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Abstract 

Identifying motifs that are "close" to one or more substrings in each 

sequence in a given set of sequences and hence characterize that set is an 

important problem in computational biology. The target motif identification 

problem requires motifs that characterize one given set of sequences but are 

far from every substring in another given set of sequences. This problem is 

N P-hard and hence is unlikely to have efficient optimal solution algorithms. 

In this thesis, we propose a set of modifications to one of the most popular 

stochastic heuristics for finding motifs, Gibbs Sampling [LAB+93], which 

allow this heuristic to detect target motifs. We also present the results of 

four simulation studies and tests on real protein datasets which suggest that 

these modified heuristics are very good at (and are even, m some cases, 

necessary for) detecting target motifs. 
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Chapter 1 

Introduction 

1.1 Definition of the Problem 

A very important application of protein and nucleotide sequence informa­

tion is the identification of potential targets for drugs. In this identification 

process, one is interested in finding those regions of the sequence that have 

important functions within an organism, e.g., regulatory sites in nucleotide 

sequences or active-site folding domains in protein sequences. Such regions 

are subsequently used to design assays that screen candidate molecules to 

see which candidates bind to those regions and hence might be useful drugs. 

The ideal way to isolate such functionally-important regions is to know 

how these sequences function. Such information is very hard to determine. 

1 



CHAPTER 1. INTRODUCTION 

Fortunately, the nature of sequence mutation provides a relatively quick and 

useful heuristic for determining such regions. As sequence mutations over 

the course of evolution are less likely to change parts of the sequence that 

are important to the function of that sequence, one can isolate functionally­

important sequence regions by finding those regions that are conserved over 

the sequences for a set of species that have descended from a common ances­

tor (and hence have evolved by mutation from a common ancestral sequence). 

Such conserved regions are known as motifs, and the process of finding them 

corresponds to the following computational problem: 

MOTIF IDENTIFICATION 

Input: A set of sequences S over an alphabet I; , a motif -to-string distance 

function d : 1;* x 1;* t-+ N 1 and positive integer k and l. 

Output: The (possibly empty) collection M = { M1 , M2 , ... } where each Mi 

is a set of strings { m, r 1 , r 2 , •.• r1s1} such that m is a string over I; with 

minimum length of l and for all i, ri is a substring of the ith sequence in S 

and d(ri, m) ::; k. 

Here, 1;* denotes the set of all strings over the alphabet 1;. This problem 

can also be phased relative to a motif-to-string similarity function if the in­

equalities are reversed. In this formulation, the string m in each subset Mi 

1 N is the set of integers 

2 



CHAPTER 1. INTRODUCTION 

is the motif. There is an extensive literature on deriving motifs relative to 

various distance functions on strings (see [DEKM98, Gus97] and their refer­

ences). However, to be truly useful as drug targets, such motifs must often 

be specific to particular groups of organisms and not occur in certain other 

groups of organisms. For instance, if one is searching for drugs to kill certain 

kinds of bacteria in people, one is typically only interested (for financial and 

legal (if not ethical) reasons) in those drugs that kill the bacteria and not 

the people. The process of finding the group-specific motifs underlying such 

useful drugs corresponds to the following modification of the problem above: 

TARGET MOTIF IDENTIFICATION 

Instance: Sets T and A of strings over an alphabet .E, a motif-to-string dis­

tance function d : .E* X .E* t---+ N and positive numbers dT and dA. 

Solution: A motif m such that for each string y E T, there is a substring y' 

of y for which d(m, y') :'S dT, and for every substring z' of every sequence z 

in A, d(m, z') 2: dA with a lower bound of motif length l. 

In this thesis, we propose and implement an algorithm based on the popular 

Gibbs Sampling motif-finding heuristics [LAB+93, LNL95, NLL95, RT98] 

that uses avoidance sequences to help detect target motifs. We also present 

the results of several experiments which suggest that these modified heuristics 

3 



CHAPTER 1. INTRODUCTION 

are very good at detecting target motifs. 

1.2 Terminology 

A motif is essentially a pattern that occurs in one or more sequence. A 

motif can be encoded in many ways; for instance, a motif can be encoded 

as a string, an alignment of strings, or a profile, i.e., a table giving the 

probabilities of occurrence of all symbols in the sequence-alphabet at each 

position in the motif (see [Gus97, Chapter 14] and references). To a limited 

extent, it is possible to transform one type of motif-encoding into another; for 

instance, a motif encoded as an alignment of strings can be transformed into 

a profile by computing the frequencies of occurrence of every symbol in each 

column of the alignment, and this profile can in turn be transformed into a 

consensus string by selecting for each position in that string the symbol with 

the maximum frequency of occurrence in that position in the profile. This 

profile we call it motif model (see Table 1.1 as an example). A motif instance 

is a subsequence from a given target sequences that can be considered as a 

candidate for a motif. 

Choosing symbols with the highest probability in each column, we get a 

string C-ACGA, a consensus motif, at the bottom of the Table 1.1. That is: 

Given a multiple alignment M of a set of strings S, the consensus character 

4 



CHAPTER 1. INTRODUCTION 

Symbol II 
Motif Position 

1 2 3 4 5 6 
A 10% 0% 95% 0% 5% 70% 
c 70% 5% 0% 90% 0% 5% 
G 15% 20% 5% 10% 85% 0% 
T 5% 5% 0% 0% 5% 5% 
- 0% 70% 0% 0% 0% 20% 

consensus motif c - A c G A 

Table 1.1: An Example Motif Model Extracted From A Multiple Sequence 
Alignment 

of column i of M is the character that minimizes the summed distance to it 

from all the characters in column i. Let d( i) denote that minimum sum in 

column i. Since the alphabet is finite, a consensus character for each column 

of M exists and can be found by enumeration. As one simple special case, 

if the pairwise scoring scheme scores a match with a zero and a mismatch 

or a space opposite a character with a one, then the consensus character 

in column i is the plurality character (i.e., the character occurring the most 

often in column i). Note that the plurality character can be a space. The 

consensus motif S M derived from alignment M is the concatenation of the 

consensus characters for each column of M. 

Each motif has an associated function that is used to assess how well a 

given string matches that motif. A motif matches a string if the value of that 

motif's associated distance (similarity) function relative to the motif and 

5 



CHAPTER 1. INTRODUCTION 

that string is below (above) a specified threshold value. The nature of this 

function depends on the type of motif-encoding; for instance, if the motif 

is encoded as a string, the function might be a distance function between 

pairs of strings, and if the motif is encoded as an alignment of strings, the 

function might be the value of the optimal alignment of the strings already 

in the alignment and the new string. When motifs are encoded as strings, 

two popular matching functions are Hamming distance, (which is the number 

of positions at which symbols differ in two strings of equal length) and edit 

distance (which is essentially the minimum number of symbol substitutions, 

insertions, and deletions that must be applied to transform one string into 

another). Note that both of these functions can be rephrased as similarity 

functions, which measure the number of identical-symbol positions and the 

maximum number of identical-symbol positions relative to a padding of both 

sequences with gap symbols, respectively. A motif that matches one or more 

substrings of a given sequence is said to appear in that sequence. 

A motif can allow gaps, which correspond to positions at which insertions 

or deletions can occur in the matching of that motif to a given string. These 

gaps can be explicit in the motif itself (either as special symbols in a motif­

string or a profile or as the gaps in an alignment of strings) or implicit in 

that motif's associated matching function. For instance, the latter would be 

6 



CHAPTER 1. INTRODUCTION 

the case if a motif is encoded as a string and the matching function is edit 

distance. If the motif incorporates gaps, it is called a gapped motif, else, it is 

an ungapped motif. 

In the example of Figure 1.1, the first pattern (e.g. AAAGCTAG) corre­

sponds to an gapped non-target motif and the second pattern (e.g. CCGA­

GAAT) corresponds to an gapped target motif. 

In the target identification problem, denote the sets T and A as the target 

sequences and avoidance sequences, respectively. Any motif that appears in 

both the target and avoidance sequences is a non-target motif and motif that 

appears only in the target sequences is a target motif 

1.3 Applications of Target Motif Identifica­

tion 

Target motifs correspond to patterns that characterize sequences in a subset 

of a given set of sequences, and hence distinguish sequences in that subset 

from all other sequences in the larger set. This ability makes target motifs 

valuable in several pharmaceutical applications. For instance, target motifs 

can be used in the design of diagnostics for the presence or absence of some 

subset of a group of bacteria, e.g., diagnostics for the presence of pathogenic 

strains of E. Coli in an environment known to contain multiple strains of E. 

7 



CHAPTER 1. INTRODUCTION 

Target Sequences: 

. . . . 
. . . 

. . . . . 

Avoidance 

. . . . . 

. . . . 

motif I 

.AAAGCTAG . . . . . 

.AA-GCTAG ...... 
. . AAT-CTAG . . . . . . 

Sequences: 

.. AAAGCTAG ...... 

. . AAAG-TAG . . . . . . 

gapped 
Non-Target Motif 

motif II 

.... CCGAGAAT . . . ... 
. . . . . . CGGAGAAT . . . ........ 
...... CGGA-AAT . .......... 

. . . . . . . . . . . . . .. . . 
. . . . . . ... . ..... 

gapped 
Target Motif 

Figure 1.1: An example of gapped target motif. Motif I is a non-target motif 
since it presents in the avoidance sequences; motif II is a target motif because 
it does not show similar pattern in the avoidance sequences. Both motif I 
and motif II are gapped motif since they contain gaps 

8 



CHAPTER 1. INTRODUCTION 

coli. Target motifs may also be useful as candidate sequence targets in the 

design of broad spectrum drugs that act on a specified group of organisms 

without affecting another specified group of organisms, e.g., antibiotics that 

disrupt particular genes or gene products in pathogenic strains of E. coli 

while leaving the corresponding genes and gene products in human beings 

and normal human-internal microbial flora intact. Such sequence targets 

may be used either directly as targets for anti-sense therapeutics or indi­

rectly as components of assay for the screening of other potential compounds 

against group-specific sequences that are conserved in a group of interest and 

hence may be crucial to the functioning of organisms in this group. These 

applications and others are discussed in more detail in [11+99]. 

It is very important to stress that many of the target motifs produced by 

the target motif finding algorithms may not be useful as diagnostics or drug 

targets for various reasons, i.e., motif occurring in sequences other than those 

considered in an organism, secondary-structure interference with binding. 

However, they should prove a first approximation to sets of useful targets 

and diagnostics, and thus make the diagnostic and drug development process 

faster and cheaper by narrowing the range of sequences or compounds that 

must be considered in subsequent laboratory-intensive rounds of testing. 

9 



CHAPTER 1. INTRODUCTION 

1.4 Previous Results for Target Motif Iden­

tification 

Ito et al. [ISNH94] gave a low-order polynomial-time algorithm for a spe­

cial case of the target motif identification problem in which the motif is a 

string, the matching function is edit distance, and the target motif is required 

to be a substring of each of the target sequences. Lanctot et al. [LL+99] 

considered the case in which the motif is a string, the matching function is 

Hamming distance, and all target sequences are of the same length as the 

motif. They showed that this problem (which they called Distinguishing 

string selection) is N P-hard and gave a polynomial-time approximation al­

gorithm that is guaranteed to produce a motif whose distance to the target 

sequences is within a factor of 2 of optimal. Unfortunately, the high order 

of the polynomial in this algorithm's time complexity renders it useless in 

practice. 

1.5 Summary of My Results 

The first contribution of my thesis is a set of simple modifications to the Gibbs 

Sampling heuristic algorithms for finding ungapped [LAB+93] and gapped 

10 



CHAPTER 1. INTRODUCTION 

[RT98] motifs which allow these heuristics to find target motifs. These mod­

ified algorithms actually solve a relaxed version of the target motif identifi­

cation problem in which a derived target motif is only guaranteed to be far 

relative to some threshold from the given avoidance sequences under a given 

similarity function and is assumed to be close to the target sequences under 

the probabilistic distance function implicit in the Gibbs motif-finding heuris­

tic. However, both algorithms operate in low-order polynomial time and the 

latter of these algorithms is the only known algorithm that can derive gapped 

target motifs. 

The second contribution of my thesis is a set of experiments on simulated 

and real datasets whose results establish the following two points: 1) that 

algorithms such as the one proposed in this thesis which integrate avoidance 

information into target motif search are useful because the naive method 

for solving the target motif identification problem may fail under certain 

conditions (namely, when weakly-conserved target motifs exist in the same 

sequence with strongly-conserved non-target motifs); and 2) the algorithm 

described in this thesis finds the target motifs in given sequence datasets 

quickly under a variety of conditions. 

This thesis is organized as follows: Chapter 2 describes the algorithms, 

which consists of a description of the basic Gibbs Sampling algorithm for 

11 



CHAPTER 1. INTRODUCTION 

finding ungapped target motifs [LAB+93] and a generalization of this algo­

rithm [RT98] to handle gapped motifs. Chapter 3 describes how the imple­

mentation is organized and its main data structures as well as performance 

analysis. Chapter 4 reports the simulation studies. Chapter 5 reports some 

experiments on real sequence datasets. Chapter 6 discusses about perfor­

mance of our algorithm on real datasets. Chapter 7 is the conclusions and 

future work. 

Please note that some of the aspects and conclusions given in this the­

sis appeared previously in RECOMB poster in 1999 [JTWZ99] and the 

manuscript to be submitted to Journal of Computation Biology [JTW99]. 

12 



Chapter 2 

Algorithms 

2.1 Basic Ideas of Gibbs Sampling Algorithm 

Gibbs Sampling can be viewed as an instance of a general stochastic strat­

egy for determining the parameters of a statistical model relative to a given 

data set. This strategy starts with some setting of parameter-values and 

iteratively changes the value of one parameter at a time by assuming that 

the remaining parameters are correct and invoking Bayes' Theorem until all 

parameters converge to stable (if not optimal) values (see [LAB+93, LNL95] 

and references for details). With reference to the motif identification prob­

lem, the model is a motif encoded as an alignment of strings, the parameters 

are the positions of the motif within each sequence in a given set S (the 

13 



CHAPTER 2. ALGORITHMS 

motif-instances), and the stochastic heuristic modifies these motif-instances 

one sequence at a time, one sequence per iteration, until the alignment of 

these motif-instances de notes a stable (if not optimal) motif. 

The general algorithm for Gibbs Sampling motif identification is given 

m Table 2.2. Though several steps of this algorithm may be stochastic, 

the primary stochastic element is the stochastic selection performed in Step 

8. Under stochastic selection, an element in a set is selected at random 

relative to the probabilities derived by normalizing the weights assigned to 

the elements in that set. This type of selection is intuitively more appealing 

than a deterministic selection that would always select the highest- or lowest­

weighted value because stochastic selection can allow a local-search heuristic 

algorithm to escape from (and hence avoid being trapped in) local optima. 

