
CONTEXT-FREE CODON ALIGNMENT

CONTEXT-FREE CODON ALIGNMENT

By

BIN WU, B.SC.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Master of Science

McMaster University

© Copyright by Bin Wu, May 1998

MASTER OF SCIENCE (1998)

(Computer Science)

MCMASTER UNIVERSITY

Hamilton, Ontario

TITLE: Context-free Codon Alignment

AUTHOR: Bin Wu

B.Sc. (Northwestern University, China)

SUPERVISOR: Dr. Tao Jiang

NUMBER OF PAGES: x, 93

11

Abstract

We study an alignment model for coding DNA sequences recently pro­

posed by J. Hein in (4] that takes into account both DNA and protein in­

formation, and attempts to minimize the total amount of evolution at both

DNA and protein levels(4,5,6]. Although there are two quadratic algorithms

(i.e. Hua-Jiang algorithm(8] and PLH algorithm(9]) for Hein's model if the

gap penalty function is affine, both of them are impractical because of the

large constant factor embedded in the quadratic time complexity function.

We therefore consider a mild simplification named Context-free Codon Align­

ment and present a much more efficient algorithm for the simplified model.

The algorithms have been implemented and tested on both real and simulated

sequences, and it is found that they produce almost identical alignments in

most cases. Furthermore, we extend our model and design a heuristic algo­

rithm to handle frame-shift errors and overlapping frames.

iii

Acknowledgments

First, I would like to thank Dr. Tao Jiang, my supervisor, for granting

the opportunity, and for his invaluable supervision in guiding this work.

I would also like to thank the following people for their help:

• Dr. William F. Smyth and Dr. Sanzheng Qiao for their agreeing to

read this thesis.

• Dr. Xian Zhang and Miss Yufang Hua for their helpful discussions.

• Mr. Dan Trottier for his practical advice and technical assistance in

the laboratory.

Finally, I would like to thank my parents and family for their love and

everlasting support.

IV

Contents

Abstract

Acknowledgments

List of Figures

List of Tables

1 An Introduction to Codon Based Alignment

1.1 Overview

iii

iv

vii

IX

1

1

1.2 Codon alignment and Rein's model of genomic sequence com-

parison 4

1.3 Our contribution 11

2 Two Quadratic Algorithms for Hein~s Model 13

2.1 Hua-Jiang algorithm 13

2.2 PLH algorithm . 19

3 Context-free Codon Alignment 24

v

3.1 A simplified model 24

3.2 A faster algorithm 25

3.3 The comparison of CAT and Context-free CAT 45

4 An Extended Model and Algorithm 50

4.1 The frame-shift errors and overlapping frames problems . 51

4.2 An extended algorithm to handle frame-shift errors 53

4.3 A heuristic method to handle overlapping frames 63

4.4 The pseudo code ••• 0 • 0 ••• 0 0 66

4.5 Time and space· complexity analysis . 67

5 Implementation and Test Results 70

5.1 The environment and programming language used in develop-

-·

ing DPA 71

5.2 Key modules of DPA 71

5.2.1 Input module 71

5.2.2 Split module . 72

5.2.3 Cost module . 73

5.2.4 Align module 75

5.2.5 Output module 75

5.3 Time and space complexity analysis of DPA 75

5.4 Tests concerning frame-shift errors 78

Vl

5.5 Tests concerning overlapping frames 81

6 Conclusions and Future Work

Bibliography

vii

89

91

List of Figures

1.1 An alignment and its corresponding path representation. 5

1.2 Different orders yield different costs. 7

1.3 The 11 types of codon alignment. .. 9

1.4 Decomposing an alignment into codon alignments .. 10

2.1 An illustration for the recurrence equation for type 8. 18

2.2 Four stages in the evolution of type 6 21

3.1 Four events of type 4 codon alignments. 28

3.2 Dealing with trailing codon alignments of type 4 (stage 1). 30

3.3 Dealing with trailing codon alignments of type 4 (stage 2). 32

3.4 Four events of type 6 codon alignments. 35

3.5 Dealing with trailing codon alignments of type 6 (stage 1). 36

3.6 Dealing with trailing codon alignments of type 6 (stage 2). 38

3.7 Dealing with trailing codon alignments of type 8. 39

3.8 Dealing with trailing codon alignments of type 10 .. 43

viii

3.9 The speed-up of Context-free CAT over CAT. 49

4.1 Three reading frames from 5' to 3'. 51

4.2 Two overlapped genes. 52

4.3 Five possible paths for type 4. 58

4.4 Five possible paths for type 6. 60

5.1 The time complex~ty analysis of DPA. 76

lX

List of Tables

1.1 Codons map to amino acids 3

3.2 The discrepancy between alignments produced by the two pro-

grams 46

3.3 The average speeds (in seconds) of CAT and Context-free CAT. 48

5.1 Time and space of DPA

5.2 Test results concerning frame-shift errors (1)

76

78

5.3 Test results concerning frame-shift errors (2) 80

X

Chapter 1

An Introduction to Codon

Based Alignment

We first give an overview of the problem of comparing genomic sequences

in Section 1.1. The formal definition of codon based alignment is presented

in Section 1.2. Finally, we preview our main results in Section 1.3.

1.1 Overview

Genomic sequence alignment is a model of comparing DNA or protein se­

quences under the assumptions that (i) insertion, deletion, and mutation are

the elementary evolutionary events and (ii) evolution usually takes the most

economic course. Classical alignment algorithms either align DNA sequences

1

CHAPTER 1. AN INTRODUCTION TO CODON BASED ALIGNMENT 2

based on DNA evolution or align protein sequences based on protein evolu-

tion. It is well known that protein evolves slower than its coding DNA, and

alignments of protein are usually more reliable than that of the underlying

DNA.

We are interested in the alignment of coding DNA sequences. It is clearly

desirable that an alignment of coding DNA sequences incorporate the infor-

mation from their protein sequences. A straightforward method is to align

the protein sequences first and then back-translate the alignment into DNA.

The method has several shortfalls including (i) it forces insertions and dele-

tions (abbreviated as indels) to occur at codon 1 boundaries and (ii) it ignores

homologies at the DNA level.

In 1994, Jotun Rein proposed a new model of DNA sequence alignment

where evolutionary changes at both the DNA and protein levels are dealt

with simultaneously[4]. The basic idea of Rein's model is that in computing

an alignment, we consider each nucleotide mutation and indel, and penalize

it appropriately taking into account any amino acid change it might induce.

The model allows indels to occur within codons and assumes that each indel

involves a multiple of three nucleotides so that the reading frame 2 never

changes during the evolution. A gap (i.e. a block of consecutive spaces;

1 A codon is a triple of nucleotides which encodes an amino acid (see Table 1.1).
2Roughly speaking, the reading frame in a coding DNA depicts where the codons begin.

CHAPTER 1. AN INTRODUCTION TO CODON BASED ALIGNMENT 3

I Amino Acids I Co dons

Ala GCT GCC GCA GCG
Arg CGTCGCCGACGGAGAAGG
Asn AAT AAC
Asp GAT GAC
Cys TGT TGC
Gln CAA CAG
Glu GAA GAG
Gly GGT GGC GGA GGG
His CAT CAC
Ile ATT ATC ATA
Leu TTA TTG CTT CTC CTA CTG
Lys AAA AAG
Met ATG
Phe TTT TTC
Pro CCT CCC CCA CCG
Ser AGT AGC TCT TCC TCA TCG
Thr ACT ACC ACA ACG
Trp TGG
Tyr TAT TAC
Val GTT GTC GTA GTG

Table 1.1: Codons map to amino acids

CHAPTER 1. AN INTRODUCTION TO CODON BASED ALIGNMENT 4

representing an indel) oflength i is penalized with a cost g(i), where g is any

positive function satisfying g(i) + g(j) 2: g(i + j). A dynamic programming

algorithm is demonstrated in [4] for computing optimal alignment in this

model that runs in O(m2n2) time, where m and n are the lengths of the two

DNA sequences aligned. The algorithm is too slow to be useful in practice

even for moderate m and n. It is left as an open question in [4] whether the

time complexity can be improved to O(mn) when the gap penalty function is

affine, i.e. g(i) = 9open +i* 9ext for some constants 9open and 9ext where 9open is

the cost of opening an indel and 9ext is the cost of extending an indel. Affine

functions are perhaps the most popular gap function among computational

biologists. A fast heuristic algorithm for the problem, assuming affine gaps,

is proposed in [5,6] which does not guarantee an optimal alignment.

1.2 Codon alignment and Rein's model of ge­

nomic sequence comparison

Let A = ala2a3···a3m-2a3m-la3m and B = blb2b3···b3n-2b3n-lb3n be two

coding DNA sequences consisting of m and n codons respectively. Each

sequence has a fixed reading frame starting at the first base. An alignment

of A and B is a correspondence between the bases in A and B, and postulates

a possible evolution from A and B in terms of single nucleotide mutations

CHAPTER 1. AN INTRODUCTION TO CODON BASED ALIGNMENT 5

G

T - T G T

TTGCTC T

T T G C T C

Figure 1.1: An alignment and its corresponding path representation.

and indels of blocks of nucleotides. An alignment can also be conveniently

expressed as a path in a grid graph. Figure 1.1 demonstrates an alignment

from TTGCTC to TTG and the corresponding path. It postulates that a

mutation from C to G and a deletion of TGC have happened in the evolution

from TTGCTC to TTG.

Since indels of length other than a multiple of three change the reading

fram.e and hence tlie entire protein, for simplicity, Rein assumes that all indels

have lengths divisible by three as in [4,5,6].

The cost of an alignment between A and B is decided by both the evo-

lutionary events of the nucleotides postulated by the alignment and the evo-

lutionary changes at the protein level. We will look at the three events

mutation, insertion and deletion separately. For each pair of nucleotides a

and b, let cd(a, b) denote the cost of substituting b for a, without worrying

about the effect of this change at the protein level. For each pair of codons

CHAPTER 1. AN INTRODUCTION TO CODON BASED ALIGNMENT 6

amino acid coded by f 1hh for the amino acid coded by e1e2e3. For any

integer i, functions gd(i) and gp(i) denote the costs of inserting (or delet­

ing) a block of i nucleotides and a block of i amino acids, respectively. For

convenience, let g(i) = 9d(3i) + gp(i).

• Mutation. The combined cost of a nucleotide mutation e1 -t fr in

codon e1e2e3 is

cd(e1, !I)+ cp(e1e2e3, Jre2e3).

The combined costs of mutations at the second or third positions of a

codon are defined in a similar way.

• Insertion. Consider the event of inserting 3i nucleotides / 1 .. .f3i in the

codon e1e2e3 . If the insertion happens to the immediate left of e1 or

the immediate right of e3 , its combined cost is simply g(i). Otherwise

suppose that the string fr ... /Ji is inserted between the nucleotides e1

and e2 • Then the combined cost of the insertion is

The case when the insertion happens between the nucleotides e2 and

e3 is handled similarly.

• Deletion. This is symmetric to insertion. Consider the event of delet­

ing 3i nucleotides from a sequence of i+ 1 co dons e1 e2e3 ... eJi+l e3i+2e3i+J.

CHAPTER 1. AN INTRODUCTION TO CODON BASED ALIGNMENT 7

Leu
ITG

Leu Leu

ITGCTG~ a-c

Phe
TIC insertion

(TGC)

Leu Leu
ITGCTC

Figure 1.2: Different orders yield different costs.

If the deletion happens at e1 or e4 , its combined cost is simply g(i).

Otherwise suppose that the string e2 ... e3i+l is deleted. Then the com-

bined cost of deletion is

The case when e3 .•. e3i+Z is deleted can be handled similarly.

Although an alignment of A and B postulates a set of evolutionary events

that transform A into B, it does not specify the order that the events should

take place. In fact, all permutations of the events are possible. However, dif-

ferent permutations may yield different overall combined costs. For example,

in Figure 1.2, the overall combined cost is

g(l) + min{cp(TTG, TTG),ep(TTG, CTG)} + cd(G, C)+ cp(CTG, CTC)

if the insertion happens first or

cd(G, C)+ cp(TTG, TTC) + g(l) + min{cp(TTC, TTG), ep(TTC, CTC)}

CHAPTER 1. AN INTRODUCTION TO CODON BASED ALIGNMENT 8

if the mutation happens first. In other words, the evolutionary events are

no longer independent when it comes to computing the combined cost. An

event may influence the cost of other events. Therefore, we define the cost of

an alignment of A and B as the minimum overall combined cost among all

possible permutations of the evolutionary events postulated by the alignment.

An optimal alignment is one with the minimum cost.

Computing an optimal alignment of A and B is not an easy task due to

the influence between events. The notion of a codon alignment introduced in

[4] will help simplify the matter and is accepted by computational biologists.

An alignment of A and B is called a codon alignment if

1. m = 0 or

2. n = 0 or

3. There do not exist i and j, 1 ~ i ~ 3m and 1 ~ j ~ 3n, such that ai

is aligned with bj, and (i) i mod 3 = j mod 3 = 1 and i + j > 2 or (ii)

i mod 3 = j mod 3 = 0 and i + j < 3m + 3n.

In other words, except in the first and last columns, a codon alignment does

not align a base at some codon boundary of A with a base at any codon

boundary of B. For example, the alignment in Figure 1.1 is in fact a codon

alignment. The cost of a codon alignment is defined the same way as for an

CHAPTER 1. AN INTRODUCTION TO CODON BASED ALIGNMENT

~ 1~ -·:- ... I ... -~ ... i'"' '"'!" ... i ... '"'i'"'i ... -:-- i i ... ;- -;- ;--; ... i'"''"' i ... ;--(-;- -;- ;- -:- ... ;- -;-;- -; ... ;- '"'i ... i ... -,
I.JJ L.J L.J L .. .J LJ L. .. .J LJ L. .. .J LJJ L. .. .J I.J L .. .J L .. .J L .. .J ... -:

: : ~-~ t~·! ..,.!. n \ : : : 2 : I
r- - -\)J-"'U ~- -r-,--r-, r- , ... -r ... , .. -.-- , ,. ... , .. - ... , .. -,.-,- -r ... , - -r ... , --r ... , , --•
1 I I I I I I I I I I I I I I I I I 131 (l<m e.rli.nn.)' I I I I I I

I-~--~-~--~-~--~-~--~"!--~-~--~-~--~ ~--t-~ Is I I I ~-~-·~-~--~-~--:
I I I I I 1 1 I I I I I I r I I I I I I I I I I I I I I I I I I I r- ,- -r -,--r-,- -r- ,- -r- ~al'l~t•.n-o -r- ,- -r- ,- -r- ,- -(- ,- -r- ,- -r-,- -r-, -- r-,--r-,- -•
~ -~- -~- ~--~ -~--~- ~- -~- ~--~ -~ -~':.'~- -~- ~- -~-~- -~- ~-- -J --~-J --~-J .. -~- ~--~ .. J .. -~ .. J .. -:
I I I I I 1 1 I
I I I I I I I I I I 1 I r- , , ... - ... -,- -r- ,- -r- 1 --r- , r- , .. -r- , ,. -,- -r-,-- - , ,. -, ,. .. ,- -r- , ,. .. , ,. .. , .. - 1

I
l. .. .J .. -L .. J l. .. J L-.J L_ l. .. J l. .. .J .. - .. .J l. .. J L_J I. .. .J--L .. J L L .. J--L-J'.,;J 1

: : : : :4: : : : : : : : : : : : : : : : : : : I : : : : : : : : ,.-,--,.-,--,.-,--,.-,-- -,--,.-,--,.- --,.-, ,. .. ,.... ,-- -,--,.-,--,.- ,. .. , ,
I :

