
STOCHASTIC HEURISTIC PROGRAM

FOR TARGET MOTIF IDENTIFICATION

STOCHASTIC HEURISTIC PROGRAM FOR TARGET MOTIF

IDENTIFICATION

By

XIAN ZHANG, B.Sc.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree

Master of Science

McMaster University

@ Copyright by Xian Zhang, August 12, 1999

MASTER OF SCIENCE (1999)

(Computer Science)

MCMASTER UNIVERSITY

Hamilton, Ontario

TITLE: Stochastic Heuristic Program for Target Motif Identifica­

tion

AUTHOR: Xian Zhang

B.Sc. (Heilongjiang Aug. 1 University, Mishan, China)

SUPERVISOR: Dr. Tao Jiang

NUMBER OF PAGES: x, 109

11

Abstract

Identifying motifs that are "close" to one or more substrings in each

sequence in a given set of sequences and hence characterize that set is an

important problem in computational biology. The target motif identification

problem requires motifs that characterize one given set of sequences but are

far from every substring in another given set of sequences. This problem is

N P-hard and hence is unlikely to have efficient optimal solution algorithms.

In this thesis, we propose a set of modifications to one of the most popular

stochastic heuristics for finding motifs, Gibbs Sampling [LAB+93], which

allow this heuristic to detect target motifs. We also present the results of

four simulation studies and tests on real protein datasets which suggest that

these modified heuristics are very good at (and are even, m some cases,

necessary for) detecting target motifs.

lll

Acknowledgments

For Dr. Tao Jiang, my supervisor, his invaluable supervision in guiding and

supporting this work as well as all his support, encouragement and help

during my study here, I deeply express my special thanks to him at this

opportunity. I would like to express my sincere appreciation to Dr. Todd

Wareham for his contribution in the algorithm design and help in review­

ing this thesis. Besides, thanks Mr. Chris Trendall for his inputs during

algorithm design and implementation and Mr. Peng Zhao and My wife Xin

Zhou's cooperation and help during my research period. In addition, I would

like to thank Dr. Martin Tompa for his communications with me on [RT98].

Of course, I thank so much Dr. Sanzheng Qiao and Dr. Jeffery Zucker for

reviewing my thesis, and Chris Bryce for his technical assistance.

IV

Contents

Abstract UI

Acknowledgments IV

List of Figures .
IX

List of Tables X

1 Introduction 1

1.1 Definition of the Problem 1

1.2 Terminology 4

1.3 Applications of Target Motif Identification 7

1.4 Previous Results for Target Motif Identification 10

1.5 Summary of My Results 10

2 Algorithms 13

2.1 Basic Ideas of Gibbs Sampling Algorithm 13

2.2 Ungapped Motif Identification 15

v

2.2.1 General Strategy . 15

2.2.2

2.2.3

2.2.4

2.2.5

Algorithm

Time Complexisity

Identifying Gapped Motifs

General Strategy

. 17

........ 22

24

24

2.2.6 Algorithm . 27

2.2.7 Time Complexity

2.3 Identifying Target Motif

27

...... 33

2.3.1 Construction of Avoidance Sequence Model 34

2.3.2 Use of Avoidance Sequence Model 35

2.3.3 Postprocessing for Candidate Motifs 36

2.4 Some Issues Concerning the Improvement of Motif Detection 37

2.4.1

2.4.2

Phaseshift

Ranking Multiple Target Motifs

3 Implementation

3.1 The Programming Development Environment

3.2 DNA and Protein Sequence Simulator.

3.3 Main Algorithm Implementation .

3.3.1 IO Module

. 37

..... 38

40

41

43

43

....... 45

3.3.2 Model Construction Module 48

Vl

3.3.3 Pseudocount Module 49

3.3.4 Avoidance Module . 50

3.3.5 Sampling Module . 51

3.3.6 Other Modules .

3.4 Motif Evaluation Processing Implementation

51

52

3.5 Performance Analysis . 52

4 Simulation Studies 56

57 4.1 The Dataset Simulator

4.1.1 Principle . 57

4.1.2 Method 58

4.2 Evaluating Simulated Target Motif Detection 60

4.3 Simulation Study #1 . 61

4.3.1 Motivation . 61

4.3.2 Methods 61

4.3.3 Results and Discussion 62

4.4 Simulation Study #2 . 64

4.4.1 Motivation . 64

4.5

4.4.2

4.4.3

Methods ..

Results and Discussion

Simulation Study #3

Vll

64

65

............ 66

4.5.1

4.5.2

Motivation .

Method ..

............. 66

.................. 68

4.5.3 Results and Discussion 69

4.6 Simulation Study #4 70

4.6.1 Motivation . 70

4.6.2

4.6.3

Method ..

Result and Discussion

71

71

5 Experiments on Real Data Sets 74

5.1 Motivation 74

5.2 Method .. 75

75 5.2.1 Real Dataset Archives

5.2.2 Target Motif Dataset Creation 75

5.2.3 Parameter Setting . 76

5.3 Test Results 76

5.3.1 The Cytosine Methyltransferase Experiment 76

5.3.2 The Protein Kinase Experiment 78

5.3.3

5.3.4

The Lipocalin Experiment

The Cyclin Experiment . .

82

........... 84

5.3.5 The Acetyltransferase Experiment 86

5.4 Summary . 89

Vlll

6 Discussion

6.1 Characteristics

91

91

6.2 Correlation Anaylysis Between Characteristic Quantities 95

6.3 Summary 100

7 Conclusions and Future Work 103

Bibliography 108

IX

List of Figures

1.1 An Example of Gapped Target Motif 8

3.1 Structure of Implementation 42

3.2 Structure of the Modified Gibbs Sampling Algorithm 44

3.3 An Example of The Input File for Parameter Setting. 46

3.4 An Example of Input Sequence Format 48

3.5 Performance on Simulated DNA Sequence Datasets 54

3.6 Performance on Simulated Protein Sequence Datasets 55

5.1 Cytosine Methyl transferase Target Motif-VIII Alignment 79

5.2 Protein Kinase Target Motif-IV Alignment . 80

5.3 Lipocalin Protein Target Motif A Alignment 84

5.4 Cyclin Target Motif-III Alignment . .. 87

5.5 Acetyltransferase Target Motif A Alignment 89

X

List of Tables

1.1 An Example Motif Model Extracted From A Multiple Se-

quence Alignment . 5

2.2 Basic Algorithm for Stochastic Motif Identification. 15

2.3 Ungapped Gibbs Motif Identification: Data Structures and

Main Program. 19

2.4 Ungapped Gibbs Motif Identification: Functions and Proce-

dures (Cont'd). 20

2.5 Ungapped Gibbs Motif Identification: Functions and Proce-

dures (Cont'd). 21

2.6 Gapped Gibbs Motif Identification: Data Structures and Main

Program. 28

2. 7 Gapped Gibbs Motif Identification: Data Structures and Main

Program (Cont'd). 29

Xl

2.8 Gapped Gibbs Motif Identification: Functions and Procedures

(Cont'd). 30

2.9 Gapped Gibbs Motif Identification: Functions and Procedures

(Cont'd). 31

2.10 Gapped Gibbs Motif Identification: Functions and Procedures

(Cont'd). 32

4.1 Simulation Study #1 Results: Motif Detection. 62

4.2 Simulation Study #2 Results: Motif Detection. 66

4.3 Simulation Study #3 Results. Motif detection 68

4.4 Correlation Coefficients Results .. 73

5.1 The Cytosine Methyltransferase Motif Data Set 77

5.2 Cytosine Methyltransferase Motif Detection Results 78

5.3 Characterization of the Protein Kinase Motif Data Set 81

5.4 Protein Kinases Motif Detection Results 82

5.5 Characterization of the Lipocalin Motif Data Set 83

5.6 Lipocalin Motif Detection Results 83

5. 7 Characterization of the Cyclin Core Region Motif Data Set 85

5.8 Cyclin Motif Detection Results 86

5.9 Characterization of the Acetyltransferase Motif Data Set 87

5.10 Acetyltransferase Motif Detection Results 88

Xll

6.11 Characterization of the Cytosine Methyltransferase Motif Data 95

6.12 Characterization of the Protein Kinase Motif Data Se 96

6.13 Characterization of the Lipocalin Motif Data Set . . 96

6.14 Characterization of the Cyclin Core Region Motif Data Set 97

6.15 Characterization of the Acetyltransferase Motif Data Set 97

6.16 Motif Detection / Characteristic Correlations 98

Xlll

Chapter 1

Introduction

1.1 Definition of the Problem

A very important application of protein and nucleotide sequence informa­

tion is the identification of potential targets for drugs. In this identification

process, one is interested in finding those regions of the sequence that have

important functions within an organism, e.g., regulatory sites in nucleotide

sequences or active-site folding domains in protein sequences. Such regions

are subsequently used to design assays that screen candidate molecules to

see which candidates bind to those regions and hence might be useful drugs.

The ideal way to isolate such functionally-important regions is to know

how these sequences function. Such information is very hard to determine.

1

CHAPTER 1. INTRODUCTION

Fortunately, the nature of sequence mutation provides a relatively quick and

useful heuristic for determining such regions. As sequence mutations over

the course of evolution are less likely to change parts of the sequence that

are important to the function of that sequence, one can isolate functionally­

important sequence regions by finding those regions that are conserved over

the sequences for a set of species that have descended from a common ances­

tor (and hence have evolved by mutation from a common ancestral sequence).

Such conserved regions are known as motifs, and the process of finding them

corresponds to the following computational problem:

MOTIF IDENTIFICATION

Input: A set of sequences S over an alphabet I; , a motif -to-string distance

function d : 1;* x 1;* t-+ N 1 and positive integer k and l.

Output: The (possibly empty) collection M = { M1 , M2 , ... } where each Mi

is a set of strings { m, r 1 , r 2 , •.• r1s1} such that m is a string over I; with

minimum length of l and for all i, ri is a substring of the ith sequence in S

and d(ri, m) ::; k.

Here, 1;* denotes the set of all strings over the alphabet 1;. This problem

can also be phased relative to a motif-to-string similarity function if the in­

equalities are reversed. In this formulation, the string m in each subset Mi

1 N is the set of integers

2

CHAPTER 1. INTRODUCTION

is the motif. There is an extensive literature on deriving motifs relative to

various distance functions on strings (see [DEKM98, Gus97] and their refer­

ences). However, to be truly useful as drug targets, such motifs must often

be specific to particular groups of organisms and not occur in certain other

groups of organisms. For instance, if one is searching for drugs to kill certain

kinds of bacteria in people, one is typically only interested (for financial and

legal (if not ethical) reasons) in those drugs that kill the bacteria and not

the people. The process of finding the group-specific motifs underlying such

useful drugs corresponds to the following modification of the problem above:

TARGET MOTIF IDENTIFICATION

Instance: Sets T and A of strings over an alphabet .E, a motif-to-string dis­

tance function d : .E* X .E* t---+ N and positive numbers dT and dA.

Solution: A motif m such that for each string y E T, there is a substring y'

of y for which d(m, y') :'S dT, and for every substring z' of every sequence z

in A, d(m, z') 2: dA with a lower bound of motif length l.

In this thesis, we propose and implement an algorithm based on the popular

Gibbs Sampling motif-finding heuristics [LAB+93, LNL95, NLL95, RT98]

that uses avoidance sequences to help detect target motifs. We also present

the results of several experiments which suggest that these modified heuristics

3

CHAPTER 1. INTRODUCTION

are very good at detecting target motifs.

1.2 Terminology

A motif is essentially a pattern that occurs in one or more sequence. A

motif can be encoded in many ways; for instance, a motif can be encoded

as a string, an alignment of strings, or a profile, i.e., a table giving the

probabilities of occurrence of all symbols in the sequence-alphabet at each

position in the motif (see [Gus97, Chapter 14] and references). To a limited

extent, it is possible to transform one type of motif-encoding into another; for

instance, a motif encoded as an alignment of strings can be transformed into

a profile by computing the frequencies of occurrence of every symbol in each

column of the alignment, and this profile can in turn be transformed into a

consensus string by selecting for each position in that string the symbol with

the maximum frequency of occurrence in that position in the profile. This

profile we call it motif model (see Table 1.1 as an example). A motif instance

is a subsequence from a given target sequences that can be considered as a

candidate for a motif.

Choosing symbols with the highest probability in each column, we get a

string C-ACGA, a consensus motif, at the bottom of the Table 1.1. That is:

Given a multiple alignment M of a set of strings S, the consensus character

4

CHAPTER 1. INTRODUCTION

Symbol II
Motif Position

1 2 3 4 5 6
A 10% 0% 95% 0% 5% 70%
c 70% 5% 0% 90% 0% 5%
G 15% 20% 5% 10% 85% 0%
T 5% 5% 0% 0% 5% 5%
- 0% 70% 0% 0% 0% 20%

consensus motif c - A c G A

Table 1.1: An Example Motif Model Extracted From A Multiple Sequence
Alignment

of column i of M is the character that minimizes the summed distance to it

from all the characters in column i. Let d(i) denote that minimum sum in

column i. Since the alphabet is finite, a consensus character for each column

of M exists and can be found by enumeration. As one simple special case,

if the pairwise scoring scheme scores a match with a zero and a mismatch

or a space opposite a character with a one, then the consensus character

in column i is the plurality character (i.e., the character occurring the most

often in column i). Note that the plurality character can be a space. The

consensus motif S M derived from alignment M is the concatenation of the

consensus characters for each column of M.

Each motif has an associated function that is used to assess how well a

given string matches that motif. A motif matches a string if the value of that

motif's associated distance (similarity) function relative to the motif and

5

CHAPTER 1. INTRODUCTION

that string is below (above) a specified threshold value. The nature of this

function depends on the type of motif-encoding; for instance, if the motif

is encoded as a string, the function might be a distance function between

pairs of strings, and if the motif is encoded as an alignment of strings, the

function might be the value of the optimal alignment of the strings already

in the alignment and the new string. When motifs are encoded as strings,

two popular matching functions are Hamming distance, (which is the number

of positions at which symbols differ in two strings of equal length) and edit

distance (which is essentially the minimum number of symbol substitutions,

insertions, and deletions that must be applied to transform one string into

another). Note that both of these functions can be rephrased as similarity

functions, which measure the number of identical-symbol positions and the

maximum number of identical-symbol positions relative to a padding of both

sequences with gap symbols, respectively. A motif that matches one or more

substrings of a given sequence is said to appear in that sequence.

A motif can allow gaps, which correspond to positions at which insertions

or deletions can occur in the matching of that motif to a given string. These

gaps can be explicit in the motif itself (either as special symbols in a motif­

string or a profile or as the gaps in an alignment of strings) or implicit in

that motif's associated matching function. For instance, the latter would be

6

CHAPTER 1. INTRODUCTION

the case if a motif is encoded as a string and the matching function is edit

distance. If the motif incorporates gaps, it is called a gapped motif, else, it is

an ungapped motif.

In the example of Figure 1.1, the first pattern (e.g. AAAGCTAG) corre­

sponds to an gapped non-target motif and the second pattern (e.g. CCGA­

GAAT) corresponds to an gapped target motif.

In the target identification problem, denote the sets T and A as the target

sequences and avoidance sequences, respectively. Any motif that appears in

both the target and avoidance sequences is a non-target motif and motif that

appears only in the target sequences is a target motif

1.3 Applications of Target Motif Identifica­

tion

Target motifs correspond to patterns that characterize sequences in a subset

of a given set of sequences, and hence distinguish sequences in that subset

from all other sequences in the larger set. This ability makes target motifs

valuable in several pharmaceutical applications. For instance, target motifs

can be used in the design of diagnostics for the presence or absence of some

subset of a group of bacteria, e.g., diagnostics for the presence of pathogenic

strains of E. Coli in an environment known to contain multiple strains of E.

7

CHAPTER 1. INTRODUCTION

Target Sequences:

. . . .
. . .

.

Avoidance

.

