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Abstract

PrediXcan, an imputed gene expression-trait association method, was compared
to multiple linear regressions (MLR) of single nucleotide polymorphisms (SNPs) us-
ing the quantitative phenotypes serum total cholesterol (TC), low-density lipopro-
tein cholesterol (LDL), high-density lipoprotein cholesterol (HDL) and triglycerides
(TG). The gene expression prediction models were trained using transcriptome- and
genome-wide data from Depression Genes and Networks (DGN whole blood) and
Genotype-Tissue Expression (GTEx) Project (GTEx whole blood, GTEx pancreas
and GTEx liver). Linear combinations of the effect sizes derived using elastic net or
least absolute shrinkage and selection operator (LASSO) with genotypes from 1304
European patients from the Diabetes Control and Complications Trial (DCCT) were
used to estimate the genetically regulated expression (GReX) for genes. Different gene
expression predictors were present in each training set. The 10-fold cross-validated
predictive performance, estimated GReX, and p values from associations for matched
genes were weakly correlated across training sets and strongly correlated for models
derived using elastic net and LASSO. MLR models had more significant associations
than PrediXcan models and larger inflation factors for p values. A comparison of p
values for matched genes between PrediXcan and MLR models showed weak correla-
tions but strong evidence for LDL and HDL associations with genes at locus 1p13.3
and 16q13, respectively.
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Chapter 1

Introduction

1.1 Genome-wide Association Studies

The genome is the genetic material of an individual and in humans it is comprised

of 22 homologous autosomal chromosomes and a pair of sex chromosomes. The ge-

netic instructions of a person are encoded in double stranded deoxyribonucleic acid

(DNA) via sequences of nucleotides containing one of four nitrogenous bases: cy-

tosine (C), guanine (G), adenine (A) and thymine (T). The human genome spans

approximately 3.2 billion base pairs of protein coding and noncoding regions over

approximately 20,000 genes (Ezkurdia et al., 2014). Genome-wide association studies

(GWAS) explore the whole genome for DNA sequence variations termed single nu-

cleotide polymorphisms (SNP) that are associated with a disease or trait (Edwards

et al., 2005; Klein et al., 2005). Regions on a chromosome marked by a SNP (or gene)

that correlate with a quantitative phenotype are called quantitative trait loci (QTL).

Homologous alleles may be homozygous (AA or aa) for the dominant (common) or

recessive (rare) allele, respectively, or heterozygous (Aa) for both forms of the allele.

The prevalence of certain variants segregates with populations, phenotypes and disease

and can be quantified through calculations of the frequency of the rare (minor) allele

(International HapMap 3 Consortium et al., 2010; 1000 Genomes Project Consortium
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et al., 2010). Most common variants with minor allele frequency (MAF) of > 5%

have small effects and thus marginally affect transcription, translation and subsequent

downstream mechanisms. Hence, the common disorders that arise from these common

SNPs are usually the result of many low penetrant variants (Manolio et al., 2009).

GWAS begins with the acquisition of high quality genome-wide data through the

use of genotyping arrays and stringent quality control measures that help to minimize

the GWAS false positive rate (Anderson et al., 2010). Linkage disequilibrium (LD),

or the non-random inheritance of sets of SNPs on a chromosome in haplotype blocks,

is exploited by GWAS (McCarthy et al., 2008). SNPs at the same or different loci

are said to be in LD if their joint genotype distribution differs from the product of

their marginal genotype distributions. In an effort to query the entire human genome

without representing every SNP on an array, genotyping platforms include markers

directly and indirectly using SNPs in LD. The level of correlation required to be

tagged on an array is generally greater than 0.8 and the fraction of common SNPs

that are captured determines the global coverage (Li et al., 2008). Rare variants with

MAF 6 0.05 (or 0.01) are normally excluded from analyses because statistical tests

do not preform well for such low frequency SNPs (Carlson et al., 2003; Spencer et al.,

2009).

Genotype calling algorithms are used to determine the three possible genotypes

given the probe intensity for the SNPs in the sample. Genotype calls that do not

meet the threshold—set to keep the call rate and number of errors within the range

of tolerance—become missing calls because they cannot be accurately assigned the

genotypes AA, Aa or aa. The total number of called genotypes and the quality

of each call can vary by marker and sample (Anderson et al., 2010). Missing calls

may suggest poor DNA quality or problems with the genotyping process. These

samples or SNPs may be eliminated from the data set or retained by estimating

2
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the posterior expected value for the missing markers using haplotypes from HapMap

or 1000 genomes reference panels in a process called imputation (Li et al., 2009).

Dosages for the SNPs are calculated from the called and imputed genotypes and they

take on continuous values from 0 to 2. Dosages of 0 and 2 denote genotypes AA

and aa, respectively. Sample contamination may be assessed through measures of

the heterozygosity rate of the called genotypes (Anderson et al., 2010). Comparisons

between the reproducibility of calls and the recorded and genotyped gender can further

aid assessments of the genotype call integrity (Zeng et al., 2015).

GWAS results may be confounded by subgroup related factors. Tests for Hardy-

Weinberg equilibrium (HWE) can assess population stratification (differences in the

frequency of the minor allele among population members) due to genetically distinct

subgroups in the sample (Anderson et al., 2010). The HWE model follows a bino-

mial(2,MAF) distribution. Deviations from HWE can be assessed using Pearson’s

χ2 test of the observed allele frequencies from the called genotypes and the expected

HWE allele frequencies for the population (Balding, 2006). It is customary to remove

SNPs showing strong evidence against HWE.

Principal component (PC) analysis is also widely used to identify individuals with

different genetic backgrounds (Price et al., 2006; Anderson et al., 2010). Linearly

uncorrelated PCs are calculated from the genotype matrix using singular value de-

composition and reduced to the PCs of the population structure, in decreasing order

of importance. The top two PCs, which describe ancestry effects, may be used to

exclude or control for individuals with distinct PCs.

Linear regression models are used for quantitative (continuous) traits and they

follow either a dominant (at least 1 minor allele is needed for disease risk; Aa or aa),

recessive (both minor alleles are needed for disease risk; aa), multiplicative (Aa and

aa confer a and a2 disease risk, respectively) or additive (disease risk is proportional to

3
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the number of copies of the minor allele) genetic model (Lettre et al., 2007). In single

SNP GWAS, phenotypes are regressed onto each SNP individually and the estimate

of the SNP-effect is tested for statistical significance and ranked according to the p

value. The confidence of these estimates coincides with the sample size and thus the

coefficients of the SNPs have smaller errors with larger sample sizes. Variation in

complex traits is a result of genetic and environmental factors and the portion due to

all of the causal genetic variants is termed heritability (ĥ2) (Wray et al., 2013). The

coefficient of determination (R2) measures the amount of variation in the trait that

is explained by the predictors in the model and in models with only genetic variants

an upper bound is ĥ2.

Multiple hypotheses are tested in GWAS and in single variant associations they

may number > 1 million comparisons. Family-wise error rate (FWER) is the prob-

ability of making at least one type 1 error in a group of comparisons. The type 1

error becomes 1− (1− α)N for N approximately independent statistical tests unless

the family of comparisons is corrected (Shaffer, 1995). Bonferroni correction (α/N)

is commonly used in GWAS to control for family-wise error (Johnson et al., 2010)

and hypotheses are generally tested at a genome wide significance level of ∼ 5 ×10−8

(Risch et al., 1996). SNPs with p values less than this threshold are those selected for

validation.

Quantile-quantile (Q-Q) plots facilitate the visualization of the distribution of p

values from a GWAS study relative to the expected (uniformly distributed) p values

under the hypothesis of no association, in rank order (Turner, 2014). The majority

of variants follow the line y = x since it is unlikely for many SNPs to be associated

with the trait. The − log10 p value is commonly used to emphasize the large-effect

loci that deviate from the diagonal at the far upper-right. Some variants will have

small p values due to chance and thus it is only those p values that deviate sub-

4
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stantially from the null distribution that are of particular interest; however, spurious

associations may also have very small p values and thus claims of significance should

follow from study replication and literature validation. Deviations from y = x suggest

quality control, cryptic relatedness (the unknown relationship between two or more

persons) or population stratification problems, which can be evaluated by estimating

the genomic control inflation factor for the distribution of p values (λgc) according to

λgc =
median(w1, w2, ..., wN)

0.455
, (1.1)

where w1, w2, · · · , wN are the observed N (asymptotic) one-degree of freedom chi-

squared test statistics and 0.455 is the expected median of the chi-squared distribution

with one degree of freedom (Devlin and Roeder, 1999; Zheng et al., 2006). The λgc

can also be calculated from p values converted to one degree of freedom chi-squared

test statistics. The λgc should be close to one and a λgc > 1 suggests an inflation

of p values and an increase in the type 1 error rate. Inflated test statistics can be

corrected by dividing the test statistics by the inflation factor λgc. Histograms can also

be used to assess the uniformity of p values. The results of GWAS are visualized using

Manhattan plots (Turner, 2014) where SNPs are plotted by their genomic position and

− log10 p value using a gradient of colours by chromosome number. The majority of

insignificant variants cluster en masse at the base of the plot and the few significantly

associated SNPs present at or above the Bonferroni corrected α level.

1.2 Gene-based Association Studies

While single-SNP analyses consider the marginal effect of a SNP on a phenotype,

multi-marker associations capture the cumulative effect of SNPs that alone are either

5
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not, weakly or moderately associated with the phenotype (Monir and Zhu, 2017).

Consequently, multi-marker associations may explain more of the variation in the trait

under the null hypothesis of no association because they contain p > 1 predictors in

the model (Wray et al., 2013). They also result in fewer multiple comparisons and

facilitate exploratory and secondary analyses of genome-wide data. In multi-marker

associations, SNPs are aggregated into relevant sets that, in turn, are associated with

a phenotype (Tregout et al., 2009). Relevance for inclusion in a set may be as simple

as the strength of the p value from previous associations or as complex as the putative

relationship of the SNPs to a biological pathway. Q-Q and Manhattan plots are used

to visualize the distribution of p values in analogous fashion to those in GWAS and

given that a set of SNPs is more likely to be causal than a single SNP, the customary

Bonferroni corrections of 0.05/N (where N is now the number of SNP sets) more

than adequately correct for multiple comparisons in multi-marker association studies.

Similarly, calculations of the inflation factor for p values follow using the number of

SNP sets for N .

In gene-based approaches, the relevant SNPs are those within and around a gene

and in some cases these windows may overlap other gene windows. Thus, a SNP may

appear in more than one statistical test for N genes, calling into question not only

the assumption of independent hypotheses but also the suitability of the stringent

Bonferroni multi-testing burden. In addition, the number of variants in a SNP set

(gene size) can vary by gene and the SNPs within an aggregate can be correlated with

one another (Mooney and Wilmot, 2015).

All of the variants of a gene need not be considered for association because the

LD structure of genes can enable complete information to be obtained from only

a subset of haplotype-tagged variants (Browning and Browning, 2007). The variable

selection methods ridge, LASSO (least absolute shrinkage and selection operator) and

6
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elastic net are commonly used in genetic association studies. They are based on the

properties of ordinary least squares (OLS), where minimizing the residual squared

error for a (X,y) data set with n × p matrix X results in the best linear unbiased

estimator

β̂ = argmin
{ n∑

i=1

(
yi −

∑
j

βjxij

)2}
= argmin||y −Xβ||2 (1.2)

however, the variance of coefficients increases with the dimensionality and collinearity

of the data set and in certain circumstances may be too large. Ridge regression is a

modelling method that reduces the variance of OLS estimates through a constraint

on the coefficients
p∑

j=1

β2
j = ||β||2 ≤ t. (1.3)

that shrinks them to continuous non-zero values. LASSO is a technique that com-

bines the principles of ridge regression (shrinkage of coefficients) and variable selec-

tion (dropping regressors by setting coefficients to 0) to achieve a parsimonious model

(Tibshirani, 1996) using the constraint on the coefficients

p∑
j=1

|βj| = ||β||1 ≤ t. (1.4)

Another continuos shrinkage and variable selection method termed elastic net (EN)

combines the L1-norm penalty of LASSO and L2-norm penalty of ridge regression for

0 < α < 1 and places the following constraint on coefficients

α||β||1 + (1− α)||β||2 ≤ t. (1.5)

In contrast to LASSO, which indiscriminately selects a sparse set of SNPs from a group

7
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of highly, pairwise correlated predictors and at most n variables when the number of

explanatory variables p exceeds the number of observations n, EN selects groups of

correlated variables (Zou and Hastie, 2005).

The accuracy of a predictive model can be assessed using cross-validation when an

independent, external validation sample is not available. In cross-validation, a data set

is equally partitioned into k random folds with one fold being the testing (validation)

set and the other k − 1 folds being the training (discovery) set. The average of k

rounds of cross-validation, using different testing-training set combinations and every

testing set exactly once, provides a good estimate of the predictive performance of the

model. The estimated effect sizes β̂i from the p variants selected from the discovery

sample and one of xi = 0, 1, 2 from the validation sample (Wray et al., 2013) can be

used according to

ŷ =

p∑
i=1

β̂ixi.

1.3 Transcriptome-wide Association Studies

The transcriptome contains all of the ribonucleic acids (RNA) from a cell type

at a particular time, and the messenger RNAs (mRNAs) of the transcriptome sig-

nify the actively expressing genes in the cell type. Expression quantitative trait loci

(eQTLs) are genomic regions that influence mRNA levels via the cis-regulation of

their gene neighbours or the trans-regulation of distally located genes (Wittkopp and

Kalay, 2012; Gilad et al., 2008), and polymorphisms in these regulatory regions affect

transcript and protein abundance. Analyses of the relationships between SNPs and

gene expression were conducted to understand the functional consequences of genetic

variants (Lappalainen et al., 2013) and they are key intermediary steps to linking

the genetics of gene expression to phenotypes (Albert and Kruglyak, 2015). Many

8



M.Sc. Thesis - J. Gittens McMaster University - Mathematics & Statistics

complex disorders associate with eQTL (Nicolae et al., 2010), and transcriptome-

wide association studies (TWAS) seek to identify the relationships by associating the

expression levels of tens of thousands of genes with traits. TWAS depends on the

availability of gene expression data from the tissues of interest and due to the paucity

of certain tissues some studies are not feasible. To circumvent this problem, groups

developed methods to identify eQTL without directly measuring gene expression in

a process called gene expression imputation (Gusev et al., 2016; Gamazon et al.,

2015). Reference transcriptome and genome data sets of measured gene expression

and genetic variation, respectively, were used to impute the cis-genetic component of

expression in independent GWAS data sets. Gusev et al. (2016) used a Bayesian linear

mixed model that performed shrinkage of the SNP effects but not variable selection.

Gamazon et al. (2015) used regression models that shrunk coefficients and selected

variables. Similar to gene-based association studies, regression methods, Bonferroni

corrections, Q-Q and Manhattan plots, and genomic control for the inflation factor

for p values are used to detect significant transcriptome-wide associations.