L ,-:-I I ~--~-~--~-~-- -~--;-~--;- ~--~-~--~6-~--~-~--~-~--~-~--;- --~-~--1
I , ,. .. , ,. .. , .. -r- , .. -,.-, .. - .. , .. -r- ,_- -,--,.- ,- -r-,- .. ,. .. , .. -r .. , r- , .. -r- - -r- 1-- 1

I J I I :

~- ~--~- ~- -~- ~--; -~--~- ~- -~5-~-- -~--~- ~- -~- ~--~- ~--~-~- -; -~- -~- ~--~-~-7-~- 1--~- ~--I
I I 1 I I 1 I I I I I I f I ,. .. , .. -r-, --r-., --r -,--r .. ., .. -r-.,--r-,·-r-,--r- , ,. .. ., .. -r-,--r- , .. -r .. , .. -r-,--r- ,. .. ., .. -1

I :

~-~- -~- ~- -~- ~-- ~- ~-- ~- ~-- ~- ~-- - ~·- ~- ~--~ -~- ·~-~- -~·~·-~ -~·-~ -~- -~-~--~- --~-~-""I
I r -,--r- , .. -r- ., .. -r- ., ,. .. , ,. .. .,.... - ., ,. .. ., ,. .. , ,. .. ., ,. .. ., ,.- ., ,.- , .. -r .. , ,. .. - .. ,. .. ., .. "" 1

I :

L -~- -~ .. ~- .. L -~- -~ .. ~- -~-~--~ .. ~ I .. ~- -~- ~--~ .. ~- -~-~--~ .. ~--~-~--~-~- -~ .. ~--I -~- -~-~--~
I 1 I 1 I I I I I I 1 I

r- , ,.- ., .. -r -,- -r .. , ,. .. ., ,.- -- r- , ,. .. , ,. .. ., .. -r- , .. -r- , ,. .. , ,. .. , ,.- - .. ,. .. , .. -r- , ,
I :

~- ~--~ -~- -~-~- -~8~- -~- ~--~- ~ --~- ~- -~- ~--~ -~- -~- ~--, -~- -~-~--~- ~--~- ~- -~- ~--~- ~--1
I
r- , ,. ... , .. - ... -~-- r- ~-;;-;-;- -,- -, .. -r, - - .. ,. .. , ,. .. , ... -r- , ,. ... , ... -r- ,--r- ,--1

I I I I I ~-~ .. J ~ I :

~-I I ~-~I I ~--~-~--~-~--~-~--~-~--~-~--~- --~-~--~-~--~-~--~-~--~-~--~-~--~
I - , ,. .. , ,. .. , ,. .. , .. -r- , ,. .. , ,. .. , ,. .. , .. -r- , ,.- - -r .. , ,. -,--,.- , .. -r .. , --r- , ,. .. , .. - 1

I :

~- ~-- ~- ~- -~- ~-- ~- ~-- ~- ~ .. -~- ~-- ~- ~-- ~- ~-- ~- ~-- ~-1--~- ~- -~- ~- -~- ~-- ~- ~-- ~- ~--~-~--I
I I I I I 1 I ..-- , ,. .. ., .. -r ... , ,. .. ,, .. ., .. ""1"'"'1"" -,.- , ,. .. , ,. ... , ,. .. - -r .. , , ,. ... , ,.- , .. -r .. , ... -r- , I
I :
l. .. .J- ... L .. .1 L .. J L .. J L LJ L .. J., .. L .. J L .. .J- ... L L .. J L .. J L .. J L .. J L .. ~- -~ -~-7.

: : : : : : : : : : : : : : : : : :9: : : : : : : : : : .:-wr-.. :
[~J~~[~J~~[~J~~[~J~~ ~J~~[~J~~[~J~~[~J~~[~J~~i~~~~[~]~~[~J~~i~~--~-~~r:~--~-~~~:
I I I I I 1 I
I I 1 1 I 1 I r-,- -r- , ,. .. , ,. .. , .. - - , ,.-, --r- , .. -r- ,- -r- 1-- - , ... -,.- , .. -r .. ,..... - , .. -r .. , ,. .. ., ,. .. , ~
I 'Jl I I I I I
L- J L .. .J L .. J L .. .I- -t .. J l. .. J L .. J L .. J .. -L- JJ L ... J L .. JJ.... L .. J L .. J :

: : : : : : : : : : : : : : : : : I : : : : : ' : : : : : : : I

i- ~- -i- ~--i -~--,.-~-- -~- -i-~--i- ~--i- ~--i- ~- -~-~- -i -~--i -~--r-~--i- ~- -i- ~- -i- ~- -:
I.1 L .. .J L .. 1a .. J J L .. J .. -L .. J L .. J L .. .J J L .. J L ... J J L .. J L- J L ... J_ -:
I
I ,. .. ., ,.- , ,.- , .. -r- , .. - ... , ,.- , r- , .. -r- , ,. ... ,.... ..., , .. -r-,-- -,, .. , ,. -,--r-,-- 1

I I 1 I I 1 I :

~-~--~-~ I ,--~-~--~-~--~-~--~-~--~-~--~ -~--~-~--~-~--~ -~--~-~--~-~--~-~--~
Y-~ --~- ~- -~-~- .. !.. .. ~- ... !.. .. ~--!..- ~ !.. -~ !.. -~--!..- ~--~ -~- .. !.. .. ~ !.. .. '--~-~--!..- ~ !.. .. ~- .. !.. -~--:

Figure 1.3: The 11 types of codon alignment.

9

CHAPTER 1. AN INTRODUCTION TO CODON BASED ALIGNMENT 10

,-,--,-,--,-,--,-,--.-,--,-,--,-,--.-,--.-,--,-,--,-,--.-,--,-,--
' I I I I I I I I t I I I I ~ I I I I I I I I l I I" I
~-~--L-J--L-J--L-J--L-J--L-J--L-J--L-J--L-J--L-4--L-~- --1
I
I 1 I ,-,--,-,--,-,--.-,--.-,--,-,--,-,--.-,--,-,-- --.-,--,-,--,
I

L-J--L-J--L-J--L-J--L-J--L-J--L-J--L-J--L- --L-J--L-J--L-J--L-J--1
I 1
I 1 I 1 ,-,--,-,--,-,--,-,--,-,--,-,--,- -,--,-,--r-,--,-,--r•,--,
I

L-J--L-J--L-J--L-J--L-J--L-J-- -J--L-J--L-J--L-J--L-J--L-J--L-J--1
I t
I I I I I I I I I I I I I I I I I t i I I I 1 t -t 1
r-,--r-,--r-,--r-,--r-,-~~-,-- -,--r-,--.-,--r-,--r-,--r-,--r-,--,
I 1

L-J--L-J--L-J--L-J--L-J--L-J-- -J--L-J--L-J--L-J--L-J--L-J--L-J--1
I
I r-,--.-,--r-,--r-,--r-,--.-,-- -,--r-,--.-,--r-,--r-,--r-,--r-,--1
I

L-J--L-J--L-J--L-J__ --L-J--L-J--L-J--L-J--L-J--L-J--L-J--1
I
I r-,-- --r-,--r-,--.-,--r-,--r-,--.-,--r-,--.-,--.-,--1
I

L- --L-J--L-J--L-J--L-J--L-J--L-J--L-J--L-J--L-J--L-J--L-J--L-J--1
I I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I I --·

Figure 1.4: Decomposing an alignment into codon alignments.

alignment.

It is known [4] that there are 11 distinct types of codon alignment, as

depicted in Figure 1.3. Type 1 has three mutations and no indel. Type 2

only has a deletion and type 3 only has an insertion. Types 4, 5, 6, and 7

have an indel and three mutations. Types 8, 9, 10, and 11 have two indels

and three mutations. Observe that each codon alignment can involve at most

5 evolutionary events. Hence, the cost of a codon alignment, which is the

minimum total combined cost over all possible permutations of the events

postulated by the alignment, can be computed in linear time.

We can always decompose an alignment of A and B uniquely into a

sequence of maximal codon alignments, as illustrated in Figure 1.4. Although

the evolutionary events in a same codon alignment may influence each other's

cost, events in different codon alignments are independent. This gives rise to

CHAPTER 1. AN INTRODUCTION TO CODON BASED ALIGNMENT 11

a straightforward dynamic programming algorithm for computing an optimal

alignment of A and B in O(m2n2) time, as described in [4]. It is clear that

the algorithm is too slow to be useful in practice even for moderate m and n.

Recently, two quadratic (i.e. O(mn)) time algorithms have been developed

in [8,9]. These algorithms are not practical because their quadratic time

bounds all contain large constant factors. We discuss these two algorithms

in detail in Chapter 2.

1.3 Our contribution

Since large constant factors seem to be inherent in all quadratic time

algorithms for Rein's model, we simplify the model slightly. A much more

efficient quadratic time algorithm is devised for the simplified model which

needs only to compute 292mn table entries, again assuming affine gaps. Al­

though the framework of the algorithm is still dynamic programming, the

crux of this algorithm is a careful partition of the state space in order to

minimize the total number of table entries that it has to compute. Further­

more, we extend our algorithm to handle frame-shift errors and overlapping

frames using a heuristic approach.

The algorithm has been implemented and tested on both real and simu­

lated sequences. The test results show that the algorithm for our simplified

CHAPTER 1. AN INTRODUCTION TO CODON BASED ALIGNMENT 12

model and algorithm for Hein 's model produce almost identical alignment

in most cases. Also our program can correctly detect and locate frame-shift

errors for reasonable indel and mutation rates.

This thesis is organized as follows. In the next chapter, we describe two

existing quadratic time algorithms for Rein's model. Our simplified model

and faster algorithm are presented in Chapter 3. We then extended our

algorithm to handle frame-shift errors and overlapping frames in Chapter

4. Chapter 5 discusses some issues arising in the implementation of the

algorithm and also gives some test results. Finally, we give conclusions and

future work Chapter 6.

Chapter 2

Two Quadratic Algorithms for

Hein's Model

In this chapter, first we describe the Hua-Jiang algorithm in Section 2.1,

and then the PLH algorithm in Section 2.2.

2.1 Hua-Jiang algorithm

In 1997 Y. Hua and T. Jiang designed a dynamic programming algo­

rithm in [8] that computes an optimal alignment for Rein's model in O(mn)

time, assuming affine gaps. However, the algorithm is impractical because

of the large constant factor embedded in its time complexity function. The

large constant factor comes from the fact that the algorithm has to COJUpute

16644mn table entries. The following is a sketch of the construction of the

13

CHAPTER 2. TWO QUADRATIC ALGORITHMS FOR HEIN'S MODEL 14

Hua-Jiang algorithm.

Again assume that the gap penalty function g(i) is affine, z.e. g(i) =

9open + i * 9ext for some fixed non-negative constants 9open and 9ext· Consider

DNA sequences

and

For any indices i = 1, ... , m and j = 1, ... , n, let

B(J') = b1b2b3 · · · b3j-2b3i-Ib3j,

and c(i, j) denote· the cost of an optimal alignment between the prefix A(i)

and prefix B(j). In order to derive a recurrence equation for c(i,j), we need

the following notation.

Let's classify alignments into 11 classes according to the type of their

terminating codon alignments (see Figure 1.3 for values oft). For 1 :::; t :S 3,

let Ct(i, j) denote the cost of an optimal alignment between A(i) and B(j)

whose terminating codon alignment is type t.

For t = 4 or t = 6 and any nucleotides x1 , x 2 , x 3 E {A, C, G, T}, let

Ct(i, j, x 1x2x3) denote the cost of an optimal alignment between A(i) and

CHAPTER 2. TWO QUADRATIC ALGORITHMS FOR HEIN'S MODEL 15

B(j)x1x2x3 ending with a codon alignment of type t. Also define

For t = 5 or t = 7 and any nucleotides x1, x2, x3 E {A, C, G, T}, let

Ct(i, x 1x2x3, j) denote the cost of an optimal alignment between A(i)x1x2x3

and B(j) ending with a codon alignment of type t. Also define

For t = 8 and any nucleotides x 1, x2, x3, x4 , x5 , x6 E {A, C, G, T}, let

c8 (i,j,x 1x2x3x4x5x6) denote the cost of an optimal alignment between A(i)

and B(j)x1x2x3x4x5x6 ending with a codon alignment of type 8. Also define

The expressions c9 (i,x 1x2x3x4x5x6 ,j) and c9(i,j) are defined analogously.

For t = 10 and any nucleotides x1, x2, x3, y1, Y2, y3 E {A, C, G, T}, let

Cto(i,x1x2x3,j,y1y2y3) denote the cost of an optimal alignment between se­

quences A(i)x1x2x3 and B(j)y1y2y3 ending with a codon alignment of type

10. Also define

The expressions c11 (i,x1x2x3,j,y1y2y3) and c11 (i,j) are defined analogously.

CHAPTER 2. TWO QUADRATIC ALGORITHMS FOR HEIN'S MODEL 16

Note that, in the above, for types t = 4, ... , 11, we have to plant up to 6

imaginary trailing bases in order to complete the recurrence equations.

Clearly, for any i = 0, ... , m and j = 0, ... , n,

11
c(i,j) = minct(i,j)

t=l

Hence it suffices to give recurrence equations for Ct(i,j), t = 1, ... , 11,

using c(i, j). First, we initialize the following items:

• c(O, 0) = 0

• Fori= 1, ... , m, c(i, 0) = g(i).

• For j = 1, ... , n, c(O,j) = g(j).

• Fori= 1, ... , m and j = 1, ... , n, c(i,j) = oo.

• Fori= 1, ... , m, j = 1, ... , n, and t = 1, ... , 11, Ct(i,j) = oo.