. . . .

motif I

.AAAGCTAG

.AA-GCTAG
. . AAT-CTAG

Sequences:

.. AAAGCTAG

. . AAAG-TAG

gapped
Non-Target Motif

motif II

.... CCGAGAAT
. CGGAGAAT
...... CGGA-AAT

.
.

gapped
Target Motif

Figure 1.1: An example of gapped target motif. Motif I is a non-target motif
since it presents in the avoidance sequences; motif II is a target motif because
it does not show similar pattern in the avoidance sequences. Both motif I
and motif II are gapped motif since they contain gaps

8

CHAPTER 1. INTRODUCTION

coli. Target motifs may also be useful as candidate sequence targets in the

design of broad spectrum drugs that act on a specified group of organisms

without affecting another specified group of organisms, e.g., antibiotics that

disrupt particular genes or gene products in pathogenic strains of E. coli

while leaving the corresponding genes and gene products in human beings

and normal human-internal microbial flora intact. Such sequence targets

may be used either directly as targets for anti-sense therapeutics or indi­

rectly as components of assay for the screening of other potential compounds

against group-specific sequences that are conserved in a group of interest and

hence may be crucial to the functioning of organisms in this group. These

applications and others are discussed in more detail in [11+99].

It is very important to stress that many of the target motifs produced by

the target motif finding algorithms may not be useful as diagnostics or drug

targets for various reasons, i.e., motif occurring in sequences other than those

considered in an organism, secondary-structure interference with binding.

However, they should prove a first approximation to sets of useful targets

and diagnostics, and thus make the diagnostic and drug development process

faster and cheaper by narrowing the range of sequences or compounds that

must be considered in subsequent laboratory-intensive rounds of testing.

9

CHAPTER 1. INTRODUCTION

1.4 Previous Results for Target Motif Iden­

tification

Ito et al. [ISNH94] gave a low-order polynomial-time algorithm for a spe­

cial case of the target motif identification problem in which the motif is a

string, the matching function is edit distance, and the target motif is required

to be a substring of each of the target sequences. Lanctot et al. [LL+99]

considered the case in which the motif is a string, the matching function is

Hamming distance, and all target sequences are of the same length as the

motif. They showed that this problem (which they called Distinguishing

string selection) is N P-hard and gave a polynomial-time approximation al­

gorithm that is guaranteed to produce a motif whose distance to the target

sequences is within a factor of 2 of optimal. Unfortunately, the high order

of the polynomial in this algorithm's time complexity renders it useless in

practice.

1.5 Summary of My Results

The first contribution of my thesis is a set of simple modifications to the Gibbs

Sampling heuristic algorithms for finding ungapped [LAB+93] and gapped

10

CHAPTER 1. INTRODUCTION

[RT98] motifs which allow these heuristics to find target motifs. These mod­

ified algorithms actually solve a relaxed version of the target motif identifi­

cation problem in which a derived target motif is only guaranteed to be far

relative to some threshold from the given avoidance sequences under a given

similarity function and is assumed to be close to the target sequences under

the probabilistic distance function implicit in the Gibbs motif-finding heuris­

tic. However, both algorithms operate in low-order polynomial time and the

latter of these algorithms is the only known algorithm that can derive gapped

target motifs.

The second contribution of my thesis is a set of experiments on simulated

and real datasets whose results establish the following two points: 1) that

algorithms such as the one proposed in this thesis which integrate avoidance

information into target motif search are useful because the naive method

for solving the target motif identification problem may fail under certain

conditions (namely, when weakly-conserved target motifs exist in the same

sequence with strongly-conserved non-target motifs); and 2) the algorithm

described in this thesis finds the target motifs in given sequence datasets

quickly under a variety of conditions.

This thesis is organized as follows: Chapter 2 describes the algorithms,

which consists of a description of the basic Gibbs Sampling algorithm for

11

CHAPTER 1. INTRODUCTION

finding ungapped target motifs [LAB+93] and a generalization of this algo­

rithm [RT98] to handle gapped motifs. Chapter 3 describes how the imple­

mentation is organized and its main data structures as well as performance

analysis. Chapter 4 reports the simulation studies. Chapter 5 reports some

experiments on real sequence datasets. Chapter 6 discusses about perfor­

mance of our algorithm on real datasets. Chapter 7 is the conclusions and

future work.

Please note that some of the aspects and conclusions given in this the­

sis appeared previously in RECOMB poster in 1999 [JTWZ99] and the

manuscript to be submitted to Journal of Computation Biology [JTW99].

12

Chapter 2

Algorithms

2.1 Basic Ideas of Gibbs Sampling Algorithm

Gibbs Sampling can be viewed as an instance of a general stochastic strat­

egy for determining the parameters of a statistical model relative to a given

data set. This strategy starts with some setting of parameter-values and

iteratively changes the value of one parameter at a time by assuming that

the remaining parameters are correct and invoking Bayes' Theorem until all

parameters converge to stable (if not optimal) values (see [LAB+93, LNL95]

and references for details). With reference to the motif identification prob­

lem, the model is a motif encoded as an alignment of strings, the parameters

are the positions of the motif within each sequence in a given set S (the

13

CHAPTER 2. ALGORITHMS

motif-instances), and the stochastic heuristic modifies these motif-instances

one sequence at a time, one sequence per iteration, until the alignment of

these motif-instances de notes a stable (if not optimal) motif.

The general algorithm for Gibbs Sampling motif identification is given

m Table 2.2. Though several steps of this algorithm may be stochastic,

the primary stochastic element is the stochastic selection performed in Step

8. Under stochastic selection, an element in a set is selected at random

relative to the probabilities derived by normalizing the weights assigned to

the elements in that set. This type of selection is intuitively more appealing

than a deterministic selection that would always select the highest- or lowest­

weighted value because stochastic selection can allow a local-search heuristic

algorithm to escape from (and hence avoid being trapped in) local optima.

The Gibbs motif identification algorithms described in the remainder of

this thesis all follow the outline of the algorithm given in Table 2.2. These al­

gorithms implement this basic algorithm in different ways, but can ultimately

be characterized by how they answer the following two questions:

1. What constitutes a motif model?

2. How is such a motif model scored against the motif-instances in a se­

lected sequence?

14

CHAPTER 2. ALGORITHMS

program Stochastic Motif Identification

Input: A set S of sequences over some alphabet.
Output: A candidate motif for S.

boolean finished

begin
1. Select initial motif-instances in the sequences of S.
2. Create initial motif-model from motif-instances.
3. finished :=false
4. while not finished do
5. Select sequences from S.
6. Construct motif-model from motif-instances in S- { s }.
7. Weight all possible motif-instances in s relative to thee motif-model

derived above.
8. Stochastically select a new motif-instance x for s relative to

these weights.
9. Update motif-instance information for s relative to x.
10. Check if motif-model has converged and process is finished.
11. Output motif-instances for S.
end

Table 2.2: Basic Algorithm for Stochastic Motif Identification.

2.2 Ungapped Motif Identification

2.2.1 General Strategy

The first algorithm for identifying motifs by Gibbs sampling was given in

[LAB+93]. This algorithm finds ungapped motifs of a pre-specified length

W. In this algorithm, a motif is modeled as a collection of W + 1 multinomial

probability distributions over the sequence alphabet :E, where the first W of

15

CHAPTER 2. ALGORITHMS

these distributions correspond to a profile-encoding of the motif, i.e., the

first W of these distributions correspond to the frequencies of occurrence

qi,j, 1 :::; i :::; W and 1 :::; j :::; 1~1, of symbol j at position i in the motif,

and the final distribution corresponds to the "background" frequencies of

occurrence pj, 1 :::; j :::; 1~1, of symbol j in parts of the sequences that are

not in the motif. A candidate motif-instance string x = x 1x 2 • • • xw over

alphabet ~ is evaluated against the motif model in terms of the ratio 1

w
Qx/ Px = ll(qi,sym_lnd(x;)/Psym_ind(x;))

i=l

where symJnd(s) is the index of symbol s in ~. For numerical reasons, this

product of ratios is more often computed as an equivalent sum of log-ratios

known as the F -value,

w IL:I
F = L L Ci,j log qi,i/Pi

i=l j=l

where ci,j is the unnormalized count of the number of occurrences of symbol

i at position j in the motif, and Ci,j, qi,j, and pj are computed from the motif

model based on all motif-instances in S - { s} and the candidate string x.

Intuitively, by seeking motif models that maximize the ratio Qx/ Px,

1Qx are the probabilities of generating each segment x according to the current motif
model; Px are the probabilities of generating these segments by background.

16

CHAPTER 2. ALGORITHMS

the algorithm is searching for the motif model whose collective symbol-

occurrence distribution is probabilistically the most distinct from the back-

ground symbol-occurrence distribution. As such, the distance function en-

coded in this algorithm is a variant of the Kullback-Leibler distance

H(QIIP) = L:Q(x)log(Q(x)/P(x))
X

which gives a measure of the distinctness of probability-distributions Q and

P (H (Q II P) is also known as the relative entropy of Q to P). This connection

is more easily seen in the re-formulation of the ratio Qx/ Px in terms of F.

2.2.2 Algorithm

The algorithm in [LAB+93] is described in Tables 2.3, 2.4 and 2.5. Several

matters are worth noting about this algorithm. First, due to various problems

associated with storing and operating on very small real numbers accurately

in a computer, For numerical reasons to avoid underflow, the probability

ratio Qxf Px will typically be computed as the the log-odds ratio [DEKM98,

Section 3.6]:
w
L:(logqi,sym_ind(x;))- (logpsym_ind(xi)))
i=l

Second, the pseudocounts in procedure Construct_MotiLModel are designed

to handle the problems that avoids zero probabilities and "normalizes" the

frequency-occurrence counts obtained from the limited data set in S to more

17

CHAPTER 2. ALGORITHMS 18

accurately reflect the underlying statistical distributions in the model. In

this method, probability estimates are obtained in a two-step process. First,

pseudocounts M M.psu[i] for each possible symbol i in the alphabet (amino

acids, in the case of proteins) added to the observed counts are divided by

the total counts over all symbols (observed plus pseudocounts), to obtain the

probability of each symbol. That is, the expected probability of a letter i at

motif model position j is:

qi =
cm[i][j] + psu[i]

lnl + lzl

where lnl is the number of target sequences and lzl is the summation of

pseudocounts. It is claimed that the algorithm if each psu[i] is multiplied

by a square root of N, where N is the number of sequences, works better

[LAB+93, p. 214]. The statistical problems associated with inferring motif

models from a small number of sequences often requires more complex and

computationally-expensive pseudocounts [DEKM98, Section 5.6]. Finally,

the termination of the algorithm is judged in terms of a quantity F -score

and a integer value k, i.e. it is terminated if the F-value has not been

increased in number of k iterations.

CHAPTER 2. ALGORITHMS

program Ungapped Gibbs Motif Identification

Input: S, a set of sequences over some alphabet with num_sym symbols,
W, an expected motif-width.
N I, convergence parameter

Output: A set of length-W motif-instances for S.

record S I* Input sequences *I
integer N
integer SLEN[N]
char *SEQ[N]

I* Number of sequences *I
I* Length of each sequences *I

I* Sequences *I

record M M I* Motif model *I
integer W /* Width of motif *I
integer mi_start[l ... N] I* Start-points of motif-instances *I
integer cm[l ... W][l ... num_sym]l* Motif position symbol-counts *I
integer cb[l ... num_sym] I* Background symbol-counts *I
integer toLcb
real psu[l ... num_sym] I* Symbol pseudo-counts *I
real toLpsu
real q[l ... W][l ... num_sym]I*Motif position symbol probabilities* I
real p[l ... num_sym] I* Background symbol probabilities *I

integer s
boolean finished

begin
Initialize__MotiLModel(S, W, M M)
finished := false
while not finished do

Randomly select sequence s from S.
ConstrucLMotif__Model(S, s, M M)
Select__N ew __MotiLinstance(S, s, M M)
finished:= CheckJ:LFinished(S, M M, N I)

Output motif-instances for S.
end

Table 2.3: Ungapped Gibbs Motif Identification: Data Structures and Main
Program.

19

CHAPTER 2. ALGORITHMS

procedure lnitializel\1otiLModel(S, W, M M)
begin

Initialize M M by setting all value to zeroes
Randomly select motif start-position for each sequence in S
Build an initial motif model based on the initial motif-instances

end I* Of INITIALIZEJ\10TIF J\10DEL *I

procedure ConstrucLMotifl\1odel(S, s, M M)
begin

Compute MM.cm[i][j], 1:::; i:::; MM.W and 1:::; j:::; num_sym,
to the number of occurrences of symbol j in column i of the
implicit motif-instance alignment

(excluding the row for the motif-instance in sequence s).
Compute M M.cb[j], 1 :::; j :::; num_sym, to the number of background

occurrences of symbol j, i.e., the number of occurrences of symbol j
in all sequences in S except s that are not in any motif-instance

Set M M.toLcb = L_j~r;-sym M M.cb[j].
Compute_Qi,j(S, M M)
Compute_Pi(S, M M)

end /* Of CONSTRUCT J\10TIF J\10DEL *I

procedure Compute_pseudocount(S, M M)
begin

Compute M M.psu[j], 1 :::; j :::; num_sym,
to the pseudocount for each symbol and set

Set total pseudocount M M.toLpsu = L.j~r;-sym M M.psu[j].
end I* OF Compute_pseudocount *I

procedure OutpuLMotif(S, M M)
begin

for i = 0 to S.N do
for j = MM.mi_start[i] to MM.W do

output S.SEQ[i][j]
end I* OF OutpuLMotif(S, M M) *I

Table 2.4: Ungapped Gibbs Motif Identification: Functions and Procedures
(Cont'd).

20

CHAPTER 2. ALGORITHMS

function symJnd(s)
Returns index of symbols in alphabet.

procedure Compute_Qi,j(S, M M)
begin

for i = 1 to W do
for j = 1 to num_sym do

M M [i]['] = MM.cm(i][j]+MM.psu(j]
.q J (MM.N-l)+MM.tot..psu

end /* OF Compute_pseudocount *I

procedure ComputeYj(S, M M)
begin

for j = 1 to num_sym do
M M ['] _ MM.cb(j]+MM.psu(j]

·P J - MM.tot...r;b+MM.tot..psu

end I* OF Compute_pseudocount *I

procedure Select_New_MotiLinstance(S, s, M M)
begin

for each substring x = x 1x 2 • • • xw of length Win sequences do
Compute A[i] = Qxl Px, where i is the start-point of x in s

Qx = TI~1 M M.q[i][symJnd(xi)],
Px = TI~1 M M.p[symJnd(xi)].

Select new motif-instance x' for s by stochastically sampling
over the normalized weights
A'[i] = A[i]l~f~~n(sJA[j].

Update motif-instance information for s relative to x'.
end I* Of SELECT _NEW _MOTIF _INSTANCE *I

function Check_ILFinished(S, M M, N I)
begin

Recompute MM.q[i][j] and MM.p[j]
F = I:~i I:j~";-sym M M.c[i][j]log ~~:;i~Jjl.

if F has not been improved more than N I iterations
return true

else return false
end I* Of CHECK_IF _FINISHED *I

Table 2.5: Ungapped Gibbs Motif Identification: Functions and Procedures
(Cont'd).

21

CHAPTER 2. ALGORITHMS

2.2.3 Time Complexisity

At present, outside of some rules-of-thumb derived from practical experience

[LAB+93, p. 213], it is not known how many iterations will be required for

the algorithm to converge on a motif model for a given data set. Hence,

the actual time complexity of this algorithm cannot be given. However, it is

possible to give the time complexity of each iteration. The time and space

complexities of each of the functions and procedures used in the algorithm

are as follows:

• Initialize...Motif_Model: O(N) time, 0(1) space.

• ConstrucLMotiLModel: O(N L + Wl~l) time, 0(1) space.

• Select_New_Motif_lnstance: O(LW) time, O(L) space.

• Check_lf_Finished_lnstance: O(N L + Wl~l) time, 0(1) space.

The sequence and motif-model data structures require O(N L + Wl~l) space.

Hence, if I is the number of iterations the algorithm requires to converge, the

time and space complexities ofthe algorithm as a whole are O(I(N L+ WI~ I))

and O(N L +WI~ I), respectively.

Many modifications of this basic algorithm are possible. For instance, it

is possible to estimate the length W of the best motif model over several runs

22

CHAPTER 2. ALGORITHMS

of the algorithm described above using a parameter G [1AB+93], which is

related to F-value; more computationally and statistically complex methods,

e.g., column sampling/fragmentation. are described (albeit not in algorith­

mic terms) in [1195, 1N195, N1195]. Besides, the algorithm can be easily

adapted to allow multiple motif models at one time; however, this will also

increase the number of iterations require to converge [1AB+93, page 210].

Various other modifications dealing with preserving consistent orders across

multiple models are described in [1AB+93, 1195, 1N195, N1195].

