
Pattern Recognition of Arabic/Persian Handwritten

Digits using Adaptive Boosting, Neural Networks

and Deep Boltzmann Machines

PATTERN RECOGNITION OF ARABIC/PERSIAN

HANDWRITTEN DIGITS USING ADAPTIVE BOOSTING,

NEURAL NETWORKS AND DEEP BOLTZMANN MACHINES

BY

SARAH ALI A. ALATTAS, B.Sc.

a thesis

submitted to the department of mathematics & statistics

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

master of science

c© Copyright by Sarah Ali A. Alattas,

All Rights Reserved

Master of Science (2017) McMaster University

(Mathematics & Statistics) Hamilton, Ontario, Canada

TITLE: Pattern Recognition of Arabic/Persian Handwritten Dig-

its using Adaptive Boosting, Neural Networks and Deep

Boltzmann Machines

AUTHOR: Sarah Ali A. Alattas

McMaster University, Canada

SUPERVISOR: Dr. Paul D. McNicholas

NUMBER OF PAGES: viii, 40

ii

To my parents, Nehad & Ali

and

To my family: Talal, Rital and Rima

Abstract

Classification of handwritten numerals has captured the attention of the statistical

and machine learning community. A common statistical approach is ensemble learn-

ing, which combines basic classifiers to produce one powerful predictor. Another

popular method is neural networks, which is a non-linear two stage statistical model

inspired by the biological neural networks. In this thesis, neural networks (nnet),

adaptive boosting (AdaBoost), and deep Boltzmann machine (DBM) algorithms are

tested for Arabic/Persian handwritten digits, and their recognition performance is

then compared.

iv

Acknowledgements

First, I would like to thank my supervisor Dr. Paul McNicholas for the supervision

of the thesis and for providing me with all the information about the field of classi-

fication and data science. Secondly, I would like to acknowledge the King Abdullah

Scholarship Fund and the Saudi Culture Bureau in Canada. I would also like to

thank Dr. Ben Bolker, and Dr. Ridha Khedri with Dr. McNicholas for accepting to

be on my examination committee. Moreover, I would like to thank Dr. Yang Tang for

the helpful discussions and for sharing her code for generating MCLT binary data.

I would like to thank my friends and collogues, who I was fortunate to work with

throughout Master’s studies. Finally, I wanted to thank my husband, my parents

and my siblings for their love and support even from overseas.