The Gibbs motif identification algorithms described in the remainder of 

this thesis all follow the outline of the algorithm given in Table 2.2. These al­

gorithms implement this basic algorithm in different ways, but can ultimately 

be characterized by how they answer the following two questions: 

1. What constitutes a motif model? 

2. How is such a motif model scored against the motif-instances in a se­

lected sequence? 

14 



CHAPTER 2. ALGORITHMS 

program Stochastic Motif Identification 

Input: A set S of sequences over some alphabet. 
Output: A candidate motif for S. 

boolean finished 

begin 
1. Select initial motif-instances in the sequences of S. 
2. Create initial motif-model from motif-instances. 
3. finished :=false 
4. while not finished do 
5. Select sequences from S. 
6. Construct motif-model from motif-instances in S- { s }. 
7. Weight all possible motif-instances in s relative to thee motif-model 

derived above. 
8. Stochastically select a new motif-instance x for s relative to 

these weights. 
9. Update motif-instance information for s relative to x. 
10. Check if motif-model has converged and process is finished. 
11. Output motif-instances for S. 
end 

Table 2.2: Basic Algorithm for Stochastic Motif Identification. 

2.2 Ungapped Motif Identification 

2.2.1 General Strategy 

The first algorithm for identifying motifs by Gibbs sampling was given in 

[LAB+93]. This algorithm finds ungapped motifs of a pre-specified length 

W. In this algorithm, a motif is modeled as a collection of W + 1 multinomial 

probability distributions over the sequence alphabet :E, where the first W of 

15 



CHAPTER 2. ALGORITHMS 

these distributions correspond to a profile-encoding of the motif, i.e., the 

first W of these distributions correspond to the frequencies of occurrence 

qi,j, 1 :::; i :::; W and 1 :::; j :::; 1~1, of symbol j at position i in the motif, 

and the final distribution corresponds to the "background" frequencies of 

occurrence pj, 1 :::; j :::; 1~1, of symbol j in parts of the sequences that are 

not in the motif. A candidate motif-instance string x = x 1x 2 • • • xw over 

alphabet ~ is evaluated against the motif model in terms of the ratio 1 

w 
Qx/ Px = ll(qi,sym_lnd(x;)/Psym_ind(x;)) 

i=l 

where symJnd( s) is the index of symbol s in ~. For numerical reasons, this 

product of ratios is more often computed as an equivalent sum of log-ratios 

known as the F -value, 

w IL:I 
F = L L Ci,j log qi,i/Pi 

i=l j=l 

where ci,j is the unnormalized count of the number of occurrences of symbol 

i at position j in the motif, and Ci,j, qi,j, and pj are computed from the motif 

model based on all motif-instances in S - { s} and the candidate string x. 

Intuitively, by seeking motif models that maximize the ratio Qx/ Px, 

1Qx are the probabilities of generating each segment x according to the current motif 
model; Px are the probabilities of generating these segments by background. 

16 
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the algorithm is searching for the motif model whose collective symbol-

occurrence distribution is probabilistically the most distinct from the back-

ground symbol-occurrence distribution. As such, the distance function en-

coded in this algorithm is a variant of the Kullback-Leibler distance 

H(QIIP) = L:Q(x)log(Q(x)/P(x)) 
X 

which gives a measure of the distinctness of probability-distributions Q and 

P ( H ( Q II P) is also known as the relative entropy of Q to P). This connection 

is more easily seen in the re-formulation of the ratio Qx/ Px in terms of F. 

2.2.2 Algorithm 

The algorithm in [LAB+93] is described in Tables 2.3, 2.4 and 2.5. Several 

matters are worth noting about this algorithm. First, due to various problems 

associated with storing and operating on very small real numbers accurately 

in a computer, For numerical reasons to avoid underflow, the probability 

ratio Qxf Px will typically be computed as the the log-odds ratio [DEKM98, 

Section 3.6]: 
w 
L:(logqi,sym_ind(x;))- (logpsym_ind(xi))) 
i=l 

Second, the pseudocounts in procedure Construct_MotiLModel are designed 

to handle the problems that avoids zero probabilities and "normalizes" the 

frequency-occurrence counts obtained from the limited data set in S to more 

17 
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accurately reflect the underlying statistical distributions in the model. In 

this method, probability estimates are obtained in a two-step process. First, 

pseudocounts M M.psu[i] for each possible symbol i in the alphabet (amino 

acids, in the case of proteins) added to the observed counts are divided by 

the total counts over all symbols (observed plus pseudocounts), to obtain the 

probability of each symbol. That is, the expected probability of a letter i at 

motif model position j is: 

qi = 
cm[i][j] + psu[i] 

lnl + lzl 

where lnl is the number of target sequences and lzl is the summation of 

pseudocounts. It is claimed that the algorithm if each psu[i] is multiplied 

by a square root of N, where N is the number of sequences, works better 

[LAB+93, p. 214]. The statistical problems associated with inferring motif 

models from a small number of sequences often requires more complex and 

computationally-expensive pseudocounts [DEKM98, Section 5.6]. Finally, 

the termination of the algorithm is judged in terms of a quantity F -score 

and a integer value k, i.e. it is terminated if the F-value has not been 

increased in number of k iterations. 
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program Ungapped Gibbs Motif Identification 

Input: S, a set of sequences over some alphabet with num_sym symbols, 
W, an expected motif-width. 
N I, convergence parameter 

Output: A set of length-W motif-instances for S. 

record S I* Input sequences *I 
integer N 
integer SLEN[N] 
char *SEQ[N] 

I* Number of sequences *I 
I* Length of each sequences *I 

I* Sequences *I 

record M M I* Motif model *I 
integer W /* Width of motif *I 
integer mi_start[l ... N] I* Start-points of motif-instances *I 
integer cm[l ... W][l ... num_sym]l* Motif position symbol-counts *I 
integer cb[l ... num_sym] I* Background symbol-counts *I 
integer toLcb 
real psu[l ... num_sym] I* Symbol pseudo-counts *I 
real toLpsu 
real q[l ... W][l ... num_sym]I*Motif position symbol probabilities* I 
real p[l ... num_sym] I* Background symbol probabilities *I 

integer s 
boolean finished 

begin 
Initialize__MotiLModel(S, W, M M) 
finished := false 
while not finished do 

Randomly select sequence s from S. 
ConstrucLMotif__Model(S, s, M M) 
Select__N ew __MotiLinstance( S, s, M M) 
finished:= CheckJ:LFinished(S, M M, N I) 

Output motif-instances for S. 
end 

Table 2.3: Ungapped Gibbs Motif Identification: Data Structures and Main 
Program. 
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procedure lnitializel\1otiLModel(S, W, M M) 
begin 

Initialize M M by setting all value to zeroes 
Randomly select motif start-position for each sequence in S 
Build an initial motif model based on the initial motif-instances 

end I* Of INITIALIZEJ\10TIF J\10DEL *I 

procedure ConstrucLMotifl\1odel(S, s, M M) 
begin 

Compute MM.cm[i][j], 1:::; i:::; MM.W and 1:::; j:::; num_sym, 
to the number of occurrences of symbol j in column i of the 
implicit motif-instance alignment 

(excluding the row for the motif-instance in sequence s ). 
Compute M M.cb[j], 1 :::; j :::; num_sym, to the number of background 

occurrences of symbol j, i.e., the number of occurrences of symbol j 
in all sequences in S except s that are not in any motif-instance 

Set M M.toLcb = L_j~r;-sym M M.cb[j]. 
Compute_Qi,j(S, M M) 
Compute_Pi(S, M M) 

end /* Of CONSTRUCT J\10TIF J\10DEL *I 

procedure Compute_pseudocount(S, M M) 
begin 

Compute M M.psu[j], 1 :::; j :::; num_sym, 
to the pseudocount for each symbol and set 

Set total pseudocount M M.toLpsu = L.j~r;-sym M M.psu[j]. 
end I* OF Compute_pseudocount *I 

procedure OutpuLMotif(S, M M) 
begin 

for i = 0 to S.N do 
for j = MM.mi_start[i] to MM.W do 

output S.SEQ[i][j] 
end I* OF OutpuLMotif(S, M M) *I 

Table 2.4: Ungapped Gibbs Motif Identification: Functions and Procedures 
(Cont'd). 
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function symJnd( s) 
Returns index of symbols in alphabet. 

procedure Compute_Qi,j(S, M M) 
begin 

for i = 1 to W do 
for j = 1 to num_sym do 

M M [i][ '] = MM.cm(i][j]+MM.psu(j] 
.q J (MM.N-l)+MM.tot..psu 

end /* OF Compute_pseudocount *I 

procedure ComputeYj(S, M M) 
begin 

for j = 1 to num_sym do 
M M [ '] _ MM.cb(j]+MM.psu(j] 

·P J - MM.tot...r;b+MM.tot..psu 

end I* OF Compute_pseudocount *I 

procedure Select_New_MotiLinstance(S, s, M M) 
begin 

for each substring x = x 1x 2 • • • xw of length Win sequences do 
Compute A[i] = Qxl Px, where i is the start-point of x in s 

Qx = TI~1 M M.q[i][symJnd(xi)], 
Px = TI~1 M M.p[symJnd(xi)]. 

Select new motif-instance x' for s by stochastically sampling 
over the normalized weights 
A'[i] = A[i]l~f~~n(sJA[j]. 

Update motif-instance information for s relative to x'. 
end I* Of SELECT _NEW _MOTIF _INSTANCE *I 

function Check_ILFinished( S, M M, N I) 
begin 

Recompute MM.q[i][j] and MM.p[j] 
F = I:~i I:j~";-sym M M.c[i][j]log ~~:;i~Jjl. 

if F has not been improved more than N I iterations 
return true 

else return false 
end I* Of CHECK_IF _FINISHED *I 

Table 2.5: Ungapped Gibbs Motif Identification: Functions and Procedures 
(Cont'd). 
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2.2.3 Time Complexisity 

At present, outside of some rules-of-thumb derived from practical experience 

[LAB+93, p. 213], it is not known how many iterations will be required for 

the algorithm to converge on a motif model for a given data set. Hence, 

the actual time complexity of this algorithm cannot be given. However, it is 

possible to give the time complexity of each iteration. The time and space 

complexities of each of the functions and procedures used in the algorithm 

are as follows: 

• Initialize...Motif_Model: O(N) time, 0(1) space. 

• ConstrucLMotiLModel: O(N L + Wl~l) time, 0(1) space. 

• Select_New_Motif_lnstance: O(LW) time, O(L) space. 

• Check_lf_Finished_lnstance: O(N L + Wl~l) time, 0(1) space. 

The sequence and motif-model data structures require O(N L + Wl~l) space. 

Hence, if I is the number of iterations the algorithm requires to converge, the 

time and space complexities ofthe algorithm as a whole are O(I(N L+ WI~ I)) 

and O(N L +WI~ I), respectively. 

Many modifications of this basic algorithm are possible. For instance, it 

is possible to estimate the length W of the best motif model over several runs 
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of the algorithm described above using a parameter G [1AB+93], which is 

related to F-value; more computationally and statistically complex methods, 

e.g., column sampling/fragmentation. are described (albeit not in algorith­

mic terms) in [1195, 1N195, N1195]. Besides, the algorithm can be easily 

adapted to allow multiple motif models at one time; however, this will also 

increase the number of iterations require to converge [1AB+93, page 210]. 

Various other modifications dealing with preserving consistent orders across 

multiple models are described in [1AB+93, 1195, 1N195, N1195]. 

The algorithm described above is the most basic version of the Gibbs 

sampling motif-finding algorithm, in that it assumes that there is one motif 

in the given set of sequences, one copy of that motif in each sequence, and the 

length of that motif is known. Modifications of this basic algorithm that allow 

it to automatically set motif length and automatically determine both the 

number of copies of a motif in each sequence as well as the number of motifs 

present in the set of given sequences are described (albeit often in statistical 

rather than algorithmic terms) in [1AB+93, 1N195, 1195, N1195]. 
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2.2.4 Identifying Gapped Motifs 

2.2.5 General Strategy 

Though a strong case can be made for the utility of ungapped motifs on 

the basis of the domain-structure of proteins [LAB+93], there are also occa­

sions when gapped motifs are desirable, e.g., when non-Hamming distance 

measures are used in motif identification. Two algorithms for identifying 

gapped motifs by Gibbs sampling have been given in the literature. The first 

algorithm, which incorporates constraints that favor collinearity and close 

spacing of multiple motifs into the algorithm given in [LAB+93], is men­

tioned briefly on page 210 of [1AB+93] and is partially sketched in [1195]; 

however, this algorithm did not significantly increase performance in practice 

relative to the original algorithms and was more susceptible to being trapped 

in local optima [1AB+93, p. 210]. The second algorithm (given in [RT98]) 

was originally designed for finding multiple occurrences of a gapped motif 

in a single sequence; however, it can be trivially reformulated to look for a 

single occurrence of a motif in each sequence of a given set of sequences by 

making each motif-instance occur in a distinct sequence. This algorithm will 

be described in more detail below. 

The algorithm in [RT98] encodes a motif as an alignment of strings, each 

of which is a motif-instance substring from a different sequence. A candidate 
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motif-instance string x is evaluated against the motif in terms of the score 

of the best pairwise alignment of x and the motif-model alignment. In this 

pairwise alignment, each symbol r of x is aligned with a column j of n 

symbols drawn from the motif-model alignment. The column j' of n + 1 

symbols composed of r and j has the score 

a(r,j) = ( L P{ log2 (P{ / Bk)) + (g · p9 ) 

k:P{:;i:o 

where P{ is equal to (C{ + gBk)/(n + 1), C{ is the number of occurrences 

of symbol k in j', Bk is the number of occurrences of k in the background 

portions of the sequences that are not part of any motif-instance, g is the 

number of gaps in j', and p9 is a user-defined penalty associated with creating 

a gap. As defined above, the score a(r, j) is always non-negative, and hence 

could encourage the proliferation of poorly-conserved columns in the optimal 

alignment; hence, the authors recommend that the expected value of a(r,j) 

be subtracted from each column's score to reduce the expected score to zero. 

By analogy with the algorithm in [LAB+93], we will call the score of an 

alignment relative to a(r,j) the F-value of that alignment. Initially, all of 

the substrings comprising the motif alignment are of a pre-specified length 

W. However, over the course of executing the algorithm, the length of the 

alignment will change subject to the constraints on gap and column insertion 

exercised by the value of p9 • 
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In practice, rather than evaluating the pairwise alignment of the motif­

model alignment and each substring x of sequence s in Step 7 of the algorithm 

given in Table 2.2, the motif-model alignment is aligned with all of s simul­

taneously using a variant of end-space-free alignment [Gus97, Section 11.6.4] 

such that the score associated with the best alignment of the motif align­

ment and the substring of s ending at position i is given in position ( w, i) 

of the dynamic programming matrix. This not only lowers the computation 

time associated with Steps 7 and 8 from O(W2 L) to O(W L ), where W is 

the length of the motif-model alignment and L is the length of the longest 

given sequence, but also allows the length of the motif alignment to change 

as symbols within individual sequences are inserted and deleted (see [RT98] 

for details). 