The algorithm described above is the most basic version of the Gibbs

sampling motif-finding algorithm, in that it assumes that there is one motif

in the given set of sequences, one copy of that motif in each sequence, and the

length of that motif is known. Modifications of this basic algorithm that allow

it to automatically set motif length and automatically determine both the

number of copies of a motif in each sequence as well as the number of motifs

present in the set of given sequences are described (albeit often in statistical

rather than algorithmic terms) in [1AB+93, 1N195, 1195, N1195].

23

CHAPTER 2. ALGORITHMS

2.2.4 Identifying Gapped Motifs

2.2.5 General Strategy

Though a strong case can be made for the utility of ungapped motifs on

the basis of the domain-structure of proteins [LAB+93], there are also occa­

sions when gapped motifs are desirable, e.g., when non-Hamming distance

measures are used in motif identification. Two algorithms for identifying

gapped motifs by Gibbs sampling have been given in the literature. The first

algorithm, which incorporates constraints that favor collinearity and close

spacing of multiple motifs into the algorithm given in [LAB+93], is men­

tioned briefly on page 210 of [1AB+93] and is partially sketched in [1195];

however, this algorithm did not significantly increase performance in practice

relative to the original algorithms and was more susceptible to being trapped

in local optima [1AB+93, p. 210]. The second algorithm (given in [RT98])

was originally designed for finding multiple occurrences of a gapped motif

in a single sequence; however, it can be trivially reformulated to look for a

single occurrence of a motif in each sequence of a given set of sequences by

making each motif-instance occur in a distinct sequence. This algorithm will

be described in more detail below.

The algorithm in [RT98] encodes a motif as an alignment of strings, each

of which is a motif-instance substring from a different sequence. A candidate

24

CHAPTER 2. ALGORITHMS

motif-instance string x is evaluated against the motif in terms of the score

of the best pairwise alignment of x and the motif-model alignment. In this

pairwise alignment, each symbol r of x is aligned with a column j of n

symbols drawn from the motif-model alignment. The column j' of n + 1

symbols composed of r and j has the score

a(r,j) = (L P{ log2 (P{ / Bk)) + (g · p9)

k:P{:;i:o

where P{ is equal to (C{ + gBk)/(n + 1), C{ is the number of occurrences

of symbol k in j', Bk is the number of occurrences of k in the background

portions of the sequences that are not part of any motif-instance, g is the

number of gaps in j', and p9 is a user-defined penalty associated with creating

a gap. As defined above, the score a(r, j) is always non-negative, and hence

could encourage the proliferation of poorly-conserved columns in the optimal

alignment; hence, the authors recommend that the expected value of a(r,j)

be subtracted from each column's score to reduce the expected score to zero.

By analogy with the algorithm in [LAB+93], we will call the score of an

alignment relative to a(r,j) the F-value of that alignment. Initially, all of

the substrings comprising the motif alignment are of a pre-specified length

W. However, over the course of executing the algorithm, the length of the

alignment will change subject to the constraints on gap and column insertion

exercised by the value of p9 •

25

CHAPTER 2. ALGORITHMS

In practice, rather than evaluating the pairwise alignment of the motif­

model alignment and each substring x of sequence s in Step 7 of the algorithm

given in Table 2.2, the motif-model alignment is aligned with all of s simul­

taneously using a variant of end-space-free alignment [Gus97, Section 11.6.4]

such that the score associated with the best alignment of the motif align­

ment and the substring of s ending at position i is given in position (w, i)

of the dynamic programming matrix. This not only lowers the computation

time associated with Steps 7 and 8 from O(W2 L) to O(W L), where W is

the length of the motif-model alignment and L is the length of the longest

given sequence, but also allows the length of the motif alignment to change

as symbols within individual sequences are inserted and deleted (see [RT98]

for details).

The distance function encoded in this algorithm is a variant of the Kullback­

Leibler distance, and hence has the same justification as that given for the

algorithm in [LAB+93]. Note, however, that the admittedly ad hoc manner

in which gap-penalties are introduced into the distance function renders this

connection more tenuous.

26

CHAPTER 2. ALGORITHMS

2.2.6 Algorithm

The gapped Gibbs motif identification algorithm is given in Tables 2.6, 2. 7,

2.8, 2.9 and 2.10.

To quickly pick up a sampled candidate motif instance, we stored the

weights to an one dimensional array A (at the bottom of Table 2.9) and do

a binary search to find the value. This takes O(log L) time, where L is the

length of the longest sequence.

2.2. 7 Time Complexity

As is the case for the algorithm in [LAB+93], there is no known bound on the

number of iterations. However, it is still possible to give the time complexity

of each iteration. The time and space complexities of each of the functions

and procedures used in the algorithm are as follows. In the expressions below,

let W' be the length of the alignment of the motif-instances. Though W' is

upper-bounded by N L in the worst case, i.e., the alignment consists of all

strings such that none overlap in the alignment, it will in practice be O(W).

• Initialize...MotiLModel: O(NW) time, 0(1) space.

• ConstrucLMotiLModel: O(N L + WIL:I) time, 0(1) space.

• Compute_CosLMatrix: O(IL:IW') time, 0(1) space.

27

CHAPTER 2. ALGORITHMS

program Gibbs Sampling Algorithm on Gapped Motif Identification

Input: S, a set of sequences over num_sym symbols,
W a motif-width W. N I, a convergence value, G, gap penalty

Output: An alignment of motif-instances for S.

record S I* Input sequences *I
integer N I* Number of sequences *I
integer len[l ... N] /* Lengths of sequences *I
char sym[l ... N][l ... len[i]] /* Symbols in sequences *I

record M M I* Motif model *I
integer N I* Number of sequences *I
integer W I* Width of motif* I
integer mi_start[l ... N] I* Start-points of motif-instances *I
integer mi_finish[l ... N] I* End-points of motif-instances *I
integer alen /* Length of motif* I
char asym[l ... N][l ... alen] I* Motif-instance alignment* I
integer cm[l ... alen][l ... num_sym]

/* Motif-instance alignment position symbol-counts *I
integer cg[l ... alen] /* gap-counts *I
integer cb[l ... num__sym] I* Background symbol-counts* I
integer toLcb
real q[l ... W][l ... num_sym] /* symbol probabilities *I
real p[l ... num_sym] /* Background symbol probabilities *I

integer s
boolean finished

begin
Gibbs Sampling Main Loop

end

Table 2.6: Gapped Gibbs Motif Identification: Data Structures and Main
Program.

28

CHAPTER 2. ALGORITHMS

begin
InitializeJ\1otiLModel(S, W, M M)
finished := false
while not finished do

Randomly select sequence s from S.
ConstrucLMotif_Model(S, s, M M)
Select.NewJ\1otiLinstance(S, s, M M)
finished:= CheckJ:LFinished(S, M M, N I)

Output motif-instance alignment for S.
end
procedure lnitialize_Motif_Model(S, W, M M)
begin

Initialize all values to zeros
Randomly select the motif start-position for each sequence in S.
Initialize the motif-instance alignment to the ungapped

alignment of the selected motif-instances.
end I* Of INITIALIZEJ\10TIF _MODEL *I

procedure Construct_Motif_Model(S, s, M M)
begin

Set MM.cm[i][j], 1:::; i:::; MM.W and 1:::; j:::; num_sym,
to the number of occurrences
of symbol j in column i of the implicit motif-instance
alignment (excluding the row for the motif-instance in sequence s).

Set M M.cg[i], 1 :S i :::; M M.alen, to the number gaps in column
i of the motif-instance
alignment (excluding the row for the motif-instance in sequence s).

Set M M.cb[j], 1 :S j:::; num_sym, to the number of background
occurrences of symbol j, i.e.,

the number of occurrences of symbol j in all sequences in S
except s that are not in any

motif-instance, and set M M.tot_cb = L,j~r;-sym M M.cb[j].
for j = 1 to num_sym do

M M.p[j] = M M.cb[j]l M M.tot_cb
for i = 1 to W do

for j = 1 to num_sym do
MM.q[i][j] = (MM.cm[i][j] + (MM.cg[j] * MM.p[j]))IMM.N

end I* Of CONSTRUCT _MOTIF _MODEL *I

Table 2.7: Gapped Gibbs Motif Identification: Data Structures and Main
Program (Cont'd).

29

CHAPTER 2. ALGORITHMS

FUNCTION symJnd(s)
Returns index of symbols in alphabet.

procedure Select_New_MotiLinstance(S, s, M M)
real C[1 ... num_sym + 1][1 ... M M.alen + 1]
real DP M[O ... S.len[s]][O ... M M.alen]
real A[1 ... S.len[s]]
begin

Compute_CosLMatrix(M M, C)
Compute_.DP _Matrix(S, s, C, DP M)
Weigh_Normalization(S, s, C, DP M)
Select the end-point of the new motif-instance x' for s by

stochastically sampling over the normalized weights by binary search
For selected end-point i, traceback in DP matrix from DPM[i][MM.alen]

to column 1 of the DP matrix to determine start-point x'
Update motif-instance information for s relative to x'.

end I* Of SELECT _NEW _MOTIF _INSTANCE *I

procedure Compute_.DP _Matrix(S, s, C, DP M)
begin

for i = 0 to S.len[s] do
DP M[i](O] = 0.0

for j = 0 to M M.alen do
DPM[O][j] = DPM[O][j -1] + C[numsym + 1][j -1]

for i = 1 to S.len[s] do
for j = 1 to M M.alen do

DPM[i][j] =max(
DPM[i- 1](j -1] + C[symJnd(S.sym[s][i])][j],

%Alignment-column I
% symbol match

DPM[i -1](j] + C[symJnd(S.sym[s][i])][MM.alen+ 1),
%Symbol gap

)

DPM[i][j -1] + C[num_sym + 1][j]
% Alignment-column gap

end I* Of COMPUTK.DP _MATRIX* I

Table 2.8: Gapped Gibbs Motif Identification: Functions and Procedures
(Cont'd).

30

CHAPTER 2. ALGORITHMS

procedure Compute_CosLMatrix(M M, C)
begin

I* Initialize all entries in cost matrix C to 0.
for i = 1 to num_sym do

add the num_sym count
for j = 1 to M M.alen do

compute C[i][j]by using the score function a(r,j)

I* Initialize C for entries in which symbol is a gap. *I
for j = 1 to M M.alen do

add a gap count to the column
for k = 1 to num_sym do

compute C[num..sym+1][j] by using the score function a(r,j)

I* Initialize C for entries in which alignment-column is all gaps.
for i = 1 to num_sym do

initialize MM.cm[MM.alen+1] = 1.0
for k = 1 to num_sym do

C[i][MM.alen+ 1] = l.OIN(MM.cm[MM.alen + 1][k] + MM.p[k]t)
1 ((1/N(M M.cm[MM.alen+l][k]+M M.p[k]t)))
og MM.p[k]

I* Incorporating gap penalty
for i=1 to MM.alen do

for j=1 to num_sym do
C[j][i] = C[j][i]- (~C[j][i] + numberofgapsinthecolumn *penalty)
C[num__sym][i] = C[num_sym][i]- (~C[j][i] + numofgaps

inthecolumn *penalty)
C[i][M M.alen] = C[i][M M.alen]- t * columngappenalty

end I* Of COMPUTE_CQST _MATRIX *I

procedure Weight_Normalization(S, s, C, DP M)

begin A[i] = DP M[i][M M.alen]I~J~~n[sJ DP M[j][M M.alen],
1 :::; i :::; S.len[s].

end

Table 2.9: Gapped Gibbs Motif Identification: Functions and Procedures
(Cont'd).

31

CHAPTER 2. ALGORITHMS

function CheckJLFinished(S, M M, N I)
begin

Recompute M M.q[i][j] and M M.p[i][j] as in ConstrucLMotiLModel
relative to all sequences in S. But add the new motif instance
Compute F-score of motif model as :

"~. "~um_sym M M ["] ["] 1 M M.q[i](j]
L..Jz=z L..JJ=l .c ~ J og MM.p[j] ·

if F -score of motif model has been improved
counter= 0;
Update output motif model;

else counter++;
if counter :::; NI iterations then

return true
else

return false
end /* Of CHECK_IF .FINISHED * j

Table 2.10: Gapped Gibbs Motif Identification: Functions and Procedures
(Cont'd).

• Compute_DP _Matrix: O(LW') time, 0(1) space.

• SelecLNew_MotiLinstance: O(I~IW'+LW'+(L+W')N) = O(LW'I~IN)

time, O(I~IW' + LW') = 0((1~ + L)W') space.

• Check_If_Finished_lnstance: O(NL + Wl~l) time, 0(1) space.

The sequence and motif-model data structures reqmre O(N L + NW' +

W'l~l) = O(N L + (N + I~)W') space. Hence, if I is the number of iterations

that the algorithm requires to converge, the time and space complexities of

the algorithm as a whole are O(I(N LW'I~I)) and O(N L+ (N + L+ I~I)W'),

respectively.

32

CHAPTER 2. ALGORITHMS

The algorithm above can be seen as a generalization of [LAB+93) that

operates purely in terms of optimizing the F-value rather than the log-odds

ratio; hence, if appropriate care is taken in constructing and operating on

the dynamic programming matrix, this algorithm can construct gapped or

ungapped motifs. This algorithm can also be modified to handle multiple

motif models along the lines described in the previous sections. One very

nice advantage of this algorithm is that it does not need to invoke complex

statistical or computational machinery to decide on the optimal width W

for a motif model- rather, the width W evolves as the length of the motif­

instance alignment over the execution of the algorithm to best fit the given

data.

2.3 Identifying Target Motif

There are two obvious points in the algorithm given in Table 2.2 (and hence

in the algorithms described in Section 2.2.2 and 2.2.6) at which avoidance

sequence information can be used to influence target motif search - namely,

Step 1 (when the initial motif-instances are selected) and Step 7 (when the

weights of the potential motif-instances for a given sequence are computed).

To implement this influence, we need an easily-computable measure of how

33

CHAPTER 2. ALGORITHMS

much a candidate motif-instance is like the substrings of the avoidance se­

quences (and hence how fervently this motif-instance must be avoided). We

will first discuss the computation of this measure and then sketch how it can

be applied in Steps 1 and 7 of the algorithm.

2.3.1 Construction of Avoidance Sequence Model

The most obvious measure is the score of the best alignment of the motif­

instance against every substring in the avoidance sequences under an ap­

propriate distance function. Although this approach is rigorous and appro­

priately values approximate matches, it can be computationally prohibitive

if there are a number of avoidance sequences or these sequences are long.

An alternative approach is to describe substrings of avoidance sequences in

terms of the parameters of a statistical model. As the number of parameters

is typically much smaller than the amount of data in the sequences, there is a

loss of information; however, this loss is counterbalanced by a corresponding

increase in the computational efficiency of evaluating motif-instances against

a compact model.

In this thesis, we use the first-order correlation model ()A, which encodes

the probabilities P(alb) of symbol a occurring in the avoidance sequences,

given that symbol b occurred immediately before symbol a; in practice, P(alb)

34

CHAPTER 2. ALGORITHMS 35

is approximated by the frequency of occurrence of substring ba in the avoid-

ance sequences. For a string x = x1 ... Xn, the likelihood of the string x

being produced by the model ()A (and hence the weight of an instance of an

ungapped motif relative to this model) is

n-1

P(xl() A) = IT P(xi+tlxi)
i=l

To evaluate such a model against an instance of a gapped motif, treat each

insertion as matching all symbols, ignore all deletions, and multiply the ap-

propriate probabilities as before.

2.3.2 Use of Avoidance Sequence Model

Consider now how this avoidance correlation model is used to modify Steps

1 and 7 of the general algorithm. In the case of Step 1, the potential motif-

instances are weighted relative to the avoidance correlation model and a motif

instance can be selected either deterministically or stochastically relative to

these weights. In the case of Step 7, the weight Wx associated with a possible

motif-instance x is in turn weighted by the odds that this motif instance

doesn't appear in the avoidance sequences, i.e.:

1- P(xi()A)
Wx. P(xi()A)

(this assumes that the events of the motif model being close to the target

sequences but distant from the avoidance sequences are independent, which

CHAPTER 2. ALGORITHMS 36

seems to be a reasonable assumption). Thus the log odds ratio that evaluates

the similarity of a particular subsequence to the pattern while being dissimilar

to a model of the avoidance sequences is

2.3.3 Postprocessing for Candidate Motifs

The final modification proposed here is to embed the algorithm as modified

above in a postprocessing loop that terminates only when either the number

of iterations of the postprocessing loop exceeds a user-defined bound BR

or the produced motif has similarity greater than some threshold Tp to any

substring in the avoidance sequences. This threshold is checked by computing

the consensus string associated with the motif, computing an appropriate

similarity measure (Hamming similarity in the case of ungapped motifs and

edit similarity in the case of gapped motifs) between this consensus string

and each substring of the avoidance sequences, and then determining if the

maximum of these scores is greater than Tp. Note that this consensus string

is computed as described in the Terminology section in the Introduction; in

the case of gapped motifs, gaps are counted like any other symbol, and if the

gaps have the maximum number of occurrences in a column, that column

has no associated symbol in the consensus string. This postprocessing loop

CHAPTER 2. ALGORITHMS

is necessary because similarity-thresholds are not explicitly evaluated in the

algorithms considered here and, on the whole, it is more important that a

produced motif be the required distance from all substrings of the avoidance

sequences. For this reason, all motifs produced by these modified algorithms

are actually candidate target motifs, and will be referred to as such in the

remainder of the thesis.

