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Abstract 

We study an alignment model for coding DNA sequences recently pro­

posed by J. Hein in (4] that takes into account both DNA and protein in­

formation, and attempts to minimize the total amount of evolution at both 

DNA and protein levels(4,5,6]. Although there are two quadratic algorithms 

(i.e. Hua-Jiang algorithm(8] and PLH algorithm(9]) for Hein's model if the 

gap penalty function is affine, both of them are impractical because of the 

large constant factor embedded in the quadratic time complexity function. 

We therefore consider a mild simplification named Context-free Codon Align­

ment and present a much more efficient algorithm for the simplified model. 

The algorithms have been implemented and tested on both real and simulated 

sequences, and it is found that they produce almost identical alignments in 

most cases. Furthermore, we extend our model and design a heuristic algo­

rithm to handle frame-shift errors and overlapping frames. 
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Chapter 1 

An Introduction to Codon 

Based Alignment 

We first give an overview of the problem of comparing genomic sequences 

in Section 1.1. The formal definition of codon based alignment is presented 

in Section 1.2. Finally, we preview our main results in Section 1.3. 

1.1 Overview 

Genomic sequence alignment is a model of comparing DNA or protein se­

quences under the assumptions that (i) insertion, deletion, and mutation are 

the elementary evolutionary events and (ii) evolution usually takes the most 

economic course. Classical alignment algorithms either align DNA sequences 

1 



CHAPTER 1. AN INTRODUCTION TO CODON BASED ALIGNMENT 2 

based on DNA evolution or align protein sequences based on protein evolu-

tion. It is well known that protein evolves slower than its coding DNA, and 

alignments of protein are usually more reliable than that of the underlying 

DNA. 

We are interested in the alignment of coding DNA sequences. It is clearly 

desirable that an alignment of coding DNA sequences incorporate the infor-

mation from their protein sequences. A straightforward method is to align 

the protein sequences first and then back-translate the alignment into DNA. 

The method has several shortfalls including (i) it forces insertions and dele-

tions (abbreviated as indels) to occur at codon 1 boundaries and (ii) it ignores 

homologies at the DNA level. 

In 1994, Jotun Rein proposed a new model of DNA sequence alignment 

where evolutionary changes at both the DNA and protein levels are dealt 

with simultaneously[4]. The basic idea of Rein's model is that in computing 

an alignment, we consider each nucleotide mutation and indel, and penalize 

it appropriately taking into account any amino acid change it might induce. 

The model allows indels to occur within codons and assumes that each indel 

involves a multiple of three nucleotides so that the reading frame 2 never 

changes during the evolution. A gap (i.e. a block of consecutive spaces; 

1 A codon is a triple of nucleotides which encodes an amino acid (see Table 1.1). 
2Roughly speaking, the reading frame in a coding DNA depicts where the codons begin. 
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I Amino Acids I Co dons 

Ala GCT GCC GCA GCG 
Arg CGTCGCCGACGGAGAAGG 
Asn AAT AAC 
Asp GAT GAC 
Cys TGT TGC 
Gln CAA CAG 
Glu GAA GAG 
Gly GGT GGC GGA GGG 
His CAT CAC 
Ile ATT ATC ATA 
Leu TTA TTG CTT CTC CTA CTG 
Lys AAA AAG 
Met ATG 
Phe TTT TTC 
Pro CCT CCC CCA CCG 
Ser AGT AGC TCT TCC TCA TCG 
Thr ACT ACC ACA ACG 
Trp TGG 
Tyr TAT TAC 
Val GTT GTC GTA GTG 

Table 1.1: Codons map to amino acids 
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representing an indel) oflength i is penalized with a cost g(i), where g is any 

positive function satisfying g(i) + g(j) 2: g(i + j). A dynamic programming 

algorithm is demonstrated in [4] for computing optimal alignment in this 

model that runs in O(m2n2) time, where m and n are the lengths of the two 

DNA sequences aligned. The algorithm is too slow to be useful in practice 

even for moderate m and n. It is left as an open question in [4] whether the 

time complexity can be improved to O(mn) when the gap penalty function is 

affine, i.e. g( i) = 9open +i* 9ext for some constants 9open and 9ext where 9open is 

the cost of opening an indel and 9ext is the cost of extending an indel. Affine 

functions are perhaps the most popular gap function among computational 

biologists. A fast heuristic algorithm for the problem, assuming affine gaps, 

is proposed in [5,6] which does not guarantee an optimal alignment. 

1.2 Codon alignment and Rein's model of ge­

nomic sequence comparison 

Let A = ala2a3···a3m-2a3m-la3m and B = blb2b3···b3n-2b3n-lb3n be two 

coding DNA sequences consisting of m and n codons respectively. Each 

sequence has a fixed reading frame starting at the first base. An alignment 

of A and B is a correspondence between the bases in A and B, and postulates 

a possible evolution from A and B in terms of single nucleotide mutations 
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G 

T - T G T 

TTGCTC T 

T T G C T C 

Figure 1.1: An alignment and its corresponding path representation. 

and indels of blocks of nucleotides. An alignment can also be conveniently 

expressed as a path in a grid graph. Figure 1.1 demonstrates an alignment 

from TTGCTC to TTG and the corresponding path. It postulates that a 

mutation from C to G and a deletion of TGC have happened in the evolution 

from TTGCTC to TTG. 

Since indels of length other than a multiple of three change the reading 

fram.e and hence tlie entire protein, for simplicity, Rein assumes that all indels 

have lengths divisible by three as in [4,5,6]. 

The cost of an alignment between A and B is decided by both the evo-

lutionary events of the nucleotides postulated by the alignment and the evo-

lutionary changes at the protein level. We will look at the three events 

mutation, insertion and deletion separately. For each pair of nucleotides a 

and b, let cd(a, b) denote the cost of substituting b for a, without worrying 

about the effect of this change at the protein level. For each pair of codons 
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amino acid coded by f 1hh for the amino acid coded by e1e2e3. For any 

integer i, functions gd(i) and gp(i) denote the costs of inserting (or delet­

ing) a block of i nucleotides and a block of i amino acids, respectively. For 

convenience, let g(i) = 9d(3i) + gp(i). 

• Mutation. The combined cost of a nucleotide mutation e1 -t fr in 

codon e1e2e3 is 

cd(e1, !I)+ cp(e1e2e3, Jre2e3). 

The combined costs of mutations at the second or third positions of a 

codon are defined in a similar way. 

• Insertion. Consider the event of inserting 3i nucleotides / 1 .. .f3i in the 

codon e1e2e3 . If the insertion happens to the immediate left of e1 or 

the immediate right of e3 , its combined cost is simply g(i). Otherwise 

suppose that the string fr ... /Ji is inserted between the nucleotides e1 

and e2 • Then the combined cost of the insertion is 

The case when the insertion happens between the nucleotides e2 and 

e3 is handled similarly. 

• Deletion. This is symmetric to insertion. Consider the event of delet­

ing 3i nucleotides from a sequence of i+ 1 co dons e1 e2e3 ... eJi+l e3i+2e3i+J. 
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Leu 
ITG 

Leu Leu 

ITGCTG~ a-c 

Phe 
TIC insertion 

(TGC) 

Leu Leu 
ITGCTC 

Figure 1.2: Different orders yield different costs. 

If the deletion happens at e1 or e4 , its combined cost is simply g(i). 

Otherwise suppose that the string e2 ... e3i+l is deleted. Then the com-

bined cost of deletion is 

The case when e3 .•. e3i+Z is deleted can be handled similarly. 

Although an alignment of A and B postulates a set of evolutionary events 

that transform A into B, it does not specify the order that the events should 

take place. In fact, all permutations of the events are possible. However, dif-

ferent permutations may yield different overall combined costs. For example, 

in Figure 1.2, the overall combined cost is 

g(l) + min{cp(TTG, TTG),ep(TTG, CTG)} + cd(G, C)+ cp(CTG, CTC) 

if the insertion happens first or 

cd(G, C)+ cp(TTG, TTC) + g(l) + min{cp(TTC, TTG), ep(TTC, CTC)} 
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if the mutation happens first. In other words, the evolutionary events are 

no longer independent when it comes to computing the combined cost. An 

event may influence the cost of other events. Therefore, we define the cost of 

an alignment of A and B as the minimum overall combined cost among all 

possible permutations of the evolutionary events postulated by the alignment. 

An optimal alignment is one with the minimum cost. 

Computing an optimal alignment of A and B is not an easy task due to 

the influence between events. The notion of a codon alignment introduced in 

[4] will help simplify the matter and is accepted by computational biologists. 

An alignment of A and B is called a codon alignment if 

1. m = 0 or 

2. n = 0 or 

3. There do not exist i and j, 1 ~ i ~ 3m and 1 ~ j ~ 3n, such that ai 

is aligned with bj, and (i) i mod 3 = j mod 3 = 1 and i + j > 2 or (ii) 

i mod 3 = j mod 3 = 0 and i + j < 3m + 3n. 

In other words, except in the first and last columns, a codon alignment does 

not align a base at some codon boundary of A with a base at any codon 

boundary of B. For example, the alignment in Figure 1.1 is in fact a codon 

alignment. The cost of a codon alignment is defined the same way as for an 
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I I I I I I I I I I I I I I I I I ----------------------------------------------------------------· 

Figure 1.4: Decomposing an alignment into codon alignments. 

alignment. 

It is known [4] that there are 11 distinct types of codon alignment, as 

depicted in Figure 1.3. Type 1 has three mutations and no indel. Type 2 

only has a deletion and type 3 only has an insertion. Types 4, 5, 6, and 7 

have an indel and three mutations. Types 8, 9, 10, and 11 have two indels 

and three mutations. Observe that each codon alignment can involve at most 

5 evolutionary events. Hence, the cost of a codon alignment, which is the 

minimum total combined cost over all possible permutations of the events 

postulated by the alignment, can be computed in linear time. 

We can always decompose an alignment of A and B uniquely into a 

sequence of maximal codon alignments, as illustrated in Figure 1.4. Although 

the evolutionary events in a same codon alignment may influence each other's 

cost, events in different codon alignments are independent. This gives rise to 
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a straightforward dynamic programming algorithm for computing an optimal 

alignment of A and B in O(m2n2 ) time, as described in [4]. It is clear that 

the algorithm is too slow to be useful in practice even for moderate m and n. 

Recently, two quadratic (i.e. O(mn)) time algorithms have been developed 

in [8,9]. These algorithms are not practical because their quadratic time 

bounds all contain large constant factors. We discuss these two algorithms 

in detail in Chapter 2. 

1.3 Our contribution 

Since large constant factors seem to be inherent in all quadratic time 

algorithms for Rein's model, we simplify the model slightly. A much more 

efficient quadratic time algorithm is devised for the simplified model which 

needs only to compute 292mn table entries, again assuming affine gaps. Al­

though the framework of the algorithm is still dynamic programming, the 

crux of this algorithm is a careful partition of the state space in order to 

minimize the total number of table entries that it has to compute. Further­

more, we extend our algorithm to handle frame-shift errors and overlapping 

frames using a heuristic approach. 

The algorithm has been implemented and tested on both real and simu­

lated sequences. The test results show that the algorithm for our simplified 
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model and algorithm for Hein 's model produce almost identical alignment 

in most cases. Also our program can correctly detect and locate frame-shift 

errors for reasonable indel and mutation rates. 

This thesis is organized as follows. In the next chapter, we describe two 

existing quadratic time algorithms for Rein's model. Our simplified model 

and faster algorithm are presented in Chapter 3. We then extended our 

algorithm to handle frame-shift errors and overlapping frames in Chapter 

4. Chapter 5 discusses some issues arising in the implementation of the 

algorithm and also gives some test results. Finally, we give conclusions and 

future work Chapter 6. 



Chapter 2 

Two Quadratic Algorithms for 

Hein's Model 

In this chapter, first we describe the Hua-Jiang algorithm in Section 2.1, 

and then the PLH algorithm in Section 2.2. 

2.1 Hua-Jiang algorithm 

In 1997 Y. Hua and T. Jiang designed a dynamic programming algo­

rithm in [8] that computes an optimal alignment for Rein's model in O(mn) 

time, assuming affine gaps. However, the algorithm is impractical because 

of the large constant factor embedded in its time complexity function. The 

large constant factor comes from the fact that the algorithm has to COJUpute 

16644mn table entries. The following is a sketch of the construction of the 

13 
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Hua-Jiang algorithm. 