The distance function encoded in this algorithm is a variant of the Kullback­

Leibler distance, and hence has the same justification as that given for the 

algorithm in [LAB+93]. Note, however, that the admittedly ad hoc manner 

in which gap-penalties are introduced into the distance function renders this 

connection more tenuous. 
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2.2.6 Algorithm 

The gapped Gibbs motif identification algorithm is given in Tables 2.6, 2. 7, 

2.8, 2.9 and 2.10. 

To quickly pick up a sampled candidate motif instance, we stored the 

weights to an one dimensional array A (at the bottom of Table 2.9) and do 

a binary search to find the value. This takes O(log L) time, where L is the 

length of the longest sequence. 

2.2. 7 Time Complexity 

As is the case for the algorithm in [LAB+93], there is no known bound on the 

number of iterations. However, it is still possible to give the time complexity 

of each iteration. The time and space complexities of each of the functions 

and procedures used in the algorithm are as follows. In the expressions below, 

let W' be the length of the alignment of the motif-instances. Though W' is 

upper-bounded by N L in the worst case, i.e., the alignment consists of all 

strings such that none overlap in the alignment, it will in practice be O(W). 

• Initialize...MotiLModel: O(NW) time, 0(1) space. 

• ConstrucLMotiLModel: O(N L + WIL:I) time, 0(1) space. 

• Compute_CosLMatrix: O(IL:IW') time, 0(1) space. 
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program Gibbs Sampling Algorithm on Gapped Motif Identification 

Input: S, a set of sequences over num_sym symbols, 
W a motif-width W. N I, a convergence value, G, gap penalty 

Output: An alignment of motif-instances for S. 

record S I* Input sequences *I 
integer N I* Number of sequences *I 
integer len[l ... N] /* Lengths of sequences *I 
char sym[l ... N][l ... len[i]] /* Symbols in sequences *I 

record M M I* Motif model *I 
integer N I* Number of sequences *I 
integer W I* Width of motif* I 
integer mi_start[l ... N] I* Start-points of motif-instances *I 
integer mi_finish[l ... N] I* End-points of motif-instances *I 
integer alen /* Length of motif* I 
char asym[l ... N][l ... alen] I* Motif-instance alignment* I 
integer cm[l ... alen][l ... num_sym] 

/* Motif-instance alignment position symbol-counts *I 
integer cg[l ... alen] /* gap-counts *I 
integer cb[l ... num__sym] I* Background symbol-counts* I 
integer toLcb 
real q[l ... W][l ... num_sym] /* symbol probabilities *I 
real p[l ... num_sym] /* Background symbol probabilities *I 

integer s 
boolean finished 

begin 
Gibbs Sampling Main Loop 

end 

Table 2.6: Gapped Gibbs Motif Identification: Data Structures and Main 
Program. 
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begin 
InitializeJ\1otiLModel( S, W, M M) 
finished := false 
while not finished do 

Randomly select sequence s from S. 
ConstrucLMotif_Model(S, s, M M) 
Select.NewJ\1otiLinstance(S, s, M M) 
finished:= CheckJ:LFinished(S, M M, N I) 

Output motif-instance alignment for S. 
end 
procedure lnitialize_Motif_Model(S, W, M M) 
begin 

Initialize all values to zeros 
Randomly select the motif start-position for each sequence in S. 
Initialize the motif-instance alignment to the ungapped 

alignment of the selected motif-instances. 
end I* Of INITIALIZEJ\10TIF _MODEL *I 

procedure Construct_Motif_Model(S, s, M M) 
begin 

Set MM.cm[i][j], 1:::; i:::; MM.W and 1:::; j:::; num_sym, 
to the number of occurrences 
of symbol j in column i of the implicit motif-instance 
alignment (excluding the row for the motif-instance in sequence s). 

Set M M.cg[i], 1 :S i :::; M M.alen, to the number gaps in column 
i of the motif-instance 
alignment (excluding the row for the motif-instance in sequence s). 

Set M M.cb[j], 1 :S j:::; num_sym, to the number of background 
occurrences of symbol j, i.e., 

the number of occurrences of symbol j in all sequences in S 
except s that are not in any 

motif-instance, and set M M.tot_cb = L,j~r;-sym M M.cb[j]. 
for j = 1 to num_sym do 

M M.p[j] = M M.cb[j]l M M.tot_cb 
for i = 1 to W do 

for j = 1 to num_sym do 
MM.q[i][j] = (MM.cm[i][j] + (MM.cg[j] * MM.p[j]))IMM.N 

end I* Of CONSTRUCT _MOTIF _MODEL *I 

Table 2.7: Gapped Gibbs Motif Identification: Data Structures and Main 
Program (Cont'd). 
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FUNCTION symJnd(s) 
Returns index of symbols in alphabet. 

procedure Select_New_MotiLinstance(S, s, M M) 
real C[1 ... num_sym + 1][1 ... M M.alen + 1] 
real DP M[O ... S.len[s]][O ... M M.alen] 
real A[1 ... S.len[s]] 
begin 

Compute_CosLMatrix(M M, C) 
Compute_.DP _Matrix(S, s, C, DP M) 
Weigh_Normalization(S, s, C, DP M) 
Select the end-point of the new motif-instance x' for s by 

stochastically sampling over the normalized weights by binary search 
For selected end-point i, traceback in DP matrix from DPM[i][MM.alen] 

to column 1 of the DP matrix to determine start-point x' 
Update motif-instance information for s relative to x'. 

end I* Of SELECT _NEW _MOTIF _INSTANCE *I 

procedure Compute_.DP _Matrix(S, s, C, DP M) 
begin 

for i = 0 to S.len[s] do 
DP M[i](O] = 0.0 

for j = 0 to M M.alen do 
DPM[O][j] = DPM[O][j -1] + C[numsym + 1][j -1] 

for i = 1 to S.len[s] do 
for j = 1 to M M.alen do 

DPM[i][j] =max( 
DPM[i- 1](j -1] + C[symJnd(S.sym[s][i])][j], 

%Alignment-column I 
% symbol match 

DPM[i -1](j] + C[symJnd(S.sym[s][i])][MM.alen+ 1), 
%Symbol gap 

) 

DPM[i][j -1] + C[num_sym + 1][j] 
% Alignment-column gap 

end I* Of COMPUTK.DP _MATRIX* I 

Table 2.8: Gapped Gibbs Motif Identification: Functions and Procedures 
(Cont'd). 
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procedure Compute_CosLMatrix(M M, C) 
begin 

I* Initialize all entries in cost matrix C to 0. 
for i = 1 to num_sym do 

add the num_sym count 
for j = 1 to M M.alen do 

compute C[i][j]by using the score function a(r,j) 

I* Initialize C for entries in which symbol is a gap. *I 
for j = 1 to M M.alen do 

add a gap count to the column 
for k = 1 to num_sym do 

compute C[num..sym+1][j] by using the score function a(r,j) 

I* Initialize C for entries in which alignment-column is all gaps. 
for i = 1 to num_sym do 

initialize MM.cm[MM.alen+1] = 1.0 
for k = 1 to num_sym do 

C[i][MM.alen+ 1] = l.OIN(MM.cm[MM.alen + 1][k] + MM.p[k]t) 
1 ( (1/N(M M.cm[MM.alen+l][k]+M M.p[k]t))) 
og MM.p[k] 

I* Incorporating gap penalty 
for i=1 to MM.alen do 

for j=1 to num_sym do 
C[j][i] = C[j][i]- (~C[j][i] + numberofgapsinthecolumn *penalty) 
C[num__sym][i] = C[num_sym][i]- (~C[j][i] + numofgaps 

inthecolumn *penalty) 
C[i][M M.alen] = C[i][M M.alen]- t * columngappenalty 

end I* Of COMPUTE_CQST _MATRIX *I 

procedure Weight_Normalization(S, s, C, DP M) 

begin A[i] = DP M[i][M M.alen]I~J~~n[sJ DP M[j][M M.alen], 
1 :::; i :::; S.len[s]. 

end 

Table 2.9: Gapped Gibbs Motif Identification: Functions and Procedures 
(Cont'd). 
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function CheckJLFinished( S, M M, N I) 
begin 

Recompute M M.q[i][j] and M M.p[i][j] as in ConstrucLMotiLModel 
relative to all sequences in S. But add the new motif instance 
Compute F-score of motif model as : 

"~. "~um_sym M M [ "] [ "] 1 M M.q[i](j] 
L..Jz=z L..JJ=l .c ~ J og MM.p[j] · 

if F -score of motif model has been improved 
counter= 0; 
Update output motif model; 

else counter++; 
if counter :::; NI iterations then 

return true 
else 

return false 
end /* Of CHECK_IF .FINISHED * j 

Table 2.10: Gapped Gibbs Motif Identification: Functions and Procedures 
(Cont'd). 

• Compute_DP _Matrix: O(LW') time, 0(1) space. 

• SelecLNew_MotiLinstance: O(I~IW'+LW'+(L+W')N) = O(LW'I~IN) 

time, O(I~IW' + LW') = 0((1~ + L)W') space. 

• Check_If_Finished_lnstance: O(NL + Wl~l) time, 0(1) space. 

The sequence and motif-model data structures reqmre O(N L + NW' + 

W'l~l) = O(N L + (N + I~)W') space. Hence, if I is the number of iterations 

that the algorithm requires to converge, the time and space complexities of 

the algorithm as a whole are O(I(N LW'I~I)) and O(N L+ (N + L+ I~I)W'), 

respectively. 
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The algorithm above can be seen as a generalization of [LAB+93) that 

operates purely in terms of optimizing the F-value rather than the log-odds 

ratio; hence, if appropriate care is taken in constructing and operating on 

the dynamic programming matrix, this algorithm can construct gapped or 

ungapped motifs. This algorithm can also be modified to handle multiple 

motif models along the lines described in the previous sections. One very 

nice advantage of this algorithm is that it does not need to invoke complex 

statistical or computational machinery to decide on the optimal width W 

for a motif model- rather, the width W evolves as the length of the motif­

instance alignment over the execution of the algorithm to best fit the given 

data. 

2.3 Identifying Target Motif 

There are two obvious points in the algorithm given in Table 2.2 (and hence 

in the algorithms described in Section 2.2.2 and 2.2.6) at which avoidance 

sequence information can be used to influence target motif search - namely, 

Step 1 (when the initial motif-instances are selected) and Step 7 (when the 

weights of the potential motif-instances for a given sequence are computed). 

To implement this influence, we need an easily-computable measure of how 
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much a candidate motif-instance is like the substrings of the avoidance se­

quences (and hence how fervently this motif-instance must be avoided). We 

will first discuss the computation of this measure and then sketch how it can 

be applied in Steps 1 and 7 of the algorithm. 

2.3.1 Construction of Avoidance Sequence Model 

The most obvious measure is the score of the best alignment of the motif­

instance against every substring in the avoidance sequences under an ap­

propriate distance function. Although this approach is rigorous and appro­

priately values approximate matches, it can be computationally prohibitive 

if there are a number of avoidance sequences or these sequences are long. 

An alternative approach is to describe substrings of avoidance sequences in 

terms of the parameters of a statistical model. As the number of parameters 

is typically much smaller than the amount of data in the sequences, there is a 

loss of information; however, this loss is counterbalanced by a corresponding 

increase in the computational efficiency of evaluating motif-instances against 

a compact model. 

In this thesis, we use the first-order correlation model ()A, which encodes 

the probabilities P( alb) of symbol a occurring in the avoidance sequences, 

given that symbol b occurred immediately before symbol a; in practice, P( alb) 
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is approximated by the frequency of occurrence of substring ba in the avoid-

ance sequences. For a string x = x1 ... Xn, the likelihood of the string x 

being produced by the model ()A (and hence the weight of an instance of an 

ungapped motif relative to this model) is 

n-1 

P(xl() A) = IT P(xi+tlxi) 
i=l 

To evaluate such a model against an instance of a gapped motif, treat each 

insertion as matching all symbols, ignore all deletions, and multiply the ap-

propriate probabilities as before. 

2.3.2 Use of Avoidance Sequence Model 

Consider now how this avoidance correlation model is used to modify Steps 

1 and 7 of the general algorithm. In the case of Step 1, the potential motif-

instances are weighted relative to the avoidance correlation model and a motif 

instance can be selected either deterministically or stochastically relative to 

these weights. In the case of Step 7, the weight Wx associated with a possible 

motif-instance x is in turn weighted by the odds that this motif instance 

doesn't appear in the avoidance sequences, i.e.: 

1- P(xi()A) 
Wx. P(xi()A) 

(this assumes that the events of the motif model being close to the target 

sequences but distant from the avoidance sequences are independent, which 
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seems to be a reasonable assumption). Thus the log odds ratio that evaluates 

the similarity of a particular subsequence to the pattern while being dissimilar 

to a model of the avoidance sequences is 

2.3.3 Postprocessing for Candidate Motifs 

The final modification proposed here is to embed the algorithm as modified 

above in a postprocessing loop that terminates only when either the number 

of iterations of the postprocessing loop exceeds a user-defined bound BR 

or the produced motif has similarity greater than some threshold Tp to any 

substring in the avoidance sequences. This threshold is checked by computing 

the consensus string associated with the motif, computing an appropriate 

similarity measure (Hamming similarity in the case of ungapped motifs and 

edit similarity in the case of gapped motifs) between this consensus string 

and each substring of the avoidance sequences, and then determining if the 

maximum of these scores is greater than Tp. Note that this consensus string 

is computed as described in the Terminology section in the Introduction; in 

the case of gapped motifs, gaps are counted like any other symbol, and if the 

gaps have the maximum number of occurrences in a column, that column 

has no associated symbol in the consensus string. This postprocessing loop 
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is necessary because similarity-thresholds are not explicitly evaluated in the 

algorithms considered here and, on the whole, it is more important that a 

produced motif be the required distance from all substrings of the avoidance 

sequences. For this reason, all motifs produced by these modified algorithms 

are actually candidate target motifs, and will be referred to as such in the 

remainder of the thesis. 

The time complexity for postprocessing is M, where M is the time com­

plexity of the method used. If we use Hamming distance measure the time 

complexity is 0( L), where L is the total length of avoidance sequences. If 

we use Edit Distance measure, the time complexity is O(L *I<), where I< is 

the motif length. 

2.4 Some Issues Concerning the Improvement 

of Motif Detection 

2.4.1 Phaseshift 

One defect of Gibbs sampling algorithm is the "phase" problem [LAB+93]. 

