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Abstract

We study an alignment model for coding DNA sequences recently pro-
posed by J. Hein in [4] that takes into account both DNA and protein in-
formation, and attempts to minimize the total amount of evolution at both
DNA and protein levels[4,5,v6]. Although there are two quadratic algorithms
(i.e. Hua-Jiang algorithm[8] and PLH algorithm[9]) for Hein’s model if the
gap penalty function is affine, both of them are impractical because of the
large constant factor embedded in the quadratic time complexity function.
We therefore consider a mild simplification named Contezt-free Codon Align-
ment and present a much more efficient algorithm for the simplified model.
The algorithms have been implemented and tésted on both real and simulated
sequences, and it is found that they produce almost identical alignments in
most cases. Furthermore, we extend our model and design a heuristic algo-

rithm to handle frame-shift errors and overlapping frames.
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Chapter 1

An Introduction to Codon

Based Alignment

We first give an overview of the problem of comparing genomic sequences
in Section 1.1. The formal definition of codon based alignment is presented

in Section 1.2. Finally, we preview our main results in Section 1.3.

1.1 Overview

Genomic sequence alignment is a model of comparing DNA or protein se-
quences under the assumptions that (i) insertion, deletion, and mutation are
the elementary evolutionary events and (ii) evolution usually takes the most

economic course. Classical alignment algorithms either align DNA sequences
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based on DNA evolution or align protein sequences based on protein evélu—
tion. It is well known that protein evolves slower than its coding DNA, and
alignments of protein are usually more reliable than that of the underlying
DNA.

We are interested in the alignment of coding DNA sequences. It is clearly
desirable that an alignment of coding DNA sequences incorporate the infor-
mation from their protein sequences. A straightforward method is to align
the protein sequences first and then back-translate the alignment into DNA.
The method has several shortfalls including (i) it forces insertions and dele-
tions (abbreviated as indels) to occur at codon * boundaries and (ii) it ignores
homologies at the DNA level.

In 1994, Jotun Hein proposed a new model of DNA sequence alignment
where evolutionary changes at both the DNA and protein levels are dealt
with simultaneously[4]. The basic idea of Hein’s model is that in computing
an alignment, we consider each nucleotide mutation and indel, and penalize
it appropriately taking into account any amino acid change it might induce.
The model allows indels to occur within codons and assumes that each indel

2

involves a multiple of three nucleotides so that the reading frame ° never

changes during the evolution. A gap (i.e. a block of consecutive spaces;

1A codon is a triple of nucleotides which encodes an amino acid (see Table 1.1).
ZRoughly speaking, the reading frame in a coding DNA depicts where the codons begin.
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[ Amino Acids | Codons
Ala GCT GCC GCA GCG
Arg CGT CGC CGA CGG AGA AGG
Asn AAT AAC
Asp GAT GAC
Cys TGT TGC
Gin CAA CAG
Glu GAA GAG
Gly GGT GGC GGA GGG
His CAT CAC
Ile ATT ATC ATA
Leu TTA TTG CTT CTC CTA CTG
Lys AAA AAG
Met ATG
Phe TTT TTC
Pro CCT CCC CCA cCcaG
Ser AGT AGC TCT TCC TCA TCG
Thr ACT ACC ACA ACG
Trp TGG
Tyr TAT TAC
Val GTT GTC GTA GTG

Table 1.1: Codons map to amino acids

3



CHAPTER 1. AN INTRODUCTION TO CODON BASED ALIGNMENT 4

representing an indel) of length ¢ is penalized with a cost g(7), where g is any
positive function satisfying g(¢) + g{(j) > g(i + j). A dynamic programming
algorithm is demonstrated in {4] for computing optimal alignment in this
model that runs in O(m?n?) tirhe, where m and n are the lengths of the two
DNA sequences aligned. The algorithm is too slow to be useful in practice
even for moderate m and n. It is left as an open question in [4] whether the
time complexity can be improved to O(mn) when the gap pen'aimlty function is
affine, i.e. g(i) = Gopen+1* gezt fOr some constants gopen and gez: Where gopen is
the cost of opening an indel and g.,; is the cost of extending an indel. Affine
functions are perhaps the most popular gap function among computational
biologists. A fast heuristic algorithm for the problem, assuming affine gaps,

is proposed in [5,6] which does not guarantee an optimal alignment.

1.2 Codon alignment and Hein’s model of ge-

nomic sequence comparison

Let A = 010203...03m-203m—103, and B = bybybs...bsn_2b3,_1b3, be two
coding DNA sequences consisting of m and n codons respectively. Each
sequence has a fixed reading frame starting at the first base. An alignment
of A and B is a correspondence between the bases in A and B, and postulates

a possible evolution from A and B in terms of single nucleotide mutations
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G
T---TG

T
TTGCTC T/ —

T TG CTC

Figure 1.1: An alignment and its corresponding path representation.

and indels of blocks of nucleotides. An alignment can also be conveniently
expressed as a path in a grid graph. Figure 1.1 demonstrates an alignment
from TTGCTC to TTG and the corresponding path. It postulates that a
mutation from C to G and a deletion of TGC have happened in the evolution
from TTGCTC to TTG.

Since indels of length other than a multiple of three change the reading
frame and hence the entire protein, for simplicity, Hein assumes that all indels
have lengths divisible by three as in [4,5,6].

The cost of an alignment between A and B is decided by both the evo-
lutionary events of the nucleotides postulated by the alignment and the evo-
lutionary changes at the protein level. We will look at the three events
mutation, insertion and deletion separately. For each pair of nucleotides a
and b, let c4(a,b) denote the cost of substituting b for a, without worrying
about the effect of this change at the protein level. For each pair of codons

erezes and fifafs, let cp(erezes, fifafs) denote the cost of substituting the
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amino acid coded by fifofs for the amino acid coded by eje;es. For any
integer ¢, functions g4(¢) and g,(¢) denote the costs of inserting (or delet-
ing) a block of 7 nucleotides and a block of 7 amino acids, respectively. For

convenience, let (i) = gq(37) + g,(%).

e Mutation. The combined cost of a nucleotide mutation e; — f; in
codon ejeze; is
ci(er, f1) + cpleiezes, fiezes).
The combined costs of mutations at the second or third positions of a

codon are defined in a similar way.

e Insertion. Consider the event of inserting 3¢ nucleotides fi... fs; in the
codon ejeses. If the insertion happens to the immediate left of e; or
the immedia;:e right of e3, its combined cost is simply g(7). Otherwise
suppose that the string fi...fs; is inserted between the nucleotides e;

and e;. Then the combined cost of the insertion is

g(%) + min{c,(ere2e3, €1 f1f2), co(€1€2€3, friezes) }.

The case when the insertion happens between the nucleotides e, and

es is handled similarly.

e Deletion. This is symmetric to insertion. Consider the event of delet-

ing 3¢ nucleotides from a sequence of :+1 codons e;ez€3...€3;11€3:12€3i13.
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Leu Leu

; ; TTGCTG
w60 G—~cC
Leu Leu Leu
TTG TTGCTC
G—C Phe /
TIC insertion

(TGC)

Figure 1.2: Different orders yield different costs.
If the deletion happens at e; or e4, its combined cost is simply g(z)

Otherwise suppose that the string e;...e3;,; is deleted. Then the com-

bined cost of deletion is
g(z) + mm{cp(616263, 61631+2€3i+3), Cp (631+163i+2631+3, €1 33i+2e3i+3)}-

The case when ej...e3;42 is deleted can be handled similarly.

Although an alignment of A and B postulates a set of evolutionary events
that transform A into B, it does not specify the order that the events should
take place. In fact, all permutations of the events are possible. However, dif-
ferent permutations may yield different overall combined costs. For example,

in Figure 1.2, the overall combined cost is
g(1) + min{c,(TTG, TTG), c,(TTG,CTG)} + c4(G, C) + ¢,(CTG,CTC)
if the insertion happens first or

ci(G,C) + co(TTG,TTC) + g(1) + min{c,(TTC,TTG), c,(TTC,CTC)}
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if the mutation happens first. In other words, the evolutionary events are
no longer independent when it comes to computing the combined cost. An
event may influence the cost of other events. Therefore, we define the cost of
an alignment of A and B as the minimum overall combined cost among all
possible permutations of the evolutionary events postulated by the alignment.
An optimal alignment is one with the minimum cost.

Computing an optimal alignment of A and B is not an eésy task due to
the influence between events. The notion of a codon alignment introduced in
[4] will help simplify the matter and is accepted by computational biologists.

An alignment of A and B is called a codon alignment if
1. m=0or

2. n=0or

3. There do not exist i and j, 1 < i < 3m and 1 < j < 3n, such that a;
is aligned with b;, and (i) ¢ mod 3 = j mod 3=1and i+ j > 2 or (ii)

tmod3=jmod3=0and:+j<3m+3n.

In other words, except in the first and last columns, a codon alignment does
not align a base at some codon boundary of A with a base at any codon
boundary of B. For example, the alignment in Figure 1.1 is in fact a codon

alignment. The cost of a codon alignment is defined the same way as for an
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alignment.

It is known [4] that there are 11 distinct types of codon alignment, as
depicted in Figure 1.3. Type 1 has three mutations and no indel. Type 2
only has a deletion and type 3 only has an insertion. Types 4, 5, 6, and 7
have an indel and three mutations. Types 8, 9, 10, and 11 have two indels
and three mutations. Observe that each codon alignment can involve at most
5 evoluti(;nary events. Hence, the cost of a codon alignment, which is the
minimum total combined cost over all possible permutations of the events
postulated by the alignment, can be computed in linear .time.

We can always decompose an alignment of A and B uniquely into a
sequence of maximal codon alignments, as illustrated in Figure 1.4. Although

the evolutionary events in a same codon alignment may influence each other’s

cost, events in different codon alignments are independent. This gives rise to

10
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a straightforward dynamic programming algorithm for computing an optimal
alignment of A and B in O(m?n?) time, as described in [4]. It is clear that
the algorithm is too slow to be useful in practice even for moderate m and n.
Recently, two quadratic (i.e. O(mn)) time algorithms have been developed
in [8,9]. These algorithms are not practical because their quadratic time
bounds all contain large constant factors. We discuss these two algorithms

in detail in Chapter 2.

1.3 Our contribution

Since large constant factors seem to be inherent in all quadratic time
algorithms for Hein’s model, we simplify the model slightly. A much more
efficient quadratic time algorithm is devised for the simplified model which
needs only to compute 292mn table entries, again assuming affine gaps. Al-
though the framework of the algorithm is still dynamic programming, the
crux of this algorithm is a careful partition of the state space in order to
minimize the total number of table entries that it has to compute. Further-
more, we extend our algorithm to handle frame-shift errors and overlapping
frames using a heuristic approach.

The algorithm has been implemented and tested on both real and simu-

lated sequences. The test results show that the algorithm for our simplified
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model and algorithm for Hein’s model produce almost identical alignment
in most cases. Also our program can correctly detect and locate frame-shift
errors for reasonable indel and mutation rates.

This thesis is organized as follows. In the next chapter, we describe two
existing quadratic time algorithms for Hein’s model. Our simplified model
and faster algorithm are presented in Chapter 3. We then extended our
algorithm to handle frame-shift errors and overlapping frarr;es in Chapter
4, Chapter 5 discusses some issues arising in the implementation of the
algorithm and also gives some test results. Finally, we give conclusions and

future work Chapter 6.



Chapter 2

Two Quadratic Algorithms for

Hein’s Model

In this chapter, first we describe the Hua-Jiang algorithm in Section 2.1,

and then the PLH algorithm in Section 2.2.

2.1 Hua-Jiang algorithm

In 1997 Y. Hua and T. Jiang designed a dynamic programming algo-
rithm in [8] that computes an optimal alignment for Hein’s model in O(mn)
time, assuming affine gaps. However, the algorithm is impractical because
of the large constant factor embedded in its time complexity function. The
large constant factor comes from the fact that the algorithm has to compute

16644mn table entries. The following is a sketch of the construction of the

13
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Hua-Jiang algorithm.

Again assume that the gap penalty function g(7) is affine, i.e. g(i) =
Gopen + 1 % ezt for some fixed non-negative constants gopen and gez:. Consider
DNA sequences

A = 010203 - - A3m—203m—103m

and

B = bybybs - - - bap—2b3n—1b3n.

For any indices 1 =1,...,mand j =1,...,n, let
A(t) = aya203 - + - 03i—203i-103i,

B(j) = bibabs - - - bs;j_gb3;j_1bsj,

and c(i,j) denote the cost of an optimal alignment between the prefix A(7)
and prefix B(j). In order to derive a recurrence equation for ¢(, j), we need
the following notation.

Let’s classify alignments into 11 classes according to the type of their
terminating codon alignments (see Figure 1.3 for values of t). For 1 <t < 3,
let ¢;(%,7) denote the cost of an optimal alignment between A(7) and B(j)
whose terminating codon alignment is type ¢.