Below we only list recurrence equations for types t = 1, 2, 4, 8, 10. The other

cases are highly symmetric to these types. In the following, when there is

a unique codon alignment between sequences X and Y of type t, we use

cat(X, Y) to denote the optimal cost of that codon alignment for different

event orders. For 1 ~ i ~ m and 1 ~ j ~ n, the recurrence equations are as

follows:

c1 (i, j)

CHAPTER 2. TWO QUADRATIC ALGORITHMS FOR HEIN'S MODEL 17

min{ c2(i, j- 1) + 9ext, c(i, j- 1) + g(1)}

c(i - 1, j - 1) +

c(i- 1, j- 1) +

min{c10(i -1,x1x2x3,j,y1y2y3) + 9ext,

C1o(i,X1X2X3,j -1,Y1Y2Y3) + 9ext,

c(i- 1, j- 1) +

The equations fort= 1, 2, 4, 10 are self-explanatory. The equation fort=

8 is elaborated in Figure 2.1. The first term in the minimization corresponds

to the case when the second gap (from the left) is longer than one codon

CHAPTER 2. TWO QUADRATIC ALGORITHMS FOR REIN'S MODEL 18

(case (a) in the figure), the second term represents the case when the second

gap is one codon long and the first gap is longer than one codon (case (b)),

and the third term corresponds to the case when both gaps are one codon

long (case (c)).

r--- -r---- r--- -I"'----r--- -r---- r---- r---- r--- -;---- r---- r--- -r---- r---- r----
I I I I I I I I I I I I I
I I I I I
I I I I I
I I I I I I I I I I I I I
r --- -r ----r--- -r ----r- ---r ----r-- --r-- -- --~ -- ----,
I I I I I I I I I I I I

I I I I I I I
I I I I I I I I

,;--....;.-.....;---:.---' I I----~----~----~----~----~----~----~----:
I I I I I I I)

' '' ' ' ' I I I I I I I I I I I I I I I
----r---- r-- -- r---- r --- -r--- -r- ---.----- r---- r--- -r---- r--- -r---- r--- -r---- 1

I I I I I I I I I I I I I I I
I I I I I I I I I I I I I
I I I I I I I I I I I I

I I I I I I I I I I I I I I I I
r--- -r---- r--- -r--- - ... -- --r---- r---- r--- -r- --- r--- -r---- r--- -r---- r--- -r----

I I I I I I I I I I

' ' ' ' I I I I I I I I I I I I I r---- r--- -r--- -r--- -r--- -r--- -r---- r---- r---- r--- -r---- --- -~

I I I I I I I I

' ' ' I I I I

~- -- -~ ----~ ----~---- t --:---li--i--:r-- --~----~-- --~--- -~ ----:
I I I I I I I I I I I

' ' ' ' ' ' I I I I I I I I I I I I I I I r- -- -r--- -r--- -- --r----r ----r----r-- --r-- --r----r----r----r----r- ---r--- -,
' ' ' ' ' ' ' I I I I I I I I I I I I I I I I
r----r---- r---- r---- r--- -r--- -r--- -r--- -r-- -- r-- --r---- r--- -r--- ·r----r----

' ' ' I I I I I I I I I I I I I r---- r-- --r--- -r--- ·r----r--- -r--- -r--- -r---- r--- -r---- --- ... ,
I I I I I I I I I I I I I
I I I I I I t
I I I I I I I
I I I I I I I I I I I I I I
r-- .., ... r---- r-- -- r---- r--- -r--- -r---- --- -r---- r----r--- -r--- -~

I I ...1 I I I I I I I I I
I I I I I I I I I
I I I I I I I I

I I I I I I I I I I I I ------------------ ----------- --.

(a)

(b)

(c)

Figure 2.1: An illustration for the recurrence equation for type 8.

The base cases of the above recurrence equations can be easily formulated.

Since the cost cat(X, Y) can be computed in 0(1) time for any sequences X

and Y of lengths at most 9 bases, the recurrence equations obviously imply

a dynamic programming algorithm for computing c(m, n) in O(mn) time.

This algorithm can be easily expanded to also produce an optimal alignment

CHAPTER 2. TWO QUADRATIC ALGORITHMS FOR REIN'S MODEL 19

between A and B, using the standard back-tracking technique[2].

A version of the algorithm has been implemented in GNU C, called Codon

Alignment Tool (CAT)[8]. To avoid computing the cost cat(X, Y) repeatedly

for the same short sequences X and Y, a table, indexed by X and Y, is

used to store the value cat(X, Y) once it is computed so that for each pair

X and Y, the cost cat(X, Y) is computed at most once. Although this

technique greatly improves the time efficiency, the program is still quite slow

due to the fact that it has to compute 12 tables for c(i,j) and Ct(i,j), where

t = 1, ... , 11, with a total size of 4 + 4 * 64 + 4 * 4096 = 16644mn entries

before obtaining the value c(m, n). Clearly, codon alignments of types 8

through 11 are the main reason why such large tables are required. Because

of the influence between evolutionary events within a same codon alignment

and the fact that the events may happen in any of up to 5! different orders,

the dynamic programming algorithm has to hypothesize 6 trailing bases for

each of these four types, and carry out the computation for each of the 4096

hypotheses.

2.2 PLH algorithm

Independent of the work reported in this thesis, recently, C. Pedersen, R.

Lyngs¢, and J. Hein designed another quadratic algorithm for Hein's model.

CHAPTER 2. TWO QUADRATIC ALGORITHMS FOR REIN'S MODEL 20

We call this algorithm the PLH algorithm. The framework of PLH algorithm

is still dynamic programming. Similar to Hua-Jiang algorithm, an alignment

is also classified into 11 classes according to the type of its last codon align­

ment. A key idea behind the PLH algorithm is that it keeps track of the

"internal status" of a mutation. In other words, it sets some indicators of

some key mutations. The algorithm is valid under the assumption that the

cost of mutations at the protein level is a metric. We describe more details

of the PLH algorithm below.

The recurrence equations of the first three types are the same as that

of the Hua-Jiang algorithm. For types 4, 5, 6, and 7, the PLH algorithm

guesses the internal status of all relevant mutations just before the deletion

or insertion. We give an example for type 6 as shown in Figure 2.2, where

x1 x2x3 indicates the status of the three mutations (i.e. whether or not the

mutations have taken place) just before the deletion of length k. Four key

stages of the evolution changing b3(j-k)-2b3(j-k)-l ... b3j to a3i-2a3i-la3i are

depicted in (a), (b), (c), and (d) in the figure respectively. The minimum

cost of an alignment whose last codon alignment is type 6, denoted c6 (i,j),

can be calculated as

c6 (i, j) =cost(subs)+ cost(del)+ c(i- 1, j- k- 1),

CHAPTER 2. TWO QUADRATIC ALGORITHMS FOR HEIN'S MODEL 21

r----r----r----r----r----r----r----r----r----
1 I I I
I I I
I I I

~---i-- -~ -- -~ -- 'i----i----~

I
I I I I I I I I ----r----r----r----r----r----r----r----,

I I
I I
I I I

----~----~----~----~----~----~----~----~----·

(a)

r----r----r----r----r----r----r----r----r----
1 I
I I

I

:;.<-----i- --- :-- --+ --- --r----i----i~
I I

I
I

I I I I I I I ----r----r----r----r----r----r----r----
1 I I I I I I I
I I I I
I I I I

----~----~----~----~----~----~----~----~----

(b)

(c)

I I
I I I r----,-----

1
I
I

I I r----
1
I
I
I

(d)

Figure 2.2: Four stages in the evolution of type 6.

CHAPTER 2. TWO QUADRATIC ALGORITHMS FOR HEIN'S MODEL 22

where

cost(subs) c; (b3(j-k)-2b3(j-k)-1 b3(j-k), XIX2b3(j-k)) +

c;(b3j-2b3j-lb3j, b3j-2b3j-lx3) +

The difference between the notation Cp and c; is that Cp accounts for at most

one mutation, but c; may account for up to three mutations. The term

cost(del) represents the cost of the deletion, and can be computed using

dynamic programming. For more details, the reader is referred to the paper

[9].

The idea can be extended to types 8, 9, 10 and 11, but these types require

two internal status indicators, one for the first indel and the other for the

second indel.

An advantage of the PHL algorithm is that it "hides" the orders of events

in internal status indicators. But this advantage comes with an assumption,

namely, the cost of mutations at the protein level is a metric. Unfortunately,

in practice, most of popular protein scores, e.g. PAM, are not metrics. In

the case that the protein mutation cost is not a metric, the algorithm needs

more table entries to record information. We estimate that it has to compute

4100mn table entries under the metric assumption and 15476mn table entries

without that assumption. Since the algorithm has not been implemented, it

CHAPTER 2. TWO QUADRATIC ALGORITHMS FOR HEIN'S MODEL 23

is hard to compare its speed with that of Hua-Jiang's. However it is clear

that the algorithm is too slow to be used in practice because of the large

constant factor in the quadratic time bound.

In the next chapter, we will simplify Rein's model slightly and present a

much faster quadratic time algorithm.

Chapter 3

Context-free Codon Alignment

This chapter is organized as follows. In Section 3.1 we describe the

simplified model of genomic sequence alignment. Then we show our faster

algorithm in Section 3.2. We compare the test results of CAT and Context­

free CAT in Section 3.3.

3.1 A simplified model

Our model differs from Rein's model only in the definition of the cost

of an indel. Recall that in Rein's model each indel of 3i nucleotides within

a codon induces an amino acid indel and an amino acid substitution, and

hence the combined cost of such an indel is defined as g(i) plus the cost of

the amino acid substitution, where g(i) = 9open + i * 9ext for some constants

9open and 9ext· Our model will disregard the latter cost, and simply define

24

CHAPTER 3. CONTEXT-FREE CODON ALIGNMENT

the combined cost of an indel of 3i nucleotides as g(i). 1

Observe that in Rein's model the cost of an indel in general depends on

the surrounding nucleotides, as shown in Figure 1.3, whereas indels in our

model do not have such context sensitivity. For this reason we will refer to

indels in our model as context-free indels and name our model context-free

codon alignment. In the following, we take advantage of the context-freeness

in indels and devise a more efficient algorithm than the algorithms reviewed

in the last chapter. Note that, even though indels are now context-free, the

influence between evolutionary events still exists because the combined cost

of a substitution may depend on other substitutions and indels in the same

codon alignment. Therefore, it does not seem possible for the algorithms

presented in the last chapter (or simple extensions of them) to take advantage

of context-free indels. We have to use a different technique.

3.2 A faster algorithm

The framework of our algorithm is still dynamic programming based on

codon alignments. We again classify an alignment according to the type of

its last codon alignment. The new idea is to refine the classes according to

1 It is unclear such a simplification is biologically plausible, although one supporting
argument may be that the amino acid substitution is a superficial event. Our tests on real
and simulated data in Section 3.3 will show that optimal alignments for the two models
are in fact very similar.

25

CHAPTER 3. CONTEXT-FREE CODON ALIGNMENT

the order of some events in the last codon alignment so we could avoid having

to hypothesize (or equivalently, remember) too many nucleotides. This will

greatly reduce the total size of the tables required.

To demonstrate our idea, we need to introduce some notation first. Let

A= a 1a2a3 · · · a3m-2a3m-la3m, and B = b1b2b3 · · · b3n-2b3n-lb3n·

• For any indices i = 1, ... , m and j = 1, ... , n, let

and

B(j) = b1b2b3 · · · b3i-2b3i-lb3i·

A(O) and B(O) are empty strings.

• For any indices i = 0, ... , m and j = 0, ... , n, let c(i, j) denote the cost

of an optimal alignment between A(i) and B(j) .

• For any indices i = o, ... ,m 'j = o, ... ,n, and t = 1, ... ,11, let Ct(i,j)

denote the cost of an optimal alignment between A(i) and B(j) ending

with a codon alignment of type t.

To derive the necessary recurrence equations, we will need to consider

partial (i.e. incomplete) codon alignments consisting of a front portion of

some codon alignments and restricted codon alignments whose events are

26

CHAPTER 3. CONTEXT-FREE CODON ALIGNMENT

required to occur only in some specific orders. In the following discussion,

we assume that sequence B evolves to sequence A. Before we give the general

recurrences type by type, we need to initialize the following items:

• c(O, 0) = 0

• Fori= 1, ... , m, c(i, 0) = g(i).

• For j = 1, ... , n, c(O,j) = g(j).

• Fori= 1, ... ,m and j = 1, ... ,n, c(i,j) = oo.

• Fori= 0, ... , m, j = 0, ... , n, and t = 1, ... , 11, Ct(i,j) = oo.

For 1 ~ i ~ m and 1 ~ j ~ n, the recurrence equations are as follows.

First of all, the main recurrence equation is

c(i,j) = min Ct(i,j).
tE{l, ... ,ll}

The recurrence equations of the first three types are straightforward.

They are

c2(i,j) min{c2(i,j -1) + 9ext,c(i,j -1) + g(1)}

c3(i, j) min{ c3(i- 1, j) + 9ext, c(i- 1, j) + g(1)}

27

CHAPTER 3. CONTEXT-FREE CODON ALIGNMENT 28

cost of evolving baj-2b3j-lb3j to aai-2a3i-la3i by trying 6 different orders.

r----r----r----r----r----r----r----r----r----
1 I I I I I I

: : : : : : $vent 4
I I I I I I I I I I
r----r----r----r----r----r----r----r---- ----,
I I I I I I I I

I I I I ~ven~ 2 I I
I I I I I 't I I
I I I I I I I I r---- --""T---,..---
1 I I

: event 1:
I I I I I I I I I

--·

Figure 3.1: Four events of type 4 codon alignments.

A type 4 codon alignment involves 4 evolutionary events as shown in

Figure 3.1. Event 1 is the first mutation (i.e. e1 -+ JI). Event 2 is a deletion

whose length is 3k nucleotides (i.e. delete e2 .. . e3k+I). Event 3 evolves e3k+2 to

hand event 4 changes e3k+3 to fa. We give an example of evolving e1 ... e3k+a

to !Ihfa in order 1234 as follows:

We find that the information of e2 and e3 is only used in computing

CHAPTER 3. CONTEXT-FREE CODON ALIGNMENT

for order 1234, denoted costf234 , is

It uses the information of e2 and e3 . But the cost for order 2134 shown below

does not use the information.

4
cost2134

We consider alignments ending with type 4 codon alignments, and parti-

tion them into some classes depending on the relative order of events 1 and 2

and the nucleotide e1 . Since there are two possible relative orders of events 1

and 2, and e1 might be A, or C, or G, or T, the total number of classes is 8.

The reason we need 8 classes will be clear when we discuss how to compute

P4 (i, j, x, (J) which is defined later.

There are two stages for computing the cost of an optimal alignment

between A(i) and B(j) ending with a codon alignment of type 4. In the first

stage, we consider the cost of the deletion, and the cost of event 1 when event

1 occurs before event 2. In the second stage, we consider the costs of events

29

CHAPTER 3. CONTEXT-FREE CODON ALIGNMENT 30

3 and 4, and the cost of event 1 when event 1 occurs after event 2. We will

describe the details of the two stages in the following paragraphs.

r··--r-·--r··--r----r----r----r----r----r----r----r--·-r·---r----•
I I I I I I I I'

a
3

,. : : : , :
I I I I I I I I I I I I 1/ 1
~----~----i ____ i ____ i ____ i ____ i ____ i ____ i ____ i ____ i ____ i ___ i!" ____ :

a I I I I I 1 I I I I I I / I I

3. I I I I I I 1 I I I I

t· I I -..:.--:-- I -?----~----~·

Figure 3.2: Dealing with trailing codon alignments of type 4 (stage 1).

In Figure 3. 2, the dot indicates that we are computing at point (i, j).

The left part of the path (i.e. left to the dot) is computed in stage 1 and

the right part of the path is computed in stage 2. In Figure 3.2, k < j and

b3k-2 = b3j-2· The reason we need b3k-2 = b3i-2 is that if b3k-2 =/= b3j-2, two

paths depicted in the figure are not in the same class, thus they don't have

any relation. We will use a variable x to remember the value of b3i_2 (since

b3k_2 = b3j_2 , x remember the value of b3k_2 also). The information about x

will be used in the second stage.

In the first stage, there are two cases (see Figure 3.2). Case 1 extends the

deletion by 3 nucleotides and case 2 starts a new partial codon alignment of

type 4. For any nucleotide x E {A,C,G,T} and a E {0,1}, let p4 (i,j,x,a)

denote the cost of an optimal alignment between A(i) and B(j) ending with

CHAPTER 3. CONTEXT-FREE CODON ALIGNMENT

a partial codon alignment of type 4. The variable x remember the value of

b3j_2 • The variable CJ indicates the order of event 1 and event 2. If CJ = 0,

event 1 occurs after event 2; otherwise, i.e. CJ = 1, event 1 occurs before

event 2.

Now, it is time to define the recurrence equations for type 4 codon align­

ments. For x E {A,C,G,T} and CJ E {0,1}, p4(i,j,x,CJ) is computed as

follows:

P4(i, j, x, CJ) =min{ tmp,p4(i, j- 1, X, CJ) + 9ext},

where

if x = b3j_2 ; otherwise, tmp = oo.