The time complexity for postprocessing is M, where M is the time com­

plexity of the method used. If we use Hamming distance measure the time

complexity is 0(L), where L is the total length of avoidance sequences. If

we use Edit Distance measure, the time complexity is O(L *I<), where I< is

the motif length.

2.4 Some Issues Concerning the Improvement

of Motif Detection

2.4.1 Phaseshift

One defect of Gibbs sampling algorithm is the "phase" problem [LAB+93].

The strongest motif may begin, for example, at positions 7, 19, 8, 23, and

so forth within the various sequences. However, if the algorithm happens

to choose a1 = 9 and a2 = 21 in an early iteration, it will then most likely

37

CHAPTER 2. ALGORITHMS

proceed to choose a3 = 10 and a4 = 25. In other words, the algorithm can

get locked into a non-optimal "local maximum" that is a shifted form of

optimal pattern. To reduce this problem, we can apply the phaseshift tech­

nique [LAB+93]. That is to insert another step into the the Gibbs sampling

process. E.g. after every M iterations, we compare the current set of ak with

sets shifted left and right by up to a certain number of letters. Probability

ratios may be calculated for all instances and a random selection is made

among them with appropriate corresponding weights.

2.4.2 Ranking Multiple Target Motifs

It is practical that algorithm may output multiple target motifs. These

multiple target motifs can provide more options for drug designers. The

distinct models can be ranked according to two parameters. One is the F­

value; the other is the separation distance. The separation distance S =

mini d(Ti, c) -maxi d(Ai, c), where cis the consensus string associated with

the candidate target motif, d(x, y) returns the maximum similarity-score of

y to any substring of x under an appropriate similarity measure (Hamming

similarity in the case of ungapped motifs and edit similarity in the case of

gapped motifs), and Ti(Ai) is the ith target (avoidance) sequence. The sep­

aration distance essentially measures the minimum number of symbols that

38

CHAPTER 2. ALGORITHMS

need to change before the worst of the best matches of the target motif in

the target sequences is the same as the best match of the target motif in the

avoidance sequences. In certain applications, this is also a direct measure

of the utility of a motif- for instance, in the case of DNA sequences, the

separation distance is the minimum number of bases in a consensus string

associated with a candidate target motif that must mispair before the com­

plement of that sequence can form a duplex and hence interact with some

substring of an avoidance sequence.

39

Chapter 3

Implementation

Based on the algorithm we discussed at previous chapter. a software

package was developed. We call it TMIT (pronounced "team made"), which

is short for Target Motif Identification Tool. The package includes three

parts (see Figure 3.1):

1. The DNA and protein sequence simulator: it generates three kinds of

datasets to meet the need of simulation test #1, # 2 and # 3.

2. The mazn algorithm: the ungapped Gibbs sampling algorithm and

gapped Gibbs sampling algorithms.

3. The motif evaluation processing: two testing algorithms to satisfy the

evaluation processing requirement for simulation studies # 1 and # 2.

For the real dataset testing evaluation and simulation # 3, we adapted

40

CHAPTER 3. IMPLEMENTATION 41

the evaluation code in simulation #1.

In this Chapter, we are more focusing on part two, the implementation of

target motif identification algorithm. Part one and three will be detailed in

Chapter 4. At the end of this chapter. we include the performance testing

results, which should give users a feeling of how fast the program runs (run-

ning space is not an issue as we discussed before, so we are not concerned

with the space problem).

3.1 The Programming Development Environ-

ment

The software was developed under a UNIX operating system (Solaris)

and written in C programming language by using Sun Solaris C++ (v4.2)

compiler. It can also be compiled by using GNU gee or g++ project com-

piler. Since it is command-line-driven program, it can be easily adapted to

Microsoft window environment (WIN98 or WINNT). Borland C++ 5.0 is

one of the compilers that we recommend to try. The implementation plat-

form was Sun Workshop 1 , which is a programming environment running

on Solaris. It has many wonderful features to programmers. e.g. debugging

1 For more information, see web site below:
http:/ fsun-www .EBay.Sun.COM:80 /sundoft/Developer-productsfproducts.html

CHAPTER 3. IMPLEMENTATION

r - ;,: - - - - - c- - - - - - c- - - - - - - - -r----........................ -.........,
I
I
I
I

•

I

Main.c
Avoidance.h
Avoidance.c
Gibbs.h
Gibbs.c
lnput.ini
lo.h
lo.c
ModeLh
Model.c
Pseudocou nt. h
Pseudocount.c
Postprocess. h
Po stp rocess.c
Phaseshi ft._ h
Phaseshi ft._c
Samplin:g.h
Samplin:g.c
Scguence.h
Scguence.c
Utility.h
Utility.c

PARTL:
DNA and Protein
Sequence Simulation

Output

Rles

PART2:
Target motif

idetificati on

PART 3:
Candidate Target
Motif Evaluation

FlLES l C++ code):
Sim.h
Sim.c
SmodeLh
SmodeLc

Tree.h
Tree.c

Fll..ES (Tcx.t):
TCutP oi nt.da t
Target. seq
AcutP oi n t.dat

Avoidance. seq

FlLESl Tcx.t):
Outpudile
ScriptJo:g

Fll..ES (C
code):

Test.h
Test.c

L-------------~-----·--------------------------~---------

Figure 3.1: Structure of Implementation

42

CHAPTER 3. IMPLEMENTATION

a program, tracing memory utilization , analyzing program performance. It

also supports team work.

3.2 DNA and Protein Sequence Simulator

This part (see Figure 3.1, Part 1) is implemented in C++, which contains

six files, Files sim.h and sim.c manipulate the user input and output as

well as how motif sequences to be embedded into individual sequences. Files

smodel.h and smodel.c implement the simulation model, i.e. how the sequence

is generated. Files tree.h1 tree.c take care of phylogenical tree structure. The

simulator has the ability to generate multiple sequences for both DNA and

protein along a given phylogeny tree with an evolution rate on each edge.

To meet our special testing purpose that we will detail in next chapter, this

simulator can embed motifs into the sequences associated with each node.

3.3 Main Algorithm Implementation

Based on the logical structure shown in Figure 3.2, which is a flow-chart

display of the algorithm (see Tables 2.3 through 2.10), Twenty two files (both

* .h and * .c files) are created. These files can be logically divided into 9

modules, which are described in the following subsections

43

CHAPTER 3. IMPLEMENTATION

Open nle and read sequences:
in put.ini, io.h, io.e,
scquence.h, scquence.e

Allocate memory space
for model
utility.h, utility..c

Model reconstruct

Model initialization
gibbs.h, gibbs..c, modeL.h and modeLe

NO

Po stp rocessi ng:
postprocess .h
postprocess ..c

Yes

No

Phase shift processing:
phaseshift.h phaseshift..e

Gibbs Sampling:
sampling. h.
sampling.e
avoidance.h
avoidance..c

Model Construction:
modeLh, modeLe
p seudoeou n t.h
pseudoeount..c
utility.h, utility..c

Motif Ranking:
gibbs.h
gibbs.e

Result Output:
lo.h, io.e, output.file,
sim.log

~----------------~--

Figure 3.2: Structure of the Modified Gibbs Sampling Algorithm

44

CHAPTER 3. IMPLEMENTATION

3.3.1 10 Module

Parameter Input

This module includes four files: io.h, io.c, sequence.h, sequence.c. Files io.h

and io.c take care of the user's input as well as the program's outputs. The

program read in all required parameters from an input file named "input.ini".

Users are allowed to specify the parameters in this file. Where appropriate,

the type of the parameter and any default values are automatically used by

the program if user does not specify any alternative setting.

An example of input file is given in Figure 3.3. Some notes on each of

the parameters in this file are as follows:

The symbol # starts a comment line. The random seed can be any

integer. If user wishes that the result be repeatable, the same seed can be

used when re-running the program. The symbol tag is the switch between

DNA and protein sequences, where 4 is for DNA and 20 is for protein. The

expected motif length can be set between 5 to 50 bases in length as the user

needs. The program may handle motif windows wider than 50, but such

wide windows are not practical useful from a biologist's point of view. The

separation threshold is used in the evaluation of a candidate motif against

avoidance sequences, e.g. a threshold of 12 means that the best alignment of

a candidate motif and any avoidance sequence substring should have fewer

45

CHAPTER 3. IMPLEMENTATION

This is an example of input file
seed number
76
symbol tag DNA- 4, Protein 20
20
Expected Motif length
20
threshold to be considered as candidate.
12
name of the target sequence file
target.seq
name of the avoid sequence file
avoid.seq
Output file name
out .file
number of RUNS
20
Convergence value.
100
Symbol gap penalty
0.08
Column Gap Penalty
1

Figure 3.3: An Example of The Input File for Parameter Setting.

46

CHAPTER 3. IMPLEMENTATION

than 12 matching bases. The higher the threshold, the lower the constraint

for finding a target motif. The number of runs gives a maximum number

of runs of the program that will be made: the default value is 20. The

convergence parameter plays a role in terminating the program. The program

will terminate if the F-value of the motif model has not increased after

this number of iterations. In our experiments, it is set between 100 and

200. Symbol gap penalty is the penalty for inserting a gap when aligning a

candidate motif instance to align against a motif model. It is set to 0.6 for

DNA and 0.02 for protein in our experiments, but this really depends on the

user's input sequences. The user should adjust this parameter accordingly

to achieve optimal results. Column gap penalty is the penalty for inserting

a gap into a motif model. We give 1.0 as default. Again, this is a user

adjustable parameter.

Sequence Input

Files sequence.h and sequence.c handle the sequence input. FASTA format

is used. Figure 3.4 shows an example of FASTA format. As it reads the

sequences, the program dynamically allocates contiguous memory space ac­

cording to the size of input sequences by using calloc(size_tnel em, size.tsize)

at first and then by using a series of realloc(void* ptr, size_tsize) function

calls. The sequences are stored in the memory during run time (actually this

47

CHAPTER 3. IMPLEMENTATION

>Sequence Name 1: Yellow lupine
GVLTDVQVALVKSSFEEFNANIPKNTHRFFTLVLEIAPGAKDLFSFLKGSSEVPQNNPDL

>Sequence Name 2: Vitreoscilla sp.
MLDQQTINIIKATVPVLKEHGVTITTTFYKNLFAKHPEVRPLFDMGRQESLEQPKALAMT

Figure 3.4: An Example of Input Sequence Format

is the major space requirement of this algorithm).

Output Files

The output files are "output.dat" and "output.log", which contain target

motif output and a script log file. An example of target motif output is

shown in Figure 5.1.

3.3.2 Model Construction Module

This module includes two files, model.h and model.c. Three functions in these

files are very important. They are SymbolCount(), ComputeFrequence{) and

Normalization(). Function SymbolCount{) computes a count of each symbol

at each position of the motif model. Function ComputeFrequence{) converts

the number of counts of each symbol into frequency and at the same time

incorporates pseudocount into it. Function Normalization{) normalizes each

symbol's frequency at each position.

For speed consideration, during model creation process, we obtain the

48

CHAPTER 3. IMPLEMENTATION

symbol count data by adding a count in a column from a new candidate

motif instance and remove the count in a column from the motif instance of

a removed sequence. We also map each symbol character in ~ into a program

internal code.

3.3.3 Pseudocount Module

The motivation for making the pseudocount computation independent from

the Model Module is to ease trying different ways of pseudocount calculation.

In the files pseudocount.h and pseudocount.c, we include three different ways

of calculating pseudocount although we only used one of them in the tests

reported here.

The first one is the simple pseudocount method, which is the one we used

throughout our testing study. The algorithm for this was mentioned in the

previous chapter and also described in [LAB+93, pages 209 and 214]. The

second method we implemented uses substitution matrix mixtures [DEKM98,

pages 117 and 119]. This is not a theoretically well-founded approach, but

it makes intuitive sense as a heuristic. The idea is quite natural: the pseu­

docount that incorporating substitution matrix term dominates if there are

small numbers of training sequences and values close to the maximum like­

lihood estimate are obtained when the number of counts is large. However

49

CHAPTER 3. IMPLEMENTATION

we haven't done much testing using this method. In addition, a third pseu­

docount method, which is the simplest one called Laplace's rule [DEKM98,

page 108], i.e. the pseudocount is constant 1, was included in our program .

Besides the ways we calculate pseudocounts, we also can scale pseudo­

counts by multiplying with a parameter to increase or decrease the influence

of the pseudocounts to real sequence symbol counts. Generally, the degree of

influence of pseudocounts to our target motif finding algorithm is not clear

yet. This might be an interesting project that is worth exploring separately.

3.3.4 Avoidance Module

This module includes files avoidance.h and avoidance.c. The avoidance cor­

relation models mentioned in Chapter 2 are constructed with order-1. The

values are stored in a 2-dimensional arrays with the size of n2
, where n is

the maximum number of symbols in an input sequence. Higher orders also

possible, but may not be necessary since our expected motifs are usually

short.

As discussed before, the product of these probabilities can get very small,

and so we use logarithms. If the probability table is replaced by table of the

logarithms, computing the logarithm of the probability of motif instance x is

just the summation of table entries, making these simple correlation models

50

CHAPTER 3. IMPLEMENTATION

very fast to compute.

3.3.5 Sampling Module

This module implemented many core routines in Gibbs sampling processes.

It has two files sampling.h and sampling.c. The Cost Matrix and DPM Matrix

from Table 2.8 and 2.9 are implemented here. It is worth knowing that the

motif model is modified if an column filled with gaps since we are introducing

gaps into the model. The modifying procedure is to remove any of these

columns filled with gaps during motif creation processing.

3.3.6 Other Modules

There are four other modules. They are utility module, postprocess module,

phaseshift module and target motif candidate ranking module.

In utility module, files utility.h and utility.c contain routines to allocate

and deallocate memory spaces dynamically during program running. Be­

sides the miscellaneous routines such as mapping protein 20 characters into

7 characters based on the group similarity (see 4.5).

Postprocessing module also has two files postprocess.h and postprocess.c.

Candidate target motif evaluating routines are implemented in this module.

Phaseshift module has two files, phaseshift.h and phaseshift.c. The final

module, target motif candidate ranking module, is to rank a list of candidate

51

CHAPTER 3. IMPLEMENTATION

motifs according to either F-values. It was coded in files of gibbs.h and

gibbs.c.

3.4 Motif Evaluation Processing Implemen­

tation

The evaluation process, which is detailed in Chapter 4, takes the candidate

target motif from our main algorithm as input to evaluate if it is the one

satisfying all the conditions based on the known information from either

simulated datasets or published real datasets [LAB+93, PBR89, HQH88,

MVF94, 0191, NG94].

Only two files in this part: test.h and test.c see 3.1. However, based on

the different evaluation processing for simulation studies and real data tests,

we implemented two evaluation algorithms in these files. One is typical for

simulation study #1, the other is typical for simulation study #2. For the

real data testing evaluation, we adapted the simulation study #1 code.

3.5 Performance Analysis

To know how fast our program runs, we tested our program on a Sun

Spare Ultra-II workstation (300 MH CPU and 512MB RAM) on both

52

CHAPTER 3. IMPLEMENTATION

simulated DNA and protein datasets. Each dataset consisted of two mo­

tifs (one target) of length 20 which were embedded in N target sequences,

N = 10, 20, 30, ... , 100, and 2 avoidance sequences of base length L' = L- 40,

L = 100,200,300, ... , 1000 (which had post-embedding lengths L and L- 20,

respectively). Both of the motifs are always perfectly conserved. The post­

processing threshold TP was 12, i.e., 60% identity with any substring of

the avoidance sequences. For each combination of N and L, five simulated

datasets were constructed, the algorithm was run five times on each dataset,

and the run-times of these 25 executions of the algorithm were averaged.