Again assume that the gap penalty function g(i) is affine, z.e. g(i) = 

9open + i * 9ext for some fixed non-negative constants 9open and 9ext· Consider 

DNA sequences 

and 

For any indices i = 1, ... , m and j = 1, ... , n, let 

B(J') = b1b2b3 · · · b3j-2b3i-Ib3j, 

and c( i, j) denote· the cost of an optimal alignment between the prefix A( i) 

and prefix B(j). In order to derive a recurrence equation for c(i,j), we need 

the following notation. 

Let's classify alignments into 11 classes according to the type of their 

terminating codon alignments (see Figure 1.3 for values oft). For 1 :::; t :S 3, 

let Ct(i, j) denote the cost of an optimal alignment between A(i) and B(j) 

whose terminating codon alignment is type t. 

For t = 4 or t = 6 and any nucleotides x1 , x 2 , x 3 E {A, C, G, T}, let 

Ct(i, j, x 1x2x3 ) denote the cost of an optimal alignment between A(i) and 
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B(j)x1x2x3 ending with a codon alignment of type t. Also define 

For t = 5 or t = 7 and any nucleotides x1, x2, x3 E {A, C, G, T}, let 

Ct(i, x 1x2x3, j) denote the cost of an optimal alignment between A(i)x1x2x3 

and B(j) ending with a codon alignment of type t. Also define 

For t = 8 and any nucleotides x 1, x2, x3, x4 , x5 , x6 E {A, C, G, T}, let 

c8 (i,j,x 1x2x3x4x5x6 ) denote the cost of an optimal alignment between A(i) 

and B(j)x1x2x3x4x5x6 ending with a codon alignment of type 8. Also define 

The expressions c9 (i,x 1x2x3x4x5x6 ,j) and c9(i,j) are defined analogously. 

For t = 10 and any nucleotides x1, x2, x3, y1, Y2, y3 E {A, C, G, T}, let 

Cto(i,x1x2x3,j,y1y2y3) denote the cost of an optimal alignment between se­

quences A(i)x1x2x3 and B(j)y1y2y3 ending with a codon alignment of type 

10. Also define 

The expressions c11 (i,x1x2x3,j,y1y2y3) and c11 (i,j) are defined analogously. 



CHAPTER 2. TWO QUADRATIC ALGORITHMS FOR HEIN'S MODEL 16 

Note that, in the above, for types t = 4, ... , 11, we have to plant up to 6 

imaginary trailing bases in order to complete the recurrence equations. 

Clearly, for any i = 0, ... , m and j = 0, ... , n, 

11 
c(i,j) = minct(i,j) 

t=l 

Hence it suffices to give recurrence equations for Ct(i,j), t = 1, ... , 11, 

using c( i, j). First, we initialize the following items: 

• c(O, 0) = 0 

• Fori= 1, ... , m, c(i, 0) = g(i). 

• For j = 1, ... , n, c(O,j) = g(j). 

• Fori= 1, ... , m and j = 1, ... , n, c(i,j) = oo. 

• Fori= 1, ... , m, j = 1, ... , n, and t = 1, ... , 11, Ct(i,j) = oo. 

Below we only list recurrence equations for types t = 1, 2, 4, 8, 10. The other 

cases are highly symmetric to these types. In the following, when there is 

a unique codon alignment between sequences X and Y of type t, we use 

cat(X, Y) to denote the optimal cost of that codon alignment for different 

event orders. For 1 ~ i ~ m and 1 ~ j ~ n, the recurrence equations are as 

follows: 

c1 (i, j) 
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min{ c2(i, j- 1) + 9ext, c(i, j- 1) + g(1)} 

c( i - 1, j - 1) + 

c(i- 1, j- 1) + 

min{c10(i -1,x1x2x3,j,y1y2y3) + 9ext, 

C1o(i,X1X2X3,j -1,Y1Y2Y3) + 9ext, 

c(i- 1, j- 1) + 

The equations fort= 1, 2, 4, 10 are self-explanatory. The equation fort= 

8 is elaborated in Figure 2.1. The first term in the minimization corresponds 

to the case when the second gap (from the left) is longer than one codon 
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(case (a) in the figure), the second term represents the case when the second 

gap is one codon long and the first gap is longer than one codon (case (b)), 

and the third term corresponds to the case when both gaps are one codon 

long (case (c)). 
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Figure 2.1: An illustration for the recurrence equation for type 8. 

The base cases of the above recurrence equations can be easily formulated. 

Since the cost cat(X, Y) can be computed in 0(1) time for any sequences X 

and Y of lengths at most 9 bases, the recurrence equations obviously imply 

a dynamic programming algorithm for computing c(m, n) in O(mn) time. 

This algorithm can be easily expanded to also produce an optimal alignment 
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between A and B, using the standard back-tracking technique[2]. 

A version of the algorithm has been implemented in GNU C, called Codon 

Alignment Tool (CAT)[8]. To avoid computing the cost cat(X, Y) repeatedly 

for the same short sequences X and Y, a table, indexed by X and Y, is 

used to store the value cat(X, Y) once it is computed so that for each pair 

X and Y, the cost cat(X, Y) is computed at most once. Although this 

technique greatly improves the time efficiency, the program is still quite slow 

due to the fact that it has to compute 12 tables for c(i,j) and Ct(i,j), where 

t = 1, ... , 11, with a total size of 4 + 4 * 64 + 4 * 4096 = 16644mn entries 

before obtaining the value c(m, n). Clearly, codon alignments of types 8 

through 11 are the main reason why such large tables are required. Because 

of the influence between evolutionary events within a same codon alignment 

and the fact that the events may happen in any of up to 5! different orders, 

the dynamic programming algorithm has to hypothesize 6 trailing bases for 

each of these four types, and carry out the computation for each of the 4096 

hypotheses. 

2.2 PLH algorithm 

Independent of the work reported in this thesis, recently, C. Pedersen, R. 

Lyngs¢, and J. Hein designed another quadratic algorithm for Hein's model. 
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We call this algorithm the PLH algorithm. The framework of PLH algorithm 

is still dynamic programming. Similar to Hua-Jiang algorithm, an alignment 

is also classified into 11 classes according to the type of its last codon align­

ment. A key idea behind the PLH algorithm is that it keeps track of the 

"internal status" of a mutation. In other words, it sets some indicators of 

some key mutations. The algorithm is valid under the assumption that the 

cost of mutations at the protein level is a metric. We describe more details 

of the PLH algorithm below. 

The recurrence equations of the first three types are the same as that 

of the Hua-Jiang algorithm. For types 4, 5, 6, and 7, the PLH algorithm 

guesses the internal status of all relevant mutations just before the deletion 

or insertion. We give an example for type 6 as shown in Figure 2.2, where 

x1 x2x3 indicates the status of the three mutations (i.e. whether or not the 

mutations have taken place) just before the deletion of length k. Four key 

stages of the evolution changing b3(j-k)-2b3(j-k)-l ... b3j to a3i-2a3i-la3i are 

depicted in (a), (b), (c), and (d) in the figure respectively. The minimum 

cost of an alignment whose last codon alignment is type 6, denoted c6 (i,j), 

can be calculated as 

c6 (i, j) =cost( subs)+ cost( del)+ c(i- 1, j- k- 1), 
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Figure 2.2: Four stages in the evolution of type 6. 
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where 

cost( subs) c; (b3(j-k)-2b3(j-k)-1 b3(j-k), XIX2b3(j-k)) + 

c;(b3j-2b3j-lb3j, b3j-2b3j-lx3) + 

The difference between the notation Cp and c; is that Cp accounts for at most 

one mutation, but c; may account for up to three mutations. The term 

cost( del) represents the cost of the deletion, and can be computed using 

dynamic programming. For more details, the reader is referred to the paper 

[9]. 

The idea can be extended to types 8, 9, 10 and 11, but these types require 

two internal status indicators, one for the first indel and the other for the 

second indel. 

An advantage of the PHL algorithm is that it "hides" the orders of events 

in internal status indicators. But this advantage comes with an assumption, 

namely, the cost of mutations at the protein level is a metric. Unfortunately, 

in practice, most of popular protein scores, e.g. PAM, are not metrics. In 

the case that the protein mutation cost is not a metric, the algorithm needs 

more table entries to record information. We estimate that it has to compute 

4100mn table entries under the metric assumption and 15476mn table entries 

without that assumption. Since the algorithm has not been implemented, it 
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is hard to compare its speed with that of Hua-Jiang's. However it is clear 

that the algorithm is too slow to be used in practice because of the large 

constant factor in the quadratic time bound. 

In the next chapter, we will simplify Rein's model slightly and present a 

much faster quadratic time algorithm. 



Chapter 3 

Context-free Codon Alignment 

This chapter is organized as follows. In Section 3.1 we describe the 

simplified model of genomic sequence alignment. Then we show our faster 

algorithm in Section 3.2. We compare the test results of CAT and Context­

free CAT in Section 3.3. 

3.1 A simplified model 

Our model differs from Rein's model only in the definition of the cost 

of an indel. Recall that in Rein's model each indel of 3i nucleotides within 

a codon induces an amino acid indel and an amino acid substitution, and 

hence the combined cost of such an indel is defined as g(i) plus the cost of 

the amino acid substitution, where g(i) = 9open + i * 9ext for some constants 

9open and 9ext· Our model will disregard the latter cost, and simply define 

24 
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the combined cost of an indel of 3i nucleotides as g(i). 1 

Observe that in Rein's model the cost of an indel in general depends on 

the surrounding nucleotides, as shown in Figure 1.3, whereas indels in our 

model do not have such context sensitivity. For this reason we will refer to 

indels in our model as context-free indels and name our model context-free 

codon alignment. In the following, we take advantage of the context-freeness 

in indels and devise a more efficient algorithm than the algorithms reviewed 

in the last chapter. Note that, even though indels are now context-free, the 

influence between evolutionary events still exists because the combined cost 

of a substitution may depend on other substitutions and indels in the same 

codon alignment. Therefore, it does not seem possible for the algorithms 

presented in the last chapter (or simple extensions of them) to take advantage 

of context-free indels. We have to use a different technique. 

3.2 A faster algorithm 

The framework of our algorithm is still dynamic programming based on 

codon alignments. We again classify an alignment according to the type of 

its last codon alignment. The new idea is to refine the classes according to 

1 It is unclear such a simplification is biologically plausible, although one supporting 
argument may be that the amino acid substitution is a superficial event. Our tests on real 
and simulated data in Section 3.3 will show that optimal alignments for the two models 
are in fact very similar. 

25 
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the order of some events in the last codon alignment so we could avoid having 

to hypothesize (or equivalently, remember) too many nucleotides. This will 

greatly reduce the total size of the tables required. 

To demonstrate our idea, we need to introduce some notation first. Let 

A= a 1a2a3 · · · a3m-2a3m-la3m, and B = b1b2b3 · · · b3n-2b3n-lb3n· 

• For any indices i = 1, ... , m and j = 1, ... , n, let 

and 

B(j) = b1b2b3 · · · b3i-2b3i-lb3i· 

A(O) and B(O) are empty strings. 

• For any indices i = 0, ... , m and j = 0, ... , n, let c( i, j) denote the cost 

of an optimal alignment between A(i) and B(j) . 

• For any indices i = o, ... ,m 'j = o, ... ,n, and t = 1, ... ,11, let Ct(i,j) 

denote the cost of an optimal alignment between A(i) and B(j) ending 

with a codon alignment of type t. 

To derive the necessary recurrence equations, we will need to consider 

partial (i.e. incomplete) codon alignments consisting of a front portion of 

some codon alignments and restricted codon alignments whose events are 

26 
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required to occur only in some specific orders. In the following discussion, 

we assume that sequence B evolves to sequence A. Before we give the general 

recurrences type by type, we need to initialize the following items: 

• c(O, 0) = 0 

• Fori= 1, ... , m, c(i, 0) = g(i). 

• For j = 1, ... , n, c(O,j) = g(j). 

• Fori= 1, ... ,m and j = 1, ... ,n, c(i,j) = oo. 

• Fori= 0, ... , m, j = 0, ... , n, and t = 1, ... , 11, Ct(i,j) = oo. 

For 1 ~ i ~ m and 1 ~ j ~ n, the recurrence equations are as follows. 

First of all, the main recurrence equation is 

c(i,j) = min Ct(i,j). 
tE{l, ... ,ll} 

The recurrence equations of the first three types are straightforward. 