v

Contents

Abstract iv

Acknowledgements v

1 Introduction 1

2 Background 3

2.1 Decision Trees . 3

2.2 A Classification Ensemble . 5

2.2.1 Boosting Methods . 5

2.3 Neural Networks . 6

2.3.1 Loss Functions . 8

2.4 General Boltzmann Machines . 9

2.5 Restricted Boltzmann Machines . 9

2.5.1 Conditional Distributions . 11

2.5.2 Training RBMs . 12

2.5.3 Contrastive Divergence Learning 13

2.6 Deep Boltzmann Machines . 13

2.6.1 Variational Inference . 15

vi

3 Methodology 18

3.1 Model Assessment and Selection . 18

3.2 Cross validation . 19

3.3 Stratification . 19

3.4 Some Issues in Training an Ensemble Tree 20

3.4.1 Selecting the Number of Trees and Splitters 20

3.5 Some Issues in Training Neural Networks and DBM 21

3.5.1 Selecting the Number of Hidden Units and Layers 21

3.6 Simulated Data . 21

4 Arabic/Persian Handwritten Digits Recognition 28

4.1 Discriminative Performance . 29

4.1.1 Boosting Ensemble . 29

4.1.2 Neural Network . 30

4.1.3 Deep Boltzmann Machine . 32

4.2 Generative Performance . 33

4.2.1 Generating the Digits using DBMs 33

5 Conclusions and Future Work 35

Bibliography . 37

vii

List of Figures

2.1 A decision tree on simulated dataset with binary splits on each step. . 4

2.2 A single hidden layer, feed-forward neural network. 7

2.3 The structure of an RBM model with undirected connections between

the layers. 10

2.4 a: Pre-training two RBMs that will compose to create DBM with one

visible layer (bottom) and two hidden layers. b: The graphical model

for a DBM with recognition models: All connections between layers

are undirected but with no within-layer connections. 14

3.1 The misclassification rate of MCLT data as the number of trees and splitters

increase. 23

3.2 The misclassification rate as the number of trees and splitters increase. 25

4.1 The misclassification rate as the number of trees increases. 30

4.2 The classification performance of nnet with different hidden units: (a) 10 hidden

units, (b) 50 hidden units, and (c) 500 hidden units. 31

4.3 Two deep Boltzmann machines used in the experiment. 32

4.4 Digits samples from the training set and digits generated from DBM. 34

viii

Chapter 1

Introduction

In statistics and machine learning, pattern recognition is the process of applying

algorithms to enable a model or a system to interpret or recognize some properties

in the pattern. One example of pattern recognition is classification. Classification

involves taking a set of observations and using data features as inputs, and assigns

these observations into categories. Given a pattern, its recognition/classification may

follow from:

• supervised classification in which we need the label of the data to make a clas-

sification rule,

• unsupervised classification or clustering, where the true labels of a data does

not exit or not used to make the classification rule,

• semi-supervised classification, where both labelled and unlabelled data are used

(with equal weights) to generate the rule,

• fractionally-supervised classification, introduced by Vrbik and McNicholas (2015),

1

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

where also both labelled and unlabelled data are used; however, the weight or

the amount of labelled observations can vary between any level.

For simple patterns, machine learning methods like logistic regression or decision

trees can produce accurate results; for complex patterns, neural nets start to outper-

form other machine learning methods (Friedman et al., 2001). At a very high level of

pattern complexity, even a standard neural nets would take excessive time to train,

or would simply fail to obtain a respectful accuracy; in this case, deep learning have

proved to be the best solution for a highly complicated data (Schmidhuber, 2015).

Classifiers such as boosting, neural networks and deep Boltzmann machines have

succeeded in recognising English handwritten digits (LeCun et al. (2010) and Salakhut-

dinov and Hinton (2009)). Boosting is an architecture for combining several learning

approaches to achieve a powerful predictor. Neural networks are non-linear statistical

models that predict the output after process complex calculation in some latent hid-

den layers (Friedman et al., 2001). Deep Boltzmann machines, as opposed to neural

networks, are generative models (i.e., they attempt to learn the distribution of the

data) which consist of many hidden layers and those hidden layers are random vari-

ables (Salakhutdinov and Hinton, 2009). More details about these three classifiers

will be given in Chapter 2. In Chapter 4, an application using these classifiers will

be applied but in the Arabic/Persian handwritten digits.

2

Chapter 2

Background

2.1 Decision Trees

Decision trees (also known as classification trees) are recursive processes. As shown

in Figure 2.1, the process starts at the root where the first step is to select a split

that divides a data set into subsets, and each subset is further divided based on

other selected splits; additional splits continue in the same style. Using the notation

of Friedman et al. (2001), for region Rn with k classes and N observations, the

probability that an observation is in node n is defined by:

P̂nk =
1

N

∑
xi∈Rn

I(yi = k), (2.1)

where I(yi = k) = 1 if yi = k and I(yi = k) = 0 otherwise. There are three criteria to

select the splits, one is the classification error:

1− P̂nk(n), (2.2)

3

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

Figure 2.1: A decision tree on simulated dataset with binary splits on each step.

Another measure is Gini index: ∑
k 6=k′

P̂nkP̂nk′ , (2.3)

The third measure is the maximum deviance reduction (cross-entropy),Quinlan (1998):

−
K∑
k=1′

P̂nk log(P̂nk′). (2.4)

Friedman et al. (2001) stated that all three measurements are similar. To guide the

pruning complexity, the misclassification rate is the typical choice. However, to grow

the tree, cross-entropy and the Gini index are preferred because they are differentiable

and more practical for numerical optimization.

