assumptions: Error is

proportional to a power of the stepsize, and the constant of proportionality slowly

5.2. ADAPTIVE TIME-STEPPING STUDY 97

varies as the process under control moves from step to step. In forward error control,

the power is related to the consistency order. There is no counterpart to consistency

order in rigorous defect control, but Taylor models enable us to overcome this obstacle.

We seek to rigorously control the supremum norm of the defect at the Hermite

approximate solution to be less than a user specified tolerance. As shown with the

logistic model in Section 4.3, interval evaluation of the tangent vector field at the

approximate solution is known to overestimate the supremum norm of the defect,

and we know Taylor models reduce overestimation. We introduce Taylor models of

the defect to rigorously and tightly bound the defect. The Taylor polynomial of the

defect naturally provides a counterpart in defect control to consistency in forward

error control. The degree of the Taylor model of the defect naturally provides a

counterpart in defect control to consistency order in forward error control. We assure

in our algorithm that the width of the defect Taylor model bound is less than the user

specified tolerance TOL and the computed upper bound δ defined in (3.18) is also less

than TOL.

The adaptive time-stepping study identifies an acceptable adaptive time-stepping

strategy, and it summarizes our reasoning through computer experiments aimed at

choosing a stepsize control strategy.

Compare time-stepping algorithm choices: In Table 5.1, we recall the cost per

step of the explicit strict defect control continuous Runge–Kutta (SDC CRK) formulas

of Enright [29, Table 1, p. 284]: Subsection 2.5.2 introduced the classical pth-order,

s-stage, discrete Runge–Kutta formula, and Subsection 2.5.3 introduced s̃ additional

stages to obtain a differentiable solution and continuous defect. We expect SDC

CRK methods to take three times the computational time of a classical Runge–Kutta

98 CHAPTER 5. NUMERICAL RESULTS AND DISCUSSIONS

Formula p s s̃ (s+ s̃)/s

sdc5 5 6 12 3.0

sdc6 6 7 15 3.1

sdc8 8 13 27 3.1

Table 5.1: Cost per step of strict defect control [29, Table 1, p. 284].

method based on the final column in Table 5.1. Enright [29] did not report a timing

performance metric, but he did report total number of steps. The number of SDC CRK

steps are recorded in Table 5.2 and Table 5.3.

We compare Enright’s asymptotic defect control steps with the steps required of

respected Runge–Kutta software. We record the accepted and rejected steps reported

from the Runge–Kutta software; order 5 dopri5 developed by Hairer, Norsett, and

Wanner [45], order 6 dverk developed by Hull, Enright, and Jackson [60], and order 8

dop853 developed by Hairer, Norsett, and Wanner [45]. The number of Runge–Kutta

steps are recorded in Table 5.2 and Table 5.3.

For the purpose of comparison, we compute Taylor series steps with the software

DAETS developed by Nedialkov and Pryce [76, 77, 78]. Gladwell, Shampine, and

Brankin [39] mentioned Stetter’s stepsize controller (4.4), (4.5), and (4.6). Nedialkov

independently rediscovered this error control, and he implemented it with p = k in

his successful DAE initial value problem software DAETS [74]. We call Stetter’s error

control predictive control because the error predicts a stepsize, based on the elementary

controller, that meets tolerance. The number of Taylor series steps are recorded in

Table 5.2 and Table 5.3.

We developed six variations of ODETS to study adaptive time-stepping, designed

so that the non-rigorous predictive forward error control, the non-rigorous elementary

5.2. ADAPTIVE TIME-STEPPING STUDY 99

ORDER TOL SDC CRK DAETS Runge–Kutta CPO ODETS

5

10−2 356 172/0 129/33 195/0

10−4 751 393/0 283/48 426/0

10−6 1738 818/0 685/32 916/0

10−8 4304 1780/0 1703/0 1975/0

6

10−2 316 154/0 177/0 169/0

10−4 642 299/0 364/0 334/0

10−6 1339 573/0 744/0 638/0

10−8 2865 1112/0 1573/0 1233/0

8

10−2 145 131/0 84/36 142/0

10−4 228 211/0 136/44 234/0

10−6 371 357/0 223/76 394/0

10−8 634 593/0 392/118 656/0

Table 5.2: Lorenz model problem Equation (5.1). A bold table entry indicates that
the percentage of rejected steps exceeds 20 percent [36].

ORDER TOL SDC CRK DAETS Runge–Kutta CPO ODETS

5

10−2 70 48/0 35/7 54/0

10−4 148 111/0 64/17 123/0

10−6 315 238/0 154/12 264/0

10−8 705 513/0 382/6 569/0

6

10−2 65 48/0 48/0 50/0

10−4 134 87/0 92/0 96/0

10−6 277 168/0 188/0 186/0

10−8 585 325/0 392/0 359/0

8

10−2 34 38/0 24/15 41/0

10−4 53 63/0 37/10 69/0

10−6 83 103/0 60/15 114/0

10−8 127 173/0 104/29 190/0

Table 5.3: Predator-Prey model problem Equation (5.2). A bold table entry indicates
that the percentage of rejected steps exceeds 20 percent [36].

100 CHAPTER 5. NUMERICAL RESULTS AND DISCUSSIONS

forward error control, and rigorous defect control can be compared.

The coefficient predicted observed ODETS solver (CPO ODETS) implements predicted

forward error control. The computed upper bound δ of the defect defined in (3.18)

is simply observed. CPO ODETS is not rigorous defect control. The number of steps

required from CPO ODETS and DAETS runs are expected to be “identical”. The number

of CPO ODETS steps are recorded in Table 5.2 and Table 5.3.

The coefficient predicted validated ODETS solver (CPV ODETS) implements predicted

forward error control for accepted steps and defect control with the elementary

controller for rejected steps. One can also compute rejected steps with the elementary

controller based on forward error, but this situation did not result in an acceptable

stepsize controller. The step is accepted whenever the width of the defect Taylor

model bound is less than TOL and the computed upper bound δ defined in (3.18) is

also less than TOL. CPV ODETS is rigorous defect control. The number of CPV ODETS

steps are recorded in Table 5.4 and Table 5.5.

The coefficient elementary observed ODETS solver (CEO ODETS) implements the

elementary stepsize controller (accepted and rejected steps) based on traditional

forward error control. The computed upper bound δ of the defect defined in (3.18)

is simply observed. CEO ODETS is not rigorous defect control. The number of CEO

ODETS steps are recorded in Table 5.4 and Table 5.5.