In the above equation, p4(i, j- 1, x, CJ) + 9ext is for case 1 and tmp corre­

sponds to case 2 (see Figure 3.2). The first one is trivial. It just extends the

deletion by 3 nucleotides. For computing tmp, first we add the cost of the

previous codon alignments (i.e. c(i - 1, j - 1)), then add the cost of opening

an indel whose length is one (i.e. g(1)). When CJ = 0 (i.e. event 1 occurs

after event 2), the item CJ · (cd(x, a3i-2) + ep(xb3j-lb3j, a3i-2b3j-lb3j)) is equal

to zero. That means we do not consider the cost of event 1 in computing

p4 (i,j,x,O). It will be added in the second stage. When CJ = 1 (i.e. event 1

occurs before event 2), the value of cd(x, a3i-2) + ep(xb3j-lb3j, a3i-2b3j-lb3j)

31

CHAPTER 3. CONTEXT-FREE CODON ALIGNMENT

is added to tmp. In this case, we consider the cost of event 1 in computing

p4 (i,j, x, 1) and it will be not added in the second stage.

r----r----r----r----r----r----r----r----r---
1 I I I I

a31' I
I I I I I I I I I I

a.
3r-1

r----r----r----r----r----r----r----r---- ----,
I I I I I I I

I I
I I I

I I I I I I

r-~--~--~---.-- ----r----,
1 I

I I I I I I I --·

X

Figure 3.3: Dealing with trailing codon alignments of type 4 (stage 2).

In the second stage, we will complete the computation for type 4 using the

information recorded in p4 (i,j,x,a). First, we have to consider the costs of

events 3 and 4,i.e. b3j-l-+ a 3i-l and b3j-+ a3i (see Figure 3.3). When a= 0,

we must add the cost of event 1 (i.e. x -+ a3i_2) since it is not considered in

computing p4 (i, j, x, 0). The cost of an optimal alignment between A(i) and

B(J') ending with a type 4 codon alignment, denoted c4 (i, j), is computed as

c4(i, j) = min {p4(i,j- 1, x, a)+ car{a3i-2a3i-la3i, b3j-2b3j-lb3j, x)},
:~:E{A,C,G,T}

uE{O,l}

where P4(i, j-1, x, a) is discussed above and ca4(a3i-2a3i-la3i, b3j-2b3j-lb3j, x)

for a E { 0, 1} is explained below.

cost of the mutations in the last type 4 codon alignment that are not ac-

counted for in p4 (i,j -1,x,O) with the constraint that event 1 occurs after

32

CHAPTER 3. CONTEXT-FREE CODON ALIGNMENT

event 2. In this function, we need to consider all three mutation events (i.e.

events 1, 3, and 4) for a total of 12 different orders. We give an example of

computing the restricted cost with order 2134, denoted Rcost~134 , as follows:

Rcost~134 = cp(xbaj-1b3h aai-2baj-1baj) + cd(x, aai-2) +

cp(aai-2b3j-1baj, aai-2a3i-1baj) + cd(baj-1, aai-1) +

ep(aai-2a3i-tbaj, aai-2a3i-la3i) + cd(b3j, a3i).

Similarly, caHaai-2a3i-la3i, b3j-2b3j-lb3j, x) computes the minimum cost

of the mutations in the last type 4 codon alignment that are not accounted

for in p4(i, j -1, x, 1) with the constraint that event 1 occurs before event 2.

But now we only need to consider the last two mutation events (i.e. events 3

and 4) since the cost of event 1 has been considered in computing p4 (i, j, x, 1).

Again, we give an example of computing the restricted cost with order 3124

below.

Rcostj124

Note that, the above recurrence equations for type 4 codon alignment

only require a table of 8mn entries (for storing p4 (i, j, x, o-)) to compute

c4 (i, j) instead of a table of 64mn entries as required in the last chap­

ter. The number 8mn comes from i, j, x, and o-, where i = m, J = n,

33

CHAPTER 3. CONTEXT-FREE CODON ALIGNMENT 34

x E {A, C, G, T}, and a E {0, 1}. Actually, the parameter x in the sec-

though it appears that the table entries could be reduced to 5mn, unfortu-

nately, the answer is no. The reason is that when computing the recurrence

equation of p4 (i, j, x, a), we must check if x = b3j_2 • In other words, we must

make sure that the following case cannot take place:

P4(i, j, x, 1) = P4(i, j- 1, x', 1) + 9ext

where x =/= x'.

The recurrence equations for type 5 are symmetric to those for type 4.

We define p5(i, j, x, 0) and p5(i, j, x, 1) similarly. Again, for x E {A, C, G, T}

and a E {0, 1 }, p5 (i, j, x, a) is computed as

P5(i,j,x,a) = min{tmp,p5(i -1,j,x,a) + 9ext},

where

if x = a3i-2i otherwise, tmp = oo.

Also,

CHAPTER 3. CONTEXT-FREE CODON ALIGNMENT

r----r----r----r----r----r----r----r----r----
1 I I I I I I I

: : : : evimt 3 : : ¢vent 4
I I I I I I ---;---.-- ----1

I I I
I I

I I I
I I I I I I I I I I r---- ----r----r----r----r----r----r----r----,

I I
I I

I I

--·

Figure 3.4: Four events of type 6 codon alignments.

A type 6 codon alignment involves 4 evolutionary events as shown in

Figure 3.4. Event 1 is the first mutation (i.e. e1 -+ ft). Event 2 is the

second mutation (i.e. e2 -+ /2). Event 3 is a deletion whose length is 3k

nucleotides (i.e. e3 ... e3k+2). Event 4 evolves e3k+3 to j3. We give an example

to compute the cost for order 1234, denoted cost~234 , as follows:

6
costl234

Alignments ending with type 6 codon alignments can be treated in the

same spirit as for type 4. Again, there are two stages for type 6 (i.e. the first

stage is for computingp6(i,j,x,a) and the second is for computing c6 (i,j)).

35

CHAPTER 3. CONTEXT-FREE CODON ALIGNMENT

r----r----r----r----r----r----r----r----r---~

: t : : : ! ! : : I :
aJi I I I I/ I

-----..:.--~----~
I a

3i·l I I I I I I I I I I r---- ----r----r---- ----r----r----r----r----,
I I I I
I I I I
I

I I I -----------------------------·

Figure 3.5: Dealing with trailing codon alignments of type 6 (stage 1).

However, instead of "cutting" the codon alignment at event 2 we should cut

it at event 3 (to obtain the partial codon alignment), instead of considering

the relative order of events 1 and 2 we consider the order of events 4 and

3, and instead of remembering the nucleotide x in type 4 we hypothesize

the nucleotide x (see Figure 3.5). Thus, we define p6 (i, j, x, 0) assuming

that event 4 is after event 3 (i.e. the deletion) and event 4 starts from the

nucleotide x, and define p6 (i, j, x, 1) assuming the opposite order. The only

tricky point is that p6(i, j, x, 0) should include the combined cost of event 4

while p6 (i, j, x, 1) does not. Both of p6 (i, j, x, 0) and p6 (i, j, x, 1) compute the

costs of events 1, 2, and 3. Let us summarize the recurrence equation for

type 6 in stage 1 as follows.

For x E {A, C, G, T} and a E {0, 1},

PB(i, j, x, a) min{c(i -1,j -1) + g(1) +

36

CHAPTER 3. CONTEXT-FREE CODON ALIGNMENT

P6(i, j- 1, x, o-) + 9ext}·

In the above equation, p6 (i, j - 1, x, a) + 9ext is for case 1 (see Figure

3.5). It just extends an indel by 3 nucleotides. c(i- 1,j- 1) + g(1) +

ca6(a3i-2a3i-la3i, b3j-2b3j-lb3j, x) is for case 2 in Figure 3.5. It starts a new

partial codon alignment of type 6.

As that for type 4, ca~(a3i_2 a3i_ 1 a3i, b3j_2b3j-lb3j, x) is a function to com­

pute the minimum cost of the mutations in the last type 6 codon alignment

with the constraint that event 4 is after event 3. In this case we need consider

three mutation events (i.e. events 1, 2, and 4). The following is an example

of computing the partial cost of order 1234, denoted Pcost~234 .

Pcost~234 - cp(b3j-2b3j-lb3j, a3i-2b3j-lb3j) + cd(b3j-2, a3i-2) +

ep(a3i-2b3j-lb3j, a3i-2a3i-lb3j) + cd(b3j-b a3i-1) +

Another function for type 6, i.e. ca~(a3i-2a3i-la3i, b3j-2b3j-lb3j, x), is for

the case when event 4 is before event 3. In this function, we only need consider

the first two mutation events (i.e. events 1 and 2). The last mutation event

(i.e. event 4) is considered in stage 2 (i.e. computing es(i,j)). Again, we

give an example of computing the partial cost of order 1243 below.

37

CHAPTER 3. CONTEXT-FREE CODON ALIGNMENT

a.
31·1

r----r----r----r----r----r----r----r----r---
1 I I I I I

I I I I
I I I I

I I I I -r---r--..,..--r--
I I

I
I I I I
I I I I I I I I I I r---- ----r----r----r----r----r----r----r----1
I I I I I I I

I I I I I
I I I I I I
I I I I I I I I I --·

Figure 3.6: Dealing with trailing codon alignments of type 6 (stage 2).

In the second stage (see Figure 3.6), if a= 1 (i.e. event 4 is before event

3), we need add the cost of event 4 to c6(i,j); Otherwise, c6(i,j) is equal to

(p6 (i,j -1,x,a). The recurrence equation for computing ~(i,j) is

c6(i,j)= min (p6(i,j-l,x,a)+a·tmp),
uE{O,l}

where x = b3j and

Again, computing the costs c6 (i,j) requires only a table of 8mn entries.

Analogously, for x E {A, C, G, T} and a E {0, 1},

P7(i,j, x, a) min{c(i- 1,j -1) + g(1) +

P7(i- l,j, X, a)+ 9ext}.

38

CHAPTER 3. CONTEXT-FREE CODON ALIGNMENT

Also,

c7(i, j) = min (p7(i- 1, j, x, a)+ a· tmp),
uE{O,l}

where x = a3i and

The function, ca7 (a3i-2a3i-la3i, b3j-2b3j-lb3j, x), is similar to that for type

;----;----i----;----i----;----;----;----;---~

I I I I I I even~ 4 I / I t 5
I I I I I I I ~ I ; even
~---- ~---- ~---- ~----~----I --~-----It----:
I I I I I I I

a.
Jz-1 I : : eVent a: ! : :

~--~· ----~----~----~----~----:
I I I I I

eVent 1: !
I I I I I I I --

Figure 3.7: Dealing with trailing codon alignments of type 8.

The treatment of alignments ending with type 8 alignments combines

the techniques for both type 4 and type 6 alignments, and builds on the

information p4(i, j, x1, 0) and p4(i, j, xb 1). Define a1 = 0 if event 1 is

after event 2 (i.e. the first deletion) or a 1 = 1 otherwise, and a2 = 0

if event 5 is after event 4 (i.e. the second deletion) or a2 = 1 other-

wise. For any nucleotides x1 , x2 E {A, C, G, T} and orders a 1 , a2 E {0, 1},

let Ps(i, j, x1, a1, x2, a2) denote the cost of an optimal alignment between

39

CHAPTER 3. CONTEXT-FREE CODON ALIGNMENT

A(i) and B(j) ending with a restricted partial codon alignment of type

8 consisting of events 1 through 5 such that (i) event 1 starts from the

base xi, (ii) the relative order between events 1 and 2 is as prescribed by

ai, (iii) event 5 starts from the base x 2 , and (iv) the relative order be­

tween events 5 and 4 is as prescribed by a 2 . (See Figure 3.7). Again, the

value p8 (i, j, xi, ai, x 2 , 0) should include the combined cost of event 5 while

Ps(i, j, XI, a I, x2, 1) does not. The cost p8(i, j, xi, a I, x 2 , a2) can be easily com­

puted from the values Ps(i, j -1, XI, ai, x2 , a2) and p4(i, j -1, XI, ai), and the

nucleotides XI, x2, a3i-2, a3i-I, a3i, b3j-2, b3j-I, b3j· Hence, we can compute the

cost c8 (i, j) using a table of 64mn entries for storing p8(i, j, XI, a1, x 2 , a 2). The

recurrence equations for type 8 are as follows.

For x1 , x2 E {A, C, G, T} and a 1, a 2 E {0, 1},

partial cost for each of the four order groups for type 8.

ca~'0 (a3i-2a3i-la3i, b3j-2b3j-1b3j, x1 , x 2) computes the minimum cost of mu­

tation events 1, 3, and 5 assuming that event 1 is after event 2 and event 5

40

CHAPTER 3. CONTEXT-FREE CODON ALIGNMENT

is after event 4. We give an example for order 21345 below:

cp(xlb3j-lb3j, a3i-2b3j-lb3j) + cd(x1, a3i-2) +

cp(a3i-2b3j-lb3j, a3i-2a3i-lb3j) + cd(b3j-l, a3i-l) +

ca~' 1 (a3i-2a3i-la3i, b3j-2b3j-lb3j, x1, x2) finds the optimal cost of the mu­

tations assuming that event 1 is after event 2 and event 5 is before event 4. In

this function, we need only consider the first two mutation events (i.e. events

1 and 3). The last mutation event (i.e. event 5) is considered in computing

c8 (i, j). An example for order 21354 is

Pcast~1345 = ep(xlb3j-lb3j, a3i-2b3j-lb3j) + cd(x1, a3i-2) +

cp(a3i-2b3j-lb3j, a3i-2a3i-lb3j) + cd(b3j-1, a3i-I).

The third function, ca~'0 (a3i-2a3i-la3i, b3j-2b3j-lb3j, x1, x2), computes the

optimal cost of the mutations assuming that event 1 is before event 2 and

event 5 is after event 4. But in this function we need consider the last two

mutation events (i.e. events 3 and 5). The first mutation event (i.e. event

1) has been included in p4 (i, j, x11 1). We give an example for order 12345 as

follows:

Pcost~2345

41

CHAPTER 3. CONTEXT-FREE CODON ALIGNMENT

the case when which event 1 is before event 2 and event 5 is before event 4.

In this function, we need only consider one mutation event (i.e. event 3).

The other mutation events (i.e. events 1 and 5) are computed inp4 (i,j,x1 , 1)

and c8(i, j) respectively. The following is an example for order 12354:

Finally, the cost of an optimal alignment between A(i) and B(j) ending

with a type 8 codon alignment is computed as

cs(i,j) = min (Ps(i,j -1,x1,£T1,x2,£T2) +£T2 ·tmp),
"'1 E{A,C,G,T}
111 ,a2E{O,l}

where x 2 = b3j and

Similarly, for x1, x2 E {A, C, G, T} and £T1, £T2 E {0, 1},

Also,

cg(i, j) = min (pg(i- 1, j, x1, £T1, x2, £T2) + £T2 · tmp),
"'1 E{A,C,G,T}
111 ,a2E{O,l}

42

CHAPTER 3. CONTEXT-FREE CODON ALIGNMENT

where x2 = a3i and

a.
3z-1

r----r----r----r----r----r----,
I I I I I I ;,

I I I ; I t 5
: : I I I : , e~en
r----r----r----r----r----r----,
I I I I I I I
I I I I I I I
1 I I I I I I
I I I I I I I
r----;----r----r----r----r----,

I I I I I

: : eve:nt 4 1 1

I I I I I r----r----r----r----r---
1 I I I I
I I I
I I I
I I I I I r----r----r----r----r----

1 I I I I I

: ~vent~ event a:
I I ----;----,

I
I
I

I I I -----------------------------

Figure 3.8: Dealing with trailing codon alignments of type 10.