4

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

2.2 A Classification Ensemble

Classification ensembles are predictive models which consist of a weighted combi-

nation of multiple classification models. Ensemble refers to the general problem of

combining many possibly weak learners into one high-quality ensemble predictor.

Combining multiple classification models helps to achieve an increase in the predic-

tive accuracy.

2.2.1 Boosting Methods

Boosting is an ensemble methods that combine many classifiers to produce a powerful

one by increasing the weight on observations modelled poorly by a classifier and reduce

focus on observations that were classified correctly. Boosting can be applied beyond

some algorithms such as decision trees or discriminant analysis. One of the most

common boosting methods is Adaptive Boosting.

Adaptive Boosting

Adaptive Boosting, or AdaBoost, was first used by Freund et al. (1997) and has be-

come the most common boosting method. This algorithm generates a set of classifiers

and trains them sequentially. After training, Adaboost combines all the classifiers us-

ing some weighted error function. In binary classification, AdaBoostM1 uses the

weighted classification error for every learner. For N observations and ft models, the

weighted classification error is given by:

εt =
1

2

N∑
n=1

d(t)n I [yn 6= ft(xn)] , (2.5)

5

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

where: ft is the learned classifier, yn is the true label, I is the indicator function and

d
(t)
n is the weight.

For multiple classes, AdaBoostM2 computes weighted pseudo-loss and uses it as a

measure of the classification accuracy. The learning procedure minimises the pseudo-

loss error (Eibl and Pfeiffer, 2005).

For N observations and K classes, the weighted pseudo-loss error of a boosting algo-

rithm is :

εt =
1

2

N∑
n=1

∑
k 6=yn

d
(t)
n6=k [1− ft (xn, yn) ft (xn, k)] , (2.6)

Note that ft (xn, k), ranging from [0,1], is the confidence of prediction by classifier ft

into class K, d
(t)
n6=k are observation weights for the class K at tree t, and yn is the true

class label.

2.3 Neural Networks

Friedman et al. (2001) defined neural nets (nnet) as non-linear statistical models that

were developed from both Statistics and Artificial Intelligence. An nnet is a two stage

learning model; before the inputs model the target, each input has to go through a

function of linear combinations to extract features which then model the target. The

idea of neural networks was inspired by the human brain (Carpenter, 1989). These

networks are highly structured, and have three different layers: the first is the input

layer, the last is the output layer, and units that are not in the input or output layer

are hidden units. Each neuron in the hidden and output layers has a classifier. The

first input units receive the data features of the object passing their output into the

6

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

hidden layers. The hidden layers can be described as distorting the input units in

a non-linear approach which allows categories to become linearly separable by the

output layer (Figure 2.1). If a network has more than one hidden layer, then the

process repeats until the last layer is reached — the output layer. Based on the final

output score, the object is classified. This process is called Forward Propagation

(Schmidhuber, 2015).

Figure 2.2: A single hidden layer, feed-forward neural network.

For clarity of presentation, we omit the bias parameters below. Consider hidden

units h1, ..., hm, where each hm is function of a linear combination of X1, ..., Xp., then

the target Yk, which is a linear combination of the hm can be described as:

hm = σ(W 1
0m +W 1′

mX),m = 1, ...,M, (2.7)

Tk = W 2
0k +W 2′

k h, k = 1, ..., K, (2.8)

fk(X) = gk(T). (2.9)

7

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

where h = (h1, h2, ..., hM), T = (T1, T2, ..., TK), σ() is any activation function (non-

linear transformation), usually the sigmoid activation function: σ(v) = 1
1+e−v

, and

the function gk(T) is the softmax function:

gk(T) =
eTk∑K
l=1 e

Tl
. (2.10)

There are two main unknown parameters in neural networks: weight and bias. We

denote the complete set of weights by θ = W 1,W 2, which consists of:

{
W 1

0m,W
1
m;m = 1, 2, ...,M

}
M(p+ 1)weights,{

W 2
0m,W

2
m;m = 1, 2, ..., K

}
K(M + 1)weights.