They are 

c2(i,j) min{c2(i,j -1) + 9ext,c(i,j -1) + g(1)} 

c3(i, j) min{ c3(i- 1, j) + 9ext, c(i- 1, j) + g(1)} 

27 
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cost of evolving baj-2b3j-lb3j to aai-2a3i-la3i by trying 6 different orders. 
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Figure 3.1: Four events of type 4 codon alignments. 

A type 4 codon alignment involves 4 evolutionary events as shown in 

Figure 3.1. Event 1 is the first mutation (i.e. e1 -+ JI). Event 2 is a deletion 

whose length is 3k nucleotides (i.e. delete e2 .. . e3k+I). Event 3 evolves e3k+2 to 

hand event 4 changes e3k+3 to fa. We give an example of evolving e1 ... e3k+a 

to !Ihfa in order 1234 as follows: 

We find that the information of e2 and e3 is only used in computing 
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for order 1234, denoted costf234 , is 

It uses the information of e2 and e3 . But the cost for order 2134 shown below 

does not use the information. 

4 
cost2134 

We consider alignments ending with type 4 codon alignments, and parti-

tion them into some classes depending on the relative order of events 1 and 2 

and the nucleotide e1 . Since there are two possible relative orders of events 1 

and 2, and e1 might be A, or C, or G, or T, the total number of classes is 8. 

The reason we need 8 classes will be clear when we discuss how to compute 

P4 ( i, j, x, (J) which is defined later. 

There are two stages for computing the cost of an optimal alignment 

between A(i) and B(j) ending with a codon alignment of type 4. In the first 

stage, we consider the cost of the deletion, and the cost of event 1 when event 

1 occurs before event 2. In the second stage, we consider the costs of events 
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3 and 4, and the cost of event 1 when event 1 occurs after event 2. We will 

describe the details of the two stages in the following paragraphs. 
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Figure 3.2: Dealing with trailing codon alignments of type 4 (stage 1). 

In Figure 3. 2, the dot indicates that we are computing at point ( i, j). 

The left part of the path (i.e. left to the dot) is computed in stage 1 and 

the right part of the path is computed in stage 2. In Figure 3.2, k < j and 

b3k-2 = b3j-2· The reason we need b3k-2 = b3i-2 is that if b3k-2 =/= b3j-2, two 

paths depicted in the figure are not in the same class, thus they don't have 

any relation. We will use a variable x to remember the value of b3i_2 (since 

b3k_2 = b3j_2 , x remember the value of b3k_2 also). The information about x 

will be used in the second stage. 

In the first stage, there are two cases (see Figure 3.2). Case 1 extends the 

deletion by 3 nucleotides and case 2 starts a new partial codon alignment of 

type 4. For any nucleotide x E {A,C,G,T} and a E {0,1}, let p4 (i,j,x,a) 

denote the cost of an optimal alignment between A(i) and B(j) ending with 
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a partial codon alignment of type 4. The variable x remember the value of 

b3j_2 • The variable CJ indicates the order of event 1 and event 2. If CJ = 0, 

event 1 occurs after event 2; otherwise, i.e. CJ = 1, event 1 occurs before 

event 2. 

Now, it is time to define the recurrence equations for type 4 codon align­

ments. For x E {A,C,G,T} and CJ E {0,1}, p4(i,j,x,CJ) is computed as 

follows: 

P4(i, j, x, CJ) =min{ tmp,p4(i, j- 1, X, CJ) + 9ext}, 

where 

if x = b3j_2 ; otherwise, tmp = oo. 

In the above equation, p4(i, j- 1, x, CJ) + 9ext is for case 1 and tmp corre­

sponds to case 2 (see Figure 3.2). The first one is trivial. It just extends the 

deletion by 3 nucleotides. For computing tmp, first we add the cost of the 

previous codon alignments (i.e. c( i - 1, j - 1)), then add the cost of opening 

an indel whose length is one (i.e. g(1)). When CJ = 0 (i.e. event 1 occurs 

after event 2), the item CJ · (cd(x, a3i-2) + ep(xb3j-lb3j, a3i-2b3j-lb3j)) is equal 

to zero. That means we do not consider the cost of event 1 in computing 

p4 (i,j,x,O). It will be added in the second stage. When CJ = 1 (i.e. event 1 

occurs before event 2), the value of cd(x, a3i-2) + ep(xb3j-lb3j, a3i-2b3j-lb3j) 
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is added to tmp. In this case, we consider the cost of event 1 in computing 

p4 (i,j, x, 1) and it will be not added in the second stage. 

r----r----r----r----r----r----r----r----r---
1 I I I I 

a31' I 
I I I I I I I I I I 

a. 
3r-1 

r----r----r----r----r----r----r----r---- ----, 
I I I I I I I 

I I 
I I I 

I I I I I I 

r-~--~--~---.-- ----r----, 
1 I 

I I I I I I I --------------------------------------------· 

X 

Figure 3.3: Dealing with trailing codon alignments of type 4 (stage 2). 

In the second stage, we will complete the computation for type 4 using the 

information recorded in p4 (i,j,x,a). First, we have to consider the costs of 

events 3 and 4,i.e. b3j-l-+ a 3i-l and b3j-+ a3i (see Figure 3.3). When a= 0, 

we must add the cost of event 1 (i.e. x -+ a3i_2) since it is not considered in 

computing p4 (i, j, x, 0). The cost of an optimal alignment between A(i) and 

B(J') ending with a type 4 codon alignment, denoted c4 (i, j), is computed as 

c4(i, j) = min {p4(i,j- 1, x, a)+ car{a3i-2a3i-la3i, b3j-2b3j-lb3j, x)}, 
:~:E{A,C,G,T} 

uE{O,l} 

where P4(i, j-1, x, a) is discussed above and ca4(a3i-2a3i-la3i, b3j-2b3j-lb3j, x) 

for a E { 0, 1} is explained below. 

cost of the mutations in the last type 4 codon alignment that are not ac-

counted for in p4 (i,j -1,x,O) with the constraint that event 1 occurs after 

32 



CHAPTER 3. CONTEXT-FREE CODON ALIGNMENT 

event 2. In this function, we need to consider all three mutation events (i.e. 

events 1, 3, and 4) for a total of 12 different orders. We give an example of 

computing the restricted cost with order 2134, denoted Rcost~134 , as follows: 

Rcost~134 = cp(xbaj-1b3h aai-2baj-1baj) + cd(x, aai-2) + 

cp(aai-2b3j-1baj, aai-2a3i-1baj) + cd(baj-1, aai-1) + 

ep(aai-2a3i-tbaj, aai-2a3i-la3i) + cd(b3j, a3i). 

Similarly, caHaai-2a3i-la3i, b3j-2b3j-lb3j, x) computes the minimum cost 

of the mutations in the last type 4 codon alignment that are not accounted 

for in p4(i, j -1, x, 1) with the constraint that event 1 occurs before event 2. 

But now we only need to consider the last two mutation events (i.e. events 3 

and 4) since the cost of event 1 has been considered in computing p4 ( i, j, x, 1). 

Again, we give an example of computing the restricted cost with order 3124 

below. 

Rcostj124 

Note that, the above recurrence equations for type 4 codon alignment 

only require a table of 8mn entries (for storing p4 ( i, j, x, o-)) to compute 

c4 ( i, j) instead of a table of 64mn entries as required in the last chap­

ter. The number 8mn comes from i, j, x, and o-, where i = m, J = n, 
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x E {A, C, G, T}, and a E {0, 1}. Actually, the parameter x in the sec-

though it appears that the table entries could be reduced to 5mn, unfortu-

nately, the answer is no. The reason is that when computing the recurrence 

equation of p4 (i, j, x, a), we must check if x = b3j_2 • In other words, we must 

make sure that the following case cannot take place: 

P4(i, j, x, 1) = P4(i, j- 1, x', 1) + 9ext 

where x =/= x'. 

The recurrence equations for type 5 are symmetric to those for type 4. 

We define p5(i, j, x, 0) and p5(i, j, x, 1) similarly. Again, for x E {A, C, G, T} 

and a E {0, 1 }, p5 (i, j, x, a) is computed as 

P5(i,j,x,a) = min{tmp,p5(i -1,j,x,a) + 9ext}, 

where 

if x = a3i-2i otherwise, tmp = oo. 

Also, 
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Figure 3.4: Four events of type 6 codon alignments. 

A type 6 codon alignment involves 4 evolutionary events as shown in 

Figure 3.4. Event 1 is the first mutation (i.e. e1 -+ ft). Event 2 is the 

second mutation (i.e. e2 -+ /2). Event 3 is a deletion whose length is 3k 

nucleotides (i.e. e3 ... e3k+2). Event 4 evolves e3k+3 to j3. We give an example 

to compute the cost for order 1234, denoted cost~234 , as follows: 

6 
costl234 

Alignments ending with type 6 codon alignments can be treated in the 

same spirit as for type 4. Again, there are two stages for type 6 (i.e. the first 

stage is for computingp6(i,j,x,a) and the second is for computing c6 (i,j)). 

35 



CHAPTER 3. CONTEXT-FREE CODON ALIGNMENT 
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Figure 3.5: Dealing with trailing codon alignments of type 6 (stage 1). 

However, instead of "cutting" the codon alignment at event 2 we should cut 

it at event 3 (to obtain the partial codon alignment), instead of considering 

the relative order of events 1 and 2 we consider the order of events 4 and 

3, and instead of remembering the nucleotide x in type 4 we hypothesize 

the nucleotide x (see Figure 3.5). Thus, we define p6 (i, j, x, 0) assuming 

that event 4 is after event 3 (i.e. the deletion) and event 4 starts from the 

nucleotide x, and define p6 ( i, j, x, 1) assuming the opposite order. The only 

tricky point is that p6(i, j, x, 0) should include the combined cost of event 4 

while p6 (i, j, x, 1) does not. Both of p6 (i, j, x, 0) and p6 (i, j, x, 1) compute the 

costs of events 1, 2, and 3. Let us summarize the recurrence equation for 

type 6 in stage 1 as follows. 

For x E {A, C, G, T} and a E {0, 1}, 

PB(i, j, x, a) min{c(i -1,j -1) + g(1) + 
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P6(i, j- 1, x, o-) + 9ext}· 

In the above equation, p6 ( i, j - 1, x, a) + 9ext is for case 1 (see Figure 

3.5). It just extends an indel by 3 nucleotides. c(i- 1,j- 1) + g(1) + 

ca6(a3i-2a3i-la3i, b3j-2b3j-lb3j, x) is for case 2 in Figure 3.5. It starts a new 

partial codon alignment of type 6. 

As that for type 4, ca~(a3i_2 a3i_ 1 a3i, b3j_2b3j-lb3j, x) is a function to com­

pute the minimum cost of the mutations in the last type 6 codon alignment 

with the constraint that event 4 is after event 3. In this case we need consider 

three mutation events (i.e. events 1, 2, and 4). The following is an example 

of computing the partial cost of order 1234, denoted Pcost~234 . 

Pcost~234 - cp(b3j-2b3j-lb3j, a3i-2b3j-lb3j) + cd(b3j-2, a3i-2) + 

ep(a3i-2b3j-lb3j, a3i-2a3i-lb3j) + cd(b3j-b a3i-1) + 

Another function for type 6, i.e. ca~(a3i-2a3i-la3i, b3j-2b3j-lb3j, x), is for 

the case when event 4 is before event 3. In this function, we only need consider 

the first two mutation events (i.e. events 1 and 2). The last mutation event 

(i.e. event 4) is considered in stage 2 (i.e. computing es(i,j)). Again, we 

give an example of computing the partial cost of order 1243 below. 
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a. 
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Figure 3.6: Dealing with trailing codon alignments of type 6 (stage 2). 

In the second stage (see Figure 3.6), if a= 1 (i.e. event 4 is before event 

3), we need add the cost of event 4 to c6(i,j); Otherwise, c6(i,j) is equal to 

(p6 (i,j -1,x,a). The recurrence equation for computing ~(i,j) is 

c6(i,j)= min (p6(i,j-l,x,a)+a·tmp), 
uE{O,l} 

where x = b3j and 

Again, computing the costs c6 (i,j) requires only a table of 8mn entries. 

