Microsomal Ferritin Iron Release

in Relation to TCDD Toxicity
Microsomal Ferritin Iron Release
in Relation to TCDD Toxicity

by

Ronald Bruce Rowley (BSc.)
Master of Science (1983) McMaster University
Biochemistry Hamilton, Ontario

Title: Microsomal Ferritin Iron Release in Relation to TCDD Toxicity

Author: Mr. R.B. Rowley

Supervisor: Dr. G.D. Sweeney

Number of Pages: ix, 93
Abstract

Previous experiments have demonstrated that the hepatoxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) involves synergism with iron. It has been postulated that it is storage iron that plays a role in toxic effects observed with TCDD poisoning. It was hypothesized that TCDD induction of the Ah gene locus in some way leads to mobilization of storage iron from the iron storage protein ferritin. Microsomal ferritin iron release was investigated in intact microsomes and in a reconstituted system. Evidence is presented which suggests that NADPH-cytochrome c (P450) reductase is capable of donating electrons to exogenous flavin (FMN), and that at the same time, the reduced flavin thus generated is capable of effecting the release of iron from ferritin. While no direct evidence was obtained, the results do lend support to the hypothesis that TCDD toxicity could result from the mobilization of iron from ferritin by the TCDD induced microsomal electron transport system.
Acknowledgements

I would like to thank Dr. G. D. Sweeney for the helpful advice and support given me in the course of preparation of this thesis. I would also like to thank the Medical Research Council of Canada for the funding provided. Special thanks to F. Krestynski and D. Basford for their friendship and support. None of this would have been possible without the help and support of my friends.
Table of Contents

Chapter	**Page**
I. Introduction | 1

II. Materials and Methods

1) Chemicals | 13
2) Animals | 13
3) Treatment Schedules | 14
4) Preparation of Microsomes | 15
5) Measurement of Cytochrome P450 | 15
6) Measurement of NADPH-cytochrome c reductase Activity | 16
7) Measurement of Benzphetamine-O-demethylase Activity | 16
8) Measurement of Aryl Hydrocarbon Hydroxylase Activity | 16
9) Measurement of Protein | 16
10) Preparation of Oxygen Free Nitrogen | 17
11) Measurement of Microsomal Ferritin Iron Release | 18
12) Separation and Partial Purification of Cytochrome P450 and NADPH-cytochrome c (P450) reductase | 20
13) Method of Reconstitution | 23
14) Statistics | 23

III. Results

1) Development of the Microsomal Ferritin Iron Release Assay System | 24
2) Investigation of Ferritin Iron Release Using Intact Microsomes | 45
3) The Effect of Inhibitors of Cytochrome P450 and Cytochrome P450 on the Microsomal Ferritin Iron Release Rate | 52
4) Separation and Partial Purification of Cytochrome P450 and NADPH-cytochrome c (P450) reductase | 56
5) Reconstitution of Microsomal Ferritin Iron Release | 67

IV. Discussion | 76

V. References | 88
List of Tables

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Characterization of the Microsomal Protein Samples Used to Investigate Microsomal Ferritin Iron Release</td>
<td>49</td>
</tr>
<tr>
<td>2</td>
<td>Rates of Ferritin Iron Release at Saturating Flavin Concentration</td>
<td>51</td>
</tr>
<tr>
<td>3</td>
<td>The Effect of Inhibitors of Cytochromes P450 and P1450</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td>Results of the Separation and Partial Purification of Cytochrome P450 and NADPH-cytochrome c (P450) reductase From PB Induced Microsomes</td>
<td>62</td>
</tr>
<tr>
<td>5</td>
<td>Results of the Separation and Partial Purification of Cytochrome P 450 and NADPH-cytochrome c (P450) reductase From TCDD Induced Microsomes</td>
<td>64</td>
</tr>
<tr>
<td>6</td>
<td>The Results of Reconstitution of Aryl Hydrocarbon Hydroxylase and Benzphetamine-O-demethylase Activities</td>
<td>66</td>
</tr>
<tr>
<td>7</td>
<td>The Effect of Cytochrome P450 or P 450 on Reconstituted Ferritin Iron Release</td>
<td>75</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Results of Repetitive Scanning Using Difference Spectroscopy</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>A Typical Change in Absorbance Versus Time Plot Obtained Using Dual Beam Spectroscopy</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>The Effect of NADPH Versus NADH</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>The Rate of Iron Release Versus Iron Concentration</td>
<td>38</td>
</tr>
<tr>
<td>5</td>
<td>The Effect of Varying Protein Concentration</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>The Rate of Iron Release Versus Protein Concentration</td>
<td>42</td>
</tr>
<tr>
<td>7</td>
<td>The Rate of Iron Release Versus Flavin Concentration</td>
<td>44</td>
</tr>
<tr>
<td>8</td>
<td>The Rate of Iron Release Versus Reductase Activity</td>
<td>71</td>
</tr>
<tr>
<td>9</td>
<td>The Duration of the Lag Phase Versus Reductase Activity</td>
<td>73</td>
</tr>
</tbody>
</table>
List of Abbreviations Used

AHH Aryl Hydrocarbon Hydroxylase
B-NF Beta-Naphthoflavone
CO Carbon Monoxide
DEAE Diethylaminoethyl
DLPC Dilauroylphophatidylcholine
DTT Dithiothreitol
EDTA Ethylenediaminetetraacetic Acid
FMN Flavin Mononucleotide
FMNH$_2$ Reduced Flavin Mononucleotide
HCB Hexachlorobenzene
ip Intraparitoneal
LH Lipophilic
MFO Mixed Function Oxygenase
NADH Reduced Nicotine Adenine Dinucleotide
NADPH Reduced Nicotine Adenine Dinucleotide Phosphate
PB Phenobarbital
PCBs Polychlorinated Biphenyls
PCT Porphyria Cutanea Tarda
SER Smooth Endoplasmic Reticulum
TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin
Tris Tris (hydroxymethyl) aminomethane
Introduction:

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), one of the most toxic small molecules known to man, belongs to the class of compounds known as chlorinated aromatic hydrocarbons. Also included in this group are hexachlorobenzene (HCB) and polychlorinated biphenyls (PCBs). Chlorinated aromatic hydrocarbons have become the subject of great concern over recent years, as awareness of the toxicity of these compounds has developed. Increasing levels of these environmental pollutants within the environment has prompted a great deal of research into the mechanism(s) through which these toxins exert their effects.

One of the primary target organs of chlorinated aromatic hydrocarbons is the liver. Histological examination of liver tissue obtained from rats treated with either HCB, PCBs, or TCDD show marked morphologic damage. Enlargement of centrilobular cells, vacuolization of the cytoplasm, fatty infiltration, increased endoplasmic reticulum, and focal cell necrosis are all typical morphologic changes associated with chlorinated aromatic hydrocarbon hepatotoxicity (1-6).

As well as causing the morphologic changes described above, HCB (7), PCBs (8), and TCDD (9) have also been found to cause porphyria in rats. The type of porphyria
observed in experimental animals treated with chlorinated aromatic hydrocarbons is biochemically similar to the human disease Porphyria cutanea tarda (PCT). PCT is a hepatic porphyria with cutaneous manifestations. Unlike all other human porphyrias, which result from genetically inherited enzymic deficiencies, PCT can also be acquired through prolonged exposure to a variety of etiologic agents including ethanol and synthetic estrogens, as well as chlorinated aromatic hydrocarbons. Outbreaks of PCT, in human populations, have been attributed to exposure to HCB (10) and to TCDD (11).

Of the three toxic chlorinated aromatic hydrocarbons referred to, TCDD is by far the most potent. TCDD is 10,000 times more potent in eliciting the morphologic changes associated with chlorinated aromatic hydrocarbon hepatotoxicity than are HCB or PCBs (12).

TCDD, HCB, and PCBs are all inducers of the hepatic mixed function oxygenase system (MFO). However, while mg per kg quantities of HCB or PCBs are required for induction, only μg per kg quantities of TCDD are required. The potency of TCDD as a toxin correlates well with its potency as an inducer of the MFO system (13).

TCDD is a very potent inducer of aryl hydrocarbon hydroxylase (AHH) activity (14,15), as it specifically induces cytochrome P\textsubscript{450}, the liver microsomal monoxygenase
that mediates AHH activity; further, its liver toxicity has been found to be dependant upon AHH induction.

This dependence of TCDD toxicity upon AHH induction was demonstrated in experiments which showed that mice which are genetically unresponsive to AHH induction (DBA strain) are markedly less susceptible to TCDD toxicity, than those which are responsive to induction (C57BL/6 strain)(14). AHH induction was found to be a dominant trait (14), and has been attributed to an interaction between TCDD and a product of the Ah regulatory gene to form a complex which mediates AHH induction (15).

It has recently been established that iron plays an important role in the liver toxicity caused by TCDD. This was demonstrated by experiments which showed that iron deficiency protects against TCDD toxicity in mice (16), and is supported by the use of repeated venesection (withdrawing blood in order to deplete iron stores by stimulating synthesis of hemoglobin) as a means of treating PCT (17).

Although not proved, it was hypothesized that storage iron (ie. ferritin iron) is the source of the iron responsible for the toxic effects observed with TCDD poisoning. Investigations of tissue samples taken from patients with PCT (18) or from rats treated with HCB (19,20) demonstrated that hepatocytes which exhibit the red fluorescence characteristic of porphyrin accumulation (a
symptom of HCB or TCDD toxicity (i.e., porphyria) contain no stainable storage iron, while those which do not fluoresce, do contain stainable storage iron. These findings provide indirect support for the belief in the involvement of storage iron in the mechanisms leading to the toxic effects observed with TCDD toxicity.

Thus, roles for both iron and the induction of the Ah gene locus have been established, but the exact nature of these roles in the pathways which lead to the hepatotoxic effects observed with TCDD, remain unclear.