The coefficient elementary validated ODETS solver (CEV ODETS) implements the

elementary stepsize controller with accepted steps based on traditional error control

with additional requirements. The step is accepted whenever the width of the defect

Taylor model bound is less than TOL and the computed upper bound δ defined in

(3.18) is also less than TOL. Rejected steps are based on defect control. Once again,

5.2. ADAPTIVE TIME-STEPPING STUDY 101

ORDER TOL CPO CPV CEO CEV DEF DEV

5

10−2 195/0 451/446 121/30 432/432 475/17 529/13

10−4 426/0 982/958 241/20 909/909 1033/1 1184/1

10−6 916/0 2103/2019 465/1 1907/1907 2228/1 2547/1

10−8 1975/0 4522/4319 897/0 4033/4033 4798/1 5480/1

6

10−2 169/0 364/364 121/36 369/369 367/32 418/29

10−4 334/0 692/679 209/31 659/659 718/1 810/1

10−6 638/0 1327/1278 357/11 1243/1243 1388/1 1563/1

10−8 1233/0 2555/2449 655/1 2365/2365 2679/1 3015/1

8

10−2 142/0 267/267 116/40 273/273 278/55 304/49

10−4 234/0 433/432 176/42 424/424 445/24 488/19

10−6 394/0 715/705 273/33 691/691 733/1 808/1

10−8 656/0 1188/1162 423/9 1140/1140 1223/1 1348/1

Table 5.4: Lorenz model problem Equation (5.1). A bold table entry indicates that
the percentage of rejected steps exceeds 20 percent [36].

ORDER TOL CPO CPV CEO CEV DEF DEV

5

10−2 54/0 112/14 53/14 104/60 114/14 129/11

10−4 123/0 241/26 99/10 215/155 235/10 270/9

10−6 264/0 516/48 189/17 461/408 501/9 575/5

10−8 569/0 1113/108 358/13 990/967 1077/0 1234/0

6

10−2 50/0 90/9 49/11 87/46 94/21 103/14

10−4 96/0 172/16 83/12 157/90 171/18 192/16

10−6 186/0 333/36 146/15 300/227 321/12 364/10

10−8 359/0 640/64 256/14 574/482 617/7 697/4

8

10−2 41/0 66/12 43/14 69/32 74/23 79/21

10−4 69/0 110/17 66/16 107/59 115/21 126/17

10−6 114/0 180/11 101/15 172/110 185/23 204/16

10−8 190/0 301/30 158/20 283/207 304/21 335/13

Table 5.5: Predator-Prey model problem Equation (5.2). A bold table entry indicates
that the percentage of rejected steps exceeds 20 percent [36].

102 CHAPTER 5. NUMERICAL RESULTS AND DISCUSSIONS

one can compute rejected steps with the elementary controller based on forward error,

but this situation did not result in an acceptable stepsize controller. CEV ODETS is

rigorous defect control. The number of CEV ODETS steps are recorded in Table 5.4

and Table 5.5.

The defect elementary validated ODETS solver (DEF) predicts accepted and rejected

stepsize with the elementary stepsize controller evaluated at the supremum norm

of the defect at the Hermite approximate solution. This controller accepts the step

whenever the width of the defect Taylor model bound is less than the user specified

tolerance TOL and the computed upper bound δ defined in (3.18) is also less than TOL.

DEF is rigorous defect control. The number of DEF steps are recorded in Table 5.4

and Table 5.5.

The deviation elementary validated ODETS solver (DEV) is designed similar to DEF

except it computes the supremum norm of the deviation at the Taylor approximate

solution. DEV is rigorous deviation control.

We numerically solve the test cases at TOL = 10−8 and order 14. Nedialkov [74]

recommended these parameters based on experience with Taylor series methods under

forward error control. We did not know the dependence of rigorous defect control

performance on order ahead of time. We graphically illustrate the piecewise polynomial

Hermite approximate solution, the generated local stepsizes, and the supremum norm

of the defect on each step in a side-by-side comparison. We also compare our ODETS

solution with the solution generated by the MATLAB method ode113, a variable-step,

variable-order Adams-Bashforth-Moulton PECE method of orders 1 to 13. We chose

a relative and absolute tolerance of 10−12 for ode113, and, at this tolerance, this

Adams-Bashforth code renders a smoother error plot when comparing the ode113

5.2. ADAPTIVE TIME-STEPPING STUDY 103

numerical solution to the DEF numerical solution than the go-to MATLAB method

ode45 rendered. The full predator-prey model is illustrated in Figure 5.1, and the

first steps are illustrated in Figure 5.2. The full Lorenz attractor is illustrated in

Figure 5.3, and the first steps are illustrated in Figure 5.4.

Discussion on time-stepping algorithm choices: We compare asymptotic defect

control with rigorous defect control. Admittedly asymptotic defect control at orders 5,

6, and 8 have an advantage, because Taylor series methods perform best at orders in the

range 15-20 [74]. Asymptotic defect control results were compared to accepted/rejected

step counts collected from well known Runge–Kutta methods at orders 5, 6, and 8.

We compare the methods on the test cases.

We found that the defect controlled SDC CRK strategy require roughly twice as many

steps as the forward error controlled Runge–Kutta, DAETS, or CPO ODETS strategy

in both test cases. SDC CRK methods are defect controlled, and the Runge–Kutta

methods are forward error controlled.

The DAETS and CPO ODETS strategies roughly required the same number of steps

which indicates that our software is implemented as expected. We found that DAETS

and CPO ODETS exhibit zero step rejections.

The number of CPO ODETS, CPV ODETS, CEO ODETS, and CEV ODETS steps are

recorded in Table 5.4 and Table 5.5. Coefficient predictive control (CPO ODETS and

CPV ODETS) does not perform well when validated, nearly each step in CPV ODETS

is rejected in Lorenz. Similarly, coefficient elementary control (CEO ODETS and CEV

ODETS) does not perform well when validated, over 20 percent of the steps in CEV

ODETS are rejected in Lorenz and Predator-Prey. Moreover, the validated software

104 CHAPTER 5. NUMERICAL RESULTS AND DISCUSSIONS

0 10 20 30 40

t

0

0.5

1
10

-8 max

0 10 20 30 40

t

0.2

0.4

0.6

0.8
stepsize

0 10 20 30 40

t

10
-15

10
-10

10
-5

solution error

0 10 20 30 40

t

0

50

100

150
solution

Figure 5.1: Defect controlled predator-prey at order 14 and TOL = 10−8

0 2 4 6

t

0

0.5

1
10

-8 max

0 2 4 6

t

0.2

0.4

0.6

0.8
stepsize

0 2 4 6

t

10
-15

10
-10

10
-5

solution error

0 2 4 6

t

0

50

100

150
solution

Figure 5.2: Defect controlled predator-prey (zoom in) at order 14 and TOL = 10−8

5.2. ADAPTIVE TIME-STEPPING STUDY 105

0 5 10 15

0

0.5

1
10

-8 max

0 5 10 15

t

0.02

0.04

0.06

0.08
stepsize

0 5 10 15

t

10
-20

10
-10

10
0

solution error

0 5 10 15

t

-50

0

50
solution

Figure 5.3: Defect controlled Lorenz at order 14 and TOL = 10−8

0 0.5 1

0

0.5

1
10

-8 max

0 0.5 1

t

0.02

0.04

0.06

0.08
stepsize

0 0.5 1

t

10
-15

10
-10

10
-5

solution error

0 0.5 1

t

-50

0

50
solution

Figure 5.4: Defect controlled Lorenz (zoom in) at order 14 and TOL = 10−8

106 CHAPTER 5. NUMERICAL RESULTS AND DISCUSSIONS

CPV ODETS and CEV ODETS performed prohibitively poorly1 when rejected steps

used the forward error to compute the new stepsize. We conclude that the forward

error recommends stepsizes which are too large, and step rejections make a predictive

control strategy prohibitively inefficient.