1.4 PrediXcan

PrediXcan is an imputed gene expression-trait association method that uses genome-

wide data from individuals (Gamazon et al., 2015) rather than GWAS summary statis-

tics (Gusev et al., 2016). All cis-acting common SNPs (MAF > 0.05) in HWE (p value

> 0.05) from HapMap reference genomic data were aggregated into sets for autosomal

genes if the SNPs were within 1 Mbp of the start and stop transcription sites. SNP

sets were then regressed against the expression for the gene using reference transcrip-

tome data sets to identify eQTL. Parsimonious additive genetic models were achieved
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using elastic net and LASSO of the form

Yg =
∑
k

wk,gXk + ε (1.6)

where Yg was the expression trait for gene g, wk,g was the effect size of variant k

for gene g, Xk was the dosage of variant k, and ε represented other effectors of gene

expression. SNPs associated with the expression of the gene were stored in the Pre-

dictDB data repository along with their effect sizes (weights). The PredictDB data

repository contained training sets derived using elastic net and LASSO and reference

transcriptome and genome data sets from 40 human tissue samples (and two trans-

formed cells) across 24 organs. The reference data sets included the deceased donors

of the Genotype-Tissue Expression (GTEx) Project (Lonsdale et al., 2013; GTEx

Consortium et al., 2015) and living donors of the Depression Genes and Networks

(DGN) (Battle et al., 2014). Approximately 66% of the GTEx donors were male: ∼

84% were white and ∼ 14% were African American. The majority of GTEx donors

were between 50-70 years of age and the cause of death for those between 60-71 years

was heart (37.6%) and cerebrovascular (24.7%) disease (online resources: Gamazon

et al. (2015)). DGN whole blood was from donors of European ancestry (Battle et al.,

2014).

Gamazon and colleagues suggested that a linear combination of the dosages for a

set of SNPs (Xk) with the weights of each variant (ŵk,g) as constants according to

ĜReXg =
∑
k

ŵk,gXk (1.7)

where ĜReXg was the estimated genetically regulated expression for a gene, could

approximate the transcriptome of an individual from an independent genomic data set.
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Furthermore, they proposed that ĜReXg could be associated with any phenotype of

interest using regression and they illustrated their methods using expression predictors

with a 10-fold cross-validated R2
prediction > 0.01 from DGN whole blood derived using

elastic net.

1.5 Lipids

Blood lipids include cholesterol (TC), low-density lipoprotein cholesterol (LDL),

high-density lipoprotein cholesterol (HDL) and triglycerides (TG). Since high con-

centrations of TC and LDL and low levels of HDL are risk factors for cardiovascular

disease many genetic association studies have searched for and discovered signifi-

cantly associated QTLs (Despres et al., 2000; Prospective Studies Collaboration et al.,

2007; Surakka et al., 2015; Ma et al., 2010; Zhang et al., 2015; Teslovich et al., 2010;

Willer et al., 2013). Poorly controlled insulin dependent diabetes mellitus (IDDM)

can present with high concentrations of LDL and TG, low concentrations of HDL, and

cardiomyopathy induced heart failure (Vergs, 2009; Ritchie et al., 2017), suggesting

underlying genetic determinants. Previous studies demonstrated a positive relation-

ship with hyperglycaemia, dyslipidemia (Guy et al., 2009), and risk of heart failure in

diabetic individuals (Iribarren et al., 2001; Boudina and Abel, 2007). Given the role

of insulin in the regulation of lipid metabolism, it is not surprising that individuals

with diabetes due to the autoimmune (or idiopathic) loss of the insulin producing

islet of Langerhans β-cells in the pancreas have dyslipidemia without insulin therapy

(Vergs, 2009).
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1.6 Diabetes Control and Complications Trial (DCCT)

The Diabetes Control and Complications Trial (DCCT) was a randomized clinical

trial involving 29 medical centres from the United States and Canada (DCCT Research

Group et al., 1993). It was designed to test the hypothesis that an intensive insulin

therapy regime would lead to significantly different glucose control outcomes and

rates of appearance (or progression) of retinopathy and other IDDM-related diseases

(DCCT Research Group et al., 1986). Two regimes (intensive and conventional)

and two patient cohorts (primary prevention and secondary intervention; Table 1.1)

were studied in 1441 IDDM (type 1 diabetic) patients recruited from 1983 to 1989.

The primary prevention cohort included 726 patients without retinopathy at baseline

and the secondary intervention cohort had 730 patients with mild-to-moderate non-

proliferative retinopathy at baseline. Randomization was stratified by cohort, medical

centre and age (13-17 years and 18-39 years) at entry and patients were part of

the study for 3-9 years or 6.5 years on average. The characteristics of the patients

are presented in Table 1.1. The intensive treatment group, with the glucose control

outcome of maintaining close to normal blood glucose levels, received > 3 daily insulin

injections (or continuous subcutaneous insulin infusion) to keep blood glucose at target

glycemic values. The conventional treatment group, with the glucose control goal

being sustained clinical well-being and no adverse diabetic events, received 1-2 daily

insulin injections; glycemic targets were not set for the conventional treatment group

but glycated hemoglobin HbA1c (an assay of blood glucose concentration) was not

permitted to exceed 13.11% (DCCT Research Group et al., 1993).
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Table 1.1: Eligibility criteria for DCCT patients.

Age 13-39 years

HbA1c > 6.6%

Serum creatinine 6 1.2 mg/dl

Basal C-peptide < 0.2 nmol/l

Hypertension No

Hypercholesterolemia No

Severe Medical Conditions No

Primary Prevention Secondary Intervention

Insulin therapy 1-5 years 1-15 years

Retinopathy (fundus) No > 1 microaneurysm (< level P2)

Albuminuria < 40 mg/24h < 200mg/24h

Blood glucose, HbA1c, and blood pressure were measured quarterly for the conven-

tional group and monthly for the intensive group. Stereo fundus photographs were

taken biannually, and urinary albumin along with serum creatine, total cholesterol

(TC), high-density lipoprotein cholesterol (HDL), triglycerides (TG) were collected

annually following a > 8 h overnight fast (DCCT Research Group et al., 1986). An-

nual measures for LDL were calculated using Friedewald’s formula (Friedewald et al.,

1972). The visit completion rate exceeded 95%. The median for HbA1c for the in-

tensive treatment group fell to approximately 7% from 8.7% following 6 months of

treatment and remained in this range for the remainder of the trial. The HbA1c for

the conventional treatment group rose from 8.5% to a sustained median value of ap-

proximately 9% after one year of treatment as shown in Figure 1.1. The results of

the study showed that intensive treatment delayed the development and progression

of retinopathy, nephropathy and neuropathy.
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Figure 1.1: Medians of all annual glycosylated hemoglobin measurements in DCCT
patients with IDDM receiving intensive or conventional therapy. Vertical lines mark
the 25th and 75th percentiles of the yearly values. The conventional treatment mea-
surements are shown in blue and the intensive treatment measurements are shown in
green.

1.7 DCCT Data Set

DNA was collected from DCCT patients with their written informed consent and

used for genome-wide genotyping with the Human1M beadchip (Illumina R© Inc., San

Diego, CA, USA). The Illumina Human1M beadchip was based on the HapMap

II reference data set and 93% of the common SNPs from CEU (Utah residents

with Northern and Western European ancestry from the CEPH collection) were

tagged at R2 > 0.8. Genotypes were called using BeadStudio/GenomeStudio soft-

ware (Illumina R© Inc., San Diego, CA, USA) and thereafter analyzed using PLINK

v1.07 (http://pngu.mgh.harvard.edu/purcell/plink/). No data were removed because

of a low genotype call rate; however, individuals with discrepancies between the re-

ported and genotyped sex or previously reported genotypes were removed. The geno-

type concordance of 24 duplicate samples was 99.9995% (at a call rate threshold of
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Table 1.2: 1304 Caucasian DCCT patients by treatment.

Conventional Intensive

Gender
Male 363 332

Female 304 305

Cohort
Primary Prevention 344 307

Secondary Intervention 323 330

Age DCCT baseline 26.5 ± 7.1 27.2 ± 7.1

The sample size for each treatment group is presented across gender, co-
hort and age in years (Paterson et al., 2010).

0.988) and the mean heterozygosity across the genome for each individual was be-

tween 0.25-0.32. Two probands were removed following further tests for quality and

cryptic relatedness. Autosomal SNPs were excluded from analyses if they deviated

from HWE (p < 10−8) or showed significant association with sex (Paterson et al.,

2010). Untyped SNPs were imputed using methods and software described in (Howie

et al., 2009) and the 1000 Genomes (phase 1 version 3) integrated variant release

(March 2012). Only individuals who clustered with CEU and TSI (Toscani in Italy)

from phase III of the International HapMap Project in PC analysis and thus were

European Caucasians were used for GWAS, and only SNPs that were imputed with

high certainty (INFO >0.8; IMPUTE version 2) were included in the study.

1.8 Rationale for the Thesis

The relationship between blood lipids, glucose homeostasis, IDDM and cardiovas-

cular disease is well reported (Vergs, 2009). Furthermore, the mechanisms by which

dyslipidemia and heart failure arise in IDDM are beginning to unfold along with the

development of target-specific therapeutic agents (Siebel et al., 2015). GWAS have

identified many QTLs (Teslovich et al., 2010; Kurano et al., 2016) but the identifi-
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cation of eQTLs in TWAS has yet to be performed in the setting of IDDM and the

models proposed for imputed gene expression-trait association require further valida-

tion.

The PredictDB data repository, DCCT data set, and PrediXcan model provide an

excellent opportunity to examine the relationship between lipid traits and expression

relevant SNPs at the individual level and on the genetic backdrop of IDDM. Exploring

how different models impact the outcomes of TWAS can facilitate the development

of efficient methods for this nascent field and aid the subsequent interpretation of

statistical findings. Such investigation could help tease apart the genetic determinants

of dyslipidemia in type 1 diabetes and enable progress in personalized medicine.

1.9 Objectives of the Thesis

1.9.1 Objective 1

The first objective, addressed in Chapter Two, was to describe and compare the

characteristics of four publicly available PredictDB training sets (GTEx liver, GTEx

pancreas, GTEx whole blood and DGN whole blood) derived using elastic net and

LASSO. These training sets were selected because they relate to the etiology of IDDM.

1.9.2 Objective 2

The second objective, addressed in Chapter Three, was to describe the four lipids

measured in DCCT and estimate the genetically regulated expression (GReX) of genes

for European Caucasian DCCT patients. The estimated GReX values were compared

across models and training sets to ascertain the impact of different variable selection

methods and reference data sets on the estimated GReX. The estimated GReX were
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associated with one of TC, LDL,
√

HDL, log10 TG, with and without covariates (age,

gender, duration of IDDM, cohort, treatment, and the interaction between cohort and

treatment). The p values from the Student’s t for lipid associations with the estimated

GReX were compared across models and training sets.

1.9.3 Objective 3

The final objective, addressed in Chapter Four, was to test for significant eQTL

using multiple linear regression (MLR). Models with and without covariates were

examined and the F -test was used to see if the lipid trait could be explained by

one or more of the SNPs in the gene expression predictor. The MLR results were

compared to the PrediXcan results of Chapter 3.

17



Chapter 2

PredictDB Training Sets

2.1 Methods

PredictDB training sets. PredictDB training sets were retrieved from the Pre-

dictDB data repository (http://hakyimlab.org/predictdb/) on March 1, 2016. The

training sets: GTEx liver (n=97), GTEx pancreas (n=149), GTEx whole blood

(n=338) and DGN whole blood (n=922) from elastic net and LASSO models (Ap-

pendices: Table A.1) were extracted using the DB Browser for SQLite Version 3.9.2

and read into R version 3.3.1 (2016-06-21) for descriptive analyses. Venn diagrams

were constructed using package ‘VennDiagram’ from the CRAN repository (Chen and

Boutros, 2011).

2.2 Results

DGN whole blood covered the most genes followed by GTEx whole blood, GTEx

pancreas and GTEx liver in decreasing order for both elastic net and LASSO models

(Table 2.1) and relative to the sample size used by Gamazon and colleagues to develop
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Table 2.1: Summary statistics for the predictive performance and number of
SNPs in the expression predictors across training sets.

Training Set Model Variable N Mean St. Dev. Min Max

DGN whole
blood

Elastic net
R2

prediction 11,538 0.124 0.166 0.000 0.909

SNPs 11,538 28.725 23.984 1 222

LASSO
R2

prediction 11,520 0.125 0.166 0.000 0.911

SNPs 11,520 17.055 18.626 1 192

GTEx
whole
blood

Elastic net
R2 10,215 0.046 0.088 0.000 0.769

SNPs 10,215 16.805 16.094 1 128

LASSO
R2

prediction 10,067 0.047 0.089 0.000 0.767

SNPs 10,067 11.729 12.632 1 362

GTEx
pancreas

Elastic net
R2 9,793 0.058 0.098 0.000 0.774

SNPs 9,793 17.957 18.472 1 211

LASSO
R2

prediction 9,613 0.059 0.099 0.000 0.779

SNPs 9,613 11.407 12.983 1 164

GTEx liver

Elastic net
R2 8,561 0.049 0.079 0.000 0.669

SNPs 8,561 16.928 19.062 1 167

LASSO
R2

prediction 8,402 0.051 0.081 0.000 0.679

SNPs 8,402 10.379 12.664 1 136

R2
prediction, 10-fold cross-validated predictive performance; SNPs, the number of SNPs in the

expression predictor; N, the number of expression predictors in the training set; LASSO, least
absolute shrinkage and selection operator.

the predictor models. In addition, DGN whole blood had the highest mean and max

10-fold cross-validated R2 for predictive performance (R2
prediction). GTEx whole blood

had the lowest mean R2
prediction despite the fact that it was trained using the second

largest sample size. The R2
prediction for matched expression predictors were similar

between elastic net and LASSO models for all DGN whole blood and GTEx training

sets (Figure 2.1) and thus the elastic net and LASSO models for gene expression

predicted equally well. A comparison of the R2
prediction between pairs of training sets

demonstrated weak correlations for matched expression predictors from all training

set pairs except DGN whole blood and GTEx whole blood, which had moderate

correlations (Figure 2.2).
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Figure 2.1: Scatter plots of the 10-fold cross-validated R2 for predictive performance
for matched expression predictors derived using EN (elastic net; y-axis) and LASSO
(least absolute shrinkage and selection operator; x-axis). Spearman’s rank correlation
coefficient (r) is shown. The red line represents y = x.

Thus, the performance of an expression predictor varied with the training set selected

and DGN whole blood did not always have the strongest predictive performance for

gene expression.

In accordance with the selection of groups of correlated variables, elastic net models

contained on average more SNPs in the expression predictor than LASSO models for

all training sets (Figure 2.3), demonstrated by the higher point density in the upper

left half of the elastic net versus LASSO scatter plots.
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Figure 2.2: Scatter plots of the 10-fold cross-validated R2 for predictive performance
for matched expression predictors from training sets. The same expression predictors
N were examined in each plot. Spearman’s rank correlation coefficient (r) is shown.
The red line represents y = x.
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Figure 2.3: Scatter plots of the number of SNPs in each expression predictor derived
using EN (elastic net; y-axis) and LASSO (least absolute shrinkage and selection
operator; x-axis). The red line represents y = x.

The fact that elastic net models had more SNPs was further demonstrated in

Table 2.2 and Figure 2.4, with DGN whole blood expression predictors containing

more SNPs than the other GTEx training set expression predictors. The disparity

between the number of SNPs in Tables 2.2 between total and unique SNPs was due

to the multiple copies of the same SNP that existed in every PredictDB training set.

A close inspection of the prevalence of multiple SNP copies is shown in Table 2.3, and

it is a consequence of the assigned overlap of SNPs between neighbouring genes.
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Table 2.2: Number of SNPs, unique SNPs, and unique expression predic-
tors in the PredictDB training sets.