The strongest motif may begin, for example, at positions 7, 19, 8, 23, and 

so forth within the various sequences. However, if the algorithm happens 

to choose a1 = 9 and a2 = 21 in an early iteration, it will then most likely 
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proceed to choose a3 = 10 and a4 = 25. In other words, the algorithm can 

get locked into a non-optimal "local maximum" that is a shifted form of 

optimal pattern. To reduce this problem, we can apply the phaseshift tech­

nique [LAB+93]. That is to insert another step into the the Gibbs sampling 

process. E.g. after every M iterations, we compare the current set of ak with 

sets shifted left and right by up to a certain number of letters. Probability 

ratios may be calculated for all instances and a random selection is made 

among them with appropriate corresponding weights. 

2.4.2 Ranking Multiple Target Motifs 

It is practical that algorithm may output multiple target motifs. These 

multiple target motifs can provide more options for drug designers. The 

distinct models can be ranked according to two parameters. One is the F­

value; the other is the separation distance. The separation distance S = 

mini d(Ti, c) -maxi d(Ai, c), where cis the consensus string associated with 

the candidate target motif, d( x, y) returns the maximum similarity-score of 

y to any substring of x under an appropriate similarity measure (Hamming 

similarity in the case of ungapped motifs and edit similarity in the case of 

gapped motifs), and Ti(Ai) is the ith target (avoidance) sequence. The sep­

aration distance essentially measures the minimum number of symbols that 
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need to change before the worst of the best matches of the target motif in 

the target sequences is the same as the best match of the target motif in the 

avoidance sequences. In certain applications, this is also a direct measure 

of the utility of a motif- for instance, in the case of DNA sequences, the 

separation distance is the minimum number of bases in a consensus string 

associated with a candidate target motif that must mispair before the com­

plement of that sequence can form a duplex and hence interact with some 

substring of an avoidance sequence. 
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Chapter 3 

Implementation 

Based on the algorithm we discussed at previous chapter. a software 

package was developed. We call it TMIT (pronounced "team made"), which 

is short for Target Motif Identification Tool. The package includes three 

parts (see Figure 3.1): 

1. The DNA and protein sequence simulator: it generates three kinds of 

datasets to meet the need of simulation test #1, # 2 and # 3. 

2. The mazn algorithm: the ungapped Gibbs sampling algorithm and 

gapped Gibbs sampling algorithms. 

3. The motif evaluation processing: two testing algorithms to satisfy the 

evaluation processing requirement for simulation studies # 1 and # 2. 

For the real dataset testing evaluation and simulation # 3, we adapted 
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the evaluation code in simulation #1. 

In this Chapter, we are more focusing on part two, the implementation of 

target motif identification algorithm. Part one and three will be detailed in 

Chapter 4. At the end of this chapter. we include the performance testing 

results, which should give users a feeling of how fast the program runs (run-

ning space is not an issue as we discussed before, so we are not concerned 

with the space problem). 

3.1 The Programming Development Environ-

ment 

The software was developed under a UNIX operating system (Solaris) 

and written in C programming language by using Sun Solaris C++ (v4.2) 

compiler. It can also be compiled by using GNU gee or g++ project com-

piler. Since it is command-line-driven program, it can be easily adapted to 

Microsoft window environment (WIN98 or WINNT). Borland C++ 5.0 is 

one of the compilers that we recommend to try. The implementation plat-

form was Sun Workshop 1 , which is a programming environment running 

on Solaris. It has many wonderful features to programmers. e.g. debugging 

1 For more information, see web site below: 
http:/ fsun-www .EBay.Sun.COM:80 /sundoft/Developer-productsfproducts.html 
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Figure 3.1: Structure of Implementation 
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a program, tracing memory utilization , analyzing program performance. It 

also supports team work. 

3.2 DNA and Protein Sequence Simulator 

This part (see Figure 3.1, Part 1) is implemented in C++, which contains 

six files, Files sim.h and sim.c manipulate the user input and output as 

well as how motif sequences to be embedded into individual sequences. Files 

smodel.h and smodel.c implement the simulation model, i.e. how the sequence 

is generated. Files tree.h1 tree.c take care of phylogenical tree structure. The 

simulator has the ability to generate multiple sequences for both DNA and 

protein along a given phylogeny tree with an evolution rate on each edge. 

To meet our special testing purpose that we will detail in next chapter, this 

simulator can embed motifs into the sequences associated with each node. 

3.3 Main Algorithm Implementation 

Based on the logical structure shown in Figure 3.2, which is a flow-chart 

display of the algorithm (see Tables 2.3 through 2.10), Twenty two files (both 

* .h and * .c files) are created. These files can be logically divided into 9 

modules, which are described in the following subsections 
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Open nle and read sequences: 
in put.ini, io.h, io.e, 
scquence.h, scquence.e 

Allocate memory space 
for model 
utility.h, utility..c 

Model reconstruct 

Model initialization 
gibbs.h, gibbs..c, modeL.h and modeLe 

NO 

Po stp rocessi ng: 
postprocess .h 
postprocess ..c 

Yes 

No 

Phase shift processing: 
phaseshift.h phaseshift..e 

Gibbs Sampling: 
sampling. h. 
sampling.e 
avoidance.h 
avoidance..c 

Model Construction: 
modeLh, modeLe 
p seudoeou n t.h 
pseudoeount..c 
utility.h, utility..c 

Motif Ranking: 
gibbs.h 
gibbs.e 

Result Output: 
lo.h, io.e, output.file, 
sim.log 

~----------------~----------------------------------------------

Figure 3.2: Structure of the Modified Gibbs Sampling Algorithm 
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3.3.1 10 Module 

Parameter Input 

This module includes four files: io.h, io.c, sequence.h, sequence.c. Files io.h 

and io.c take care of the user's input as well as the program's outputs. The 

program read in all required parameters from an input file named "input.ini". 

Users are allowed to specify the parameters in this file. Where appropriate, 

the type of the parameter and any default values are automatically used by 

the program if user does not specify any alternative setting. 

An example of input file is given in Figure 3.3. Some notes on each of 

the parameters in this file are as follows: 

The symbol # starts a comment line. The random seed can be any 

integer. If user wishes that the result be repeatable, the same seed can be 

used when re-running the program. The symbol tag is the switch between 

DNA and protein sequences, where 4 is for DNA and 20 is for protein. The 

expected motif length can be set between 5 to 50 bases in length as the user 

needs. The program may handle motif windows wider than 50, but such 

wide windows are not practical useful from a biologist's point of view. The 

separation threshold is used in the evaluation of a candidate motif against 

avoidance sequences, e.g. a threshold of 12 means that the best alignment of 

a candidate motif and any avoidance sequence substring should have fewer 

45 



CHAPTER 3. IMPLEMENTATION 

# This is an example of input file 
# seed number 
76 
# symbol tag DNA- 4, Protein 20 
20 
# Expected Motif length 
20 
# threshold to be considered as candidate. 
12 
# name of the target sequence file 
target.seq 
# name of the avoid sequence file 
avoid.seq 
# Output file name 
out .file 
# number of RUNS 
20 
# Convergence value. 
100 
# Symbol gap penalty 
0.08 
# Column Gap Penalty 
1 

Figure 3.3: An Example of The Input File for Parameter Setting. 
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than 12 matching bases. The higher the threshold, the lower the constraint 

for finding a target motif. The number of runs gives a maximum number 

of runs of the program that will be made: the default value is 20. The 

convergence parameter plays a role in terminating the program. The program 

will terminate if the F-value of the motif model has not increased after 

this number of iterations. In our experiments, it is set between 100 and 

200. Symbol gap penalty is the penalty for inserting a gap when aligning a 

candidate motif instance to align against a motif model. It is set to 0.6 for 

DNA and 0.02 for protein in our experiments, but this really depends on the 

user's input sequences. The user should adjust this parameter accordingly 

to achieve optimal results. Column gap penalty is the penalty for inserting 

a gap into a motif model. We give 1.0 as default. Again, this is a user 

adjustable parameter. 

Sequence Input 

Files sequence.h and sequence.c handle the sequence input. FASTA format 

is used. Figure 3.4 shows an example of FASTA format. As it reads the 

sequences, the program dynamically allocates contiguous memory space ac­

cording to the size of input sequences by using calloc( size_tnel em, size.tsize) 

at first and then by using a series of realloc( void* ptr, size_tsize) function 

calls. The sequences are stored in the memory during run time (actually this 
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>Sequence Name 1: Yellow lupine 
GVLTDVQVALVKSSFEEFNANIPKNTHRFFTLVLEIAPGAKDLFSFLKGSSEVPQNNPDL 

>Sequence Name 2: Vitreoscilla sp. 
MLDQQTINIIKATVPVLKEHGVTITTTFYKNLFAKHPEVRPLFDMGRQESLEQPKALAMT 

Figure 3.4: An Example of Input Sequence Format 

is the major space requirement of this algorithm). 

Output Files 

The output files are "output.dat" and "output.log", which contain target 

motif output and a script log file. An example of target motif output is 

shown in Figure 5.1. 

3.3.2 Model Construction Module 

This module includes two files, model.h and model.c. Three functions in these 

files are very important. They are SymbolCount(), ComputeFrequence{) and 

Normalization(). Function SymbolCount{) computes a count of each symbol 

at each position of the motif model. Function ComputeFrequence{) converts 

the number of counts of each symbol into frequency and at the same time 

incorporates pseudocount into it. Function Normalization{) normalizes each 

symbol's frequency at each position. 

For speed consideration, during model creation process, we obtain the 
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symbol count data by adding a count in a column from a new candidate 

motif instance and remove the count in a column from the motif instance of 

a removed sequence. We also map each symbol character in ~ into a program 

internal code. 

3.3.3 Pseudocount Module 

The motivation for making the pseudocount computation independent from 

the Model Module is to ease trying different ways of pseudocount calculation. 

In the files pseudocount.h and pseudocount.c, we include three different ways 

of calculating pseudocount although we only used one of them in the tests 

reported here. 

The first one is the simple pseudocount method, which is the one we used 

throughout our testing study. The algorithm for this was mentioned in the 

previous chapter and also described in [LAB+93, pages 209 and 214]. The 

second method we implemented uses substitution matrix mixtures [DEKM98, 

pages 117 and 119]. This is not a theoretically well-founded approach, but 

it makes intuitive sense as a heuristic. The idea is quite natural: the pseu­

docount that incorporating substitution matrix term dominates if there are 

small numbers of training sequences and values close to the maximum like­

lihood estimate are obtained when the number of counts is large. However 
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we haven't done much testing using this method. In addition, a third pseu­

docount method, which is the simplest one called Laplace's rule [DEKM98, 

page 108], i.e. the pseudocount is constant 1, was included in our program . 

Besides the ways we calculate pseudocounts, we also can scale pseudo­

counts by multiplying with a parameter to increase or decrease the influence 

of the pseudocounts to real sequence symbol counts. Generally, the degree of 

influence of pseudocounts to our target motif finding algorithm is not clear 

yet. This might be an interesting project that is worth exploring separately. 

3.3.4 Avoidance Module 

This module includes files avoidance.h and avoidance.c. The avoidance cor­

relation models mentioned in Chapter 2 are constructed with order-1. The 

values are stored in a 2-dimensional arrays with the size of n2
, where n is 

the maximum number of symbols in an input sequence. Higher orders also 

possible, but may not be necessary since our expected motifs are usually 

short. 

As discussed before, the product of these probabilities can get very small, 

and so we use logarithms. If the probability table is replaced by table of the 

logarithms, computing the logarithm of the probability of motif instance x is 

just the summation of table entries, making these simple correlation models 
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very fast to compute. 

3.3.5 Sampling Module 

This module implemented many core routines in Gibbs sampling processes. 

It has two files sampling.h and sampling.c. The Cost Matrix and DPM Matrix 

from Table 2.8 and 2.9 are implemented here. It is worth knowing that the 

motif model is modified if an column filled with gaps since we are introducing 

gaps into the model. The modifying procedure is to remove any of these 

columns filled with gaps during motif creation processing. 

3.3.6 Other Modules 

There are four other modules. They are utility module, postprocess module, 

phaseshift module and target motif candidate ranking module. 

In utility module, files utility.h and utility.c contain routines to allocate 

and deallocate memory spaces dynamically during program running. Be­

sides the miscellaneous routines such as mapping protein 20 characters into 

7 characters based on the group similarity (see 4.5). 

Postprocessing module also has two files postprocess.h and postprocess.c. 

Candidate target motif evaluating routines are implemented in this module. 

Phaseshift module has two files, phaseshift.h and phaseshift.c. The final 

module, target motif candidate ranking module, is to rank a list of candidate 
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motifs according to either F-values. It was coded in files of gibbs.h and 

gibbs.c. 

3.4 Motif Evaluation Processing Implemen­

tation 

The evaluation process, which is detailed in Chapter 4, takes the candidate 

target motif from our main algorithm as input to evaluate if it is the one 

satisfying all the conditions based on the known information from either 

simulated datasets or published real datasets [LAB+93, PBR89, HQH88, 

MVF94, 0191, NG94]. 

Only two files in this part: test.h and test.c see 3.1. However, based on 

the different evaluation processing for simulation studies and real data tests, 

we implemented two evaluation algorithms in these files. One is typical for 

simulation study #1, the other is typical for simulation study #2. For the 

real data testing evaluation, we adapted the simulation study #1 code. 

3.5 Performance Analysis 

To know how fast our program runs, we tested our program on a Sun 

Spare Ultra-II workstation ( 300 MH CPU and 512MB RAM) on both 
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simulated DNA and protein datasets. Each dataset consisted of two mo­

tifs (one target) of length 20 which were embedded in N target sequences, 

N = 10, 20, 30, ... , 100, and 2 avoidance sequences of base length L' = L- 40, 

L = 100,200,300, ... , 1000 (which had post-embedding lengths L and L- 20, 

respectively). Both of the motifs are always perfectly conserved. The post­

processing threshold TP was 12, i.e., 60% identity with any substring of 

the avoidance sequences. For each combination of N and L, five simulated 

datasets were constructed, the algorithm was run five times on each dataset, 

and the run-times of these 25 executions of the algorithm were averaged. 

Note that the run-times of all runs (irrespective of whether target motifs 

were or were not detected) were included in these averages. 

The results were plotted in Figure 3.5 and Figure 3.6. Clearly, there is a 

linear relationship between time elapsed and the number of target sequences. 

The same trend for length of sequences as well. These results are consistent 

with the time complexity analysis in Section 2.2.7. 
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Chapter 4 

Simulation Studies 

Given the algorithms for solving the target motif identification problem de­

scribed in the previous chapters, two questions seem particularly relevant: 

1. Are methods that integrate avoidance sequence information into the motif­

search process preferable to naive methods that simply iterate and post­

process the results of known motif-finding algorithms? 

2. If such methods are preferable, how well do they perform when confronted 

with datasets that contain many target motifs, i.e., how many runs of 

the method are required to detect a significant proportion of those 

motifs? 