Analogously, for x E {A, C, G, T} and a E {0, 1}, 

P7(i,j, x, a) min{c(i- 1,j -1) + g(1) + 

P7(i- l,j, X, a)+ 9ext}. 
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Also, 

c7(i, j) = min (p7(i- 1, j, x, a)+ a· tmp), 
uE{O,l} 

where x = a3i and 

The function, ca7 (a3i-2a3i-la3i, b3j-2b3j-lb3j, x), is similar to that for type 

;----;----i----;----i----;----;----;----;---~ 

I I I I I I even~ 4 I / I t 5 
I I I I I I I ~ I ; even 
~---- ~---- ~---- ~----~----I --~-----It----: 
I I I I I I I 

a. 
Jz-1 I : : eVent a: ! : : 

~--~· ----~----~----~----~----: 
I I I I I 

eVent 1: ! 
I I I I I I I --------------------------------------------

Figure 3.7: Dealing with trailing codon alignments of type 8. 

The treatment of alignments ending with type 8 alignments combines 

the techniques for both type 4 and type 6 alignments, and builds on the 

information p4(i, j, x1, 0) and p4(i, j, xb 1). Define a1 = 0 if event 1 is 

after event 2 (i.e. the first deletion) or a 1 = 1 otherwise, and a2 = 0 

if event 5 is after event 4 (i.e. the second deletion) or a2 = 1 other-

wise. For any nucleotides x1 , x2 E {A, C, G, T} and orders a 1 , a2 E {0, 1}, 

let Ps(i, j, x1, a1, x2, a2) denote the cost of an optimal alignment between 
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A(i) and B(j) ending with a restricted partial codon alignment of type 

8 consisting of events 1 through 5 such that (i) event 1 starts from the 

base xi, (ii) the relative order between events 1 and 2 is as prescribed by 

ai, (iii) event 5 starts from the base x 2 , and (iv) the relative order be­

tween events 5 and 4 is as prescribed by a 2 . (See Figure 3.7). Again, the 

value p8 (i, j, xi, ai, x 2 , 0) should include the combined cost of event 5 while 

Ps( i, j, XI, a I, x2, 1) does not. The cost p8(i, j, xi, a I, x 2 , a2) can be easily com­

puted from the values Ps(i, j -1, XI, ai, x2 , a2) and p4(i, j -1, XI, ai), and the 

nucleotides XI, x2, a3i-2, a3i-I, a3i, b3j-2, b3j-I, b3j· Hence, we can compute the 

cost c8 (i, j) using a table of 64mn entries for storing p8(i, j, XI, a1, x 2 , a 2). The 

recurrence equations for type 8 are as follows. 

For x1 , x2 E {A, C, G, T} and a 1, a 2 E {0, 1}, 

partial cost for each of the four order groups for type 8. 

ca~'0 (a3i-2a3i-la3i, b3j-2b3j-1b3j, x1 , x 2) computes the minimum cost of mu­

tation events 1, 3, and 5 assuming that event 1 is after event 2 and event 5 
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is after event 4. We give an example for order 21345 below: 

cp(xlb3j-lb3j, a3i-2b3j-lb3j) + cd(x1, a3i-2) + 

cp(a3i-2b3j-lb3j, a3i-2a3i-lb3j) + cd(b3j-l, a3i-l) + 

ca~' 1 (a3i-2a3i-la3i, b3j-2b3j-lb3j, x1, x2) finds the optimal cost of the mu­

tations assuming that event 1 is after event 2 and event 5 is before event 4. In 

this function, we need only consider the first two mutation events (i.e. events 

1 and 3). The last mutation event (i.e. event 5) is considered in computing 

c8 ( i, j). An example for order 21354 is 

Pcast~1345 = ep(xlb3j-lb3j, a3i-2b3j-lb3j) + cd(x1, a3i-2) + 

cp( a3i-2b3j-lb3j, a3i-2a3i-lb3j) + cd(b3j-1, a3i-I). 

The third function, ca~'0 (a3i-2a3i-la3i, b3j-2b3j-lb3j, x1, x2), computes the 

optimal cost of the mutations assuming that event 1 is before event 2 and 

event 5 is after event 4. But in this function we need consider the last two 

mutation events (i.e. events 3 and 5). The first mutation event (i.e. event 

1) has been included in p4 (i, j, x11 1). We give an example for order 12345 as 

follows: 

Pcost~2345 
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the case when which event 1 is before event 2 and event 5 is before event 4. 

In this function, we need only consider one mutation event (i.e. event 3). 

The other mutation events (i.e. events 1 and 5) are computed inp4 (i,j,x1 , 1) 

and c8(i, j) respectively. The following is an example for order 12354: 

Finally, the cost of an optimal alignment between A(i) and B(j) ending 

with a type 8 codon alignment is computed as 

cs(i,j) = min (Ps(i,j -1,x1,£T1,x2,£T2) +£T2 ·tmp), 
"'1 E{A,C,G,T} 
111 ,a2E{O,l} 

where x 2 = b3j and 

Similarly, for x1, x2 E {A, C, G, T} and £T1, £T2 E {0, 1}, 

Also, 

cg(i, j) = min (pg(i- 1, j, x1, £T1, x2, £T2) + £T2 · tmp), 
"'1 E{A,C,G,T} 
111 ,a2E{O,l} 
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where x2 = a3i and 
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Figure 3.8: Dealing with trailing codon alignments of type 10. 

' We deal with alignments ending with type 10 codon alignments by com-

bining the techniques for type 4 and type 7 codon alignments, making use 

of the information p4 (i,j,x17 0) and p4 (i,j,x1,1). We still cut the codon 

alignment at event 4 and consider the order of events 5 and 4; but we 

hypothesize the nucleotide x2 instead of b3i (see Figure 3.8). The cost 

P1o ( i, j, x1, cr1, x2, cr2) is defined in a straightforward way as follows, and re-

quires a table of 64mn entries to store. 
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For x1,x2 E {A,C,G,T} and 0'1,0'2 E {0, 1}, 

Also, 

c10(i,j) = min (p10(i- 1,j, x1, 0'1, x2, 0'2) + 0'2 · tmp), 
"'1 E{A,C,G,T} 

CT1 ,CT2 E { 0,1} 

where x2 = a3i and 

Similarly, for x1,x2 E {A,C,G,T} and 0'1,0'2 E {0,1}, 

Also, 

cu(i,j) = min (Pn(i,j -1,x1,0'1,x2,0'2) +0'2 x tmp), 
"'1 E{A,C,G,T} 
CT1,CT2E{0,1} 

where x2 = b3i and 
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In the above equations, ca~6'u2 (a3i-2a3i-Ia3i, b3j-2b3j-Ib3j, xi, x2) 

and can'u
2 

(a3i-2a3i-Ia3i, b3j-2b3j-Ib3j, XI, X2) COmpute the COStS Of mutations 

for type 10 and 11 respectively, using the same idea as that for type 8. 

This algorithm can be easily expanded to also produce an optimal align­

ment between A and B, using the standard back-tracking technique [2]. 

The above discussion yields a quadratic time dynamic programming al­

gorithm which needs to compute 12 tables of a total size of only ( 4 + 4 * 

8 + 4 * 64)mn = 292mn entries. (The first four tables are for storing 

c( i, j), ci ( i, j), c2 ( i, j), and c3 ( i, j).) The algorithm has been implemented 

as Context-free CAT in GNU C, and we will show some test results in the 

next section. 

3.3 The comparison of CAT and Context-free 

CAT 

We have performed tests of the two programs CAT and Context-free CAT 

on 3 pairs of HIV1 and HIV2 sequences and 13 groups of simulated sequences 

of length 100 through 1500 bases. The three pairs of real data include (i) 

HIV1 gag gene (bases 790 .. 2304) and HIV2 gag gene (bases 548 .. 2113), (ii) 

HIV1 vif gene (bases 5053 .. 5631) and HIV2 vif gene (bases 4868 .. 5515), and 

(iii) HIV1 nef gene (bases 8784 .. 9434) and HIV2 nef gene (bases 8562 .. 9329). 
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Since we are not sure how to combine cost parameters for amino acids with 

those of nucleotides, two combinations were considered (a) Dayhoff PAM 

40 Matrix for amino acids and DNA PAM 30 Matrix for nucleotides and 

(b) Dayhoff PAM 40 Matrix for amino acids and DNA PAM 47 Matrix 

for nucleotides. Overall, CAT and Context-free CAT produced very similar 

alignments in these tests. The following table summarizes the discrepancy 

between the alignments produced by the two programs. 

Table 3.2: The discrepancy between alignments produced by the two 
programs. 

PAM 40 & DPAM 30 PAM 40 & DPAM 47 
location type location type 

HIV1&2 gag 2/14 4/12 1/10 3/9 
HIV1&2 vif 1/7 1/6 1/7 2/6 
HIV1&2 nef 1/7 3/6 0/7 4/7 

In the table, we first count the number of codon alignments involving 

indels (i.e. any codon alignment except those of type 1) that are placed 

at different locations by the two programs, and then the number of codon 

alignments that are at the same locations but have different types. For 

example, the entry 2/14 means that out of the 14 codon alignments involving 

indels, two are placed at different locations by the two programs, and the 

entry 4/12 means that out of the 12 remaining codon alignments four have 

different types. In all the cases where indels are placed at different locations, 
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one program merges two adjacent indels produced by the other program. On 

the other hand, the discrepancy in the types of codon alignments is always 

because Context-free CAT would sometimes expand a type 2 or 3 codon 

alignment produced by CAT into a codon alignment of type 4, 5, 6, or 7 by 

shifting the indel inside an adjacent codon alignment. It is interesting to 

note that CAT produces very few codon alignments of types higher than 3 

while Context-free CAT produces types 4, 5, 6, and 7 almost as frequently 

as types 2 and 3. Also observe that the above discrepancies between CAT 

and Context-free CAT do not change very much with the two pairs of cost 

parameters we used. 

The 13 groups of simulated sequences were generated randomly on a naive 

stochastic model .using some fixed mutation and indels rates. The amino 

acid mutation/indel rates are based on Dayhoff PAM 120 Matrix and the 

nucleotide mutation/indel rates are based on DNA PAM 30 Matrix. We ran 

CAT and Context-free CAT on these groups of data using cost parameters 

consistent with the above rates. It is observed that both programs again 

produced very similar alignments and, moreover, they were all able to identify 

most indels correctly. 

Table 3.2 shows the average speeds of CAT and Context-free CAT on 

SPARC Ultra II Model1300. The speed-up of Context-free CAT over CAT is 
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Table 3.3: The average speeds (in seconds) of CAT and Context-free CAT. 

I length 102 1 201 1 3oo 1 402 1 501 1 6oo 1 

CAT 898.5 1872 2496 3032.5 3486 3463 
C.f. CAT 1 2.5 5.5 9 13.5 17.5 

1 length 102 1 801 1 9oo 1 1002 1 12oo 1 15oo 1 

I CAT I 4166.5 I 4490 L 4820 I 5414.5 I 6177 I 8138 
I C.f. CAT I 26.5 J 33.5 I 40 I 50.5 I 68 1 104 

illustrated in Figure 3.9. The speed-up decreases with the length of sequences 

because the "atomic" codon alignments (i.e. the ones that cannot be further 

reduced), such as the codon alignments of types 4 through 11 for CAT, 

are more complicated and require more time to compute than the ones for 

Context-free CAT, and the percentage of time spent by each program on 

setting up the atomic codon alignment table decreases with the length. We 

expect the speed-up to approach 1~~~4 =57 (but never goes below 57) when 

the sequences get really long. 

In the next chapter, we extend our context-free codon alignment algo-

rithm to allow sequences with frame-shift errors and overlapping frames. 
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Figure 3.9: The speed-up of Context-free CAT over CAT. 



Chapter 4 

An Extended Model and 

Algorithm 

Indels of lengths indivisible by three cause a coding frame to shift, and are 

often referred to as frame-shift errors. It is known that sometimes adjacent 

co dons may overlap (i.e. share common nucleotides), thus creating overlap­

ping frames. Frame-shift errors and overlapping frames are two complications 

in protein sequence alignment. Since Rein's model combines both DNA and 

protein alignment, it is clearly desirable that our context-free codon align­

ment algorithm can be extended to handle frame-shift errors and overlapping 

frames. In this chapter, we extend our context-free codon alignment model 

so that it does not require the length of an indel to be a multiple of three. 

From now on, we will use the term type t atomic alignment instead of type t 
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codon alignment because of the existence of frame-shift errors. 

The rest of this chapter is organized as follows. In Section 4.1 we intro-

duce frame-shift errors and overlapping frames. We extend our algorithm 

to handle frame-shift errors in Section 4.2. In Section 4.3 we describe how 

to handle overlapping frames using a heuristic method. The pseudo code of 

our extended algorithm is listed in Section 4.4. Finally, we analyze time and 

space complexity of the algorithm in Section 4.5. 