Training Set Model Total SNPs Unique SNPs Unique Genes

DGN whole
blood

Elastic net 331,425 249696 11538
LASSO 224,632 173624 13171

GTEx whole
blood

Elastic net 171,659 152042 10212
LASSO 118,078 106155 10064

GTEx
pancreas

Elastic net 175,852 156979 9788
LASSO 109,658 99960 9609

GTEx liver
Elastic net 144,920 131300 8558

LASSO 87,206 80303 8400

LASSO, least absolute shrinkage and selection operator.

At most 9 gene expression predictors contained the same SNP in GTEx training

sets and as many as 26 gene expression predictors contained the same SNP in DGN

whole blood. The range of SNP weights varied by training set, being narrower for

DGN whole blood and GTEx whole blood. GTEx pancreas and GTEx liver had

extreme SNP weights for less than 0.2% of the variants (Table 2.4).
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A B

C D

Figure 2.4: Venn diagrams for the number of unique SNPs (A and B) and unique
gene expression predictors (C and D) across training sets. LASSO, least absolute
shrinkage and selection operator
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Table 2.3: Count of SNPs in PredictDB training sets that were present in one or
more expression predictors.

SNP
Copy

Training Set
GTEx liver GTEx pancreas GTEx whole blood DGN whole blood

EN LASSO EN LASSO EN LASSO EN LASSO
1 119712 74321 141073 91675 134925 96253 195925 139824
2 9977 5218 13624 7191 13491 8378 37574 23901
3 1299 638 1798 866 2039 1179 10225 6225
4 229 99 363 169 398 247 3380 2070
5 61 24 74 40 118 64 1350 834
6 18 2 25 12 49 17 566 345
7 4 1 14 2 18 15 268 175
8 5 4 3 1 152 87
9 3 1 1 1 92 53
10 46 23
11 35 27
12 16 14
13 16 13
14 12 6
15 9 7
16 9 5
17 8 6
18 2 3
19 5 2
20 2 2
21 1 1
22 1
23 1
24
25 1
26 1

The majority of SNPs in PredictDB training sets were present in only one expression predictor. One
SNP appeared in 26 expression predictors from DGN whole blood derived using elastic net. EN, elastic
net; LASSO, least absolute shrinkage and selection operator.

A few expression predictors had two IDs for a single Human Genome Organiza-

tion (HUGO) symbol and thus two values for R2
prediction and the number of SNPs.

Two expression predictors in GTEx liver (CCDC177, GOLGA6L9), four expression
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Table 2.4: Summary statistics for SNP weights in the training sets.

Training Set Model N
Percentile

St. Dev Min Max
0.1th 99.9th

DGN whole
blood

Elastic net 331425 -0.54 0.57 0.07 -2.64 2.23
LASSO 224632 -0.89 0.96 0.11 -2.96 3.66

GTEx whole
blood

Elastic net 171659 -0.57 0.55 0.09 -4.43 4.98
LASSO 118078 -0.83 0.81 0.19 -37.83 26.69

GTEx
pancreas

Elastic net 175852 -0.90 0.91 3.06 -975.98 350.19
LASSO 109658 -1.26 1.23 4.39 -1163.52 393.79

GTEx liver
Elastic net 144920 -1.87 1.74 4.90 -817.06 628.24

LASSO 87206 -3.79 3.06 6.58 -887.94 982.94

N, the number of SNPs in the training set; LASSO, least absolute shrinkage and selection op-
erator.

predictors in GTEx pancreas (F11R, GOLGA6L9, MR0H7, TMEM236), and three

expression predictors in GTEx whole blood (DCAF8, F11R, ZNF763) were du-

plicated in elastic net and LASSO models and one expression predictor, FAM47E,

was duplicated in only GTEx liver and GTEx pancreas of elastic net. DGN whole

blood training sets did not contain any duplications. Counts of the unique expression

predictors (having only one ID and HUGO symbol) are presented in Table 2.2.

It may be tempting to select only DGN whole blood derived using elastic net

for subsequent calculations of the score for gene expression, ĜReXg, and association

with a trait since it covered the most genes, had the largest number of SNPs, and the

highest R2
prediction of the training sets. Such an approach is reasonable since there was

expression predictor and SNP overlap among the training sets (Figure 2.4), and the

majority of expression predictors and SNPs in LASSO models were also present in

elastic net models. Moreover, proportionally more expression predictors intersected

elastic net and LASSO for DGN whole blood relative to the other training sets (Table

2.5). Nonetheless, the extent of overlap paled in comparison to the collective number
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Table 2.5: The number of gene expression predictors and SNPs
within elastic net but not LASSO (EN), elastic net and LASSO
(EN and LASSO), and LASSO but not elastic net (LASSO) across
training sets.

Training Set Variable EN EN and LASSO LASSO

DGN whole
blood

Genes 27 11511 9
SNPs 78229 171467 2157

GTEx whole
blood

Genes 200 10012 52
SNPs 47647 104395 1760

GTEx
pancreas

Genes 316 9472 137
SNPs 61336 95643 4317

GTEx liver
Genes 350 8208 192
SNPs 56553 74747 5556

EN, elastic net; LASSO, least absolute shrinkage and selection operator.

of expression predictors (or SNPs) present in training sets other than DGN whole

blood. Thus, associations studies using more than one Predict DB training set in

the calculation of the estimated genetically regulated expression for a gene may prove

beneficial to the discovery of eQTL following the appropriate Bonferroni correction

for the total number of tests.
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Chapter 3

Lipid associations using PrediXcan

3.1 Methods

Lipids. The quantitative serum traits total cholesterol (TC), high-density lipoprotein

cholesterol (HDL) and triglycerides (TG) were collected following an overnight, 8 hour

fast at baseline and annually for the following 9 years (DCCT Research Group et al.,

1986). LDL was estimated using Friedewald’s formula

LDL = TC −HDL− TG

5

as described in Friedewald et al. (1972). The calculated LDL of fifteen measurements

from 13 patients with TG concentrations in excess of 400 mg/dl were set to missing

because Friedewald’s formula does not reliably estimate LDL when TG concentrations

are high. Lipid concentrations larger than the (one-tailed) 99.5 percentile—TC (293

mg/dl), LDL (207 mg/dl), HDL (94 mg/dl), TG (344.58 mg/dl) were set to the

lipid concentrations previously listed. Thirty-eight out of 8172 (TC), 39 out of 8157

(LDL), 38 out of 8172 (HDL), and 41 out of 8172 (TG) extreme values were set to
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the 99.5 percentile. In addition, HDL was transformed via the square root and TG

was transformed via the common (base 10) logarithm. A total of at most 9 annual

lipid measurements were averaged for each individual to determine the mean lipid

measurement per patient. Baseline lipid measurements were not used in the averaged

values.

Estimating GReX for genes for DCCT patients. DCCT patient dosages were

extracted using SNPs from DGN whole blood, GTEx whole blood, GTEx pancreas,

and GTEx liver derived from elastic net (EN) or least absolute shrinkage and selection

operator (LASSO) according to scripts presented in the appendicies. The estimated

genetically regulated expression (GReX) was determined according to

ĜReX
M

g,T =
∑

k∈SM
g,T

ŵM
k,g,TXk (3.1)

with model M : EN or LASSO, training set T : DGN whole blood, GTEx whole

blood, GTEx pancreas, or GTEx liver, SM
g,T : set of SNPs in the expression predictor

for gene g from T and M , ŵM
k,g,T : the estimated weight for variant k from g , T and

M , and Xk: the dosage of SNP k. Genotypes were put in terms of the PredictDB

effect alleles.

Lipid Associations. For each of the four lipid traits: TC, LDL,
√

HDL or log10 TG

the mean across time was calculated for each individual and used as the phenotype.

Each phenotype was then associated with ĜReX
M

g,T according to the simple linear

regression model

Ylipid = βM
0,g,T + βM

1,g,T ĜReX
M

g,T + εMg,T (3.2)

to see if the estimated GReX for a gene accounts for the variability in the lipid trait.
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The Student’s t with 1302 degrees of freedom was used to test

H0 : βM
1,g,T = 0 versus H1 : βM

1,g,T 6= 0.

The contribution of the ĜReXg to the lipid trait after adjustment for the covariates

age (C1), duration of IDDM (C2), gender (C3), cohort (C4), treatment (C5) and the

interaction between cohort and treatment (C6) was tested using the Student’s t with

1296 degrees of freedom and the linear regression model

Ylipid = βM
0,g,T + βM

1,g,T ĜReX
M

g,T + γ1C1 + · · ·+ γ6C6 + εMg,T . (3.3)

Lipids were regressed against the covariates in the models

Ylipid = γ0 + γ1C1 + · · ·+ γ6C6 + ε

to determine the proportion of the variance in the lipid trait that can be explained by

the covariates alone. Each model assumed that the ε’s were independent and normally

distributed with E(ε) = 0 and V ar(ε) = σ2. The binary variables were gender—1

for male and 2 for female, cohort—0 for primary prevention and 1 for secondary

intervention, and treatment—0 for conventional and 1 for intensive. The lm function

in R version 3.3.0 (2016-05-03) was used to fit the linear models.

A Bonferroni significance threshold of 1.53 × 10−7 was used to account for the

collective number of tests across models and training sets (Figure 3.1) and those

tests meeting or exceeding the threshold were considered significant. A less stringent

(within training set) Bonferroni correction of 4.33×10−6 highlighted suggestive associ-

ations. Manhattan plots were used to visualize the significant (red line) and suggestive

(blue line) p-values from the linear regressions and Q-Q plots and histograms were
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used to observe the distribution of p-values. The genomic control inflation factor for

p values, λgc, was calculated for the number of tests N in each training set. Scatter

plots were used to compare the − log p values from ĜReX
EN

g and ĜReX
LASSO

g lipid

associations. Scatter plots were also used to compare models 3.2 and 3.3 (without

and with covariates). Internally studentized residuals were used to check the linearity

and normality assumptions of tests that were significant. Points with leverage val-

ues greater than 2(p + 1)/n were considered to have high leverage. Cook’s distance

was used to measure the influence of the ith observation. Values greater than the

50% point of the F distribution with degrees of freedom p + 1 and n − p − 1 were

regarded as influential (Chatterjee and Hadi, 2006). In all cases the sample n = 1304

and the number of explanatory variables p = 1 or 7. Manhattan and Q-Q plots were

constructed using qqman (Turner, 2014) and λgc was determined using GenABEL

(Aulchenko et al., 2007).

Elastic net

LASSO

DGN whole blood

GTEx whole blood

GTEx pancreas

GTEx liver

TC

LDL

√
HDL

log10 TG

Figure 3.1: Overview of the models (red), training sets (blue) and phenotypes
(yellow) used for associations. All possible combinations of one from each colour
(2 × 4 × 4 = 32 models). A significance threshold of 1.53 × 10−7 represented a Bon-
ferroni correction of 0.05/32N where N = 10, 215 expression predictors. TC, total
cholesterol; LDL, low-density lipoprotein cholesterol; HDL, high-density lipoprotein
cholesterol; TG, triglycerides
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3.2 Results

3.2.1 Phenotypes

To model the dependence of lipid traits on the scores for the estimated geneti-

cally regulated expression, the mean across time for each of the four lipid traits was

calculated for the 1304 DCCT patients of European ancestry. The distribution of

patients across the measurements (as shown in the table of Figure 3.2) reflected the

traits TC,
√

HDL, and log10TG. Eight of the patients had fewer than four annual

measurements for all phenotypes. The distribution of the mean by annual measure

is shown at the bottom of Figure 3.2 and summary statistics for the phenotypes are

presented in Table 3.1. Each of the mean lipids followed a normal distribution after

winsorization to the 99.5 percentile and transformation on the square root and log10

scale for HDL and TG, respectively (Figure 3.3). Mean lipids by cohort, treatment

and gender were similar across categories except for the
√

HDL trait which showed

higher median levels for females in agreement with other studies (Davis et al., 1996).

The covariates accounted for more of the variation in
√

HDL relative to the other

lipid traits (Table 3.2) and the p value for the gender coefficient was 3.07 × 10−47.

The coefficients of age and cohort were also significant at p = 4.48 × 10−8 and p =

0.00061, respectively. Mean serum lipids for DCCT patients in the conventional and

intensive treatment regimes were similar (Figure 3.4) despite differences in the extent

of glycemic control (Figure 1.1).
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Measurements 1 2 3 4 5 6 7 8 9
Patients 3 3 2 154 348 281 212 78 223

Figure 3.2: Distribution of patient mean lipids. Mean represents the average of all
measurements for a patient (excluding baseline measurements) for each lipid trait.
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Table 3.1: Summary statistics for the lipid traits.

Lipid Mean St. Dev. Min Max

TC 181.158 29.001 78.778 278.333
LDL 113.463 25.954 31.500 198.000√
HDL 7.114 0.787 4.932 9.589

log10 TG 1.859 0.164 1.354 2.461

TC, total cholesterol; LDL, low-density lipoprotein cholesterol; HDL,
high-density lipoprotein cholesterol; TG, triglycerides.

Figure 3.3: Distribution of the patient mean lipid traits used for associations.
Theoretical quantiles are from a normal distribution. TC, total cholesterol; LDL,
low-density lipoprotein cholesterol; HDL, high-density lipoprotein cholesterol; TG,
triglycerides.
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Table 3.2: The R2, F statistic and p
value for models of mean lipid traits
regressed against covariates.

Lipid R2 F P

TC 0.054 12.295 1.70E-13
LDL 0.044 9.907 1.04E-10√
HDL 0.168 43.657 9.40E-49

log10 TG 0.042 9.513 2.99E-10

TC, total cholesterol; LDL, low-density lipoprotein
cholesterol; HDL, high-density lipoprotein choles-
terol; TG, triglycerides; R2, coefficient of determina-
tion of the model.

Figure 3.4: Mean lipid traits by cohort, treatment and gender. Mean represents the
average of all possible measurements for a patient (excluding baseline measurements)
for each lipid trait. Categories are cohort-treatment-gender: cohort, P is primary
prevention and S is secondary intervention; treatment, C is conventional and I is
intensive; gender, M is male and F is female.
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Table 3.3: Count of SNPs by minor allele frequency (MAF) category, training set and
model.

Training Set Model
MAF (%)

Total
< 1 1− 5 5− 25 25− 50 50− 75 75− 100

DGN whole
blood

EN 2 2235 103473 69834 46206 27918 249668
LASSO 1 1635 73768 47893 31038 19267 173602

GTEx whole
blood

EN 13602 17878 49461 33049 21595 16449 152034
LASSO 10029 13678 34734 22041 14238 11430 106150

GTEx
pancreas

EN 15104 18628 50667 33738 21833 17000 156970
LASSO 9763 13216 32685 20355 13072 10865 99956

GTEx liver
EN 9771 15936 43744 29101 18085 14653 131290

LASSO 5656 11151 27360 16866 10507 8756 80296

EN, elastic net; LASSO, least absolute shrinkage and selection operator; MAF, minor allele frequency.

3.2.2 Imputed gene expression

The SNPs extracted from the DCCT data set using DGN whole blood contained

fewer SNPs with a minor allele frequency (MAF) ≤ 5%. Therefore, fewer rare variants

were involved in the lipid associations that used this training set (Table 3.3). The

results of Chapter 2 showed that most of the variants in LASSO models were also

present in elastic net models. To see if differences in the set of SNPs for an expres-

sion predictor resulted in different ĜReXg, the ĜReXg derived using elastic net and

LASSO for five randomly selected DCCT patients were compared. The correlation

between elastic net and LASSO for all of the training sets was very strong suggesting

that a similar ĜReXg,T was determined by the models. Similarly, the p values from

associations across the genome were highly correlated (Figure 3.5). In contrast, scat-

ter plots for ĜReX
EN

g,T showed no correlation for all training set pairs except DGN

whole blood and GTEx whole blood, which had very weak correlations (Figure 3.6).