The accumulation of neutral lipid, a symptom of TCDD toxicity (21), is consistent with effects associated with lipid peroxidation processes. Because iron (Fe^{2+}) has been demonstrated to be important both as an initiator and as a promoter of microsomal lipid peroxidation (22,23,24), it has been postulated that a possible role which iron might play in TCDD toxicity, is that of inducing processes involving lipid peroxidation within affected cells. This theory is presently under investigation in this laboratory.

In order for storage iron to be involved in such reactions, presumably it must first be released, or mobilized, from its storage site within the cell. Iron is stored within cells in two different but related forms: (a) a soluble mobile fraction called ferritin, and (b) an insoluble deposit called hemosiderin. The difference in solubility
between the two forms is due to the protein envelope which surrounds the ferritin iron and prevents precipitation. Analysis of the physical characteristics of the iron complexes present in each storage form indicates that the iron present in each form is very similar in nature (25,26,27). In fact, there is a great deal each storage form is very similar in nature. of evidence which suggests that hemosiderin may be formed by the partial denaturation of ferritin protein molecules (28,29,30). Whatever storage form the iron is in, it may be stored for long periods of time, or be mobilized for use by the cell almost immediately. Approximately one third of the body's iron reserves are found in the liver (31).

The liver is made up of several distinct cell types, of which the parenchymal and Kupffer cells comprise more than 85 percent of the total cell population and volume (32,33). The predominant form of storage iron present within the parenchymal cells is different from that found in the Kupffer cells. Ferritin predominates in parenchymal cells (95% of the total liver ferritin iron stores), whereas hemosiderin predominates in Kupffer cells (34,35,36).

As well as differing in their predominant form of storage iron, parenchymal cells and Kupffer cells also appear to differ in their response to the toxin TCDD. The morphologic and biochemical changes caused by TCDD are
associated with corresponding changes that take place within parenchymal cells, rather than Kupffer cells (37,38). Because ferritin is the predominant form of storage iron in the parenchymal cells, it would seem likely then that ferritin, rather than hemosiderin, would be the form of storage iron to be involved in the hepatotoxicity caused by TCDD.

Iron is stored in ferritin as \(\text{Fe}^{3+} \), as ferric oxyhydroxide crystals complexed with small amounts of phosphate. These crystals are found within the central cavity of the ferritin protein molecule. This cavity is formed by the hollow spherical arrangement of the protein's 24 subunits (39). The number of iron atoms present within a ferritin molecule ranges from zero atoms in apoferritin, to approximately 4500 atoms in fully loaded ferritin (39).

The mechanisms by which ferritin accumulates and releases its iron are at present unknown. However, it does seem clear from the evidence so far accumulated, that reduction of the iron atoms from the \(\text{Fe}^{3+} \) state to the \(\text{Fe}^{2+} \) state must precede release from the ferritin molecule.

It has been demonstrated that several biological reductants are capable of eliciting the release of iron from ferritin (40,41,42). Of the many low molecular weight reductants tested, reduced flavins, dithionite, cysteine, glutathione, and ascorbate were found to be the most
effective (in terms of iron release rate), in that order of efficiency (40). Because of the high rate at which reduced flavin mononucleotide (FMNH$_2$) mobilized iron from ferritin, it was suggested (42) that FMNH$_2$ would be the most likely reducing agent in tissues to be physiologically significant.

The release of iron from ferritin also appears to depend upon relatively free access to the center of the ferritin molecule for the reductant. The reductants presumably gain access to the ferritin iron core in the cavity of the protein by means of any of the six pores that exist within the protein shell (39). Once inside the protein shell, the reductants presumably transfer their reducing equivalents directly to the ferric iron, yielding Fe$^{2+}$, which permits the release of the iron from ferritin. That reduced flavins penetrate to the ferritin iron core in order to mobilize iron from ferritin was demonstrated in experiments which showed that reduced flavins linked to agarose beads are capable of mobilizing iron from synthetic iron cores, but are incapable of mobilizing iron from ferritin (41). This is further supported by the finding that apoferritin contains no specific binding site for reduced or oxidized flavins (41). Both of these findings support the suggestion that the reduced flavins must penetrate the ferritin molecule to the iron core, and once there, transfer their reducing equivalents directly to the ferric iron atoms present.
Measurements of the width of the intersubunit channels of ferritin (the six pores) indicate that these channels are indeed wide enough that reduced flavins would be capable of penetrating the ferritin protein molecule and gaining direct access to the ferric iron core (39).

Ferritin iron release by both mitochondrial and microsomal subcellular fractions, in the presence of exogenous flavin mononucleotide (FMN), has been demonstrated by several investigators (43,44). In all cases, the function of the mitochondrial or microsomal subcellular fraction was thought to be the generation of reduced flavin, which in turn reduces the ferritin iron, allowing for its release.

The ferritin iron release process invoked by these subcellular fractions was found to be extremely oxygen sensitive. It is strongly inhibited by oxygen concentrations greater than 2-3 μM O₂ (44). This inhibition is presumably due to autoxidation of the reduced flavins by O₂, creating a competition between O₂ and ferritin iron for the reducing equivalents via the flavins.

While the concentration of O₂ in the vicinity of the mitochondria has never been determined, the Kₘ of the cytochrome oxidase system for O₂ has been estimated (45) to lie between 0.02 μM O₂ and 0.50 μM O₂, depending upon the metabolic state of the mitochondria. Thus, the O₂ concentration in the vicinity of the mitochondria could very
well lie below the levels which would inhibit ferritin iron release, and yet still be high enough to support respiring mitochondria.

The concentration of O_2 in the vicinity of the microsomal subcellular fraction has not yet been determined. It is however conceivable that effectively anaerobic conditions may exist for the release of iron from ferritin by reduced flavins generated by microsomes. The parenchymal cells first affected by TCDD toxicity are the zone 3 parenchymal cells (37). Zone 3 parenchymal cells lie adjacent to efferent veins, while zone 1 parenchymal cells lie adjacent to afferent blood vessels (46). Between zones 1 and 3 lies an ill-defined zone 2. It is possible that significant differences in O_2 tension exist between these zones. Zone 3, being closest to the veins, would presumably have the lowest O_2 tension. Zone 3 parenchymal cells may very well provide a suitable environment for the mobilization of ferritin iron by a reduced flavin generating system.

Ulvik and Romslo (47) were successful in demonstrating that under anaerobic conditions, and in the presence of added flavin, mitochondria respiring on succinate are capable of releasing iron from ferritin, and at the same time, that ferrochelatase incorporates this iron into heme. In later experiments by the same group, evidence was advanced to suggest that ubiquinone serves as the point along the
mitochondrial electron transport chain at which the added FMN was draining its reducing equivalents (48). These experiments served to provide necessary information required to outline a possible molecular mechanism through which mitochondria are capable of mobilizing ferritin iron for heme synthesis. It is possible that a similar mechanism is operating in microsomes; that is to say, a mechanism whereby free cytosolic FMN drains reducing equivalents from some point along the microsomal electron transport chain, and in turn passes them on to the ferritin iron, reducing it, and allowing for its release.

Evidence exists to suggest that there is a cytosolic pool of free flavins within cells (49,50,51). Such a pool would serve as an excellent source for the flavin required for the proposed mechanisms of ferritin iron release by subcellular fractions.

The fact that the microsomal subcellular fraction has been demonstrated to be capable of mobilizing ferritin iron in vitro, could be of great importance in TCDD induced liver toxicity, especially if microsomal ferritin iron release can be attributed to a process regulated by, or a product of, the Ah gene locus.

TCDD induction causes large amounts of cytochrome P₄₅₀ to be synthesized and incorporated into the smooth endoplasmic reticulum (SER). TCDD induction differs from phenobarbital (PB) induction not only in that different forms
of cytochrome P450 are induced (PB induces the cytochrome P450 form rather than the cytochrome P1450 form which is induced by TCDD), but also in that PB leads to the induction of other SER components (such as NADPH-cytochrome c (P450) reductase) whereas TCDD induction does not. Another difference is that TCDD induction is a response to an inducer which is an extremely poorly metabolized substrate (if at all) for the pathway induced, whereas PB is metabolized, albeit slowly, by the induced MFO system. TCDD has a half life of 17 days in mice. There is no evidence for metabolism of TCDD by mice (52).

TCDD induction leads to significantly increased levels of cytochrome P1450 being synthesized and incorporated into the SER membrane, but no metabolism of TCDD to a less toxic or excreted product takes place; ie. once synthesized, the cytochrome is part of the SER membrane, but lacks a substrate. It could be hypothesized that because the induced microsomal electron transport system is not occupied with the metabolism of the inducer (TCDD), as is the case with PB, it is available to participate in a process in which it may not normally be involved. Such a process could involve the release of iron from ferritin. This could be hypothesized because only TCDD induction leads to toxicity, whereas PB induction appears not to.

The major aim of this thesis was to investigate the
molecular mechanism by which ferritin iron is released by the microsomal subcellular fraction, in the hope of relating this mechanism to the mechanism through which TCDD exerts its hepatotoxic effects.

The mechanism of microsomal ferritin iron release was investigated using microsomal fractions obtained from PB induced, TCDD induced, and control rat livers, as well as in a reconstituted system in which the required microsomal membrane components were recombined in order to obtain a functional microsomal ferritin iron mobilizing system.
Materials and Methods

1. Chemicals

All reagents used were of commercial reagent grade or better and were used without further purification. Horse spleen ferritin obtained from Calbiochem (San Diego, California) was used as the ferritin iron source in all assays.