Note that the run-times of all runs (irrespective of whether target motifs

were or were not detected) were included in these averages.

The results were plotted in Figure 3.5 and Figure 3.6. Clearly, there is a

linear relationship between time elapsed and the number of target sequences.

The same trend for length of sequences as well. These results are consistent

with the time complexity analysis in Section 2.2.7.

53

CHAPTER 3. IMPLEMENTATION

250

200

150

100

50

0
1000

... ·····

... ··

:

.. ·······.

... ····
.-····

.. ·····

length of sequences (base)

Time Elapsed (seconds)

. ' .

· ..
. ;

.··
:
,.·

of target sequences

Figure 3.5: Performance on Simulated DNA Sequence Datasets

54

100

CHAPTER 3. IMPLEMENTATION

250

200

150

100

50

0
1000

Time Elapsed (seconds)

length of sequences # of target sequences

Figure 3.6: Performance on Simulated Protein Sequence Datasets

55

100

Chapter 4

Simulation Studies

Given the algorithms for solving the target motif identification problem de­

scribed in the previous chapters, two questions seem particularly relevant:

1. Are methods that integrate avoidance sequence information into the motif­

search process preferable to naive methods that simply iterate and post­

process the results of known motif-finding algorithms?

2. If such methods are preferable, how well do they perform when confronted

with datasets that contain many target motifs, i.e., how many runs of

the method are required to detect a significant proportion of those

motifs?

To answer these two questions, we implemented both the algorithm in [RT98]

and our modified version of the algorithm described in Chapter 2. The naive

56

CHAPTER 4. SIMULATION STUDIES

approach to finding target motifs described in Table 2.6 through 2.10 was also

implemented by embedding the algorithm in [RT98] in the post-processing

loop described in Section 2.3. That is, first run a motif finding algorithm

and then evaluate the motif to see if it satisfied some threshold value in the

postprocess.

Finally, in the remainder of this Chapter, let each execution of an algo­

rithm on a dataset be a run and each set of runs relative to a particular

dataset be a trial.

In addition, by using the simulated data, we are able to answer two other

important questions.

3. How well do the amino acid similarity grouping methods proposed m

chapter 2 help us to detect target motifs ?

4. How well does the separation distance (see 4.5) relate to finding target

motifs and how does it compare to F-values?

4.1 The Dataset Simulator

4.1.1 Principle

The studies described in this section use simulations relative to very simple

simulated datasets to answer the above questions. One possible objection to

57

CHAPTER 4. SIMULATION STUDIES

such simulations is that as the datasets are simple, the results derived from

these simulations may not be relevant to real datasets. However, by virtue

of being the product of the interaction of a small number of factors that are

under our control, we believe that in the initial stages of an investigation

of an algorithm's behavior, such results are easier to interpret and give a

much more reliable and general characterization of this behavior than the

traditional testing methods of applying algorithms to real data or performing

simulations relative to complex datasets.

4.1.2 Method

Each dataset in the simulation consists of a set of target sequences and a set

of avoidance sequences. These sequences are generated by random first as

background sequences. They are completely independent of each other. This

ensures us two things:

1. The background sequences diverge enough from each other, so they are

unlikely have any potential target motifs

2. Each target sequence has equal weight when estimating parameters

during the model creation process. This means that we don't have to

worry about sequences being closely related to each other 1 .

1The statistical model described in [LNL95, page 1157] assumes that sequences un­
der analysis are independent each other. However, they found, our results also support,

58

CHAPTER 4. SIMULATION STUDIES

• Motif Sequences Once we have these background sequences, the next

step is to embed motifs into target sequences as well as avoidance sequences.

To simulate a motif, a "seed string" is generated first and copies of that motif

are created by performing a specified number of mutations at random on that

motif's seed string, where this number is the product of a specified motif

dispersion rate and the length of the motif. For example, if the requested

motif length is 40 bases and evolution rate is 10%, then the mutation rate

will be 40 * 10% = 4, i.e. among the 40 bases, there will be 4 sites to be

mutated, by either substitution or insertion or deletion depending on what

the user requests. and the other 36 sites will be remained unchanged.

• Motif Mutation Rates Throughout our simulation tests, a fixed

partition of the mutation sites is used. For ungapped motif, only substitution

occurs, i.e. substitution probability is 1. For gapped motif, whenever a

mutation happens, a substitution has 0.60 probability, an insertion has 0.2

probability and a deletion has 0.2 probability. Note that by an appropriate

choice of motif length and motif dispersion rate, one can ensure that the

only motifs that can be detected in such datasets are those that are explicitly

embedded in those datasets. Target motifs will only be embedded into target

sequences, but avoidance motifs will be embedded into both target sequences

that this method works well even with substantial departures from this assumption. For
simplicity, we are still following this assumption during simulation studies

59

CHAPTER 4. SIMULATION STUDIES

and avoidance sequences.

4.2 Evaluating Simulated Target Motif De­

tection

Given datasets constructed as described above, we know the locations of

all possible motifs and their degrees of conservation, and can thus not only

unambiguously define what it means for an algorithm to detect a motif but

more importantly determine when detection does and does not occur. Given

a set of sequences S, the start and stop positions of a motif min each sequence

in S, and the start and stop positions of a candidate target motif me in each

sequence in S, define the average overlap of me relative to m in S as the

average of the overlaps of m and me in each sequence inS. We will say that

me detects m in S if the average overlap of me relative to m in S exceeds a

threshold TD.

60

CHAPTER 4. SIMULATION STUDIES

4.3 Simulation Study #1

4.3.1 Motivation

This simulation study rephrases the first question posed at the beginning

of this section in terms of a potential pitfall with the naive method for tar­

get motif identification. Motif-finding algorithms are typically designed to

find well-conserved motifs; hence, the motif-finding algorithms underlying

the naive method should consistently prefer the best-conserved motif in the

target sequences, even if that motif is a non-target motif. The question then

becomes, how often does this happen and under what conditions does it start

causing serious problems for the naive method (and hence validate methods

like the one proposed in this thesis)?

4.3.2 Methods

Each dataset consisted of two motifs (one target) of length 20 which were

embedded in 20 target sequences and 2 avoidance sequences of base length 60

(which had post-embedding lengths of 100 and 80, respectively). The non­

target motifis always perfectly conserved and the target motif has a specified

dispersion rate. The postprocessing threshold Tp was 12, i.e., 60% identity

with any substring of the avoidance sequences, and the detection threshold

Tv was 10. Each trial consisted of 10 runs on a particular dataset, and the

61

CHAPTER 4. SIMULATION STUDIES 62

Average # Runs
% Target Motif Detected

Motif DNA Protein
Dispersion Naive Mod. Naive Mod.

Ungap 0 9.53 9.23 8.80 9.19
10 9.39 9.30 8.17 8.86
20 7.03 8.50 6.99 7.98

Gap 0 8.05 8.29 9.45 9.63
10 6.90 5.86 7.58 8.90
20 3.42 3.18 4.41 7.15

Table 4.1: Simulation Study #1 Results: Motif Detection.

number of runs the target motif is detected in each trial was recorded. Each

trial was done on a different dataset. The naive and modified Gibbs algo-

rithms were run for 100 trials apiece on protein and DNA sequence datasets

with ungapped and gapped motifs generated relative to motif dispersion rates

0%, 10%, and 20%.

4.3.3 Results and Discussion

The results of this simulation are given in Table 4.1. Both of the algorithms

perform well at low motif dispersion rates, and performance falls off as the

motif dispersion rate increases (particularly in the case of gapped motifs).

The modified Gibbs algorithm always performs better than the naive Gibbs

algorithm in the case of ungapped motifs and gapped protein motifs; however,

in the case of gapped DNA motifs, the naive Gibbs algorithm performs better

CHAPTER 4. SIMULATION STUDIES

at non-zero motif dispersion rates. Two possibilities suggest themselves:

1. Despite our best efforts, some parameters have not been optimized to

get the best possible performance for the modified Gibbs algorithm

relative to gapped DNA motifs.

2. The modified Gibbs algorithm is sensitive to the size of the sequence­

alphabet in the case of gapped motifs. This may be a product of

our modifications or it may even be inherent in the original [RT98]

algorithm (as that algorithm was never tested on its ability to detect

known protein (let alone known DNA) motifs [RT98, Tom99]).

At this time, we cannot speak with certainty about either alternative, though

the results reported in subsequent sections tend to support the latter. In any

case, the results reported in this section suggest that methods that integrate

avoidance-sequence information into target-motif search may be useful for de­

tecting weakly-conserved target motifs in the presence of strongly-conserved

non-target motifs.

The observant reader will have noticed that the performance of both

algorithms is better for DNA than protein datasets in the case of ungapped

motifs, but better for protein than DNA datasets in the case of gapped

motifs. As ungapped motifs are evaluated relative to Hamming similarity and

ungapped motifs are evaluated relative to edit distance in the postprocessing

63

CHAPTER 4. SIMULATION STUDIES

loop, it seems sensible to attribute this difference in performance to the

evaluation function. This suggests that the form of the evaluation function

is an additional parameter that must be adjusted to optimize the performance

of the modified Gibbs algorithm relative to a given dataset.

4.4 Simulation Study #2

4.4.1 Motivation

Given that algorithms like that described in this thesis which integrate avoidance­

sequence information into target-motif search are preferable to naive algo­

rithms, this simulation determines how many runs of our modified Gibbs al­

gorithm are required to detect significant numbers of target motifs in datasets

that contain multiple target motifs. This is worth knowing, as it will often be

the case with real datasets that we won't know how many motifs are present

and will need guidelines on how many times we must run our algorithm in

order to find a significant number of these motifs.

4.4.2 Methods

Each dataset consisted often motifs (five target) of length 20 which were em­

bedded in 20 target sequences and 2 avoidance sequences of base length 300

(which had post-embedding lengths of 500 and 400 respectively). Note that

64

CHAPTER 4. SIMULATION STUDIES

this preserves the ratio of two motifs to 60 bases (one motif to 60 bases) for

target (non-target) motifs that held in the first simulation study. All motifs

have a common specified dispersion rate. The postprocessing threshold Tp

was 12, i.e., 60% identity with any substring of the avoidance sequences, and

the detection threshold Tn was 10. Each trial consisted of 25 runs on a par­

ticular dataset and each trial was done on a different dataset. The modified

Gibbs algorithm was run for 100 trials on protein and DNA sequence datasets

with ungapped and gapped motifs generated relative to motif dispersion rates

0%, 10%, and 20%.

4.4.3 Results and Discussion

The results of this simulation are given in Table 4.2. On average, the modi­

fied Gibbs algorithm recovers more than half of the target motifs after only

10 runs and almost all of the target motifs after 25 runs under all motif

dispersion rates in the case of ungapped DNA and ungapped and gapped

protein motifs. The previously noted sensitivity of the algorithm when con­

fronted with gapped DNA motifs seems to be dramatically exacerbated by

having multiple motifs present. The presence of multiple motifs may also be

responsible for the additional pattern present in the results that go against

65

CHAPTER 4. SIMULATION STUDIES 66

Average#
Target Motifs Detected

% DNA Protein
Motif #Runs #Runs

Dispersion 5 10 25 5 10 25

Ungap 0 3.34 4.13 4.71 3.49 4.43 4.93
10 3.19 3.94 4.56 3.38 4.32 4.90
20 3.03 3.61 3.98 2.96 3.95 4.81

Gap 0 2.56 3.02 3.47 3.69 4.44 4.96
10 1.48 1.95 2.61 3.28 4.23 4.81
20 0.28 0.37 0.48 1.86 2.80 4.21

Table 4.2: Simulation Study #2 Results: Motif Detection.

the results presented in the previous section. At this time, we have no expla-

nation for why the presence of multiple motifs should cause these patterns

(however, see related results in Chapter 5).

4.5 Simulation Study #3

4.5.1 Motivation

As noted in [LAB+93), "Prior knowledge concerning amino acid relations

has been used profitably in pairwise protein sequence alignment as well as in

pattern construction methods" (page 213). How should such knowledge be

integrated into the target motif identification process? The optimal solution

would involve using such information as encoded in any one of the popular

amino-acid similarity matrices, e.g., PAM, Blossum. However, there is no

CHAPTER 4. SIMULATION STUDIES

obvious way of integrating such matrices into the algorithm given in [RT98],

and though such matrices have been integrated into the ungapped motif

Gibbs Sampling algorithm given in [LAB+93] (see page 213), the authors

have never explained in print how this was done.

The solution adopted here is to partition the set of 20 amino acids into m,

m < 20, user-specified classes such that given protein sequences are mapped

according to this partition into sequences over an m-symbol alphabets prior

to motif search. In particular, we consider a mapping Map1 which uses

7 symbols to encode a refined version of the commonly used non-polar I

polar I charged classification of amino acids, i.e., the amino acids are par-

titioned into the classes {A, I, L, M, F, W, V, Y} (hydrophobic), {S, T, N, Q}

(polar but uncharged), {K, R, H} (positively charged), {E, D} (negatively

charged), and {C}, {G}, and {P} [Wan98]. Such mappings encode a very

coarse type of amino-acid similarity, and in cases where the structure of the

protein constrains how amino acids can mutate, e.g., hydrophobicity must be

preserved, it seems reasonable to conjecture that a mapping based on those

constraints could help in detecting subtle motifs. The question addressed by

the simulation in this section is, in sequences that have evolved under the

constraints encoded in Map7, how well does Gibbs Sampling motif detection

fare in Map7 mode as compared to unmapped mode?

67

CHAPTER 4. SIMULATION STUDIES 68

% Average # Runs
Motif Target Motif Detected

Dispersion Unmap Map7

Ungap 0 8.91 8.67
10 8.39 8.45
20 7.53 8.08

Gap 0 9.63 8.42
10 8.88 6.78
20 7.36 4.83

Table 4.3: Simulation Study #3 Results. Motif detection

4.5.2 Method

The dataset simulator was reconfigured to mutate amino acids according to

the following model which has parameters c and d such that c, d 2: 0 and

c + d = 1.0:

p(x-+ y) = {

c
(IAI-1)

19_(l~l- 1) if x E A and y tf_ A

if x and y are in the same class A

The balance between the values c and d expresses how predisposed substitu-

tions are to preserve the classes in the mapping. In our simulation, we set

c = 0.75 and d = 0.25, i.e., amino acids are constrained to mutate largely

within classes. Given this modified simulator, datasets were constructed and

run against the modified Gibbs algorithm in unmapped and Map7 mode as

in simulation study # 1, except that each combination of mapping mode and

motif dispersion rate had 50 rather than 250 associated trials.

CHAPTER 4. SIMULATION STUDIES

4.5.3 Results and Discussion

The results of this simulation are given in Table 4.3. While Map7 mode

does help slightly in detecting ungapped target motifs for non-zero motif

dispersion rates, it performs much worse than unmapped mode for gapped

target motifs. The former is consistent with [LAB+93], who found that

integrating amino acid similarity information into the ungapped motif Gibbs

Sampling algorithm yielded no significant improvement [LAB+93, page 213],

while the latter may be another manifestation of the sensitivity noted in

previous sections of the modified algorithm to small sequence alphabets when

searching for gapped motifs. This is supported by the curious intermediacy of

the motif detection and correlation coefficient results for Map7 mode (which

effectively has a symbol alphabet of size 7) relative to those for protein and

DNA datasets reported in simulation study #1 (which have symbol alphabets

of size 20 and 4, respectively).

While it is disappointing that our conjecture about the utility of mapping

has not been borne out by the results in this section, it is interesting to note

the robustness of unmapped mode at detecting gapped motifs in the face

of symbol-biased sequence datasets. This, in conjunction with the experi­

ence of [LAB+93] cited above, suggests that the modified Gibbs algorithm

is (and perhaps even the original Gibbs algorithms in [LAB+93] and [RT98]

69

CHAPTER 4. SIMULATION STUDIES

are) insensitive to prior information about the symbol-distribution in given

sequence datasets. If this is so, it would make the Gibbs algorithms unique

among motif-location algorithms, in that they would not depend on the avail­

ability of such prior information (in the form of nucleotide-mutation models

or amino-acid similarity matrices) to perform well, and would make Gibbs al­

gorithms ideal for finding motifs in datasets whose sequences have originated

in lineages that have undergone different mutation rates. This makes further

research into the effect of integrating prior symbol-distribution information

into Gibbs-based motif finding algorithms very important.