For ¢t = 4 or t = 6 and any nucleotides z1,z2,z3 € {A,C,G,T}, let

ct(%, J, T12273) denote the cost of an optimal alignment between A(:) and

14



CHAPTER 2. TWO QUADRATIC ALGORITHMS FOR HEIN’S MODEL 15
B(j)z1z2z3 ending with a codon alignment of type ¢. Also define
ci(d,§) = ce(4, 5 — 1, bgj_gbsj_1bs5).

For t = 5 or t = 7 and any nucleotides z;,z2,23 € {4,C,G, T}, let
(%, T12223, j) denote the cost of an optimal alignment between A(i)z;z223

and B(j) ending with a codon alignment of type ¢. Also define
ci(i,J) = i — 1, azi—2a3i-103;, J)-

For ¢ = 8 and any nucleotides z1,z2,z3,Z4,2s,75 € {A,C,G, T}, let
cs (i, J, T1T2%3747526) denote the cost of an optimal alignment between A(¢)

and B(j)r122x324%526 ending with a codon alignment of type 8. Also define
cs(i, ) = cs(d,5 — 1, baj—sb3j—ab3j_3b3;_2bs;—1bs;).

The expressions ¢y (¢, £12223%4Z5%Z6, J) and ce(3, 7) are defined analogously.
For ¢ = 10 and any nucleotides z1, %2, Z3,%1,%2, %3 € {A,C,G,T}, let

c10(%, £122%3, J, Y1Y2y3) denote the cost of an optimal alignment between se-

quences A(i)z,z2z3 and B(j)y1y2ys ending with a codon alignment of type

10. Also define
c10(t, ) = c10(% — 1, a3;—2a3;-103i, j — 1, b3j—2b3-1b3;).

The expressions ¢y (2, 12223, J, Y1Y2y3) and c¢11(2, j) are defined analogously.
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Note that, in the above, for types t = 4,...,11, we have to plant up to 6

imaginary trailing bases in order to complete the recurrence equations.

Clearly, for any 1 =0,...,mand j =0,...,n,
11

e(i, ) = min ey, )

Hence it suffices to give recurrence equations for ¢;(i,7), t = 1,...,11,

using c(z, 7). First, we initialize the following items:
e ¢(0,0)=0
e Fori=1,...,m, c(3,0) = g(3).
e For j =1,...,m, ¢(0,7) = g(4).

Fori=1,..,mand j=1,..,n, c(i,j) = c0.

Fori=1,..,m,j=1,..,n,and t =1,...,11, (s, 7) = o0.

Below we only list recurrence equations for types t = 1, 2, 4, 8, 10. The other
cases are highly symmetric to these types. In the following, when there is
a unique codon alignment between sequences X and Y of type ¢, we use
ca;s(X,Y) to denote the optimal cost of that codon alignment for different
event orders. For 1 <4 <m and 1 £ j < n, the recurrence equations are as

follows:

a(i,j) = c(i — 1,7 — 1) + cay(asi—20si—1aa;, bsj—2b3;j—1b3;)

16
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C2(i,j)

C4(i,j, $1$2$3)

cs (1, J, 12223 L4 T5T6)

c10(%, Z1Z223, J, Y1Y2Y3)

min{cy(i, j — 1) + geat, c(i, 5 — 1) + g(1)}

min{cy(i,j — 1, 212223) + Geat,
c(i -1,5— 1) +

CQyq (asi—zasi-1a3i, b3j—253j—1b3j$1$:2$3)}

min{cg (s, j — 1, b3;j—2b3j-1b3;24%5%6) + Geut,
cs(1,7 — 1, 21%2%3T4Z5%6) + Geat,
ci—-1,7—-1)+

cag(a3;—203i-103i, b3j—2b3j—1b3;T1 02237425 T6) }

min{cyo(i — 1, 212223, 7, Y192Y3) + Geat,
c10(%, 12223, 7 — 1, 1192Y3) + Geats
li-1,j—1)+

ca10(Q3i-203i-103:T122 T3, b3j—2b3;_1b3;y1Y2y3) }

The equations for ¢t = 1, 2, 4, 10 are self-explanatory. The equation for ¢t =

8 is elaborated in Figure 2.1. The first term in the minimization corresponds

to the case when the second gap (from the left) is longer than one codon

17
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(case (a) in the figure), the second term represents the case when the second

gap is one codon long and the first gap is longer than one codon (case (b)),

and the third term corresponds to the case when both gaps are one codon

long (case (c)).

3.1 b3j o

b

32

b

Figure 2.1: An illustration for the recurrence equation for type 8.

The base cases of the above recurrence equations can be easily formulated.

Since the cost ca;(X,Y") can be computed in O(1) time for any sequences X

and Y of lengths at most 9 bases, the recurrence equations obviously imply

a dynamic programming algorithm for computing ¢(m,n) in O(mn) time.

This algorithm can be easily expanded to also produce an optimal alignment
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between A and B, using the standard back-tracking technique[2].

A version of the algorithm has been implemented in GNU C, called Codon
Alignment Tool (CAT)[8]. To avoid computing the cost ca;(X,Y’) repeatedly
for the same short sequences X and Y, a table, indexed by X and Y, is
used to store the value ca;(X,Y") once it is computed so that for each pair
X and Y, the cost cai(X,Y) is computed at most once. Although this
technique greatly improves the time efficiency, the program is'étill quite slow
due to the fact that it has to compute 12 tables for ¢(¢, j) and c;(i, j), where
t =1,...,11, with a total size of 4 + 4 x 64 + 4 x 4096 = 16644mn entries
before obtaining the value c(m,n). Clearly, codon alignments of types 8
through 11 are the main reason why such large tables are required. Because
of the influence between evolutionary events within a same codon alignment
and the fact that the events may happen in any of up to 5! different orders,
the dynamic programming algorithm has to hypothesize 6 trailing bases for
each of these four types, and carry out the computation for each of the 4096

hypotheses.

2.2 PLH algorithm

Independent of the work reported in this thesis, recently, C. Pedersen, R.

Lyngsg, and J. Hein designed another quadratic algorithm for Hein’s model.
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We call this algorithm the PLH algorithm. The framework of PLH algorithm
is still dynamic programming. Similar to Hua-Jiang algorithm, an alignment
is also classified into 11 classes according to the type of its last codon align-
ment. A key idea behind the PLH algorithm is that it keeps track of the
“internal status” of a mutation. In other words, it sets some indicators of
some key mutations. The algorithm is valid under the assumption that the
cost of mutations at the protein level is a metric. We describe more details
of the PLH algorithm below.

The recurrence equations of the first three types are the same as that
of the Hua-Jiang algorithm. For types 4, 5, 6, and 7, the PLH algorithm
guesses the internal status of all relevant mutations just before the deletion
or insertion. We give an example for type 6 as shown in Figure 2.2, where
T1T273 indicates the status of the three mutations (i.e. whether or not the
mutations have taken place) just before the deletion of length k. Four key
stages of the evolution changing bs(j_x)—2b3(j—k)-1---03; t0 a3;_2a3;_1a3; are
depicted in (a), (b), (¢), and (d) in the figure respectively. The minimum
cost of an alignment whose last codon alignment is type 6, denoted cs(t, 7),

can be calculated as

ce(t, j) = cost(subs) + cost(del) +c(i — 1,7 — k — 1),
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(b)

Figure 2.2: Four stages in the evolution of type 6.
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where

COSt(SUbS) = C;(b3(j—k)—2b3(j—k)—1b3(j-—k)7 $11172b3(j_k)) +
cp(b3j—2b3;j_1b35, b3j_2bsj_173) +

L3
Cp($15172$3, (3i-203i-103i)-

The difference between the notation ¢, and ¢, is that ¢, accounts for at most
one mutation, but ¢; may account for up to three mutations. The term
cost(del) represents the cost of the deletion, and can be computed using
dynamic programming. For more details, the reader is referred to the paper
9]

The idea can be extended to types 8, 9, 10 and 11, but these types require
two internal status indicators, one for the first indel and the other for the

second indel.

An advantage of the PHL algorithm is that it “hides” the orders of events
in internal status indicators. But this advantage comes with an assumption,
namely, the cost of mutations at the protein level is a metric. Unfortunately,
in practice, most of popular protein scores, e.g. PAM, are not metrics. In
the case that the protein mutation cost is not a metric, the algorithm needs
more table entries to record information. We estimate that it has to compute
4100mn table entries under the metric assumption and 15476mn table entries

without that assumption. Since the algorithm has not been implemented, it
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is hard to compare its speed with that of Hua-Jiang’s. However it is clear
that the algorithm is too slow to be used in practice because of the large
constant factor in the quadratic time bound.

In the next chapter, we will simplify Hein’s model slightly and present a

much faster quadratic time algorithm.

23



Chapter 3

Context-free Codon Alignment

This chapter is organized as follows. In Section 3.1 we describe the
simplified model of genomic sequence alignment. Then we show our faster

algorithm in Section 3.2. We compare the test results of CAT and Context-

free CAT in Section 3.3.

3.1 A simplified model

Our model differs from Hein’s model only in the definition of the cost
of an indel. Recall that in Hein’s model each indel of 3: nucleotides within
a codon induces an amino acid indel and an amino acid substitution, and
hence the combined cost of such an indel is defined as g(¢) plus the cost of
the amino acid substitution, where g(i) = gopen + @ * ezt for some constants

Jopen and geze. Our model will disregard the latter cost, and simply define
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the combined cost of an indel of 3¢ nucleotides as g(3). !

Observe that in Hein’s model the cost of an indel in general depends on
the surrounding nucleotides, as shown in Figure 1.3, whereas indels in our
model do not have such context sensitivity. For this reason we will refer to
indels in our model as contexzt-free indels and name our model contezt-free
codon alignment. In the following, we take advantage of the context-freeness
in indels and devise a more efficient algorithm than the algori;chms reviewed
in the last chapter. Note that, even though indels are now context-free, the
influence between evolutionary events still exists because the combined cost
of a substitution may depend on other substitutions and indels in the same
codon alignment. Therefore, it does not seem possible for the algorithms
presented in the last chapter (or simple extensions of them) to take advantage

of context-free indels. We have to use a different technique.

3.2 A faster algorithm

The framework of our algorithm is still dynamic programming based on
codon alignments. We again classify an alignment according to the type of

its last codon alignment. The new idea is to refine the classes according to

1t is unclear such a simplification is biologically plausible, although one supporting
argument may be that the amino acid substitution is a superficial event. Our tests on real
and simulated data in Section 3.3 will show that optimal alighments for the two models
are in fact very similar.
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the order of some events in the last codon alignment so we could avoid having
to hypothesize (or equivalently, remember) too many nucleotides. This will
greatly reduce the total size of the tables required.

To demonstrate our idea, we need to introduce some notation first. Let

A =010203 - - - O3, —203m—103m, and B = bibybs - - - b3n_ob3n—1b35.
e For any indicest=1,...,mand j=1,...,n, let
A(Z) = 010203 - - * A3;—-203;-103;

and
B(J) = bybybs - - 'b3j—2b3j—1b3j-
A(0) and B(0) are empty strings.

e For any indices 1 = 0,...,m and 7 = 0, ..., n, let ¢(¢,j) denote the cost

of an optimal alignment between A(%) and B(j).

e For any indices ¢ = 0,...,m , j =0,..,n, and ¢t = 1,...,11, let ¢(3, j)
denote the cost of an optimal alignment between A(z) and B(j) ending

with a codon alignment of type t.

To derive the necessary recurrence equations, we will need to consider

partial (i.e. incomplete) codon alignments consisting of a front portion of

some codon alignments and restricted codon alignments whose events are

26



CHAPTER 3. CONTEXT-FREE CODON ALIGNMENT

required to occur only in some specific orders. In the following discussion,
we assume that sequence B evolves to sequence A. Before we give the general

recurrences type by type, we need to initialize the following items:
e ¢(0,0)=0
e Fori=1,...,m, c(:,0) = g(3).
e For j=1,..,n, c¢0,5) = g(j)-
e Fori=1,..,mand j=1,..,n, c(i,j) = cc.
e Fori=0,..,m,j=0,..,n,and t=1,...,11, ¢(3, ) = o0.

For 1 <1 <m and 1 < j < n, the recurrence equations are as follows.

First of all, the main recurrence equation is
¢ f) =  min ().

The recurrence equations of the first three types are straightforward.

They are

ci(i,j) = c(i—1,5 —1) + cai(azi—2a3i—103;, b3j—2b3;-1b3;)

c2(3,j) = min{ca(i,5 — 1) + geat, (3,7 — 1) + g(1)}

C3(’i,j) = min{CB(i - 1a.7) + Gext, C(i - 1).7) + g(l)}



CHAPTER 3. CONTEXT-FREE CODON ALIGNMENT 28

where ca;(asi—2a3i—103i, b3j—2b3;_1b3;) is a function to compute the minimum

cost of evolving bs;_obs;j_1b3; to asi—2asi—1a3; by trying 6 different orders.