Weak correlations between p values from associations of training set pairs were also

observed (Figure 3.7). Thus, the results of an association change with the selection

of training set but not the selection of prediction model.
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Figure 3.5: Comparison of the estimated genetically regulated expression (GReX)
(Top) and − log p values for associations with

√
HDL (Bottom) using expression

predictors derived from elastic net and LASSO across the genome for matched genes
for one randomly selected patient. EN, elastic net; LASSO, least absolute shrinkage
and selection operator. Red line is y = x.
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Figure 3.6: Comparison of the estimated genetically regulated expression (GReX)
for matched genes for one randomly selected patient. Note the different scale for the
plot of GTEx whole blood vs. DGN whole blood.
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Figure 3.7: Comparison of the matched − log p values from 2463 associations with√
HDL.

The number of t-tests varied by model and training set. With respect to elastic net,

there were 11538, 10201, 9775 and 8557 for DGN whole blood, GTEx whole blood,

GTEx pancreas and GTEx liver, respectively. The number of t-tests for LASSO for

DGN whole blood, GTEx whole blood, GTEx pancreas and GTEx liver were 11520,

10053, 9591 and 8386, respectively. Some ĜReXg from GTEx whole blood, GTEx

pancreas and GTEx liver had the same value for every patient because the genotype

for each SNP in the set did not vary in the sample of patients (Table 3.4) and thus

regressions were not possible.
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Table 3.4: Summary statistics for the number of SNPs in the gene
expression predictors with zero variance.

Number of SNPs
Training Set Model Genes Mean St. Dev. Min Max

GTEx whole
blood

EN 14 1.571 0.852 1 3
LASSO 14 1.357 0.633 1 3

GTEx
pancreas

EN 18 1.722 1.708 1 8
LASSO 22 1.273 0.456 1 2

GTEx liver
EN 4 1.500 1.000 1 3

LASSO 16 1.438 0.814 1 3

EN, elastic net; LASSO, least absolute shrinkage and selection operator; Genes, gene expres-
sion predictor; MAF, minor allele frequency.

3.2.3 Associations

The null hypothesis was rejected more using model 3.3 with covariates, which

marginally decreased the p values of suggestive or significant associations from model

3.2. The Spearman’s rank correlation coefficient (r) between the − log p values of

models 3.2 and 3.3 were strong for all associations except those involving
√

HDL,

which showed moderate correlations (Figure 3.8) owing to the fact that covariates

explain variation
√

HDL to a larger extent than the other lipid traits, as previously

shown. Model 3.3 associations with
√

HDL also had a few outlying p values.

An expression predictor for a gene on Chromosome 4, TADA2B, from GTEx whole

blood was suggestive with TC after adjusting for covariates. Similarly, associations

with TC for expression predictors for genes on Chromosome 1 (SORT1; GTEx liver

derived using LASSO and CELSR2; GTEx pancreas) were suggestive after adjusting

for covariates. With respect to associations with LDL, expression predictors for genes

on Chromosome 1 were either significant (CELSR2; GTEx pancreas) or suggestive

(PSRC1; DGN whole blood and SORT1, PSRC1, CELSR2; GTEx liver) with LDL

after adjusting for covariates (Figure 3.9).
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Figure 3.8: Comparison of − log p values across the genome for matched expression
predictors between models without (Model 1) and with covariates (Model 2). As-
sociations for all lipid traits with the expression predictors from DGN whole blood
derived using elastic net are shown. Red line is y = x and Spearman’s rank correlation
coefficient (r) is presented above each plot.
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Association with
√

HDL and an expression predictor for a gene, NLRC5, on Chro-

mosome 16 from GTEx liver exceeded the significance threshold using model 3.2 (elas-

tic net) and model 3.3 (elastic net and LASSO), however, expression predictors for

this gene from the other training sets were not associated with
√

HDL, possibly ow-

ing to training set-specific differences in the gene expression predictor. An expression

predictor for another gene on Chromosome 16, SLC12A3 was also significantly associ-

ated with
√

HDL after adjustment for covariates, and two other expression predictors

for genes on Chromosome 16, CETP and HERPUD1, were suggestively associated

with
√

HDL using model 3.3 only (Figure 3.10). Adjusting for covariates did not en-

able suggestive or significant associations with log10 TG, but all training sets showed a

possible relationship with one or more expression predictors on Chromosome 11 with

log10 TG.
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Figure 3.9: Manhattan plots for the mean LDL with the estimated GReX adjusted
for covariates. The − log p value from associations using gene expression predictors
from each of the training sets derived using elastic net are presented. The red line is
significant and the blue line is suggestive.
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Figure 3.10: Manhattan plots for the mean
√

HDL with the estimated GReX ad-
justed for covariates. The − log p value from associations using gene expression pre-
dictors from each of the training sets derived using elastic net are presented. The red
line is significant and the blue line is suggestive.

The p values followed a uniform distribution and a few deviations from the null

hypothesis were only apparent for the smallest p values (Figures 3.11-3.12). Values for

λgc were slightly inflated but small enough to be consistent with nominal type 1 error

for all associations from models 3.2 and 3.3. The fact that the sample of patients are

related to one another by way of the disorder IDDM may explain the small inflation

of p values (Table 3.5).
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Figure 3.11: Quantile-quantile (Q-Q) and histogram p value plots for mean low-
density lipoprotein cholesterol (LDL) with the estimated GReX adjusted for covari-
ates. Left: Q-Q plots of the − log p values for associations across the genome versus
the null (uniform) expectation using expression predictors derived using elastic net.
GC, inflation factor for the distribution of p values. Right: histogram density plot of
p values for associations across the genome. Red line marks density 1.
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Figure 3.12: Quantile-quantile (Q-Q) and histogram p value plots for mean high-
density lipoprotein cholesterol (

√
HDL) with the estimated GReX adjusted for covari-

ates. Left: Q-Q plots of the − log p values for associations across the genome versus
the null (uniform) expectation using expression predictors derived using elastic net.
GC, inflation factor for the distribution of p values. Right: histogram density plot of
p values for associations across the genome. Red line marks density 1.
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Table 3.5: Inflation factor for the distribution of p values.

Lipid Training Set M1EN M1LASSO M2EN M2LASSO

TC

DGN 1.019 1.016 1.012 1.006
Blood 1.045 1.058 1.023 1.017
Pancreas 1.032 1.051 1.046 1.034
Liver 1.004 1.007 0.996 0.982

LDL

DGN 1.031 1.030 1.019 1.023
Blood 1.026 1.023 1.038 1.031
Pancreas 1.041 1.054 1.066 1.048
Liver 1.004 1.021 1.038 1.018

√
HDL

DGN 0.955 0.968 0.988 0.997
Blood 1.028 1.032 1.038 1.041
Pancreas 1.038 1.028 1.009 1.007
Liver 1.023 1.018 1.009 1.015

logTG

DGN 1.035 1.039 1.030 1.025
Blood 1.052 1.050 1.036 1.040
Pancreas 1.021 1.034 1.017 1.018
Liver 1.053 1.060 1.062 1.044

M1EN , model without covariates from EN (elastic net); M1LASSO, model
without covariates from LASSO (least absolute shrinkage and selection op-
erator); M2EN , model with covariates from EN; M2LASSO, model with co-
variates from LASSO.; TC; total cholesterol; LDL, low-density lipoprotein
cholesterol; HDL, high-density lipoprotein cholesterol; TG, triglycerides.

The smallest p values for the associations using models 3.2 and 3.3 are summarized

in Tables A.2 and 3.6, respectively.
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Table 3.6: Top gene expression predictors with covariates.

Model Training Set Lipid Gene Chr. R2
prediction SNPs β1 P R2

Elastic net

GTEx liver
√

HDL NLRC5 16 0.00 11 -0.76 5.89E-10 0.192

DGN whole blood
√

HDL SLC12A3 16 0.01 42 -0.76 1.98E-09 0.191
GTEx pancreas LDL CELSR2* 1 0.06 2 -28.67 1.53E-07 0.064
GTEx liver LDL SORT1* 1 0.44 13 -7.51 2.88E-07 0.063
DGN whole blood LDL PSRC1* 1 0.25 11 -7.89 1.35E-06 0.061

DGN whole blood
√

HDL CETP* 16 0.02 30 -0.62 1.50E-06 0.183
GTEx liver LDL CELSR2* 1 0.37 23 -6.67 1.53E-06 0.061
GTEx liver LDL PSRC1* 1 0.39 40 -5.78 2.99E-06 0.060

DGN whole blood
√

HDL HERPUD1* 16 0.09 15 -0.43 3.17E-06 0.182
GTEx pancreas TC CELSR2* 1 0.06 2 -28.19 3.52E-06 0.069
GTEx whole blood TC TADA2B 4 0.02 31 -23.09 3.94E-06 0.069

LASSO

GTEx liver
√

HDL NLRC5 16 0.00 9 -0.73 1.66E-09 0.191

DGN whole blood
√

HDL SLC12A3 16 0.01 32 -0.74 2.06E-09 0.191
GTEx pancreas LDL CELSR2* 1 0.06 2 -26.13 1.13E-07 0.064
GTEx liver LDL SORT1* 1 0.48 5 -7.35 2.11E-07 0.063
GTEx liver LDL CELSR2* 1 0.40 10 -7.77 2.13E-07 0.063
GTEx liver LDL PSRC1* 1 0.38 25 -5.66 1.68E-06 0.061
DGN whole blood LDL PSRC1* 1 0.25 6 -7.69 2.01E-06 0.060

DGN whole blood
√

HDL CETP* 16 0.02 28 -0.60 2.02E-06 0.182
GTEx pancreas TC CELSR2* 1 0.06 2 -25.67 2.81E-06 0.070

DGN whole blood
√

HDL HERPUD1* 16 0.08 11 -0.42 3.99E-06 0.182
GTEx whole blood TC TADA2B 4 0.02 28 -21.39 4.36E-06 0.069
GTEx liver TC SORT1* 1 0.48 5 -7.23 4.52E-06 0.069

Imputed gene expression-lipid associations with the smallest p values. PrediXcan models included covariates. Gene expression pre-
dictors above the dotted line were significant. Genes marked by an asterisk (*) are known quantitative trait loci for the lipid trait
(NHGRI-EBI GWAS Catalog; MacArthur et al. (2017)). Gene, gene expression predictor; EN, elastic net; LASSO, least absolute
shrinkage and selection operator; Chr., chromosome; R2

prediction, 10-fold cross-validated R2 for predictive performance; SNPs, the

number of variants in the expression predictor; R2, coefficient of determination for association; TC, total cholesterol; LDL, low-
density lipoprotein cholesterol; HDL, high-density lipoprotein cholesterol.

Collectively, LDL was negatively associated with expression predictors for genes on

Chromosome 1, TC was negatively associated with an expression predictor for a gene

on Chromosome 4, and
√

HDL was negatively associated with expression predictors

for genes on Chromosome 16. Of the suggestive and significantly associated expression

predictors with lipid traits, pairwise plots for Chromosome 1p13.3 haplotype members

CELSR2−PSRC1−SORT1 from GTEx liver derived using elastic net showed strong

correlation and similar plots for CETP , SLC12A3, and HERPUD1 from DGN whole

blood derived using elastic net showed weak to moderate correlation (Figure 3.13).
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Figure 3.13: Pairwise plots of the estimated GReX for LDL (Top) and
√

HDL
(Bottom) associated genes. Correlations among the lipid traits and estimated GReX
for genes are shown.
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Figure 3.14: Distribution of the estimated GReX for LDL (Top) and
√

HDL (Bot-
tom) suggestive and significant genes.

The distribution of estimated GReXs for PSRC1 and CELSR2 were similar,

consistent with their p values from associations with LDL; GReXs for SORT1 were

more negatively distributed and association with LDL had a smaller p value than
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the other haplotype block members. The distribution of predicted expressions for

CETP , SLC12A3, and HERPUD1 were less similar (Figure 3.14) along with their

p values from associations. Four SNPs located in the noncoding region of CELSR2

and PSRC1 are commonly cited in the literature: rs599839, rs629301, rs646776 and

rs12740374 (Postmus et al., 2014; Schierding and O’Sullivan, 2015). In liver, rs646776

was highly associated with the expression of CELSR2, PSRC1 and SORT1, with

SORT1 being most pronounce (Musunuru et al., 2010). While GTEx liver derived

using LASSO contained rs12740374 for only SORT1, GTEx liver derived using elastic

net contained rs646776 and rs12740374 for all three expression predictors, rs599839

for PSRC1 and rs629301 for PSRC1 and SORT1 (Table 3.7). The CELSR2 expres-

sion predictor from GTEx pancreas derived using elastic net had only two variants

and these SNPs were also present in the other expression predictors that resulted in

suggestive associations with LDL (Table 3.8). One of these two SNPs, rs12740374,

was shown to be associated with LDL (MacArthur et al., 2017). Interestingly, the

weights of these two SNPs had the largest absolute magnitude relative to the other

SNPs in the expression predictor for GTEx training sets. With the exception of DGN

whole blood, the weight for one variant was the negative of the other variant (Table

3.8 and A.9-A.12).

Table 3.8: Weights for two variants that were common to the gene expression predictors
used for the LDL association models.

SNP Position
GTEx liver DGN blood GTEx pancreas

PSRC1 CELSR2 SORT1 PSRC1 CELSR2
rs12740374 109817590 -0.3366 -0.3870 -0.4015 0.0566 -0.1137
rs7528419 109817192 0.3442 0.3971 0.3996 0.0553 0.1128

SNP, the rsid number; position, the genomic position of the SNP in base pairs
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Table 3.7: Previously reported quantitative trait loci for LDL from the NHGRI-EBI
GWAS Catalog.

SNP A1 A2
GTEx liver DGN blood GTEx pancreas

PSRC1 CELSR2 SORT1 PSRC1 CELSR2

rs12740374 G T * * * * *
rs599839 G A * *
rs629301 G T * * *
rs646776 C T * * * *
rs660240 T C *

The asterisk (*) indicates the presence of the SNP in the gene expression predictor. SNP; represents known (NHGRI-
EBI GWAS Catalog; www.ebi.ac.uk/gwas/) significantly associated SNPs with LDL; A1; effect allele from DCCT; A2,
reference allele from DCCT.

Regression diagnostics for the suggestive and significant associations from models

3.2 and 3.3 showed that the standard regression assumptions were satisfied and the

models adequately fit the data. The models were linear in the regression parameters

and the standardized errors were independently and identically distributed normal

random variables with mean zero and variance one.
√

HDL association with the

expression predictor for NLRC5 from GTEx liver derived using elastic net showed

few residuals beyond 3 standard deviations but many high leverage points that were

not influential at a threshold of Ci = 0.69 in model 3.2 and threshold Ci = 0.92 for

model 3.3. The diagnostic plots for association of the expression predictor for NLRC5

with
√

HDL from model 3.3 are shown in Figure 3.15.