We investigate defect elementary validated and deviation elementary validated

control. Observe that the number of defect elementary validated control steps or

the number of deviation elementary validated control steps is roughly the number

of strict defect control steps SDC CRK reported by Enright. Figure 4.2 supports the

observation that the supremum norm of the defect is less than the supremum norm of

the deviation on each step. Thus the stepsize recommended by a deviation will be

smaller than the stepsize recommended by a defect. This explains the larger number

of steps required for deviation elementary validated control over defect elementary

validated control.

We find that rigorous defect control is possible as illustrated in Figure 5.1, Figure 5.2,

Figure 5.3, and Figure 5.4.

5.3 Performance study

The performance study extends the adaptive time-stepping study reported earlier in

this chapter to higher order for defect elementary validated control (DEF).

Performance study accepted and rejected step counts: The performance

study counts the number of accepted and rejected steps required to numerically solve

the test cases with defect elementary validated ODETS. We collected data from defect

1 The number steps produced enough output to fill 120 Gb of disk space.

5.3. PERFORMANCE STUDY 107

Lorenz tend = 15 pred. prey tend = 40

order tol acc/rej acc/rej

15

10−6 285/66 81/23

10−8 371 / 56 105 / 21

10−10 483 / 22 136 / 15

10−12 640 / 2 181 / 18

20

10−6 215/61 64/21

10−8 261/68 77/23

10−10 319/68 94/25

10−12 399 / 48 116/24

Table 5.6: Lorenz model problem Equation (5.1) and Predator-Prey model problem
Equation (5.2). A bold table entry indicates that the percentage of rejected steps
exceeds 20 percent [36].

elementary validated control at orders 15 and 20 over a wide range of tolerances. The

results of the performance study are recorded in Table 5.6.

Discussion on performance study: Table 5.4 and Table 5.5 record accepted/re-

jected steps for defect elementary validated control at TOL = 10−6 and order 8; Lorenz

is 733/1 and Predator-Prey is 185/23. The same tables record accepted/rejected steps

for defect elementary validated control at a tighter tolerance TOL = 10−8 and the same

order 8; Lorenz is 1223/1 and Predator-Prey is 304/21. These performance metrics

are well within specification that rejected/total steps is less than 0.2. We say this to

point out that the results of this study in Table 5.6.

Table 5.6 illustrates that the accepted steps decrease as order increases. However,

the number of rejected steps increases so that rejected/total steps is greater than 0.2

in most entries of the table, which concerns us.

We investigate the cause for rejected steps in the defect width study.

108 CHAPTER 5. NUMERICAL RESULTS AND DISCUSSIONS

5.4 Defect width study

The ordered sequence of Taylor model plots of increasing degree, Figure 3.1, Figure 3.2,

Figure 3.3, and Figure 3.4 illustrate that the width of the Taylor bound may decreases

as the degree of the Taylor model increases. The defect width study increases the

order. Increasing the order increases the degree of the Taylor model of the defect. The

defect width study aims to illustrate that increasing consistency order decreases the

width of the Taylor model bound for the defect at the Hermite approximate solution.

The defect width study also illustrates the effect of order on accepted/rejected

steps holding tolerance constant. It graphically illustrates the maximal width of the

Taylor model bound on every step, and it illustrates the upper bound of the defect used

in defect elementary validated control on every step. These two bounds are projected,

and it is easy to visualize these projected bounds as a box plot. Each box indicates

the median center mark and indicates the 25th/75th percentile bottom/upper edges.

The outliers are plotted using the ’+’ symbol.

Defect width study results: Table 5.7 records the effect of order on accepted

and rejected steps holding tolerance constant at TOL = 10−10 for defect elementary

validated control as the orders vary 10, . . . , 20.

The left box-plots in Figure 5.5 and Figure 5.6 illustrate the infinity norm of the

remainder bound for the defect’s Taylor model. The right box-plots in these figures

illustrate the dependence of the upper bound δ defined in (3.18) for the supremum

norm of the defect at the Hermite approximate solution on order.

Discussion of the defect width study: We observe in Table 5.7 for the Lorenz

and Predator-Prey test cases that the number of accepted steps decreases as the order

5.4. DEFECT WIDTH STUDY 109

Lorenz tend = 15 pred. prey tend = 40

order acc / rej runtime (sec) acc / rej runtime (sec)

10 1123 / 1 9.3 292 / 18 1.2

11 895 / 1 9.3 239 / 21 1.2

12 740 / 1 8.8 201 / 20 1.1

13 627 / 1 8.3 174 / 17 1.2

14 545 / 7 7.1 153 / 20 1.0

15 483 / 22 6.8 136 / 15 1.0

16 436 / 40 7.4 124 / 21 1.1

17 398 / 51 6.9 114 / 20 1.1

18 366 / 57 7.0 106/25 1.1

19 340 / 62 7.1 100/26 1.1

20 319/68 7.2 94/25 1.1

Table 5.7: Lorenz model problem Equation (5.1) and Predator-Prey model problem
Equation (5.2). A bold table entry indicates that the percentage of rejected steps
exceeds 20 percent [36].

increases, and the number of rejected steps increase as the order increases.

The left box-plots in Figure 5.5 and Figure 5.6 illustrate for Predator-Prey and

Lorenz that the infinity norm of the remainder bound for the defect’s Taylor model is

independent of the order; the median width and the 25/75 percentiles of the defect’s

Taylor remainder bound remain constant. The right box-plots in these figures illustrate

the dependence of the upper bound δ defined in (3.18) for the supremum norm of

the defect at the Hermite approximate solution on order; the median width decays

exponentially, but the decrease is no longer significant after order 14. On the other

hand, we observe a large number of outliers in all the box-plots, and the outliers for

the upper bound of the supremum norm of the defect at the Hermite approximate

solution may be in the whole tolerance interval.

110 CHAPTER 5. NUMERICAL RESULTS AND DISCUSSIONS

10 11 12 13 14 15 16 17 18 19 20

Order

0

1

2

3

D
e

fe
c
t

re
m

a
in

d
e

r
b

o
u

n
d

 p
e

r
s
te

p

L
o

re
n

z
10-11

10 11 12 13 14 15 16 17 18 19 20

Order

0

2

4

6

8

10

D
e

fe
c
t

u
p

p
e

r
b

o
u

n
d

 p
e

r
s
te

p

L
o

re
n

z

10-11

Figure 5.5: (Left) Infinity norm of the defect’s Taylor remainder bound at each order.
(Right) Upper bound for the supremum norm of the defect for Lorenz at each order.