2.3.1 Loss Functions

In the classification paradigm, we can measure the network fit by either squared error

or cross-entropy (deviance):

R(θ) =
K∑
k=1

N∑
i=1

(yik − fk(xi))2, (2.11)

R(θ) = −
K∑
k=1

N∑
i=1

(yik log(fk(xi))). (2.12)

As the network is trained, the weight and bias are updated based on the final accuracy

result. When the accuracy in the nnet is low, the weight and bias numbers are

modified slightly until the accuracy improves. Usually, the global minimizer of R(θ)

is likely to be an overfitted solution. Instead, we tend to minimise R(θ) in a gradient

descent, this procedure is known as back-propagation (Friedman et al., 2001).

8

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

2.4 General Boltzmann Machines

General Boltzmann machines (BMs) are generative graphical models that are derived

from the statistical physics literature, and they are known as energy-based models

(Ackley et al., 1985). The original learning algorithm for BMs requires randomly ini-

tialized Markov chains to perform their equilibrium distributions in order to estimate

the gradient required for the likelihood objective function. One main issue is that

this learning procedure is rather too slow and inefficient (Salakhutdinov and Hinton,

2009). However, some restrictions in the graphical model made learning these mod-

els more practical. For example, restricted Boltzmann machines (RBM), where the

connection within the same layer is removed, and deep Boltzmann machines (DBM)

which are undirected stacks of RBMs.

2.5 Restricted Boltzmann Machines

Restricted Boltzmann Machines (RBMs) were first introduced by Smolensky (1986)

under the name harmonium. An RBM is a special case of BMs Hinton (2010). RBMs

are entirely undirected; unlike nnet (Figure 2.2), the edges in an RBM have no direc-

tion (as shown in Figure 2.3). Structurally, an RBM is a stochastic neural net with

two layers: a layer of visible units and a layer of hidden units. Each unit in the first

layer is connected to every unit in the following layer, but there is no connection be-

tween units within the same layer. This restriction makes the inference and learning

easier because it makes the visible and hidden units conditionally independent given

the other units.

9

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

The main objective in RBMs is to reconstruct the input; therefore, it does not re-

quire a labelled data set, which is useful for dealing with many real-world applications

as most are unlabelled (Hinton et al., 2006).

Figure 2.3: The structure of an RBM model with undirected connections between the
layers.

RBMs are energy-based models, their joint probability distribution is given by its

energy function:

P (v,h) =
1

Z(θ)
e−E(v,h;θ), (2.13)

where the energy function of a joint configuration of the visible and hidden units

(v,h) is given as:

E(v,h) = −aTv − bTh− vTWh. (2.14)

Note that Z(θ) is the normalizing constant known also as partition function:

Z(θ) =
∑
v,h

e−E(v,h;θ). (2.15)

θ = {W,a, b} are the parameters that we want to estimate. Furthermore, for a two-

layer RBM model, the probability that the model is assigned to a visible vector v

10

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

defined as a Gibbs distribution:

P (v) =
1

Z(θ)

∑
h

e−E(v,h;θ). (2.16)

2.5.1 Conditional Distributions

Because of the bipartite structure, the inference of P (h|v) and P (v|h) are straight-

forward. The conditional distributions are derived as :

P (v|h) =
P (v,h)

P (h)

=
1

P (h)

1

Z(θ)
exp

{
aTv + bTh + vTWh

}
=

1

Z ′(θ)
exp

{
aTv + vTWh

}
=

1

Z ′(θ)
exp

{
n∑
i=1

aivi +
n∑
i=1

vTWj,ihi

}

=
1

Z ′(θ)

n∏
i=1

exp
{
aivi + vTWj,ihi

}
.