To answer these two questions, we implemented both the algorithm in [RT98] 

and our modified version of the algorithm described in Chapter 2. The naive 
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approach to finding target motifs described in Table 2.6 through 2.10 was also 

implemented by embedding the algorithm in [RT98] in the post-processing 

loop described in Section 2.3. That is, first run a motif finding algorithm 

and then evaluate the motif to see if it satisfied some threshold value in the 

postprocess. 

Finally, in the remainder of this Chapter, let each execution of an algo­

rithm on a dataset be a run and each set of runs relative to a particular 

dataset be a trial. 

In addition, by using the simulated data, we are able to answer two other 

important questions. 

3. How well do the amino acid similarity grouping methods proposed m 

chapter 2 help us to detect target motifs ? 

4. How well does the separation distance (see 4.5) relate to finding target 

motifs and how does it compare to F-values? 

4.1 The Dataset Simulator 

4.1.1 Principle 

The studies described in this section use simulations relative to very simple 

simulated datasets to answer the above questions. One possible objection to 
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such simulations is that as the datasets are simple, the results derived from 

these simulations may not be relevant to real datasets. However, by virtue 

of being the product of the interaction of a small number of factors that are 

under our control, we believe that in the initial stages of an investigation 

of an algorithm's behavior, such results are easier to interpret and give a 

much more reliable and general characterization of this behavior than the 

traditional testing methods of applying algorithms to real data or performing 

simulations relative to complex datasets. 

4.1.2 Method 

Each dataset in the simulation consists of a set of target sequences and a set 

of avoidance sequences. These sequences are generated by random first as 

background sequences. They are completely independent of each other. This 

ensures us two things: 

1. The background sequences diverge enough from each other, so they are 

unlikely have any potential target motifs 

2. Each target sequence has equal weight when estimating parameters 

during the model creation process. This means that we don't have to 

worry about sequences being closely related to each other 1 . 

1The statistical model described in [LNL95, page 1157] assumes that sequences un­
der analysis are independent each other. However, they found, our results also support, 

58 



CHAPTER 4. SIMULATION STUDIES 

• Motif Sequences Once we have these background sequences, the next 

step is to embed motifs into target sequences as well as avoidance sequences. 

To simulate a motif, a "seed string" is generated first and copies of that motif 

are created by performing a specified number of mutations at random on that 

motif's seed string, where this number is the product of a specified motif 

dispersion rate and the length of the motif. For example, if the requested 

motif length is 40 bases and evolution rate is 10%, then the mutation rate 

will be 40 * 10% = 4, i.e. among the 40 bases, there will be 4 sites to be 

mutated, by either substitution or insertion or deletion depending on what 

the user requests. and the other 36 sites will be remained unchanged. 

• Motif Mutation Rates Throughout our simulation tests, a fixed 

partition of the mutation sites is used. For ungapped motif, only substitution 

occurs, i.e. substitution probability is 1. For gapped motif, whenever a 

mutation happens, a substitution has 0.60 probability, an insertion has 0.2 

probability and a deletion has 0.2 probability. Note that by an appropriate 

choice of motif length and motif dispersion rate, one can ensure that the 

only motifs that can be detected in such datasets are those that are explicitly 

embedded in those datasets. Target motifs will only be embedded into target 

sequences, but avoidance motifs will be embedded into both target sequences 

that this method works well even with substantial departures from this assumption. For 
simplicity, we are still following this assumption during simulation studies 
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and avoidance sequences. 

4.2 Evaluating Simulated Target Motif De­

tection 

Given datasets constructed as described above, we know the locations of 

all possible motifs and their degrees of conservation, and can thus not only 

unambiguously define what it means for an algorithm to detect a motif but 

more importantly determine when detection does and does not occur. Given 

a set of sequences S, the start and stop positions of a motif min each sequence 

in S, and the start and stop positions of a candidate target motif me in each 

sequence in S, define the average overlap of me relative to m in S as the 

average of the overlaps of m and me in each sequence inS. We will say that 

me detects m in S if the average overlap of me relative to m in S exceeds a 

threshold TD. 
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4.3 Simulation Study #1 

4.3.1 Motivation 

This simulation study rephrases the first question posed at the beginning 

of this section in terms of a potential pitfall with the naive method for tar­

get motif identification. Motif-finding algorithms are typically designed to 

find well-conserved motifs; hence, the motif-finding algorithms underlying 

the naive method should consistently prefer the best-conserved motif in the 

target sequences, even if that motif is a non-target motif. The question then 

becomes, how often does this happen and under what conditions does it start 

causing serious problems for the naive method (and hence validate methods 

like the one proposed in this thesis)? 

4.3.2 Methods 

Each dataset consisted of two motifs (one target) of length 20 which were 

embedded in 20 target sequences and 2 avoidance sequences of base length 60 

(which had post-embedding lengths of 100 and 80, respectively). The non­

target motifis always perfectly conserved and the target motif has a specified 

dispersion rate. The postprocessing threshold Tp was 12, i.e., 60% identity 

with any substring of the avoidance sequences, and the detection threshold 

Tv was 10. Each trial consisted of 10 runs on a particular dataset, and the 
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Average # Runs 
% Target Motif Detected 

Motif DNA Protein 
Dispersion Naive Mod. Naive Mod. 

Ungap 0 9.53 9.23 8.80 9.19 
10 9.39 9.30 8.17 8.86 
20 7.03 8.50 6.99 7.98 

Gap 0 8.05 8.29 9.45 9.63 
10 6.90 5.86 7.58 8.90 
20 3.42 3.18 4.41 7.15 

Table 4.1: Simulation Study #1 Results: Motif Detection. 

number of runs the target motif is detected in each trial was recorded. Each 

trial was done on a different dataset. The naive and modified Gibbs algo-

rithms were run for 100 trials apiece on protein and DNA sequence datasets 

with ungapped and gapped motifs generated relative to motif dispersion rates 

0%, 10%, and 20%. 

4.3.3 Results and Discussion 

The results of this simulation are given in Table 4.1. Both of the algorithms 

perform well at low motif dispersion rates, and performance falls off as the 

motif dispersion rate increases (particularly in the case of gapped motifs). 

The modified Gibbs algorithm always performs better than the naive Gibbs 

algorithm in the case of ungapped motifs and gapped protein motifs; however, 

in the case of gapped DNA motifs, the naive Gibbs algorithm performs better 
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at non-zero motif dispersion rates. Two possibilities suggest themselves: 

1. Despite our best efforts, some parameters have not been optimized to 

get the best possible performance for the modified Gibbs algorithm 

relative to gapped DNA motifs. 

2. The modified Gibbs algorithm is sensitive to the size of the sequence­

alphabet in the case of gapped motifs. This may be a product of 

our modifications or it may even be inherent in the original [RT98] 

algorithm (as that algorithm was never tested on its ability to detect 

known protein (let alone known DNA) motifs [RT98, Tom99]). 

At this time, we cannot speak with certainty about either alternative, though 

the results reported in subsequent sections tend to support the latter. In any 

case, the results reported in this section suggest that methods that integrate 

avoidance-sequence information into target-motif search may be useful for de­

tecting weakly-conserved target motifs in the presence of strongly-conserved 

non-target motifs. 

The observant reader will have noticed that the performance of both 

algorithms is better for DNA than protein datasets in the case of ungapped 

motifs, but better for protein than DNA datasets in the case of gapped 

motifs. As ungapped motifs are evaluated relative to Hamming similarity and 

ungapped motifs are evaluated relative to edit distance in the postprocessing 
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loop, it seems sensible to attribute this difference in performance to the 

evaluation function. This suggests that the form of the evaluation function 

is an additional parameter that must be adjusted to optimize the performance 

of the modified Gibbs algorithm relative to a given dataset. 

4.4 Simulation Study #2 

4.4.1 Motivation 

Given that algorithms like that described in this thesis which integrate avoidance­

sequence information into target-motif search are preferable to naive algo­

rithms, this simulation determines how many runs of our modified Gibbs al­

gorithm are required to detect significant numbers of target motifs in datasets 

that contain multiple target motifs. This is worth knowing, as it will often be 

the case with real datasets that we won't know how many motifs are present 

and will need guidelines on how many times we must run our algorithm in 

order to find a significant number of these motifs. 

4.4.2 Methods 

Each dataset consisted often motifs (five target) of length 20 which were em­

bedded in 20 target sequences and 2 avoidance sequences of base length 300 

(which had post-embedding lengths of 500 and 400 respectively). Note that 
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this preserves the ratio of two motifs to 60 bases (one motif to 60 bases) for 

target (non-target) motifs that held in the first simulation study. All motifs 

have a common specified dispersion rate. The postprocessing threshold Tp 

was 12, i.e., 60% identity with any substring of the avoidance sequences, and 

the detection threshold Tn was 10. Each trial consisted of 25 runs on a par­

ticular dataset and each trial was done on a different dataset. The modified 

Gibbs algorithm was run for 100 trials on protein and DNA sequence datasets 

with ungapped and gapped motifs generated relative to motif dispersion rates 

0%, 10%, and 20%. 

4.4.3 Results and Discussion 

The results of this simulation are given in Table 4.2. On average, the modi­

fied Gibbs algorithm recovers more than half of the target motifs after only 

10 runs and almost all of the target motifs after 25 runs under all motif 

dispersion rates in the case of ungapped DNA and ungapped and gapped 

protein motifs. The previously noted sensitivity of the algorithm when con­

fronted with gapped DNA motifs seems to be dramatically exacerbated by 

having multiple motifs present. The presence of multiple motifs may also be 

responsible for the additional pattern present in the results that go against 
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Average# 
Target Motifs Detected 

% DNA Protein 
Motif #Runs #Runs 

Dispersion 5 10 25 5 10 25 

Ungap 0 3.34 4.13 4.71 3.49 4.43 4.93 
10 3.19 3.94 4.56 3.38 4.32 4.90 
20 3.03 3.61 3.98 2.96 3.95 4.81 

Gap 0 2.56 3.02 3.47 3.69 4.44 4.96 
10 1.48 1.95 2.61 3.28 4.23 4.81 
20 0.28 0.37 0.48 1.86 2.80 4.21 

Table 4.2: Simulation Study #2 Results: Motif Detection. 

the results presented in the previous section. At this time, we have no expla-

nation for why the presence of multiple motifs should cause these patterns 

(however, see related results in Chapter 5). 

4.5 Simulation Study #3 

4.5.1 Motivation 

As noted in [LAB+93), "Prior knowledge concerning amino acid relations 

has been used profitably in pairwise protein sequence alignment as well as in 

pattern construction methods" (page 213). How should such knowledge be 

integrated into the target motif identification process? The optimal solution 

would involve using such information as encoded in any one of the popular 

amino-acid similarity matrices, e.g., PAM, Blossum. However, there is no 
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obvious way of integrating such matrices into the algorithm given in [RT98], 

and though such matrices have been integrated into the ungapped motif 

Gibbs Sampling algorithm given in [LAB+93] (see page 213), the authors 

have never explained in print how this was done. 

The solution adopted here is to partition the set of 20 amino acids into m, 

m < 20, user-specified classes such that given protein sequences are mapped 

according to this partition into sequences over an m-symbol alphabets prior 

to motif search. In particular, we consider a mapping Map1 which uses 

7 symbols to encode a refined version of the commonly used non-polar I 

polar I charged classification of amino acids, i.e., the amino acids are par-

titioned into the classes {A, I, L, M, F, W, V, Y} (hydrophobic), {S, T, N, Q} 

(polar but uncharged), {K, R, H} (positively charged), {E, D} (negatively 

charged), and {C}, {G}, and {P} [Wan98]. Such mappings encode a very 

coarse type of amino-acid similarity, and in cases where the structure of the 

protein constrains how amino acids can mutate, e.g., hydrophobicity must be 

preserved, it seems reasonable to conjecture that a mapping based on those 

constraints could help in detecting subtle motifs. The question addressed by 

the simulation in this section is, in sequences that have evolved under the 

constraints encoded in Map7, how well does Gibbs Sampling motif detection 

fare in Map7 mode as compared to unmapped mode? 
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% Average # Runs 
Motif Target Motif Detected 

Dispersion Unmap Map7 

Ungap 0 8.91 8.67 
10 8.39 8.45 
20 7.53 8.08 

Gap 0 9.63 8.42 
10 8.88 6.78 
20 7.36 4.83 

Table 4.3: Simulation Study #3 Results. Motif detection 

4.5.2 Method 

The dataset simulator was reconfigured to mutate amino acids according to 

the following model which has parameters c and d such that c, d 2: 0 and 

c + d = 1.0: 

p(x-+ y) = { 

c 
(IAI-1) 

19_(l~l- 1 ) if x E A and y tf_ A 

if x and y are in the same class A 

The balance between the values c and d expresses how predisposed substitu-

tions are to preserve the classes in the mapping. In our simulation, we set 

c = 0.75 and d = 0.25, i.e., amino acids are constrained to mutate largely 

within classes. Given this modified simulator, datasets were constructed and 

run against the modified Gibbs algorithm in unmapped and Map7 mode as 

in simulation study # 1, except that each combination of mapping mode and 

motif dispersion rate had 50 rather than 250 associated trials. 
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4.5.3 Results and Discussion 

The results of this simulation are given in Table 4.3. While Map7 mode 

does help slightly in detecting ungapped target motifs for non-zero motif 

dispersion rates, it performs much worse than unmapped mode for gapped 

target motifs. The former is consistent with [LAB+93], who found that 

integrating amino acid similarity information into the ungapped motif Gibbs 

Sampling algorithm yielded no significant improvement [LAB+93, page 213], 

while the latter may be another manifestation of the sensitivity noted in 

previous sections of the modified algorithm to small sequence alphabets when 

searching for gapped motifs. This is supported by the curious intermediacy of 

the motif detection and correlation coefficient results for Map7 mode (which 

effectively has a symbol alphabet of size 7) relative to those for protein and 

DNA datasets reported in simulation study #1 (which have symbol alphabets 

of size 20 and 4, respectively). 

While it is disappointing that our conjecture about the utility of mapping 

has not been borne out by the results in this section, it is interesting to note 

the robustness of unmapped mode at detecting gapped motifs in the face 

of symbol-biased sequence datasets. This, in conjunction with the experi­

ence of [LAB+93] cited above, suggests that the modified Gibbs algorithm 

is (and perhaps even the original Gibbs algorithms in [LAB+93] and [RT98] 
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are) insensitive to prior information about the symbol-distribution in given 

sequence datasets. If this is so, it would make the Gibbs algorithms unique 

among motif-location algorithms, in that they would not depend on the avail­

ability of such prior information (in the form of nucleotide-mutation models 

or amino-acid similarity matrices) to perform well, and would make Gibbs al­

gorithms ideal for finding motifs in datasets whose sequences have originated 

in lineages that have undergone different mutation rates. This makes further 

research into the effect of integrating prior symbol-distribution information 

into Gibbs-based motif finding algorithms very important. 