The GTEx liver expression predictor for NLRC5 was most significantly associated

with
√

HDL in both models, but it had a negligible 10-fold cross-validated R2 for

explaining the variation in the expression of NLRC5. On the other hand, the 10-fold

cross-validated R2 for the suggestive gene expression predictors on Chromosome 1

were very strong for the models built with DGN whole blood and GTEx liver.
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Figure 3.15: Diagnostic plots for the PrediXcan model with covariates relating√
HDL with the NLRC5 expression predictor from GTEx liver derived using elastic

net. (A) Normal probability plot of the standardized residuals; (B) Scatter plot of the
standardized residuals against the estimated GReX for NLRC5; (C) Scatter plot of
the standardized residuals against the fitted values; (D) Leverage values; (E) Cook’s
distance. No points exceeded the threshold of Ci = 0.92 which is beyond the axis of
the plot.

As noted in Chapter 2, the PredictDB training sets did not contain the same ex-

pression predictors. Expression predictors for two genes on Chromosome 1 (CELSR2

and SORT1) were absent from GTEx whole blood explaining in part the failure to

observe significant associations on Chromosome 1 with this training set. TADA2B

(Chromosome 4) and SLC12A3 (Chromosome 16) expression predictors were not

present in GTEx pancreas and GTEx liver, respectively, and an expression predictor

for a gene on Chromosome 16 (HERPUD1) was only present in DGN whole blood.

DGN whole blood and GTEx liver contained expression predictors for TADA2B

but associations with TC and TADA2B were not observed for these training sets.

This finding substantiates the observations of Figure 3.6 that demonstrated that the
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estimated GReX for a gene differs substantially across training sets. Such differences

suggest that care should be taken when selecting training sets for the imputation of

gene expression.
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Chapter 4

Lipid associations using multiple

linear regression

4.1 Methods

Lipid Associations. The mean across time for each of the four lipid traits: TC, LDL,
√

HDL or log10 TG was associated with the expression predictors from the training

sets using the multiple linear regression (MLR) model

Ylipid = βM
0,g,T + βM

1,g,TX
M
1,g,T + βM

2,g,TX
M
2,g,T + · · ·+ βM

p,g,TX
M
p,g,T + εMg,T (4.1)

with model M : elastic net or LASSO, training set T : DGN whole blood, GTEx whole

blood, GTEx pancreas, or GTEx liver, and Xi,g,T : the dosage of SNP i in a set for

gene g for i = 1, 2, ..., p. The F-test with p and n − p − 1 degrees of freedom was

used to test the null hypothesis that all of the SNP β coefficients were zero

H0 : βM
1,g,T = βM

2,g,T = · · · = βM
p,g,T = 0
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versus the alternative that at least one SNP β coefficient was not zero; p denotes those

SNPs from the set for a gene that varied among the 1304 patients.

The multiple linear regression model with expression predictors and covariates

age (C1), duration of IDDM (C2), gender (C3), cohort (C4), treatment (C5) and the

interaction between cohort and treatment (C6):

Ylipid = βM
0,g,T + βM

1,g,TX
M
1,g,T + βM

2,g,TX
M
2,g,T + · · ·+ βM

p,g,TX
M
p,g,T + γ1C1 + · · ·+ γ6C6 + εMg,T

(4.2)

was tested against the model with only covariates:

Ylipid = γ0 + γ1C1 + · · ·+ γ6C6 + ε

using the F test with p and n − p − 7 degrees of freedom to see if the models with

SNPs and covariates explained variation in the lipid trait better than the models with

only covariates. Each model assumed that the ε’s were independent and normally

distributed with E(ε) = 0 and V ar(ε) = σ2. The lm and anova functions from R

version 3.3.0 (2016-05-03) were used to fit the multiple linear regression models. The

p values for the associations and deviations from the null hypothesis were visualized

graphically according to methods described in Chapter 3. Similarly, the linearity and

normality assumptions of the models were evaluated as described in Chapter 3 with

modifications.
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4.2 Results

4.2.1 Associations

Multiple linear regression (MLR) and the F-test were used to model the depen-

dence of lipids on the SNPs from the gene expression predictors. The number of

F-tests were identical to the number of Student’s t-tests in Chapter 3 except for the

expression predictors from GTEx liver derived using LASSO, which had three fewer

ĜReXg associations in Chapter 3 because the vector for three ĜReXg had the same

dosage for every individual. The − log p value correlations for MLR associations for

matched genes between elastic net and LASSO (Figure 4.1) and pairs of training sets

(Figure 4.2) were weaker than those of Chapter 3. Hence, differences in the SNP sets

either between elastic net and LASSO or the training sets had a larger impact on the p

values using MLR. However, a comparison of the − log p values attained using model

4.1 (without covariates) and model 4.2 (with covariates) showed stronger correlations

for associations than those observed in Chapter 3 indicating that the covariates in

MLR models had a smaller effect on the p values (Figure 4.3). The correlations be-

tween models 4.1 and 4.2 for
√

HDL were weaker than for the other lipids, as observed

in Chapter 3.

Multiple linear regressions of the SNPs from expression predictors with TC did not

reveal any suggestive or significant associations. Suggestive associations with LDL

were observed on Chromosome 1 (CELSR2; GTEx pancreas and SORT1; GTEx

liver) and Chromosome 19 (ZNF222; GTEx whole blood) irrespective of whether

covariates were included (Figure 4.4).
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Figure 4.1: Elastic net versus LASSO model comparisons of the − log p values
for associations with

√
HDL across the genome for matched expression predictors.

Comparisons for all training sets are shown. Red line is y = x and Spearman’s rank
correlation coefficient (r).

Model 4.2 with covariates derived from DGN whole blood using LASSO showed a

suggestive association with LDL on Chromosome 1 (PSRC1) and models 4.1 and 4.2

(without and with covariates) derived from DGN whole blood using LASSO showed

suggestive associations with LDL on Chromosome 19 (ZNF233 and KLC3).
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Figure 4.2: Training set comparisons of the − log p values from 2463 matched associ-
ations with

√
HDL. Training sets derived using elastic net are presented. Spearman’s

rank correlation coefficient (r) is shown.
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Figure 4.3: Comparison of − log p values across the genome for matched expression
predictors between models without (Model 1) and with covariates (Model 2). As-
sociations for all lipid traits with the expression predictors from DGN whole blood
derived using elastic net are shown. Red line is y = x and Spearman’s rank correlation
coefficient (r) is presented.

Multiple linear regressions for models 4.1 and 4.2 with
√

HDL revealed significant

associations on Chromosome 16 for all training sets from elastic net (Figure 4.5) and

all training sets (except GTEx pancreas) from LASSO. A suggestive association with

log10 TG on Chromosomes 19 (SUGP2) in models 4.1 and 4.2 occurred using DGN

whole blood. One gene expression predictor on Chromosome 16 (ZNRF1) from DGN

whole blood was also associated with log10 TG using model 4.1. The smallest p values

for models 4.1 and 4.2 are summarized in Tables A.3 and 4.3, respectively.
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Figure 4.4: Manhattan plots for the mean LDL using MLR with covariates. The
− log p value from associations using gene expression predictors from each of the
training sets derived using elastic net are presented. The red line is significant and
the blue line is suggestive.
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Figure 4.5: Manhattan plots for
√

HDL using MLR with covariates. The − log p
value from associations using gene expression predictors from each of the training sets
derived from elastic net are presented. The red line is significant and the blue line is
suggestive.

Q-Q plots showed that the − log p values followed the y = x line for most of the

range except for the smallest p values. Histograms of p values for each training set

revealed more than were expected of the very smallest p values for a few of the training

sets (Figures 4.6-4.7). Collectively, the λgc for MLR models tended to be larger than
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Figure 4.6: Quantile-quantile (Q-Q) and histogram p values for associations with
mean LDL. MLR models with covariates and gene expression predictors derived using
elastic net are presented. Left: − log p values from associations across the genome
versus the null expectation. Theoretical quantiles are from a uniform distribution.
GC, the genomic control inflation factor for p values is shown. Right: histograms of
p values for associations across the genome. Red line marks density 1.
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Figure 4.7: Quantile-quantile (Q-Q) and histogram p values for associations with
mean

√
HDL. MLR models with covariates and gene expression predictors derived us-

ing elastic net are presented. Left: − log p values from associations across the genome
versus the null expectation. Theoretical quantiles are from a uniform distribution.
GC, the genomic control inflation factor for p values is shown. Right: histograms of
p values for associations across the genome. Red line marks density 1.
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Table 4.1: Genomic control inflation factor for p values for MLR models derived
using elastic net (EN) and least absolute shrinkage operator (LASSO) without
covariates (M1) and with covariates (M2).

Lipid Training Set M1 EN M1 LASSO M2 EN M2 LASSO

TC

DGN whole blood 1.078 1.058 1.085 1.070
GTEx whole blood 1.005 1.019 1.002 1.019
GTEx pancreas 0.997 0.997 1.023 1.021
GTEx liver 1.024 0.994 1.003 0.998

LDL

DGN whole blood 1.092 1.075 1.082 1.055
GTEx whole blood 1.050 1.055 1.061 1.080
GTEx pancreas 1.055 1.035 1.065 1.066
GTEx liver 1.036 1.027 1.053 1.027

sqrtHDL

DGN whole blood 1.072 1.025 1.023 1.017
GTEx whole blood 1.049 1.028 1.086 1.074
GTEx pancreas 1.026 1.049 1.026 1.044
GTEx liver 1.044 1.072 1.028 1.072

logTG

DGN whole blood 1.078 1.080 1.059 1.081
GTEx whole blood 1.066 1.066 1.060 1.059
GTEx pancreas 1.050 1.047 1.057 1.030
GTEx liver 1.016 1.043 1.023 1.048

TC, Total cholesterol; LDL, low-density lipoprotein cholesterol; HDL, high-density lipopro-
tein cholesterol; TG, triglycerides.

those for PrediXcan models (Tables 4.1 and 4.2). Taken together, the significant and

suggestive expression predictors were from Chromosomes 1, 16 and 19. Associations

with expression predictors for genes on Chromosome 16 with
√

HDL were most fre-

quent and the genomic regions spanned by the SNPs in these expression predictors

overlapped one another (Table 4.4).
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Table 4.2: Comparison of genomic control inflation
factor for p values for PrediXcan and MLR models.

Lipid Training Set PrediXcan MLR

TC

DGN whole blood 1.012 1.085
GTEx whole blood 1.023 1.002
GTEx pancreas 1.046 1.023
GTEx liver 0.996 1.003

LDL

DGN whole blood 1.019 1.082
GTEx whole blood 1.038 1.061
GTEx pancreas 1.066 1.065
GTEx liver 1.038 1.053

sqrtHDL

DGN whole blood 0.988 1.023
GTEx whole blood 1.038 1.086
GTEx pancreas 1.009 1.026
GTEx liver 1.009 1.028

logTG

DGN whole blood 1.030 1.059
GTEx whole blood 1.036 1.060
GTEx pancreas 1.017 1.057
GTEx liver 1.062 1.023

TC, Total cholesterol; LDL, low-density lipoprotein choles-
terol; HDL, high-density lipoprotein cholesterol; TG, triglyc-
erides.

The expression predictors from DGN whole blood derived using LASSO were subsets

of their matched expression predictors from DGN whole blood derived from elastic net

for all significant Chromosome 16 genes with the exception of CCDC135 which had

one distinct SNP (rs7199577) in DGN whole blood derived using LASSO. As discussed

in Chapter 2, a single variant may be present in more than one expression predictor

and this mostly occurred in DGN whole blood (Table 2.3). One variant (rs9989419)

intersected six expression predictors—CIAPIN1, CPNE2, GNAO1, HERPUD1,

MT1X and SLC12A3—from DGN whole blood and this SNP was reported with

the genes CETP and HERPUD1 from associations with HDL on the NHGRI-EBI
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GWAS Catalag (MacArthur et al., 2017).

Table 4.3: Top gene expression predictors using MLR models with covariates.

Model Training Set Lipid Gene Chr. R2
prediction SNPs N.df F P

EN

GTEx liver
√

HDL NLRC5 16 0.00 11 11 9.81 2.84E-17

GTEx pancreas
√

HDL NUP93* 16 0.05 60 59 3.45 4.09E-16

DGN whole blood
√

HDL GNAO1 16 0.18 38 35 3.75 2.77E-12

DGN whole blood
√

HDL CETP* 16 0.02 30 30 3.99 5.36E-12

GTEx whole blood
√

HDL BBS2 16 0.26 25 20 4.93 7.79E-12

DGN whole blood
√

HDL CCDC135 16 0.25 54 54 2.96 1.71E-11

DGN whole blood
√

HDL SLC12A3 16 0.01 42 42 3.18 9.68E-11

DGN whole blood
√

HDL MT1X 16 0.32 36 34 3.18 3.60E-09

DGN whole blood
√

HDL HERPUD1* 16 0.09 15 15 4.78 4.34E-09

DGN whole blood
√

HDL CIAPIN1 16 0.05 37 35 2.90 5.17E-08

GTEx whole blood
√

HDL CPNE2 16 0.06 29 28 3.12 1.02E-07
GTEx whole blood LDL ZNF222 19 0.01 32 32 2.88 1.97E-07
GTEx pancreas LDL CELSR2* 1 0.06 2 2 15.54 2.14E-07

GTEx liver
√

HDL MT3 16 0.11 81 78 2.06 4.28E-07
GTEx liver LDL SORT1* 1 0.44 13 13 4.09 1.17E-06
DGN whole blood log10TG SUGP2 19 0.03 32 31 2.71 1.62E-06

LASSO

GTEx liver
√

HDL NLRC5 16 0.00 9 9 12.00 2.48E-18

DGN whole blood
√

HDL GNAO1 16 0.18 15 15 6.85 1.74E-14

GTEx whole blood
√

HDL BBS2 16 0.26 14 12 7.78 4.00E-14

DGN whole blood
√

HDL SLC12A3 16 0.01 32 32 4.04 7.25E-13

DGN whole blood
√

HDL CCDC135 16 0.25 44 44 3.36 3.12E-12

GTEx whole blood
√

HDL CPNE2 16 0.06 14 14 5.71 6.94E-11

DGN whole blood
√

HDL HERPUD1* 16 0.08 11 11 6.34 2.72E-10

DGN whole blood
√

HDL CETP* 16 0.02 28 28 3.70 4.01E-10

DGN whole blood
√

HDL MT1X 16 0.31 28 27 3.74 5.11E-10

DGN whole blood
√

HDL CIAPIN1 16 0.05 30 29 3.41 3.82E-09
GTEx liver LDL SORT1* 1 0.48 5 5 7.99 1.97E-07
GTEx pancreas LDL CELSR2* 1 0.06 2 2 15.54 2.14E-07
GTEx whole blood LDL ZNF222 19 0.01 28 28 3.02 2.69E-07
DGN whole blood LDL ZNF233 19 0.01 9 9 5.27 4.43E-07
DGN whole blood log10TG SUGP2 19 0.03 23 23 3.19 6.36E-07
DGN whole blood LDL KLC3 19 0.05 13 13 4.04 1.50E-06
DGN whole blood LDL PSRC1* 1 0.25 6 6 6.15 2.25E-06

Imputed gene expression-lipid associations with the smallest p values. MLR models included covariates. Gene ex-
pression predictors above the dotted line were significant. Genes marked by an asterisk (*) are known quantitative
trait loci for the lipid trait (NHGRI-EBI GWAS Catalog; MacArthur et al. (2017)). Gene, gene expression predic-
tor; EN, elastic net; LASSO, least absolute shrinkage and selection operator; Chr., chromosome; R2

prediction, 10-fold

cross-validated R2 for predictive performance; SNPs, the number of variants in the expression predictor; N.df, nu-
merator degrees of freedom; LDL, low-density lipoprotein cholesterol; HDL, high-density lipoprotein cholesterol; TG,
triglycerides.
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Rejection of the null hypothesis using the F-test indicated that at least one of the

SNPs in the set for the expression predictor explained the variation in the lipid trait.