10 11 12 13 14 15 16 17 18 19 20

Order

0

1

2

3

4

D
e

fe
c
t

re
m

a
in

d
e

r
b

o
u

n
d

 p
e

r
s
te

p

P
re

d
a

to
r-

P
re

y

10-11

10 11 12 13 14 15 16 17 18 19 20

Order

0

2

4

6

8

10
D

e
fe

c
t

u
p

p
e

r
b

o
u

n
d

 p
e

r
s
te

p

P
re

d
a

to
r-

P
re

y

10-11

Figure 5.6: (Left) Infinity norm of the defect’s Taylor remainder bound at each order.
(Right) Upper bound for the supremum norm of the defect for Predator-Prey at each
order.

5.5 Initial value problems solved

We demonstrate that defect elementary validated control ODETS can solve autonomous

and non-autonomous ODE-IVP. The order is always set to 14, and the tolerance is

always TOL = 10−10.

5.5. INITIAL VALUE PROBLEMS SOLVED 111

5.5.1 Three DETEST examples

We choose three examples from Enright and Pryce [37]: non-stiff C5 (five outer

planets and the sun), non-stiff D1 (orbit equations), and stiff D3 (Nonlinear with real

eigenvalues).

Five outer planets and the sun: The five outer planets and the sun example

is fully defined in [37, non-stiff C5]. Runtime statistics: 2.227 recommended initial

stepsize, 2.227 accepted initial stepsize, 403 accepted steps, and 80 rejected steps.

Enright and Pryce orbit: The Enright and Pryce orbit example is fully defined

in [37, non-stiff D1]. Runtime statistics: 3.613× 10−1 recommended initial stepsize,

3.613× 10−1 accepted initial stepsize, 48 accepted steps, and 3 rejected steps.

Nonlinear example with real eigenvalues: This nonlinear example with real

eigenvalues example is fully defined in [37, Stiff D3]. Runtime statistics: 9.232× 10−6

recommended initial stepsize, 4.397× 10−6 accepted initial stepsize, 898 accepted

steps, and 44 rejected steps.

5.5.2 Restricted two-body model

Ascher and Petzold [2, Problem 4.12] exhibit this classical restricted two-body model

from astronomy to motivate stepsize control. It is known to give stepsize controllers

difficulty.

Consider two bodies of masses µ1 = 0.012277471 and µ2 = 1−µ1 in planar motion,

and a third body of negligible mass moving in the same plane. The classical physics

112 CHAPTER 5. NUMERICAL RESULTS AND DISCUSSIONS

model for this situation is the second order system

x′′1 = x1 + 2 x′2 − µ2

(
x1+µ1
d1(x1,x2

)
−µ1

(
x1−µ2
d2(x1,x2)

)
,

x′′2 = x2 − 2 x′1 − µ2

(
x2

d1(x1,x2)

)
−µ1

(
x2

d2(x1,x2)

)
,

(u, v) ∈ R2 7→ d1(u, v)
def
=
((
u+ µ1

)2
+
(
v
)2)3/2

,

(u, v) ∈ R2 7→ d2(u, v)
def
=
((
u− µ2

)2
+
(
v
)2)3/2

,

x1(0) = 0.994, x′1(0) = 0,

x2(0) = 0, x′2(0) = −2.00158510637908252240537862224,

t ∈ [0, 17.1].

(5.3)

The mapping d1 is mathematically zero at (−µ1, 0), and d2 is mathematically zero at

(µ2, 0) which can result in numerical difficulties as the trajectory passes near these

singular points.

Runtime statistics: 7.420× 10−4 recommended initial stepsize, 4.538× 10−4 accepted

initial stepsize, 331 accepted steps, and 23 rejected steps.

5.5.3 Forced Brusselator

Chapter 4 of Bendtsen and Stauning [6] discuss the application of TADIFF to ODE

initial value problems, and their example is the forced Brusselator. The framework

to construct a Taylor approximate solution is presented, and it would be a minor

achievement to implement an ODE solver with constant stepsize. However adaptive

and rigorous stepsize control which is the topic of this thesis is not discussed.

Define the mapping

(u, v) ∈ R2 7→ f(u, v) = u

(
6

5
− u v

)
∈ R.

5.5. INITIAL VALUE PROBLEMS SOLVED 113

The forced Brusselator is the ODE-IVP

x′1 = 2
5
− x1 − f(x1, x2) + 0.03 cos

(
π
4
t
)
, x1(0) = 0.38,

x′2 = f(x1, x2), x2(0) = 3.3,

t ∈ [0, 100].

(5.4)

Runtime statistics: 9.648× 10−1 recommended initial stepsize, 9.648× 10−1 accepted

initial stepsize, 136 accepted steps, and 17 rejected steps.

5.5.4 Discussion

For each example, we set ODETS order parameter to 14 and tolerance TOL = 10−10.

The three DETEST examples and the restricted two-body model are autonomous. The

Forced Brusselator is non-autonomous.

We applied our rigorous defect control solver – defect elementary validated control

ODETS – to the five examples in this section. In each example, ODETS computed a

continuously differentiable, global numerical approximate solution u which satisfies

exactly the perturbed reference problem

u′
(
t
)
= f

(
t, u
(
t
))

+∆u
(
t
)
, u

(
t0
)
= x0 + ∆u

(
t0
)
, ‖∆u‖[t0,tend],∞ ≤ TOL.

We confirmed the statement ‖∆u‖[t0,tend],∞ ≤ TOL rigorously held, the continuous

differentiability of u, and the continuity of the defect in our output.

Stetter’s initial stepsize recommendation (4.6) was accepted in 3 of the 5 problems.

It failed to produce an initial stepsize satisfying ‖∆u
(
t0
)
‖∞ ≤ TOL for the stiff D3

and restricted two-body model examples, but the first follow up stepsize from the

114 CHAPTER 5. NUMERICAL RESULTS AND DISCUSSIONS

elementary controller succeeded. While the more complicated initial stepsize selector

of Gladwell, Shampine, and Brankin [39] is available, it was not required for our test

examples.

Chapter 6

Conclusions and future work

In conclusion, this thesis automated rigorous defect control for explicit, first-order,

nonlinear ODE-IVP with a bounded, Lipschitz continuous tangent vector field. Indeed,

Lipschitz continuity holds automatically for the Taylor series method, because it follows

from the mean-value theorem, whenever the vector field is continuously differentiable.

The vector field must be at least continuously differentiable for the Taylor series

method to be applicable. Rigorous defect control is a local three phase process.

By assumption, the local solution can be continued to the interval specified by the

reference problem.