4.6 Simulation Study #4

4.6.1 Motivation

Besides F -value as a target motif predicator, which has been shown to be

strongly correlated with average motif overlap in simulation study #1, #2,

#3. The separation distance (see 2.4.2), nevertheless, is particularly attrac­

tive to drug designers [Wan98].

To assess separation distance as a target motif predicator, we incorporated

the calculation of this value into simulation study #1, #2, #3 and computed

the correlation coefficients of the target motif overlap with this value.

70

CHAPTER 4. SIMULATION STUDIES

4.6.2 Method

Three quantities were computed and stored for each candidate target motif

created during the simulations:

1. The average overlap;

2. The F-value;

3. The separation distance

The correlation of each pair of these three quantities was assessed using Pear­

son correlation coefficients [MMH90, Chapter 6], whose values range from -1

(strong negative correlation) to 0 (no correlation) to 1 (strong positive cor­

relation). If the relationship between the variables is linear, high (> .5)

coefficient values for pairs of quantities suggest that the values of each of the

quantities involved is a good predictor of value of the other quantity. The

sample size is 5000 in simulation study # 1 and 2500 in simulation study #

2 and 5000 in simulation #3.

4.6.3 Result and Discussion

The correlation coefficients are presented in parts (a), (b) and (c) of Table

4.4, that covers various situations, which includes DNA and protein, gapped

and ungapped, in unmapped and Map7 mode. The results show that F-value

71

CHAPTER 4. SIMULATION STUDIES

is almost always more strongly correlated with (and is hence always a better

predictor of) average overlap than separation distance. Though the strength

of these correlations always decreases with increasing motif dispersion rate,

the decrease is particularly dramatic in the case of DNA motifs (especially

gapped DNA motifs). This may be another manifestation of the apparent

sensitivity noted above of the modified Gibbs algorithm to the size of the

sequence alphabet. In any case, the strong correlation of F -value with aver­

age overlap suggests that a reasonable strategy for detecting target motifs in

sequences would be to sort candidate target motifs by F-value and then to

determine if any of the highest-scoring candidate target motifs occur in the

same regions of the given sequences (the repetition being necessary by virtue

of imperfect correlation). This is essentially the strategy derived empirically

in and used throughout [LAB+93] to detect motifs (see caption of [LAB+93,

Figure 3]). The separation distance can be used as a reference parameter

when the target motifs are DNA strings with relative high dispersion rates.

72

CHAPTER 4. SIMULATION STUDIES

% Correlation with Average Overlap
Motif DNA Protein

Dispersion F s F s
Ungap 0 0.9701 0.7967 0.9805 0.7231

10 0.9499 0.8023 0.9701 0.7117
20 0.4914 0.5191 0.9550 0.7396

Gap 0 0.9778 0.9245 0.9812 0.8678
10 0.7323 0.7446 0.9229 0.8125
20 0.4514 0.2898 0.8359 0.7401

(a)

% Correlation with Average Overlap
Motif DNA Protein

Dispersion F s F s
Ungap 0 0.9821 0.9412 0.9868 0.9688

10 0.9152 0.9378 0.9748 0.9217
20 0.9445 0.9501 0.9498 0.8265

Gap 0 0.9937 0.9694 0.9900 0.9478
10 0.6403 0.7348 0.8849 0.7989
20 0.3916 0.4798 0.8030 0.6265

(b)

% Correlation with Average Overlap
Motif Unmap Map7

Dispersion F s F s
Ungap 0 0.9721 0.6638 0.7973 0.7608

10 0.9698 0.6550 0.7857 0.7689
20 0.9572 0.7064 0.7245 0. 7712

Gap 0 0.9812 0.8678 0.8113 0.8814
10 0.9238 0.8319 0.6054 0.7580
20 0.8321 0.7195 0.3996 0.3801

(c)

Table 4.4: Correlation Coefficients Results: a) in Simulation Study #1. b)
in Simulation Study #2. c) Simulation Study #3. F - represent F-values
and S - represents the separation distances

73

Chapter 5

Experiments on Real Data Sets

5.1 Motivation

The previous results in this thesis suggest that our algorithm is good at

identifying target motifs in simulated datasets under a variety of conditions.

However, the simulator used to create the examined datasets is admittedly

simplistic and the produced sequences and motifs probably do not exhibit

crucial characteristics of real sequences and motifs. On the other hand, the

real datasets we used are much more complex. The experiments in this

section were designed to address a relevant question:

How well does our modified Gibbs algorithm perform on real datasets?

74

CHAPTER 5. EXPERIMENTS ON REAL DATA SETS

5.2 Method

5.2.1 Real Dataset Archives

Real data sets were selected based on some proteins sequences, which con­

tain well-supported conserved regions (motifs). After a thorough literature

survey, five sets were chosen. These are cytosine methyltransferases[PBR89],

protein kineases [HQH88, MVF94], lipocalins[LAB+93], cyclins [0191] and

acetyltransferase [NG94]. We retrieved these sequences from NCBI database.

5.2.2 Target Motif Dataset Creation

Following method is used to construct target and avoidance sequences for

our testing purpose. We remove one or more protein sequences from a set

of retrieved sequences to form an avoidance sequence set. The remaining

sequences are the target sequence set. Choose a well-known motif in the

target sequence set as a target motif and randomly permute the amino acids

of the corresponding segments in all avoidance sequences; this effectively

"erases" the occurrences of the target motif in the avoidance sequences. To

evaluate our program against real datasets, we adapt the evaluation code in

simulation study #1 here, performed 50 trials and each trial consists of 10

runs both in unmapped and Map7 modes.

75

CHAPTER 5. EXPERIMENTS ON REAL DATA SETS

5.2.3 Parameter Setting

It worth of knowing that some parameters used were consistant on all the

real dataset tests. They are: convergence value 100, single gap penalty 0.02

and column gap penalty 1.0 in unmapped mode; convergence value 100,

single gap penalty 0.4 and column gap penalty 1.0 in Map7 mode. The

pseudocount setting is the same for both unmapped and Map7 modes. The

other parameters varied from datasets.

5.3 Test Results

5.3.1 The Cytosine Methyltransferase Experiment

As a starting point for our analysis, we chose a dataset with relatively

more conserved regions (i.e. motifs) and window sizes close to the ones in

our simulation study (i.e. 20 amino acids).

DNA methyltransferases (MTases) recognize specific nucleic acid sequence

patterns in their targets and transfer methyl groups from the donor S­

adenosylmethionine (SAM) to adenine or cytosine residues [PBR89]. They

contain 5 highly conserved regions of which we considered 4. The motif win­

dow size varies from 20 to 24 amino acids. This dataset contains 4 target

proteins and 1 avoidance protein with 398 amino acids in length on average.

76

CHAPTER 5. EXPERIMENTS ON REAL DATA SETS

Sequence Sequence Motifs
Codename Length I IV VI VIII

EcoRII 477 98- 117 177- 200 226- 245 274- 293
Hhai 327 14-33 72-95 112- 131 152- 171
Mspi 348 37- 56 95- 118 136- 155 176-195
Phi3T 443 6- 25 69-92 142- 161 182- 201

BspRI (*) 396 32- 51 119- 142 158- 177 198-217

Mot1f Length II 20 24 20 20

Table 5.1: The Cytosine Methyltransferase Motif Data Set [PBPR89, Figures
2 and 3]. The sequences BspRI, Hhai, Mspi, and EcoRII are components of
Type II bacterial restriction modification systems, and sequence Phi3T oc­
curs in Bacillus phages. The starred (*) sequence was selected as the avoid­
ance sequence when this dataset was transformed into target motif datasets.
See main text for an explanation of terms.

Table 5.1 shows the start and end positions in each sequence as well as motif

length.

We have run our algorithm against all the target motifs in both unmapped

mode and Map7 mode. The results are given in Table 5.2, which are very

encouraging. We successfully detected 3 out of 4 target motifs in unmapped

mode with relatively high detection rates. For instance, in the case of Motif

IV, which is one ofthe homologue with 10 residues matching inside the target

motif. We were able to find the target motif most of the 10 runs on average.

The detection rates (Average # runs motif detected) are 8.26 and 8.50 by

using unmapped and Map7 mode (see Table 5.2), respectively. The Map7

mode gives a slightly better performance on this motifs. Besides, motif VI

and VIII are detected with detection rates at 3. 78 and 5.26, respectively, in

77

CHAPTER 5. EXPERIMENTS ON REAL DATA SETS

Average # Runs
Motif Motif Detected
Code Unmap Map7

I 0.42 0.00
IV 8.26 8.50
VI 3.78 1.30

VIII 5.26 0.16

Table 5.2: Cytosine Methyl transferase Motif Detection Results, Average #
Runs Motif Detected generated from 50 trials. Each trials contains 10 runs.
For example, if a motif is detected, then we counts 1. If we detect 8 times in
10 runs, the # Runs Motif Detected is 8.00. The values given in this table
are the averages among 50 trials.

unmapped mode. The example of target motif identified is presented below

in Figure 5.1, which is motif VIII in unmapped mode.

However, we also notice that for motif I and most of the tests in Map 7

mode, it shows low detection rates or even failed to find one (e.g. motif I

in Map7 mode). This pattern occurred in all the datasets in this chapter.

To interprete this performance drop off on some target motifs, especially in

Map7 mode, we conducted further experiments and will discuss these results

in Chapter 6.

5.3.2 The Protein Kinase Experiment

Protein kinases are enzymes that transfer a phosphate group from a phos-

phate donor onto an acceptor amino acid in a substrate protein [HT91].

78

CHAPTER 5. EXPERIMENTS ON REAL DATA SETS

Expected Motif Length 20; Converging Value = 100

start pos motif

F =
The

of
Time

275
152
176
182

19.000967

IDGKHFL-PQHRERIVLVGF
LNALDYGIPQKRERIYMICF
LDASHFGIPQKRKRFYLVAF
LNSKFFNVPQNRERVYIIGI

** * *
motif length = 20

consensus sequence is: DAKHFGIPQKRERIYLIGF

iteration: 291
taken on Average: 54.96 seconds

seq name

EcoRII
Hhai
MSPI
PHI3T

Figure 5.1: Cytosine Methyltransferase Target Motif-VIII Alignment

They comprise of catalytic domain which ranges from 250 to 300 amino

acids residues. Catalytic domain amino acid residues are conserved through-

out the entire protein kinase family. To be representative, the sequences

selected have a broad phylogenetic distribution and a multiple alignment of

these sequences has been reported in [MVF94]. Table 5.3 details the target

motifs.

Compared to cyclin methyltransferases, the kinase data set is less degree

of conservation and has shorter size of motif length. We select 10 proteins

as target sequences and 2 as avoidance sequences. The testing results are

shown in Table 5.4. We successfully detected motif IV in unmapped mode

79

CHAPTER 5. EXPERIMENTS ON REAL DATA SETS 80

with detection rate at 8.06. And we detected motif VI and VII with lower

rates at 1.20 and 3.70 in unmapped mode also. But we failed in Map7

mode except for motif IV with very low detection rate 1.10. Figure 5.2 is an

example of our program's output on Motif IV.

Expected Motif Length 20; Converging Value = 100

start pos motif seq name

113 FEYLHSLDLIYRDLKPENLL CAPK
118 IAYCHSHRILHRDLKPQNLL CD28
131 LLFLHSQSIVHLDLKPANIL CMOS
109 MAYVERMNYVHRDLRAANIL CSRC
115 MNYLEDRRLVHRDLAARNVL EGFR
104 VDYIHRQGIIHRDIKTENIF HSVK
111 ILFMHKMRVLHLDLKPENIL MLCK
183 MDFLASKNCVHRDLAARNVL DGM
110 VRYLHALGITHRDLKPENLL SKH
109 MDYLHAKNIIHRDMKSNNIF RAF1

* *
F = 21.579072 motif length= 20
The consensus sequence is: DGMDYLHSKNIVHRDLKPEN

of iteration: 168
Time taken on Average: 41.13 seconds

Figure 5.2: Protein Kinase Target Motif-IV Alignment

CHAPTER 5. EXPERIMENTS ON REAL DATA SETS

Sequence Sequence Motifs
Codename Length I IV VI VII

CAPK 255 8- 17 113- 132 160 - 169 178-187
CD28 293 8- 17 118- 137 168- 177 187- 196
CMOS 286 8- 17 131 - 150 184- 193 202- 211
CSRC 257 8- 17 109- 128 160- 169 178- 187
EGFR 264 8- 17 115- 134 167- 176 185- 194
HSVK 263 8- 17 104- 123 156- 165 174- 183
MLCK 261 8- 17 111 - 130 162-171 180 - 189
PDGM 340 8- 17 183- 202 235- 244 253- 262
PSKH 263 8- 17 110- 129 164- 173 182 - 191
RAF1 261 8- 17 109- 128 161-170 182- 191

VFES (*) 271 23-32 127- 146 179- 188 197- 206
WEE1 (*) 280 8- 17 117- 136 165 - 174 183- 192

Motif Length II 10 20 10 10

Table 5.3: Characterization of the Protein Kinase Motif Data Set ([MVF94,
Figure 2]; see also [HQH88, Figure 1]). The sequences are bovine cardiac mus­
cle (CAPK), Saccharomyces cerevesiae CD28 (CD28), human oncogenic pro­
tein CMOS (CMOS), chicken oncogenic protein CSRC (CSRC), human EGF
receptor (EGFR), herpes-simplex virus kinase (HSVK), rat skeletal muscle
(MLCK), mouse PDGF receptor(PDGM), Hela cell (PSKH), human onco­
genic protein RAF1 (RAF1), feline sarcoma virus oncogenic protein (VFES),
and Schizosaccharmyces pombe WEE1 (WEE1). The starred (*) sequences
were selected as the avoidance sequences when this dataset was transformed
into target motif datasets. See main text for an explanation of terms.
Note that the sequences in this dataset are a eukaryotic subset of the se­
quences given in [HQH88]. The motif-codes in this table are from [MVF94];
the correspondence with the motif-codes in [HQH88] is I --+ I, IV --+ VI, VI
--+ VIII, and VII --+ IX.

81

CHAPTER 5. EXPERIMENTS ON REAL DATA SETS 82

Average # Runs
Motif Motif Detected
Code Unmap Map7

I 0.16 0.00
IV 8.06 1.10
VI 1.20 0.00
VII 3.70 0.00

Table 5.4: Protein Kinase Motif Detection Results

5.3.3 The Lipocalin Experiment

The lipocalin protein sequence dataset was used in [LAB+93] as one of the

most difficult test cases since it contains two weak sequence motifs, cen-

tered on the generally conserved residues -Gly-X-Trp- and-Thr-Asp-. These

two motifs are recognized from structural comparisons [CNJ90, 1887]. This

dataset contains 4 target and one avoidance proteins. The sequences are 184

residues on average.

After running our algorithm against this dataset, we summarized the re-

suits in Table 5.5. Our algorithm perform well in unmapped mode but not

in Map7 mode. An example of the target motif A generated by our algo-

rithm is shown in Figure 5.3, which is exactly the same pattern as shown in

[LAB+93].

CHAPTER 5. EXPERIMENTS ON REAL DATA SETS

Sequence Sequence Motifs
Codename Length A B

ICYA.MANSE 189 17- 32 104 - 119
LACBJ30VIN 178 25-40 109- 124
BBP_pJEBR 189 31-46 115- 130

RETB_BOVIN 183 14- 29 105- 120
MUP2_MOUSE (*) 180 27-42 109- 124

Motif Length II 16 16

Table 5.5: Characterization of the Lipocalin Motif Data Set [LAB+93,
Figure 4]. The sequences and their associated SwissProt database codes
are Manduca sexta insecticyanin (ICYA.MANSE), bovine ,6-lactoglobulin
(LAVBJ30VIN), Pieris brassicae bilin-binding protein (BBP _pJEBR),
bovine plasma retinol-binding protein (RETB_BOVIN), and mouse major
urinary protein 2 (MUP2_MOUSE). The starred (*) sequence was selected
as the avoidance sequence when this dataset was transformed into target
motif datasets. See main text for an explanation of terms.

Average # Runs
Motif Motif Detected
Code U nmap II Map 7

A 5.54
II ~:~~ I B 2.82

Table 5.6: Lipocalin Motif Detection Results.