€3t41 C3ke2 €3

Figure 3.1: Four events of type 4 codon alignments.

A type 4 codon alignment involves 4 evolutionary events as shown in
Figure 3.1. Event 1 is the first mutation (i.e. e; — f1). Event 2 is a deletion
whose length is 3k nucleotideé (i.e. delete es...e3x+1). Event 3 evolves ezg1s to
f2 and event 4 changes ez;43 to f3. We give an example of evolving e;...e3x13

to fif2fs in order 1234 as follows:
1. ejezes...e3py1€3k42€3k+3 —> f1€2€3...€3k41€3k+2€3k+3
2. fiezes...esxr1€3k42€36+3 — f1€3k42€3k43
3. fieskt2e3ess —> frfoesris

4. fifaeskys = fifafs

We find that the information of e; and e3 is only used in computing

cp(erezes, fiezes) when event 1 occurs before event 2. For example, the cost
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for order 1234, denoted costiya,, is

Ccostigny = Cplerezes, fiezes) + caler, f1) + g(k) +
cp( fresk+2€3k+3, f1fae3k43) + calese2, fo) +

cp(f1f2e3k43, frfafs) + ca(esk+s, f3).

It uses the information of e; and e3. But the cost for order 2134 shown below

does not use the information.

costyzy = g(k) + cp(ereanra€snta, freskrzesiss) + caley, f1) +
cp(fresk+2€3k+3, f1fa3k+3) + cilesk+2, f2) +

cp(frfoesk4s, frfefs) + caleskys, f3)-

We consider alignments ending with type 4 codon alignments, and parti-
tion them into sorr;e classes depending on the relative order of events 1 and 2
and the nucleotide e;. Since there are two possible relative orders of events 1
and 2, and e; might be A, or C, or G, or T, the total number of classes is 8.
The reason we need 8 classes will be clear when we discuss how to compute
p4(%, J, z,0) which is defined later.

There are two stages for computing the cost of an optimal alignment
between A(¢) and B(j) ending with a codon alignment of type 4. In the first

stage, we consider the cost of the deletion, and the cost of event 1 when event

1 occurs before event 2. In the second stage, we consider the costs of events
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3 and 4, and the cost of event 1 when event 1 occurs after event 2. We will

describe the details of the two stages in the following paragraphs.
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Figure 3.2: Dealing with trailing codon alignments of type 4 (stage 1).

In Figure 3.2, the dot indicates that we are computing at point (4, 5).
The left part of the path (i.e. left to the dot) is computed in stage 1 and
the right part of the path is computed in stage 2. In Figure 3.2, £ < 7 and
bak—2 = bsjo. The reason we need bsk—o = bsj—2 is that if bax_o # bzj_2, two
paths depicted in the figure are not in the same class, thus they don’t have
any relation. We will use a variable z to remember the value of b3;—, (since
bsk—2 = b3j_2, = remember the value of bs;_; also). The information about
will be used in the second stage.

In the first stage, there are two cases (see Figure 3.2). Case 1 extends the
deletion by 3 nucleotides and case 2 starts a new partial codon alignment of
type 4. For any nucleotide z € {A4,C,G, T} and o € {0,1}, let pa(i, 4, z,0)

denote the cost of an optimal alignment between A(z) and B(j) ending with
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a partial codon alignment of type 4. The variable z remember the value of
bsj_2. The variable o indicates the order of event 1 and event 2. If 0 = 0,
event 1 occurs after event 2; otherwise, i.e. ¢ = 1, event 1 occurs before
event 2.

Now, it is time to define the recurrence equations for type 4 codon align-
ments. For z € {A,C,G,T} and o € {0,1}, pa(i,j,z,0) is computed as
follows: !

p4(i,j,:r, 0) = mln{tmp,p4(z,] - 17:17, U) + ge:ct}y

where
tmp =c(i — 1,5 — 1)+ g(1) + 0 - (c4(z, azi—2) + cp(xbsj_1bsj, azi—2bsj_1b3;))

if z = bs;_9; otherwise, tmp = co.

In the above equation, p4(i,j — 1,Z,0) + gest is for case 1 and tmp corre-
sponds to case 2 (see Figure 3.2). The first one is trivial. It just extends the
deletion by 3 nucleotides. For computing tmp, first we add the cost of the
previous codon alignments (i.e. ¢(i — 1,7 — 1)), then add the cost of opening
an indel whose length is one (z.e. g(1)). When o = 0 (i.e. event 1 occurs
after event 2), the item o - (cq(z, agi—2) + ¢y (zbsj—1b3;, asi—2bsj—1b3;)) is equal
to zero. That means we do not consider the cost of event 1 in computing
p4(, ,2,0). It will be added in the second stage. When o =1 (i.e. event 1

occurs before event 2), the value of c4(z, asi—2) + cp(2bsj—1bs;, azi—2b3;-1b3;)
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is added to tmp. In this case, we consider the cost of event 1 in computing

p4(i,7,z,1) and it will be not added in the second stage.

F--=r ===~ =°r=-==--r
1 1 1 1 ] ]
a. oo
a 1 1 H 1 1 ]
3i-1 ' : ' H '
r ———— T T
] ] 1 1 1 )
1 1 ] ] 1 1
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X b3j-2 b3j-1 b;

Figure 3.3: Dealing with trailing codon alignments of type 4 (stage 2).

In the second stage, we will complete the computation for type 4 using the
information recorded in p4(, j, z,0). First, we have to consider the costs of
events 3 and 4,i.e. b3j_; — asi—1 and by; — a3; (see Figure 3.3). When o = 0,
we must add the cost of event 1 (i.e. £ — a3;_3) since it is not considered in
computing p4(, j, z,0). The cost of an optimal alignment between A(:) and

B(j) ending with a type 4 codon alignment, denoted ¢4(z, 7), is computed as

cs(i,5) = min {p4(i,j — 1,x,0) + caf(asi-2a3i-1a3i, baj2b3j-135, ) },
2€{A,C,G,T}
oe{0,1}
where p4(2, 7—1, z, 0) is discussed above and caf (as;_pa3;_1a3:, b3j—2b3;_1b3;, )
for o € {0,1} is explained below.
cal(asi—2a3i—1a3i, b3j—2b3j—1bs;, ) is a function to compute the. minimum

cost of the mutations in the last type 4 codon alignment that are not ac-

counted for in p4(%,j — 1,2,0) with the constraint that event 1 occurs after
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event 2. In this function, we need to consider all three mutation events (i.e.
events 1, 3, and 4) for a total of 12 different orders. We give an example of

computing the restricted cost with order 2134, denoted Rcosts,,,, as follows:

4
Rcostyy3y = cp(wbaj_1bsj, asi—obsj_1b3;) + ca(z, azi—z) +
Cp(asi—2bsj_1b3j, Azi—2a3i-1b3;) + cq(bsj—1, azi—1) +

Cp(a3i—2a3i—lb3ja a3i-2a3i—1a3i) + Cd(ij; asi)-

Similarly, caj(asi—2a3i—1a3i, b3j—2b3j-1b3;, £) computes the minimum cost
of the mutations in the last type 4 codon alignment that are not accounted
for in p4’(i, j —1,z,1) with the constraint that event 1 occurs before event 2.
But now we only need to consider the last two mutation events (i.e. events 3
and 4) since the cost of event 1 has been considered in computing pa(3, j, 7, 1).

Again, we give an example of computing the restricted cost with order 3124

below.

R005t§124 = Cp(bsj—zbsj—lbsj,bsj—zaai-lbaj)+Cd(b3j—1,asi—1)+

Cp(a3i—2a3i—lb3j7 aSi—2a3i—1a3i) + Cd(b3j: a’3i)-

Note that, the above recurrence equations for type 4 codon alignment
only require a table of 8mn entries (for storing p4(7, 5, z,0)) to compute
cs(?,j) instead of a table of 64mn entries as required in the last chap-

ter. The number 8mn comes from i, z, and o, where 1 = m, j = n,
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z € {A,C,G,T}, and 0 € {0,1}. Actually, the parameter z in the sec-
ond function (i.e. ca}(asi—2a3i—1a3i, b3j—2bsj—1b35, =) can be disregarded. Al-
though it appears that the table entries could be reduced to 5mn, unfortu-
nately, the answer is no. The reason is that when computing the recurrence
equation of p4(i, j, z,0), we must check if z = b3;_». In other words, we must

make sure that the following case cannot take place: |
p4(7;)j> z, 1) = p4(Z,] - 1; .'L',, 1) + Gext

where z # z'.
The recurrence equations for type 5 are symmetric to those for type 4.
We define ps(i, j, z, 0) and ps(i, j, z, 1) similarly. Again, for z € {A,C,G,T}

and o € {0, 1}, ps(i, 5,7, 0) is computed as

pS(i)j’ z, U) = mm{tmp, pS(Z - l)ja z, 0') + gezt},
where
tmp=c(i — 1,5 — 1) + g(1) + 0 - (ca(bsj—2, T) + cp(b3j_2a3i_1a3;, TA3;_103;))

if x = as;_o; otherwise, tmp = .

Also,
cs(i,5) = min (ps(i —1,J,2,0) + caZ (asi—2a3i-103i, b3j—2b35-1b35, T)),

z€{A,C,G.T}
ge{0,1}
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Figure 3.4: Four events of type 6 codon alignments.

where caf(asi—203i-1a3i, b3j—2bs3j_1b3j, ) is similar to the function for type 4
(i-e. caf(a3i-203i-103;, b3j—2b3j-1b35, T)).

A type 6 codon alignment involves 4 evolutionary events as shown in
Figure 3.4. Event 1 is the first mutation (i.e. e; — fi). Event 2 is the
second mutation (i.e. e — f3). Event 3 is a deletion whose length is 3k
nucleotides (i.e. e3...e3x42). Event 4 evolves egrt3 to f3. We give an example

to compute the cost for order 1234, denoted costS,s,, as follows:

00375(15234 = C12(616263,f1€2€3)"'Cat(el,ﬁ)'*'
cp(frezes, f1fae3) + cales, f2) + g(k) +
cp(f1f2€3643, frfafs) + ci(esk+3, f)-
Alignments ending with type 6 codon alignments can be treated in the

same spirit as for type 4. Again, there are two stages for type 6 (i.e. the first

stage is for computing ps(%, j, z, ) and the second is for computing c4(%, 7)).
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Figure 3.5: Dealing with trailing codon alignments of type 6 (stage 1).

However, instead of “cutting” the codon alignment at event 2 we should cut
it at event 3 (to obtain the partial codon alignment), instead of considering
the relative order of events 1 and 2 we consider the order of events 4 and
3, and instead of remembering the nucleotide z in type 4 we hypothesize
the nucleotide z (see Figure 3.5). Thus, we define pg(s, j,z,0) assuming
that event 4 is after event 3 (i.e. the deletion) and event 4 starts from the
nucleotide z, and define pg(7, j, z,1) assuming the opposite order. The only
tricky point is that pg(%, j, z,0) should include the combined cost of event 4
while pg(3, j, z, 1) does not. Both of pe(7, 7, z,0) and ps(s, 7, z, 1) compute the
costs of events 1, 2, and 3. Let us summarize the recurrence equation for
type 6 in stage 1 as follows.

For z € {4,C,G,T} and o € {0,1},

pﬁ(iajax70) = mm{c(z - 17.7 - 1) +g(1) +

o
Cag (asi—zasi-1a3i, b3j_2b3;-1b3;5, 37),
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pﬁ(i’j — 11 z, O') + gemt}-

In the above equation, pg(i,7 — 1,2,0) + gegt is for case 1 (see Figure
3.5). It just extends an indel by 3 nucleotides. c¢(t — 1,5 — 1) + g(1) +
cag (a3;—203i—103i, b3j_2b3;_1b35, x) is for case 2 in Figure 3.5. It starts a new
partial codon alignment of type 6.

As that for type 4, cad(asi—2a3;—1a3;, b3j—2b3j-1535, %) is a fupction to com-
pute the minimum cost of the mutations in the last type 6 codon alignment
with the constraint that event 4 is after event 3. In this case we need consider
three mutation events (i.e. events 1, 2, and 4). The following is an example

of computing the partial cost of order 1234, denoted Pcost$ys,.

Pcostlysy = cp(bsj—obaj—1ba;, asi—absj_1bs;) + ca(bsj—2, azi—z) +

Cp(@3i—2b3j—1b3;, asi—2a3i—1b35) + ca(bsj—1, agi—1) +

cp(a3i—2a3i—1$a asi—zasi-lasi) + Cd(I ) aai)-

Another function for type 6, i.e. ca}(asi—2a3i-1as3:, b3j—2bsj—1b34, ), is for
the case when event 4 is before event 3. In this function, we only need consider
the first two mutation events (i.e. events 1 and 2). The last mutation event
(i.e. event 4) is considered in stage 2 (i.e. computing c(%,7)). Again, we

give an example of computing the partial cost of order 1243 below.