6.1 Conclusions

We described a complete software implementation of the Corless and Corliss algorithm

based on the Taylor series method and extensively tested our software. This thesis

project, proposed as an unsolved problem in the PhD thesis [73], concerned the

implementation of this algorithm. Our choice to represent the defect as a Taylor

115

116 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

model enabled us to repurpose basic time-stepping software to defect control.

This thesis connected defect control to residual-based backward error analysis and

distinguished residual-based backward error from backward error. Residual-based

backward error analysis is a remarkably straightforward procedure and a powerful

point of view. In residual-based backward error analysis, the defining equation is

altered by the known residual only, and the backward error is a residual. Existence

and uniqueness of solution to ODE-IVP enables us to conclude that the backward error

is the defect. This background material from Chapter 2 is the theoretical foundation

of this thesis.

Defect control controls the quality of the initial value problem itself. In geometric

terms, defect control controls the tangency of the approximate solution to the tangent

vector field at the approximate solution. The norm of the defect is controlled to be

within a user specified tolerance. The user must validate that the perturbed reference

problem is a nearby problem.

Chapter 2 discussed two approaches to defect control, asymptotic defect control

in Section 2.5 and guaranteed defect control in Section 2.6. The discussion provides

sufficient detail on asymptotic defect control for the reader to understand two justi-

fications for the method which lead Enright to two implementations of his method.

Both implementations by Enright are not rigorous in our sense. The mathematical

foundation for Enright’s approach tightly integrates the approach with the particulars

of the underlying engineered problem, in this case the Runge–Kutta method. The

asymptotic nature derives from approximation theory and requires the Lipschitz

condition from the existence and uniqueness theorem.

We summarize guaranteed defect control. Given a user supplied tolerance TOL,

6.1. CONCLUSIONS 117

an ODE-IVP engineered problem computes a local approximate solution of the local

reference problem, and a global numerical approximate solution u is constructed which

satisfies exactly the perturbed reference problem

u′
(
t
)
= f

(
t, u
(
t
))

+∆u
(
t
)
, u

(
t0
)
= x0 + ∆u

(
t0
)
, ‖∆u‖[t0,tend],∞ ≤ TOL.

We know to mathematical certainty that u is the exact solution to the perturbed

reference problem. This implies that the defect subsumes all errors. In rigorous defect

control, we bound the defect so that the mathematical statement

‖∆u‖[t0,tend],∞ ≤ TOL

is not an approximation, it is true to mathematical certainty.

The tolerance parameter controls the magnitude of permissible defects in the model.

We control the infinity norm of the defect by controlling the stepsize. Rigorous defect

control is automated backward error analysis and a new stepsize control for ODE-IVP.

Rigorous defect control computes an outer enclosure of the defect, and it cannot be

fooled.

The SOLLYA authors developed their package for validated computing applications.

Our software brings the SOLLYA package to software programs through a C++ API.

The SOLLYA authors intended SOLLYA to be accessible from their command line

interface.

SOLLYA applies interval arithmetic and Taylor models to compute a tight rigorous

bound on the supremum norm of the defect. In particular, SOLLYA does interval

arithmetic and computes Taylor models. Taylor models complicate the software

118 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

solution, but they are known to compute tighter bounds than interval evaluation

without them. We tested interval evaluation with Taylor models and the supremum

norm method in SOLLYA for bounding the supremum norm of the defect. Both

approaches require a Taylor model representation of the defect. The SOLLYA supremum

norm reduces overestimation. As a result, larger stepsizes are possible.

This thesis project developed an API through the C++ class Tmodel to conveniently

access SOLLYA functionality. Write a C++ generic template for any k + 1 times

differential elementary function t ∈ R 7→ f
(
t
)
∈ R. Class Tmodel will output a

degree k Taylor model representation of f . We hope this class will be useful to the

computational community.

We introduced several stepsize controllers in Section 2.7. These controllers are

designed for an asymptotic error model, or they are designed to estimate the radius of

convergence of a series. Not only do Taylor models enable tight bounds in rigorous

defect control, they enable us to apply existing time-stepping software. The degree of

the Taylor model replaces the order parameter in basic time-stepping software.

The complexity of order-k accurate solutions computed with Taylor series using

automatic differentiation is O
(
k2
)
. Thus the cost of obtaining the Taylor series at one

step is ck2 [19]. Similar reasoning implies the cost of obtaining the Taylor models on

each step is ck2. The constant c depends on the number and type of operations in

the vector field. Rigorous defect control is roughly twice the cost of the Taylor series

method itself.

We demonstrate through computational experiments that rigorous defect control is

possible, and defect control is an effective error control strategy. We demonstrate that

ODETS can solve autonomous and non-autonomous ODE-IVP known to give adaptive

6.2. FUTURE WORK 119

time-stepping strategies difficulty. While we hope the time-stepping software will be

improved in the future, the elementary controller performs satisfactorily.

6.2 Future work

We select future research directions related to defect control in this section. Topics

are motivated by open problems discovered in the literature during the preparation of

this thesis, by challenges faced in computational experiments, and by comments from

members of the thesis committee for this thesis.

Improve time-stepping performance: In the right box-plots of Figure 5.5 and

Figure 5.6, we observe a large number of outliers from the 25/75 percentiles in defect

upper bound per step data, and the defect median upper bound per step is roughly

TOL/10. Loosely speaking, we ideally want the median upper bound per step to be

near TOL, the 25/75 percentiles close to the median upper bound, and the outliers to

cluster close to the median upper bound per step.

Our ODETS software implements the elementary stepsize controller [91] to predict

and control the defect upper bound δmax to be less than TOL. A beneficial contribution

to ODETS rigorous defect control will develop a time-stepping algorithm which meets

the ideal in the previous paragraph and reduces the number of rejected steps.

Software module: Rigorous defect control would benefit from a software module

that easily inserts into applications. Given an approximate solution on a local step,

this software module evaluates outer and inner enclosures for the supremum norm of

the defect at the approximate solution.

120 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

An immediate application is to validate the error estimates used for asymptotic

defect control in existing continuous output methods. This software module will help

in the validation phase of developing new continuous output methods as described in

Section 2.5. A validation tool is also useful in grid selection for ODE boundary value

problems [35, 88].

Maintaining invariants: We considered three orbit systems described by ODE-IVP

in this thesis: The five outer planets and the sun example, the Enright and Pryce

orbit example, and the Ascher-Petzold orbit example. These systems and other such

Hamiltonian systems conserve physical quantities through a system of equalities or

inequalities called invariants. For example, drift off the Poincare invariant is a concern

during the numerical integration of the solar system. Typical engineered problems will

not conserve invariants, and this can lead to solutions which are not even qualitatively

correct [86].