' We deal with alignments ending with type 10 codon alignments by com-

bining the techniques for type 4 and type 7 codon alignments, making use

of the information p4 (i,j,x17 0) and p4 (i,j,x1,1). We still cut the codon

alignment at event 4 and consider the order of events 5 and 4; but we

hypothesize the nucleotide x2 instead of b3i (see Figure 3.8). The cost

P1o (i, j, x1, cr1, x2, cr2) is defined in a straightforward way as follows, and re-

quires a table of 64mn entries to store.

43

CHAPTER 3. CONTEXT-FREE CODON ALIGNMENT

For x1,x2 E {A,C,G,T} and 0'1,0'2 E {0, 1},

Also,

c10(i,j) = min (p10(i- 1,j, x1, 0'1, x2, 0'2) + 0'2 · tmp),
"'1 E{A,C,G,T}

CT1 ,CT2 E { 0,1}

where x2 = a3i and

Similarly, for x1,x2 E {A,C,G,T} and 0'1,0'2 E {0,1},

Also,

cu(i,j) = min (Pn(i,j -1,x1,0'1,x2,0'2) +0'2 x tmp),
"'1 E{A,C,G,T}
CT1,CT2E{0,1}

where x2 = b3i and

44

CHAPTER 3. CONTEXT-FREE CODON ALIGNMENT

In the above equations, ca~6'u2 (a3i-2a3i-Ia3i, b3j-2b3j-Ib3j, xi, x2)

and can'u
2

(a3i-2a3i-Ia3i, b3j-2b3j-Ib3j, XI, X2) COmpute the COStS Of mutations

for type 10 and 11 respectively, using the same idea as that for type 8.

This algorithm can be easily expanded to also produce an optimal align­

ment between A and B, using the standard back-tracking technique [2].

The above discussion yields a quadratic time dynamic programming al­

gorithm which needs to compute 12 tables of a total size of only (4 + 4 *

8 + 4 * 64)mn = 292mn entries. (The first four tables are for storing

c(i, j), ci (i, j), c2 (i, j), and c3 (i, j).) The algorithm has been implemented

as Context-free CAT in GNU C, and we will show some test results in the

next section.

3.3 The comparison of CAT and Context-free

CAT

We have performed tests of the two programs CAT and Context-free CAT

on 3 pairs of HIV1 and HIV2 sequences and 13 groups of simulated sequences

of length 100 through 1500 bases. The three pairs of real data include (i)

HIV1 gag gene (bases 790 .. 2304) and HIV2 gag gene (bases 548 .. 2113), (ii)

HIV1 vif gene (bases 5053 .. 5631) and HIV2 vif gene (bases 4868 .. 5515), and

(iii) HIV1 nef gene (bases 8784 .. 9434) and HIV2 nef gene (bases 8562 .. 9329).

45

CHAPTER 3. CONTEXT-FREE CODON ALIGNMENT

Since we are not sure how to combine cost parameters for amino acids with

those of nucleotides, two combinations were considered (a) Dayhoff PAM

40 Matrix for amino acids and DNA PAM 30 Matrix for nucleotides and

(b) Dayhoff PAM 40 Matrix for amino acids and DNA PAM 47 Matrix

for nucleotides. Overall, CAT and Context-free CAT produced very similar

alignments in these tests. The following table summarizes the discrepancy

between the alignments produced by the two programs.

Table 3.2: The discrepancy between alignments produced by the two
programs.

PAM 40 & DPAM 30 PAM 40 & DPAM 47
location type location type

HIV1&2 gag 2/14 4/12 1/10 3/9
HIV1&2 vif 1/7 1/6 1/7 2/6
HIV1&2 nef 1/7 3/6 0/7 4/7

In the table, we first count the number of codon alignments involving

indels (i.e. any codon alignment except those of type 1) that are placed

at different locations by the two programs, and then the number of codon

alignments that are at the same locations but have different types. For

example, the entry 2/14 means that out of the 14 codon alignments involving

indels, two are placed at different locations by the two programs, and the

entry 4/12 means that out of the 12 remaining codon alignments four have

different types. In all the cases where indels are placed at different locations,

46

CHAPTER 3. CONTEXT-FREE CODON ALIGNMENT

one program merges two adjacent indels produced by the other program. On

the other hand, the discrepancy in the types of codon alignments is always

because Context-free CAT would sometimes expand a type 2 or 3 codon

alignment produced by CAT into a codon alignment of type 4, 5, 6, or 7 by

shifting the indel inside an adjacent codon alignment. It is interesting to

note that CAT produces very few codon alignments of types higher than 3

while Context-free CAT produces types 4, 5, 6, and 7 almost as frequently

as types 2 and 3. Also observe that the above discrepancies between CAT

and Context-free CAT do not change very much with the two pairs of cost

parameters we used.

The 13 groups of simulated sequences were generated randomly on a naive

stochastic model .using some fixed mutation and indels rates. The amino

acid mutation/indel rates are based on Dayhoff PAM 120 Matrix and the

nucleotide mutation/indel rates are based on DNA PAM 30 Matrix. We ran

CAT and Context-free CAT on these groups of data using cost parameters

consistent with the above rates. It is observed that both programs again

produced very similar alignments and, moreover, they were all able to identify

most indels correctly.

Table 3.2 shows the average speeds of CAT and Context-free CAT on

SPARC Ultra II Model1300. The speed-up of Context-free CAT over CAT is

47

CHAPTER 3. CONTEXT-FREE CODON ALIGNMENT 48

Table 3.3: The average speeds (in seconds) of CAT and Context-free CAT.

I length 102 1 201 1 3oo 1 402 1 501 1 6oo 1

CAT 898.5 1872 2496 3032.5 3486 3463
C.f. CAT 1 2.5 5.5 9 13.5 17.5

1 length 102 1 801 1 9oo 1 1002 1 12oo 1 15oo 1

I CAT I 4166.5 I 4490 L 4820 I 5414.5 I 6177 I 8138
I C.f. CAT I 26.5 J 33.5 I 40 I 50.5 I 68 1 104

illustrated in Figure 3.9. The speed-up decreases with the length of sequences

because the "atomic" codon alignments (i.e. the ones that cannot be further

reduced), such as the codon alignments of types 4 through 11 for CAT,

are more complicated and require more time to compute than the ones for

Context-free CAT, and the percentage of time spent by each program on

setting up the atomic codon alignment table decreases with the length. We

expect the speed-up to approach 1~~~4 =57 (but never goes below 57) when

the sequences get really long.

In the next chapter, we extend our context-free codon alignment algo-

rithm to allow sequences with frame-shift errors and overlapping frames.

CHAPTER 3. CONTEXT-FREE CODON ALIGNMENT 49

900

800

700

600

0., 500
::I
I

"' 400 0
0
0., 300
{/J

200

100

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

length

Figure 3.9: The speed-up of Context-free CAT over CAT.

Chapter 4

An Extended Model and

Algorithm

Indels of lengths indivisible by three cause a coding frame to shift, and are

often referred to as frame-shift errors. It is known that sometimes adjacent

co dons may overlap (i.e. share common nucleotides), thus creating overlap­

ping frames. Frame-shift errors and overlapping frames are two complications

in protein sequence alignment. Since Rein's model combines both DNA and

protein alignment, it is clearly desirable that our context-free codon align­

ment algorithm can be extended to handle frame-shift errors and overlapping

frames. In this chapter, we extend our context-free codon alignment model

so that it does not require the length of an indel to be a multiple of three.

From now on, we will use the term type t atomic alignment instead of type t

50

CHAPTER 4. AN EXTENDED MODEL AND ALGORITHM

codon alignment because of the existence of frame-shift errors.

The rest of this chapter is organized as follows. In Section 4.1 we intro-

duce frame-shift errors and overlapping frames. We extend our algorithm

to handle frame-shift errors in Section 4.2. In Section 4.3 we describe how

to handle overlapping frames using a heuristic method. The pseudo code of

our extended algorithm is listed in Section 4.4. Finally, we analyze time and

space complexity of the algorithm in Section 4.5.

4.1 The frame-shift errors and overlapping

frames problems

We know that a DNA sequence has six reading frames, three from 3' to

5' and three more from 5' to 3'. Figure 4.1 depicts three reading frames from

5' to 3' in sequence ATGGGTTAA. The other three reading frames from 3'

to 5' are similar.

Reading Frame

1

2

3

5' 3'

A T G G G T T A A

Met Gly Non

Trp Val

Gly Leu

Figure 4.1: Three reading frames from 5' to 3'.

51

CHAPTER 4. AN EXTENDED MODEL AND ALGORITHM 52

Usually, there is only one reading frame for each gene. But, occasionally

a frame-shift occurs when a gene changes its reading frame at a position of

its coding region. The new reading frame will stop at a new stop amino acid

or at the end of genome.

Sometimes, more than one gene is coded in the same region of DNA. We

call this phenomenon gene overlapping. The overlapped genes might have

different reading frames as shown in Figure 4.2. The overlapping frames

problem could be very complicated. For example, ten genes may overlap

each other in different regions, some of them from 3' to 5' and the others

from 5' to 3'. We will have to make some assumptions to simply the problem

in Section 4.3.

G A C C C T C C C T T G A A -----
Gene 1 Asp Pro Pro

Gene 2 Pro Ser Leu Glu

Figure 4.2: Two overlapped genes.

CHAPTER 4. AN EXTENDED MODEL AND ALGORITHM

4.2 An extended algorithm to handle frame­

shift errors

Since the reading frame may not be unique within a gene and a frame-shift

could occur at any position of an alignment, our algorithm to handle frame­

shift errors can't be simply based on codons. The following algorithm is based

on nucleotides. It is clear that the size of the tables thus increases by at least a

factor of nine. The framework of our algorithm is still dynamic programming,

but we need to consider more cases than in the previous algorithm because

of frame-shift errors.

Most of the notation we will use in this chapter is the same as that in the

last chapter except the following:

• Let A = a1a2a3 ... am-2am-1am, and B = b1b2b3 ... bn-2bn-1bn be two

DNA sequences. For any indices i = 0, ... , m and j = 0, ... , n, let

A(i) = a1a2a3 ... ai-2ai-1ai, and B(i) = b1b2b3 ... bj-2bj-2bj. Note that A,

B, A(i), and B(j) are based on nucleotides now instead of codons.

• Instead of using g(i) to denote an affine gap penalty, we use the follow­

ing notations. 9Dopen is the cost of opening an indel at the DNA level,

and 9Popen is the cost of opening an indel at the protein level; 9Dext is

the cost of extending an indel by a nucleotide at the DNA level, and

53

CHAPTER 4. AN EXTENDED MODEL AND ALGORITHM 54

9Pext is the cost of extending an indel by an amino acid at the protein

level; F S is a (big) constant denoting the cost of a frame-shift error.

In the following discussion, we again assume that the sequence B evolves

to the sequence A. Since the frame-shift errors problem has been introduced,

the two directions of evolution are no longer symmetric.

First, we initialize the following variables.

• c(O, 0) = 0 .

• Fori= 1, ... ,m, c(i,O) = 9Dopen + 9Popen + 9Dext. Li/3J .

• For j = 1, ... , n, c(O, j) = 9Dopen + 9Popen + 9Dext. LJ /3J.

• Fori= 1, ... , m and j = 1, ... , n, c(i, j) = oo.

• Fori= 0, ... , m, j = 0, ... , n, and t = 1, ... , 11, Ct(i,j) = oo.

We define 11 types of atomic alignments in the same spirit as codon

alignments, and classify an alignment into 11 types according to the type of

its trailing atomic alignment.

The main recurrence equation looks the same as that in the last chapter;

but now i and j are the numbers of nucleotides instead of codons in the

sequences A and B respectively:

c(i,j) = min Ct(i,j).
tE{l, ... ,ll}

CHAPTER 4. AN EXTENDED MODEL AND ALGORITHM

The recurrence equation for type 1 is the same as that in the last chapter

except that i and j are the numbers of nucleotides instead of codons in the

sequences A and B respectively:

where ca1(bj-2bj_1bj, ai-2ai-lai) has been defined in the last chapter.

A type 2 atomic alignment only involves one evolutionary event (i.e. a

deletion of any length). So p2 (i,j) is computed as follows:

Also,

P2(i,j) = min{p2(i,j- 3) + 3. 9Dext + 9Pext,

c(i, J- 3) + 9Dapen + 9Papen + 3. 9Dext + 9Pext}·

min{P2 (i, j),

P2(i, j- 1) + 9Dext + FS,

c(i,j -1) + 9Dopen + 9Popen + 9Dext + FS,

P2(i,j- 2) + 2 · 9Dext + FS,

c(i,j- 2) + 9Dopen + 9Popen + 2. 9Dext + FS}.

Analogously, p3 (i, j) is computed as

P3(i, j) = min{p3(i- 3, j) + 3. 9Dext + 9Pext,

c(i- 3,j) + 9Dopen + 9Popen + 3. 9Dext + 9Pext}·

55

CHAPTER 4. AN EXTENDED MODEL AND ALGORITHM

Also,

c3(i, j)

where

min{p3(i,j),

p3(i- 3,j- 1) + 2 · 9Dext + FS + tmp1,

c(i- 3,]· -1) + 9Dopen + 9Popen + 2. 9Dext + FS + tmpl,

P3(i- 3,j- 2) + 9Dext + FS + tmp2,

c(i- 3,j- 2) + 9Dopen + 9Popen + 9Dext + FS+ tmp2}·

tmp1 min{ ep(ai-2ai-lbj, ai-2ai-lai) + cd(bj, ai),

cp(bibi+lbi+2, aibi+lbi+2) + cd(bj, ai)}.

and tmp2 is described below.

Since there are an indel and two mutations that need to be considered

when we compute tmp2, we need to find the minimum cost by trying 3! = 6

different orders. Let the indel be event 1, the first mutation (i.e. bi-l-+ ai_1)

be event 2, and the second mutation (i.e. bi -+ ai) be event 3. We give an

example of computing the partial cost for order 213 as follows:

cost~13 = cp(bj-lbibi+l• ai-lbibi+l) + cd(bj-1, ai-l)+

cp(ai-2ai-lbj, ai-2ai-lai) + cd(bi, ai)·

From the above equation, we can see that whenever a frame-shift error

56

CHAPTER 4. AN EXTENDED MODEL AND ALGORITHM 57

occurs, we use a new reading frame to compute the costs of amino acid mu-

tations. In the following discussion, we will not explain details of computing

the minimum cost for different orders since we have done so much about

that in this chapter and the last chapter. But keep in mind, whenever a

frame-shift error occurs, we need to use a new reading frame.

A type 4 atomic alignment involves 4 evolutionary events as shown in

Figure 3.1. The basic idea of computing the cost p4 (i, j, x, O") of partial align-

ments is the same as that in Section 3.2 except that this algorithm is now

based on nucleotides instead of codons. For x E {A, C, G, T} and O" E { 0, 1},

the recurrence equation is

P4(i,j,x,O") = min{tmp,p4(i,j -l,x,O") + 9ext},

where

tmp min{ c(i- 3, j- 3) + 9Dopen + 9Popen + 3. 9Dext + 9Pext +

if x = bj_2 ; otherwise, tmp = oo.