Pcostlyy; = cp(bsj—2b3j—1b3;, azi_gbsj-1bsj) + ca(bsj_a, asi_a) +
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Cp(asi—zbsj—1b3j, aSi—2a3i—lej) + Cd(b3j-—1a a3i—1)-
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Figure 3.6: Dealing with trailing codon alignments of type 6 (stage 2).

In the second stage (see Figure 3.6), if o =1 (i.e. event 4 is before event
3), we need add the cost of event 4 to cg(%, j); Otherwise, cg(3,7) is equal to

(pe(%,7 — 1,z,0). The recurrence equation for computing cs(3, ) is

Cs(i,j) = Ug%(l)q}(p(i('l’a] - 11"17, 0') +o- tmp)a

where z = b3; and

tmp = c4(x, a3;) + cp(bsj_2b3j1%, b3j_2b3j_1a3;).

Again, computing the costs c4(%, j) requires only a table of 8mn entries.
Analogously, for z € {A,C,G,T} and ¢ € {0,1},
p7(i;ja x, 0) = mm{c(z - 1a.7 - 1) +g(1) +
ca7(asi—203;—103;, b3j_2b3j_1b35, T),

p7(7' - lvj) T, G) +gea:t}-
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Also,

cr(3,4) = aggq}(p7(i —1,5,z,0) + o - tmp),

where = a3; and

tmp = Cd(b3j7 T) + Cp(asi—zasi—1b3j, 03i-203i-1T).

The function, ca? (asi—2a3i—103i, bsj_2b3j-1b3j, T), is similar to that for type

6 (’L €. cag(a3i_2a31_1a3i, b3j_2b3j_1b3j, :L‘))
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Figure 3.7: Dealing with trailing codon alignments of type 8.

The treatment of alignments ending with type 8 alignments combines
the techniques for both type 4 and type 6 alignments, and builds on the
information p4(4,J,z1,0) and ps(i,j,z;,1). Define oy = 0 if event 1 is
after event 2 (i.e. the first deletion) or o; = 1 otherwise, and oy = 0
if event 5 is after event 4 (i.e. the second deletion) or o2 = 1 other-
wise. For any nucleotides 1,2z, € {4,C,G, T} and orders 01,00 € {0,1},

let pg(i, 7, 1,01, Z2,02) denote the cost of an optimal alignment between
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A(7) and B(j) ending with a restricted partial codon alignment of type
8 consisting of events 1 through 5 such that (i) event 1 starts from the
base z, (ii) the relative order between events 1 and 2 is as prescribed by
oy, (iil) event 5 starts from the base z;, and (iv) the relative order be-
tween events 5 and 4 is as prescribed by o2. (See Figure 3.7). Again, the
value pg(1, 7, 21, 01, Z2,0) should include the combined cost of event 5 while
ps(i, j, 1,01, T2, 1) does not. The cost ps(3, 7, 21, 01, T2, 02) caﬁ be easily com-
puted from the values pg(i, j — 1,21, 01, T2, 02) and py(i, 7 — 1,21, 01), and the
nucleotides z1, T2, asi—2, a3;—1, a3, b3j_2, bs;_1, bs;. Hence, we can compute the
cost cs(%, 7) using a table of 64mn entries for storing ps(2, 7, 1, 01, T2, 02). The
recurrence equatiéns for type 8 are as follows.

For z;,z, € {A,C,G, T} and 01,07 € {0,1},

pS(i7.77 $1,01,$2,0'2) = mzn{pli(zaj - 1,.’31,0’1) +
g1,02
cag"?(asi—2a3i—1a3:, b3j—2b3j—1b3;, T1, T2),

p8(i7j - 1,371,0’1,1'2,0’2) + gewt}y

where cag'*?*(a3i—203i—103;, b3j—2b3j-1b3, T1, Z2) is a function to compute some
partial cost for each of the four order groups for type 8.
0,0 ..
cag” (03i—203i—103i, b3j—2b3j—1b3;, T1, T2) computes the minimum cost of mu-

tation events 1, 3, and 5 assuming that event 1 is after event 2 and event 5
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is after event 4. We give an example for order 21345 below:

Pcostyias = Cp(71b3j-1b3j, azi—2bsj—1b3;) + ca(T1, asi—g) +
cp(asi—2b3j_1bsj, asi—2a3i—1b3;) + ca(bsj—1, azi—1) +
cp(a3i—2a3i-1%2, a;%i—2a3i—1a3i) + ca(z2, asi).

cag (agi—p03i-1a3, b3j—2b3j_1b34, T1, T3) finds the optimal cost of the mu-
tations assuming that event 1 is after event 2 and event 5 is before event 4. In
this function, we need only consider the first two mutation events (i.e. events

1 and 3). The last mutation event (i.e. event 5) is considered in computing

cs(i,7). An example for order 21354 is

Pcostyays = cp(T1bsj—1b3j, Gsi—obsj—1bs;) + ca(z1, azica) +

cp(a3i—2b3j—1b3;, azi—2a3i-1bs;) + ca(bsj—1, azi—1).

The third function, caé’o(aai_gam_lagi, bsj-2b3j—1bs5, T1, Z2), computes the
optimal cost of the mutations assuming that event 1 is before event 2 and
event 5 is after event 4. But in this function we need consider the last two
mutation events (¢.e. events 3 and 5). The first mutation evént (i.e. event
1) has been included in p4(%, j, £1,1). We give an example for order 12345 as

follows:

8 —_
P003t12345 = cp(a3i—2b3j—1b3j) a3i—2a3i—1b3j) + Cd(bsj—l, azi-1) +

Cp(@3i—203i—-1T2, 03i—203i—103;) + ca(T2, a3;)-
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The last function for type 8, caé’1 (a3i—2a3i—103i, b3j—2b3j_1b35, T1, Z2), is for
the case when which event 1 is before event 2 and event 5 is before event 4.
In this function, we need only consider one mutation event (i.e. event 3).
The other mutation events (i.e. events 1 and 5) are computed in p4(z, 7, 21, 1)

and cs (i, j) respectively. The following is an example for order 12354:
Pcostlysss = cp(asi-2baj—1b35, azi—2asi—1bs5) + Cd(b3j—1aia3i—1)-

Finally, the cost of an optimal alignment between A(i) and B(j) ending

with a type 8 codon alignment is computed as

CS(i’j) = zle{ril,icI}G,T}(pS(i’j =1, 21,01, 2o, 02) +o2- tmp)’
a1,02€{0,1}

where z; = b3; and
tmp = c4(T2, 3;) + Cp(b3j—obsj—_1%2, b3j—2b3j-103:).

Similarly, for z;,z, € {4,C,G,T} and 1,02 € {0,1},

pg(i’jr 1171,0'1,.’172,0'2) = m’m{p5(z - 1’j7 xlaal) +
J1,02
cag’ (a3i—2a3_z'—1a3i, b3j—2b3j—1b3j, Ty, fUz),

po(i — 1,7, 21,01, %2, 02) + Gext}-

Also,

¢t 7) = ne{lzral.g,lc,r}(pg(i —1,7,21,01, T3, 02) + 02 - tmp),
o1,02€{0,1}
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where 2, = a3; and

tmp = Cd(baj, mz) + Cp(asi—zasi—lbaj, asi—zaai—1$2)-

The fUIlCtiOIl, C(lg1 o2 (agi_za,gi_lagi, b3j_2b3j_1b3j, z, .'1,'2), is similar to that

N 71,02
for type 8 (i.e. cag"”*(asi—203i-1a3i, bsj—2b3-1bsj, T1, T2)).
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Figure 3.8: Dealing with trailing codon alignments of type 10.

We deal with alignments ending with type 10 codon alignments by com-
bining the techniques for type 4 and type 7 codon alignments, making use
of the information p4(i,7,21,0) and p4(s, 7, 21,1). We still cut the codon
alignment at event 4 and consider the order of events 5 and 4; but we
hypothesize the nucleotide z, instead of bs; (see Figure 3.8). The cost
P10(t, 4, 21,01, T2, 09) is defined in a straightforward way as follows, and re-

quires a table of 64mn entries to store.
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For z1,z2 € {A,C,G, T} and 01,04 € {0,1},

p10(4, 4, T1,01,22,02) = min{ps(i,j — 1,71,01) +
01,02

Cag (asi-zasi-lasi, bsj—zb3j—1b3j, zy, xz),

plO(i - 1,j, Z1,01, %2, 02) + gext}-

Also,

ci0(t,j) = IIE{I/{ILHG T}(pm(i - 1,7,21,01, %2, 02) + 03 - tmp),

01,02€{0,1}

where z, = a3; and

tmp = cq(bsj, T2) + cp(azi—203i-1b3j, G3i-203;-122)-

Similarly, for z1,z, € {4,C,G, T} and 01,09 € {0,1},

pll(i,j,$1,01,$2,02) = m’in{p5(i—'1,j,$1,0'1)+
01,02
cali’”* (asi—2G3i—103i, b3j—2b3j—1b35, T1, Z2),

p11(%,7 — 1,21, 01, b3, 02) + Geat}

Also,

c11(2,7) = min 1,7 —1,21,01,%2,02) + 09 X tm
11( 7.7) zle{A,C,G,T}(pll( ) y w1, 01,42, 2) 2 p)?
0'17‘726{0)1}

where x5 = b3; and

tmp = cq(Z2, a3i) + cp(bsj—2b3j-122, b3j—2b3j_1a3).
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In the above equations, cay””(as;—2a3i—1a3i, bsj—2b3j-1b3j, T1, Z2)
and caj;”* (asi-203i—103;, byj—2b3;_1bs;, T1, T2) compute the costs of mutations
for type 16 and 11 respectively, using the same idea as that for type 8.

This algorithm can be easily expanded to also produce an optimal align-
ment .between A and B, using the standard back-tracking technique [2].

The above discussion yields a quadratic time dynamic programming al-
gorithm which needs to compute 12 tables of a total size of only (4 +4 x
8 + 4 % 64)mn = 292mn entries. (The first four tables are for storing
c(i,7),c1(3,7), c2(4,7), and c3(%,5).) The algorithm has been implemented

as Context-free CAT in GNU C, and we will show some test results in the

next section.

3.3 The comparison of CAT and Context-free

CAT

We have performed tests of the two programs CAT and Context-free CAT
on 3 pairs of HIV1 and HIV2 sequences and 13 groups of simulated sequences
of length 100 through 1500 bases. The three pairs of real data include (i)
HIV1 gag gene (bases 790..2304) and HIV2 gag gene (bases 548..2113), (ii)
HIV1 vif gene (bases 5053..5631) and HIV2 vif gene (bases 4868..5515), and

(iii) HIV1 nef gene (bases 8784..9434) and HIV2 nef gene (bases 8562..9329).
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Since we are not sure how to combine cost parameters for amino acids with
those of nucleotides, two combinations were considered (a) Dayhoff PAM
40 Matrix for amino acids and DNA PAM 30 Matrix for nucleotides and
(b) Dayhoff PAM 40 Matrix for amino acids and DNA PAM 47 Matrix
for nucleotides. Overall, CAT and Context-free CAT produced very similar
alignments in these tests. The following table summarizes the discrepancy
between the alignments produced by the two programs.

Table 3.2: The discrepancy between alignments produced by the two
programs.

PAM 40 & DPAM 30 | PAM 40 & DPAM 47

location | type location | type
HIV1&2 gag | 2/14 4/12 1/10 3/9
HIV1&2 vif | 1/7 1/6 177 276
HIVI&2 nef | 1/7 3/6 0/7 477

In the table, we first count the number of codon alignments involving
indels (i.e. any codon alignment except those of type 1) that are placed
at different locations by the two programs, and then the number of codon
alignments that are at the same locations but have different types. For
example, the entry 2/14 means that out of the 14 codon alignments involving
indels, two are placed at different locations by the two programs, and the
entry 4/12 means that out of the 12 remaining codon alignments four have

different types. In all the cases where indels are placed at different locations,
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" one program merges two adjacent indels produced by the other program. On
the other hand, the discrepancy in the types of codon alignments is always
because Context-free CAT would sometimes expand a type 2 or 3 codon
alignment produced by CAT into a codon alignment of type 4,5,6, or 7 by
shifting the indel inside an adjacent codon alignment. It is interesting to
note that CAT produces very few codon alignments of types higher than 3
while Context-free CAT produces types 4,5,6, and 7 almos t as frequently
as types 2 and 3. Also observe that the above discrepancies between CAT
and Context-free CAT do not change very much with the two pairs of cost
parameters we used.

The 13 groups of simulated sequences were generated randomly on a naive
stochastic model using some fixed mutation and indels rates. The amino
acid mutation/indel rates are based on Dayhoff PAM 120 Matrix and the
nucleotide mutation/indel rates are based on DNA PAM 30 Matrix. We ran
CAT and Context-free CAT on these groups of data using cost parameters
consistent with the above rates. It is observed that both programs again
produced very similar alignments and, moreover, they were all able to identify
most indels correctly.