(2.17)

Now, we can write the conditional distribution over the binary visible units as:

P̃ (vi = 1, |h) =
P̃ (vi = 1|h)

P̃ (vi = 0|h) + P̃ (vi = 1|h)

=
exp

{
aj +

∑
jWijhj

}
exp {0}+ exp

{
aj +

∑
jWijhj

}
= σ(aj +

∑
j

Wijhj).

(2.18)

11

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

Similarly, the conditional distribution over the hidden units hj given the visible units

is:

P (hj = 1, |v) = σ(bj +
∑
i

viWij). (2.19)

2.5.2 Training RBMs

Training RBMs can be achieved by maximising the likelihood, we can also derive the

log-likelihood with respect to a weight Wij:

∂ log(P (v; h, θ))

∂Wij

=
∂

∂Wij

log
1

Z(θ)

∑
h

e−E(v,h;θ)

=
∂

∂Wij

log
∑
h

e−E(v,h;θ) − ∂

∂Wij

log
∑
v,h

e−E(v,h;θ)

= −
∑
h

e−E(v,h;θ)∑
h e
−E(v,h;θ)

∂E(v,h; θ)

∂Wij

+
∑
v,h

e−E(v,h;θ)∑
v,h e

−E(v,h;θ)

∂E(v,h; θ)

∂Wij

= −
∑
h

p(h|v)
∂E(v,h; θ)

∂Wij

+
∑
v,h

p(h, v)
∂E(v,h; θ)

∂Wij

.

(2.20)

Now taking the derivative of (2.14) w.r.t Wi,j, (2.20) becomes:

∂ log(P (v; h, θ))

∂Wij

=
∑
h

p(h|v)hjvi −
∑
v

p(v)
∑
h

p(h|v)hjvi

= EP data − EPmodel.
(2.21)

As stated in Hinton (2010), EP data in 2.21 denotes to the expectation sufficient statis-

tics with respect to the training data; this part can be computed in close form. Using

the result of (2.19), we can take vihi as an unbiased sample. However, the second

12

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

term, EPmodel, is intractable because it involves the sum over all possible configura-

tions of the visible and hidden units which are exponentially configurations.

2.5.3 Contrastive Divergence Learning

Introduced Hinton (2002), contrastive divergence learning (CD) is an objective func-

tion that minimises the computational costs when Markov chain Monte Carlo methods

(MCMC) is used with exponential configurations. The idea of using CD with RBMs

is to approximate EPmodel by running a Gibbs sampling in two steps: we first sample

the P (hj = 1, |v) and update all hj, and then, sample P (vi = 1, |h) and update all

vi. A Gibbs chain can run for few iteration and often one Gibbs sampling is sufficient

for EPmodel (Carreira-Perpinan and Hinton, 2005). Note that the estimate of CD is

biased but generally this bias is very small (Fischer and Igel, 2014).

Then, for RBMs with CD, the change in a weight becomes:

Wt = Wt−1 − αt−1
∂ log(P (v, h; θ))

∂θ
, (2.22)

Where α is the learning rate and ∂ log(P (v,h;θ))
∂θ

= EP data − EP gibbsn (Hinton, 2010).

2.6 Deep Boltzmann Machines

Introduced by Salakhutdinov and Hinton (2009), a deep Boltzmann machine is a type

of Markov random field. The structure of a DBM consists of pre-training a stack of

modified RBMs that are then composed to create DBM. All layers form an RBM

with undirected connections, also with no within-layer connections.

13

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

(a) (b)

Figure 2.4: a: Pre-training two RBMs that will compose to create DBM with one
visible layer (bottom) and two hidden layers. b: The graphical model for a DBM
with recognition models: All connections between layers are undirected but with no
within-layer connections.