83

CHAPTER 5. EXPERIMENTS ON REAL DATA SETS 84

Expected Motif Length 18; Converging Value = 200

start pos motif seq name

17 FDLSAFAGAWHEIAKLP ICYA_MANSE
25 LDIQKVAGTWYSLAMAA LACB_BOVIN
31 FDWSNYHGKWWEVAKYP BBP_PIEBR
14 FDKARFAGTWYAMAKKD RETB_BOVIN

* * * *
F = 16.323679 motif length= 18
The consensus sequence is: FDISAFAGTWYEIAKAP

of iteration: 794
Time taken on Average: 82.9 seconds

Figure 5.3: Lipocalin Protein Target Motif A Alignment

5.3.4 The Cyclin Experiment

Cyclins are universal cell cycle regulators. Cycline proteins share strong

sequence similarities. This dataset contains 198 residues on average which

includes four homologue. By using this protein set, we are able to see how

our program performs on motifs with longer window sizes (24 to 30 amino

acids).

The test dataset contains 7 target and 3 avoidance proteins. 4 motifs has

been reported in these sequences with various degree of conservation [0 191]

(see Table 5.7).

The running results are summarized in Table 5.8. That tells us that our

CHAPTER 5. EXPERIMENTS ON REAL DATA SETS

Sequence Sequence Motifs
Codename Length I II III IV
CLAM_B 189 1- 35 44-59 75- 100 137- 157

HUMAN__B1 190 1-35 44-59 75- 100 137- 157
DROS_A 192 1- 35 44-59 75- 100 138- 158

Soy 191 1- 35 44-59 75- 100 137- 157
M-CYL2 197 1-35 44-59 75- 100 141 - 161
H-CYC_E 207 1- 35 45- 60 76- 101 148- 168

pucl 196 1-35 44-59 77- 102 140- 160
CLN1 (*) 219 1- 35 44-59 100- 125 163- 183

STAR__B (*) 191 1- 35 44-59 75- 100 137- 157
Carrot (*) 196 1-35 44-59 75- 100 141 - 161

Motif Length II 35 16 26 21

Table 5. 7: Characterization of the Cyclin Core Region Motif Data Set [OL91,
Figure 2]. The sequences are clam cyclin B (CLAM_B), human cyclin B
(HUMAN__B1), Drosophila cyclin A (DROS_A), soy cyclin A (Soy), mouse
CYL2 (M-CYCL2), human cyclin E (H-CYC_E), Saccharmyces cerevesiae
Cln1 (CLN1), Schizosaccharomyces pombe pucl (pucl), starfish cyclin B
(STAR__B), and carrot cyclin B (Carrot). The starred (*) sequences were
selected as the avoidance sequences when this dataset was transformed into
target motif datasets. See main text for an explanation of terms.

85

CHAPTER 5. EXPERIMENTS ON REAL DATA SETS 86

algorithm works very well for longer target motifs. Especially on motifs I and

III, the detection rates are 8.96 and 8.0 in unmapped mode, respectively. We

also notice that the program performs well on motif I and II in Map 7 mode,

which implies that it prefer longer motifs. Figure 5.4 shows an example of

the alignment on motif III.

Very strange, zero detection rate on motif IV in both unmapped and

Map 7 mode. In Chapter 6, we will show some of the characteristics of this

motif and give our explanation.

Average # Runs
Motif Motif Detected
Code Unmap Map7

I 8.96 6.70
II 6.44 5.14
III 8.00 0.86
IV 0.00 0.00

Table 5.8: Cyclin Motif Detection Results.

5.3.5 The Acetyltransferase Experiment

Acetyltransferases is another subtle motif dataset. It has been reported in

[NG94]. This is a diverse set of enzymes including S-and N-acyltransferases.

Closely related sequences were removed such that no two sequences had a

PAM120 similarity score above 100 [NG94];

CHAPTER 5. EXPERIMENTS ON REAL DATA SETS

Expected Motif Length 26; Converging Value = 100

start pas motif

75
75
75
75
75
76
77

AYTKKEILEMEQHILKKLNFSFGRPL
TYTKHQIRQMEMKILRALNFGLGRPL
SYTKAQVLRMEQVILKILSFDLCTPT
AYTHEQILAMEKTILNKLEWTLTVPT
SVKPQELLEWELVVLGKLKWNLAAVT
ACSGDEILTMELMIMKALKWRLSPLT
IYAEDLFIRMERHILDTLDWDISIPT

* *
F = 24.054798 motif length = 26

seq name

Atlantic surf clam
cyclin B1 - human
Drosophila cyclin A
Soy mitotic cyclin
M-CYL2 cyclin 2
cyclin E - human
CG1P_SCHPO CYCLIN

The consensus sequence is: NAYTKDEILEMELHILKKLKWDLGRP

of iteration: 290
Time taken on Average: 83.83 seconds

Figure 5.4: Cyclin Target Motif-III Alignment

Sequence Sequence Motifs
Codename Length A B

RIMLECOLI 148 66-88 107- 124
STA_STRLA 189 107- 129 148- 165

ATDA.JIUMAN 171 91- 113 132- 149
iTTR_PSESY 177 93- 115 133- 150
PUAC...STRLP 199 125 - 147 163- 180
IAAT_AZOBR 153 77-99 118- 135

STA_ECOLI (*) 174 86- 108 127- 144
AACLPSEAE (*) 177 108- 130 149- 166
AAC6_KLEPN (*) 201 116- 138 158-175

Motif Length II 23 18

Table 5.9: Characterization of the Acetyltransferase Motif Data Set [NG94,
Figure 3]. The sequences are denoted by their associated Swiss Prot database
codes. The starred (*) sequences were selected as the avoidance sequences
when this dataset was transformed into target motif datasets. See main text
for an explanation of terms.

87

CHAPTER 5. EXPERIMENTS ON REAL DATA SETS 88

This dataset consists of 6 target proteins and 3 avoidance proteins with

target sequence length at 172 residues on average and two motifs to be tar-

geted. Table 5.9 shows more details.

Running our algorithm against this dataset, results are shown in Table

5.10. It is interesting that we failed to detect both motif A and B in un-

mapped mode. By using the Map 7 approach, we are able to detect the

target motif A with detection rate of 6.32 on average in 50 trials. On the

same data, we had a much lower detection rate (0.08) using the unmapped

mode. This implies that amino acid similarity grouping approach, i.e. Map7

in this case, does help in some case to detect target motifs. An example of

the detected target motif A using Map7 mode is presented in Figure 5.5. The

sequences are mapped from 20 characters into 7 characters as we have seen.

Average # Runs
Dataset Motif Motif Detected

Code Unmap J Map7

I A cety ltr ansferase t--1---;:~~-tlt-1---::::-~--;;: ~:-:::~-t---:::-~ :--;;~-::::-~---1

Table 5.10: Acetyltransferase Motif Detection Results.

CHAPTER 5. EXPERIMENTS ON REAL DATA SETS

Expected Motif Length 18; Converging Value = 200

start pos motif

66 ASAAAEPEASKSGAGKAA
107 EEAEAAPGKKGKGAGKAA
91 EEAAAASEAKGAGAGSEA
93 SKAAAAPSAKGKGAGKSA
125 ASAGASPEKSGKGAGSAA
77 KKAAASPSAKGGSAGKKA

* * ** *
F = 8.903478 motif length = 18
The consensus sequence is: ASAAAAPEAKGKGAGKAA

of iteration: 349
Time taken on Average: 6.28 seconds

seq name

E. COLI
STA_STRLA
ATDA_HUMAN
TTR_PSESY
PUAC_STRLP
IAAT_AZOBR

Figure 5.5: Acetyltransferase Target Motif A Alignment

5.4 Summary

Our algorithm can detect motifs in many real proteins with different degree of

conservation, different motif lengthes and different numbers of input target

sequences. unmapped mode shows better performance than Map7 mode

most of the time. However, Map7 mode does function better on some of the

real datasets. For example, of Acetyltransferase Target motif A shows high

detection rate in Map7 mode but very low rate in unmapped mode Table

5.10.

Like many multiple sequence alignment algorithms, our algorithm is sen-

sitive to its parameters. The value of these parameters varied in different

89

CHAPTER 5. EXPERIMENTS ON REAL DATA SETS

datasets. The value of the single gap penalty, threshold and motif window

size parameters as well as pseudocount setting seem to make a big difference

in performance. For this reason among others, one of the reasons, our al­

gorithm was not successful on all the target motif tests as these tests used

consistent parameter settings. Systematically exploring the effects of these

parameters on our algorithm performance would be very useful and a good

project for the future. Questions raised by our experiences includes:

1. Does the alphabet size is really affect on the algorithm performance ?

2. To what degree of pseudocounts influence motif detection relative to

the size of alphabet and input sequence size ? For instance, should we

increase the influence of pseudocounts when the input sequence size is

small?

3. What are the optimal parameter values for the single gap penalty and

the column gap penalty on different size of alphabet sequences that are

relative to different sequence types and mapping modes?

With respect to the last question, Gusfield in [Gus97, page 312-321] de­

scribed parametric sequence alignment, which may be adapted to this study.

90

Chapter 6

Discussion

As we have seen in Chapter 4 and 5, the simulation tests prove that our

program is able to quickly detect various kinds of target motifs. However, on

real datasets, in many cases, it still has difficulty of identifying target motifs

in both unmapped and Map7 mode by even trying different parameters.

What other factors could cause this discrepancy of the performance of our

algorithm on simulated and real datasets? In order to interpret this and find

out the main reason causing the detection failure, as well as to provide some

clues for future improvement to our algorithm, we analyzed the real datasets

based on four types of characteristics.

6.1 Characteristics

Each motif was characterized by the following four characteristic quantities:

91

CHAPTER 6. DISCUSSION

1. Motif length.

2. Motif Distinctness: The degree of the distinctness of that motif from

the background portions of its sequences. It was measured using Kullback­

Leibler distance. Given an ungapped motif of length W in a set of N

sequences over an alphabet ~' let Q be the frequency of occurrence of

the symbols in ~ in the instances of that motif in the sequences, Qi,

1 ~ i ~ W, be the frequency of occurrence of the symbols in ~ at

position i in the instances of that motif in the sequences, and P be the

"background" frequencies of occurrence, i.e., the frequency of occur­

rence of the symbols in ~ in all non-motif portions of the sequences.

Two distances were computed: H(QIIP), which is a measure of the

conservation of the overall symbol-distribution in the motif relative to

the background (Ovr), and (2:::~ 1 H(QiliP))/W, which is a measure of

the average conservation of the symbol-distribution for each position

of the motif relative to the background (Avg). Each of these quan-

tities was in turn computed relative to the original protein sequences

and the sequences as transformed under the Map"/ mapping described

simulation experiment 3 in Chapter 4.

3. Degree of Target-Sequence Interference: Unlike the simulated datasets

examined in previous sections, in which the occurrences of motifs in

92

CHAPTER 6. DISCUSSION 93

sequences were unique by virtue of the manner in which these datasets

were constructed, real datasets may have multiple copies of a partie-

ular motif in each sequence, each with a differing degree of conserva-

tion. Call such partially-conserved copies of a motif ghosts. Given that

our criterion of motif-detection measures overlap of a candidate target-

motif with only one of these copies and the stochastic nature of our

algorithm makes it possible that our algorithm may accidentally lock

onto one of the ghosts (especially if the ghost is as conserved as our

known copy), the detection criterion can be misled to reject what is

otherwise the correct target motif. To this end, we computed two mea-

sures of the similarity of ghosts in the avoidance sequences to known

motifs,

(a) Average minimum difference between consensus string I known

motif and consensus string I ghost (CAMD(m)):

N

CAMD(m) = (Ld(c,mi)- max d(c,s))IN
i=l sEs(T;),s#m;

(b) Average minimum difference between known motif and

ghost (GAMD(m)):

N

GAMD(m) = (LW- max d(mi,s))IN
i=l sEs(Ti),s#m;

CHAPTER 6. DISCUSSION 94

where m is the motif, c is the consensus string associated with m,

mi is the occurrence of m in the i th target sequence, d(x, y) is the

Hamming similarity of strings x and y, W is the length of m, and

s(Ti) is the set of all substrings of length Win the ith target sequence.

These quantities were normalized and expressed as a percentage of the

length of their associated motif. Each of these quantities was in turn

computed relative to the original protein sequences and the sequences

as transformed under the Map7 mapping described in Section 4.5.

4. Degree of Avoidance-Sequence Interference: The ghosts alluded to above

may also exist in avoidance sequences. In this case, even though the

known copy of the motif has been erased, a ghost that is sufficiently

conserved might cause the post-processing loop to reject what is other-

wise the correct target motif. To this end, we computed two measures

of the similarity of ghosts in the avoidance sequences to known motifs,

N

CMD(m) = (l:d(c,mi)- max d(c,s))/N
i=l sEs(A;)

where s(A) is the set of all substrings of length Win the ith target se-

quence. This quantity was normalized and expressed as a percentage of

the length of its associated motif. This quantity was in turn computed

relative to the original protein sequences and the sequences as trans-

formed under the Map7 mapping described in simulation experiment 3

CHAPTER 6. DISCUSSION 95

Motif Motifs
Characteristic I I IV I VI I VIII

Motif Length II 20 24 20 20

Relative Ovr/Unmap 0.6483 0.3338 0.3474 0.2405
Entropy Ovr/Map7 0.4105 0.1638 0.0461 0.0684

Avg/Unmap 3.0129 3.1948 2.9953 3.0322
Avg/Map7 1.8117 1.9377 1.8375 1.6545

Target CAMD/Unmap 33.75 42.71 40.00 40.00
Ghosts CAMD/Map7 25.00 30.21 35.00 31.25

GAMD/Unmap 73.75 78.12 76.25 75.00
GAMD/Map7 76.25 79.17 75.00 72.50

Avoidance CMD/Unmap 25.00 29.17 25.00 25.00
Ghosts CMD/Map7 55.00 50.00 55.00 55.00

Table 6.11: Characterization of the Cytosine Methyltransferase Motif Data

in Chapter 4.

The values of these quantities mentioned above for each motif considered

here are given in Tables 6.15 through 6.11. These quantities were subse-

quently correlated with the detect ability of each motif using the Pearson

correlation coefficient described in Section 4.6.2.

6.2 Correlation Anaylysis Between Charac-

teristic Quantities

Consider first the correlation coefficients given in Table 6.16. Our initial

experience with the motifs in the acetyltransferase and lipocalin datasets

CHAPTER 6. DISCUSSION

Motif Motifs
Characteristic I I IV I VI I VII

Mot1f Length II 10 20 10 10

Relative Ovr/Unmap 0.7173 0.2719 0.4417 0.5854
Entropy Ovr/Map7 0.4378 0.0636 0.1847 0.1966

Avg/Unmap 2.6640 2.8200 2.7382 2.8062
Avg/Map7 1.6407 1.4483 1.5438 1.4573

Target CAMD/Unmap 30.00 36.50 28.00 26.00
Ghosts CAMD/Map7 12.00 23.50 4.00 9.00

GAMD/Unmap 66.00 77.00 65.00 66.00
GAMD/Map7 66.00 75.50 65.00 68.00

Avoidance CMD/Unmap 40.00 25.00 40.00 30.00
Ghosts CMD/Map7 50.00 55.00 50.00 60.00

Table 6.12: Characterization of the Protein Kinase Motif Data Set

Motif
Characteristic

Motif Length

Relative Ovr/Unmap
Entropy Ovr/Map7

Avg/Unmap
AvgjMap7

Target CAMD/Unmap
Ghosts CAMD/Map7

GAMD/Unmap
GAMD/Map7

Avoidance CMD/Unmap
Ghosts CMD/Map7

lr-1 ---,-A_M_,o,_ti±:_s-=B----1

II 16 16
0.4142 0.3932
0.1291 0.1216
3.0217 2.9573
1.3082 1.4161

39.06 37.50
21.88 20.31
75.00 75.00
71.88 71.88

18.75 18.75
56.25 50.00

Table 6.13: Characterization of the Lipocalin Motif Data Set

96

CHAPTER 6. DISCUSSION

Motif Motifs
Characteristic I I II 1 III I IV

Motif Length II 35 16 26 21

Relative Ovr/Unmap 0.1784 0.3917 0.0647 0.2809
Entropy Ovr/Map7 0.0742 0.1782 0.0157 0.0554

Avg/Unmap 2.6950 2.9746 2.4404 2.1645
Avg/Map7 1.2478 1.4304 1.1488 0.8219

Target CAMD/Unmap 37.14 42.97 31.25 17.26
Ghosts CAMD/Map7 26.43 20.31 13.94 -2.98

GAMD/Unmap 80.00 76.56 79.81 75.60
GAMD/Map7 81.07 70.31 78.37 76.79

Avoidance CMD/Unmap 20.00 43.75 23.08 28.57
Ghosts CMD/Map7 54.29 75.00 53.85 66.67

Table 6.14: Characterization of the Cyclin Core Region Motif Data Set

Motif
Characteristic

Motif Length

Relative Ovr/Unmap
Entropy Ovr/Map7

Avg/Unmap
Avg/Map7

Target CAMD/Unmap
Ghosts CAMD/Map7

GAMD/Unmap
GAMD/Map7

Avoidance CMD/Unmap
Ghosts CMD/Map7

1~-----,--M---.-otif_s =-------1

.. A I B
II 23 1 18

0.2054 0.2123
0.0921 0.0433
2.2682 2.2473
1.3076 1.0422

26.81 26.85
18.12 9.26
77.54 75.00
71.74 74.07

26.09 33.33
56.52 61.11

Table 6.15: Characterization of the Acetyltransferase Motif Data Set. See
main text for explanation of terms.