Table 3.2 shows the average speeds of CAT and Context-free CAT on

SPARC Ultra II Model 1300. The speed-up of Context-free CAT over CAT is
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Table 3.3: The average speeds (in seconds) of CAT and Context-free CAT.

|length | 102] 201 ] 300 402 ] 501 | 600 |
CAT 898.5 | 1872 | 2496 | 3032.5 | 3486 | 3463
C.f. CAT 1] 25] 55 9] 135 175
{length | 702 ] 801 | 900 | 1002 | 1200 | 1500 |
CAT 4166.5 [ 4490 | 4820 | 5414.5 | 6177 [ 8138
Cf CAT| 265[ 335 40| 505[ 68] 104

illustrated in Figure 3.9. The speed-up decreases with the length of sequences
because the “atomic” codon alignments (i.e. the ones that cannot be further
reduced), such as the codon alignments of types 4 through 11 for CAT,
are more complicated and require more time to compute than the ones for
Context-free CAT, and the percentage of time spent by each program on
setting up the atomic codon alignment table decreases with the length. We
expect the speed-up to approach 1_2_8%4 = 57 (but never goes below 57) when
the sequences get really long.

In the next chapter, we extend our context-free codon alignment algo-

rithm to allow sequences with frame-shift errors and overlapping frames.
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speed-up

Figure 3.9: The speed-up of Context-free CAT over CAT.
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Chapter 4

An Extended Model and

Algorithm

Indels of lengths indivisible by three cause a coding frame to shift, and are
often referred to as frame-shift errors. It is known that sometimes adjacent
codons may overlap (i.e. share common nucleotides), thus creating overlap-
ping frames. Frame-shift errors and overlapping frames are two complications
in protein sequence alignment. Since Hein’s model combines both DNA and
protein alignment, it is clearly desirable that our context-free codon align-
ment algorithm can be extended to handle frame-shift errors and overlapping
frames. In this chapter, we extend our context-free codon alignment model
so that it does not require the length of an indel to be a multiple of three.

From now on, we will use the term type t atomic alignment instead of type ¢
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codon alignment because of the existence of frame-shift errors.

The rest of this chapter is organized as follows. In Section 4.1 we intro-
duce frame-shift errors and overlapping frames. We extend our algorithm
to handle frame-shift errors in Section 4.2. In Section 4.3 we describe how
to handle overlapping frames using a heuristic method. The pseudo code of
our extended algorithm is listed in Section 4.4. Finally, we analyze time and

space complexity of the algorithm in Section 4.5.

4.1 The frame-shift errors and overlapping

frames problems

We know that a DNA sequence has six reading frames, three from 3’ to
5" and three more from &' to 3. Figure 4.1 depicts three reading frames from

5" to 3’ in sequence ATGGGTTAA. The other three reading frames from 3'

to 5' are similar.

57 3’

Reading Frame ATGGGTTAA

1 Met Gly Non
2 Trp Val
3 Gly Leu

Figure 4.1: Three reading frames from 5’ to 3'.
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Usually, there is only one reading frame for each gene. But, occasionally
a frame-shift occurs when a gene changes its reading frame at a position of
its coding region. The new reading frame will stop at a new stop amino acid
or at the end of genome.

Sometimes, more than one gene is coded in the same region of DNA. We
call this phenomenon gene overlapping. The overlapped genes might have
different reading frames as shown in Figure 4.2. The overiapping frames
problem could be very complicated. For example, ten genes may overlap
each other in different regions, some of them from 3’ to 5’ and the others
from 5’ to 3'. We will have to make some assumptions to simply the problem

in Section 4.3.

GACCCTCCCTTGAA
Geel Ap P Pro

Gene 2 Po S L Gl

Figure 4.2: Two overlapped genes.
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4.2 An extended algorithm to handle frame-

shift errors

Since the reading frame may not be unique within a gene and a frame-shift
could occur at any position of an alignment, our algorithm to handle frame-
shift errors can’t be simply based on codons. The following algorithm is based
on nucleotides. It is clear that the size of the tables thus increases by at least a
factor of nine. The framework of our algorithm is still dynamic programming,
but we need to consider more cases than in the previous algorithm because
of frame-shift errors.

Most of the notation we will use in this chapter is the same as that in the

last chapter except the following:

o Let A = 410203...0m—20m—10m, and B = bibybs...b,_ob,_1b, be two
DNA ‘sequences. For any indices 7+ = 0,...,m and j = 0,...,n, let
A(’l,) = a10203...0;-20;-104, and B(’L) = blbgbg...bj_gbj_zbj. Note that A,

B, A(7), and B(j) are based on nucleotides now instead of codons.

e Instead of using ¢(z) to denote an affine gap penalty, we use the follow-
ing notations. gpepen is the cost of opening an indel at the DNA level,
and gpopen is the cost of opening an indel at the protein level; gpey: is

the cost of extending an indel by a nucleotide at the DNA level, and
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gpest 18 the cost of extending an indel by an amino acid at the protein

level; F'S is a (big) constant denoting the cost of a frame-shift error.

In the following discussion, we again assume that the sequence B evolves
to the sequence A. Since the frame-shift errors problem has been introduced,
the two directions of evolution are no longer symmetric.

First, we initialize the following variables.
e ¢(0,0) =0.

e For:=1,..,m, C(’i, 0) = 9Dopen + gPopen + gDeaxt * I_'L/3J

For .7 = 17 vy Ty C(O’J) = gDopen + GPopen + gDext * I_]/'?’_I
e Fori=1,..,mand j=1,..,n, c(i,j) = c0.

Fori=0,..,m,j=0,..,n,and t = 1,...,11, ¢(3, j) = oo.

We define 11 types of atomic alignments in the same spirit as codon
alignments, and classify an alignment into 11 types according to the type of
its trailing atomic alignment.

The main recurrence equation looks the same as that in the last chapter;
but now i and j are the numbers of nucleotides instead of codons in the

sequences A and B respectively:

c(hs) = i i)
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The recurrence equation for type 1 is the same as that in the last chapter

except that ¢ and j are the numbers of nucleotides instead of codons in the

sequences A and B respectively:
C1 (’L,]) = C(’I/ e 3,] - 3) + ca, (bj_gbj_lbj, ai_gai_lai),

where ca;(bj_2b;j_1bj, ai—2a;-1a;) has been defined in the last chapter.
A type 2 atomic alignment only involves one evolutionary event (i.e. a

deletion of any length). So ps(3, 7) is computed as follows:

pQ(iaj) = mln{p2("a] - 3) + 3- GDext + gPext,

C(?:,j - 3) + 9Dopen =+ GPopen +3- GDext =+ gPez:t}-
Also,

caliyg) = min{pali, ),
p2(i,5 — 1) + gpest + F'S,
c(i,§ — 1) + gDopen + GPopen + gpext + F'S,
p2(3,5 = 2) + 2 gpest + F'S,

C(Z.,j - 2) + GDopen + 9Popen +2- 9Dext + FS}
Analogously, ps(z, 7) is computed as

p3(1,5) = min{ps(i —3,5) + 3 - gpest + gpeat;

C(’I, - 37 .7) + gDopen + gPopen +3- IDext + gPemt}-
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Also,

cs(i,j) = min{ps(s,J),
p3(1—3,5 — 1) + 2 gpext + F'S + tmpy,
(i = 3,5 = 1) + gDopen + GPopen + 2 * gDext + F'S + tmip,
p3(i — 3,5 — 2) + gpect + F'S + tmpy,

C(’L - 3,] - 2) + 9Dopen + GPopen + GDext +FS+ tmp2}'
where

tmp; = min{cy(ai—2ai-1b;, ai—2ai_10;) + c4(bj, a;),
Cp(b;bj+1bjt2, @ibjs1bj42) + ca(bj; ai)}-
and tmp, is descr%bed below.
Since there are an indel and two mutations that need to be considered
when we compute tmps, we need to find the minimum cost by trying 3! = 6
diﬁérent orders. Let the indel be event 1, the first mutation (i.e. bj—; — a;_1)

be event 2, and the second mutation (z.e. b; — a;) be event 3. We give an

example of computing the partial cost for order 213 as follows:

costyys = Cp(bj_1bbjt1, ai1bibjsr) + ca(bj1, aicy) +

cp(ai—2ai—1bj; ai—zai—lai) + Cd(bj; a'i)-

From the above equation, we can see that whenever a frame-shift error
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occurs, we use a new reading frame to compute the costs of amino acid mu-
tations. In the following discussion, we will not explain details of computing
the minimum cost for different orders since we have done so much about
that in this chapter and the last chapter. But keep in mind, whenever a
frame-shift error occurs, we need to use a new reading frame.

A type 4 atomic alignment involves 4 evolutionary events as shown in
Figure 3.1. The basic idea of computing the cost p4(%, J, z, 0) of partial align-
ments is the same as that in Section 3.2 except that this algorithm is now
based on nucleotides instead of codons. For z € {A,C,G, T} and o € {0,1},

the recurrence equation is
p4(iaj7 z, U) = m’m{tmp, p4(17.7 - 1: z, J) -+ gezt},
where

tmp - min{c(']; - 3,] - 3) + ngpen + gPapen + 3 * gDeg;t + gPext +

o - (ca(, ai-2) + cp(zbj_1bj, ai_2b;-1b5)),

if z = b;_o; otherwise, tmp = co.
Now c4(4, j) could be one of five possible paths as shown in Figure 4.3. It

is computed as

C4(ia .7) = ze{};nci"% T}{t(ia j’ z, U) + ca’Z(bj—2bj—1bj7 a;—-20;-10;, IIJ),
ae{0,1}
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Figure 4.3: Five possible paths for type 4. -
C(Z - 3,_7 - 4) + ca4(bj_3bj_2bj_1bj, ai_zai_la,—),

C(i - 3,j - 5) + ca4(bj_4bj_3bj_2bj_1bj, ai_gai_lai)}.
where

t(i,5,z,0) = min{ps(i,j — 3,z,0),
pa(i,j — 4,2,0) + FS + gpeat,

p4(iaj - 5,.’1,‘,0') + FS + 2- gDezt}-

In the above equation, cag(bj—2b;j-1b;, ai_2ai—10i, ) is defined in the last
chapter. caq(bj—3bj—2b;—1bj, ai_2a;—1a;) is a function to compute the min-
imum cost of evolving b;_3b;_2b;_1b; to a;_2a;_1a; for type 4 alignment by
trying 4! = 24 different orders. It corresponds to path 5 in Figure 4.3. Again,
cas(bj_abj_3bj_2bj_1b;, a;2a;—1a;) computes the minimum cost of evolviﬂg
bj_4bj_3bj_2bj_1b; to a;_2a;_1a; for type 4 by trying 24 different orders. Path

4 in Figure 4.3 depicts this case. Again, in these functions we need to use
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new reading frames after frame shift errors occur.
In Figure 4.3, path 1 corresponds to the first case in t(7, j, z, o) equation,

path 2 is for the third case in the equation, and the second case is depicted

by path 3.
ps(1, j,2,0) is similar to that for type 4, and so we define p5(3, 5, z,0) and
ps(, 4, z, 1) similarly. Again, forz € {A,C,G,T}and o € {0,1}, ps(4, 4,2, 0)

is computed as
ps(1, 3,2, 0) = min{tmp, ps(i — 1, 5,%,0) + Gext},
where

tmp = c(i~3,j — 3) + gDopen + GPopen + 3 gDest + GPeat +
0 - (ca(bj-2,z) + cp(bj—2ai—1a;, Tai—10;)),
if x = a;_o; otherwise, tmp = oo.
But the idea to compute c5(z, 7) is a little different from that for ¢4(3, §)
since the frame-shift errors problem is introduced. The recurrence equation
is

Cs (7’7 .7) = ze{ﬂr,{lci,%f){p5(i - 37 j7 z, J) + ca’g(bj—2bj—1bj7 Ai—20;-10;, m);
oec{0,1

pS(iajv z, U) + FS — 9Dext — GPext +
g (Cp(ai——Zai—-lai> bj_2a;_10; + Cd(ai—27 bj—2));

ps(t — 3,7 — 1,z,= sigma) — 2 - gpest + F'S + tmp,,
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C(i - 3,.7 - 1) + gDopen + gPopen + 9Dext + FS + tmp2}-

where tmpo is similar to that in type 3. It computes the minimum cost
of three events (i.e. bj_o — z, an insertion, and b; — a;) by trying 3! = 6
different orders. It uses the information from ps and surrounding nucleotides.