4.1 The frame-shift errors and overlapping 

frames problems 

We know that a DNA sequence has six reading frames, three from 3' to 

5' and three more from 5' to 3'. Figure 4.1 depicts three reading frames from 

5' to 3' in sequence ATGGGTTAA. The other three reading frames from 3' 

to 5' are similar. 

Reading Frame 

1 

2 

3 

5' 3' 

A T G G G T T A A 

Met Gly Non 

Trp Val 
---

Gly Leu 

Figure 4.1: Three reading frames from 5' to 3'. 
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Usually, there is only one reading frame for each gene. But, occasionally 

a frame-shift occurs when a gene changes its reading frame at a position of 

its coding region. The new reading frame will stop at a new stop amino acid 

or at the end of genome. 

Sometimes, more than one gene is coded in the same region of DNA. We 

call this phenomenon gene overlapping. The overlapped genes might have 

different reading frames as shown in Figure 4.2. The overlapping frames 

problem could be very complicated. For example, ten genes may overlap 

each other in different regions, some of them from 3' to 5' and the others 

from 5' to 3'. We will have to make some assumptions to simply the problem 

in Section 4.3. 

G A C C C T C C C T T G A A -----
Gene 1 Asp Pro Pro 

-------
Gene 2 Pro Ser Leu Glu 

Figure 4.2: Two overlapped genes. 
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4.2 An extended algorithm to handle frame­

shift errors 

Since the reading frame may not be unique within a gene and a frame-shift 

could occur at any position of an alignment, our algorithm to handle frame­

shift errors can't be simply based on codons. The following algorithm is based 

on nucleotides. It is clear that the size of the tables thus increases by at least a 

factor of nine. The framework of our algorithm is still dynamic programming, 

but we need to consider more cases than in the previous algorithm because 

of frame-shift errors. 

Most of the notation we will use in this chapter is the same as that in the 

last chapter except the following: 

• Let A = a1a2a3 ... am-2am-1am, and B = b1b2b3 ... bn-2bn-1bn be two 

DNA sequences. For any indices i = 0, ... , m and j = 0, ... , n, let 

A(i) = a1a2a3 ... ai-2ai-1ai, and B(i) = b1b2b3 ... bj-2bj-2bj. Note that A, 

B, A(i), and B(j) are based on nucleotides now instead of codons. 

• Instead of using g( i) to denote an affine gap penalty, we use the follow­

ing notations. 9Dopen is the cost of opening an indel at the DNA level, 

and 9Popen is the cost of opening an indel at the protein level; 9Dext is 

the cost of extending an indel by a nucleotide at the DNA level, and 
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9Pext is the cost of extending an indel by an amino acid at the protein 

level; F S is a (big) constant denoting the cost of a frame-shift error. 

In the following discussion, we again assume that the sequence B evolves 

to the sequence A. Since the frame-shift errors problem has been introduced, 

the two directions of evolution are no longer symmetric. 

First, we initialize the following variables. 

• c(O, 0) = 0 . 

• Fori= 1, ... ,m, c(i,O) = 9Dopen + 9Popen + 9Dext. Li/3J . 

• For j = 1, ... , n, c(O, j) = 9Dopen + 9Popen + 9Dext. LJ /3J. 

• Fori= 1, ... , m and j = 1, ... , n, c(i, j) = oo. 

• Fori= 0, ... , m, j = 0, ... , n, and t = 1, ... , 11, Ct(i,j) = oo. 

We define 11 types of atomic alignments in the same spirit as codon 

alignments, and classify an alignment into 11 types according to the type of 

its trailing atomic alignment. 

The main recurrence equation looks the same as that in the last chapter; 

but now i and j are the numbers of nucleotides instead of codons in the 

sequences A and B respectively: 

c(i,j) = min Ct(i,j). 
tE{l, ... ,ll} 
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The recurrence equation for type 1 is the same as that in the last chapter 

except that i and j are the numbers of nucleotides instead of codons in the 

sequences A and B respectively: 

where ca1(bj-2bj_1bj, ai-2ai-lai) has been defined in the last chapter. 

A type 2 atomic alignment only involves one evolutionary event (i.e. a 

deletion of any length). So p2 (i,j) is computed as follows: 

Also, 

P2(i,j) = min{p2(i,j- 3) + 3. 9Dext + 9Pext, 

c(i, J- 3) + 9Dapen + 9Papen + 3. 9Dext + 9Pext}· 

min{P2 ( i, j), 

P2(i, j- 1) + 9Dext + FS, 

c(i,j -1) + 9Dopen + 9Popen + 9Dext + FS, 

P2(i,j- 2) + 2 · 9Dext + FS, 

c(i,j- 2) + 9Dopen + 9Popen + 2. 9Dext + FS}. 

Analogously, p3 ( i, j) is computed as 

P3(i, j) = min{p3(i- 3, j) + 3. 9Dext + 9Pext, 

c(i- 3,j) + 9Dopen + 9Popen + 3. 9Dext + 9Pext}· 
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Also, 

c3(i, j) 

where 

min{p3(i,j), 

p3(i- 3,j- 1) + 2 · 9Dext + FS + tmp1, 

c(i- 3,]· -1) + 9Dopen + 9Popen + 2. 9Dext + FS + tmpl, 

P3(i- 3,j- 2) + 9Dext + FS + tmp2, 

c(i- 3,j- 2) + 9Dopen + 9Popen + 9Dext + FS+ tmp2}· 

tmp1 min{ ep(ai-2ai-lbj, ai-2ai-lai) + cd(bj, ai), 

cp(bibi+lbi+2, aibi+lbi+2) + cd(bj, ai)}. 

and tmp2 is described below. 

Since there are an indel and two mutations that need to be considered 

when we compute tmp2, we need to find the minimum cost by trying 3! = 6 

different orders. Let the indel be event 1, the first mutation (i.e. bi-l-+ ai_1) 

be event 2, and the second mutation (i.e. bi -+ ai) be event 3. We give an 

example of computing the partial cost for order 213 as follows: 

cost~13 = cp(bj-lbibi+l• ai-lbibi+l) + cd(bj-1, ai-l)+ 

cp(ai-2ai-lbj, ai-2ai-lai) + cd(bi, ai)· 

From the above equation, we can see that whenever a frame-shift error 
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occurs, we use a new reading frame to compute the costs of amino acid mu-

tations. In the following discussion, we will not explain details of computing 

the minimum cost for different orders since we have done so much about 

that in this chapter and the last chapter. But keep in mind, whenever a 

frame-shift error occurs, we need to use a new reading frame. 

A type 4 atomic alignment involves 4 evolutionary events as shown in 

Figure 3.1. The basic idea of computing the cost p4 ( i, j, x, O") of partial align-

ments is the same as that in Section 3.2 except that this algorithm is now 

based on nucleotides instead of codons. For x E {A, C, G, T} and O" E { 0, 1}, 

the recurrence equation is 

P4(i,j,x,O") = min{tmp,p4(i,j -l,x,O") + 9ext}, 

where 

tmp min{ c(i- 3, j- 3) + 9Dopen + 9Popen + 3. 9Dext + 9Pext + 

if x = bj_2 ; otherwise, tmp = oo. 

Now c4 (i,j) could be one offive possible paths as shown in Figure 4.3. It 

is computed as 
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;----;----;----;----;----;----;----;----;--~11 

: : : : : : : : : / : 
I I I I I I I I I, I ;----;----;----;----;----;----;----;---,;----: 
I I I I I 1 I I , I I 
I I I I I I I I, I I 

~----' - I - I -~--r--7---4----~----: 

:~·~·: : .. : .. :::: :--- :--- : ----~--j/-j/---~----~----~----: 
2 3 4 5 0.2 0-1 bj 1 

Figure 4.3: Five possible paths for type 4. 

where 

t(i,j,x,a) - min{p4 (i,j-3,x,a), 

P4(i, j- 4, x, a)+ FS + 9Dext, 

P4(i,j- 5,x,a) + FS + 2 · 9Dext}· 

trying 4! = 24 different orders. It corresponds to path 5 in Figure 4.3. Again, 

4 in Figure 4.3 depicts this case. Again, in these functions we need to use 
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new reading frames after frame shift errors occur. 

In Figure 4.3, path 1 corresponds to the first case in t(i,j,x,CJ) equation, 

path 2 is for the third case in the equation, and the second case is depicted 

by path 3. 

p5 (i,j, x, CJ) is similar to that for type 4, and so we define p5(i,j, x, 0) and 

p5 (i, j, x, 1) similarly. Again, for x E {A, C, G, T} and CJ E {0, 1}, p5 (i, j, x, CJ) 

is computed as 

Ps(i,j,x,CJ) = min{tmp,ps(i -1,j,x,CJ) + 9ext}, 

where 

tmp c(i- 3, j- 3) + 9Dopen + 9Popen + 3. 9Dext + 9Pext + 

if x = ai_2; otherwise, tmp = oo. 

But the idea to compute c5 ( i, j) is a little different from that for c4 ( i, j) 

since the frame-shift errors problem is introduced. The recurrence equation 

lS 

cs(i,j) min {p5(i- 3, j, x, CJ) + ca~(bi-2bi-lbj, ai-2ai-lai, x), 
zE{A,C,G,T} 

uE{O,l} 

Ps(i, j, X, CJ) + FS- 9Dext- 9Pext + 

Ps(i- 3,j -l,x, =sigma)- 2 · 9Dext + FS + tmpz, 
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c(i- 3,j- 1) + 9Dopen + 9Popen + 9Dext + FS + tmp2}· 

where tmp2 is similar to that in type 3. It computes the minimum cost 

of three events (i.e. bj-2 -+ x, an insertion, and bi -+ ai) by trying 3! = 6 

different orders. It uses the information from p5 and surrounding nucleotides. 

The basic idea for computing alignments ending with type 6 atomic align-

ments is similar to the idea used in Section 3.2. The recurrence equation for 

p6(i,j,x 1 ,a) is almost the same except that it is based on the number ofnu-

cleotides instead of codons. Since frame-shift errors are introduced, we need 

to find the minimum cost corresponding to the 5 possible paths as shown in 

Figure 4.4. p6 ( i, j, x, a) is computed as 

Figure 4.4: Five possible paths for type 6. 

P6(i,j,x, a) - min{c(i- 3,j- 3) + 9Dopen + 9Popen + 3. 9Dext + 9Pext + 

P6(i, j- 3, x, a)+ 3. 9Dext + 9Pext}, 



CHAPTER 4. AN EXTENDED MODEL AND ALGORITHM 61 

The cost of an optimal alignment between A(i) and B(j) ending with a 

type 6 atomic alignment, denoted Cf3 ( i, j), is 

where x = bi and 

t(i,j,x,o-) min{p6 (i, j- 3, x, o-), 

P6(i,j- 4,x,o-) + FS + 9Dext, 

P6(i, j- 5, x, o-) + FS + 2 · 9Dext}· 

by trying 4! = 24 different orders. It corresponds to path 5 in Figure 4.4. 

ing 24 different orders. Path 4 in Figure 4.4 is for this case. 

In Figure 4.4, path 1 corresponds to the third case in t(i, j, x, o-) recurrence 

equation, path 2 is for the second case in the equation, and the first case is 

depicted by path 3. 
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Similarly,p7(i,j,x,a) is computed as 

P7 ( i, j, X, a) min{c(i- 3,j- 3) + 9Dopen + 9Popen + 3. 9Dext + 9Pext + 

P7(i- 3, j, x, a)+ 3. 9Dext + 9Pext}· 

Using the same technique as that for type 5, we can compute c7 (i, j) as 

follows. 

c7(i,j) - min {p7(i- 3, j, x, a)+ 
uE{O,l} 

a· (cd(bi, ai) + ep(ai-2ai-lbj, ai-2ai-lai)), 

P7(i,j, X, a- 2 · 9Dext- 9Pext + FS, 

P7(i- 3,j- 2, x, a)- 9Dext + FS + tmp2, 

c(i- 6,j- 4) + 9Dopen + 9Popen + 2 · 9Dext + tmp3}. 

where x = ai and tmp2 and tmp3 are functions of computing partial costs 

using the same technique as that for type 5. 