Table 4.4: Genomic regions of the gene expression predictors that associated
with lipid traits.

Training Set Lipid Gene Chr.
Position

Start End

DGN whole blood

LDL PSRC1 1 109369915 109838918√
HDL GNAO1 16 55465544 57276202√
HDL MT1X 16 55726462 57664105√
HDL SLC12A3 16 55926873 57922948√
HDL CETP 16 56006578 57973989√
HDL CIAPIN1 16 56578562 58385455√
HDL CCDC135 16 56729963 58672763√
HDL HERPUD1 16 56745758 57326269

log10 TG SUGP2 19 18107913 20056348

GTEx whole blood

TC TADA2B 4 6055158 8018565√
HDL BBS2 16 55798370 57156366√
HDL CPNE2 16 56402544 58145585
LDL ZNF222 19 43548332 45520285

GTEx pancreas
LDL CELSR2 1 109817192 109817590√
HDL NUP93 16 55845351 57861649

GTEx liver

LDL PSRC1 1 108859314 110650082
LDL CELSR2 1 108879960 110799893
LDL SORT1 1 109366554 110715768√
HDL MT3 16 55631508 57523861√
HDL NLRC5 16 56240331 57762401

HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; TG,
triglycerides; Gene, gene expression predictor; Chr., chromosome; Start and End, range of
positions in base pairs for the expression predictor.

68



M.Sc. Thesis - J. Gittens McMaster University - Mathematics & Statistics

Thus, the higher number of significant expression predictors than would be expected

under the null hypothesis using the MLR model and DGN whole blood may be related

to one or more SNPs that are present in multiple copies across expression predictors.

For the significant
√

HDL associations, no variant was present in all of the DGN whole

blood expression predictors. In fact, analysis of the set of SNPs for the significant

associations with the largest expression predictors from DGN whole blood derived

from elastic net showed that most of SNPs for a given expression predictor were not

shared by any other expression predictors (Figure 4.8).

Figure 4.8: Intersection of SNPs from
√
HDL associated DGN whole blood expres-

sion predictors derived using elastic net. No SNPs intersected all expression predic-
tors.
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Table 4.5: 10-fold cross-validated prediction R2 of top gene expression predictors in
the training sets derived using elastic net.

Gene DGN whole blood GTEx whole blood GTEx pancreas GTEx liver

NLRC5 0.261 0.067 0.001 0.000
SLC12A3 0.013 0.009 0.026

CETP 0.022 0.001 0.006 0.050
HERPUD1 0.086
CELSR2 0.160 0.056 0.372
SORT1 0.017 0.049 0.440
PSRC1 0.252 0.018 0.150 0.385

Missing values denote training sets without an expression predictor for the gene.

Despite the fact that the NLRC5 expression predictor from GTEx liver derived

using elastic net had no SNPs in common with the DGN whole blood CETP expres-

sion predictor derived using elastic net, four of the SNPs in the NLRC5 expression

predictor identified with CETP on the GeneCards Human Gene Database (Rebhan

et al., 1997) and associations with HDL for two of these SNPs (rs11076175: CETP

and rs1800775: CETP , HERPUD1, SLC12A3, NUP93) were previously reported

on the NHGRI-EBI GWAS Catalog.

A comparison of the 10-fold cross-validatedR2 for predictive performance (R2
prediction)

for significant expression predictors across training sets showed marked differences.

With respect to the expression predictor for NLRC5, R2
prediction for DGN whole

blood, GTEx whole blood, GTEx pancreas and GTEx liver were 0.26, 0.07, 0.001,

3.24× 10−05, respectively (Table 4.5 ) and none of the SNPs in the training sets with

the lowest R2
prediction (GTEx pancreas and GTEx liver) intersected the training sets

with the highest R2
prediction (DGN whole blood or GTEx whole blood) (Figure 4.9).

The negligible R2
prediction for NLRC5 expression is consistent with the fact that

none of the SNPs for the NLRC5 expression predictor from the GTEx liver data

set derived using elastic net were reported with NLRC5 in GeneCards and GWAS
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catalogs, raising the possibility that the significantly associated gene with
√

HDL is

CETP and not NLRC5. The significant associations with
√

HDL, however, leave

little doubt about a relationship between HDL and one or more genes from the cyto-

genetic band 16q13 and provide support for the results of others (Shirali et al., 2016;

Zhang et al., 2015).

Figure 4.9: Training set intersection of SNPs for the NLRC5 expression predictor
derived using elastic net. Only DGN whole blood and GTEx whole blood shared
SNPs for NLRC5.
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Similar to Chapter 3, regression diagnostics for models 4.1 and 4.2 did not reveal

any model violations (Figure 4.10).

Figure 4.10: Diagnostic plots for the MLR model with covariates relating
√

HDL
with the NLRC5 expression predictor from GTEx liver derived using elastic net.
(A) Normal probability plot of the standardized residuals; (B) Scatter plot of the
standardized residuals against the fitted values; (C) Leverage values; (D) Cook’s
distance; no points exceeded the threshold of Ci = 0.96 which is beyond the axis of
the plot.
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A comparison of the matched associations from Chapter 3 and Chapter 4 showed

weak − log p value correlations. The correlations were weakest for DGN whole blood

and strongest for GTEx liver across lipids indicating that the outcomes of PrediXcan

and MLR were predominately dissimilar even though the models were based on the

same set of SNPs (Figure 4.11). The MLR models of Chapter 4 had more significant

associations than the PrediXcan models of Chapter 3, and the smaller p values from

the models of Chapter 4 were clearly seen with the significant
√

HDL associations

with SNPs and covariates (Figure 4.11).

Figure 4.11: MLR versus PrediXcan − log p value comparison for
√

HDL associa-
tions with SNPs and covariates. Comparisons for all training sets derived using elastic
net are shown. Red line is y = x and Spearman’s rank correlation coefficient (r).
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Chapter 5

Discussion

Genome-wide association studies (GWAS) have identified many common single

nucleotide polymorphisms (SNPs) and genes associated with lipid traits, but they

have facilitated an understanding of the mechanisms underlying the associations to a

lesser degree (Ridker et al., 2009; Kathiresan et al., 2009; Teslovich et al., 2010; Willer

et al., 2013; Zhang et al., 2015; Shirali et al., 2016; Nagy et al., 2017). PrediXcan is

an imputed gene expression-trait association method that enables tests of association

between the predicted transcriptome and a phenotype of interest (Gamazon et al.,

2015). Herein, we applied the PrediXcan model to four lipid traits using genome

wide data from 1304 patients of European ancestry from the Diabetes Control and

Complications Trial (DCCT). Tests of association with one of total cholesterol (TC),

low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL)

and triglycerides (TG) and all of the gene expression predictors from the training

sets: DGN whole blood, GTEx whole blood, GTEx pancreas, and GTEx liver were

conducted using the Student’s t to see if the PrediXcan model could verify known

and identify novel eQTL-lipid associations. The dependence of the lipid traits on the

set of SNPs from a gene expression predictor was also modelled using multiple linear
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regression (MLR) and the F test.

Significant inverse relationships with LDL and gene expression predictors on Chro-

mosome 1 and
√

HDL and gene expression predictors on Chromosome 16 were identi-

fied at a very stringent Bonferroni correction threshold of 1.53×10−7, for the collective

number of tests from the two prediction models, four training sets, four lipids, and

expression predictors in the training set (Figure 3.1). The use of gene expression pre-

dictors selected using elastic net or LASSO did not appreciably change the estimated

GReX or p values when the PrediXcan model was applied; however, the p values

did not coincide when pairwise comparisons of matched tests of association between

training sets were made. Moreover, the responsible gene expression predictor for the

association differed by training set for a given significant chromosomal region. The

effect of the covariates (age, gender, duration of IDDM, cohort, treatment, and the

interaction between cohort and treatment) on the p values was most pronounced for

associations with
√

HDL.

Although significant associations with LDL and
√

HDL and genes on Chromosomes

1 and 16, respectively, were detected in both PrediXcan and MLR models, the p

values for similar tests of association were only weakly correlated. Furthermore, the

PrediXcan model detected suggestive negative relationships with total cholesterol and

expression predictors for genes on Chromosomes 1 and 4 that were not observed with

MLR models, and an association with triglycerides and an expression predictor for

a gene on Chromosome 19 was only apparent using MLR models. Associations with

lipids and genomic regions on Chromosomes 1, 4, 16, and 19 are well documented in

the literature (Dastani et al., 2010; Willer et al., 2013; Zhang et al., 2015; Kurano

et al., 2016; Shirali et al., 2016; Gusev et al., 2016) and hence both the PrediXcan and

MLR models verified known loci. More gene expression predictors were significantly

associated with
√

HDL using MLR models but the p values from MLR models did
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not follow a uniform distribution as well as those from PrediXcan models. A recent

publication by van Iterson et al. (2017) suggests that more phenotype associations are

to be expected in TWAS and that the commonly practiced genomic control correction

for the inflation factor for p values in GWAS is too conservative for TWAS. Hence,

more of the very smallest p values from associations with DGN whole blood expression

predictors than were expected under the null distribution may be interesting rather

than concerning.

While the mean 10-fold cross-validated R2 for predictive performance was highest

for gene expression predictors from DGN whole blood, its gene expression predic-

tors did not always have the strongest predictive performance for gene expression

when compared with analogous gene expression predictors from the other training

sets. The inverse associations with LDL and the expression predictors for CELSR2

and PSRC1 on Chromosome 1 in more than one training set with strong predictive

performance provides support for the negative regulation of LDL by CELSR2 and

PSRC1 expression in the liver. The same is true for SORT1, the third member of the

three gene haplotype block on Chromosome 1p13.3, which was previously shown to

be associated with decreased serum LDL in many independent GWAS (Willer et al.,

2008; Wallace et al., 2008; Schadt et al., 2008; Kathiresan et al., 2009; Teslovich et al.,

2010; Surakka et al., 2015; Kurano et al., 2016) in addition to lower risk for cardiovas-

cular disease (Schunkert et al., 2011) and enhanced response of LDL to statin therapy

(Postmus et al., 2014). Suggestive associations with LDL and the SORT1 expression

predictors from GTEx liver using the PrediXcan and MLR models are consistent with

the literature that suggests SORT1 is the main gene at the locus (Kjolby et al., 2010;

Linsel-Nitschke et al., 2010; Musunuru et al., 2010) and that it has an important

role in the liver (Folkersen et al., 2010). Moreover, expression levels for SORT1 and

CELSR2 were negatively associated with LDL in human liver samples and proposed
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as candidate genes for diabetes, obesity and atherosclerosis (Schadt et al., 2008; Bre-

itling et al., 2015). More recent GWAS studies have also shown a relationship for

TC and LDL with CELSR2 (Below et al., 2016). Consequently, the 1p13.3 locus

is currently considered to be the most strongly associated with LDL in the genome

and to primarily affect changes in very small, atherogenic LDL subclasses (Musunuru

et al., 2010).

Associations using the PrediXcan model revealed suggestive relationships with the

expression predictors for CETP , HERPUD1 using DGN whole blood, a significant

association with the expression predictor for SLC12A3 using DGN whole blood, and

a significant association with the expression predictor for NLRC5 using GTEx liver,

and all associations were inversely related to
√

HDL. Cholesteryl ester transfer pro-

tein (CETP) is a well known modulator of HDL and CETP deficient individuals have

high HDL levels (Brown et al., 1989; Inazu et al., 1994). A study by Ridker et al.

(2009) showed many genome-wide significant associations with HDL within a 242 K

base pair region of Chromosome 16 encompassing the CETP locus. The authors

noted that the majority of the genome-wide significant SNPs clustered around the

CETP gene, but three SNPs mapped to NUP93 (encoding a nuclear pore protein),

and six mapped to SLC12A3 (encoding a sodium cotransporter) and HERPUD1

(encoding a endoplasmic reticulum stress inducible protein) and thus they proposed

long range linkage disequilibrium at the locus with CETP as a causal mechanism for

association. Mutant mouse models for HERPUD1 and SLC12A3 suggest that these

genes are not candidates for the regulation of HDL levels, but a role for HERPUD1

in glucose tolerance was demonstrated (Eura et al., 2012). Furthermore, human dis-

eases associated with SLC12A3 such as Gitelman syndrome present with aberrant

electrolyte homeostasis rather than dyslipidemia (Glaudemans et al., 2012).

The 10-fold cross-validated R2 for the expression predictors on Chromosome 16
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were much smaller than those for the expression predictors that associated with LDL

raising the possibly that many more genes influence the expression of HDL. Asso-

ciations using the MLR model revealed more significant relationships with
√

HDL

and five of the significant associations from expression predictors BBS2, MT1X,

NUP93, HERPUD1, and NLRC5 were also significantly associated with HDL in

a recent imputed TWAS (Gusev et al., 2016). Bardet-Biedl Syndrome (BBS) is an

autosomal recessive disorder and both humans and mice deficient for BBS2 present

with obesity (Benzinou et al., 2006; Rahmouni et al., 2008) suggesting that a rela-

tionship with HDL is plausible. Conversely, neither MT1X (Metallothionein 1X) nor

NLRC5 (NOD-Like Receptor CARD domain containing 5) are obvious candidates

for HDL regulation since the former fosters cellular response to the zinc ion and the

latter functions within the immune system.

While the similar findings of multiple investigative groups supports the use of the

PrediXcan gene expression predictors for lipid associations, the methods presented in

this thesis should be replicated using an independent GWAS data set from patients

with type 1 diabetes such as the Wisconsin Epidemiologic Study of Diabetic Retinopa-

thy (WESDR), the Coronary Artery Calcification in Type 1 Diabetes (CACTI), and

the Renin-Angiotensin System Study (RASS). Replication using the PrediXcan model

enables the direction and magnitude of effect to be observed (Gamazon et al., 2015)

from associations with low genetic control inflation for p values and thus may be

more informative than replication studies that use the MLR model. The PrediXcan

model also enables polygenic models using multi-gene expression predictors and lipid

traits to be tested in a cost-effective manner. Such models could help to elucidate the

genetic determinants of dyslipidemia in IDDM and further the field of personalized

medicine.
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Appendix A

Supplementary Tables

Table A.1: PredictDB training sets.

Tissue Model Training Set Version Date Notes Name

Liver EN GTEx 2015-11-12 run c predb00000030
LASSO GTEx 2015-11-12 run c predb00000002

Pancreas EN GTEx 2015-11-12 run c predb00000072
LASSO GTEx 2015-11-12 run c predb00000064

Blood
EN GTEx 2015-11-12 run c predb00000019

DGN 2015-11-12 run c, unscaled predb00000061

LASSO GTEx 2015-11-12 run c predb00000058
DGN 2015-11-12 run c predb00000059

http://hakyimlab.org/predictdb/
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Table A.2: Top gene expression predictors using PrediXcan.