The basic idea for computing alignments ending with type 6 atomic align-
ments is similar to the idea used in Section 3.2. The recurrence equation for
ps(%, J, £1,0) is almost the same except that it is based on the number of nu-
cleotides instead of codons. Since frame-shift errors are introduced, we need
to find the minimum cost corresponding to the 5 possible paths as shown in

Figure 4.4. ps(i,J,z,0) is computed as

r'"'r"“r""r""r-"'r""r"'.
1 ' t 1 ' ' [
1
Vo
| 1 [ | | [ 74 1
-1 = r o=t
1
BRI
| ' t (I 2R T 2 ' '
' ' i ! P ' I )
____________ | S O
T
| i [ 2R ) 1 '
' ) | 1 1 '
_____________ NN
1 2 3 4 5 G2 UL

Figure 4.4: Five possible paths for type 6.

pﬁ(i7j7 z, U) = mm{c(z - 3:.] - 3) + 9Dopen + GPopen +3- 9Dext + GPext +
cag (bj—2bj—1b;, ai_2a;_104, T),

pG(iaj - 37 z, 0) + 3- 9Dext + gPezt};
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where cag(bj_2bj_1b;, a;_20;_10;, %) is defined in the last chapter.
The cost of an optimal alignment between A(:) and B(j) ending with a

type 6 atomic alignment, denoted ¢5(3, ), is

cs(t,J) = Ug{l(i)fi}{t(i,j,%a) + 0 - (ca(x, ai) + cp(bj—2bj_17,bj_2b;_1a,)),
C(’L - 3,] - 4) -+ Cas(bj_3bj_2bj_1bj, ai_ga,-_la,-),

C(’i —_ 3,] - 5) + Cas(bj_4bj_3bj_2bj_1bj, ai_Qa,-_lai)}.
where z = b; and

t(i,j,x,0) = min{ps(,j — 3,%,0),
Ps(i,j - 47$7 0) + FS +gDezt;

pﬁ(iaj - 5’33) U) +FS+2- gDezt}-

In the above egquation, cag(bj_3bj—2b;-1b;, ai_2a;_1a;) computes the mini-
mum cost of evolving b;_3b;_2b;_1b; to a;_sa;_;a; for type 6 atomic alignment
by trying 4! = 24 different orders. It corresponds to path 5 in Figure 4.4.
cag(bj—abj—3bj_2bj_1b;, @i_sa;_10;) is a function to find the minimum cost of
evolving b;_4b;_3bj_2bj_1b; to a;_za;_;a; for type 6 atomic alignment by try-
ing 24 different orders. Path 4 in Figure 4.4 is for this case.

In Figure 4.4, path 1 corresponds to the third case in ¢(z, 7, z, 0) recurrence
equation, path 2 is for the second case in the equation, and the first case is

depicted by path 3.
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Similarly, p(i, j, z, o) is computed as

p7(7;; 5z, U) = mln{c(z -3,7— 3) + 9Dopen + 9Popen + 3 * gDext + GPest +
Ca?(bj—zbj—lbj; a;—20;_10;, 33)7

p7(i - 37.7: z, U) +3- Gpext + gPea:t}-

where ca?(bj_2b;j_1b;, @i—2a;—1a;, z) is defined in the last chapter.
Using the same technique as that for type 5, we can corﬁbute cr(i,7) as

follows.

07(7:7.7) = a'g%(l]%}{lh(z - 3)j7 z, U) +
o - (c4(bj, a;) + cp(i-2ai-1b;j, @;—20-10;)),
P7(i,j, z,0—2- GDext — JPext + FS:

p7(’L - 37.7 - 2):1::0') — 9Dezxt +F5+tmp27

C(’i —-6,5 — 4) + 9Dopen + gPopen + 2 gpest + tmp3}'

where z = a; and tmp, and tmps are funvctions of computing partial costs
using the same technique as that for type 5.

Although our idea can be extended to handle atomic alignments involv-
ing two indels (i.e. types 8, 9, 10, and 11), it is clear that the speed of our
algorithm would become too slow. For example, there are 5 -5 = 25 possible

paths to consider in an atomic alignment of type 8. Since in this extended
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model we have already introduced a factor of nine, considering arbitrary in-
dels in types 8, 9, 10, and 11 alignments would mean a slowdown factor of
25 -9 = 225. Therefore we will assume the lengths of indels in the types 8,
9, 10, and 11 atomic alignments are multiples of three and use the recur-
rence equations for types 8 through 11 in the last chapter for our extended
algorithm.

Although the table entries do not increase in this algorithrﬁ, computation
is multiplied by a factor of 5 for types 2 through 7 since we need to consider 5
possible paths for each of them. Therefore, the time complexity of the above
algorithm is O(428mn) where 428 =14+1+5+5+5-8-4+64-4.

The space complexity of the algorithm is O(3mn) where 3 2-dimensional
matrices are used for recording information about the terminating atomic

alignments.

4.3 A heuristic method to handle overlapping

frames

The general case of the overlapping frames problem is too complex. We
need to make the following assumptions to simplify the problem.
Let A = a1a;...a,, and B = b bsy...b, be two overlapped coding regions in

two different DNA sequences. For i = 1,...,k, where k > 1, GeneA[i] is a
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gene in A and GeneBli] is a gene in B. GeneAli].start is the start position
of the ith gene in A, GeneAli].end is the end position of the ith gene in A4,
and GeneAli].name is the name of GeneA[i]. GeneBli].start, GeneBli].end,

and GeneB[i].name are defined similarly. We assume

1. GeneA[l].start = 1, GeneAlk].end = m, GeneB[1].start = 1, and

GeneBlk).end = n.
9. Fori=2,..,k,
GeneAli — 1].start < GeneAli).start,

GeneAli — 1).end > GeneAli).start,
GeneBli — 1].start < GeneBli].start,

GeneBli — 1].end > GeneBli].start.
3. Forit=1,..,k,

GeneAli].name = GeneBli].name.

Before describing our heuristic method, we need to introduce a new matrix
named GN. The matrix GN whose size is mn saves the number of overlapped
genes at point (i,j) for ¢ = 1,..,m and j = 1,..,n. GN can be easily

computed using standard information about overlapped genes.
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Since all 11 type atomic alignments use the same idea, we only list recur-
rence equations for types 1 and 4 below. The basic idea is that we multiply
costs of indels and mutations by the number of overlapped genes.

For type 1, the recurrence equation is
c1(3,7) =c(t — 3,5 — 3) + GN(3,7) - car(bj—2bj-1b;, ai-2ai—1a;).
For type 4,
pa(i, J, 3, 0) = min{tmp, p4(i,j — 1,,0) + GN(5,j) - Geat},

where

tmp = min{c(i — 3,5 — 3) + GN(3,7) - (9Dopen + gPopen +

3 - gpeat + Gpest + 0 - (ca(T, ai—z) + cp(2bj—1b}, ai—2b;-1b5))),

if x = bj_y; otherv;/ise, tmp = oo. Also,

C4('i, j) = ze{l,;ir,zci',%jT}{t(i’j’ z, O') -+ GN(Z,]) . CaZ(bj_ij_lbj, Ai—2Q;—1Q;, .’II),
ocec{0,1

C(’i - 3,] - 4) + GN(’L,]) . ca4(bj_3bj_2bj_1bj, a,-_zai_lai),

C(’i — 3,] - 5) + GN(Z,]) . ca4(bj_4bj_3bj_2bj_1bj, a,-_ga,-_lai)}.
where

t(i,5,2,0) = min{ps(i,j — 3,z,0),
p4(i1j - 4;377 0) + GN(%]) : (FS + gDe:z:t):

p4(i1j - 5,111, U) + GN('L7.7) ) (FS +2- gDezt)}-
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One more thing we need to do is that for 7 = 1,....mand j = 1,...,n,
if GN(4,j) > GN(i — 1,7) and GN(3,5) > 1, we add the cost of an indel,
whose length is i — GeneB]t].start where GeneB|t] is the new overlapped
gene, to c(i, 7). The case in which GN(¢,5) > GN (3,7 —1) and GN(4,5) > 1

is similar.

4.4 The pseudo code

Under the assumptions discussed in the last section, we list the pseudo
code of our extended algorithm to handle overlapping frames as well as coding
and non-coding regions as follows.

Algorithm DNA_Protein_Alignment

1. Get the user input data.
2. Split coding and non-coding regions.
3. For each non-coding region, simply do a DNA alignment.

4. For each coding region, check if there are overlapped frames in it. If

yes, go to 6; otherwise, do the following step.

5. Compute the minimum cost of this coding region using the algorithm
discussed in Section 4.2 and generate the alignment for it. Then go to

7.
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6. Call the Qverlapping_Region function.

7. Concatenate all the alignments of coding and non-coding regions and

add all the costs of them.

8. Output the result.

Function Owverlapping-Region

1. Compute the matriz GN.

2. Fori=1,..,mandj=1,..,n,
(a) If (GN(i,j) = 0), move to the next position.
(b) If (GN(i,5) = 1), use the algorithm discussed in Section 4.2.
(c) If (GN(i,7) > 1), use the algorithm discussed in Section 4.8.

3. Generate the alignment according to knowledge of the terminating atomic

alignments.

4.5 Time and space complexity analysis

Since Awe use different methods to handle non-coding regions, coding re-
gions without overlapped genes, and coding regions with overlapped genes,
we discuss time and space complexity of them separately.

Let k; be the number of non-coding regions in two DNA sequences A

and B. For ¢ = 1,...,k;, let m; be the number of nucleotides in the ith
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non-coding region of sequence A and n; be the number of nucleotides in the
1th non-coding region of sequence B. The time complexity for non-coding
regions is

k1
o} 3miny),
i=1

and the space complexity is

O(z’e{r{}%}jcl} 3m;n;).

Let ks be the number of coding regions without overlapped genes. For
J = 1,..,ks, let m; be the number of nucleotides in the jth coding region
without overlapped genes of sequence A and n; be the number of nucleotides
in the 7th coding region without overlapped genes of sequence B. The time

complexity for coding regions without overlapped genes is

k2
O3 428mjn;),

J=1

and the space complexity is

O(jeg??sz} 3m;n;).

Let k3 be the number of coding regions with overlapped genes. For [ =
1,..., k3, let m; be the number of nucleotides in the Ith coding region with
overlapped genes of sequence A and n; be the number of nucleotides in the

Ith coding region with overlapped genes of sequence B. Let t; be the number
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of points (7,7) with GN(z,7) > 0, where 1 <7< myand 1 < j < n. The

time complexity for coding regions with overlapped genes is
k3
0(>_ 428t),
=1
and the space complexity is

0 4 ,
(ZE{IE?J-},ia} mlm)

where the additional two-dimensional matrix is for GN.
Finally, the time complexity of our extended algorithm is

k1 ks ks

O3 3min; +>_428mjn; + Y 428t;),

j= =1

i=1 j=1

and the space complexity is

O(max{ max 3m;n;, max 3m;n; max 4myn}.
ie{l,...,k1} je{1,...,k2} le{1,....k3}

In the next chapter, we will implement our extended algorithm and report

some test results.
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Chapter 5

Implementation and Test"

Results

DPA, which is short for DNA and Protein Alignment, is the name of a
software developed by us to implement the algorithm discussed in Chapter 4.
Unlike Context-free CAT, DPA can handle frame-shift errors and overlapping
frames.

In Section 5.1 we show the environment and programming language used
in developing DPA. Then in Section 5.2 we describe the key modules of DPA.
We analyze time and space used by DPA in Section 5.3. We give some test
results concerning frame-shift errors and overlapping frames in Sections 5.4

and 5.5 respectively.
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5.1 The environment and programming lan-

guage used in developing DPA

We developed DPA on a Sun Sparc Ultra II Model 1300 using GNU
C. The reason we did not use Java or C++ is that most biologists are not
familiar with them. Another reason is that Java is slower than C and speed
is a key consideration in our implementation.

DPA uses the algorithm discussed in the last chapter and makes the same
assumptions listed in Section 4.3 for overlapping frames. Some ideas to speed
up our program will be discussed in the next section. We do our best to make

DPA as fast as possible.

5.2 Key modules of DPA

DPA consists of 5 modules, named Input, Split, Cost, Align, and Output.

We will describe each module in the following subsections.

5.2.1 Input module

Input module is responsible for getting the user input data. DPA reads
data from two files, named DPA_Job and DPA_Setting. DPA_Job is a job

description file. All parameters used by DPA are in the DPA_Setting file.
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The Input module reads the data from the two files and saves them in some

variables used in the other modules.

5.2.2 Split module

In this module, DPA splits the coding and non-coding regions and finds
pairs of genes to align. For non-coding regions, it only does DNA alignment.
For coding regions, if two genes in different DNA sequences have the same
name and they don’t overlap with other genes, it is straightforward to align.
But if there is overlapping in their coding regions, sometimes we can align
all the genes in this region, sometimes we cannot. For example, suppose that
in sequence A, genel is before gene2 and they overlap each other; but in
sequence B, gene2 is before genel and they also overlap each other. There-
fore, we must make a decision on which pair of genes should be aligned. DPA
chooses the first gene in the first DNA sequence and its counterpart. If a user
wants to align the second gene in the first sequence to its counterpart in the
second sequence, the user can swap the two genes in the first DNA sequence
in the DPA job file, i.e. gene2 in the first sequence should be moved to the
first position in this coding region.