Now c4 (i,j) could be one offive possible paths as shown in Figure 4.3. It

is computed as

CHAPTER 4. AN EXTENDED MODEL AND ALGORITHM 58

;----;----;----;----;----;----;----;----;--~11

: : : : : : : : : / :
I I I I I I I I I, I ;----;----;----;----;----;----;----;---,;----:
I I I I I 1 I I , I I
I I I I I I I I, I I

~----' - I - I -~--r--7---4----~----:

:~·~·: : .. : .. :::: :--- :--- : ----~--j/-j/---~----~----~----:
2 3 4 5 0.2 0-1 bj 1

Figure 4.3: Five possible paths for type 4.

where

t(i,j,x,a) - min{p4 (i,j-3,x,a),

P4(i, j- 4, x, a)+ FS + 9Dext,

P4(i,j- 5,x,a) + FS + 2 · 9Dext}·

trying 4! = 24 different orders. It corresponds to path 5 in Figure 4.3. Again,

4 in Figure 4.3 depicts this case. Again, in these functions we need to use

CHAPTER 4. AN EXTENDED MODEL AND ALGORITHM 59

new reading frames after frame shift errors occur.

In Figure 4.3, path 1 corresponds to the first case in t(i,j,x,CJ) equation,

path 2 is for the third case in the equation, and the second case is depicted

by path 3.

p5 (i,j, x, CJ) is similar to that for type 4, and so we define p5(i,j, x, 0) and

p5 (i, j, x, 1) similarly. Again, for x E {A, C, G, T} and CJ E {0, 1}, p5 (i, j, x, CJ)

is computed as

Ps(i,j,x,CJ) = min{tmp,ps(i -1,j,x,CJ) + 9ext},

where

tmp c(i- 3, j- 3) + 9Dopen + 9Popen + 3. 9Dext + 9Pext +

if x = ai_2; otherwise, tmp = oo.

But the idea to compute c5 (i, j) is a little different from that for c4 (i, j)

since the frame-shift errors problem is introduced. The recurrence equation

lS

cs(i,j) min {p5(i- 3, j, x, CJ) + ca~(bi-2bi-lbj, ai-2ai-lai, x),
zE{A,C,G,T}

uE{O,l}

Ps(i, j, X, CJ) + FS- 9Dext- 9Pext +

Ps(i- 3,j -l,x, =sigma)- 2 · 9Dext + FS + tmpz,

CHAPTER 4. AN EXTENDED MODEL AND ALGORITHM 60

c(i- 3,j- 1) + 9Dopen + 9Popen + 9Dext + FS + tmp2}·

where tmp2 is similar to that in type 3. It computes the minimum cost

of three events (i.e. bj-2 -+ x, an insertion, and bi -+ ai) by trying 3! = 6

different orders. It uses the information from p5 and surrounding nucleotides.

The basic idea for computing alignments ending with type 6 atomic align-

ments is similar to the idea used in Section 3.2. The recurrence equation for

p6(i,j,x 1 ,a) is almost the same except that it is based on the number ofnu-

cleotides instead of codons. Since frame-shift errors are introduced, we need

to find the minimum cost corresponding to the 5 possible paths as shown in

Figure 4.4. p6 (i, j, x, a) is computed as

Figure 4.4: Five possible paths for type 6.

P6(i,j,x, a) - min{c(i- 3,j- 3) + 9Dopen + 9Popen + 3. 9Dext + 9Pext +

P6(i, j- 3, x, a)+ 3. 9Dext + 9Pext},

CHAPTER 4. AN EXTENDED MODEL AND ALGORITHM 61

The cost of an optimal alignment between A(i) and B(j) ending with a

type 6 atomic alignment, denoted Cf3 (i, j), is

where x = bi and

t(i,j,x,o-) min{p6 (i, j- 3, x, o-),

P6(i,j- 4,x,o-) + FS + 9Dext,

P6(i, j- 5, x, o-) + FS + 2 · 9Dext}·

by trying 4! = 24 different orders. It corresponds to path 5 in Figure 4.4.

ing 24 different orders. Path 4 in Figure 4.4 is for this case.

In Figure 4.4, path 1 corresponds to the third case in t(i, j, x, o-) recurrence

equation, path 2 is for the second case in the equation, and the first case is

depicted by path 3.

CHAPTER 4. AN EXTENDED MODEL AND ALGORITHM

Similarly,p7(i,j,x,a) is computed as

P7 (i, j, X, a) min{c(i- 3,j- 3) + 9Dopen + 9Popen + 3. 9Dext + 9Pext +

P7(i- 3, j, x, a)+ 3. 9Dext + 9Pext}·

Using the same technique as that for type 5, we can compute c7 (i, j) as

follows.

c7(i,j) - min {p7(i- 3, j, x, a)+
uE{O,l}

a· (cd(bi, ai) + ep(ai-2ai-lbj, ai-2ai-lai)),

P7(i,j, X, a- 2 · 9Dext- 9Pext + FS,

P7(i- 3,j- 2, x, a)- 9Dext + FS + tmp2,

c(i- 6,j- 4) + 9Dopen + 9Popen + 2 · 9Dext + tmp3}.

where x = ai and tmp2 and tmp3 are functions of computing partial costs

using the same technique as that for type 5.

Although our idea can be extended to handle atomic alignments involv-

ing two indels (i.e. types 8, 9, 10, and 11), it is clear that the speed of our

algorithm would become too slow. For example, there are 5 · 5 = 25 possible

paths to consider in an atomic alignment of type 8. Since in this extended

62

CHAPTER 4. AN EXTENDED MODEL AND ALGORITHM

model we have already introduced a factor of nine, considering arbitrary in­

dels in types 8, 9, 10, and 11 alignments would mean a slowdown factor of

25 · 9 = 225. Therefore we will assume the lengths of indels in the types 8,

9, 10, and 11 atomic alignments are multiples of three and use the recur­

rence equations for types 8 through 11 in the last chapter for our extended

algorithm.

Although the table entries do not increase in this algorithm, computation

is multiplied by a factor of 5 for types 2 through 7 since we need to consider 5

possible paths for each of them. Therefore, the time complexity of the above

algorithm is 0(428mn) where 428 = 1 + 1 + 5 + 5 + 5 · 8 · 4 + 64 · 4.

The space complexity of the algorithm is 0(3mn) where 3 2-dimensional

matrices are used for recording information about the terminating atomic

alignments.

4.3 A heuristic method to handle overlapping

frames

The general case of the overlapping frames problem is too complex. We

need to make the following assumptions to simplify the problem.

Let A= a1a2 ..• am and B = b1b2 ... bn be two overlapped coding regions in

two different DNA sequences. For i = 1, ... , k, where k > 1, GeneA[i] is a

63

CHAPTER 4. AN EXTENDED MODEL AND ALGORITHM

gene in A and GeneB[i] is a gene in B. GeneA[i].start is the start position

of the ith gene in A, GeneA[i].end is the end position of the ith gene in A,

and GeneA[i].name is the name of GeneA[i]. GeneB[i].start, GeneB[i].end,

and GeneB[i].name are defined similarly. We assume

1. GeneA[1].start = 1, GeneA[k].end = m, GeneB[1].start

GeneB{k].end = n.

2. Fori= 2, ... , k,

3. For i = 1, ... , k,

GeneA[i- 1].start:::; GeneA[i].start,

GeneA[i- 1].end > GeneA[i].start,

GeneB[i- 1].start:::; GeneB[i].start,

GeneB[i- 1].end > GeneB[i].start.

GeneA[i].name = GeneB[i].name.

1, and

Before describing our heuristic method, we need to introduce a new matrix

named G N. The matrix G N whose size is mn saves the number of overlapped

genes at point (i,j) for i = 1, ... , m and j = 1, ... , n. GN can be easily

computed using standard information about overlapped genes.

64

CHAPTER 4. AN EXTENDED MODEL AND ALGORITHM 65

Since all 11 type atomic alignments use the same idea, we only list recur-

renee equations for types 1 and 4 below. The basic idea is that we multiply

costs of indels and mutations by the number of overlapped genes.

For type 1, the recurrence equation is

For type 4,

P4(i, j, x, a) = min{tmp,p4(i, j- 1, x, a)+ GN(i, j) · 9ext},

where

tmp min{c(i- 3,j- 3) + GN(i,j). (9Dopen + 9Popen +

if x = bi_2; otherwise, tmp = oo. Also,

min {t(i, j, x, a)+ GN(i, j) · car(bi-2bi-lbi, ai-2ai-lai, x),
xE{A,C,G,T}

uE{O,l}

c(i- 3, j- 4) + GN(i, j) · ca4(bj-3bj-2bj-lbj, ai-2ai-lai),

where

t(i,j,x,a) min{p4(i, j- 3, x, a),

P4(i, j- 4, x, a)+ GN(i, j) · (FS + 9Dext),

P4(i, j- 5, x, a)+ GN(i, j) · (FS + 2 · 9Dext)}.

CHAPTER 4. AN EXTENDED MODEL AND ALGORITHM

One more thing we need to do is that for i = 1, ... , m and j = 1, ... , n,

if GN(i,j) > GN(i- 1,j) and GN(i,j) > 1, we add the cost of an indel,

whose length is i - GeneB[t].start where GeneB[t] is the new overlapped

gene, to c(i,j). The case in which GN(i,j) > GN(i,j -1) and GN(i,j) > 1

is similar.

4.4 The pseudo code

Under the assumptions discussed in the last section, we list the pseudo

code of our extended algorithm to handle overlapping frames as well as coding

and non-coding regions as follows.

Algorithm DNA_Protein_Alignment

1. Get the user input data.

2. Split coding and non-coding regions.

3. For each non-coding region, simply do a DNA alignment.

4- For each coding region, check if there are overlapped frames in it. If

yes, go to 6; otherwise, do the following step.

5. Compute the minimum cost of this coding region using the algorithm

discussed in Section 4.2 and generate the alignment for it. Then go to

7.

66

CHAPTER 4. AN EXTENDED MODEL AND ALGORITHM

6. Call the Overlapping_Region function.

7. Concatenate all the alignments of coding and non-coding regions and

add all the costs of them.

8. Output the result.

Function Overlapping_Region

1. Compute the matrix GN.

2. Fori= 1, ... , m and j = 1, ... , n,

(a) If {GN(i,j) = 0}, move to the next position.

{b) If (GN(i, j) = 1), use the algorithm discussed in Section 4.2.

{c) If {GN(i, j) > 1), use the algorithm discussed in Section 4.3.

3. Generate the alignment according to knowledge of the ~erminating atomic

alignments.

4.5 Time and space complexity analysis

Since we use different methods to handle non-coding regions, coding re­

gions without overlapped genes, and coding regions with overlapped genes,

we discuss time and space complexity of them separately.

Let k1 be the number of non-coding regions in two DNA sequences A

and B. For i = 1, ... , k1 , let mi be the number of nucleotides in the ith

67

CHAPTER 4. AN EXTENDED MODEL AND ALGORITHM 68

non-coding region of sequence A and ni be the number of nucleotides in the

ith non-coding region of sequence B. The time complexity for non-coding

regions is

kl

0(2::: 3mini),
i=l

and the space complexity is

Let k2 be the number of coding regions without overlapped genes. For

j = 1, ... , k2 , let mj be the number of nucleotides in the jth coding region

without overlapped genes of sequence A and ni be the number of nucleotides

in the jth coding region without overlapped genes of sequence B. The time

complexity for coding regions without overlapped genes is

k2
O(L 428mjnj),

j=l

and the space complexity is

Let k3 be the number of coding regions with overlapped genes. For l =

1, ... , k3 , let m1 be the number of nucleotides in the lth coding region with

overlapped genes of sequence A and nl be the number of nucleotides in the

lth coding region with overlapped genes of sequence B. Let t1 be the number

CHAPTER 4. AN EXTENDED MODEL AND ALGORITHM 69

of points (i,j) with GN(i,j) > 0, where 1 :::; i :::; mt and 1 :::; j :::; n1• The

time complexity for coding regions with overlapped genes is

ka
O(L428tt),

l=l

and the space complexity is

where the additional two-dimensional matrix is for GN.

Finally, the time complexity of our extended algorithm is

kl ~ ~

O(L3mini + .L:428mini + .L:428tt),
i=l j=l l=l

and the space complexity is

In the next chapter, we will implement our extended algorithm and report

some test results.

Chapter 5

Implementation and Test_:

Results

DPA, which is short for DNA and Protein Alignment, is the name of a

software develope<!by us to implement the algorithm discussed in Chapter 4.

Unlike Context-free CAT, DPA can handle frame-shift errors and overlapping

frames.

In Section 5.1 we show the environment and programming language used

in developing DPA. Then in Section 5.2 we describe the key modules of DPA.

We analyze time and space used by DPA in Section 5.3. We give some test

results concerning frame-shift errors and overlapping frames in Sections 5.4

and 5.5 respectively.

70

CHAPTER 5. IMPLEMENTATION AND TEST RESULTS

5.1 The environment and programming lan­

guage used in developing DPA

We developed DPA on a Sun Spare Ultra II Model 1300 using GNU

C. The reason we did not use Java or C++ is that most biologists are not

familiar with them. Another reason is that Java is slower than C and speed

is a key consideration in our implementation.

DPA uses the algorithm discussed in the last chapter and makes the same

assumptions listed in Section 4.3 for overlapping frames. Some ideas to speed

up our program will be discussed in the next section. We do our best to make

DPA as fast as possible.

5.2 Key modules of DPA

DPA consists of 5 modules, named Input, Split, Cost, Align, and Output.

We will describe each module in the following subsections.

5.2.1 Input module

Input module is responsible for getting the user input data. DPA reads

data from two files, named DPA_Job and DPA_Setting. DP A_Job is a job

description file. All parameters used by DPA are in the DPA_Setting file.

71

CHAPTER 5. IMPLEMENTATION AND TEST RESULTS

The Input module reads the data from the two files and saves them in some

variables used in the other modules.

5.2.2 Split module

In this module, DPA splits the coding and non-coding regions and finds

pairs of genes to align. For non-coding regions, it only does DNA alignment.

For coding regions, if two genes in different DNA sequences have the same

name and they don't overlap with other genes, it is straightforward to align.

But if there is overlapping in their coding regions, sometimes we can align

all the genes in this region, sometimes we cannot. For example, suppose that

in sequence A, genel is before gene2 and they overlap each other; but in

sequence B, gene2 is before genel and they also overlap each other. There­

fore, we must make a decision on which pair of genes should be aligned. DPA

chooses the first gene in the first DNA sequence and its counterpart. If a user

wants to align the second gene in the first sequence to its counterpart in the

second sequence, the user can swap the two genes in the first DNA sequence

in the DPA job file, i.e. gene2 in the first sequence should be moved to the

first position in this coding region.

Another issue that should be mentioned here is that DPA changes all the

characters in coding regions to upper case before passing them to the Cost

72

CHAPTER 5. IMPLEMENTATION AND TEST RESULTS

module. This speeds up our program significantly since it saves almost half

of the comparisons.

After splitting coding and non-coding regions and considering the over­

lapping frames problem, Split module passes the coding regions to the Cost

module and concatenates the results from the Align module to generate the

whole alignment.

5.2.3 Cost module

The Cost module is the heart of DPA. It computes the minimum cost

and remembers all the path information of an optimal alignment in the table

LC whose size is m·n. LC(i,j).type is the type of the last atomic alignment

of A(i) and B(j). LC(i,j).indell and LC(i,j).indel2 are the lengths of the

first indel and the second indel of the last atomic alignment of A(i) and B(j)

respectively.

As discussed in the last chapter, if we consider frame-shift errors in atomic

alignments of types 8, 9, 10, and 11, then the speed of our algorithm would

be too slow in practice. Thus, DPA only considers frame-shift errors in the

first seven types, and requires that an indel in the last four types must be a

multiple of three nucleotides.