Using the notation of Salakhutdinov and Hinton (2009), and omitting the bias

term, a DBM with two hidden layer has a joint probability given by:

P (v,h1,h2) =
1

Z(θ)
exp(−E(v,h1,h2; θ)), (2.23)

where vε {0, 1}D is the set of binary visible units; hε {0, 1}D is the set of hidden

units, and the model parameters are θ = {W 1,W 2} , which represent the interaction

between visible-to-hidden units and the interaction between hidden-to-hidden units.

The energy function is given by:

E(v,h1,h2) = −vTW 1h1 − hTW 2h2. (2.24)

When pretraining RBMs to creat DBMs, Salakhutdinov and Hinton (2009) ad-

vocate doubling the inputs and tying the visible-to-hidden weights in for the first

and the last RBMs layer, as shown in figure 2.4a. The modified RBM solves the

14

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

double-counting problem when top-down and bottom-up influences are subsequently

stacked. As in RBMs, the bipartite structure of DBMs makes the units within a

visible or hidden layer conditionally independent given the units of the other layers.

The conditional distributions are derived as :

P (h1j = 1, |v,h2) = σ(
∑
i

W 1
ijvi +

∑
k

Wjkh
2
j), (2.25)

P (vi = 1, |h1) = σ(
∑
j

W 1
ijhj), (2.26)

P (h2k = 1, |h1) = σ(
∑
j

W 2
ikhi). (2.27)

As with RBMs, the derivative of the log-likelihood w.r.t parameter W 1, as shown in

Salakhutdinov and Hinton (2009), is the difference between two expectations :

∂ logP (v, h; θ)

∂W 1
= EP data[vh1T]− EP θ[vh1T]. (2.28)

The first term denotes to the expectation sufficient statistics with respect to the

training data, and the second term denotes to the expectation sufficient statistics

with respect to the model parameters. However, unlike with RBMs, neither of these

expectations are available in close form.

2.6.1 Variational Inference

Salakhutdinov and Hinton (2009) introduced a variational approach for approximat-

ing the EP data. The idea of variational inference is to approximate an intractable

15

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

distribution using another tractable one. In the context of DBMs, the EP data ap-

proximating can be done using mean-field inference. The mean field approximation

is a variational inference, where the approximating distribution Qµ(h|v) is the fully

factorial distribution (Goodfellow et al., 2016).

For a two sets of hidden units, the fully factorial distribution can be defined as:

QMF (h | v;µ) =

F1∏
j=1

F2∏
k=1

q(h1
j)q(h

2
k). (2.29)

where µ = {µ1, µ2} are the mean-field parameters with q(hli = 1) = µli = 1 for l = 1, 2.

µ1
i = σ

(∑
j

W 1
i,jvj +

∑
j

W 2
i,jh

2
j

)
, (2.30)

µ2
i = σ

(∑
j

W 2
i,jh

1
j

)
. (2.31)

To solve these fixed-point equations, we basically iterate (2.30) and (2.31) to minimize

the Kullback-Leibler (KL) divergence between the mean-field posterior Qµ(h|v) and

the P (v, h; θ). For details, see (Salakhutdinov and Hinton, 2009).

Then, Salakhutdinov and Larochelle (2010) proposed a new algorithm to speed

the mean field approach. They use a separate recognition model to initialize the

values of the latent variables in all layers. This approximate algorithm allows the

parameters of all layers to be optimized jointly and to be more practically for large

datasets. The idea is in using a separate set of recognition weights Qrec = {R1, R2}

as shown in Figure 2.4b. During learning, given an input vector, the recognition

parameters are used to provide an initial guess ν = {ν1, ν2} of the fully factorized

approximating distribution: for each training example set. Finally, the recognition

16

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

weights are updated to minimize the Kullback–Leibler (KL) divergence between the

mean-field posterior QMF and the factorial posterior Qrec;

KL(QMF ‖ Qrec) = −
∑
i

µi log νi −
∑
i

(1− µi) log(1− νi) + Const, (2.32)

Using back-propagation, we can efficiently calculate the gradient of this KL with

respect to the recognition weights θrec:

Qrec(h | v;µ) =

F1∏
j=1

F2∏
k=1

qrec(h1
j)q

rec(h2
k), (2.33)

where qrec(hli = 1) = νli for l = 1, 2. For further details see (Salakhutdinov and

Larochelle, 2010).