2. Animals

Experiments performed in the investigation of the mobilization of ferritin iron were conducted using microsomes or microsomal proteins purified from livers of treated or untreated male rats. In all cases, young adult male Sprague Dawley rats weighing 175-200 g were used.
3. Treatment Schedules

i) Phenobarbital Induction

Treatment with phenobarbital consisted of twice daily intraperitoneal (ip) injections of 40 mg/kg PB in saline for 3 days. The animals were starved overnight and sacrificed on the 4th day.

ii) Long Term TCDD Induction

Long term TCDD induction consisted of 3 injections (ip) of TCDD in corn oil, given at 1 week intervals. The first injection was 10 μg/kg TCDD, while the second and third were 2.5 μg/kg TCDD. One week after the third injection of TCDD, the animals were sacrificed. The animals were starved overnight prior to sacrifice.

iii) Short Term TCDD Induction

Short term TCDD induced animals received 1 injection (ip) of 10 μg/kg TCDD in corn oil and were sacrificed 1 week later. The animals were starved overnight prior to sacrifice.
4. Preparation of Microsomes

Microsomes were prepared according to the method of Mitoma et al (53), with slight modifications. The animals were sacrificed by decapitation and the livers were perfused in situ with a 150 mM KCl solution containing 10 mM EDTA, prior to removal. Twenty-five % (w/v) liver homogenates were then prepared in the above KCl-EDTA solution. The liver homogenates were centrifuged at 9,000 xg for 20 minutes. The supernatants were removed and then centrifuged at 100,000 xg for one hour. The resulting microsomal protein pellets were then washed with and resuspended in 0.1 M sodium phosphate buffer pH 7.4. The microsomal protein pellet obtained from 3 g of rat liver was resuspended in 2.0 ml buffer.

5. Measurement of Cytochrome P450

Cytochrome P450 was assayed by measuring the CO difference spectra of dithionite reduced suspensions of microsomes (or solubilized microsomal proteins) according to the method of Omura and Sato (54).
6. Measurement of NADPH-cytochrome c reductase Activity

NADPH-cytochrome c reductase activity was assayed using the method of Williams and Kamin (55). One unit of activity is defined as 1 nmole cytochrome c reduced per ml per minute.

7. Measurement of Benzphetamine-0-demethylase Activity

Benzphetamine-0-demethylase activity was determined according to the method of Cochin and Axelrod (56).

8. Measurement of Aryl Hydrocarbon Hydroxylase (AHH) Activity

AHH activity was measured according to the procedure of Poland et al (57). One unit of activity is defined as 1 picomole 3-OH Benz-a-pyrene formed per minute.

9. Measurement of Protein

Protein was measured spectrophotometrically according to the method of Sutherland et al (58), using bovine serum albumin as the standard.
10. Preparation of Oxygen Free Nitrogen

Oxygen free nitrogen was prepared by passing commercial grade N₂ gas through a scrubbing assembly consisting of three gas wash bottles. The first wash bottle contained 0.1 M Cr⁺² in 2.4 N HCl over zinc amalgam, which was prepared according to the method of Meites (59). The second wash bottle contained deionized water, and the third contained the buffer used for the ferritin iron release assay system. The second and third wash bottles are included in the system, in order that any nebulized fluid, which is acidic after passing through the first wash bottle, can be raised to pH 7.4. Thus, when this gas is mixed into the ferritin iron release assay mixture, the pH of the assay system can be maintained.
11. Measurement of Microsomal Ferritin Iron Release

Microsomal ferritin iron release was measured using an assay similar to that employed by Ulvik and Romslo (44), in their investigation of mitochondrial ferritin iron release. The assay system was modified in that NADPH, rather than NADH, was used as the source of reducing equivalents for the microsomal electron transport chain. An NADPH generating system (glucose-6-phosphate and glucose-6-phosphate dehydrogenase) was also added, in order to maintain the concentration of NADPH in the assay system.

In a final volume of 2.0 ml, an assay mixture was prepared containing 4.0 mg microsomal protein, 150 μM NADPH, 1.0 mM 2,2'-bipyridyl, 350 μM Fe (present as ferritin iron), 1 mM glucose, 1 mM glucose-6-phosphate, 0.2 units glucose oxidase, 0.2 units glucose-6-phosphate dehydrogenase, and 25 mM Tris-HCl buffer pH 7.4. These components were added to the base of a Thunberg cuvette. The side arm of the Thunberg cuvette held 0.1 ml of a 5.0 mM solution of FMN in 25 mM Tris-HCl buffer pH 7.4. This yielded a final concentration of 250 μM FMN.

Anaerobic conditions were achieved by evacuating (degassing) and flushing the cuvette three times with oxygen free nitrogen. The cuvette was then brought to 37°C in a temperature controlled cuvette holder and a baseline (see
below) was recorded. Ferritin iron release was initiated by tipping the FMN into the assay mixture from the side arm of the cuvette.

The mobilization of ferritin iron was monitored spectrophotometrically as $A_{522} - A_{551}$, using the dual beam mode of the Perkin-Elmer 356 spectrophotometer (see page 25).

The rate of microsomal ferritin iron release was determined from the linear portion of the change in absorbance versus time plots, obtained within the first 8 minutes following addition of the flavin to the assay mixture (see Figure 2). The rate of iron release in nanomoles Fe$^{+2}$ released per minute per milliliter was calculated from a standard curve of absorbance at 522 nm minus the absorbance at 551 nm versus Fe$^{+2}$(bipyridyl)$_3$ concentration.

The approach described above was confirmed using the split beam mode of the Perkin-Elmer 356 spectrophotometer. This method employs difference spectroscopy: two identical samples were prepared, except that in one sample, the reference sample, NADPH was omitted. Both samples were made anaerobic and warmed to 37°C in a temperature controlled cuvette holder. A baseline was recorded and the FMN was then tipped into the reaction mixtures. The change in the difference in absorbance at 530 nm, between the sample cuvette (containing NADPH) and the reference cuvette (NADPH omitted), was monitored versus time. A standard curve of
absorbance at 530 nm versus Fe$^{2+}$ (bipyridyl)$_3$ concentration was used to calculate the rate of microsomal ferritin iron release.

12. Separation and Partial Purification of Cytochrome P450 and NADPH-cytochrome c (P450) reductase

Depending upon whether cytochrome P450 or cytochrome P$_{1450}$ was desired, young adult male rats were induced with either PB or TCDD. The animals were starved overnight prior to sacrifice.

Microsomal pellets were prepared as previously described, except that the microsomal pellets were washed with and resuspended in 0.2 M sodium phosphate buffer pH 7.7 containing 30% (v/v) glycerol, 0.1 mM dithiothreitol (DTT), and 0.1 mM EDTA. The resuspended microsomes were frozen in liquid nitrogen until used for purification of the cytochrome and the reductase.

All purification procedures were carried out at 4°C. A flow rate of 0.5 ml per min was used for all column elutions.

When required, microsome samples were thawed and diluted to 10.0 mg/ml protein with buffer. A 10% (v/v) solution of the nonionic detergent Renex 690 was then added dropwise, with stirring, to a final concentration of 1.5%.
To the clear solubilized microsomal protein solution, protamine sulphate (1.5 % w/v) was then added dropwise, with stirring, to a final concentration of 0.03 %. The solution was then centrifuged at 100,000 xg for 1 hour.

The supernatant obtained was then applied to a 2.6 x 50 cm DEAE-Sephadex column which had previously been equilibrated with 0.1 M sodium phosphate buffer pH 7.7 containing 20 % glycerol, 0.1 mM DTT, 0.1 mM EDTA, and 0.15 % Renex 690. The column was then washed with 250 ml of 0.1 M sodium phosphate buffer pH 7.7 containing 20 % glycerol, 0.1 mM DTT, 0.1 mM EDTA, and 0.1 % (w/v) sodium deoxycholate.

Cytochrome P450 and cytochrome b5 pass unbound through the column. Wash fractions containing these proteins were pooled and made 0.5 % (w/v) with respect to sodium cholate. The cytochrome P450 containing sample was then dialyzed overnight against 6 l of 10 mM sodium phosphate buffer pH 7.7 containing 20 % glycerol, 0.1 mM DTT, 0.1 mM EDTA, 0.15 % Renex, and 0.5 % sodium cholate.

NADPH-cytochrome c (P450) reductase was eluted from the column with a 1.0 litre linear 0-0.5 M gradient of KCl in the above wash buffer. The reductase elutes at approximately 0.25 M KCl. Fractions containing NADPH-cytochrome c reductase activity were pooled and concentrated by pressure dialysis against 10 mM sodium phosphate buffer pH 7.4. Aliquots of the concentrated reductase solution were then frozen in liquid
nitrogen until used in reconstitution experiments.

Following dialysis, the cytochrome P450 containing solution was applied to a 3.2 x 50 cm DEAE-cellulose column previously equilibrated with 10 mM sodium phosphate buffer pH 7.7 containing 20% glycerol, 0.1 mM DTT, 0.1 mM EDTA, 0.15% Renex, and 0.5% sodium cholate. The column was washed with 250 ml of 10 mM sodium phosphate buffer pH 7.7 containing 20% glycerol, 0.1 mM DTT, 0.1 mM EDTA, and 0.15% Renex. Cytochrome P450 was eluted with a 1.0 litre linear 0-0.5 M gradient of KCl in wash buffer. The cytochrome elutes at approximately 0.1 M KCl.

Fractions eluted from the column which contained cytochrome P450 were immediately pooled and applied to a 2.2 x 40 cm LH-sephadex column which had been previously equilibrated with 10 mM sodium phosphate buffer pH 7.7 containing 50% glycerol, in order to remove detergent. Cytochrome P450 washes through the column while detergent is retained. Cytochrome P450 fractions were pooled and concentrated by pressure dialysis against 10 mM sodium phosphate buffer pH 7.4. Aliquots of the concentrated cytochrome P450 samples were frozen in liquid nitrogen until used for reconstitution experiments.
13. Method of Reconstitution

Reconstitution experiments were performed using Coon's method of reconstitution of MFO activity (57). Appropriate amounts of partially purified reductase and cytochrome were added to the base of a Thunberg cuvette. Lipid was then added and the solution was mixed. The mixture was allowed to stand at room temperature for 2-3 minutes. The remaining assay components were then added and the assay was performed. The amounts of cytochrome P 450, cytochrome P 450, or NADPH-cytochrome-c (P450)-reductase used in each experiment are indicated in the appropriate table or figure legend. The lipid used in all reconstitution experiments was Dilauroylphosphatidylcholine (DLPC). Lipid was always added to a final concentration of 0.1 mg/ml.