We find that DPA spends a lot of time computing the base cases for types

73

CHAPTER 5. IMPLEMENTATION AND TEST RESULTS 74

1, and 4, ... ,11. A base case of type 1 needs to consider 3! = 6 different orders.

For types 4, 5, 6, and 7, each base case requires the computation of 4! = 24

different orders. For types 8, 9, 10, and 11, 5! = 120 different orders must

be tried in the base case. We use some base case tables to avoid duplicate

computations for the same base case.

Another interesting issue is that we observe that the costs of some orders

in an atomic alignment may be identical, hence we only need to compute one

of them when this occurs. We give two examples below.

For type 4, the costs of orders 1342, 3142, and 3412 are always equal (see

Figure 3.1). The reason is simple. Whenever an indel separates an alignment

into two parts, the events in the two different parts have no influence on each

other. The same phenomenon can be found in type 8. For example, the cost
- .

of the following orders are same (see Figure 3.3): 13524, 15324, 31524, 35124,

51324, 53124, 13542, 15342, 31542, 35142, 51342, and 53142.

One more trick to speed up our program is to use the base case table of

type 1 in computing the base cases of types 4, ... ,11 for some special orders

which have three continuous mutations after deletions or before insertions.

When Cost module finishes its job, the minimum cost of two input se-

quences has been found and information about the path has been remembered

in the matrix LC.

CHAPTER 5. IMPLEMENTATION AND TEST RESULTS

5.2.4 Align module

The Align module uses the matrix LC to generate alignments using the

standard back-tracking technique. It starts at entry LC(m, n). Since the

type and indel lengths of the last atomic alignment have been computed

and recorded in the Cost module, it is trivial to generate the last atomic

alignment. Then we move to the end position of the second to last atomic

alignment, and so on. For example, if LC(i,j).type = 8, LC(i,j).indell = 3,

and LC(i,j).indel2 = 9, the next position to consider would be LC(i-3,j-

3-3- 9) (i.e. LC(i- 3, j -15)). The Align module concatenates all atomic

alignments together and terminates at entry LC(O, 0).

5.2.5 Output module

DP A translates codons to amino acids for each gene in this module, and

outputs the result according to the format used in GenAl[4].

5.3 Time and space complexity analysis of

DPA

Our work station has 512MB physical memory and a Sun Spare Ultra II

300MHz cpu. We have tested 16 groups of sequences with lengths ranging

from 100 to 5000 nucleotides. We summarize the results in Table 5.1 and

75

CHAPTER 5. IMPLEMENTATION AND TEST RESULTS 76

Table 5.1: Time and space of DPA

Jlength(nuc) 11oo I 2oo I 3oo I 4oo I 5oo I 6oo I 1oo I 8oo I
space(MB) 5 6 8 9 12 14 17 20 1

time(sec) 5 19 41 72 114 165 222 292 1

IIength(nuc) 1 9oo 1 10oo 1 12oo 1 15oo 1 2ooo 1 3ooo 1 4ooo 1 5ooo 1

l space(MB) J 23 I 27 34 48 J 76 J 154 1 258 390
I time(sec) 1 374 1 459 679 1085 1 1942 1 4421 1 8394 12392

illustrate the relation between speed and length in Figure 5.1.

5.0

4.8

time 4.6

2 length 4
·
4

4.2

4.0

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 (nuc)

length

Figure 5.1: The time complexity analysis of DPA.

From Figure 5.1, we can see that DPA spends a significant amount of

time in computing the costs of atomic alignments, even though a table is

used to avoid duplicate computations for the same atomic alignment. This is

especially obvious in the first region (i.e. 100 ... 300 nuc) of the figure, where

CHAPTER 5. IMPLEMENTATION AND TEST RESULTS

the timejlength2 ratio deceases from 5 to 4.56. When the same set of cost

parameters are used again and again, it is possible to speed up the program

by recycling the atomic codon alignment cost table. In the second region (i.e.

300 ... 800 nuc) of the figure, the ratio is stable. Its value fluctuates between

4.5 and 4.58. In the third region (i.e. 900 ... 1500 nuc), it increases slowly

since the memory begins to become a factor.

In general, the speed of DPA is acceptable in practice. It is much faster

than CAT, but slower than Context-free CAT due to the computation based

on the number of nucleotides instead of the number of codons in CAT. But

DPA can handle frame-shift errors and overlapping frames while CAT does

not.

The space used by the base case tables is fixed and not too great. Since

we use the standard back-tracking technique instead of Hirschberg's divide

and conquer algorithm, we are able to save some time although we use more

space to remember the path information. This is a trade-off between time

and space, and we think that time is more important than space in our

program.

77

CHAPTER 5. IMPLEMENTATION AND TEST RESULTS 78

Table 5.2: Test results concerning frame-shift errors (1)

localization

5.4 Tests concerning frame-shift errors

When there are no frame-shift errors and overlapping frames in an align-

ment, the test r:esults of DPA and Context-free CAT are the same except

that DPA is slower than Context-free CAT. In this section, we will describe

the test results involving frame-shift errors.

We have performed two groups of tests on frame-shift errors using Dayhoff

PAM 120 Matrix and DNA PAM 47 Matrix. In the first group, we fix the rate

of frame shifting indel, and vary the mutation rate. Both rates of insertion

and deletion we used are 0.01. The test results with mutation rate changes

from 0.1 to 0.8 are listed in Table 5.2. In the detection row of the table,

it gives the number of indels detected by DPA and the number of original

indels respectively. The distance between the original indel and the detected

indel is listed in the localization row. For example, 3/0 means that the first

indel is shifted by 3 nucleotides and the second indel is exactly at the same

position as the original one.

From the table we can see that when the mutation rate is less than 0.4,

CHAPTER 5. IMPLEMENTATION AND TEST RESULTS

DPA can correctly identify the indels and frame shifts. When the mutation

rate is between 0.4 and 0.6, DPA can still detect all the indels, but may

put some of them at slightly wrong locations. When the mutation rate is

greater than 0.6, although DPA can detect the indels, the locations of them

are totally off. We list one of the results when the mutation rate is 0.2 below.

The simulated data is

1 11 21 31 41 51

agacccgctg aggcggcaac agatgcggtg agacaaactc agcgagcacc agtgggggtg

agacgagctg ag----caac agatacgttg agacaaactc agccaccagc agtggcggtg

61 71 81 91 101 111

ggagcagcat ---cagacct gcaccgacat ggagcaatca caactaggaa tacggcagct

ggagcggcat caccagccct ccaaagacat ggctcaatca caactctcaa tacagcagct

The output pr_oduced by DPA is

This is DPA, Version 0.90 Betal.

Written by Bin Wu <binvu~church.dcss.McMaster.CA>.

Copyright (c) 1998 by Tao Jiang t Bin Wu. All rights reserved!

One optimal codon alignment of two input sequences is

Arg Pro Ala Glu Ala Ala Thr Asp Ala Val Arg Gln

1 a g a c c c g c t g a g g c g g c a a c a g a t g c g g t g a g a c a a

1 a g a c g a g c t g a g - - - - c a a c a g a t a c g t t g a g a c a a

Arg Arg Ala Glu Gln Gln Ile Arg Non Asp Lys

Thr Gln Arg Ala Pro Val Gly Val Gly Ala Ala

37 a c t c a g c g a g c a c c a g t g g g g g t g g g a g c a g c a t

33 a c t c a g c c a c c a g c a g t g g c g g t g g g a g c g g c a t c a

Leu Ser His Gln Gln Trp Arg Trp Glu Arg His His

79

CHAPTER 5. IMPLEMENTATION AND TEST RESULTS 80

Table 5.3: Test results concerning frame-shift errors (2)

I mutation rate I o.1 1 o.2 1 o.3 1

detection 4/4 1 4/4 1 4/4
localization 0/1/0/1 1 10/1/0/o 1 10/1/0/0

I mutatiOn rate I oA I o.s 1 o.6 1

I detection I 3/4 4/4 2/4
I localization I 10/21/3/oo 9/3/3/0 24/oo/60/oo

Ser Asp Leu His Arg His Gly Ala Ile Thr Thr Arg

71 - c a g a c c t g c a c c g a c' a t g g a g c a a t c a c a a c t a g g

69 c c a g c c c t c c a a a g a c a t g g c t c a a t c a c a a c t c t c

Gln Pro Ser Lys Asp Met Ala Gln Ser Gln Leu Ser

Asn Thr Ala Ala

106 a a t a c g g c a g c t

105 a a t a c a g c a g c t

Ile Gln Gln

The minimum cost is 1901

Thank you for using DPA!

See you next time!

In the second group we fix the frame shifting insertion and deletion rates

at 0.02. Again, we vary the mutation rate. The test results are summarized in

Table 5.3. From the table, we can see that the performance of DPA worsens

when more indels are introduced.

CHAPTER 5. IMPLEMENTATION AND TEST RESULTS

5.5 Tests concerning overlapping frames

With regard to overlapping frames, we have tested several groups of

simulated sequences and 3 pairs of real sequences. The 3 pairs of real data

include (i) HIVMN coding region for gag and pol genes, HIVNDK coding

region for gag and pol genes. (ii) HIVMN coding region for vif and vpr

genes, HIVNDK coding region for vif and vpr genes. (iii) HIVMN coding

region for tat1 and rev1 genes, HIVNDK coding region for tat1 and rev1

genes. Again, we use Dayhoff PAM 120 Matrix for amino acids and DNA

PAM 4 7 for nucleotides.

The following scripts are the outputs of DPA for 3 pairs of real data.

Since the output for gene gag and pol is too long (14 pages), we only list a

part of that.

A part of the output for gag and pol genes is

Cys Arg Ala Pro Arg Lys Arg Gly Cys Trp Lys Cys

1222 t g c a g g g c c c c t a g g a a a a g g g g c t g t t g g a a a t g t

1207 t g c a g g g c c c c t a g a a a a a a g g g c t g t t g g a a a t g c

Cys Arg Ala Pro Arg Lys Lys Gly Cys Trp Lys Cys

Gly Lys Glu Gly His Gln Met Lys Asp Cys Thr Glu

1258 g g a a a g g a a g g a c a c c a a a t g a a a g a t t g t a c t g a g

1243 g g a a g g g a a g g a c a c c a a a t g a a a g a t t g c a c t g a a

Gly Arg Glu Gly His Gln Met Lys Asp Cys Thr Glu

Phe Phe Arg Glu Asp Leu Ala Phe

Arg Gln Ala Asn Phe Leu Gly Lys Ile Trp Pro Ser

1294 a g a c a g g c t a a t t t t t t a g g g a a g a t c t g g c c t t c c

1279 a g a c a g g c t a a t t t t t t a g g g a a g a t t t g g c c t t c c

Arg Gln Ala Asn Phe Leu Gly Lys Ile Trp Pro Ser

Phe Phe Arg Glu Asp Leu Ala Phe

81

CHAPTER 5. IMPLEMENTATION AND TEST RESULTS

Leu Gln Gly Lys Ala Glu Phe Ser Ser Glu Gln

Cys Lys Gly Arg Arg Asn Phe Pro Gln Ser Arg

1330 t g c a a g g g a a g g c - - - g g a a t t t t c c t c a g a g c a g a

1315 c a c a a g g g a a g g c c g g g g a a t t t t c t t c a g a g c a g a

His Lys Gly Arg Pro Gly Asn Phe Leu Gln Ser Arg

Pro Gln Gly Lys Ala Gly Glu Phe Ser Ser Glu Gln

Asn Arg Ala Asn Ser Pro Thr Arg Arg Glu Leu Gln

Thr Glu Pro Thr Ala Pro Pro Glu Glu Ser Phe Arg

1363 a c a gag c c a a c a g c c c c a c c a g a a gag a g c t t c a.g g

1351 c c a g a g c c a a c a g c c c c a c c a g c a g a g a g c t t c g g g

Pro Glu Pro Thr Ala Pro Pro Ala Glu Ser Phe Gly

Thr

Val

Phe

Arg

Trp

Gly

Ala Asn Ser Pro Thr

Gly Arg Asp Asn Asn

Glu Glu Thr Thr Thr

Ser

Ser

Pro

Arg Glu Leu Arg

Leu Ser Glu Ala

Tyr Gln Lys Gln

1399 t t t g g g g a a g a g a c a a c a a c t c c c t a t c a g a a g c a g

1387 t t t g g g g a g g a g a t a a c c c c c t c t

Phe Gly Glu Glu Ile Thr Pro Ser

Val Trp Gly. Gly Asp Asn Pro Leu

Gly Glu Glu Ala Gly Asp Asp Arg Gln Gly Pro Val

Glu Lys Lys Gln Glu Thr Ile Asp Lys Asp Leu Tyr

1435 g a g a a g a a g c a g g a g a c g a t a g a c a a g g a c c t g t a t

1411 - - - c a g a a a c a g g a g c a g a a a g a c a a g g a a c t g t a t

Gln Lys Gln Glu Gln Lys Asp Lys Glu Leu Tyr

Ser Glu Thr Gly Ala Glu Arg Gln Gly Thr Val

Ser Phe Ser Phe Pro Gln Ile Thr Leu Trp Gln Arg

Pro Leu Ala Ser Leu Lys Ser Leu Phe Gly Asn Asp

1471 c c t t t a g c t t c c c t c a a a t c a c t c t t t g g c a a c g a c

1444 c c t t t a g c t t c c c t c a a a t c a c t c t t t g g c a a c g a c

Pro Leu Ala Ser Leu Lys Ser Leu Phe Gly Asn Asp

Ser Phe Ser Phe Pro Gln Ile Thr Leu Trp Gln Arg

82

CHAPTER 5. IMPLEMENTATION AND TEST RESULTS

The output for vif and vpr genes is

This is DPA, Version 0.90 Beta1.

Written by Bin Wu <binvuOchurch.dcss.McMaster.CA>.

Copyright (c) 1998 by Tao Jiang t Bin Wu. All rights reserved!