After training, DBMs can recognize the patterns in the data, and each layer ends

up learning the input structure. In the end, a DBM may require only a small set of

labels to fine-tune and make minor changes to the weights and biases which helps the

model to increase the accuracy (Salakhutdinov and Hinton, 2009).

17

Chapter 3

Methodology

For an efficient pattern recognition, our task is to apply multiple learning algorithms

(to choose among) and to set their parameters (to tune the models).

3.1 Model Assessment and Selection

When we train models, we need to make sure that our trained model has a good

capability to classify a new independent data set. First, the performance of multiple

models is evaluated to choose the final model (model selection). After choosing the

final model, we assess its prediction error on a test data (performance assessment).

Then we compare the performance to other methods.

As the performance evaluation criteria, the widely used error rate measure is

chosen.

error rate = 1− 1

N

N∑
n=1

I(yn = f(xn)), (3.1)

where yn is the true label and f(xj) is the learned classifier.

18

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

3.2 Cross validation

Cross validation (CV) is a well-known technique for estimating prediction error or

what Friedman et al. (2001) called “the expected extra-sample error“. This error can

estimate the model performance on a new data set which assesses that a model is

generalizing the data without overfitting. An over-fitting occurs when the learning

algorithm focuses on the training set mostly and compromises the generalization

ability.

The expected extra-sample error of cross validation can be defined as:

Err = E[L(Y, f̂(X)], (3.2)

which is the average generalization error of a classifier f̂(X) on an independent test

set from the joint distribution of X and Y .

In CV, the data are divided into k subsets, each subset called a fold. the number

of observations in each fold is usually equal. Then the learning algorithm is applied

k times where every time the union of all subsets is used for training except one fold

that is used as a test set (Friedman et al., 2001).

3.3 Stratification

A stratified sampling or stratification is a process of partitioning the data into multiple

homogeneous subsets. One common stratification is: a training set, a validation set,

and a test set. First, the training set to fit the models; then a validation set to

predict the model error and to prevent overfitting; and a test set for assessment of

the generalization error of the final chosen model.

19

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

The choice whether to apply cross validation or stratification relies on the situa-

tion. If we are in a “data rich“ situation, then we can simply apply a stratification

to the data set; otherwise, CV is the better choice (Friedman et al., 2001).

In this paper, we can make the sample size large in the simulation section, and

the real data set used in Chapter 4 is over 100K large (Khosravi and Kabir, 2007).

Accordingly, we will use a validation set without the need of CV.

3.4 Some Issues in Training an Ensemble Tree

3.4.1 Selecting the Number of Trees and Splitters

There are three parameters to tune:

• Numbers of trees (N): assigning too many trees results in an overfitted solution.

The best way to avoid this is by cross validation.

• The Learning rate λ: Also known as the shrinkage parameter, the shrinkage

controls the contribution of each decision tree by scaling its contribution by

0 < λ < 1 factor. This helps to reduce overfitting.

Note that minimal shrinkage λ will need a larger value of N to achieve good

accuracy while greater λ requires less trees .

• Number of Splitters: these control the complexity of the boosted ensemble.

Often a single split works effectively (James et al., 2014).

20

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

3.5 Some Issues in Training Neural Networks and

DBM

3.5.1 Selecting the Number of Hidden Units and Layers

Hidden units enable the model to capture the nonlinearity in the data set, so with

few hidden units, the model may be unable to achieve this. However, without an

appropriate regularization, using more parameters than training cases will typically

cause overfitting (Hinton, 2010).