14. Statistics

Statistical significance was determined using Student's t test.
Results

1. Development of the Microsomal Ferritin Iron Release Assay

As stated earlier, mobilization of ferritin iron by both the mitochondrial and microsomal subcellular fractions has been demonstrated by several investigators (43,44). While the release of ferritin iron by mitochondria has been investigated, and a mechanism for this phenomenon has been proposed (48), very little work has been devoted to the study of the same phenomenon as it occurs within the microsomal subcellular fraction.

In order to examine the microsomal ferritin iron release process, a system similar to that employed by Ulvik and Romslo (44) in their investigation of mitochondrial ferritin iron release was used. The microsomal electron transport chain was supplied with reducing equivalents and the rate of formation of Fe²⁺(bipyridyl)₃ complexes was then followed spectrometrically after FMN had been added to the assay system.

The results of repetitive scanning using difference spectroscopy are shown in Figure 1 (NADPH was omitted from the reference cuvette). The increase in absorbance at 530 nm is due to the formation of the Fe²⁺(bipyridyl)₃ complexes, as
the ferritin iron is mobilized by the microsomal ferritin iron release system.

The release of ferritin iron by microsomes was followed using the two difference spectroscopy modes of the Perkin-Elmer 356 spectrometer. In the split beam mode, a beam of light of the desired wavelength is split and passed through two cuvettes. Both cuvettes are prepared identically except that in the reference cuvette one assay component (NADPH) is omitted. Thus, the reaction can proceed only in the second cuvette, the sample cuvette. The difference in absorbance of light, at the desired wavelength, between the two cuvettes is then monitored by the spectrometer.

In the dual beam mode, two beams of light of different wavelength are passed through a single cuvette. The wavelengths of light used are chosen so that at lambda 1, the reference beam wavelength, there is less change in absorbance of light as the reaction is proceeding, than at lambda 2, the signal beam wavelength, where the net increase or decrease in absorbance is a function of the formation or disappearance of the reaction component being assayed. The absorbance of light at lambda 2 minus the absorbance at lambda 1 is monitored by the spectrophotometer.

Using the split beam mode, and 2.0 mg control microsomal protein per ml, an average rate of 42.64 (SD=0.86) nmole Fe$^{2+}$ released/min/ml was obtained. When the dual beam
mode was used, under otherwise identical assay conditions, a rate of 44.38 (SD=0.66) n mole Fe$^{2+}$ released/min/ml was obtained. Both methods for following the reaction yielded essentially the same rates of release of iron from ferritin ($p<0.01$). The dual beam mode was chosen for use in subsequent assays, as it is necessary to prepare only one sample for each assay.

Figure 2 shows a typical change in absorbance versus time plot obtained when following microsomal ferritin iron release using the dual beam mode. In order to determine the rate of iron release the slope of the linear portion of the absorbance versus time plots, obtained within 10 min of adding the flavin, was used. The rate of iron release was calculated using an extinction coefficient of 4.25 mM$^{-1}$ cm$^{-1}$, which was determined from an absorbance versus Fe$^{2+}$(bipyridyl)$_3$ concentration standard curve.

After approximately 8-10 min, the slope of the absorbance versus time plots began to decrease. This decrease was attributed to decreases in the ferritin iron and bipyridyl concentrations. After 10 min, more than 1/3 of the added ferritin iron had been mobilized by the microsomal ferritin iron release system.

Figure 2 also shows that there is a lag phase following flavin addition, which precedes ferritin iron release. The duration of the lag phase was found to be
dependant upon both the amount of protein added (see Figure 5) and the concentration of flavin added to the system. The lag phase is thought to represent the time necessary to generate a reduced flavin concentration sufficiently high to initiate ferritin iron release. Ulvik and Romslo attributed the latency period observed with mitochondrial ferritin iron release to the same phenomenon. They found support for this hypothesis by demonstrating that when reduced flavins are generated by dithionite, instead of by mitochondria, the steady state rate of iron release was obtained within seconds; that is, no lag phase was observed.

As with the mitochondrial ferritin iron release system, the presence of O₂ in the assay system was found to severely inhibit the release of iron from ferritin by microsomes. This is presumably due to the autoxidation, by O₂, of the reduced flavins generated by the microsomes. For this reason all assays were performed under anaerobic conditions.

In the previous investigations which demonstrated ferritin iron release by the microsomal subcellular fraction, NADH was used as the source of reducing equivalents supplied to the microsomal electron transport chain. Figure 3 demonstrates that when NADH is replaced by NADPH, in the assay system, a doubling of the rate of ferritin iron release is observed. An average rate of 23.42 (SD=0.96) nmole
Fe²⁺ released/min/ml was obtained with NADH, whereas an average rate of 44.38 (SD=0.66) nmole Fe²⁺ released/min/ml was obtained with NADPH. It would seem then, that NADPH is the preferred source of reducing equivalents for the microsomal ferritin iron release pathway.

The rate of microsomal ferritin iron release was found to have a linear relationship with respect to the concentration of iron, added as ferritin iron at the start of the reaction, within the range of concentrations tested. This is illustrated in Figure 4.

The effect of increasing the microsomal protein concentration on the rate of ferritin iron release is shown in Figures 5 and 6. The three traces shown in Figure 5 demonstrate that both the duration of the lag phase observed, and the rate at which ferritin iron is mobilized are dependent upon the concentration of microsomal protein added. The results show that an increase in microsomal protein concentration leads to a decrease in the lag phase time as well as an increase in the rate of release of ferritin iron.

Figure 6 shows the relationship between the rate of ferritin iron release and the concentration of added microsomal protein. These results show a linear relationship between protein concentration and rate of ferritin iron release at protein concentrations greater than 0.5 mg/ml protein. A concentration of 2.0 mg/ml microsomal protein was
chosen for use in all subsequent assays.

The results presented in Figures 5 and 6 demonstrate that the mobilization of ferritin iron is dependent upon some component of the microsomes, as no ferritin iron release was observed in the absence of microsomal protein. This microsomal component likely serves as the point along the microsomal electron transport chain from which the added flavin drains its reducing equivalents for ferritin iron release. This is the same role as that which was suggested for the mitochondrial electron transport chain component ubiquinone, in the proposed mechanism of mitochondrial ferritin iron release.

The dependence of the rate of iron release upon the concentration of added flavin was also investigated, and the results are shown in Figure 7. The reaction was found to reach a maximum rate of release at approximately 125 μM FMN. No ferritin iron release was observed in the absence of added flavin. The results shown in Figure 7 were obtained using control (uninduced) microsomes. The shapes of the curves obtained for induced microsomes were found to be the same, but the concentration of added flavin required to obtain maximal ferritin iron release rate was found to be higher for the induced microsomes. A concentration of 250 μM FMN was found to be sufficient to yield the maximum rate of ferritin iron release with both induced and uninduced microsomes.
This concentration was used in all subsequent assays in order that all reactions would proceed at a maximal rate irrespective of the source of the microsomal protein used.

From the results obtained in this section the final assay conditions were established. All assays were performed using 2.0 mg microsomal protein per ml and an initial ferritin iron concentration of 350 μM Fe$^{3+}$. Both these values lie on the linear portions of the respective concentration versus iron release rate curves. A concentration of 250 μM FMN was chosen in order that the concentration of added flavin would not be rate limiting. Glucose and glucose oxidase were added as an O$_2$ scavenging system in order to ensure low O$_2$ concentrations in the assay system. Glucose-6-phosphate and glucose-6-phosphate dehydrogenase were added to serve as an NADPH generating system in order to maintain the NADPH concentration in the assay system. Together with bipyridyl and the 25 mM Tris-HCl pH 7.4 buffer, these components made up the ferritin iron release assay used for this investigation.
Figure 1

Figure 1 shows the results of repetitive scanning using difference spectroscopy. Two identical samples were prepared, except that NADPH was omitted in the reference cuvette. The initial scan was made immediately following addition of the flavin to the samples. Scanning was then repeated at t= 2, 4, 6, and 8 minutes. The increase in absorbance at 530 nm is due to the formation of Fe^{2+}(bipyridyl)_3 complexes as the iron is released from ferritin. The assay system used contained 350 μM ferritin iron, 2.0 mg uninduced microsomal protein per ml, 250 μM FMN, and 150 μM NADPH.
Figure 2

Figure 2 represents a typical change in absorbance versus time plot obtained when following the release of ferritin iron using the dual beam mode of the Perkin-Elmer 356 spectrometer. This figure demonstrates that there is a lag phase which precedes the release of iron from ferritin. The linearly increasing portion of the change in absorbance versus time plot was used to calculate the rate of release of iron from ferritin. This plot was obtained using an assay system containing 350 μM ferritin iron, 2.0 mg uninduced microsomal protein per ml, 250 μM FMN, and 150 μM NADPH.
Figure 3
demonstrates the effect of using NADPH, rather than NADH, as the source of reducing equivalents for the microsomal ferritin iron release pathway. A doubling of the rate of release of iron is observed. A rate of 23.42 (SD=0.96) n mole Fe$^{2+}$ released/min/ml was obtained with NADH, whereas a rate of 44.38 (SD=0.66) n mole Fe$^{2+}$ released/min/ml was obtained with NADPH. Each assay contained 350 μM ferritin iron, 2.0 mg uninduced microsomal protein per ml, and 250 μM FMN. NADH or NADPH was added to a final concentration of 150 μM.
Figure 4