4.6 Simulation Study #4 

4.6.1 Motivation 

Besides F -value as a target motif predicator, which has been shown to be 

strongly correlated with average motif overlap in simulation study #1, #2, 

#3. The separation distance (see 2.4.2), nevertheless, is particularly attrac­

tive to drug designers [Wan98]. 

To assess separation distance as a target motif predicator, we incorporated 

the calculation of this value into simulation study #1, #2, #3 and computed 

the correlation coefficients of the target motif overlap with this value. 
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4.6.2 Method 

Three quantities were computed and stored for each candidate target motif 

created during the simulations: 

1. The average overlap; 

2. The F-value; 

3. The separation distance 

The correlation of each pair of these three quantities was assessed using Pear­

son correlation coefficients [MMH90, Chapter 6], whose values range from -1 

(strong negative correlation) to 0 (no correlation) to 1 (strong positive cor­

relation). If the relationship between the variables is linear, high (> .5) 

coefficient values for pairs of quantities suggest that the values of each of the 

quantities involved is a good predictor of value of the other quantity. The 

sample size is 5000 in simulation study # 1 and 2500 in simulation study # 

2 and 5000 in simulation #3. 

4.6.3 Result and Discussion 

The correlation coefficients are presented in parts (a), (b) and (c) of Table 

4.4, that covers various situations, which includes DNA and protein, gapped 

and ungapped, in unmapped and Map7 mode. The results show that F-value 

71 



CHAPTER 4. SIMULATION STUDIES 

is almost always more strongly correlated with (and is hence always a better 

predictor of) average overlap than separation distance. Though the strength 

of these correlations always decreases with increasing motif dispersion rate, 

the decrease is particularly dramatic in the case of DNA motifs (especially 

gapped DNA motifs). This may be another manifestation of the apparent 

sensitivity noted above of the modified Gibbs algorithm to the size of the 

sequence alphabet. In any case, the strong correlation of F -value with aver­

age overlap suggests that a reasonable strategy for detecting target motifs in 

sequences would be to sort candidate target motifs by F-value and then to 

determine if any of the highest-scoring candidate target motifs occur in the 

same regions of the given sequences (the repetition being necessary by virtue 

of imperfect correlation). This is essentially the strategy derived empirically 

in and used throughout [LAB+93] to detect motifs (see caption of [LAB+93, 

Figure 3]). The separation distance can be used as a reference parameter 

when the target motifs are DNA strings with relative high dispersion rates. 
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% Correlation with Average Overlap 
Motif DNA Protein 

Dispersion F s F s 
Ungap 0 0.9701 0.7967 0.9805 0.7231 

10 0.9499 0.8023 0.9701 0.7117 
20 0.4914 0.5191 0.9550 0.7396 

Gap 0 0.9778 0.9245 0.9812 0.8678 
10 0.7323 0.7446 0.9229 0.8125 
20 0.4514 0.2898 0.8359 0.7401 

(a) 

% Correlation with Average Overlap 
Motif DNA Protein 

Dispersion F s F s 
Ungap 0 0.9821 0.9412 0.9868 0.9688 

10 0.9152 0.9378 0.9748 0.9217 
20 0.9445 0.9501 0.9498 0.8265 

Gap 0 0.9937 0.9694 0.9900 0.9478 
10 0.6403 0.7348 0.8849 0.7989 
20 0.3916 0.4798 0.8030 0.6265 

(b) 

% Correlation with Average Overlap 
Motif Unmap Map7 

Dispersion F s F s 
Ungap 0 0.9721 0.6638 0.7973 0.7608 

10 0.9698 0.6550 0.7857 0.7689 
20 0.9572 0.7064 0.7245 0. 7712 

Gap 0 0.9812 0.8678 0.8113 0.8814 
10 0.9238 0.8319 0.6054 0.7580 
20 0.8321 0.7195 0.3996 0.3801 

(c) 

Table 4.4: Correlation Coefficients Results: a) in Simulation Study #1. b) 
in Simulation Study #2. c) Simulation Study #3. F - represent F-values 
and S - represents the separation distances 
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Chapter 5 

Experiments on Real Data Sets 

5.1 Motivation 

The previous results in this thesis suggest that our algorithm is good at 

identifying target motifs in simulated datasets under a variety of conditions. 

However, the simulator used to create the examined datasets is admittedly 

simplistic and the produced sequences and motifs probably do not exhibit 

crucial characteristics of real sequences and motifs. On the other hand, the 

real datasets we used are much more complex. The experiments in this 

section were designed to address a relevant question: 

How well does our modified Gibbs algorithm perform on real datasets? 
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5.2 Method 

5.2.1 Real Dataset Archives 

Real data sets were selected based on some proteins sequences, which con­

tain well-supported conserved regions (motifs). After a thorough literature 

survey, five sets were chosen. These are cytosine methyltransferases[PBR89], 

protein kineases [HQH88, MVF94], lipocalins[LAB+93], cyclins [0191] and 

acetyltransferase [NG94]. We retrieved these sequences from NCBI database. 

5.2.2 Target Motif Dataset Creation 

Following method is used to construct target and avoidance sequences for 

our testing purpose. We remove one or more protein sequences from a set 

of retrieved sequences to form an avoidance sequence set. The remaining 

sequences are the target sequence set. Choose a well-known motif in the 

target sequence set as a target motif and randomly permute the amino acids 

of the corresponding segments in all avoidance sequences; this effectively 

"erases" the occurrences of the target motif in the avoidance sequences. To 

evaluate our program against real datasets, we adapt the evaluation code in 

simulation study #1 here, performed 50 trials and each trial consists of 10 

runs both in unmapped and Map7 modes. 

75 



CHAPTER 5. EXPERIMENTS ON REAL DATA SETS 

5.2.3 Parameter Setting 

It worth of knowing that some parameters used were consistant on all the 

real dataset tests. They are: convergence value 100, single gap penalty 0.02 

and column gap penalty 1.0 in unmapped mode; convergence value 100, 

single gap penalty 0.4 and column gap penalty 1.0 in Map7 mode. The 

pseudocount setting is the same for both unmapped and Map7 modes. The 

other parameters varied from datasets. 

5.3 Test Results 

5.3.1 The Cytosine Methyltransferase Experiment 

As a starting point for our analysis, we chose a dataset with relatively 

more conserved regions (i.e. motifs) and window sizes close to the ones in 

our simulation study (i.e. 20 amino acids). 

DNA methyltransferases (MTases) recognize specific nucleic acid sequence 

patterns in their targets and transfer methyl groups from the donor S­

adenosylmethionine (SAM) to adenine or cytosine residues [PBR89]. They 

contain 5 highly conserved regions of which we considered 4. The motif win­

dow size varies from 20 to 24 amino acids. This dataset contains 4 target 

proteins and 1 avoidance protein with 398 amino acids in length on average. 
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Sequence Sequence Motifs 
Codename Length I IV VI VIII 

EcoRII 477 98- 117 177- 200 226- 245 274- 293 
Hhai 327 14-33 72-95 112- 131 152- 171 
Mspi 348 37- 56 95- 118 136- 155 176-195 
Phi3T 443 6- 25 69-92 142- 161 182- 201 

BspRI (*) 396 32- 51 119- 142 158- 177 198-217 

Mot1f Length II 20 24 20 20 

Table 5.1: The Cytosine Methyltransferase Motif Data Set [PBPR89, Figures 
2 and 3]. The sequences BspRI, Hhai, Mspi, and EcoRII are components of 
Type II bacterial restriction modification systems, and sequence Phi3T oc­
curs in Bacillus phages. The starred (*) sequence was selected as the avoid­
ance sequence when this dataset was transformed into target motif datasets. 
See main text for an explanation of terms. 

Table 5.1 shows the start and end positions in each sequence as well as motif 

length. 

We have run our algorithm against all the target motifs in both unmapped 

mode and Map7 mode. The results are given in Table 5.2, which are very 

encouraging. We successfully detected 3 out of 4 target motifs in unmapped 

mode with relatively high detection rates. For instance, in the case of Motif 

IV, which is one ofthe homologue with 10 residues matching inside the target 

motif. We were able to find the target motif most of the 10 runs on average. 

The detection rates (Average # runs motif detected) are 8.26 and 8.50 by 

using unmapped and Map7 mode (see Table 5.2), respectively. The Map7 

mode gives a slightly better performance on this motifs. Besides, motif VI 

and VIII are detected with detection rates at 3. 78 and 5.26, respectively, in 
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Average # Runs 
Motif Motif Detected 
Code Unmap Map7 

I 0.42 0.00 
IV 8.26 8.50 
VI 3.78 1.30 

VIII 5.26 0.16 

Table 5.2: Cytosine Methyl transferase Motif Detection Results, Average # 
Runs Motif Detected generated from 50 trials. Each trials contains 10 runs. 
For example, if a motif is detected, then we counts 1. If we detect 8 times in 
10 runs, the # Runs Motif Detected is 8.00. The values given in this table 
are the averages among 50 trials. 

unmapped mode. The example of target motif identified is presented below 

in Figure 5.1, which is motif VIII in unmapped mode. 

However, we also notice that for motif I and most of the tests in Map 7 

mode, it shows low detection rates or even failed to find one (e.g. motif I 

in Map7 mode). This pattern occurred in all the datasets in this chapter. 

To interprete this performance drop off on some target motifs, especially in 

Map7 mode, we conducted further experiments and will discuss these results 

in Chapter 6. 

5.3.2 The Protein Kinase Experiment 

Protein kinases are enzymes that transfer a phosphate group from a phos-

phate donor onto an acceptor amino acid in a substrate protein [HT91]. 
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Expected Motif Length 20; Converging Value = 100 

start pos motif 

F = 
The 

# of 
Time 

275 
152 
176 
182 

19.000967 

IDGKHFL-PQHRERIVLVGF 
LNALDYGIPQKRERIYMICF 
LDASHFGIPQKRKRFYLVAF 
LNSKFFNVPQNRERVYIIGI 

** * * 
motif length = 20 

consensus sequence is: DAKHFGIPQKRERIYLIGF 

iteration: 291 
taken on Average: 54.96 seconds 

seq name 

EcoRII 
Hhai 
MSPI 
PHI3T 

Figure 5.1: Cytosine Methyltransferase Target Motif-VIII Alignment 

They comprise of catalytic domain which ranges from 250 to 300 amino 

acids residues. Catalytic domain amino acid residues are conserved through-

out the entire protein kinase family. To be representative, the sequences 

selected have a broad phylogenetic distribution and a multiple alignment of 

these sequences has been reported in [MVF94]. Table 5.3 details the target 

motifs. 

Compared to cyclin methyltransferases, the kinase data set is less degree 

of conservation and has shorter size of motif length. We select 10 proteins 

as target sequences and 2 as avoidance sequences. The testing results are 

shown in Table 5.4. We successfully detected motif IV in unmapped mode 
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with detection rate at 8.06. And we detected motif VI and VII with lower 

rates at 1.20 and 3.70 in unmapped mode also. But we failed in Map7 

mode except for motif IV with very low detection rate 1.10. Figure 5.2 is an 

example of our program's output on Motif IV. 

Expected Motif Length 20; Converging Value = 100 

start pos motif seq name 

113 FEYLHSLDLIYRDLKPENLL CAPK 
118 IAYCHSHRILHRDLKPQNLL CD28 
131 LLFLHSQSIVHLDLKPANIL CMOS 
109 MAYVERMNYVHRDLRAANIL CSRC 
115 MNYLEDRRLVHRDLAARNVL EGFR 
104 VDYIHRQGIIHRDIKTENIF HSVK 
111 ILFMHKMRVLHLDLKPENIL MLCK 
183 MDFLASKNCVHRDLAARNVL DGM 
110 VRYLHALGITHRDLKPENLL SKH 
109 MDYLHAKNIIHRDMKSNNIF RAF1 

* * 
F = 21.579072 motif length= 20 
The consensus sequence is: DGMDYLHSKNIVHRDLKPEN 

# of iteration: 168 
Time taken on Average: 41.13 seconds 

Figure 5.2: Protein Kinase Target Motif-IV Alignment 
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Sequence Sequence Motifs 
Codename Length I IV VI VII 

CAPK 255 8- 17 113- 132 160 - 169 178-187 
CD28 293 8- 17 118- 137 168- 177 187- 196 
CMOS 286 8- 17 131 - 150 184- 193 202- 211 
CSRC 257 8- 17 109- 128 160- 169 178- 187 
EGFR 264 8- 17 115- 134 167- 176 185- 194 
HSVK 263 8- 17 104- 123 156- 165 174- 183 
MLCK 261 8- 17 111 - 130 162-171 180 - 189 
PDGM 340 8- 17 183- 202 235- 244 253- 262 
PSKH 263 8- 17 110- 129 164- 173 182 - 191 
RAF1 261 8- 17 109- 128 161-170 182- 191 

VFES (*) 271 23-32 127- 146 179- 188 197- 206 
WEE1 (*) 280 8- 17 117- 136 165 - 174 183- 192 

Motif Length II 10 20 10 10 

Table 5.3: Characterization of the Protein Kinase Motif Data Set ([MVF94, 
Figure 2]; see also [HQH88, Figure 1]). The sequences are bovine cardiac mus­
cle (CAPK), Saccharomyces cerevesiae CD28 (CD28), human oncogenic pro­
tein CMOS (CMOS), chicken oncogenic protein CSRC (CSRC), human EGF 
receptor (EGFR), herpes-simplex virus kinase (HSVK), rat skeletal muscle 
(MLCK), mouse PDGF receptor(PDGM), Hela cell (PSKH), human onco­
genic protein RAF1 (RAF1), feline sarcoma virus oncogenic protein (VFES), 
and Schizosaccharmyces pombe WEE1 (WEE1). The starred (*) sequences 
were selected as the avoidance sequences when this dataset was transformed 
into target motif datasets. See main text for an explanation of terms. 
Note that the sequences in this dataset are a eukaryotic subset of the se­
quences given in [HQH88]. The motif-codes in this table are from [MVF94]; 
the correspondence with the motif-codes in [HQH88] is I --+ I, IV --+ VI, VI 
--+ VIII, and VII --+ IX. 
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Average # Runs 
Motif Motif Detected 
Code Unmap Map7 

I 0.16 0.00 
IV 8.06 1.10 
VI 1.20 0.00 
VII 3.70 0.00 

Table 5.4: Protein Kinase Motif Detection Results 

5.3.3 The Lipocalin Experiment 

The lipocalin protein sequence dataset was used in [LAB+93] as one of the 

most difficult test cases since it contains two weak sequence motifs, cen-

tered on the generally conserved residues -Gly-X-Trp- and-Thr-Asp-. These 

two motifs are recognized from structural comparisons [CNJ90, 1887]. This 

dataset contains 4 target and one avoidance proteins. The sequences are 184 

residues on average. 