If one is interested in qualitative behaviour of a dynamical system, as opposed to

precise prediction in the future, is it more important to control the defect or to ensure

the invariants of the true system are preserved, as in symplectic integration algorithms

for Hamiltonian systems? For example, if one is integrating the solar system, then

drift of the Poincare invariants is a concern. Would preserving invariants help from

the point of view of controlling the global defect rigorously?

Software improvements: Let’s point out a few software improvements for our

implementation of ODETS. We mention that computing the defect (Phase II) in ODETS

would support massive parallelization.

6.2. FUTURE WORK 121

ODETS currently analyzes the absolute defect. Some examples can be automatically

scaled and, in these cases, using the relative defect (2.14) instead of the absolute defect

will help. ODETS would benefit from a user option for absolute/relative defect.

SOLLYA requires the user to call a bookkeeping method for initialization. This

should be hidden from users. ODETS can be improved by hiding the initialization and

destruction method calls required for SOLLYA.

MATLAB implements event location for its ODE suite. ODETS should accomodate

event location. Rootfinding in event location requires ODETS to support a sequence of

tend’s that are not monitone. If the tend sequence is in the current integration step,

then the Hermite approximate solution can be queried to find the event. Otherwise,

the integration must change direction. Under the current implementation of ODETS,

the Taylor series at tn−1 is re-used, and a stepsize is computed to tn in the reverse

direction. Steps are taken in this manner until the event is located.

MATLAB implements output by storing the approximating polynomial solution.

The Hermite or Taylor approximate solution can be used to implement continuous

output, and ODETS should replace solout with functionality to support this feature.

122 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] Adsic, G.: Specification by example: How successful teams deliver the right

software. Manning Publications Co (2011)

[2] Ascher, U.M., Petzold, L.R.: Computer methods for ordinary differential equations

and differential-algebraic equations, vol. 61. SIAM (1998)

[3] Bauer, F.L.: Computational graphs and rounding error. SIAM Journal on

Numerical Analysis 11(1), 87–96 (1974)

[4] Baydin, A.G., Pearlmutter, B.A., Radul, A.A., Siskind, J.M.: Automatic dif-

ferentiation in machine learning: A survey. arXiv preprint arXiv:1502.05767

(2015)

[5] Bendsten, C., Stauning, O.: FADBAD, a flexible C++ package for automatic

differentiation using the forward and backward methods. Tech. Rep. 1996-x5-

94, Department of Mathematical Modelling, Technical University of Denmark,

DK-2800, Lyngby, Denmark (1996)

[6] Bendsten, C., Stauning, O.: TADIFF, a flexible C++ package for automatic

differentiation using Taylor series. Tech. Rep. 1997-x5-94, Department of Mathe-

matical Modelling, Technical University of Denmark, DK-2800, Lyngby, Denmark

123

124 BIBLIOGRAPHY

(1997)

[7] Bergsma, M.C.W.: Application of Taylor Series integration to reentry problems.

MSc, Delft University of Technology, Delft, Netherlands (2015)

[8] Berz, M., Makino, K.: Verified integration of ODEs and flows using differential-

algebraic methods on high-order Taylor models. Reliable Computing 4(4), 361–369

(1998)

[9] Berz, M., Makino, K.: Suppression of the wrapping effect by Taylor model-based

verified integrators: Long-term stabilization by shrink wrapping. International

Journal of Differential Equations and Applications pp. 1–29 (2006)

[10] Chang, Y., Corliss, G.: Ratio-like and recurrence relation tests for convergence of

series. IMA Journal of Applied Mathematics 25(4), 349–359 (1980)

[11] Chang, Y., Corliss, G.: ATOMFT: Solving ODEs and DAEs using Taylor series.

Computers & Mathematics with Applications 28(10), 209–233 (1994)

[12] Chevillard, S., Joldes, M., Lauter, C.: Sollya: An environment for the development

of numerical codes. In: International Congress on Mathematical Software, pp.

28–31. Springer (2010)

[13] Chevillard, S., Lauter, C., Joldes, M.: Users manual for the Sollya tool.

http://www.imm.dtu.dk/fadbad.html (2008).

Accessed: 2016-08-01

[14] Christianson, B.: Reverse accumulation and accurate rounding error estimates for

Taylor series coefficient. Optimization Methods and Software 1(1), 81–94 (1992)

http://www.imm.dtu.dk/fadbad.html

BIBLIOGRAPHY 125

[15] Corless, R.M.: Defect-controlled numerical methods and shadowing for chaotic

differential equations. Physica D: Nonlinear Phenomena 60(1), 323–334 (1992)

[16] Corless, R.M.: What good are numerical simulations of chaotic dynamical systems?

Computers & Mathematics with Applications 28(10-12), 107–121 (1994)

[17] Corless, R.M., Corliss, G.F.: Rationale for guaranteed ODE defect control. In:

L. Atanassova, J. Herzberger (eds.) Computer Arithmetic and Enclosure Methods,

pp. 3–12. North-Holland, Amsterdam (1992)

[18] Corless, R.M., Fillion, N.: A graduate introduction to numerical methods from

the viewpoint of backward error analysis. Springer-Verlag, New York (2013)

[19] Corless, R.M., Ilie, S.: Polynomial cost for solving IVP for high-index DAE. BIT

Numerical Mathematics 48(1), 29–49 (2008)

[20] Corliss, G.F.: Guaranteed error bounds for ordinary differential equations. Theory

and Numerics of Ordinary and Partial Differential Equations. Clarendon Press,

Oxford (1995)

[21] Corliss, G.F.: Where is validated ODE solving going? Mathematical Research

89, 48–57 (1996)

[22] Deuflhard, P.: A stepsize control for continuation methods and its special appli-

cation to multiple shooting techniques. Numerische Mathematik 33(2), 115–146

(1979)

[23] Enright, W.H.: Analysis of error control strategies for continuous Runge-Kutta

methods. SIAM Journal on Numerical Analysis 26(3), 588–599 (1989)

126 BIBLIOGRAPHY

[24] Enright, W.H.: A new error-control for initial value solvers. Applied Mathematics

and Computation 31, 288–301 (1989)

[25] Enright, W.H.: The relative efficiency of alternative defect control schemes

for high-order continuous Runge-Kutta formulas. SIAM Journal on Numerical

Analysis 30(5), 1419–1445 (1993)

[26] Enright, W.H.: Continuous numerical methods for ODEs with defect control.

Journal of Computational and Applied Mathematics 125(1), 159–170 (2000)

[27] Enright, W.H.: Software for ordinary and delay differential equations: Accurate

discrete approximate solutions are not enough. Applied Numerical Mathematics

56(3), 459–471 (2006)

[28] Enright, W.H.: Verifying approximate solutions to differential equations. Journal

of Computational and Applied Mathematics 185(2), 203–211 (2006)

[29] Enright, W.H.: Reducing the uncertainty when approximating the solution of

ODEs. In: Uncertainty Quantification in Scientific Computing, pp. 280–293.