Figure 4 illustrates the relationship between the initial ferritin iron concentration and the rate at which iron is mobilized from ferritin by microsomes supplied with NADPH and FMN. The straight line was fitted to the points using linear regression (r=0.99). Each assay contained 2.0 mg uninduced microsomal protein per ml, 250 \(\mu \)M FMN, and 150 \(\mu \)M NADPH.
Figure 5

Figure 5 demonstrates the effect of varying the concentration of microsomal protein on the change in absorbance versus time plots obtained when monitoring ferritin iron release using the dual beam mode of the Perkin-Elmer 356 spectrometer. This figure shows that as the concentration of protein increases, so does the rate at which iron is mobilized from ferritin. This figure also demonstrates that the duration of the lag phase, which precedes ferritin iron release, also depends upon the concentration of microsomal protein. As the concentration of protein increases, the duration of the lag phase decreases. Each assay contained 350 μM ferritin iron, 250 μM FMN, and 150 μM NADPH.
Figure 6 illustrates the relationship between the concentration of microsomal protein and the rate at which iron is released from ferritin. A linear relationship is observed for protein concentrations greater than 0.5 mg protein per ml. Each assay contained 350 μM ferritin iron, 250 μM FMN, and 150 μM NADPH.
Figure 7 demonstrates the effect of added flavin concentration on the rate of microsomal ferritin iron release. A maximal rate of iron release is achieved at approximately 125 μM FMN. Each assay contained 350 μM ferritin iron, 250 μM FMN, 150 μM NADPH, and 2.0 mg uninduced microsomal protein per ml.
2. Investigation of Ferritin Iron Release Using Intact Microsomes

To attempt to determine the microsomal electron transport protein responsible for ferritin iron release, the rate of release of ferritin iron by induced and uninduced microsomal protein fractions was investigated.

The levels of cytochrome P450 (or cytochrome P₄₅₀), reductase activity, and total microsomal protein were determined for each microsome sample used in this investigation. The results of the characterization of the microsomal protein samples are shown in Table 1.

The rate of release of iron from ferritin by these microsomal protein samples was then determined using assay conditions under which the microsomal protein responsible for ferritin iron release would presumably become the rate determining factor. The rate of ferritin iron release was calculated for each microsomal protein sample investigated, and expressed in terms of the respective protein, reductase activity, and cytochrome P450 (or cytochrome P₄₅₀) content of the microsomes. The results of these experiments are presented in Table 2.

The results of these experiments suggest that the rate determining microsomal protein in the microsomal
ferritin iron release pathway is cytochrome P450. Cytochrome P450 is indicated as being the rate limiting component in control, in short term TCDD induced, and in PB induced microsomes, as all three of these microsomal fractions yielded the same rate of release of ferritin iron when the rate was expressed as nmole Fe$^{2+}$ released/min/nmole cytochrome P450 (p<0.01). The rates of iron release obtained with these fractions were not comparable when expressed in any other manner.

The fact that the long term TCDD induced microsomes did not follow the same pattern (ie. did not yield the same rate when expressed per nmole cytochrome P450 (p<0.01)), was attributed to the high ratio of molecules of cytochrome P_{450} per unit of NADPH-cytochrome c (P450) reductase activity determined for these microsomes (see Table 1). It appears that the lack of induction of the reductase by TCDD has an effect upon the rate of ferritin iron release by long term TCDD induced microsomes. Long term TCDD induction results in significantly increased levels of cytochrome P_{450} present in the microsomes, when compared to control values, but the level of reductase activity does not increase. Thus, there are more molecules of cytochrome P450 per unit reductase activity (more than double) in long term TCDD induced microsomes than in control microsomes. It is possible that, in the case of long term TCDD induced microsomes, NADPH-
cytochrome c (P450) reductase has become the rate limiting microsomal electron transport protein in the microsomal ferritin iron release pathway.

The results presented in Table 2 also show that the form of cytochrome P450 present in the microsomes appears to have no effect upon the rate of microsomal ferritin iron release. Both short term TCDD induced and control microsomes exhibit the same rate of iron release when expressed per nm cytochrome P450, even though the predominating form of cytochrome P450 present is different. Cytochrome P450 predominates in control microsomes, whereas cytochrome P450 predominates in short term TCDD induced microsomes.

Thus, the results of these experiments indicate that, while the form of cytochrome P450 present appears to have no effect upon the rate of microsomal ferritin iron release, the amount of cytochrome present does appear to have an effect. The results also suggest that there may be some critical value for the ratio of molecules of cytochrome P450 per unit reductase activity which when exceeded, allows NADPH-cytochrome c (P450) reductase, rather than cytochrome P450, to become the rate limiting component in the microsomal ferritin iron release pathway.
Table 1

Table 1 shows the results of the characterization of the microsomal protein samples used for the investigation of microsomal ferritin iron release. These values represent the mean of six determinations.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>12.3±0.5</td>
<td>2.09±0.12</td>
<td>11.6±0.2</td>
<td>5.6</td>
</tr>
<tr>
<td>Short term TCDD induced</td>
<td>13.7±0.7</td>
<td>1.96±0.11</td>
<td>13.4±0.4</td>
<td>6.8</td>
</tr>
<tr>
<td>Long term TCDD induced</td>
<td>11.8±0.6</td>
<td>1.46±0.12</td>
<td>18.2±0.3</td>
<td>12.5</td>
</tr>
<tr>
<td>PB induced</td>
<td>25.0±0.7</td>
<td>4.52±0.14</td>
<td>37.4±0.4</td>
<td>8.3</td>
</tr>
</tbody>
</table>
Table 2

The mean rates of microsomal ferritin iron release (n=6) shown in Table 2 were determined using 2.0 mg/ml microsomal protein prepared from PB induced, TCDD induced, and control rat livers. The results of the characterization of the microsomal protein samples used to prepare the data presented in Table 2 are shown in Table 1. Each assay contained 350 μM ferritin iron, 250 μM FMN, and 150 μM NADPH.
TABLE 2 Rates of Iron Release at Saturating Flavin Concentration

<table>
<thead>
<tr>
<th>Sample</th>
<th>Per ml</th>
<th>Per mg protein</th>
<th>Per nmol cytochrome</th>
<th>Per unit reductase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Microsomes</td>
<td>44.38±0.66</td>
<td>22.20±0.32</td>
<td>23.48±0.34</td>
<td>130.92±1.92</td>
</tr>
<tr>
<td>Short term TCDD induced microsomes</td>
<td>46.54±1.36</td>
<td>23.60±1.26</td>
<td>23.98±0.70</td>
<td>163.86±4.80</td>
</tr>
<tr>
<td>Long term TCDD induced microsomes</td>
<td>57.92±2.54</td>
<td>28.98±1.26</td>
<td>19.12±0.84</td>
<td>238.4±10.4</td>
</tr>
<tr>
<td>PB induced microsomes</td>
<td>69.92±1.20</td>
<td>34.50±0.60</td>
<td>23.18±0.40</td>
<td>191.86±3.30</td>
</tr>
</tbody>
</table>
3. The Effect of Inhibitors of Cytochromes P450 and Cytochrome P1450

The results obtained in the preceding section suggested that cytochrome P450 is the microsomal electron transport protein from which the added FMN drained its reducing equivalents for ferritin iron release. In order to verify this finding, the effect of various inhibitors of cytochromes P450 and cytochrome P1450 on the rate of microsomal ferritin iron release was investigated. The inhibitors SKF-525A and 7,8-benzoflavone were chosen for use because these compounds are specific inhibitors of cytochrome P450 and cytochrome P1450, respectively. Hexobarbital, although a substrate rather than an inhibitor, was chosen because this compound has been shown to bind to the active site of cytochrome P450. Carbon monoxide was chosen because it inhibits both cytochrome P450 and cytochrome P1450 mediated reactions by binding to the heme moiety of the cytochrome, rather than the substrate binding site. It was postulated that, if the cytochrome is the microsomal electron transport protein from which the added flavin drains its reducing equivalents for ferritin iron release, then the presence of these inhibitors in the assay system should result in a decrease in the rate of microsomal ferritin iron
release. PB and TCDD induced microsomes were used in this investigation, in order that microsomes used would contain one predominant form of the cytochrome, rather than a mixture of several different forms, allowing for better interaction between the inhibitors and the specific form of cytochrome which they inhibit. The results of these experiments are shown in Table 3.