After running our algorithm against this dataset, we summarized the re-

suits in Table 5.5. Our algorithm perform well in unmapped mode but not 

in Map7 mode. An example of the target motif A generated by our algo-

rithm is shown in Figure 5.3, which is exactly the same pattern as shown in 

[LAB+93]. 
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Sequence Sequence Motifs 
Codename Length A B 

ICYA.MANSE 189 17- 32 104 - 119 
LACBJ30VIN 178 25-40 109- 124 
BBP_pJEBR 189 31-46 115- 130 

RETB_BOVIN 183 14- 29 105- 120 
MUP2_MOUSE (*) 180 27-42 109- 124 

Motif Length II 16 16 

Table 5.5: Characterization of the Lipocalin Motif Data Set [LAB+93, 
Figure 4]. The sequences and their associated SwissProt database codes 
are Manduca sexta insecticyanin (ICYA.MANSE), bovine ,6-lactoglobulin 
(LAVBJ30VIN), Pieris brassicae bilin-binding protein (BBP _pJEBR), 
bovine plasma retinol-binding protein (RETB_BOVIN), and mouse major 
urinary protein 2 (MUP2_MOUSE). The starred (*) sequence was selected 
as the avoidance sequence when this dataset was transformed into target 
motif datasets. See main text for an explanation of terms. 

Average # Runs 
Motif Motif Detected 
Code U nmap II Map 7 

A 5.54 
II ~:~~ I B 2.82 

Table 5.6: Lipocalin Motif Detection Results. 
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Expected Motif Length 18; Converging Value = 200 

start pos motif seq name 

17 FDLSAFAGAWHEIAKLP ICYA_MANSE 
25 LDIQKVAGTWYSLAMAA LACB_BOVIN 
31 FDWSNYHGKWWEVAKYP BBP_PIEBR 
14 FDKARFAGTWYAMAKKD RETB_BOVIN 

* * * * 
F = 16.323679 motif length= 18 
The consensus sequence is: FDISAFAGTWYEIAKAP 

# of iteration: 794 
Time taken on Average: 82.9 seconds 

Figure 5.3: Lipocalin Protein Target Motif A Alignment 

5.3.4 The Cyclin Experiment 

Cyclins are universal cell cycle regulators. Cycline proteins share strong 

sequence similarities. This dataset contains 198 residues on average which 

includes four homologue. By using this protein set, we are able to see how 

our program performs on motifs with longer window sizes ( 24 to 30 amino 

acids). 

The test dataset contains 7 target and 3 avoidance proteins. 4 motifs has 

been reported in these sequences with various degree of conservation [ 0 191] 

(see Table 5.7). 

The running results are summarized in Table 5.8. That tells us that our 
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Sequence Sequence Motifs 
Codename Length I II III IV 
CLAM_B 189 1- 35 44-59 75- 100 137- 157 

HUMAN__B1 190 1-35 44-59 75- 100 137- 157 
DROS_A 192 1- 35 44-59 75- 100 138- 158 

Soy 191 1- 35 44-59 75- 100 137- 157 
M-CYL2 197 1-35 44-59 75- 100 141 - 161 
H-CYC_E 207 1- 35 45- 60 76- 101 148- 168 

pucl 196 1-35 44-59 77- 102 140- 160 
CLN1 (*) 219 1- 35 44-59 100- 125 163- 183 

STAR__B (*) 191 1- 35 44-59 75- 100 137- 157 
Carrot (*) 196 1-35 44-59 75- 100 141 - 161 

Motif Length II 35 16 26 21 

Table 5. 7: Characterization of the Cyclin Core Region Motif Data Set [OL91, 
Figure 2]. The sequences are clam cyclin B (CLAM_B), human cyclin B 
(HUMAN__B1), Drosophila cyclin A (DROS_A), soy cyclin A (Soy), mouse 
CYL2 (M-CYCL2), human cyclin E (H-CYC_E), Saccharmyces cerevesiae 
Cln1 ( CLN1 ), Schizosaccharomyces pombe pucl (pucl ), starfish cyclin B 
(STAR__B), and carrot cyclin B (Carrot). The starred (*) sequences were 
selected as the avoidance sequences when this dataset was transformed into 
target motif datasets. See main text for an explanation of terms. 
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algorithm works very well for longer target motifs. Especially on motifs I and 

III, the detection rates are 8.96 and 8.0 in unmapped mode, respectively. We 

also notice that the program performs well on motif I and II in Map 7 mode, 

which implies that it prefer longer motifs. Figure 5.4 shows an example of 

the alignment on motif III. 

Very strange, zero detection rate on motif IV in both unmapped and 

Map 7 mode. In Chapter 6, we will show some of the characteristics of this 

motif and give our explanation. 

Average # Runs 
Motif Motif Detected 
Code Unmap Map7 

I 8.96 6.70 
II 6.44 5.14 
III 8.00 0.86 
IV 0.00 0.00 

Table 5.8: Cyclin Motif Detection Results. 

5.3.5 The Acetyltransferase Experiment 

Acetyltransferases is another subtle motif dataset. It has been reported in 

[NG94]. This is a diverse set of enzymes including S-and N-acyltransferases. 

Closely related sequences were removed such that no two sequences had a 

PAM120 similarity score above 100 [NG94]; 
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Expected Motif Length 26; Converging Value = 100 

start pas motif 

75 
75 
75 
75 
75 
76 
77 

AYTKKEILEMEQHILKKLNFSFGRPL 
TYTKHQIRQMEMKILRALNFGLGRPL 
SYTKAQVLRMEQVILKILSFDLCTPT 
AYTHEQILAMEKTILNKLEWTLTVPT 
SVKPQELLEWELVVLGKLKWNLAAVT 
ACSGDEILTMELMIMKALKWRLSPLT 
IYAEDLFIRMERHILDTLDWDISIPT 

* * 
F = 24.054798 motif length = 26 

seq name 

Atlantic surf clam 
cyclin B1 - human 
Drosophila cyclin A 
Soy mitotic cyclin 
M-CYL2 cyclin 2 
cyclin E - human 
CG1P_SCHPO CYCLIN 

The consensus sequence is: NAYTKDEILEMELHILKKLKWDLGRP 

# of iteration: 290 
Time taken on Average: 83.83 seconds 

Figure 5.4: Cyclin Target Motif-III Alignment 

Sequence Sequence Motifs 
Codename Length A B 

RIMLECOLI 148 66-88 107- 124 
STA_STRLA 189 107- 129 148- 165 

ATDA.JIUMAN 171 91- 113 132- 149 
iTTR_PSESY 177 93- 115 133- 150 
PUAC...STRLP 199 125 - 147 163- 180 
IAAT_AZOBR 153 77-99 118- 135 

STA_ECOLI (*) 174 86- 108 127- 144 
AACLPSEAE (*) 177 108- 130 149- 166 
AAC6_KLEPN (*) 201 116- 138 158-175 

Motif Length II 23 18 

Table 5.9: Characterization of the Acetyltransferase Motif Data Set [NG94, 
Figure 3]. The sequences are denoted by their associated Swiss Prot database 
codes. The starred (*) sequences were selected as the avoidance sequences 
when this dataset was transformed into target motif datasets. See main text 
for an explanation of terms. 
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This dataset consists of 6 target proteins and 3 avoidance proteins with 

target sequence length at 172 residues on average and two motifs to be tar-

geted. Table 5.9 shows more details. 

Running our algorithm against this dataset, results are shown in Table 

5.10. It is interesting that we failed to detect both motif A and B in un-

mapped mode. By using the Map 7 approach, we are able to detect the 

target motif A with detection rate of 6.32 on average in 50 trials. On the 

same data, we had a much lower detection rate (0.08) using the unmapped 

mode. This implies that amino acid similarity grouping approach, i.e. Map7 

in this case, does help in some case to detect target motifs. An example of 

the detected target motif A using Map7 mode is presented in Figure 5.5. The 

sequences are mapped from 20 characters into 7 characters as we have seen. 

Average # Runs 
Dataset Motif Motif Detected 

Code Unmap J Map7 

I A cety ltr ansferase t--1---;:~~-tlt-1---::::-~--;;: ~:-:::~-t---:::-~ :--;;~-::::-~---1 

Table 5.10: Acetyltransferase Motif Detection Results. 
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Expected Motif Length 18; Converging Value = 200 

start pos motif 

66 ASAAAEPEASKSGAGKAA 
107 EEAEAAPGKKGKGAGKAA 
91 EEAAAASEAKGAGAGSEA 
93 SKAAAAPSAKGKGAGKSA 
125 ASAGASPEKSGKGAGSAA 
77 KKAAASPSAKGGSAGKKA 

* * ** * 
F = 8.903478 motif length = 18 
The consensus sequence is: ASAAAAPEAKGKGAGKAA 

# of iteration: 349 
Time taken on Average: 6.28 seconds 

seq name 

E. COLI 
STA_STRLA 
ATDA_HUMAN 
TTR_PSESY 
PUAC_STRLP 
IAAT_AZOBR 

Figure 5.5: Acetyltransferase Target Motif A Alignment 

5.4 Summary 

Our algorithm can detect motifs in many real proteins with different degree of 

conservation, different motif lengthes and different numbers of input target 

sequences. unmapped mode shows better performance than Map7 mode 

most of the time. However, Map7 mode does function better on some of the 

real datasets. For example, of Acetyltransferase Target motif A shows high 

detection rate in Map7 mode but very low rate in unmapped mode Table 

5.10. 

Like many multiple sequence alignment algorithms, our algorithm is sen-

sitive to its parameters. The value of these parameters varied in different 
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datasets. The value of the single gap penalty, threshold and motif window 

size parameters as well as pseudocount setting seem to make a big difference 

in performance. For this reason among others, one of the reasons, our al­

gorithm was not successful on all the target motif tests as these tests used 

consistent parameter settings. Systematically exploring the effects of these 

parameters on our algorithm performance would be very useful and a good 

project for the future. Questions raised by our experiences includes: 

1. Does the alphabet size is really affect on the algorithm performance ? 

2. To what degree of pseudocounts influence motif detection relative to 

the size of alphabet and input sequence size ? For instance, should we 

increase the influence of pseudocounts when the input sequence size is 

small? 

3. What are the optimal parameter values for the single gap penalty and 

the column gap penalty on different size of alphabet sequences that are 

relative to different sequence types and mapping modes? 

With respect to the last question, Gusfield in [Gus97, page 312-321] de­

scribed parametric sequence alignment, which may be adapted to this study. 
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Chapter 6 

Discussion 

As we have seen in Chapter 4 and 5, the simulation tests prove that our 

program is able to quickly detect various kinds of target motifs. However, on 

real datasets, in many cases, it still has difficulty of identifying target motifs 

in both unmapped and Map7 mode by even trying different parameters. 

What other factors could cause this discrepancy of the performance of our 

algorithm on simulated and real datasets? In order to interpret this and find 

out the main reason causing the detection failure, as well as to provide some 

clues for future improvement to our algorithm, we analyzed the real datasets 

based on four types of characteristics. 

6.1 Characteristics 

Each motif was characterized by the following four characteristic quantities: 
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1. Motif length. 

2. Motif Distinctness: The degree of the distinctness of that motif from 

the background portions of its sequences. It was measured using Kullback­

Leibler distance. Given an ungapped motif of length W in a set of N 

sequences over an alphabet ~' let Q be the frequency of occurrence of 

the symbols in ~ in the instances of that motif in the sequences, Qi, 

1 ~ i ~ W, be the frequency of occurrence of the symbols in ~ at 

position i in the instances of that motif in the sequences, and P be the 

"background" frequencies of occurrence, i.e., the frequency of occur­

rence of the symbols in ~ in all non-motif portions of the sequences. 

Two distances were computed: H(QIIP), which is a measure of the 

conservation of the overall symbol-distribution in the motif relative to 

the background ( Ovr), and (2:::~ 1 H(QiliP))/W, which is a measure of 

the average conservation of the symbol-distribution for each position 

of the motif relative to the background (Avg). Each of these quan-

tities was in turn computed relative to the original protein sequences 

and the sequences as transformed under the Map"/ mapping described 

simulation experiment 3 in Chapter 4. 

3. Degree of Target-Sequence Interference: Unlike the simulated datasets 

examined in previous sections, in which the occurrences of motifs in 
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sequences were unique by virtue of the manner in which these datasets 

were constructed, real datasets may have multiple copies of a partie-

ular motif in each sequence, each with a differing degree of conserva-

tion. Call such partially-conserved copies of a motif ghosts. Given that 

our criterion of motif-detection measures overlap of a candidate target-

motif with only one of these copies and the stochastic nature of our 

algorithm makes it possible that our algorithm may accidentally lock 

onto one of the ghosts (especially if the ghost is as conserved as our 

known copy), the detection criterion can be misled to reject what is 

otherwise the correct target motif. To this end, we computed two mea-

sures of the similarity of ghosts in the avoidance sequences to known 

motifs, 

(a) Average minimum difference between consensus string I known 

motif and consensus string I ghost (CAMD(m)): 

N 

CAMD(m) = (Ld(c,mi)- max d(c,s))IN 
i=l sEs(T;),s#m; 

(b) Average minimum difference between known motif and 

ghost (GAMD(m)): 

N 

GAMD(m) = (LW- max d(mi,s))IN 
i=l sEs(Ti),s#m; 
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where m is the motif, c is the consensus string associated with m, 

mi is the occurrence of m in the i th target sequence, d( x, y) is the 

Hamming similarity of strings x and y, W is the length of m, and 

s(Ti) is the set of all substrings of length Win the ith target sequence. 

These quantities were normalized and expressed as a percentage of the 

length of their associated motif. Each of these quantities was in turn 

computed relative to the original protein sequences and the sequences 

as transformed under the Map7 mapping described in Section 4.5. 

4. Degree of Avoidance-Sequence Interference: The ghosts alluded to above 

may also exist in avoidance sequences. In this case, even though the 

known copy of the motif has been erased, a ghost that is sufficiently 

conserved might cause the post-processing loop to reject what is other-

wise the correct target motif. To this end, we computed two measures 

of the similarity of ghosts in the avoidance sequences to known motifs, 

N 

CMD(m) = (l:d(c,mi)- max d(c,s))/N 
i=l sEs(A;) 

where s(A) is the set of all substrings of length Win the ith target se-

quence. This quantity was normalized and expressed as a percentage of 

the length of its associated motif. This quantity was in turn computed 

relative to the original protein sequences and the sequences as trans-

formed under the Map7 mapping described in simulation experiment 3 
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Motif Motifs 
Characteristic I I IV I VI I VIII 

Motif Length II 20 24 20 20 

Relative Ovr/Unmap 0.6483 0.3338 0.3474 0.2405 
Entropy Ovr/Map7 0.4105 0.1638 0.0461 0.0684 

Avg/Unmap 3.0129 3.1948 2.9953 3.0322 
Avg/Map7 1.8117 1.9377 1.8375 1.6545 

Target CAMD/Unmap 33.75 42.71 40.00 40.00 
Ghosts CAMD/Map7 25.00 30.21 35.00 31.25 

GAMD/Unmap 73.75 78.12 76.25 75.00 
GAMD/Map7 76.25 79.17 75.00 72.50 

Avoidance CMD/Unmap 25.00 29.17 25.00 25.00 
Ghosts CMD/Map7 55.00 50.00 55.00 55.00 

Table 6.11: Characterization of the Cytosine Methyltransferase Motif Data 

in Chapter 4. 