Springer (2012)

[30] Enright, W.H., Hayashi, H.: A delay differential equation solver based on a

continuous Runge–Kutta method with defect control. Numerical Algorithms

16(3-4), 349–364 (1997)

[31] Enright, W.H., Hayashi, H.: The evaluation of numerical software for delay

differential equations. In: Quality of Numerical Software, pp. 179–193. Springer

(1997)

BIBLIOGRAPHY 127

[32] Enright, W.H., Hayes, W.B.: Robust and reliable defect control for Runge-Kutta

methods. ACM Transactions on Mathematical Software (TOMS) 33(1), 1 (2007)

[33] Enright, W.H., Higham, D.J.: Parallel defect control. BIT Numerical Mathematics

31(4), 647–663 (1991)

[34] Enright, W.H., Jackson, K., Norsett, S.P., Thomsen, P.G.: Interpolants for

Runge-Kutta formulas. ACM Transactions on Mathematical Software (TOMS)

12(3), 193–218 (1986)

[35] Enright, W.H., Muir, P.: Runge–Kutta software with defect control for boundary

value ODEs. SIAM Journal on Scientific Computing 17(2), 479–497 (1996)

[36] Enright, W.H., Nedialkov, N.S.: Private communication (2017)

[37] Enright, W.H., Pryce, J.D.: Two FORTRAN packages for assessing initial value

methods. ACM Transactions on Mathematical Software 13(1), 1–27 (1987)

[38] Enright, W.H., Yan, L.: The reliability/cost trade-off for a class of ODE solvers.

Numerical Algorithms 53(2-3), 239–260 (2010)

[39] Gladwell, I., Shampine, L., Brankin, R.: Automatic selection of the initial step

size for an ODE solver. Journal of Computational and Applied Mathematics

18(2), 175–192 (1987)

[40] Gladwell, I., Shampine, L.F., Baca, L., Brankin, R.: Practical aspects of in-

terpolation in Runge-Kutta codes. SIAM Journal on Scientific and Statistical

Computing 8(3), 322–341 (1987)

128 BIBLIOGRAPHY

[41] Google: Google Test.

https://github.com/google/googletest.

Accessed: 2015-11-01

[42] Gustafsson, K.: Control theoretic techniques for stepsize selection in explicit

Runge-Kutta methods. ACM Transactions on Mathematical Software (TOMS)

17(4), 533–554 (1991)

[43] Gustafsson, K.: Control-theoretic techniques for stepsize selection in implicit

Runge-Kutta methods. ACM Transactions on Mathematical Software (TOMS)

20(4), 496–517 (1994)

[44] Gustafsson, K., Lundh, M., Söderlind, G.: A PI stepsize control for the numerical

solution of ordinary differential equations. BIT Numerical Mathematics 28(2),

270–287 (1988)

[45] Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations

I. Nonstiff Problems, Springer Series in Computational Mathematics, vol. 8.

Springer-Verlag, New York (1987)

[46] Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and

Differential-Algebraic Problems, Springer Series in Computational Mathematics,

vol. 14. Springer-Verlag, Berlin (1991)

[47] Hall, G.: Equilibrium states of Runge Kutta schemes. ACM Transactions on

Mathematical Software (TOMS) 11(3), 289–301 (1985)

[48] Hall, G.: Equilibrium states of Runge-Kutta schemes: Part II. ACM Transactions

on Mathematical Software (TOMS) 12(3), 183–192 (1986)

https://github.com/google/googletest

BIBLIOGRAPHY 129

[49] Hall, G., Higham, D.J.: Analysis of stepsize selection schemes for Runge-Kutta

codes. IMA Journal of Numerical Analysis 8(3), 305–310 (1988)

[50] Hanson, P., Enright, W.H.: Controlling the defect in existing variable-order

Adams codes for initial-value problems. ACM Transactions on Mathematical

Software (TOMS) 9(1), 71–97 (1983)

[51] Hayashi, H.: Numerical solution of retarded and neutral delay differential equa-

tions using continuous Runge-Kutta methods. PhD, University of Toronto,

Toronto, Ontario (1996)

[52] Hayes, W.B., Jackson, K.R.: A fast shadowing algorithm for high-dimensional

ODE systems. SIAM Journal on Scientific Computing 29(4), 1738–1758 (2007)

[53] Higham, D.J.: Defect estimation in Adams PECE codes. SIAM Journal on

Scientific and Statistical Computing 10(5), 964–976 (1989)

[54] Higham, D.J.: Robust defect control with Runge-Kutta schemes. SIAM Journal

on Numerical Analysis 26(5), 1175–1183 (1989)

[55] Higham, D.J.: Runge–Kutta defect control using Hermite–Birkhoff interpolation.

SIAM Journal on Scientific and Statistical Computing 12(5), 991–999 (1991)

[56] Higham, D.J., Hall, G.: Embedded Runge-Kutta formulae with stable equilibrium

states. Journal of Computational and Applied Mathematics 29(1), 25–33 (1990)

[57] Higham, N.J.: Accuracy and stability of numerical algorithms, 2nd edn. Society

for Industrial and Applied Mathematics (2002)

130 BIBLIOGRAPHY

[58] Hoefkens, J.: Rigorous numerical analysis with high-order Taylor models. Ph.D.

thesis, Department of Mathematics and Department of Physics and Astronomy,

Michigan State University, East Lansing, MI 48824 (2001)

[59] Hull, T.E.: The effectiveness of numerical methods for ordinary differential

equations. In: J.N. Ortega, W.C. Rheinboldt (eds.) Studies in Numerical Analysis

2, pp. 114–121. Society for Industrial and Applied Mathematics (1970)

[60] Hull, T.E., Enright, W., Jackson, K.: User’s guide for DVERK: A subroutine for

solving non-stiff ODE’s. University of Toronto, Department of Computer Science

(1976)

[61] Joldes, M.M.: Rigorous polynomial approximations and applications. Ph.D.

thesis, Ecole normale supérieure de lyon-ENS LYON (2011)

[62] Kearfott, R.B., Nakao, M.T., Neumaier, A., Rump, S.M., Shary, S.P., Van Hen-

tenryck, P.: Standardized notation in interval analysis. In: Proc. XIII Baikal

International School-seminar Optimization Methods and their Applications, vol. 4,

pp. 106–113 (2005).