It can be seen that none of the inhibitors tested exhibited an effect on the rate of release of iron from ferritin by microsomes. This lack of inhibition suggests that cytochrome P450 is not the microsomal electron transport protein from which the added FMN drains its reducing equivalents for the release of ferritin iron. If cytochrome P450 does not serve as the donor of electrons to FMN in the microsomal ferritin iron release pathway, the most likely alternative would be NADPH-cytochrome c (P450) reductase. It was decided that the best method to be used in order to determine the roles of both cytochrome P450 and the reductase in the microsomal ferritin iron release process, would be to separate and partially purify these proteins from microsomes and then attempt to reconstitute a functional microsomal ferritin iron mobilizing system.
Table 3

Table 3 shows the results of attempts to inhibit microsomal ferritin iron release using inhibitors of cytochrome P450 and P1450. No inhibition of ferritin iron release was observed with any of the inhibitors tested. Each assay contained 2.0 mg microsomal protein per ml, 350 μM ferritin iron, 250 μM FMN, and 150 μM NADPH. SKF-525A, 7,8-benzoflavone, and hexobarbital were added to a final concentration of 100 μM.
<table>
<thead>
<tr>
<th>Inducer</th>
<th>Inhibitor added</th>
<th>Rate of iron release (nmol Fe$^{2+}$/min/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCDD</td>
<td>None</td>
<td>47.4</td>
</tr>
<tr>
<td>TCDD</td>
<td>SKF-525A</td>
<td>46.20</td>
</tr>
<tr>
<td>TCDD</td>
<td>7,8-benzoflavone</td>
<td>46.54</td>
</tr>
<tr>
<td>TCDD</td>
<td>Carbon monoxide</td>
<td>46.54</td>
</tr>
<tr>
<td>TCDD</td>
<td>Hexobarbital</td>
<td>46.04</td>
</tr>
<tr>
<td>PB</td>
<td>None</td>
<td>69.38</td>
</tr>
<tr>
<td>PB</td>
<td>SKF-525A</td>
<td>69.38</td>
</tr>
<tr>
<td>PB</td>
<td>7,8-benzoflavone</td>
<td>68.10</td>
</tr>
<tr>
<td>PB</td>
<td>Carbon monoxide</td>
<td>69.66</td>
</tr>
<tr>
<td>PB</td>
<td>Hexobarbital</td>
<td>68.20</td>
</tr>
</tbody>
</table>
4. Separation and Partial Purification of Cytochrome P450,
Cytochrome P\textsubscript{1450}, and NADPH-cytochrome c (P450) reductase
from Microsomes

Although it is possible to separate cytochrome P450
and NADPH-cytochrome c (P450) reductase by simple
chromatography of detergent solubilized microsomes on
DEAE-cellulose (61), the reductase fractions obtained using
this method were found to contain cytochrome b\textsubscript{5} as an
impurity. Because a hemoprotein free reductase fraction was
desired, an alternative method for the separation of these
proteins was required. The purification method used was a
combination of the method of Dignam and Strobel (62) for the
purification of the reductase, and the method of Warner et al
(63) for the purification of the cytochromes. The results of
the separation and partial purification of the proteins using
this method are shown in Tables 4 and 5. Cytochrome P450 was
purified from PB induced microsomes, cytochrome P\textsubscript{1450} was
purified from TCDD induced microsomes, and NADPH-cytochrome c
(P450) reductase was purified from both PB and TCDD induced
microsomes.

The specific content of the cytochrome P450 and
cytochrome P\textsubscript{1450} fractions obtained were lower than was
expected. Because the heme moiety of the cytochrome is not
covalently attached, it can be lost in the course of purification. This loss of heme from the cytochrome results in an apparent low recovery of cytochrome P450 or cytochrome P1450, as the detection of the cytochrome is dependent upon the presence of the heme. The co-elution of apocytochrome P450 or apocytochrome P1450 with the intact cytochrome P450 or cytochrome P1450 results in a low specific content value (ie. nmoles cytochrome/mg protein) for the fractions isolated, because the protein measurements will reflect the presence of apocytochrome in the isolated fractions, but the CO binding spectra used to measure cytochrome P450, detects only the cytochrome itself. In order to obtain higher specific content values for the cytochrome fractions isolated, it was found necessary to prewash the columns with a heme containing solution prior to chromatography, in order to saturate any heme binding sites present on the columns. Warner et al saturated these sites by preparing their microsomes from nonperfused livers. The microsome fractions obtained in this way contain hemoglobin as an impurity. Hemoglobin does not bind to the DEAE columns, but will lose heme to the heme binding sites on the column. Because the heme binding sites are occupied by heme from hemoglobin, cytochrome P450 retains its heme moiety over the course of chromatography. This technique could not be used with our method as the chromatography of hemoglobin containing samples
resulted in a heme impurity co-eluting with the reductase fraction.

Very little heme appeared to be lost until the DEAE-cellulose step of the procedure. It is at this step that saturation of heme binding sites on the column becomes important. Saturation of these sites was attempted by prewashing the DEAE-cellulose column with a solution containing 1 μM hemin in equilibration buffer; however this was unsuccessful as the hemin tended to precipitate upon entering the column packing. It appears as if the hemin were not able to enter into the packing and saturate the heme binding sites on the column, as no increase in specific content of cytochrome P450 was obtained when samples were chromatographed on hemin pretreated columns. Because of the failure of this technique, and because a cytochrome of high specific content was not required for the reconstitution experiments which followed, attempts to increase the specific content of the cytochrome P450 and cytochrome P,1450 fractions isolated were not pursued.

The NADPH-cytochrome c (P450) reductase fractions isolated by this method were again somewhat lower in specific activity than was expected. Dignam and Strobel reported a specific activity of 4.30 units/mg protein for reductase fractions following chromatography on DEAE-Sephadex. Both procedures are the same up to and including the DEAE-Sephadex
chromatography step, except that Dignam and Strobel start with 5 to 10 times as much microsomal protein. It is possible that in scaling down their procedure, we were unable to maintain the same degree of purification.

Having obtained separation of the cytochromes and the reductase, with neither fraction contaminated by the other, the next step was to attempt the reconstitution of MFO activities using the protein fractions isolated. By demonstrating the reconstitution of MFO activities using the proteins isolated by our method, one also demonstrates that the method of reconstitution, and proteins to be used for reconstitution, are suitable for use in the investigation of microsomal ferritin iron release using a reconstituted system.

Table 6 shows the results of reconstitution of aryl hydrocarbon hydroxylase and benzphetamine-0-demethylase activities using proteins isolated by our method of separation. The lipid used for the reconstitution of these activities was dilauroylphosphatidylcholine (DLPC). DLPC was chosen for use because it has been demonstrated to yield the highest activities in reconstituted MFO systems (64). The results reported in Table 6 are very similar to the results obtained by Lu et al (65), when they reconstituted these MFO activities using proteins purified by a different method, but of similar specific content.
The results shown in Table 6 show that the microsomal source of the reductase fraction used to reconstitute activity was unimportant. Reductase purified from either source appears to be capable of recombining effectively with both cytochrome P450 and cytochrome P450. Because of this finding, it was decided that only the reductase fraction separated from PB induced microsomes would be used for the reconstitution experiments designed to investigate the microsomal ferritin iron release process.

Having demonstrated that the proteins obtained by our method of separation could be used to reconstitute MFO activities, the next step in the investigation was to attempt to reconstitute microsomal ferritin iron release using the same system.
Table 4 shows the results of the separation and partial purification of cytochrome P450 and NADPH-cytochrome c (P450) reductase from PB induced microsomes.
TABLE 4 Results of Separation and Partial Purification of Cytochrome P450 and NADPH-cytochrome-c-(P450)-reductase from PB Microsomes

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Cytochrome P450</th>
<th>NADPH-cyt-c (P450)-red.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total nanomoles</td>
<td>Specific Content</td>
</tr>
<tr>
<td></td>
<td>cyt.P450 (nmol/mg)</td>
<td>Units (unit/mg)</td>
</tr>
<tr>
<td>Microsomes</td>
<td>592</td>
<td>0.97</td>
</tr>
<tr>
<td>After detergent solubilization</td>
<td>583</td>
<td>1.00</td>
</tr>
<tr>
<td>After protamine sulphate</td>
<td>522</td>
<td>1.15</td>
</tr>
<tr>
<td>precipitation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>After DEAE-sephadex</td>
<td>523</td>
<td>1.40</td>
</tr>
<tr>
<td>chromatography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>After DEAE-cellulose</td>
<td>173</td>
<td>2.90</td>
</tr>
<tr>
<td>chromatography</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5 shows the results of the separation and partial purification of cytochrome P_{450} and NADPH-cytochrome c (P450) reductase from short term TCDD induced microsomes.
TABLE 5 Results of Separation and Partial Purification of Cytochrome P,450 and NADPH-cytochrome-c (P450)-reductase from TCDD Microsomes

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Cytochrome P,450</th>
<th>NADPH-cyt-c (P450)-red.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total nanomoles</td>
<td>Specific Content (nmol/mg)</td>
</tr>
<tr>
<td>Microsomes</td>
<td>475</td>
<td>0.72</td>
</tr>
<tr>
<td>After detergent solubilization</td>
<td>470</td>
<td>0.68</td>
</tr>
<tr>
<td>After protamine sulphate precipitation</td>
<td>459</td>
<td>0.94</td>
</tr>
<tr>
<td>After DEAE-Sephadex chromatography</td>
<td>472</td>
<td>2.20</td>
</tr>
<tr>
<td>After DEAE-cellulose chromatography</td>
<td>157</td>
<td>3.60</td>
</tr>
</tbody>
</table>
Table 6 shows the results of attempts to reconstitute aryl hydrocarbon hydroxylase and benzphetamine-0-demethylase activities using microsomal proteins obtained using our method of purification. The levels of activity achieved are similar to results obtained by Lu et al (65) using proteins of similar specific activity. PB Red is reductase purified from PB induced microsomes. TCDD Red is reductase purified from TCDD induced microsomes. The results shown in Table 6 represent the average result obtained. Each assay was performed twice, in duplicate.
TABLE 6 Reconstitution of MFO Activities

(1) Reconstitution of Aryl Hydrocarbon Hydroxylase Activity

<table>
<thead>
<tr>
<th>Cyt c Red. Activity (10^-3 unit/ml)</th>
<th>Cyt P(I)450 Content (nmol/ml)</th>
<th>Units AHH Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.4 TCDD Red.</td>
<td>0.04 P1,450</td>
<td>59</td>
</tr>
<tr>
<td>15.4 TCDD Red.</td>
<td>0.05 P450</td>
<td>5</td>
</tr>
<tr>
<td>30.5 PB Red.</td>
<td>0.12 P1,450</td>
<td>126</td>
</tr>
<tr>
<td>30.5 PB Red.</td>
<td>0.10 P450</td>
<td>7</td>
</tr>
</tbody>
</table>

(2) Reconstitution of Benzphetamine-O-demethylase Activity

<table>
<thead>
<tr>
<th>Cyt c Red. Activity (10^-3 unit/ml)</th>
<th>Cyt P(I)450 Content (nmol/ml)</th>
<th>nmol CH2O formed in 10 min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>130 TCDD Red.</td>
<td>0.22 P1,450</td>
<td>--</td>
</tr>
<tr>
<td>130 TCDD Red.</td>
<td>0.21 P450</td>
<td>28.3</td>
</tr>
<tr>
<td>130 PB Red.</td>
<td>0.22 P1,450</td>
<td>--</td>
</tr>
<tr>
<td>130 PB Red.</td>
<td>0.21 P450</td>
<td>30.3</td>
</tr>
</tbody>
</table>
5. Reconstitution of Microsomal Ferritin Iron Release

To determine the microsomal electron transport protein responsible for ferritin iron release, cytochrome P450 or cytochrome P1450 and NADPH-cytochrome-c (P450)-reductase were recombined with lipid, together and separately, and the release of ferritin iron by these reconstituted systems was assayed. The results of these experiments demonstrated that only the reductase need be recombined with lipid in order to observe release of iron from ferritin.