The values of these quantities mentioned above for each motif considered 

here are given in Tables 6.15 through 6.11. These quantities were subse-

quently correlated with the detect ability of each motif using the Pearson 

correlation coefficient described in Section 4.6.2. 

6.2 Correlation Anaylysis Between Charac-

teristic Quantities 

Consider first the correlation coefficients given in Table 6.16. Our initial 

experience with the motifs in the acetyltransferase and lipocalin datasets 
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Motif Motifs 
Characteristic I I IV I VI I VII 

Mot1f Length II 10 20 10 10 

Relative Ovr/Unmap 0.7173 0.2719 0.4417 0.5854 
Entropy Ovr/Map7 0.4378 0.0636 0.1847 0.1966 

Avg/Unmap 2.6640 2.8200 2.7382 2.8062 
Avg/Map7 1.6407 1.4483 1.5438 1.4573 

Target CAMD/Unmap 30.00 36.50 28.00 26.00 
Ghosts CAMD/Map7 12.00 23.50 4.00 9.00 

GAMD/Unmap 66.00 77.00 65.00 66.00 
GAMD/Map7 66.00 75.50 65.00 68.00 

Avoidance CMD/Unmap 40.00 25.00 40.00 30.00 
Ghosts CMD/Map7 50.00 55.00 50.00 60.00 

Table 6.12: Characterization of the Protein Kinase Motif Data Set 

Motif 
Characteristic 

Motif Length 

Relative Ovr/Unmap 
Entropy Ovr/Map7 

Avg/Unmap 
AvgjMap7 

Target CAMD/Unmap 
Ghosts CAMD/Map7 

GAMD/Unmap 
GAMD/Map7 

Avoidance CMD/Unmap 
Ghosts CMD/Map7 

lr-1 ---,-A_M_,o,_ti±:_s-=B----1 

II 16 16 
0.4142 0.3932 
0.1291 0.1216 
3.0217 2.9573 
1.3082 1.4161 

39.06 37.50 
21.88 20.31 
75.00 75.00 
71.88 71.88 

18.75 18.75 
56.25 50.00 

Table 6.13: Characterization of the Lipocalin Motif Data Set 
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Motif Motifs 
Characteristic I I II 1 III I IV 

Motif Length II 35 16 26 21 

Relative Ovr/Unmap 0.1784 0.3917 0.0647 0.2809 
Entropy Ovr/Map7 0.0742 0.1782 0.0157 0.0554 

Avg/Unmap 2.6950 2.9746 2.4404 2.1645 
Avg/Map7 1.2478 1.4304 1.1488 0.8219 

Target CAMD/Unmap 37.14 42.97 31.25 17.26 
Ghosts CAMD/Map7 26.43 20.31 13.94 -2.98 

GAMD/Unmap 80.00 76.56 79.81 75.60 
GAMD/Map7 81.07 70.31 78.37 76.79 

Avoidance CMD/Unmap 20.00 43.75 23.08 28.57 
Ghosts CMD/Map7 54.29 75.00 53.85 66.67 

Table 6.14: Characterization of the Cyclin Core Region Motif Data Set 

Motif 
Characteristic 

Motif Length 

Relative Ovr/Unmap 
Entropy Ovr/Map7 

Avg/Unmap 
Avg/Map7 

Target CAMD/Unmap 
Ghosts CAMD/Map7 

GAMD/Unmap 
GAMD/Map7 

Avoidance CMD/Unmap 
Ghosts CMD/Map7 

1~-----,--M---.-otif_s =-------1 

.. A I B 
II 23 1 18 

0.2054 0.2123 
0.0921 0.0433 
2.2682 2.2473 
1.3076 1.0422 

26.81 26.85 
18.12 9.26 
77.54 75.00 
71.74 74.07 

26.09 33.33 
56.52 61.11 

Table 6.15: Characterization of the Acetyltransferase Motif Data Set. See 
main text for explanation of terms. 
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Motif Motif Detection Mode 
Characteristic Unmap I Map7 

Motif Length 11 o.5o61 **** 1 o.5818 ***** 1 

Relative OvriUnmap -0.4231 ** -0.3301 * 
Entropy Ovr1Map7 -0.3770 ** -0.1378 

AvgiUnmap 0.4581 *** 0.1168 
AvgiMap7 0.1466 0.1764 * 

Target CAMDIUnmap 0.6642 ****** 0.3769 ** 
Ghosts CAMDIMap7 0.5344 **** 0.3955 ** 

GAMDIUnmap 0.5301 **** 0.5187 **** 
GAMDIMap7 0.4971 *** 0.4146 ** 

Avoidance CMDIUnmap -0.3128 * 0.0181 
Ghosts CMD1Map7 -0.0482 0.0650 

(a) 

Motif Motif Detection Mode 
Characteristic Unmap I Map7 

Mot1f Length II o.4166 * 1 o.521o ** 
Relative OvriUnmap -0.5047 ** -0.2719 * 
Entropy Ovr1Map7 -0.4673 ** -0.0539 

AvgiUnmap 0.1366 -0.1625 
AvgiMap7 -0.2013 0.0492 

Target CAMDIUnmap 0.4646 ** 0.0810 
Ghosts CAMD1Map7 0.0622 0.0675 

GAMDIUnmap 0.6307 **** 0.6096 **** 
GAMDIMap7 0.5196 ** 0.3304 * 

Avoidance CMDIUnmap 0.0873 0.4061 * 
Ghosts CMDIMap7 0.0371 0.1570 

(b) 

Table 6.16: Real Data Results: Motif Detection I Characteristic Correla­
tions. The probability a that each correlation coefficient is not significantly 
different from a hypothesis of no correlation was calculated using the t-test 
described on pages 250 and 251 of [MMH90]. These probabilities are repre­
sented by starred annotation as follows: **** -+ a = 0.05, *** -+ a = 0.1, 
** -+ a = 0.2, and * -+ a = 0.5. See main text for explanation of terms. 
a). All motifs; b) Acetyltransferase B, Cyclin IV, Kinase I I VI I VII Motifs 
Omitted. 
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suggested that motif conservation and the distinctness of the overall symbol­

distribution of a motif from the sequence background were important factors; 

however, with the exception of a moderately strong correlation of unmapped 

mode detect ability with the average unmapped relative entropy, these fac­

tors do not seem to play a significant role. Indeed, it seems that the most 

important factors are motif length and various measures of the closeness of 

target sequence ghosts (in the case of unmapped mode) and motif length and 

the closeness of target sequence ghosts to the known motifs as opposed to the 

consensus strings (in the case of Map7 mode). As the strongest correlations 

stemmed from target sequence ghosts and the interference caused by these 

ghosts may be masking the effects of other factors, we removed the data for 

the five cases with the closest target ghosts (Acetyltransferase B, Cyclin IV, 

Protein Kinase I, VI, and VII) and recomputed the correlation coefficients. 

These results, given in Table 6.16,(b) do reduce the significance of many pre­

vious correlations, though correlations with target sequence ghosts remain 

strong. It is difficult to do further removal of motifs to explore other factors 

in a dataset this small without rendering the derived correlation coefficients 

indistinguishable from the effects of sampling error. However, the results we 

have do suggest that avoidance sequence ghosts play a larger role in Map7 
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mode once the effect of target sequence ghosts are removed. This is con­

sistent with our experience, which has shown that there are typically many 

more ghosts in avoidance sequences that are much closer to the threshold 

under Map7 mode than in unmapped mode. This may be a product of the 

non-random manner in which amino acids occur in actual proteins, and the 

manner in which Map7 mode "blurs" patterns under this non-random distri­

bution; this is, however, to be expected, as it is known that protein sequences 

in general and motifs in particular may contain clusters of biochemically sim­

ilar amino acids. 

6.3 Summary 

In any case, we seem to have reasonable hypotheses for the discrepancy of 

the performance of our algorithm on simulated and real datasets: 

1. Unlike our simulated datasets, real datasets may incorporate many 

copies of a motif of varying degrees of conservation. 

2. Unlike our simulated datasets constructed in Section 4.5, real datasets 

have a non-random distribution of amino acids, and this non-randomness 

is amplified by using the Map7 mapping. 
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In practice, the former is not a problem; our algorithm will simply find mo­

tifs and users will subsequently search sequences to locate any well-conserved 

ghosts of those motifs. One could even escape this problem altogether by ap­

plying the modifications described in this thesis to more complex versions of 

the Gibbs algorithms that explicitly allow and automatically detect multiple 

copies of a motif in a sequence [LAB+93, LNL95, NLL95], or by adopting a 

strategy of erasing motifs as they are found in order to expose the ghosts in 

subsequent motif searches [BE95). Ironically, the problem here is our criterion 

of detection, which is based on the assumption that only one copy of a motif 

can occur in a sequence. This highlights a (perhaps common) misconception 

that conserved regions in alignments can be treated as uniquely-occurring 

motifs. This is, in retrospect, not unexpected, as alignments are concerned 

with co-linear occurrences of distinct patterns, and do not in themselves flag 

multiple occurrences of these patterns within sequences; however, users of 

these alignments should still be careful. The latter difficulty with Map7 

mode may possibly be alleviated by modifications that allow the Gibbs algo­

rithms to use similarity-matrix schemes for encoding amino acid similarity; 

however, the experience reported on page 213 of [LAB+93) suggests other-

WISe. 
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Note that some of the most interesting implications of the results in this the­

sis stem from the discrepancy between the results for complex real datasets 

whose characteristics are unknown and simple simulated datasets whose char­

acteristics are under our control. In particular, we would not be aware of the 

degree of sensitivity of our algorithm's performance to target and avoidance 

ghosts unless this discrepancy had happened and forced us to reexamine our 

hypotheses about how our algorithm behaves and what motifs really mean. 

This brings home another important caveat: when examining an algorithm's 

behavior, simulated datasets allow us to reason systematically about this be­

havior in a rigorous manner, while real datasets ensure that our reasoning 

remains relevant. Hence testing relative to both kinds of datasets is necces-

sary. 
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Conclusions and Future Work 

The main results are summarized as followings: 

1. The simulation study #1 tells us that both of naive algorithm and our 

algorithm perform well at low motif dispersion rates, and performance 

falls off as the motif dispersion rate increases (particularly in the case of 

gapped motifs). Our algorithm always performs better than the naive 

Gibbs algorithm in the case of ungapped motifs and gapped protein 

motifs. 

2. In simulation study #2, when multiple motifs are present, our algo­

rithm is able to detect more than half of the target motifs after only 

10 runs and almost all of the target motifs after 25 runs under all mo­

tif dispersion rates in the case of ungapped DNA and ungapped and 

gapped protein motifs. 
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3. In general, the modified algorithm performs better on protein than 

DNA datasets for both ungapped and gapped motifs. 

4. Amino acid similarity grouping information does help on detecting tar­

get motifs in some cases, for instance, we were only able to detect the 

target motif A of acetyltransferase proteins in Map7 mode. 

5. The modified algorithm successfully detected many target motifs in real 

datasets. For instances, cytosine methyl transferase target motif-IV, VI 

and VIII; protein kinase target motif-IV and VII; lipocalin target motif 

A and B, cyclin protein target motif-1, II and III; acetyltransferase 

protein target motif A. 

Besides, we also notice that the alphabet size of target sequences play a very 

important role in the performance of our algorithm. Our algorithm seems 

preferable to larger alphabet size sequences like proteins. The reason for 

this is still unknown. There could be two possibilities. First, our algorithm 

inherited this fact from the modified Gibbs sampling algorithm [RT98]. Sec-

ond, the parameters used in the tests were not optimized. For example of 

pseuodocounts maybe need to be adjusted in term of different alphabet size 

sequences. 

Regarding the future work, several things closely related to the algorithm 

performance improvements and extensions: 
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1. Perform parametric study on pseudocount, size of sequence alphabet, 

gap penalties, motiflength, threshold value and convergence parameter. 

As suggested in [Gus97, page 312-321], we can partition the parameter 

space into regions such that in each region one alignment is optimal 

throughout and such that each region is maximal for this property. 

Thus the parametric study allows us to see explicitly, and completely, 

the effect of parameter choices on the optimal alignment. 

2. Explore different weighting scheme on avoidance sequences. There are 

other possible ways in which avoidance sequence information can be in­

corporated into the Gibbs sampling algorithm to influence motif model. 

At the place of the creation of the weights for candidate motif-instances 

in the selected sequence s, instead of using the method described in Sec­

tion 2.3, we may modify these weights (to use the original terminology 

of [LAB+93]) is to replace weight Qx/ Px by (Qx/ Px) + ( Qx/ Bavoidance), 

where Bavoidance is the probability associated with the best match of the 

motif model for the target sequences against any substring of any se­

quence in the set of avoidance sequences. This is intuitively appealing, 

as it implies that selected models optimize the distinctness of the mo­

tif model from both the background symbol distribution in the target 

sequences and the set of all possible motif-instances in the avoidance 
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sequences. As the magnitudes of the individual ratios are not known, 

it may be best to normalize both ratios over their maximum possible 

values and take either a linear combination, i.e., 

for constants c1 and c2 , or a more exotic function, e.g., 

of these normalized ratios to more accurately reflect the relative im-

portance of each term. This may ultimately be an application-specific 

matter. For instance, some applications may stress the quality of the 

match to the target sequences while others may require maximal dis-

tinctness from the avoidance sequences. 

3. Extend our modified algorithm to seek several target motifs simul-

taneously rather than sequentially, which allows information gained 

about one to aid the alignment of the others (see [1AB+93], [1195] 

and [LNL95] for detail). This might help to solve the "ghost" problem 

in real dataset tests described in Chapter 6. 

4. The general stochastic algorithm for motif identification given in Sec-

tion 2.3 can be adapted to describe other stochastic heuristic algorithms 

for finding motifs such as those using Hidden Markov Models (HMM) 
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[DEKM98]. One of our project member (Mr. Chris Trendall) has ap­

plied the modifications sketched in Section 2.3 to implement an HMM 

algorithm for target motif identification, and preliminary tests relative 

to ungapped motif DNA sequence datasets have shown that this al­

gorithm has performance comparable to the modified Gibbs algorithm 

described in this thesis. We should also test the modified HMM algo­

rithm on other simulated and real datasets and compare these results 

with those reported in this thesis. 
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