Another issue that should be mentioned here is that DPA changes all the

characters in coding regions to upper case before passing them to the Cost
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module. This speeds up our program significantly since it saves almost half
of the comparisons.

After splitting coding and non-coding regions and considering the over-
lapping frames problem, Split module passes the coding regions to the Cost
module and concatenates the results from the Align module to generate the

whole alignment.

5.2.3 Cost module

The Cost module is the heart of DPA. It computes the minimum cost
and remembers all the path information of an optimal alignment in the table
LC whose size is m-n. LC(i, 7).type is the type of the last atomic alignment
of A(7) and B(]) LC(i,j).indell and LC(3,7).indel2 are the lengths of the
first indel and the second indel of the last atomic alignment of A(z) and B(j)
respectively.

As discussed in the last chapter, if we consider frame-shift errors in atomic
alignments of types 8, 9, 10, and 11, then the speed of our algorithm would
be too slow in practice. Thus, DPA only considers frame-shift errors in the
first seven types, and requires that an indel in the last four types must be a
multiple of three nucleotides.

We find that DPA spends a lot of time computing the base cases for types
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1, and 4,...,11. A base case of type 1 needs to consider 3! = 6 different orders.
For types 4, 5, 6, and 7, each base case requires the computation of 4! = 24
different orders. For types 8, 9, 10, and 11, 5! = 120 different orders must
be tried in the base case. We use some base case tables to avoid duplicate
computations for the same base case.

Another interesting issue is that we observe that the costs of some orders
in an atomic alignment may be identical, hence we only need fo compute one
of them when this occurs. We give two examples below.

For type 4, the costs of orders 1342, 3142, and 3412 are always equal (see
Figure 3.1). The reason is simple. Whenever an indel separates an alignment
into two parts, the events in the two different parts have no influence on each
other. The same phenomenon can be found in type 8. For example, the cost
of the following orders are same (see Figure 3.3): 13524, 15324, 31524, 35124,
51324, 53124, 13542, 15342, 31542, 35142, 51342, and 53142.

One more trick to speed up our program is to use the base case table of
type 1 in computing the base cases of types 4,...,11 for some special orders
which have three continuous mutations after deletions or before insertions.

When Cost module finishes its job, the minimum cost of two input se-
quences has been found and information about the path has been remembered

in the matrix LC.
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5.2.4 Align module

The Align module uses the matrix LC to generate alignments using the
standard back-tracking technique. It starts at entry LC(m,n). Since the
type and indel lengths of the last atomic alignment have been computed
and recorded in the Cost module, it is trivial to generate the last atomic
alignment. Then we move to the end position of the second to last atomic
alignment, and so on. For example, if LC(¢, j).type = 8, LC(i, j).indell = 3,
and LC(i, 7).indel2 = 9, the next position to consider would be LC(i—3, 7 —
3—3-09) (i.e. LC(i—3,j—15)). The Align module concatenates all atomic

alignments together and terminates at entry LC(0,0).

5.2.5 Output module

DPA translates codons to amino acids for each gene in this module, and

outputs the result according to the format used in GerAl[4].

5.3 Time and space complexity analysis of

DPA

Our work station has 512M B physical memory and a Sun Sparc Ultra II
300MHz cpu. We have tested 16 groups of sequences with lengths ranging

from 100 to 5000 nucleotides. We summarize the results in Table 5.1 and
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Table 5.1: Time and space of DPA

| length(nuc) [ 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 |
space(MB) | 5 6 8 97 12] 14] 17 20
time(sec) 5| 19| 41| 72| 114 165 222 292
[ length(nuc) | 900 | 1000 | 1200 | 1500 | 2000 | 3000 | 4000 | 5000
space(MB) | 23] 27] 34| 48] 76] 154 258 ] 390
time(sec) | 374 | 459 [ 679 [ 1085 | 1942 | 4421 | 8394 [ 12392

illustrate the relation between speed and length in Figure 5.1.
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Figure 5.1: The time complexity analysis of DPA.

From Figure 5.1, we can see that DPA spends a significant amount of
time in computing the costs of atomic alignments, even though a table is
used to avoid duplicate computations for the same atomic alignment. This is

especially obvious in the first region (i.e. 100...300 nuc) of the figure, where
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the time/length? ratio deceases from 5 to 4.56. When the same set of cost
parameters are used again and again, it is possible to speed up the program
by recycling the atomic codon alignment cost table. In the second region (i.e.
300...800 nuc) of the figure, the ratio is stable. Its value fluctuates between
4.5 and 4.58. In the third region (i.e. 900...1500 nuc), it increases slowly
since the memory begins to become a factor.

In general, the speed of DPA is acceptable in practice. It is much faster
than CAT, but slower than Context-free CAT due to the computation based
on the number of nucleotides instead of the number of codons in CAT. But
DPA can handle frame-shift errors and overlapping frames while CAT does
not.

The space used by the base case tables is fixed and not too great. Since
we use the standard back-tracking technique instead of Hirschberg’s divide
and conquer algorithm, we are able to save some time although we use more
space to remember the path information. This is a trade-off Between time
and space, and we think that time is more important than space in our

program.
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Table 5.2: Test results concerning frame-shift errors (1)

[‘mutation rate | 0.1 | 0.2] 0.3] 04] 05] 06| 0.7] 08]
detection 2/2 1272 ]2/22/2]2/2[2/2] 2/2] 2/2
localization | 0/0 | 0/0 | 0/0 | 3/0 | 3/0 | 9/0 | 9/12 | 9/12

5.4 Tests concerning frame-shift errors

When there are no frame-shift errors and overlapping frames in an align-
ment, the test results of DPA and Context-free CAT are tﬁe same except
that DPA is slower than Context-free CAT. In this section, we will describe
the test results involving frame-shift errors.

We have performed two groups of tests on frame-shift errors using Dayhoff
PAM 120 Matrix and DNA PAM 47 Matrix. In the first group, we fix the rate
of frame shifting indel, and vary the mutation rate. Both rates of insertion
and deletion we used are 0.01. The test results with mutation rate changes
from 0.1 to 0.8 are listed in Table 5.2. In the detection row of the table,
it gives the number‘ of indels detected by DPA and the number of original
indels respectively. The distance between the original indel and the detected
indel is listed in the localization row. For example, 3/0 means that the first
indel is shifted by 3 nucleotides and the second indel is exactly at the same
position as the original one.

From the table we can see that when the mutation rate is less than 0.4,
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DPA can correctly identify the indels and frame shifts. When the mutation
rate is between 0.4 and 0.6, DPA can still detect all the indels, but may
put some of them at slightly wrong locations. When the mutation rate is
greater than 0.6, although DPA can detect the indels, the locations of them

are totally off. We list one of the results when the mutation rate is 0.2 below.

The simulated data is

1 11 21 31 41 51
agacccgetg aggcggeaac agatgceggtg agacaaactc agegagcace agtgggggtsg

agacgagctg ag----caac agatacgttg agacaaactc agccaccagc agtggcggtg

61 71 81 91 101 111
ggagcagcat ---cagacct gcaccgacat ggagcaatca caactaggaa tacggcagcet

ggageggeat caccagccct ccaaagacat ggctcaatca caactctcaa tacagcaget

The output prpduced by DPA is

This is DPA, Version 0.90 Betal.
Written by Bin Wu <binwuQ@church.dcss.McMaster.CA>.

Copyright (c¢) 1998 by Tao Jiang & Bin Wu. All rights reserved!
One optimal codon alignment of two input sequences is :

Arg Pro Ala Glu Ala Ala Thr Asp Ala Val Arg Gln
lagacccgectgaggeggeaacagatgeggtgagacaa
lagacgagctgag-~----caacagatacgttgagacaa

Arg Arg Ala Glu Gln Gln Ile Arg Non Asp Lys

Thr Gln Arg Ala Pro Val Gly Val Gly Ala Ala
3%7actcagcgagcaccagtgggggtgggagecagecat -~
33actcagccaccagcagtggcggtgggageggcecatca

Leu Ser His Gln Gln Trp Arg Trp Glu Arg His His
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Table 5.3: Test results concerning frame-shift errors (2)

rmutation ra,teT 0.1 | 0.2] 0.3 ]
detection 4/4 4/4 4/4
localization 0/1/0/1 | 10/1/0/0 10/1/0/0

[ mutationrate |~ 04 | 0.5 0.6 |
detection 3/4 4/4 2/4
localization 10/21/3/c0 | 9/3/3/0 | 24/00/60/00

Ser Asp Leu His Arg His Gly Ala Ile Thr Thr Arg
7l-cagacctgecaccgacatggagcaatcacaactagg
69 ccagccctccaaagacatggetcaatcacaactctc

Gln Pro Ser Lys Asp Met Ala Gln Ser Gln Leu Ser

Asn  Thr Ala Ala
106 aatacggcagct
l05aatacagcagect

Ile Gln Gln
The minimum cost is 1901

Thank you for using DPA!

See you next time!

In the second group we fix the frame shifting insertion and deletion rates
at 0.02. Again, we vary the mutation rate. The test results are summarized in
Table 5.3. From the table, we can see that the performance of DPA worsens

when more indels are introduced.
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5.5 Tests concerning overlapping frames

With regard to overlapping frames, we have tested several groups of
simulated sequences and 3 pairs of real sequences. The 3 pairs of real data
include (i) HIVMN coding region for gag and pol genes, HIVNDK coding
region for gag and pol genes. (ii) HIVMN coding region for vif and vpr
genes, HIVNDK coding region for vif and vpr genes. (iii) HIVMN coding
region for tatl and revl genes, HIVNDK coding region for tatl and revl
genes. Again, we use Dayhoff PAM 120 Matrix for amino acids and DNA
PAM 47 for nucleotides.

The following scripts are the outputs of DPA for 3 pairs of real data.
Since the output for gene gag and pol is too long (14 pages), we only list a
part of that. .

A part of the output for gag and pol genes is

Cys Arg Ala Pro Arg Lys Arg Gly Cys Trp Lys Cys
1222 t gcagggecccctaggaaaaggggetgttggaaatgt
12207t gcagggecccctagaaaaaagggetgttggaaatge

Cys Arg Ala Pro Arg Lys Lys Gly Cys Trp Lys Cys

Gly Lys Glu Gly His Gln Met Lys Asp Cys Thr Glu
1258 ggaaaggaaggacaccaaatgaaagattgtactgag
1243 ggaagggaaggacaccaaatgaaagattgcactgaa

Gly Arg Glu Gly His Gln Met Lys Asp Cys Thr Glu

Phe Phe Arg Glu Asp Leu Ala Phe
Arg Gln Ala Asn Phe Leu Gly Lys Ile Trp Pro Ser
120 agacaggctaattttttagggaagatctggecttcec
1279 agacaggctaattttttagggaagatttggeccttcec
Arg Gln Ala Asn Phe Leu Gly Lys 1Ile Trp Pro Ser

Phe Phe Arg Glu Asp Leu Ala Phe
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Leu Gln Gly Lys Ala Glu Phe Ser Ser Glu Gln
Cys Lys Gly Arg Arg Asn  Phe Pro Gln Ser Arg
1330t gcaagggaaggc---ggaattttcctcagagcaga
1316 cacaagggaaggeccggggaattttcttcagagcaga
His Lys Gly Arg Pro Gly Asn Phe Leu Gln Ser Arg
Pro Glm Gly Lys Ala Gly Glu Phe Ser Ser Glu Gln

Asn Arg Ala Asn  Ser Pro Thr Arg Arg Glu Lewx Gln
Thr Glu Pro Thr Ala Pro Pro Glu Glu Ser Phe Arg
1363 acagagccaacagccccaccagaagagagcecttcagg
1381 ccagagccaacagccccaccagcagagagcttcggg
Pro Glu Pro Thr Ala Pr§ Pro Ala Glu Ser Phe Gly

Thr Arg Ala Asn  Ser Pro Thr Ser Arg Glu Leu Arg

Val Trp Gly Arg Asp Asn  Asn  Ser Leu Ser Glu Ala
Phe Gly Glu Glu Thr Thr Thr Pro Tyr Glm Lys Gln
1309ttt ggggaagagacaacaactccctatcagaagecag
1387ttt ggggaggagataaccccctect-=-=-===--+--=----
Phe Gly Glu Glu Ile Thr Pro Ser

Val Trp Gly. Gly Asp Asn  Pro Leu

Gly Glu Glu Ala Gly Asp Asp Arg Gln Gly Pro Val
Glu Lys Lys Glnm Glu Thr Ile Asp Lys Asp Leu Tyr
1435 gagaagaagcaggagacgatagacaaggacctgtat
1411 - - ~cagaaacaggagcagaaagacaaggaactgtat
Gln Lys Gln Glu Gln Lys Asp Lys Glu Leu Tyr

Ser Glu Thr Gly Ala Glu Arg Gln Gly Thr Val

Ser Phe Ser Phe Pro Gln Ile Thr Leu Trp Gln Arg
Pro Leu Ala Ser Leu Lys Ser Leu Phe Gly Asn Asp
1471 cctttagcttccctcaaatcactctttggecaacgac
1444 cct ttagcttccctcaaatcactctttggeaacgac
Pro Leu Ala Ser Leu Lys Ser Leu Phe Gly Asn Asp

Ser Phe Ser Phe Pro Gln Ile Thr Leu Trp Gln Arg
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The output for vif and vpr genes is

This is DPA, Version 0.90 Betal.
Written by Bin Wu <binwuQchurch.dcss.McMaster.CA>.