Although our idea can be extended to handle atomic alignments involv-

ing two indels (i.e. types 8, 9, 10, and 11), it is clear that the speed of our 

algorithm would become too slow. For example, there are 5 · 5 = 25 possible 

paths to consider in an atomic alignment of type 8. Since in this extended 
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model we have already introduced a factor of nine, considering arbitrary in­

dels in types 8, 9, 10, and 11 alignments would mean a slowdown factor of 

25 · 9 = 225. Therefore we will assume the lengths of indels in the types 8, 

9, 10, and 11 atomic alignments are multiples of three and use the recur­

rence equations for types 8 through 11 in the last chapter for our extended 

algorithm. 

Although the table entries do not increase in this algorithm, computation 

is multiplied by a factor of 5 for types 2 through 7 since we need to consider 5 

possible paths for each of them. Therefore, the time complexity of the above 

algorithm is 0(428mn) where 428 = 1 + 1 + 5 + 5 + 5 · 8 · 4 + 64 · 4. 

The space complexity of the algorithm is 0(3mn) where 3 2-dimensional 

matrices are used for recording information about the terminating atomic 

alignments. 

4.3 A heuristic method to handle overlapping 

frames 

The general case of the overlapping frames problem is too complex. We 

need to make the following assumptions to simplify the problem. 

Let A= a1a2 ..• am and B = b1b2 ... bn be two overlapped coding regions in 

two different DNA sequences. For i = 1, ... , k, where k > 1, GeneA[i] is a 
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gene in A and GeneB[i] is a gene in B. GeneA[i].start is the start position 

of the ith gene in A, GeneA[i].end is the end position of the ith gene in A, 

and GeneA[i].name is the name of GeneA[i]. GeneB[i].start, GeneB[i].end, 

and GeneB[i].name are defined similarly. We assume 

1. GeneA[1].start = 1, GeneA[k].end = m, GeneB[1].start 

GeneB{k].end = n. 

2. Fori= 2, ... , k, 

3. For i = 1, ... , k, 

GeneA[i- 1].start:::; GeneA[i].start, 

GeneA[i- 1].end > GeneA[i].start, 

GeneB[i- 1].start:::; GeneB[i].start, 

GeneB[i- 1].end > GeneB[i].start. 

GeneA[i].name = GeneB[i].name. 

1, and 

Before describing our heuristic method, we need to introduce a new matrix 

named G N. The matrix G N whose size is mn saves the number of overlapped 

genes at point (i,j) for i = 1, ... , m and j = 1, ... , n. GN can be easily 

computed using standard information about overlapped genes. 
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Since all 11 type atomic alignments use the same idea, we only list recur-

renee equations for types 1 and 4 below. The basic idea is that we multiply 

costs of indels and mutations by the number of overlapped genes. 

For type 1, the recurrence equation is 

For type 4, 

P4(i, j, x, a) = min{tmp,p4(i, j- 1, x, a)+ GN(i, j) · 9ext}, 

where 

tmp min{c(i- 3,j- 3) + GN(i,j). (9Dopen + 9Popen + 

if x = bi_2; otherwise, tmp = oo. Also, 

min {t(i, j, x, a)+ GN(i, j) · car(bi-2bi-lbi, ai-2ai-lai, x), 
xE{A,C,G,T} 

uE{O,l} 

c(i- 3, j- 4) + GN(i, j) · ca4(bj-3bj-2bj-lbj, ai-2ai-lai), 

where 

t(i,j,x,a) min{p4(i, j- 3, x, a), 

P4(i, j- 4, x, a)+ GN(i, j) · (FS + 9Dext), 

P4(i, j- 5, x, a)+ GN(i, j) · (FS + 2 · 9Dext)}. 
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One more thing we need to do is that for i = 1, ... , m and j = 1, ... , n, 

if GN(i,j) > GN(i- 1,j) and GN(i,j) > 1, we add the cost of an indel, 

whose length is i - GeneB[t].start where GeneB[t] is the new overlapped 

gene, to c(i,j). The case in which GN(i,j) > GN(i,j -1) and GN(i,j) > 1 

is similar. 

4.4 The pseudo code 

Under the assumptions discussed in the last section, we list the pseudo 

code of our extended algorithm to handle overlapping frames as well as coding 

and non-coding regions as follows. 

Algorithm DNA_Protein_Alignment 

1. Get the user input data. 

2. Split coding and non-coding regions. 

3. For each non-coding region, simply do a DNA alignment. 

4- For each coding region, check if there are overlapped frames in it. If 

yes, go to 6; otherwise, do the following step. 

5. Compute the minimum cost of this coding region using the algorithm 

discussed in Section 4.2 and generate the alignment for it. Then go to 

7. 
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6. Call the Overlapping_Region function. 

7. Concatenate all the alignments of coding and non-coding regions and 

add all the costs of them. 

8. Output the result. 

Function Overlapping_Region 

1. Compute the matrix GN. 

2. Fori= 1, ... , m and j = 1, ... , n, 

(a) If {GN(i,j) = 0}, move to the next position. 

{b) If (GN(i, j) = 1), use the algorithm discussed in Section 4.2. 

{c) If {GN(i, j) > 1), use the algorithm discussed in Section 4.3. 

3. Generate the alignment according to knowledge of the ~erminating atomic 

alignments. 

4.5 Time and space complexity analysis 

Since we use different methods to handle non-coding regions, coding re­

gions without overlapped genes, and coding regions with overlapped genes, 

we discuss time and space complexity of them separately. 

Let k1 be the number of non-coding regions in two DNA sequences A 

and B. For i = 1, ... , k1 , let mi be the number of nucleotides in the ith 
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non-coding region of sequence A and ni be the number of nucleotides in the 

ith non-coding region of sequence B. The time complexity for non-coding 

regions is 

kl 

0(2::: 3mini), 
i=l 

and the space complexity is 

Let k2 be the number of coding regions without overlapped genes. For 

j = 1, ... , k2 , let mj be the number of nucleotides in the jth coding region 

without overlapped genes of sequence A and ni be the number of nucleotides 

in the jth coding region without overlapped genes of sequence B. The time 

complexity for coding regions without overlapped genes is 

k2 
O(L 428mjnj), 

j=l 

and the space complexity is 

Let k3 be the number of coding regions with overlapped genes. For l = 

1, ... , k3 , let m1 be the number of nucleotides in the lth coding region with 

overlapped genes of sequence A and nl be the number of nucleotides in the 

lth coding region with overlapped genes of sequence B. Let t1 be the number 
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of points (i,j) with GN(i,j) > 0, where 1 :::; i :::; mt and 1 :::; j :::; n1• The 

time complexity for coding regions with overlapped genes is 

ka 
O(L428tt), 

l=l 

and the space complexity is 

where the additional two-dimensional matrix is for GN. 

Finally, the time complexity of our extended algorithm is 

kl ~ ~ 

O(L3mini + .L:428mini + .L:428tt), 
i=l j=l l=l 

and the space complexity is 

In the next chapter, we will implement our extended algorithm and report 

some test results. 



Chapter 5 

Implementation and Test_: 

Results 

DPA, which is short for DNA and Protein Alignment, is the name of a 

software develope<!by us to implement the algorithm discussed in Chapter 4. 

Unlike Context-free CAT, DPA can handle frame-shift errors and overlapping 

frames. 

In Section 5.1 we show the environment and programming language used 

in developing DPA. Then in Section 5.2 we describe the key modules of DPA. 

We analyze time and space used by DPA in Section 5.3. We give some test 

results concerning frame-shift errors and overlapping frames in Sections 5.4 

and 5.5 respectively. 
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5.1 The environment and programming lan­

guage used in developing DPA 

We developed DPA on a Sun Spare Ultra II Model 1300 using GNU 

C. The reason we did not use Java or C++ is that most biologists are not 

familiar with them. Another reason is that Java is slower than C and speed 

is a key consideration in our implementation. 

DPA uses the algorithm discussed in the last chapter and makes the same 

assumptions listed in Section 4.3 for overlapping frames. Some ideas to speed 

up our program will be discussed in the next section. We do our best to make 

DPA as fast as possible. 

5.2 Key modules of DPA 

DPA consists of 5 modules, named Input, Split, Cost, Align, and Output. 

We will describe each module in the following subsections. 

5.2.1 Input module 

Input module is responsible for getting the user input data. DPA reads 

data from two files, named DPA_Job and DPA_Setting. DP A_Job is a job 

description file. All parameters used by DPA are in the DPA_Setting file. 
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The Input module reads the data from the two files and saves them in some 

variables used in the other modules. 

5.2.2 Split module 

In this module, DPA splits the coding and non-coding regions and finds 

pairs of genes to align. For non-coding regions, it only does DNA alignment. 

For coding regions, if two genes in different DNA sequences have the same 

name and they don't overlap with other genes, it is straightforward to align. 

But if there is overlapping in their coding regions, sometimes we can align 

all the genes in this region, sometimes we cannot. For example, suppose that 

in sequence A, genel is before gene2 and they overlap each other; but in 

sequence B, gene2 is before genel and they also overlap each other. There­

fore, we must make a decision on which pair of genes should be aligned. DPA 

chooses the first gene in the first DNA sequence and its counterpart. If a user 

wants to align the second gene in the first sequence to its counterpart in the 

second sequence, the user can swap the two genes in the first DNA sequence 

in the DPA job file, i.e. gene2 in the first sequence should be moved to the 

first position in this coding region. 

Another issue that should be mentioned here is that DPA changes all the 

characters in coding regions to upper case before passing them to the Cost 
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module. This speeds up our program significantly since it saves almost half 

of the comparisons. 

After splitting coding and non-coding regions and considering the over­

lapping frames problem, Split module passes the coding regions to the Cost 

module and concatenates the results from the Align module to generate the 

whole alignment. 

5.2.3 Cost module 

The Cost module is the heart of DPA. It computes the minimum cost 

and remembers all the path information of an optimal alignment in the table 

LC whose size is m·n. LC(i,j).type is the type of the last atomic alignment 

of A(i) and B(j). LC(i,j).indell and LC(i,j).indel2 are the lengths of the 

first indel and the second indel of the last atomic alignment of A(i) and B(j) 

respectively. 

As discussed in the last chapter, if we consider frame-shift errors in atomic 

alignments of types 8, 9, 10, and 11, then the speed of our algorithm would 

be too slow in practice. Thus, DPA only considers frame-shift errors in the 

first seven types, and requires that an indel in the last four types must be a 

multiple of three nucleotides. 

We find that DPA spends a lot of time computing the base cases for types 
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1, and 4, ... ,11. A base case of type 1 needs to consider 3! = 6 different orders. 

For types 4, 5, 6, and 7, each base case requires the computation of 4! = 24 

different orders. For types 8, 9, 10, and 11, 5! = 120 different orders must 

be tried in the base case. We use some base case tables to avoid duplicate 

computations for the same base case. 

Another interesting issue is that we observe that the costs of some orders 

in an atomic alignment may be identical, hence we only need to compute one 

of them when this occurs. We give two examples below. 

For type 4, the costs of orders 1342, 3142, and 3412 are always equal (see 

Figure 3.1). The reason is simple. Whenever an indel separates an alignment 

into two parts, the events in the two different parts have no influence on each 

other. The same phenomenon can be found in type 8. For example, the cost 
- . 

of the following orders are same (see Figure 3.3): 13524, 15324, 31524, 35124, 

51324, 53124, 13542, 15342, 31542, 35142, 51342, and 53142. 

One more trick to speed up our program is to use the base case table of 

type 1 in computing the base cases of types 4, ... ,11 for some special orders 

which have three continuous mutations after deletions or before insertions. 

When Cost module finishes its job, the minimum cost of two input se-

quences has been found and information about the path has been remembered 

in the matrix LC. 
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5.2.4 Align module 

The Align module uses the matrix LC to generate alignments using the 

standard back-tracking technique. It starts at entry LC(m, n). Since the 

type and indel lengths of the last atomic alignment have been computed 

and recorded in the Cost module, it is trivial to generate the last atomic 

alignment. Then we move to the end position of the second to last atomic 

alignment, and so on. For example, if LC(i,j).type = 8, LC(i,j).indell = 3, 

and LC(i,j).indel2 = 9, the next position to consider would be LC(i-3,j-

3-3- 9) (i.e. LC(i- 3, j -15)). The Align module concatenates all atomic 

alignments together and terminates at entry LC(O, 0). 

5.2.5 Output module 

DP A translates codons to amino acids for each gene in this module, and 

outputs the result according to the format used in GenAl[4]. 