Model Training Set Lipid Gene Chr. R2
prediction SNPs β1 P R2

Elastic net

GTEx liver
√

HDL NLRC5 16 0.00 11 -0.73 7.10E-08 0.022
GTEx pancreas LDL CELSR2* 1 0.06 2 -27.81 5.45E-07 0.019
GTEx liver LDL SORT1* 1 0.44 13 -7.28 9.97E-07 0.018
DGN whole blood LDL PSRC1* 1 0.25 11 -7.65 4.07E-06 0.016
GTEx liver LDL CELSR2* 1 0.37 23 -6.47 4.44E-06 0.016

LASSO

GTEx liver
√

HDL NLRC5 16 0.00 9 -0.68 2.31E-07 0.020
GTEx pancreas LDL CELSR2* 1 0.06 2 -25.32 4.22E-07 0.019
GTEx liver LDL SORT1* 1 0.48 5 -7.13 7.21E-07 0.019
GTEx liver LDL CELSR2* 1 0.40 10 -7.51 8.02E-07 0.019
GTEx liver LDL PSRC1* 1 0.38 25 -5.58 3.52E-06 0.016

Imputed gene expression-lipid associations with the smallest p values. Gene expression predictors above the dotted line were
significant. Genes marked by an asterisk (*) are known quantitative trait loci for the lipid trait (NHGRI-EBI GWAS Catalog;
MacArthur et al. (2017)). Gene, gene expression predictor; EN, elastic net; LASSO, least absolute shrinkage and selection op-
erator; Chr., chromosome; R2

prediction, 10-fold cross-validated R2 for predictive performance; SNPs, the number of variants in
the expression predictor; LDL, low-density lipoprotein cholesterol; HDL, high-density lipoprotein cholesterol.
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Table A.3: Top gene expression predictors using MLR.

Model Training Set Lipid Gene Chr. R2
prediction SNPs N.df D.df F P

EN

GTEx pancreas
√

HDL NUP93* 16 0.05 60 59 1244 2.98 1.83E-12

GTEx liver
√

HDL NLRC5 16 0.00 11 11 1292 7.36 2.58E-12

GTEx whole blood
√

HDL BBS2 16 0.26 25 20 1283 3.89 1.77E-08

DGN whole blood
√

HDL CETP* 16 0.02 30 30 1273 3.03 9.71E-08

DGN whole blood
√

HDL SLC12A3 16 0.01 42 42 1261 2.55 3.02E-07

DGN whole blood
√

HDL CCDC135 16 0.25 54 54 1249 2.32 3.76E-07

DGN whole blood
√

HDL GNAO1 16 0.18 38 35 1268 2.70 4.60E-07
GTEx whole blood LDL ZNF222 19 0.01 32 32 1271 2.79 5.02E-07
DGN whole blood log10TG SUGP2 19 0.03 32 31 1272 2.77 8.55E-07
GTEx pancreas LDL CELSR2* 1 0.06 2 2 1301 13.89 1.08E-06

DGN whole blood
√

HDL MT1X 16 0.32 36 34 1269 2.62 1.44E-06
DGN whole blood log10TG ZNRF1 16 0.25 19 19 1284 3.20 4.08E-06
GTEx liver LDL SORT1* 1 0.44 13 13 1290 3.80 4.90E-06

LASSO

GTEx liver
√

HDL NLRC5 16 0.00 9 9 1294 8.86 4.85E-13

GTEx whole blood
√

HDL BBS2 16 0.26 14 12 1291 5.82 6.83E-10

DGN whole blood
√

HDL GNAO1 16 0.18 15 15 1288 4.80 3.82E-09

DGN whole blood
√

HDL SLC12A3 16 0.01 32 32 1271 3.24 4.89E-09

DGN whole blood
√

HDL CCDC135 16 0.25 44 44 1259 2.64 5.63E-08

GTEx whole blood
√

HDL CPNE2 16 0.06 14 14 1289 4.30 1.67E-07
DGN whole blood LDL ZNF233 19 0.01 9 9 1294 5.46 2.21E-07

DGN whole blood
√

HDL MT1X 16 0.31 28 27 1276 3.08 2.33E-07
DGN whole blood log10TG SUGP2 19 0.03 23 23 1280 3.28 2.99E-07
GTEx liver LDL SORT1* 1 0.48 5 5 1298 7.50 5.91E-07

DGN whole blood
√

HDL CETP* 16 0.02 28 28 1275 2.91 7.03E-07
GTEx whole blood LDL ZNF222 19 0.01 28 28 1275 2.90 8.00E-07
GTEx pancreas LDL CELSR2* 1 0.06 2 2 1301 13.89 1.08E-06

DGN whole blood
√

HDL CIAPIN1 16 0.05 30 29 1274 2.82 1.10E-06
DGN whole blood LDL KLC3 19 0.05 13 13 1290 3.97 2.19E-06

DGN whole blood
√

HDL HERPUD1* 16 0.08 11 11 1292 4.24 3.24E-06
DGN whole blood log10TG ZNRF1 16 0.24 16 16 1287 3.50 3.35E-06

Imputed gene expression-lipid associations with the smallest p values. Gene expression predictors above the dotted line were signifi-
cant. Genes marked by an asterisk (*) are known quantitative trait loci for the lipid trait (NHGRI-EBI GWAS Catalog; MacArthur
et al. (2017)). Gene, gene expression predictor; EN, elastic net; LASSO, least absolute shrinkage and selection operator; Chr., chro-
mosome; R2

prediction, 10-fold cross-validated R2 for predictive performance; SNPs, the number of variants in the expression predictor;
N.df, numerator degrees of freedom; D.df, denominator degrees of freedom; LDL, low-density lipoprotein cholesterol; HDL, high-density
lipoprotein cholesterol; TG, triglycerides.
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Table A.4: Model comparison for significant
√

HDL regressions with gene expression
predictors from DGN whole blood.

Model Gene N.df P R2 R2
a AIC BIC S

Elastic net
CCDC135

54 1.71E-11 0.263 0.227 2801.75 3122.49 0.692
LASSO 44 3.12E-12 0.256 0.226 2794.36 3063.36 0.693

Elastic net
CETP

30 5.36E-12 0.240 0.218 2793.89 2990.47 0.696
LASSO 28 4.01E-10 0.231 0.210 2805.29 2991.53 0.700

Elastic net
CIAPIN1

35 5.17E-08 0.230 0.205 2820.75 3043.20 0.702
LASSO 29 3.82E-09 0.228 0.207 2811.68 3003.08 0.701

Elastic net
GNAO1

35 2.77E-12 0.246 0.222 2792.61 3015.05 0.694
LASSO 15 1.74E-14 0.230 0.217 2781.11 2900.10 0.696

Elastic net
HERPUD1

15 4.34E-09 0.212 0.199 2810.74 2929.72 0.704
LASSO 11 2.72E-10 0.211 0.200 2804.77 2903.06 0.704

Elastic net
MT1X

34 3.60E-09 0.234 0.209 2812.60 3029.87 0.700
LASSO 27 5.11E-10 0.229 0.209 2805.82 2986.88 0.700

Elastic net
SLC12A3

42 9.68E-11 0.248 0.219 2803.94 3062.59 0.696
LASSO 32 7.25E-13 0.245 0.223 2788.70 2995.62 0.694

N.df, numerator degrees of freedom; P, p value, R2, coefficient of determination; R2
a, adjusted coeffi-

cient of determination; AIC, Akaike’s Information Criterion; BIC, Bayesian Information Criterion; S,
residual standard error.
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Table A.5: SNPs with zero variance in DCCT. SNPs from GTEx whole blood derived
using elastic net were used for extraction.

Chr. Gene ĜReX SNP Weight MAF Dose

1 TNNI3K -0.07 rs11801227 -0.04 0 0
2 WDFY1 -0.44 rs16866359 -0.22 0 0
2 SNX17 0.00 rs7579203 -0.02 0 0
2 SNX17 0.00 rs6749203 -0.02 0 0
2 CXCR4 0.14 rs4988176 0.07 0 0
3 RNF123 0.11 rs636168 0.06 1 2
3 RNF123 0.11 rs1208923 -0.05 1 2
3 RNF123 0.11 rs4450808 -0.06 1 2
3 CD200R1L 0.00 rs774750 0.36 0 0
7 ZNF789 0.00 rs10266141 -0.15 0 0
8 CPA6 -0.19 rs11985230 -0.09 0 0
10 USMG5 0.00 rs4288700 -0.31 1 2
15 WDR72 -0.09 rs16966558 -0.02 0 0
15 WDR72 -0.09 rs16966567 -0.02 0 0
16 NPIPA7 0.00 rs11861014 0.09 0 0
17 SPATA22 -0.12 rs9902438 -0.03 0 0
17 SPATA22 -0.12 rs9894685 -0.03 0 0
17 SPATA22 -0.12 rs7210926 0.03 0 0
17 HN1 -0.19 rs11872088 -0.10 0 0
20 ABHD12 0.10 rs7265940 0.02 0 0
20 ABHD12 0.10 rs8126155 0.03 0 0
20 ABHD12 0.10 rs7264886 -0.02 0 0
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Table A.6: SNPs with zero variance in DCCT. SNPs from GTEx pancreas derived
using elastic net were used for extraction.

Chr. Gene ĜReX SNP Weight MAF Dose

1 PHTF1 -0.09 rs7554422 -0.04 0 0
1 PHTF1 -0.09 rs7545980 0.05 0 0
1 TARDBP 0.32 rs2506894 -0.09 1 2
1 TARDBP 0.32 rs2506903 0.08 1 2
1 TARDBP 0.32 rs6540936 0.08 1 2
1 GPATCH3 -0.55 rs12083830 -0.28 0 0
3 USP4 0.00 rs6776029 -0.19 0 0
3 C3orf33 0.24 rs11927323 0.12 0 0
3 SCN10A -1.25 rs10514702 -0.09 0 0
3 SCN10A -1.25 rs17039230 -0.10 0 0
3 SCN10A -1.25 rs1877554 -0.06 0 0
3 SCN10A -1.25 rs17039124 -0.09 0 0
3 SCN10A -1.25 rs7653831 -0.10 0 0
3 SCN10A -1.25 rs1890516 -0.08 0 0
3 SCN10A -1.25 rs17039169 0.10 0 0
3 SCN10A -1.25 rs7612859 -0.10 0 0
7 ANKMY2 0.00 rs10228129 -0.06 0 0
7 SLC29A4 0.00 rs10215856 0.13 0 0
8 VDAC3 0.00 rs11995024 0.64 0 0
10 ANK3 0.17 rs7069890 -0.04 0 0
10 ANK3 0.17 rs10994325 0.04 0 0
10 ANK3 0.17 rs12246937 0.04 0 0
10 DUPD1 -1.19 rs11001442 -0.30 0 0
10 DUPD1 -1.19 rs12164797 -0.29 0 0
13 MTIF3 0.00 rs8000938 -0.11 0 0
14 APOPT1 -0.12 rs11160717 -0.06 0 0
19 GAMT 0.00 rs10411834 0.09 0 0
19 DAND5 -0.13 rs10410429 -0.06 0 0
19 KIR3DL2 -0.87 rs7256388 -0.43 0 0
21 SCAF4 0.19 rs8128009 0.10 0 0
21 KRTAP10-8 -0.23 rs4818719 -0.12 0 0

Table A.7: SNPs with zero variance in DCCT. SNPs from GTEx liver derived using
elastic net were used for extraction.

Chr. Gene ĜReX SNP Weight MAF Dose

1 LCE6A -0.26 rs16835548 -0.13 0 0
4 KIAA1430 -0.20 rs2696041 0.10 1 2
4 KIAA1430 -0.20 rs2696042 0.10 1 2
4 KIAA1430 -0.20 rs2705887 -0.10 1 2
7 EIF2AK1 0.00 rs10215856 18.43 0 0
19 NLRP8 -1.02 rs890868 -0.51 1 2
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Table A.8: DGN whole blood PSRC1 derived using elastic net.

Chr. SNP Weight RA EA Position A1 A2 MAF

1 rs599839 -0.19 G A 109822166 G A 0.79
1 rs583104 -0.16 G T 109821307 G T 0.79
1 rs602633 -0.15 T G 109821511 T G 0.79
1 rs672569 -0.10 A G 109827253 A G 0.84
1 rs629301 -0.05 G T 109818306 G T 0.79
1 rs646776 -0.04 C T 109818530 C T 0.79
1 rs629001 -0.02 C T 109838918 C T 0.93
1 rs660240 -0.01 T C 109817838 T C 0.80
1 rs7551421 -0.01 G T 109369915 G T 0.61
1 rs7528419 0.06 A G 109817192 A G 0.21
1 rs12740374 0.06 G T 109817590 G T 0.21

Chr., chromosome; RA, reference allele from PredictDB; EA, effect allele
from PredictDB; A1, effect allele from DCCT; A2, reference allele from
DCCT; MAF, minor allele frequency

Table A.9: GTEx liver SORT1 derived using elastic net.

Chr. SNP Weight RA EA Position A1 A2 MAF

1 rs12740374 -0.40 T G 109817590 G T 0.21
1 rs17038491 -0.20 T C 109659958 C T 0.00
1 rs602265 -0.09 A G 109781581 A G 1.00
1 rs12063647 -0.03 A G 110318221 A G 0.24
1 rs17038458 -0.01 A G 109672215 A G 0.06
1 rs12116787 -0.01 A C 110715768 A C 0.06
1 rs4970834 -0.00 T C 109814880 C T 0.18
1 rs646776 0.00 T C 109818530 C T 0.79
1 rs629301 0.00 T G 109818306 G T 0.79
1 rs7529592 0.00 T C 109366554 T C 0.10
1 rs17035630 0.03 A G 109810981 G A 0.11
1 rs611917 0.04 A G 109815252 A G 0.32
1 rs7528419 0.40 A G 109817192 A G 0.21

Chr., chromosome; RA, reference allele from PredictDB; EA, effect allele
from PredictDB; A1, effect allele from DCCT; A2, reference allele from
DCCT; MAF, minor allele frequency
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Table A.10: GTEx liver PSRC1 derived using elastic net.

Chr. SNP Weight RA EA Position A1 A2 MAF

1 rs12740374 -0.34 T G 109817590 G T 0.21
1 rs17038458 -0.20 A G 109672215 A G 0.06
1 rs17616480 -0.16 T C 109100633 T C 0.11
1 rs369741 -0.11 A G 110427992 A G 0.03
1 rs4970834 -0.10 T C 109814880 C T 0.18
1 rs4484951 -0.07 T C 109270563 T C 0.01
1 rs17646731 -0.07 A G 109919525 G A 0.05
1 rs1277205 -0.05 T G 109393437 G T 0.89
1 rs12402346 -0.04 A G 110038019 G A 0.01
1 rs12036884 -0.04 A G 109727529 G A 0.06
1 rs7517648 -0.03 T G 109318228 G T 0.05
1 rs579035 -0.03 A C 110346885 C A 0.52
1 rs12032606 -0.02 A C 110645614 C A 0.07
1 rs12124705 -0.01 A G 108872823 G A 0.18
1 rs12406978 -0.01 A C 110043187 C A 0.01
1 rs4839135 -0.00 T G 110650082 G T 0.07
1 rs1417300 0.00 T C 108871245 T C 0.33
1 rs673792 0.00 A G 110646283 A G 0.49
1 rs11185315 0.00 A G 108870525 A G 0.33
1 rs4970821 0.00 T C 108859314 T C 0.33
1 rs617477 0.01 T C 110649693 T C 0.49
1 rs7529976 0.01 T G 108866862 G T 0.07
1 rs617126 0.01 T G 110649713 T G 0.49
1 rs583104 0.01 T G 109821307 G T 0.79
1 rs629301 0.01 T G 109818306 G T 0.79
1 rs646776 0.01 T C 109818530 C T 0.79
1 rs11576956 0.01 A G 110646858 A G 0.36
1 rs3768490 0.02 T G 110259016 G T 0.33
1 rs3818562 0.02 A G 110300441 G A 0.49
1 rs1149144 0.03 T C 109391027 T C 0.89
1 rs599839 0.05 A G 109822166 G A 0.79
1 rs17035415 0.05 A C 109787493 C A 0.19
1 rs585362 0.06 T C 109789795 C T 0.86
1 rs17647543 0.06 T C 109964605 T C 0.05
1 rs17586966 0.07 T C 109955569 T C 0.05
1 rs12142041 0.08 T C 110505038 T C 0.09
1 rs17035630 0.11 A G 109810981 G A 0.11
1 rs12403287 0.13 A G 108873582 A G 0.33
1 rs504316 0.13 A G 109663420 G A 0.07
1 rs7528419 0.34 A G 109817192 A G 0.21

Chr., chromosome; RA, reference allele from PredictDB; EA, effect allele
from PredictDB; A1, effect allele from DCCT; A2, reference allele from
DCCT; MAF, minor allele frequency
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Table A.11: GTEx liver CELSR2 derived using elastic net.