Accessed: 2016-08-01

[63] Kierzenka, J., Shampine, L.F.: A BVP solver based on residual control and

the Matlab PSE. ACM Transactions on Mathematical Software 27(3), 299–316

(2001)

[64] Langr, J.: Modern C++ programming with test-driven development. The Prag-

matic Programmers, LLC (2013)

[65] Langr, J.: Private communication via direct message to @jlangr on twitter (2017)

BIBLIOGRAPHY 131

[66] MacDonald, C.: A new approach for DAEs. PhD, University of Toronto, Toronto,

Ontario (1999)

[67] Makino, K.: Rigorous analysis of nonlinear motion in particle accelerators. Ph.D.

thesis, Michigan State University, East Lansing, MI, USA (1998)

[68] Makino, K., Berz, M.: Taylor models and other validated functional inclusion

methods. International Journal of Pure and Applied Mathematics 4(4), 379–456

(2003)

[69] Makino, K., Berz, M.: Suppression of the wrapping effect by Taylor model-based

validated integrators. Tech. Rep. MSU HEP 40910, Department of Physics and

Astronomy, Michigan State University, East Lansing, MI 48824, USA (2004)

[70] Makino, K., Berz, M.: Suppression of the wrapping effect by Taylor model-based

verified integrators: Long-term stabilization by preconditioning. International

Journal of Differential Equations and Applications 10(4) (2005)

[71] Makino, K., Berz, M.: Suppression of the wrapping effect by Taylor model-based

verified integrators: The single step. International Journal of Pure and Applied

Mathematics 36(2), 175–196 (2007)

[72] Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to interval analysis. SIAM

(2009)

[73] Nedialkov, N.S.: Computing rigorous bounds on the solution of an initial value

problem for an ordinary differential equation. Ph.D. thesis, Department of

Computer Science, University of Toronto, Toronto, Canada (1999)

[74] Nedialkov, N.S.: Private communication (2017)

132 BIBLIOGRAPHY

[75] Nedialkov, N.S., Kreinovich, V., Starks, S.A.: Interval arithmetic, affine arith-

metic, Taylor series methods: Why, what next? Numerical Algorithms 37(1-4),

325–336 (2004)

[76] Nedialkov, N.S., Pryce, J.D.: Solving differential-algebraic equations by Taylor

series (I): Computing Taylor coefficients. BIT Numerical Mathematics 45(3),

561–591 (2005)

[77] Nedialkov, N.S., Pryce, J.D.: Solving differential-algebraic equations by Taylor

series (II): Computing the System Jacobian. BIT Numerical Mathematics 47(1),

121–135 (2007)

[78] Nedialkov, N.S., Pryce, J.D.: Solving differential algebraic equations by Taylor

series (III): The DAETS code. Journal of Numerical Analysis, Industrial and

Applied Mathematics 3(1–2), 61–80 (2008)

[79] Neher, M., Jackson, K.R., Nedialkov, N.S.: On Taylor model based integration

of ODEs. SIAM Journal on Numerical Analysis 45(1), 236–262 (2007)

[80] Neumaier, A.: Taylor forms use and limits. Reliable Computing 9(1), 43–79

(2003)

[81] Nguyen, H.: Interpolation and error control schemes for algebraic differential

equations using continuous implicit Runge-Kutta methods. PhD, University of

Toronto, Toronto, Ontario (1995)

[82] Rall, L.B.: Mean value and Taylor forms in interval analysis. SIAM Journal on

Mathematical Analysis 14(2), 223–238 (1983)

BIBLIOGRAPHY 133

[83] Rump, S.M.: INTLAB - INTerval LABoratory. In: T. Csendes (ed.) Developments

in Reliable Computing, pp. 77–104. Kluwer Academic Publishers, Dordrecht

(1999)

[84] Shakourifar, M., Enright, W.H.: Reliable approximate solution of systems of

Volterra integro-differential equations with time-dependent delays. SIAM Journal

on Scientific Computing 33(3), 1134–1158 (2011)

[85] Shampine, L.F.: Interpolation for Runge-Kutta methods. SIAM Journal on

Numerical Analysis 22(5), 1014–1027 (1985)

[86] Shampine, L.F.: Conservation laws and the numerical solution of ODEs. Com-

puters & Mathematics with Applications 12(5-6), 1287–1296 (1986)

[87] Shampine, L.F.: Solving ODEs and DDEs with residual control. Applied Numer-

ical Mathematics 52(1), 113–127 (2005)

[88] Shampine, L.F., Muir, P.H.: Estimating conditioning of BVPs for ODEs. Mathe-

matical and Computer Modelling 40(11-12), 1309–1321 (2004)

[89] Söderlind, G.: Automatic control and adaptive time-stepping. Numerical Algo-

rithms 31(1-4), 281–310 (2002)

[90] Söderlind, G.: Digital filters in adaptive time-stepping. ACM Transactions on

Mathematical Software (TOMS) 29(1), 1–26 (2003)

[91] Söderlind, G., Wang, L.: Adaptive time-stepping and computational stability.

Journal of Computational and Applied Mathematics 185(2), 225–243 (2006)

134 BIBLIOGRAPHY

[92] Stauning, O., Bendtsen, C.: FADBAD++.

http://www.imm.dtu.dk/fadbad.html (2003).

Accessed: 2016-08-01

[93] Stetter, H.J.: Considerations concerning a theory for ODE-solvers. In: R. Bulirsch,

R. Grigorieff, J. Schroder (eds.) Numerical treatment of differential equations,

Lecture Notes in Mathematics, vol. 631, pp. 188–200. Springer (1978)

[94] Stetter, H.J.: Interpolation and error estimation in Adams PC-codes. SIAM

Journal on Numerical Analysis 16(2), 311–323 (1979)

[95] de Swart, J.J., Söderlind, G.: On the construction of error estimators for implicit

Runge-Kutta methods. Journal of Computational and Applied Mathematics

86(2), 347–358 (1997)

[96] Watts, H.A.: Starting step size for an ODE solver. Journal of Computational

and Applied Mathematics 9(2), 177–191 (1983)

[97] Zivari-Piran, H., Enright, W.H.: An efficient unified approach for the numerical

solution of delay differential equations. Numerical Algorithms 53(2), 397–417

(2010)

http://www.imm.dtu.dk/fadbad.html

	Abstract
	Acknowledgements
	Notation and abbreviations
	Introduction
	Background
	The mathematical ODE-IVP problem
	Residual-based backward error analysis
	Defect control
	Backward error analysis
	Asymptotic defect control
	The asymptotic defect control problem
	Discrete Runge–Kutta methods
	Continuous Runge–Kutta methods
	Constructing continuous Runge–Kutta methods I
	Constructing continuous Runge–Kutta methods II

	Guaranteed defect control
	Stepsize control
	Global error and condition

	Taylor models
	Interval arithmetic
	Taylor models
	Computing the supremum norm
	Class Tmodel

	Automating rigorous defect control
	Input and driver
	Phase I: Compute an approximate solution
	Phase II: Bound the defect
	Phase III: Accept/reject step
	Initial stepsize
	ODETS software
	Build requirements
	Requirements and Specification by Example
	Algorithm overview
	The class structure of ODETS

	Numerical results and discussions
	Test cases
	Adaptive time-stepping study
	Performance study
	Defect width study
	Initial value problems solved
	Three DETEST examples
	Restricted two-body model
	Forced Brusselator
	Discussion

	Conclusions and future work
	Conclusions
	Future work