5.3 Time and space complexity analysis of 

DPA 

Our work station has 512MB physical memory and a Sun Spare Ultra II 

300MHz cpu. We have tested 16 groups of sequences with lengths ranging 

from 100 to 5000 nucleotides. We summarize the results in Table 5.1 and 
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Table 5.1: Time and space of DPA 

Jlength(nuc) 11oo I 2oo I 3oo I 4oo I 5oo I 6oo I 1oo I 8oo I 
space(MB) 5 6 8 9 12 14 17 20 1 

time( sec) 5 19 41 72 114 165 222 292 1 

IIength(nuc) 1 9oo 1 10oo 1 12oo 1 15oo 1 2ooo 1 3ooo 1 4ooo 1 5ooo 1 

l space(MB) J 23 I 27 34 48 J 76 J 154 1 258 390 
I time(sec) 1 374 1 459 679 1085 1 1942 1 4421 1 8394 12392 

illustrate the relation between speed and length in Figure 5.1. 
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·
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Figure 5.1: The time complexity analysis of DPA. 

From Figure 5.1, we can see that DPA spends a significant amount of 

time in computing the costs of atomic alignments, even though a table is 

used to avoid duplicate computations for the same atomic alignment. This is 

especially obvious in the first region (i.e. 100 ... 300 nuc) of the figure, where 
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the timejlength2 ratio deceases from 5 to 4.56. When the same set of cost 

parameters are used again and again, it is possible to speed up the program 

by recycling the atomic codon alignment cost table. In the second region (i.e. 

300 ... 800 nuc) of the figure, the ratio is stable. Its value fluctuates between 

4.5 and 4.58. In the third region (i.e. 900 ... 1500 nuc), it increases slowly 

since the memory begins to become a factor. 

In general, the speed of DPA is acceptable in practice. It is much faster 

than CAT, but slower than Context-free CAT due to the computation based 

on the number of nucleotides instead of the number of codons in CAT. But 

DPA can handle frame-shift errors and overlapping frames while CAT does 

not. 

The space used by the base case tables is fixed and not too great. Since 

we use the standard back-tracking technique instead of Hirschberg's divide 

and conquer algorithm, we are able to save some time although we use more 

space to remember the path information. This is a trade-off between time 

and space, and we think that time is more important than space in our 

program. 
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Table 5.2: Test results concerning frame-shift errors (1) 

localization 

5.4 Tests concerning frame-shift errors 

When there are no frame-shift errors and overlapping frames in an align-

ment, the test r:esults of DPA and Context-free CAT are the same except 

that DPA is slower than Context-free CAT. In this section, we will describe 

the test results involving frame-shift errors. 

We have performed two groups of tests on frame-shift errors using Dayhoff 

PAM 120 Matrix and DNA PAM 47 Matrix. In the first group, we fix the rate 

of frame shifting indel, and vary the mutation rate. Both rates of insertion 

and deletion we used are 0.01. The test results with mutation rate changes 

from 0.1 to 0.8 are listed in Table 5.2. In the detection row of the table, 

it gives the number of indels detected by DPA and the number of original 

indels respectively. The distance between the original indel and the detected 

indel is listed in the localization row. For example, 3/0 means that the first 

indel is shifted by 3 nucleotides and the second indel is exactly at the same 

position as the original one. 

From the table we can see that when the mutation rate is less than 0.4, 
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DPA can correctly identify the indels and frame shifts. When the mutation 

rate is between 0.4 and 0.6, DPA can still detect all the indels, but may 

put some of them at slightly wrong locations. When the mutation rate is 

greater than 0.6, although DPA can detect the indels, the locations of them 

are totally off. We list one of the results when the mutation rate is 0.2 below. 

The simulated data is 

1 11 21 31 41 51 

agacccgctg aggcggcaac agatgcggtg agacaaactc agcgagcacc agtgggggtg 

agacgagctg ag----caac agatacgttg agacaaactc agccaccagc agtggcggtg 

61 71 81 91 101 111 

ggagcagcat ---cagacct gcaccgacat ggagcaatca caactaggaa tacggcagct 

ggagcggcat caccagccct ccaaagacat ggctcaatca caactctcaa tacagcagct 

The output pr_oduced by DPA is 

This is DPA, Version 0.90 Betal. 

Written by Bin Wu <binvu~church.dcss.McMaster.CA>. 

Copyright (c) 1998 by Tao Jiang t Bin Wu. All rights reserved! 

One optimal codon alignment of two input sequences is 

Arg Pro Ala Glu Ala Ala Thr Asp Ala Val Arg Gln 

1 a g a c c c g c t g a g g c g g c a a c a g a t g c g g t g a g a c a a 

1 a g a c g a g c t g a g - - - - c a a c a g a t a c g t t g a g a c a a 

Arg Arg Ala Glu Gln Gln Ile Arg Non Asp Lys 

Thr Gln Arg Ala Pro Val Gly Val Gly Ala Ala 

37 a c t c a g c g a g c a c c a g t g g g g g t g g g a g c a g c a t 

33 a c t c a g c c a c c a g c a g t g g c g g t g g g a g c g g c a t c a 

Leu Ser His Gln Gln Trp Arg Trp Glu Arg His His 
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Table 5.3: Test results concerning frame-shift errors (2) 

I mutation rate I o.1 1 o.2 1 o.3 1 

detection 4/4 1 4/4 1 4/4 
localization 0/1/0/1 1 10/1/0/o 1 10/1/0/0 

I mutatiOn rate I oA I o.s 1 o.6 1 

I detection I 3/4 4/4 2/4 
I localization I 10/21/3/oo 9/3/3/0 24/oo/60/oo 

Ser Asp Leu His Arg His Gly Ala Ile Thr Thr Arg 

71 - c a g a c c t g c a c c g a c' a t g g a g c a a t c a c a a c t a g g 

69 c c a g c c c t c c a a a g a c a t g g c t c a a t c a c a a c t c t c 

Gln Pro Ser Lys Asp Met Ala Gln Ser Gln Leu Ser 

Asn Thr Ala Ala 

106 a a t a c g g c a g c t 

105 a a t a c a g c a g c t 

Ile Gln Gln 

The minimum cost is 1901 

Thank you for using DPA! 

See you next time! 

In the second group we fix the frame shifting insertion and deletion rates 

at 0.02. Again, we vary the mutation rate. The test results are summarized in 

Table 5.3. From the table, we can see that the performance of DPA worsens 

when more indels are introduced. 
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5.5 Tests concerning overlapping frames 

With regard to overlapping frames, we have tested several groups of 

simulated sequences and 3 pairs of real sequences. The 3 pairs of real data 

include (i) HIVMN coding region for gag and pol genes, HIVNDK coding 

region for gag and pol genes. (ii) HIVMN coding region for vif and vpr 

genes, HIVNDK coding region for vif and vpr genes. (iii) HIVMN coding 

region for tat1 and rev1 genes, HIVNDK coding region for tat1 and rev1 

genes. Again, we use Dayhoff PAM 120 Matrix for amino acids and DNA 

PAM 4 7 for nucleotides. 

The following scripts are the outputs of DPA for 3 pairs of real data. 

Since the output for gene gag and pol is too long (14 pages), we only list a 

part of that. 

A part of the output for gag and pol genes is 

Cys Arg Ala Pro Arg Lys Arg Gly Cys Trp Lys Cys 

1222 t g c a g g g c c c c t a g g a a a a g g g g c t g t t g g a a a t g t 

1207 t g c a g g g c c c c t a g a a a a a a g g g c t g t t g g a a a t g c 

Cys Arg Ala Pro Arg Lys Lys Gly Cys Trp Lys Cys 

Gly Lys Glu Gly His Gln Met Lys Asp Cys Thr Glu 

1258 g g a a a g g a a g g a c a c c a a a t g a a a g a t t g t a c t g a g 

1243 g g a a g g g a a g g a c a c c a a a t g a a a g a t t g c a c t g a a 

Gly Arg Glu Gly His Gln Met Lys Asp Cys Thr Glu 

Phe Phe Arg Glu Asp Leu Ala Phe 

Arg Gln Ala Asn Phe Leu Gly Lys Ile Trp Pro Ser 

1294 a g a c a g g c t a a t t t t t t a g g g a a g a t c t g g c c t t c c 

1279 a g a c a g g c t a a t t t t t t a g g g a a g a t t t g g c c t t c c 

Arg Gln Ala Asn Phe Leu Gly Lys Ile Trp Pro Ser 

Phe Phe Arg Glu Asp Leu Ala Phe 
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Leu Gln Gly Lys Ala Glu Phe Ser Ser Glu Gln 

Cys Lys Gly Arg Arg Asn Phe Pro Gln Ser Arg 

1330 t g c a a g g g a a g g c - - - g g a a t t t t c c t c a g a g c a g a 

1315 c a c a a g g g a a g g c c g g g g a a t t t t c t t c a g a g c a g a 

His Lys Gly Arg Pro Gly Asn Phe Leu Gln Ser Arg 

Pro Gln Gly Lys Ala Gly Glu Phe Ser Ser Glu Gln 

Asn Arg Ala Asn Ser Pro Thr Arg Arg Glu Leu Gln 

Thr Glu Pro Thr Ala Pro Pro Glu Glu Ser Phe Arg 

1363 a c a gag c c a a c a g c c c c a c c a g a a gag a g c t t c a.g g 

1351 c c a g a g c c a a c a g c c c c a c c a g c a g a g a g c t t c g g g 

Pro Glu Pro Thr Ala Pro Pro Ala Glu Ser Phe Gly 

Thr 

Val 

Phe 

Arg 

Trp 

Gly 

Ala Asn Ser Pro Thr 

Gly Arg Asp Asn Asn 

Glu Glu Thr Thr Thr 

Ser 

Ser 

Pro 

Arg Glu Leu Arg 

Leu Ser Glu Ala 

Tyr Gln Lys Gln 

1399 t t t g g g g a a g a g a c a a c a a c t c c c t a t c a g a a g c a g 

1387 t t t g g g g a g g a g a t a a c c c c c t c t 

Phe Gly Glu Glu Ile Thr Pro Ser 

Val Trp Gly. Gly Asp Asn Pro Leu 

Gly Glu Glu Ala Gly Asp Asp Arg Gln Gly Pro Val 

Glu Lys Lys Gln Glu Thr Ile Asp Lys Asp Leu Tyr 

1435 g a g a a g a a g c a g g a g a c g a t a g a c a a g g a c c t g t a t 

1411 - - - c a g a a a c a g g a g c a g a a a g a c a a g g a a c t g t a t 

Gln Lys Gln Glu Gln Lys Asp Lys Glu Leu Tyr 

Ser Glu Thr Gly Ala Glu Arg Gln Gly Thr Val 

Ser Phe Ser Phe Pro Gln Ile Thr Leu Trp Gln Arg 

Pro Leu Ala Ser Leu Lys Ser Leu Phe Gly Asn Asp 

1471 c c t t t a g c t t c c c t c a a a t c a c t c t t t g g c a a c g a c 

1444 c c t t t a g c t t c c c t c a a a t c a c t c t t t g g c a a c g a c 

Pro Leu Ala Ser Leu Lys Ser Leu Phe Gly Asn Asp 

Ser Phe Ser Phe Pro Gln Ile Thr Leu Trp Gln Arg 
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The output for vif and vpr genes is 

This is DPA, Version 0.90 Beta1. 

Written by Bin Wu <binvuOchurch.dcss.McMaster.CA>. 

Copyright (c) 1998 by Tao Jiang t Bin Wu. All rights reserved! 