Copyright (c) 1998 by Tao Jiang & Bin Wu. All rights reserved!

One optimal codon alignment of two input sequences is :

Met Glu Asn Arg Arg Gln Val Met Ile Val Trp Gln
latggaaaacagacggcaggtgatgattgtgtggecaa
latggaaaacagatggecaggtgatgattgtgtggecaa

Met Glu Asn Arg Trp Gln Val Met Ile Val Trp Gln

Ala Asp Arg Met Arg Ile Arg Thr Trp Lys Ser Leu

37gcagacaggatgaggattagaacatggaaaagttta
37gtagacaggatgaggattaacacatggaaaagttta

Val Asp Arg Met Arg Ile Asn Thr Trp Lys Ser Leu

Val Lys His His Met Tyr 1Ile Ser Lys Lys Ala Lys

73gtaaaacaccatatgtatatttcaaagaaagctaaa
73gtaaaataccatatgtatgtttcaaagaaagctaac

Val Lys Tyr His Met Tyr Val Ser Lys Lys Ala Asn

Gly Arg Phe Tyr Arg His His Tyr Glu Ser Thr His

19 ggacggttttatagacatcactatgaaagcactcat
l09agatggttttatagacatcactatgacageccaccac

Arg Trp Phe Tyr Arg His His Tyr Asp Ser His His

Pro Arg 1Ile Ser Ser Glu Val His Ile Pro Leu Gly

146 ccaagaataagttcagaagtacacatcccactaggeg
146 ccaaaaataagttcagaagtacacatcccactagega
Pro Lys 1Ile Ser Ser Glu Val His Ile Pro Leu Gly
Asp Ala Arg Leu Val Ile Thr Thr Tyr Trp Gly Leu
1Blgatgctagattggtaataacaacatattggggtcteg
1Blgaagctagactggtagtaacaacatattggggtctg
Glu Ala Arg Leu Val Val Thr Thr Tyr Trp Gly Leu
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His

217 c a t

217 ca t

His

Val

283 g t ¢

283 g t ¢

Val

Gln

289 c a a

289 c a a

325
325

361
361

397
397

433
433

Gln

Leu

ctg

atg

Met

Arg

aga

aga

Arg

Cys

tgt

tgt

c

t

Cys

Leu
t
t

Leu

a

a

Thr

Gly

Glu

acaggagaa

aca

Thr

Ser

Ser

Val
gta
gta

Val

His
cat

tat

Tyr

Lys
aag
aaa

Lys

Glu
gaa
gag

Glu

Gln
cag
cag

Gln

gga
Gly

Ile
ata
ata

Ile

Asp
gac
gac

Asp

Tyr
tac
tat

Tyr

Ala
gcec
gcc

Ala

Phe
ttt

tat

Tyr

Tyr
tac
tat

Tyr

gaa

Glu

Glu
gaa
gaa

Glu

Pro

cct

Pro

Phe
ttt
tt¢t

Phe

Ile
ata
ata

Ile

Gln
c aa
caa

Gln

Leu
ttg
ttg

Leu

Arg

agagactgg

aaagaatgg

Lys

Trp
tgg
tgg

Trp

Asp
gac

gge
Gly

Asp
gat
gat

Asp

Leu
tta
tta

Leu

Ala
gca
gca

Ala

Ala
gca
gca

Ala

Asp

Glu

Arg

aggaaa

Arg

Leu

ct

ctg

Leu

Cys

tgt

tgt

Cys

Gly

gga
g£g2

Gly

Gly

gga
gga

Gly

Leu

ct

ctageca

Leu

a

Trp

Trp

Lys

aggaaa

Lys

Ala

gca
g ca

Ala

Phe

tt

t

Phe

His
at

at

His

His

at

His

Thr

c

Ala

t

a

His
cat
cat

His

Lys
aag

2ageg
Arg

Asp
gac
gac

Asp

Ser
tca
gca

Ala

Arg
aga
ata

Ile

Asn

aac

Asn

Ala
gca
gca

Ala

Leu

Gly

ttaggt

Ctgggt

Leu

Arg

Gly

Tyr

agatat

aga

c

c

Arg

His
a
a

Gln

Asp

c

a

gac

gaa

Glu

Val

gtt

gttt

Val

Lys

aag

aag

t

t

Lys

Leu
t
t

Leu

a

a

tat

Tyr

Leu
cta
cta

Leu

Ser
tct
tect

Ser

Ser
agt
agt

Ser

Val
gta
gta

Val

Ile

ata

Gln

Gly

caggga

cag

Gln

Ser
agec
agc

Ser

Ile
att
att

Ile

Ala
gcc
gct

Ala

Pro

cct

Pro

Gly
gga
Ega

Gly

Thr

aca

gga
Gly

ac

His

Ile
a't
at

Ile

Ile
att
agt

Ser

Pro
cct
tcc

Ser

Pro

cca

atagcacca

Ile

Ala

Pro
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Lys Lys Ile Lys Pro Pro Leu Pro Ser Val Lys Lys
49 aaaaagataaagccacctttgcctagtgttaagaaa
469 aaaaagataaagccacctttgcctagtgttaggaag

Lys Lys Ile Lys Pro Pro Leu Pro Ser Val Arg Lys

Met Glu Gln Ala Pro Glu Asp
Leu Thr Glu Asp Arg Trp Asn Lys Pro Gln Lys Thr
505 ctgacagaggatagatggaacaagccccagaagacec
506 ctaacagaagatagatggaacaagccccagaagacec
Leu Thr Glu Asp Arg Trp Asn Lys Pro Gln Lys Thr

Met Glu Gln Ala Pro Glu Asp

Gln Gly Pro Gln Arg Glu Pro Tyr Asn Gln Trp Ala
Lys Gly His Arg Gly Ser His Thr Ile Asn Gly His
B4l aagggccacagagggagccatacaatcaatgggecac
64l aagggececcgcagagggageccatacaatgaatggacat
Lys Gly Arg Arg Gly Ser His Thr Met Asn Gly His

Gln Gly Pro Gln Arg Glu Pro Tyr Asn Glu Trp Thr
Leu Glu Lew Lew Glu Glu Leu Lys Asn Glu Ala Val
Non -
577t agagcttttagaggagecttaagaatgaagectgtta
57T tagagcttttagaggagecttaagagtgaagectgtca
Non
Leu Glu Leu Leu Glu Glu Len Lys Ser Glu Ala Val

Arg His Phe Pro Arg Ile Trp Leu His Gly Leu Gly

613 gacattttcctaggatatggectccatggettagegge

613 gacattttcctaggatatggectccatagcttagegac
Arg His Phe Pro Arg 1Ile Trp Leu His Ser Leu Gly
Gln His TIle Tyr Glu Thr Tyr Gly Asp Thr Trp Ala

689 aacatatctatgaaacttatggggatacttgggecag
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640 aacatatctatgaaacttatggggatacctgggeag
Glm His Ile Tyr Glu Thr Tyr Gly Asp Thr Trp Ala
Gly Val Glu Ala Ile Ile Arg Ile Leu Gln Gln Len

686 gagtggaagccataataagaattctacaacaactge

686 gtgttgaagctataataagaattctgecaacaactac
Gly Val Glu Ala Ile Ile Arg Ile Leu Gln Gln Leu
Len Phe Ile His Phe Arg 1Ile Gly Cys Arg His Ser

721t gt ttattcatttcagaattgggtgtcgacatagececa

721t gtttattcatttcagaattgggtgtcaacatageca
Leu Phe Ile His Phe Arg Ile Gly Cys Gln His Ser
Arg Ile Gly 1Ile Ile Arg Gln Arg Arg Ala Arg Asn

78T gaantaggcattattcgacagaggagagcaagaaatg

757 gaata agtattactcgacagagaagagcaagaaatg
Arg Tle Ser Ile Thr Arg Gln Arg Arg Ala Arg Asn
Gly Ala Ser Arg Ser Non

793 gagccagtagatcctag

793 gatccagtagatcctaa
Gly Ser Ser Arg Ser Non
The minimum cost is 7962

Thank you for using DPA!

See you next time!
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The output for tatl and revl genes is

This is DPA, Version 0.90 Betal.
Written by Bin Wu <binwu@church.dcss.McMaster.CA>.

Copyright (c) 1998 by Tao Jiang & Bin Wu. All rights reserved!

One optimal codon alignment

Met Glu Pro
latggagecca
latggatcca

Met Asp Pro

His Pro Gly
37T catccagga
37Tcatccagga

His Pro Gly

Cys Tyr Cys
7T3tgctattgt
73tgtcattgt

Cys His Cys

Cys Phe Thr
109t gtttcaca
19tgcttcata

Cys  Phe Ile

Gly Arg ~Ser

Arg Lys Lys

Val
gta
gta

Val

Ser
agt
agt

Ser

Lys

Lys

Lys
aaa
acg

Thr

Gly

Arg

of two input sequences is :

Asp Pro Arg Leu Glu Pro
gatcctagactagagcecce
gatcctaatctagagtcec

Asp Pro Asn Leu Glu Ser

Gln Pfo Lys Thr Ala Cys
cagcctaagactgcttgt
cagcctaggactgettgt
Gln Pro Arg Thr Ala Cys

Lys Cys Cys Phe His Cys
aagtgttgctttcattitge
aagtgttgctatcattge

Lys Cys Cys Tyr His Cys

Lys Ala Leu Gly Ile Ser
aaageccttaggcatctcc
aaaggcttaggcatctcce

Lys Gly Leu Gly 1Ile Ser

Asp Ser Asp Glu Glu Leu

Arg Gln Arg Arg Arg Ala

Trp
tgeg
tgeg

Trp

aat

Asn

Gln
caa
caa

Gln

Met

Tyr
tat
tat

Tyr

Met

Leu

Pro

Lys
aag
aac

Asn

Thr
act
aag

Lys

Val
gtt
gttt

Val

Ala

Gly
ggc

Egc
Gly

Ala

Lys

Glu

146 aggaagaagcggagacagcgacgaagagecectcctgaa

l45aggaagaagcggagacagcgacgaaaacctcctcaa
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Arg Lys Lys Arg Arg Gln Arg Arg Lys Pro Pro Gln
Gly Arg Ser Gly Asp Ser Asp Glu Asn Leu Leu Lys

Thr Val Arg Leu Ile Lys Phe Leu Tyr Gln Ser
Asp Ser Gln Thr His Gln Val Ser Leu Pro Lys
18lgacagtcagactcat caa gtttctctaccaaagca
18lggcgatcaggectcatcaagttcctataccagagca
Gly Asp Gln Ala His Gln Val Pro Ile Pro Glu

Ala Ile Arg Leu Ile Lys Phe Leu Tyr Gln Ser
The minimum cost is 3852

Thank you for using DPA!

See you next time!

From the test results, we can see that (i) The indel rate for short genes
is lower than that for long genes. There is no indel in the alignments for the
last two pairs of real sequences. (ii) The indel rate in overlapping regions is
almost the same a; that in non-overlapping regions. (iii) The mutation rate
in the real data that we tested is usually lower than 0.3.

In the next chapter, we give conclusions and future work for our project.



Chapter 6

Conclusions and Future Work

In this thesis, we have studied an alignment model recently proposed by
J. Hein and related algorithms for comparing coding DNA sequences which
takes into account both DNA and protein information. Basing on Hein’s
model, we have proposed a mildly simplified model, i.e. the contezt-free
codon alignment model, and presented a much more efficient algorithm for
this simpler model. Furthermore, we have extended our algorithm to handle
frame-shift errors and overlapping frames using a heuristic approach.

All of the algorithms have been implemented and tested on both real
and simulated sequences. The test results show that the algorithm for our
simplified model and the algorithm for Hein’s model produce almost identical
alignment in most cases. Also, our program can correctly detect and locate
frame-shift errors for reasonable indel and mutation rates.

A disadvantage of our program is that it can’t detect two frame-shift

errors which are close to each other. To make up for this, we can use a local
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optimization method, i.e. we do not penalize two “complementary” frame-
shift errors which are close to each other and realign that region taking this
into account.

Future research may be concerned with (i) exact algorithms for the over-
lapping frames problem, (ii) speeding up our frame-shift algorithm so that
it can handle atomic alignment involving two indels, and (iii) biologically
plausible combinations of cost parameters from protein and DNA levels.

Finally, we hope our model will be accepted by biologists aﬁd our program

will be widely used in practice.
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