Chr. SNP Weight RA EA Position A1 A2 MAF

1 rs12740374 -0.39 T G 109817590 G T 0.21
1 rs2275123 -0.08 A G 110458234 G A 0.17
1 rs1504405 -0.07 T C 110482486 C T 0.19
1 rs17025216 -0.07 T C 110486839 C T 0.18
1 rs9662782 -0.04 T G 109445706 T G 0.09
1 rs6695237 -0.03 A G 110415626 G A 0.47
1 rs11102632 -0.03 T C 109453129 T C 0.14
1 rs12120692 -0.03 T C 109436391 T C 0.14
1 rs7522260 -0.01 T C 109366370 C T 0.69
1 rs3738759 -0.00 T C 110599796 C T 0.07
1 rs28553535 -0.00 A C 109612484 C A 0.07
1 rs17574954 0.00 A G 108879960 G A 0.08
1 rs12059276 0.02 T C 110273541 C T 0.07
1 rs453577 0.02 A G 110426778 G A 0.65
1 rs3093037 0.03 T C 110471906 C T 0.19
1 rs1105803 0.05 T C 110428878 T C 0.37
1 rs11102072 0.06 A C 110799893 C A 0.31
1 rs756325 0.07 T C 110478064 T C 0.19
1 rs504316 0.10 A G 109663420 G A 0.07
1 rs839551 0.11 T C 109474581 T C 0.05
1 rs12131828 0.12 A G 110195152 G A 0.05
1 rs518076 0.13 A G 110109039 A G 0.11
1 rs7528419 0.40 A G 109817192 A G 0.21

Chr., chromosome; RA, reference allele from PredictDB; EA, effect allele
from PredictDB; A1, effect allele from DCCT; A2, reference allele from
DCCT; MAF, minor allele frequency

Table A.12: GTEx pancreas CELSR2 derived using elastic net.

Chr. SNP Weight RA EA Position A1 A2 MAF

1 rs12740374 -0.11 T G 109817590 G T 0.21
1 rs7528419 0.11 A G 109817192 A G 0.21

Chr., chromosome; RA, reference allele from PredictDB; EA, effect allele
from PredictDB; A1, effect allele from DCCT; A2, reference allele from
DCCT; MAF, minor allele frequency
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Table A.13: DGN whole blood SLC12A3 derived using elastic
net.

Chr. SNP Weight RA EA position A1 A2 MAF

16 rs247616 -0.06 C T 56989590 C T 0.31
16 rs7198642 -0.06 T G 57032461 T G 0.21
16 rs4329913 -0.06 T C 56905432 T C 0.76
16 rs8060037 -0.05 C T 56484820 C T 0.25
16 rs17372800 -0.05 C T 57185761 C T 0.09
16 rs12448377 -0.05 G T 57082366 G T 0.13
16 rs976977 -0.05 A G 57173674 A G 0.92
16 rs2923131 -0.04 C T 57729576 C T 0.20
16 rs247617 -0.04 C A 56990716 C A 0.31
16 rs289748 -0.03 A G 57025063 A G 0.52
16 rs4784727 -0.03 T C 56787107 T C 0.52
16 rs1466293 -0.03 T C 57172185 T C 0.92
16 rs4783999 -0.03 C T 57651985 C T 0.48
16 rs4784650 -0.02 A G 56306640 A G 0.35
16 rs17282194 -0.02 C T 56365355 C T 0.37
16 rs4784842 -0.02 T C 57708483 T C 0.51
16 rs1561140 -0.02 C T 56864398 C T 0.52
16 rs889558 -0.02 T C 57172629 T C 0.92
16 rs13339005 -0.02 G A 55934159 G A 0.16
16 rs2587881 -0.01 G A 56324697 G A 0.53
16 rs9989419 -0.01 A G 56985139 A G 0.59
16 rs2399622 -0.01 A G 57173080 A G 0.92
16 rs3751710 -0.01 C T 57095775 C T 0.16
16 rs7184439 -0.01 C T 56867804 C T 0.82
16 rs9889080 -0.01 G A 55926873 G A 0.16
16 rs4784651 -0.01 G A 56311774 G A 0.35
16 rs11643815 -0.01 G A 56602798 G A 0.14
16 rs7188495 -0.01 G A 57175105 G A 0.92
16 rs247040 -0.00 C T 57877310 C T 0.76
16 rs1561141 -0.00 T C 56869430 T C 0.82
16 rs289703 0.00 C T 57048118 C T 0.30
16 rs8058898 0.00 T C 57631371 T C 0.16
16 rs154044 0.00 C T 57114982 C T 0.58
16 rs289717 0.00 G A 57009388 G A 0.35
16 rs7184983 0.00 G A 56554709 G A 0.12
16 rs12927110 0.01 C T 57722866 C T 0.23
16 rs7198661 0.01 T C 56090428 T C 0.47
16 rs247037 0.01 C T 57922948 C T 0.83
16 rs8049632 0.01 C A 57631279 C A 0.16
16 rs955513 0.02 C T 56946072 C T 0.55
16 rs12708967 0.02 T C 56993211 T C 0.21
16 rs43216 0.03 A G 57116819 A G 0.61

Chr., chromosome; RA, reference allele from PredictDB; EA, effect allele
from PredictDB; A1, effect allele from DCCT; A2, reference allele from
DCCT; MAF, minor allele frequency
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Table A.14: DGN whole blood CETP derived using elastic
net.

Chr. SNP Weight RA EA position A1 A2 MAF

16 rs7187427 -0.05 C T 57070372 C T 0.07
16 rs12708974 -0.05 C T 57005550 C T 0.10
16 rs935743 -0.04 G A 57677885 G A 0.15
16 rs1532624 -0.04 C A 57005479 C A 0.41
16 rs1532625 -0.03 C T 57005301 C T 0.41
16 rs506829 -0.02 C T 57383759 C T 0.77
16 rs4404068 -0.02 C T 56733941 C T 0.09
16 rs13330423 -0.02 T C 57051501 T C 0.56
16 rs1273580 -0.02 A G 57352124 A G 0.60
16 rs223869 -0.02 C A 57494992 C A 0.07
16 rs12599065 -0.01 T C 56896036 T C 0.41
16 rs948705 -0.01 G T 57349346 G T 0.86
16 rs11508026 -0.01 C T 56999328 C T 0.40
16 rs282225 -0.01 A G 56583042 A G 0.92
16 rs4784750 -0.01 G T 57056064 G T 0.29
16 rs739813 -0.01 C T 57513076 C T 0.09
16 rs11643127 -0.00 C T 57919034 C T 0.69
16 rs821469 0.00 T G 57085547 T G 0.05
16 rs422804 0.00 A G 57910233 A G 0.10
16 rs486356 0.00 G T 57907095 G T 0.10
16 rs2303779 0.02 G A 57973989 G A 0.42
16 rs17373793 0.02 T C 57276202 T C 0.07
16 rs1684575 0.02 G T 57057619 G T 0.57
16 rs289754 0.03 C T 57065556 C T 0.32
16 rs4784745 0.03 A G 57014875 A G 0.34
16 rs1894947 0.04 T C 56006578 T C 0.82
16 rs291040 0.04 T C 57061189 T C 0.34
16 rs12597002 0.05 C A 57002404 C A 0.30
16 rs4783968 0.06 G A 57072004 G A 0.69
16 rs12926631 0.07 G A 57321362 G A 0.06

Chr., chromosome; RA, reference allele from PredictDB; EA, effect allele
from PredictDB; A1, effect allele from DCCT; A2, reference allele from
DCCT; MAF, minor allele frequency
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Table A.15: DGN whole bloodHERPUD1 derived using elas-
tic net.

Chr. SNP Weight RA EA position A1 A2 MAF

16 rs12920659 -0.12 C T 56895873 C T 0.81
16 rs1561140 -0.07 C T 56864398 C T 0.52
16 rs8044753 -0.05 G A 56883438 G A 0.52
16 rs4784724 -0.05 T G 56745758 T G 0.23
16 rs4784727 -0.04 T C 56787107 T C 0.52
16 rs9989419 -0.04 A G 56985139 A G 0.59
16 rs12599065 -0.03 T C 56896036 T C 0.41
16 rs28438857 -0.02 T C 57060353 T C 0.10
16 rs3829502 -0.01 G A 56896730 G A 0.40
16 rs247615 0.01 A G 56984763 A G 0.24
16 rs4353475 0.02 A G 57326269 A G 0.29
16 rs12447924 0.03 C T 56994192 C T 0.77
16 rs2217332 0.03 G A 56969148 G A 0.15
16 rs9921780 0.06 A G 56952098 A G 0.44
16 rs952439 0.07 A C 56975277 A C 0.15

Chr., chromosome; RA, reference allele from PredictDB; EA, effect allele
from PredictDB; A1, effect allele from DCCT; A2, reference allele from
DCCT; MAF, minor allele frequency

Table A.16: GTEx liver NLRC5 derived using elastic net.

Chr. SNP Weight RA EA position A1 A2 MAF

16 rs7205824 -0.23 T C 56240331 C T 0.05
16 rs17546208 -0.14 A G 57539511 G A 0.06
16 rs7198642 -0.11 T G 57032461 T G 0.21
16 rs2923147 -0.01 T C 57762401 T C 0.19
16 rs11076175 0.01 A G 57006378 A G 0.19
16 rs7203984 0.02 A C 56999258 A C 0.21
16 rs16956194 0.03 A G 56273532 G A 0.16
16 rs16956168 0.03 A G 56249774 G A 0.16
16 rs2399594 0.05 A G 56946197 A G 0.40
16 rs1800775 0.10 A C 56995236 C A 0.47
16 rs12720898 0.12 T C 57011243 C T 0.07

Chr., chromosome; RA, reference allele from PredictDB; EA, effect allele
from PredictDB; A1, effect allele from DCCT; A2, reference allele from
DCCT; MAF, minor allele frequency
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Appendix B

Scripts

B.1 SNP Extraction

Script 1

#$ -S /bin/bash

#! /bin/bash

#export HOME=/hpf/largeprojects/andrew/adp/francis/GTeX_pan

let a=1 b=22

while [ $a -le $b ]

do

qsub -o ~/queue -e ~/queue -v chr=$a anal2_GTeX_pan.sh

let a=$a+1

done

Script 2

#!/bin/bash

#PBS -l vmem=8g

#PBS -l nodes=1:ppn=1

cd $PBS_O_WORKDIR

chr=$chr

fgrep -w -f snps_GTeX_pan.txt /hpf/largeprojects/andrew/

hswong/dcct_1000genome_imputation/

dcct_imputation_result_folder/out/dcct_1000genome_impute
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_chr${chr}_*.out > extracted${chr}.out

module load R/3.3.0

/hpf/tools/centos6/R/3.3.0/bin/Rscript impute_to_dosage_jf.r

--args ${chr} "/hpf/largeprojects/andrew/hswong/dcct_1000genome_

imputation/dcct_imputation_result_folder/

out/dcct_1000genome_impute_chr1_1.out_samples"

B.2 Impute to Dosages

# Created 13 Nov 2014

## last edited 24 June 2015

## created by: Mohsen Hosseini

########################################

## adapted for thesis July 27, 2016

### this script takes a .sample file and a .out file from

impute output and

###transforms it into a file with dosages of a1 (2nd allele)

Args <- commandArgs(TRUE)

#out.file <- Args[2]

chr <- Args[2]

sample.file <- Args[3]

out.file <- paste("extracted",chr,".out",sep="")

### reading impute file

dose0 <- read.table(out.file,header=F,comment.char="",

stringsAsFactors=F, sep=" ")

dose <- subset(dose0,!V5 %in% c("-"))

### reading sample file

samp <- read.table(sample.file, header=T, comment.char="",

stringsAsFactors=F)

samp <- samp[-1,]

samp <- subset(samp, select=c(1,2))

ssize<-nrow(samp)

n<-nrow(dose)

gt.mx<-matrix(nrow=n,ncol=ssize)
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### calculating additive dosage (0 to 2) from

posterior probabilities

### calculates dosage for the 2nd allele a1 (vs a0)

for(i in 1:ssize)

{

j <- 7+(i-1)*3

### a0 is the effect allele

gt.mx[,i] <- 0*dose[,j-1]+1*dose[,j]+2*dose[,j+1]

}

### assigning missing to the SNPs with three

possibilites EQ 0

for (x in 1:n)

{

for (y in 1:ssize)

{

z=6+(y-1)*3

if (dose[x,z]==0 & dose[x,z+1]==0 & dose[x,z+2]==0)

{gt.mx[x,y] <- NA}

}

}

gtmx <- as.data.frame(gt.mx)

names(gtmx) <- as.character(samp[,2])

output <- data.frame(chromosome=chr, rsid = dose$V2,

position = dose$V3, allele1 = dose$V4, allele2 = dose$V5,

MAF = rowMeans(gtmx, na.rm=TRUE)/2)

output2 <- data.frame(samp)

write.table(output, paste("chr", chr,".dosage.txt",sep=""),

quote=F, sep="\t", col.names=F, row.names=F)

write.table(output2, "samples.txt", quote=F, sep="\t",

col.names=F, row.names=F)
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B.3 Estimate GReX

GTEx pancreas Example

#!/bin/bash

#PBS -l vmem=8g

#PBS -l nodes=1:ppn=1

cd $PBS_O_WORKDIR

module load PrediXcan/1.0

/hpf/tools/centos6/PrediXcan/1.0/bin/PrediXcan.py --predict

--dosages /hpf/largeprojects/andrew/adp/francis/GTeX_pan

--dosages_prefix chr --samples samples.txt

--weights GTeX_pan_predb72.db --output_dir output

B.4 Lipid Association with GReX

LDL Example using PrediXcan.py

#!/bin/bash

#PBS -l vmem=8g

#PBS -l nodes=1:ppn=1

cd $PBS_O_WORKDIR

module load PrediXcan/1.0

module load R/3.3.0

/hpf/tools/centos6/PrediXcan/1.0/bin/PrediXcan.py --assoc

--pheno win_mean_ldl --pred_exp output/predicted_expression.txt

--linear --output_dir output/ldl_win_mean
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