Figure 8 shows the dependence of the rate of release of ferritin iron on the amount of reductase activity present, both in intact microsomes and in the reconstituted system. These results indicate that the reductase is the microsomal electron transport protein from which the FMN drains its reducing equivalents for ferritin iron release. This is indicated by the fact that the curves obtained for both the intact microsomes and the reconstituted system are essentially identical.

Figure 9 shows the dependence of the duration of the lag phase upon the amount of reductase activity present, in both intact microsomes and the reconstituted system. Unlike the curves obtained for the rate of iron release versus
reductase activity (Figure 8), the two curves shown in Figure 9 are not identical. The duration of the lag phase observed with the reconstituted system (containing only the reductase) was always greater than that observed with intact control microsomes containing the same amount of reductase activity. This difference in the duration of the lag phase, between the two systems, suggests that the reconstituted system is in some way deficient. Because of the earlier results which suggested that cytochrome P450 was responsible for microsomal ferritin iron release (the data in Table 2), the effect of adding varying amounts of cytochrome P450 or cytochrome P1,450 to a reconstituted system containing a constant amount of reductase activity was investigated. The results of these experiments are shown in Table 7.

The results shown in Table 7 demonstrate that as cytochrome P450 or cytochrome P1,450 is added back into the reconstituted system, the duration of the lag phase observed decreases. The results also show an increase in the rate at which iron is released from ferritin at the highest level of cytochrome added back. These findings suggest that the cytochromes also play a role in the mobilization of iron from ferritin by microsomes, but the exact nature of this role is unclear. It is possible that, due to the presence of cytochrome P450 or cytochrome P1,450, the reconstituted membrane system is better able to bind one or more of the
reactants in the ferritin iron release system.

Through the use of reconstituted membrane systems, this investigation of microsomal ferritin iron release has provided evidence that NADPH-cytochrome c (P450) reductase serves as the microsomal electron transport protein responsible for the generation of the reduced flavin required for ferritin iron release. The results of this investigation also indicate that the cytochromes play an as yet undefined role in the microsomal ferritin iron release process.
Figure 8 shows the dependence of the rate of ferritin iron release upon the amount of NADPH-cytochrome c reductase activity present, in both intact microsomes and in reconstituted membrane systems containing reductase alone. Both systems exhibit the same relationship, indicating that the reductase is the microsomal electron transport protein responsible for microsomal ferritin iron release. Each assay contained 350 μM ferritin iron, 250 μM FMN, and 150 μM NADPH.
Figure 9

Figure 9 demonstrates the relationship between the duration of the lag phase preceding ferritin iron release and the amount of NADPH-cytochrome c reductase activity present. The results obtained with both intact microsomes and reconstituted membrane systems containing reductase alone are shown. While the shape of the two curves are similar, the duration of the lag phase was always greater with the reconstituted system. Each assay contained 350 μM ferritin iron, 250 μM FMN, and 150 μM NADPH.
Table 7 shows the effect that the amount of cytochrome P450, or cytochrome P450, present in a reconstituted system has upon the duration of the lag phase preceding ferritin iron release. The effect of the cytochrome P450, or cytochrome P450, concentration on the rate of ferritin iron release is also shown. The cytochrome was reconstituted with a constant amount of reductase activity (0.1 unit/ml) and DLPC (200 μg). Each assay contained 350 μM ferritin iron, 250 μM FMN, and 150 μM NADPH.
TABLE 7 The Effect of Cytochrome P450 or P$_1$450 on Reconstituted Ferritin Iron Release

<table>
<thead>
<tr>
<th>Cytochrome Added (nmol/ml)</th>
<th>Rate of Iron Release (nmole Fe/ml/min)</th>
<th>Lag Time (min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 P450</td>
<td>21.68</td>
<td>6.0</td>
</tr>
<tr>
<td>0.50 P450</td>
<td>21.68</td>
<td>5.3</td>
</tr>
<tr>
<td>0.75 P450</td>
<td>23.54</td>
<td>4.0</td>
</tr>
<tr>
<td>1.00 P450</td>
<td>26.30</td>
<td>3.5</td>
</tr>
<tr>
<td>0.25 P$_1$450</td>
<td>21.68</td>
<td>6.4</td>
</tr>
<tr>
<td>0.50 P$_1$450</td>
<td>22.60</td>
<td>5.3</td>
</tr>
<tr>
<td>0.75 P$_1$450</td>
<td>22.60</td>
<td>4.2</td>
</tr>
<tr>
<td>1.00 P$_1$450</td>
<td>27.24</td>
<td>3.8</td>
</tr>
<tr>
<td>None</td>
<td>22.60</td>
<td>8.3</td>
</tr>
</tbody>
</table>
Discussion

The histologic damage observed with TCDD toxicity is similar to damage associated with lipid peroxidation processes. Ferrous iron has been demonstrated to be important as a catalyst of lipid peroxidation reactions (22,23,24). Thus, it has been postulated that the role of storage iron in the liver toxicity caused by TCDD is the initiation and promotion of lipid peroxidation processes. In order for storage iron to be involved in such processes, the iron would first have to be mobilized from the iron storage protein ferritin. With these ideas in mind, an investigation of a possible mechanism of microsomal ferritin iron release was undertaken.

Mobilization of ferritin iron by the microsomal subcellular fraction has been demonstrated by several investigators (43,44). In all cases, the release of iron from ferritin was attributed to the generation of reduced flavins by the microsomal fractions. The results obtained in this investigation support this hypothesis. Ferritin iron release could not be demonstrated in the absence of either microsomal protein or flavin. The requirement for flavin indicates that whatever microsomal protein is involved in the process, it does not interact directly with the ferritin molecule in
order to effect the release of iron from ferritin. Because only reduced FMN is capable of releasing iron from ferritin, and because the flavin is added to the assay mixture in the oxidized form, it seems reasonable to propose that the role of the microsomal protein in this process is the generation of the reduced flavins required for ferritin iron release.

In order for the toxic effects of TCDD to become manifest in treated animals, these animals must be responsive to induction of the Ah genetic locus (14, 15); i.e., induction of AHH activity. Because NADPH is generally used as the source of reducing equivalents when assaying microsomes for MFO activities (54), it was postulated that NADPH may serve as a more suitable source of reducing equivalents for the microsomal ferritin iron release process. In the previous investigations of microsomal ferritin iron release, NADH had been used as the source of reducing equivalents supplied to the microsomal electron transport chain. The results of an experiment in which NADH was replaced by NADPH in the microsomal ferritin iron release assay system, showed that the presence of NADPH leads to a doubling of the rate at which iron is released from ferritin. This finding suggests that NADPH is the preferred source of electrons for the microsomal ferritin iron release pathway. That NADPH is the preferred electron source for the pathway was important in establishing a link between the microsomal ferritin iron
release process, and induction of the Ah genetic locus.

The first step taken in order to determine the microsomal protein responsible for ferritin iron release was to establish assay conditions under which, presumably, this protein would become the rate determining component in the ferritin iron release pathway. Having established these conditions (see the Results Section), the rate of release of iron from ferritin by induced and uninduced microsomal fractions was determined. The results indicated that cytochrome P450 is the rate limiting microsomal component in the ferritin iron release pathway, however some doubt was cast upon the validity of this interpretation of the results. Firstly, the rate of release of iron determined for long term TCDD induced microsomes was not in agreement with the values determined for the other microsomal fractions investigated, when expressed as nmole Fe\(^{2+}\) released/min/nmole cytochrome P450. This discrepancy could be rationalized by attributing the difference to the fact that NADPH-cytochrome c (P450) reductase is not induced by TCDD. Due to the induction of the cytochrome, and not the reductase, the ratio of molecules of cytochrome P450 per unit of reductase activity determined for the long term TCDD microsomes was more than double the value determined for noninduced control microsomes. Thus, it could be suggested that, in the case of long term TCDD induced microsomes, the reductase becomes the rate limiting
microsomal component in the ferritin iron release pathway.

Another factor which cast some doubt upon the suggestion that cytochrome P450 was the rate determining microsomal component of the ferritin iron release pathway was the finding that the type, or form, of cytochrome P450 present appears to have no effect upon the rate of release of iron from ferritin. If electrons were being shuttled through cytochrome P450 to the flavin, one would have expected to observe some kind of effect. Assuming that cytochrome P450 acts as the electron donor in the ferritin iron release pathway, one would expect that the electrons donated to the flavin would be passed on through the active site of the cytochrome. Because of differences in substrate specificities between the two families of cytochrome P450, the affinity of the cytochromes for flavin would be expected to be somewhat different. The results obtained here however do not support any differences in affinity for flavin, as both forms of cytochrome P450 appear to mobilize ferritin iron at the same rate.