97

CHAPTER 6. DISCUSSION

Motif Motif Detection Mode
Characteristic Unmap I Map7

Motif Length 11 o.5o61 **** 1 o.5818 ***** 1

Relative OvriUnmap -0.4231 ** -0.3301 *
Entropy Ovr1Map7 -0.3770 ** -0.1378

AvgiUnmap 0.4581 *** 0.1168
AvgiMap7 0.1466 0.1764 *

Target CAMDIUnmap 0.6642 ****** 0.3769 **
Ghosts CAMDIMap7 0.5344 **** 0.3955 **

GAMDIUnmap 0.5301 **** 0.5187 ****
GAMDIMap7 0.4971 *** 0.4146 **

Avoidance CMDIUnmap -0.3128 * 0.0181
Ghosts CMD1Map7 -0.0482 0.0650

(a)

Motif Motif Detection Mode
Characteristic Unmap I Map7

Mot1f Length II o.4166 * 1 o.521o **
Relative OvriUnmap -0.5047 ** -0.2719 *
Entropy Ovr1Map7 -0.4673 ** -0.0539

AvgiUnmap 0.1366 -0.1625
AvgiMap7 -0.2013 0.0492

Target CAMDIUnmap 0.4646 ** 0.0810
Ghosts CAMD1Map7 0.0622 0.0675

GAMDIUnmap 0.6307 **** 0.6096 ****
GAMDIMap7 0.5196 ** 0.3304 *

Avoidance CMDIUnmap 0.0873 0.4061 *
Ghosts CMDIMap7 0.0371 0.1570

(b)

Table 6.16: Real Data Results: Motif Detection I Characteristic Correla­
tions. The probability a that each correlation coefficient is not significantly
different from a hypothesis of no correlation was calculated using the t-test
described on pages 250 and 251 of [MMH90]. These probabilities are repre­
sented by starred annotation as follows: **** -+ a = 0.05, *** -+ a = 0.1,
** -+ a = 0.2, and * -+ a = 0.5. See main text for explanation of terms.
a). All motifs; b) Acetyltransferase B, Cyclin IV, Kinase I I VI I VII Motifs
Omitted.

98

CHAPTER 6. DISCUSSION

suggested that motif conservation and the distinctness of the overall symbol­

distribution of a motif from the sequence background were important factors;

however, with the exception of a moderately strong correlation of unmapped

mode detect ability with the average unmapped relative entropy, these fac­

tors do not seem to play a significant role. Indeed, it seems that the most

important factors are motif length and various measures of the closeness of

target sequence ghosts (in the case of unmapped mode) and motif length and

the closeness of target sequence ghosts to the known motifs as opposed to the

consensus strings (in the case of Map7 mode). As the strongest correlations

stemmed from target sequence ghosts and the interference caused by these

ghosts may be masking the effects of other factors, we removed the data for

the five cases with the closest target ghosts (Acetyltransferase B, Cyclin IV,

Protein Kinase I, VI, and VII) and recomputed the correlation coefficients.

These results, given in Table 6.16,(b) do reduce the significance of many pre­

vious correlations, though correlations with target sequence ghosts remain

strong. It is difficult to do further removal of motifs to explore other factors

in a dataset this small without rendering the derived correlation coefficients

indistinguishable from the effects of sampling error. However, the results we

have do suggest that avoidance sequence ghosts play a larger role in Map7

99

CHAPTER 6. DISCUSSION

mode once the effect of target sequence ghosts are removed. This is con­

sistent with our experience, which has shown that there are typically many

more ghosts in avoidance sequences that are much closer to the threshold

under Map7 mode than in unmapped mode. This may be a product of the

non-random manner in which amino acids occur in actual proteins, and the

manner in which Map7 mode "blurs" patterns under this non-random distri­

bution; this is, however, to be expected, as it is known that protein sequences

in general and motifs in particular may contain clusters of biochemically sim­

ilar amino acids.

6.3 Summary

In any case, we seem to have reasonable hypotheses for the discrepancy of

the performance of our algorithm on simulated and real datasets:

1. Unlike our simulated datasets, real datasets may incorporate many

copies of a motif of varying degrees of conservation.

2. Unlike our simulated datasets constructed in Section 4.5, real datasets

have a non-random distribution of amino acids, and this non-randomness

is amplified by using the Map7 mapping.

100

CHAPTER 6. DISCUSSION

In practice, the former is not a problem; our algorithm will simply find mo­

tifs and users will subsequently search sequences to locate any well-conserved

ghosts of those motifs. One could even escape this problem altogether by ap­

plying the modifications described in this thesis to more complex versions of

the Gibbs algorithms that explicitly allow and automatically detect multiple

copies of a motif in a sequence [LAB+93, LNL95, NLL95], or by adopting a

strategy of erasing motifs as they are found in order to expose the ghosts in

subsequent motif searches [BE95). Ironically, the problem here is our criterion

of detection, which is based on the assumption that only one copy of a motif

can occur in a sequence. This highlights a (perhaps common) misconception

that conserved regions in alignments can be treated as uniquely-occurring

motifs. This is, in retrospect, not unexpected, as alignments are concerned

with co-linear occurrences of distinct patterns, and do not in themselves flag

multiple occurrences of these patterns within sequences; however, users of

these alignments should still be careful. The latter difficulty with Map7

mode may possibly be alleviated by modifications that allow the Gibbs algo­

rithms to use similarity-matrix schemes for encoding amino acid similarity;

however, the experience reported on page 213 of [LAB+93) suggests other-

WISe.

101

CHAPTER 6. DISCUSSION

Note that some of the most interesting implications of the results in this the­

sis stem from the discrepancy between the results for complex real datasets

whose characteristics are unknown and simple simulated datasets whose char­

acteristics are under our control. In particular, we would not be aware of the

degree of sensitivity of our algorithm's performance to target and avoidance

ghosts unless this discrepancy had happened and forced us to reexamine our

hypotheses about how our algorithm behaves and what motifs really mean.

This brings home another important caveat: when examining an algorithm's

behavior, simulated datasets allow us to reason systematically about this be­

havior in a rigorous manner, while real datasets ensure that our reasoning

remains relevant. Hence testing relative to both kinds of datasets is necces-

sary.

102

Chapter 7

Conclusions and Future Work

The main results are summarized as followings:

1. The simulation study #1 tells us that both of naive algorithm and our

algorithm perform well at low motif dispersion rates, and performance

falls off as the motif dispersion rate increases (particularly in the case of

gapped motifs). Our algorithm always performs better than the naive

Gibbs algorithm in the case of ungapped motifs and gapped protein

motifs.

2. In simulation study #2, when multiple motifs are present, our algo­

rithm is able to detect more than half of the target motifs after only

10 runs and almost all of the target motifs after 25 runs under all mo­

tif dispersion rates in the case of ungapped DNA and ungapped and

gapped protein motifs.

103

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

3. In general, the modified algorithm performs better on protein than

DNA datasets for both ungapped and gapped motifs.

4. Amino acid similarity grouping information does help on detecting tar­

get motifs in some cases, for instance, we were only able to detect the

target motif A of acetyltransferase proteins in Map7 mode.

5. The modified algorithm successfully detected many target motifs in real

datasets. For instances, cytosine methyl transferase target motif-IV, VI

and VIII; protein kinase target motif-IV and VII; lipocalin target motif

A and B, cyclin protein target motif-1, II and III; acetyltransferase

protein target motif A.

Besides, we also notice that the alphabet size of target sequences play a very

important role in the performance of our algorithm. Our algorithm seems

preferable to larger alphabet size sequences like proteins. The reason for

this is still unknown. There could be two possibilities. First, our algorithm

inherited this fact from the modified Gibbs sampling algorithm [RT98]. Sec-

ond, the parameters used in the tests were not optimized. For example of

pseuodocounts maybe need to be adjusted in term of different alphabet size

sequences.

Regarding the future work, several things closely related to the algorithm

performance improvements and extensions:

104

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

1. Perform parametric study on pseudocount, size of sequence alphabet,

gap penalties, motiflength, threshold value and convergence parameter.

As suggested in [Gus97, page 312-321], we can partition the parameter

space into regions such that in each region one alignment is optimal

throughout and such that each region is maximal for this property.

Thus the parametric study allows us to see explicitly, and completely,

the effect of parameter choices on the optimal alignment.

2. Explore different weighting scheme on avoidance sequences. There are

other possible ways in which avoidance sequence information can be in­

corporated into the Gibbs sampling algorithm to influence motif model.

At the place of the creation of the weights for candidate motif-instances

in the selected sequence s, instead of using the method described in Sec­

tion 2.3, we may modify these weights (to use the original terminology

of [LAB+93]) is to replace weight Qx/ Px by (Qx/ Px) + (Qx/ Bavoidance),

where Bavoidance is the probability associated with the best match of the

motif model for the target sequences against any substring of any se­

quence in the set of avoidance sequences. This is intuitively appealing,

as it implies that selected models optimize the distinctness of the mo­

tif model from both the background symbol distribution in the target

sequences and the set of all possible motif-instances in the avoidance

105

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 106

sequences. As the magnitudes of the individual ratios are not known,

it may be best to normalize both ratios over their maximum possible

values and take either a linear combination, i.e.,

for constants c1 and c2 , or a more exotic function, e.g.,

of these normalized ratios to more accurately reflect the relative im-

portance of each term. This may ultimately be an application-specific

matter. For instance, some applications may stress the quality of the

match to the target sequences while others may require maximal dis-

tinctness from the avoidance sequences.

3. Extend our modified algorithm to seek several target motifs simul-

taneously rather than sequentially, which allows information gained

about one to aid the alignment of the others (see [1AB+93], [1195]

and [LNL95] for detail). This might help to solve the "ghost" problem

in real dataset tests described in Chapter 6.

4. The general stochastic algorithm for motif identification given in Sec-

tion 2.3 can be adapted to describe other stochastic heuristic algorithms

for finding motifs such as those using Hidden Markov Models (HMM)

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

[DEKM98]. One of our project member (Mr. Chris Trendall) has ap­

plied the modifications sketched in Section 2.3 to implement an HMM

algorithm for target motif identification, and preliminary tests relative

to ungapped motif DNA sequence datasets have shown that this al­

gorithm has performance comparable to the modified Gibbs algorithm

described in this thesis. We should also test the modified HMM algo­

rithm on other simulated and real datasets and compare these results

with those reported in this thesis.

107

Bibliography

[BE95] Timothy L. Bailey and Charles Elkan. 1995. Unsupervised Learn­

ing of Multiple Motifs in Biopolymers Using Expectation Maximization.

Machine Learning Journal, 21, 51-83.

[CNJ90] S. W. Cowan, M. E. Newcomer, T. A. Jones, 1990, Crystallographic

refinement of human serum retinol binding protein at 2A resolution.

Proteins 8(1):44-61.

[DEKM98] Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme

Mitchison. 1998. Biological Sequence Analysis: Probabilistic Models

of Proteins and Nucleic Acids. Cambridge University Press.

[GJ79] Michael R. Garey and David S. Johnson. 1979.

[Gus97] Dan Gusfield. 1997. Algorithms on Strings, Trees, and Sequences:

Computer Science and Computational Biology. Cambridge University

Press.

108

BIBLIOGRAPHY

[HQH88] Steven K. Hanks, Anne Marie Quinn, and Tony Hunter. 1988. The

Protein Kinase Family: Conserved Features and Deduced Phylogeny of

the Catalytic Domains. Science, 241, 42-52.

[HT91] Hunter, T. 1991. Protein kinase classification. Methods in Enzymol­

ogy, 200, 3-37.

[ISNH94] Minoru Ito, Kumiyasu Shimizu, Michio Nakanishi, and Akihiro

Hashimoto. 1994. Polynomial-Time Algorithms for Computing Charac­

teristic Strings. In Maxime Crochemore and Dan Gusfield, eds., Proceed­

ings of the 5th Annual Symposium on Combinatorial Pattern Matching

(CPM'94), pages 289-306. Lecture Notes in Computer Science no. 807.

Springer-Verlag, Berlin. Computers and Intractability: A Guide to the

Theory of N P-Completeness. W.H. Freeman, San Francisco.

[JTWZ99] Tao Jiang, Chris G. Trendall, H. Todd Wareham, and Xian Zhang

1999. Stochastic Heuristic Algorithms for Target Motif Identification.

RECOMB, poster.

[JTW99] Tao Jiang, Chris G. Trendall, H. Todd Wareham, and Xian Zhang

1999. Stochastic Heuristic Algorithms for Target Motif Identification.

submitted to Journal of Computation Biology.

109

BIBLIOGRAPHY

[LAB+93] Charles E. Lawrence, Stephen F. Altschul, MarkS. Boguski, Jun

S. Liu, Andrew F. Neuwald, and John C. Wooton. 1993. Detecting Sub­

tle Sequence Signals: A Gibbs Sampling Strategy for Multiple Align­

ment. Science, 262, 208-214.

[LL+99] J. Kevin Lanctot, Ming Li, Bin Ma, Shaojiu Wang, and Louxin

Zhang. 1999. Distinguishing String Selection Problems. In ACM-SIAM

SODA'99.

[LL95] Jun S. Liu and Charles E. Lawrence. 1995. Statistical Models for Mul­

tiple Sequence Alignment: Unifications and Generalizations. In Ameri­

can Statistical Association: 1995 Proceedings of the Statistical Comput­

ing Section, pages 1-8.

[LNL95] Jun S. Liu, Andrew F. Neuwald, and Charles E. Lawrence. 1995.

Bayesian Models for Multiple Local Sequence Alignment and Gibbs

Sampling Strategies. Journal of the American Statistical Association,

90(432), 1156-1170.

[LS87] L. Sawyer. 1987. Protein structure. One fold among many. Nature

Jun 25-Jul 1;327(6124):659.

[MMH90] Richard B. May, Michael E.J. Masson, and Michael A. Hunter.

1990. Applications of Statistics in Behavioral Research. Harper and

110

BIBLIOGRAPHY

Row, New York.

[MVF94] Marcella A. McClure, T. k. Vasi and W. M. Fitch. 1994. Compar­

ative Analysis of Multiple Protein-Sequence Alignment Methods. Mol.

Biol. Evol., 11(4), 571-592.

[NG94] Andrew F. Neuwald and Philip Green. 1994. Detecting Patterns in

Protein Sequences. J. Mol. Biol., 239, 698-712.

[NLL95] Andrew F. Neuwald, Jun S. Liu, and Charles E. Lawrence. 1995.

Gibbs motif sampling: Detection of bacterial outer membrane protein

repeats. Protein Science, 4, 1618-1632.

[OL91] P. O'Farrell and P. Leopold. 1991. A Consensus of Cyclin Sequences

Reveals Homology with the ras Oncogene. Cold Spring Harbor Sympo­

sium on Qualitative Biology, LVI, 83-92.

[PBR89] Janos Posfai A. S. Bhagwat G. Posfai J. Roberts. 1989. Pre­

dictive motifs derived from cytosine methyltransferases. Nucleic Acids

Research, Vol. 7, 2421-2435.

[RT98] Emily Rocke and Martin Tampa. 1998. An Algorithm for Find­

ing Novel Gapped Motifs in DNA Sequences. In Sarin Istrail, Pavel

Pevzner, and Michael Waterman, eds., Proceedings of The Second

111

BIBLIOGRAPHY

Annual International Conference on Computational Molecular Biology

(RECOMB'98}, pages 228-233. ACM Press, New York.

[Tom98] Martin Tompa. 1999. Personal communication.

[Tom99] Martin Tompa. 1999. Personal communication.

[W95] Michael S. Waterman, 1995, Introduction to computational biology,

Chapman 8 Hall Press.

[Wan98] Joe Wang. 1998. Personal communication.

112