One optimal codon alignment of two input sequences is 

Met Glu Asn Arg Arg Gln Val Met Ile Val Trp Gln 

1 a t g g a a a a c a g a c g g c a g g t g a t g a t t g t g t g g c a a 

1 a t g g a a a a c a g a t g g c a g g t g a t g a t t g t g t g g c a a 

Met Glu Asn Arg Trp Gln Val Met Ile Val Trp Gln 

Ala Asp Arg Met Arg Ile Arg Thr Trp Lys Ser Leu 

37 g c a g a c a g g a t g a g g a t t a g a a c a t g g a a a a g t t t a 

37 g t a g a c a g g a t g a g g a t t a a c a c a t g g a a a a g t t t a 

Val Asp Arg Met Arg Ile Asn Thr Trp Lys Ser Leu 

Val Lys His His Met Tyr Ile Ser Lys Lys Ala Lys 

73 g t a a a a c a c c a t a t g t a t a t t t c a a a g a a a g c t a a a 

73 g t a a a a t a c c a t a t g t a t g t t t c a a a g a a a g c t a a c 

Val Lys Tyr His Met Tyr Val Ser Lys Lys Ala Asn 

Gly Arg Phe Tyr Arg His His Tyr Glu Ser Thr His 

109 g g a c g g t t t t a t a g a c a t c a c t a t g a a a g c a c t c a t 

109 a g a t g g t t t t a t a g a c a t c a c t a t g a c a g c c a c c a c 

Arg Trp Phe Tyr Arg His His Tyr Asp Ser His His 

Pro Arg Ile Ser Ser Glu Val His Ile Pro Leu Gly 

145 c c a a g a a t a a g t t c a g a a g t a c a c a t c c c a c t a g g g 

145 c c a a a a a t a a g t t c a g a a g t a c a c a t c c c a c t a g g a 

Pro Lys Ile Ser Ser Glu Val His Ile Pro Leu Gly 

Asp Ala Arg Leu Val Ile Thr Thr Tyr Trp Gly Leu 

181 g a t g c t a g a t t g g t a a t a a c a a c a t a t t g g g g t c t g 

181 g a a g c t a g a c t g g t a g t a a c a a c a t a t t g g g g t c t g 

Glu Ala Arg Leu Val Val Thr Thr Tyr Trp Gly Leu 
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His Thr Gly Glu Arg Asp Trp His Leu Gly Gln Gly 

217 c a t a c a g g a g a a a g a g a c t g g c a t t t a g g t c a g g g a 

217 c a t a c a g g a g a a a a a g a a t g g c a t c t g g g t c a g g g a 

His Thr Gly Glu Lys Glu Trp His Leu Gly Gln Gly 

Val Ser Ile Glu Trp Arg Lys Lys Arg Tyr Ser Thr 

253 g t c t c c a t a g a a t g g a g ~ a a a a a g a g a t a t a g c a c a 

253 g t c t c c a t a g a a t g g a g g a a a a g g a g a t a t a g c a c a 

Val Ser Ile Glu Trp Arg Lys Arg Arg Tyr Ser Thr 

Gln Val Asp Pro Asp Leu Ala Asp His Leu Ile His 

289 c a a g t a g a c c c t g a c c t a g c a g a c c a c c t a a t t c a t 

289 c a a g t a g a c c c t g g c c t g g c a g a c c a a c t a a t t c a t 

Gln Val Asp Pro Gly Leu Ala Asp Gln Leu Ile His 

Leu His Tyr Phe Asp Cys Phe Ser Asp Ser Ala Ile 

325 c t g c at t a c t t t gat t g t t t t t c a g a c t c t g c c a·t a 

325 a t g t a t t a t t t t g a t t g t t t t g c a g a a t c t g c t a t a 

Met Tyr Tyr Phe Asp Cys Phe Ala Glu Ser Ala Ile 

Arg Lys Ala Ile Leu Gly His Arg Val Ser Pro Ile 

361 a g a a a g g c c a t a t t a g g a c a t a g a g t t a g t c c t a t t 

361 a g a a a a g c c a t a t t a g g a c a t a t a g t t a g t c c t a g t 

Arg Lys Ala Ile Leu Gly His Ile Val Ser Pro Ser 

Cys Glu Phe Gln Ala Gly His Asn Lys Val Gly Pro 

397 t g t g a a t t t c a a g c a g g a c a t a a c a a g g t a g g a c c t 

397 t g t g a g t a t c a a g c a g g a c a t a a c a a g g t a g g a t c c 

Cys Glu Tyr Gln Ala Gly His Asn Lys Val Gly Ser 

Leu Gln Tyr Leu Ala Leu Thr Ala Leu Ile Thr Pro 

433 c t a c a g t a c t t g g c a c t a a c a g c a t t a a t a a c a c c a 

433 t t a c a g t a t t t g g c a c t a g c a g c a t t a a t a g c a c c a 

Leu Gln Tyr Leu Ala Leu Ala Ala Leu Ile Ala Pro 
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Lys Lys Ile Lys Pro Pro Leu Pro Ser Val Lys Lys 

469 a a a a a g a t a a a g c c a c c t t t g c c t a g t g t t a a g a a a 

469 a a a a a g a t a a a g c c a c c t t t g c c t a g t g t t a g g a a g 

Lys Lys Ile Lys Pro Pro Leu Pro Ser Val Arg Lys 

Met Glu Gln Ala Pro Glu Asp 

Leu Thr Glu Asp Arg Trp Asn Lys Pro Gln Lys Thr 

505 c t g a c a g a g g a t a g a t g g a a c a a g c c c c a g a a g a c c 

505 c t a a c a g a a g a t a g a t g g a a c a a g c c c c a g a a g a c c 

Leu Thr Glu Asp Arg Trp Asn Lys Pro Gln Lys Thr 

Met Glu Gln Ala Pro Glu Asp 

Gln 

Lys 

Gly Pro Gln Arg Glu Pro 

Gly His Arg Gly Ser His 

Tyr 

Thr 

Asn Gln Trp 

Ile Asn Gly 

Ala 

His 

541 a a g g g c c a c a g a g g g a g c c a t a c a a t c a a t g g g c a c 

541 a a g g g c c g c a g a g g g a g c c a t a c a a t g a a t g g a c a t 

Lys Gly Arg Arg Gly Ser His Thr Met Asn Gly His 

Gln Gly Pro Gln Arg Glu Pro Tyr Asn Glu Trp Thr 

Leu Glu Leu Leu Glu Glu Leu Lys Asn Glu Ala Val 

Non 

577 t a g a g c t t t t a g a g g a g c t t a a g a a t g a a g c t g t t a 

577 t a g a g c t t t t a g a g g a g c t t a a g a g t g a a g c t g t c a 

Non 

Leu Glu Leu Leu Glu Glu Leu Lys Ser Glu Ala Val 

Arg His Phe Pro Arg Ile Trp Leu His Gly Leu Gly 

613 g a c a t t t t c c t a g g a t a t g g c t c c a t g g c t t a g g g c 

613 g a c a t t t t c c t a g g a t a t g g c t c c a t a g c t t a g g a c 

Arg His Phe Pro Arg Ile Trp Leu His Ser Leu Gly 

Gln His Ile Tyr Glu Thr Tyr Gly Asp Thr Trp Ala 

649 a a c a t a t c t a t g a a a c t t a t g g g g a t a c t t g g g c a g 
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649 a a c a t a t c t a t g a a a c t t a t g g g g a t a c c t g g g c a g 

Gln His Ile Tyr Glu Thr Tyr Gly Asp Thr Trp Ala 

Gly Val Glu Ala Ile Ile Arg Ile Leu Gln Gln Leu 

685 g a g t g g a a g c c at a a t a a g a a t t c t a c a a c a a c t g c 

685 g t g t t g a a g c t at a a t a a g a a t t c t g c a a c a a c t a c 

Gly Val Glu Ala Ile Ile Arg Ile Leu Gln Gln Leu 

Leu Phe Ile His Phe Arg Ile Gly Cys Arg His Ser 

721 t g t t t at t c at t t c a g a a t t g g g t g t c g a c a t a g c a 

721 t g t t t a t t c a t t t cagaat tgggtgt c a a c a t a g c a 

Leu Phe Ile His Phe Arg Ile Gly Cys Gln His Ser 

Arg Ile Gly Ile Ile Arg Gln Arg Arg Ala Arg Asn 

757 ! a 11. t a g g c a t t at t c g a c a g a g g a g a g c a a g a a at g 

757.g a at a a g t at t a c t c g a c a g a g a a g a g c 

Arg Ile Ser Ile 

Gly Ala Ser Arg 

793 g a g c c a g t a g at 

793 g at c c a g t a gat 

Gly Ser Ser Arg 

The minimum cost is 7962 

Thank you for using DPA! 

See you next time! 

Thr Arg Gln Arg Arg Ala 

Ser Non 

c c t a g 

c c t a a 

Ser Non 

a a g a a a t g 

Arg Asn 
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The output for tatl and revl genes is 

This is DPA, Version 0.90 Beta1. 

Written by Bin Wu <binvu~church.dcss.McMaster.CA>. 

Copyright (c) 1998 by Tao Jiang t Bin Wu. All rights reserved! 

One optimal codon alignment of two input sequences is 

Met Glu Pro Val Asp Pro Arg Leu Glu Pro Trp Lys 

1 at g g a g c c a g t a g a t c c t a g a c t a g a g c c c t g g a a g 

1 at g gat c c a g t a g a t c c t a at c t a g a g t c c t g g a a c 

Met Asp Pro Val Asp Pro Asn Leu Glu Ser Trp Asn 

His Pro Gly Ser Gln Pro Lys Thr Ala Cys Thr Thr 

37 c at c c a g g a a g t c a g c c t a a g a c t g c t t g t a c c a c t 

37 c a t c c a g g a a g t c a g c c t a g g a c t g c t t g t a a t a a g 

His Pro Gly Ser Gln Pro Arg Thr Ala Cys Asn Lys 

Cys Tyr Cys Lys Lys Cys Cys Phe His Cys Gln Val 

73 t g c t at t g t aaaaagt g t t g c t t t c a t t g c c a a g t t 

73 t g t c a t t g t aaaaagt g t t g c t a t c a t t g c c a a g t t 

Cys His Cys Lys Lys Cys Cys Tyr His Cys Gln Val 

Met Ala 

Cys Phe Thr Lys Lys Ala Leu Gly Ile Ser Tyr Gly 

109 t g t t t c a c a a aaaaagc c t t a g g c at c t c c t at g g c 

109 t g c t t c a t a a c g a a a g g c t t a g g c a t c t c c t at g g c 

Cys Phe Ile Thr Lys Gly Leu Gly Ile Ser Tyr Gly 

Met Ala 

Gly Arg ·ser Gly Asp Ser Asp Glu Glu Leu Leu Lys 

Arg Lys Lys Arg Arg Gln Arg Arg Arg Ala Pro Glu 

145 a g g a a g a a g c g g a g a c a g c g a cgaagag c t c c t g a a 

145 a g g a a g a a g c g g a g a c a g c g a c g a a a a c c t c c t c a a 
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Arg Lys Lys Arg Arg Gln Arg Arg Lys Pro Pro Gln 

Gly Arg Ser Gly Asp Ser Asp Glu Asn Leu Leu Lys 

Thr Val Arg Leu Ile Lys Phe Leu Tyr Gln Ser 

Asp Ser Gln Thr His Gln Val Ser Leu Pro Lys 

181 g a c a g t c a g a c t c a t c a a g t t t c t c t a c c a a a g c a 

181 g g c g a t c a g g c t c a t c a a g t t c c t a t a c c a g a g c a 

Gly Asp Gln Ala His Gln Val Pro Ile Pro Glu 

Ala Ile Arg Leu Ile Lys Phe Leu Tyr Gln Ser 

The minimum cost is 3852 

Thank you for using DPA! 

See you next time! 

From the test results, we can see that (i) The indel rate for short genes 

is lower than that for long genes. There is no indel in the alignments for the 

last two pairs of real sequences. (ii) The indel rate in overlapping regions is 

almost the same as that in non-overlapping regions. (iii) The mutation rate 

in the real data that we tested is usually lower than 0.3. 

In the next chapter, we give conclusions and future work for our project. 
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Conclusions and Future Work 

In this thesis, we have studied an alignment model recently proposed by 

J. Rein and related algorithms for comparing coding DNA sequences which 

takes into account both DNA and protein information. Basing on Rein's 

model, we have proposed a mildly simplified model, i.e. the context-free 

codon alignment model, and presented a much more efficient algorithm for 

this simpler model. Furthermore, we have extended our algorithm to handle 

frame-shift errors and overlapping frames using a heuristic approach. 

All of the algorithms have been implemented and tested on both real 

and simulated sequences. The test results show that the algorithm for our 

simplified model and the algorithm for Rein's model produce almost identical 

alignment in most cases. Also, our program can correctly detect and locate 

frame-shift errors for reasonable indel and mutation rates. 

A disadvantage of our program is that it can't detect two frame-shift 

errors which are close to each other. To make up for this, we can use a local 
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optimization method, i.e. we do not penalize two "complementary" frame­

shift errors which are close to each other and realign that region taking this 

into account. 

Future research may be concerned with (i) exact algorithms for the over­

lapping frames problem, (ii) speeding up our frame-shift algorithm so that 

it can handle atomic alignment involving two indels, and (iii) biologically 

plausible combinations of cost parameters from protein and DNA levels. 

Finally, we hope our model will be accepted by biologists and our program 

will be widely used in practice. 
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