One optimal codon alignment of two input sequences is

Met Glu Asn Arg Arg Gln Val Met Ile Val Trp Gln

1 a t g g a a a a c a g a c g g c a g g t g a t g a t t g t g t g g c a a

1 a t g g a a a a c a g a t g g c a g g t g a t g a t t g t g t g g c a a

Met Glu Asn Arg Trp Gln Val Met Ile Val Trp Gln

Ala Asp Arg Met Arg Ile Arg Thr Trp Lys Ser Leu

37 g c a g a c a g g a t g a g g a t t a g a a c a t g g a a a a g t t t a

37 g t a g a c a g g a t g a g g a t t a a c a c a t g g a a a a g t t t a

Val Asp Arg Met Arg Ile Asn Thr Trp Lys Ser Leu

Val Lys His His Met Tyr Ile Ser Lys Lys Ala Lys

73 g t a a a a c a c c a t a t g t a t a t t t c a a a g a a a g c t a a a

73 g t a a a a t a c c a t a t g t a t g t t t c a a a g a a a g c t a a c

Val Lys Tyr His Met Tyr Val Ser Lys Lys Ala Asn

Gly Arg Phe Tyr Arg His His Tyr Glu Ser Thr His

109 g g a c g g t t t t a t a g a c a t c a c t a t g a a a g c a c t c a t

109 a g a t g g t t t t a t a g a c a t c a c t a t g a c a g c c a c c a c

Arg Trp Phe Tyr Arg His His Tyr Asp Ser His His

Pro Arg Ile Ser Ser Glu Val His Ile Pro Leu Gly

145 c c a a g a a t a a g t t c a g a a g t a c a c a t c c c a c t a g g g

145 c c a a a a a t a a g t t c a g a a g t a c a c a t c c c a c t a g g a

Pro Lys Ile Ser Ser Glu Val His Ile Pro Leu Gly

Asp Ala Arg Leu Val Ile Thr Thr Tyr Trp Gly Leu

181 g a t g c t a g a t t g g t a a t a a c a a c a t a t t g g g g t c t g

181 g a a g c t a g a c t g g t a g t a a c a a c a t a t t g g g g t c t g

Glu Ala Arg Leu Val Val Thr Thr Tyr Trp Gly Leu

83

CHAPTER 5. IMPLEMENTATION AND TEST RESULTS

His Thr Gly Glu Arg Asp Trp His Leu Gly Gln Gly

217 c a t a c a g g a g a a a g a g a c t g g c a t t t a g g t c a g g g a

217 c a t a c a g g a g a a a a a g a a t g g c a t c t g g g t c a g g g a

His Thr Gly Glu Lys Glu Trp His Leu Gly Gln Gly

Val Ser Ile Glu Trp Arg Lys Lys Arg Tyr Ser Thr

253 g t c t c c a t a g a a t g g a g ~ a a a a a g a g a t a t a g c a c a

253 g t c t c c a t a g a a t g g a g g a a a a g g a g a t a t a g c a c a

Val Ser Ile Glu Trp Arg Lys Arg Arg Tyr Ser Thr

Gln Val Asp Pro Asp Leu Ala Asp His Leu Ile His

289 c a a g t a g a c c c t g a c c t a g c a g a c c a c c t a a t t c a t

289 c a a g t a g a c c c t g g c c t g g c a g a c c a a c t a a t t c a t

Gln Val Asp Pro Gly Leu Ala Asp Gln Leu Ile His

Leu His Tyr Phe Asp Cys Phe Ser Asp Ser Ala Ile

325 c t g c at t a c t t t gat t g t t t t t c a g a c t c t g c c a·t a

325 a t g t a t t a t t t t g a t t g t t t t g c a g a a t c t g c t a t a

Met Tyr Tyr Phe Asp Cys Phe Ala Glu Ser Ala Ile

Arg Lys Ala Ile Leu Gly His Arg Val Ser Pro Ile

361 a g a a a g g c c a t a t t a g g a c a t a g a g t t a g t c c t a t t

361 a g a a a a g c c a t a t t a g g a c a t a t a g t t a g t c c t a g t

Arg Lys Ala Ile Leu Gly His Ile Val Ser Pro Ser

Cys Glu Phe Gln Ala Gly His Asn Lys Val Gly Pro

397 t g t g a a t t t c a a g c a g g a c a t a a c a a g g t a g g a c c t

397 t g t g a g t a t c a a g c a g g a c a t a a c a a g g t a g g a t c c

Cys Glu Tyr Gln Ala Gly His Asn Lys Val Gly Ser

Leu Gln Tyr Leu Ala Leu Thr Ala Leu Ile Thr Pro

433 c t a c a g t a c t t g g c a c t a a c a g c a t t a a t a a c a c c a

433 t t a c a g t a t t t g g c a c t a g c a g c a t t a a t a g c a c c a

Leu Gln Tyr Leu Ala Leu Ala Ala Leu Ile Ala Pro

84

CHAPTER 5. IMPLEMENTATION AND TEST RESULTS

Lys Lys Ile Lys Pro Pro Leu Pro Ser Val Lys Lys

469 a a a a a g a t a a a g c c a c c t t t g c c t a g t g t t a a g a a a

469 a a a a a g a t a a a g c c a c c t t t g c c t a g t g t t a g g a a g

Lys Lys Ile Lys Pro Pro Leu Pro Ser Val Arg Lys

Met Glu Gln Ala Pro Glu Asp

Leu Thr Glu Asp Arg Trp Asn Lys Pro Gln Lys Thr

505 c t g a c a g a g g a t a g a t g g a a c a a g c c c c a g a a g a c c

505 c t a a c a g a a g a t a g a t g g a a c a a g c c c c a g a a g a c c

Leu Thr Glu Asp Arg Trp Asn Lys Pro Gln Lys Thr

Met Glu Gln Ala Pro Glu Asp

Gln

Lys

Gly Pro Gln Arg Glu Pro

Gly His Arg Gly Ser His

Tyr

Thr

Asn Gln Trp

Ile Asn Gly

Ala

His

541 a a g g g c c a c a g a g g g a g c c a t a c a a t c a a t g g g c a c

541 a a g g g c c g c a g a g g g a g c c a t a c a a t g a a t g g a c a t

Lys Gly Arg Arg Gly Ser His Thr Met Asn Gly His

Gln Gly Pro Gln Arg Glu Pro Tyr Asn Glu Trp Thr

Leu Glu Leu Leu Glu Glu Leu Lys Asn Glu Ala Val

Non

577 t a g a g c t t t t a g a g g a g c t t a a g a a t g a a g c t g t t a

577 t a g a g c t t t t a g a g g a g c t t a a g a g t g a a g c t g t c a

Non

Leu Glu Leu Leu Glu Glu Leu Lys Ser Glu Ala Val

Arg His Phe Pro Arg Ile Trp Leu His Gly Leu Gly

613 g a c a t t t t c c t a g g a t a t g g c t c c a t g g c t t a g g g c

613 g a c a t t t t c c t a g g a t a t g g c t c c a t a g c t t a g g a c

Arg His Phe Pro Arg Ile Trp Leu His Ser Leu Gly

Gln His Ile Tyr Glu Thr Tyr Gly Asp Thr Trp Ala

649 a a c a t a t c t a t g a a a c t t a t g g g g a t a c t t g g g c a g

85

CHAPTER 5. IMPLEMENTATION AND TEST RESULTS

649 a a c a t a t c t a t g a a a c t t a t g g g g a t a c c t g g g c a g

Gln His Ile Tyr Glu Thr Tyr Gly Asp Thr Trp Ala

Gly Val Glu Ala Ile Ile Arg Ile Leu Gln Gln Leu

685 g a g t g g a a g c c at a a t a a g a a t t c t a c a a c a a c t g c

685 g t g t t g a a g c t at a a t a a g a a t t c t g c a a c a a c t a c

Gly Val Glu Ala Ile Ile Arg Ile Leu Gln Gln Leu

Leu Phe Ile His Phe Arg Ile Gly Cys Arg His Ser

721 t g t t t at t c at t t c a g a a t t g g g t g t c g a c a t a g c a

721 t g t t t a t t c a t t t cagaat tgggtgt c a a c a t a g c a

Leu Phe Ile His Phe Arg Ile Gly Cys Gln His Ser

Arg Ile Gly Ile Ile Arg Gln Arg Arg Ala Arg Asn

757 ! a 11. t a g g c a t t at t c g a c a g a g g a g a g c a a g a a at g

757.g a at a a g t at t a c t c g a c a g a g a a g a g c

Arg Ile Ser Ile

Gly Ala Ser Arg

793 g a g c c a g t a g at

793 g at c c a g t a gat

Gly Ser Ser Arg

The minimum cost is 7962

Thank you for using DPA!

See you next time!

Thr Arg Gln Arg Arg Ala

Ser Non

c c t a g

c c t a a

Ser Non

a a g a a a t g

Arg Asn

86

CHAPTER 5. IMPLEMENTATION AND TEST RESULTS 87

The output for tatl and revl genes is

This is DPA, Version 0.90 Beta1.

Written by Bin Wu <binvu~church.dcss.McMaster.CA>.

Copyright (c) 1998 by Tao Jiang t Bin Wu. All rights reserved!

One optimal codon alignment of two input sequences is

Met Glu Pro Val Asp Pro Arg Leu Glu Pro Trp Lys

1 at g g a g c c a g t a g a t c c t a g a c t a g a g c c c t g g a a g

1 at g gat c c a g t a g a t c c t a at c t a g a g t c c t g g a a c

Met Asp Pro Val Asp Pro Asn Leu Glu Ser Trp Asn

His Pro Gly Ser Gln Pro Lys Thr Ala Cys Thr Thr

37 c at c c a g g a a g t c a g c c t a a g a c t g c t t g t a c c a c t

37 c a t c c a g g a a g t c a g c c t a g g a c t g c t t g t a a t a a g

His Pro Gly Ser Gln Pro Arg Thr Ala Cys Asn Lys

Cys Tyr Cys Lys Lys Cys Cys Phe His Cys Gln Val

73 t g c t at t g t aaaaagt g t t g c t t t c a t t g c c a a g t t

73 t g t c a t t g t aaaaagt g t t g c t a t c a t t g c c a a g t t

Cys His Cys Lys Lys Cys Cys Tyr His Cys Gln Val

Met Ala

Cys Phe Thr Lys Lys Ala Leu Gly Ile Ser Tyr Gly

109 t g t t t c a c a a aaaaagc c t t a g g c at c t c c t at g g c

109 t g c t t c a t a a c g a a a g g c t t a g g c a t c t c c t at g g c

Cys Phe Ile Thr Lys Gly Leu Gly Ile Ser Tyr Gly

Met Ala

Gly Arg ·ser Gly Asp Ser Asp Glu Glu Leu Leu Lys

Arg Lys Lys Arg Arg Gln Arg Arg Arg Ala Pro Glu

145 a g g a a g a a g c g g a g a c a g c g a cgaagag c t c c t g a a

145 a g g a a g a a g c g g a g a c a g c g a c g a a a a c c t c c t c a a

CHAPTER 5. IMPLEMENTATION AND TEST RESULTS

Arg Lys Lys Arg Arg Gln Arg Arg Lys Pro Pro Gln

Gly Arg Ser Gly Asp Ser Asp Glu Asn Leu Leu Lys

Thr Val Arg Leu Ile Lys Phe Leu Tyr Gln Ser

Asp Ser Gln Thr His Gln Val Ser Leu Pro Lys

181 g a c a g t c a g a c t c a t c a a g t t t c t c t a c c a a a g c a

181 g g c g a t c a g g c t c a t c a a g t t c c t a t a c c a g a g c a

Gly Asp Gln Ala His Gln Val Pro Ile Pro Glu

Ala Ile Arg Leu Ile Lys Phe Leu Tyr Gln Ser

The minimum cost is 3852

Thank you for using DPA!

See you next time!

From the test results, we can see that (i) The indel rate for short genes

is lower than that for long genes. There is no indel in the alignments for the

last two pairs of real sequences. (ii) The indel rate in overlapping regions is

almost the same as that in non-overlapping regions. (iii) The mutation rate

in the real data that we tested is usually lower than 0.3.

In the next chapter, we give conclusions and future work for our project.

88

Chapter 6

Conclusions and Future Work

In this thesis, we have studied an alignment model recently proposed by

J. Rein and related algorithms for comparing coding DNA sequences which

takes into account both DNA and protein information. Basing on Rein's

model, we have proposed a mildly simplified model, i.e. the context-free

codon alignment model, and presented a much more efficient algorithm for

this simpler model. Furthermore, we have extended our algorithm to handle

frame-shift errors and overlapping frames using a heuristic approach.

All of the algorithms have been implemented and tested on both real

and simulated sequences. The test results show that the algorithm for our

simplified model and the algorithm for Rein's model produce almost identical

alignment in most cases. Also, our program can correctly detect and locate

frame-shift errors for reasonable indel and mutation rates.

A disadvantage of our program is that it can't detect two frame-shift

errors which are close to each other. To make up for this, we can use a local

89

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

optimization method, i.e. we do not penalize two "complementary" frame­

shift errors which are close to each other and realign that region taking this

into account.

Future research may be concerned with (i) exact algorithms for the over­

lapping frames problem, (ii) speeding up our frame-shift algorithm so that

it can handle atomic alignment involving two indels, and (iii) biologically

plausible combinations of cost parameters from protein and DNA levels.

Finally, we hope our model will be accepted by biologists and our program

will be widely used in practice.

90

Bibliography

[1] Michael S. Waterman, Introduction to computational biology, Chapman

& Hall Press, 1995.

[2] Dan Gusfield, Algorithms on strings, trees, and sequences, Cambridge

University Press, 1997.

[3] Joao Setubal and Joao Meidanis, Introduction to computational molec­

ular biology, PWS Publishing Company, 1997.

[4] J. Hein, An algorithm combining_DNA and protein alignment, J. Thea .
.....

Biol. 167 pp. 169-174, 1994.

[5] J. Hein and J. St~!;vlbrek, Genomic alignment, J. Mol. Evol. 38, pp.

310-316, 1994.

[6] J. Hein and J. St!<;vlbrek, Combined DNA and protein alignment, Meth­

ods in Enzymology 266, pp. 402-418, 1996.

[7] Y. Hua, T. Jiang, and B. Wu, Aligning DNA sequences to minimize the

change in protein, to appear in Annual Conference on Combinatorial

Pattern Matching, 1998.

91

BIBLIOGRAPHY

[8] Y. Hua, An improved algorithm for combining DNA and protein align­

ment, M. Eng. Thesis, McMaster University, 1997.

[9] C. Pedersen, R. Lyngs¢, and J. Rein, Comparison of coding DNA, to

appear in BRIGS technical report, RS-98-03, 1998.

[10} L. Arvestad, Aligning coding DNA in the presence of frame-shift errors,

in Annual Conference on Combinatorial Pattern Matching, vol. 1264 of

LNCS, pp. 180-190, 1997.

[11] M. 0. Dayhoff, R. M. Schwartz, and B. C. Orcott, A model of evolu­

tionary change in proteins, Atlas of Protein Sequence and Structure, 5

suppl. 3, pp. 345-352, 1978.

(12} 0. Gotoh, An improved algorithm for matching biological sequences, J.

Mol. Biol. 162, pp. 705-708, 1981.

[13] T.F. Smith and M. Waterman, Comparison of biosequences, Adv. Appl.

Math., vol. 2, pp. 428-489, 1981.

[14] S. Needlemann and C. Wunsch, A general method applicable to the

search for similarities in the amino acid sequences of two proteins, J.

Mol. Biol. 48, pp. 443-453, 1970.

[15] D. Sankoff, Matching sequences under deletion/insertion constraints,

Proc. Nat. Acad. Sci. 69(1), pp. 4-6, 1972.

[16] P. Sellers, On the theory and computation of evolutionary distances,

SIAM J. Appl. Math. 26, pp. 787-793, 1974.

92

BIBLIOGRAPHY

[17] D. Hirschberg, A linear space algorithm for computing maximal common

subsequences, Comm. A CM, vol. 18, pp. 341-343, 1975.

(18] X. Guan and E.C. Uberbacher, Alignments of DNA and protein se­

quences containing frame-shift errors, CABIOS, vol. 12, no. 1, pp. 31-40,

1996.

[19] D. Sankoff, R. Cedergren and G. Lapalme, Frequency of insertion­

deletion, transversion, and transition in the evolution of 58 ribosomal

RNA, J. Mol. Evol. 7, pp.133-149, 1976.

(20] Y. Xu, R.J. Mural, and E.C. Uberbacher, Correcting sequencing er­

rors in DNA coding regions using a dynamic programming approach,

CABIOS, vol. 11, pp. 117-124, 1995.

(21] H. Peltola, H. Soderlund, and E. Ukkonen, Algorithms for the search of

amino acid patterns in nucleic acid sequences, Nucleic acids research,

vol. 14, no. 1, pp. 99-107, 1986.

[22] Z. Zhang, W.R. Pearson, and W. Miller, Aligning a DNA sequence with

a protein sequence, RECOMB 91, 1997.

93