The lack of inhibition of ferritin iron release by cytochrome P450 and cytochrome P1450 inhibitors confirmed the suspicions that interpretation of the data presented in Table 2 was in error. The results of the inhibitor study provided strong evidence suggesting that cytochrome P450 does not act as the donor of electrons to FMN in the microsomal ferritin
iron release pathway, as ferritin iron release was not inhibited by any of the inhibitors tested. In view of this finding it was postulated that NADPH-cytochrome c (P450) reductase would be the most likely alternative microsomal electron transport protein to be responsible for the production of the reduced flavin required for ferritin iron release. It was decided that the most effective means of investigating microsomal ferritin iron release would be to separate cytochrome P450 and NADPH-cytochrome c (P450) reductase from microsomes, and then attempt to reconstitute a functional microsomal ferritin iron mobilizing system.

Before reconstitution of ferritin iron release could be attempted, reconstitution of known MFO activities was investigated. The finding that the levels of reconstituted MFO activity achieved were similar to the levels of reconstituted activity achieved by Lu et al (65), using proteins of similar specific content, demonstrated that the partially purified proteins obtained through our method of purification were suitable for use in the investigation of microsomal ferritin iron release using a reconstituted system.

The results of the reconstitution experiments performed in order to investigate microsomal ferritin iron release demonstrated that NADPH-cytochrome c (P450) reductase is the microsomal electron transport protein responsible for
ferritin iron release. No iron release was observed in the absence of this protein, and the curve obtained for the rate of iron release versus the reductase activity present closely paralleled the curve obtained for intact control microsomes. NADPH-cytochrome c (P450) reductase has been demonstrated to be capable of donating electrons to several artificial electron acceptors besides its native electron acceptor, cytochrome P450 (66). Thus, it is not unreasonable to propose that this protein serves as the electron donor to FMN in the microsomal ferritin iron release pathway.

The difference in lag phase time observed for the reductase alone, compared with the lag phase observed for intact microsomes, suggested that there was some deficiency in the reconstituted microsomal ferritin iron mobilizing system containing reductase alone. Because of the earlier results obtained suggesting that cytochrome P450 served as the electron donor to FMN in the microsomal ferritin iron release pathway, it was suggested that perhaps cytochrome P450 performs a role in the ferritin iron release process. The results of an experiment in which various amounts of cytochrome P450 or cytochrome P450 were added to a reconstituted system containing a constant amount of reductase activity showed that the presence of cytochrome P450 in the reconstituted system caused a decrease in the lag phase time observed. The duration of the lag phase was found
to depend upon the amount of cytochrome P450 added back to
the system. The more cytochrome P450 added back, the shorter
the duration of the lag phase observed. At the highest level
of cytochrome P450 added back, an increase in the rate of
iron mobilization was also observed.

The duration of the lag phase is thought to represent
the time necessary for the generation of a reduced flavin
concentration sufficiently high to initiate ferritin iron
release. It is possible that the role of cytochrome P450 is
to serve as a membrane binding site for the added flavin. By
doing so, cytochrome P450 might make the flavin more
accessible to the reductase for electron transfer. Because
the flavin would be more accessible to the reductase, the
time required for the generation of a reduced flavin
concentration sufficiently high to initiate ferritin iron
release would likely decrease. In their proposed mechanism
of mitochondrial ferritin iron release, Ulvik and Romslo (48)
suggested that carbohydrate residues on the mitochondrial
membrane surface may serve as sites at which the FMN binds in
order to withdraw reducing equivalents from the mitochondrial
electron transport chain component ubiquinone. Both
cytochrome P450 and cytochrome P1450 are glycoproteins,
containing 1 glucosamine and 2 mannose residues per
polypeptide chain (67). It is possible that the carbohydrate
residues on the cytochromes may serve as the microsomal
membrane binding sites for FMN in the microsomal ferritin iron release pathway.

From the results of this investigation, a possible mechanism for the microsomal ferritin iron release process could be proposed. The results suggest that FMN may bind to the membrane at cytochrome P450 and is then reduced by NADPH-cytochrome c (P450) reductase. Once reduced, the flavin then migrates to the ferritin iron core, passes on its reducing equivalents to the ferric iron present, thus reducing it to the ferrous form, and allowing for its release from ferritin.

Induction of the MFO system by both PB and TCDD leads to an increase in the rate at which the microsomes will release iron from ferritin in vitro (see Table 2), but only TCDD induction leads toxicity in vivo. If the toxicity observed with TCDD results from the liberation of iron from ferritin in vivo, then there must be some difference in induction pattern which leads to release of iron from ferritin with TCDD induction, but not with PB induction. One difference in induction pattern which could lead to the toxicity observed with TCDD, but not with PB, is that TCDD is not metabolized by the cytochrome which it induces, whereas PB is. Thus, with TCDD induction, the induced microsomal electron transport system is not metabolically active and would therefore be free to participate in a reaction in which
it may not normally be involved. With PB induction on the other hand, the induced microsomal electron transport chain would be metabolically active (i.e., metabolism of PB), and thus would not be free to participate in such a reaction.

Recently, experiments were performed in this laboratory in order to investigate the possibility that TCDD toxicity results from the lack of a metabolizable substrate. A cytochrome \(\text{P}^4_{\text{50}} \) substrate, namely Beta-naphthoflavone (B-NF), was given to mice in conjunction with treatment with TCDD. It was found that the inclusion of the cytochrome \(\text{P}^4_{\text{50}} \) substrate in the diet of TCDD treated mice resulted in partial protection against the morphologic changes associated with TCDD toxicity (68). In order to assess the significance of the protection against TCDD toxicity provided by B-NF, it must be borne in mind that TCDD is a much more potent inducer than is B-NF. While significant levels of cytochrome \(\text{P}^4_{\text{50}} \) and its associated MFO activities can be induced through oral administration of B-NF (69), prolonged exposure to B-NF is required. The level of induction achieved with the 5% B-NF diet used in this experiment was equivalent to a dosage of approximately 1 \(\mu \text{g/kg/week} \) TCDD, whereas the dose of TCDD used to produce toxicity was 25 \(\mu \text{g/kg} \) TCDD, administered as a single injection (ip). It is possible that, because of the disparity in inducing abilities between the two compounds, the level of B-NF included in the diet was not sufficiently
high to allow for complete protection against the toxicity caused by TCDD.

While the results of this experiment in no way prove that TCDD toxicity results from the liberation of iron from ferritin, they do not rule out such a possibility. The results provide support for the suggestion that TCDD toxicity may result from the participation of the induced MFO proteins in a process in which they may not normally be involved. Such a process could very well be the release of iron from ferritin, but this remains to be demonstrated.

Thus, in summary, the results documented in this thesis provide evidence that NADPH-cytochrome c (P450) reductase could serve as the microsomal electron transport protein from which FMN drains its reducing equivalents for ferritin iron release. This finding is important in that it provides a possible mechanism through which TCDD might exert its hepatotoxic effects. Although these results do not provide any direct evidence that TCDD toxicity results from the mobilization of storage iron from ferritin by the TCDD induced microsomal electron transport system, they do provide support for such a suggestion. It could be postulated that, owing to the lack of a metabolizable substrate, reducing equivalents are drained from the induced microsomal electron transport system by free cytosolic flavin, or possibly an as yet unidentified flavoprotein, and that these electrons,
rather than being utilized in the metabolism of the inducer TCDD, are instead being diverted to the mobilization of storage iron from ferritin. The lack of stainable storage iron in porphyric liver cells obtained from HCB treated rats (19,20) supports such a suggestion, as HCB and TCDD appear to cause toxicity via a similar mechanism. Mobilization of storage iron would result in the presence of free unbound ferrous iron within the cell, which in turn could result in lipid peroxidation reactions causing membrane damage, and ultimately cell death. The presence of iron in the cytosol could also result in the development of the PCT-like porphyria associated with TCDD toxicity. The porphyria caused by TCDD results from a decrease in the activity of the enzyme uroporphyrinogen decarboxylase, which allows this enzyme to become the rate-limiting enzyme of the heme biosynthetic pathway (70). The evidence collected thus far suggests that porphyria develops because of synergism between TCDD and iron. Experiments have shown AHH responsiveness is necessary for the development of porphyria (14,15), and this has been interpreted to indicate that induction of cytochrome P_450 (which leads to induction of heme synthesis) is required for the induction of porphyria. A synergistic role for iron is indicated by the finding that lower levels of liver iron clearly delay or prevent the porphyria from developing (16,37). Thus, a phenomenon such as the mobilization of
storage iron from ferritin could very well result in the hepatotoxic effects associated with TCDD poisoning.
References

25) Fischbach, F.A., Gregory, D.W., Harrison, P.M.,
495, (1971).
26) Shoden, A., and Sturgeon, P., Acta Haemat. 23; 376,
(1960).
27) Matioli, G.T., Bahr, G.F., Zeitler, E., and Baker, R.F.,
29) Mitcoli, G.T., and Baker, R.F., J. Ultrastruct. Res. 8;
30) Shoden, A., and Sturgeon, P., Brit. J. Heamatol. 9; 513,
(1963).
31) Bothwell, T.H., Charlton, R.W., Cook, J.D., and Finch,
C.A., Editors, Iron Metabolism In Man; page 90, Blackwell
32) Daoust, R., and Cantero, A., Cancer Res. 12; 757,
33) Weibel, E.R., Staubli, W., Gnagi, H.R., and Hess, F.,
Med. 80; 613 (1972).
35) Cook, J.D., Barry, W.E., Hershko, C., Fillet, G., and
36) Van Wyk, C.P., Linder-Horowitz, M., and Munro, H.N.,
J. Biol. Chem. 246; 1025, (1971).

60) Coon, M.J., Meth. in Enzymol. 52; 200, (1978).
68) Sweeney, G.D., Manuscript in Preparation.
69) Sweeney, G.D., Manuscript in Preparation.