A reasonable number of hidden units as suggested by Heaton (2008) is somewhere

more than the outputs and no more than twice the number of inputs.

A choice of the number of hidden layers also has no rule but experimentation.

One could start with a single layer, and increase the hidden units until the desirables

performance is achieved. If not, then an additional layer helps with appropriate

regularization.

3.6 Simulated Data

To illustrate the accuracy of classifying a highly dimensional binary data into latent

groups , we generated dataset from a Mixture of Latent Trait Models with Common

Slope Parameters (MCLT) Tang et al. (2015). We simulated two different datasets

with 6000 samples each. Two-dimensional multivariate normal distributions are con-

sidered as latent variables. We took D=20 and 200 to test different levels of data

dimensionally. For each dataset we split the data into three sets: training, validating

and test sets. 50% of the data was selected randomly as a training set, 25% as a

21

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

validation set and the remaining 25% as a test set.

The first dataset consists of two latent variables, the first component has µ = (0, 0)

and the second has µ = (3, 3). We created an ensemble of boosted classification trees.

Because we have only two groups, we will set the maximum number of splitters per

tree to be 4. We will tune the learning rate to minimize the number of learning cycles.

We also added two classification trees: a stump decision tree (i.e., a tree with a single

split), and a deep tree where the minimum observations per node is one observation.

We can conclude the boosted tree gave better performance than single trees. The

selected model has 415 trees and a learning rate=0.1. This model achieves an error

rate of 0.0023 on the test set.

22

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

Figure 3.1: The misclassification rate of MCLT data as the number of trees and splitters

increase.

Moreover, we trained two nnet with one hidden layer. The first nnet had 10 hidden

units and the other had 50 hidden units. The neural network pattern recognition tool

(Demuth et al., 2008) was used to train the two neural networks. The performance

23

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

is measured in term of the misclassification rate on the test set; the 10-hidden-units

achieves an error rate of 0.002; while the 50-hidden-units achieves an error rate of

0.001.

Using the publically available code (Larochelle, 2010), we trained two two-layer

DBMs each consisting of a binary visible layer followed by two binary hidden layers.

The DBM is with 100 units in the first and second hidden layer. The other is with

200 hidden units in both layers. Following Salakhutdinov and Larochelle (2010), the

data is subdivided into 600 mini-batches, and after each mini-batch, the weights are

updated. The RBM for the pretraining requires 50 epochs over the training set. And

a DBM training was done for 150 epochs. Both 200-200 net and 500-500 net had a

perfect classification performance on the test set.

Then, we repeated the experiment with four two-dimensional latent variables.

The first component has mean µ1 = (0, 1)′, the second has mean µ2 = (1, 1)′; the

other two have means µ3 = (3, 3)′ and µ4 = (8, 8)′. We started with an ensemble

of boosted classification trees using AdaboostM2. Our selected model has 239 trees

with a maximum of 81 splitters per tree and Learning Rate = 0.1. This model has

an error rate of 0.2107 on the test set.

24

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

Figure 3.2: The misclassification rate as the number of trees and splitters increase.

25

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

Moreover, we trained three two-layer feed-forward neural networks with 10, 50 and

500 hidden units. The performance is measured in term of the misclassification rate

on the test set; the 10-hidden-units achieves an error rate of 0.204; the 50-hidden-

units achieves an error rate of 0.207; while the 500-hidden-units achieves an error

rate of 0.246. Finally, we tested two two-layers DBMs, one with 200 hidden units in

the two layers and another with 100-100 hidden units. The the 100-100 net achieves

0.1627 while 200-200 hidden units achieves an error rate of 0.1593.

Table 3.1: A summary of the performances of selected models.

Number of groups Method error rate

G Trainig set test set

G= 2 AdaboostM1 0.0027 0.0023

10 hidden units nnet 0 0.002

50 hidden units nnet 0 0.001

100-100 DBM 0 0.001

200-200 DBM 0 0

G= 4 AdaboostM2 0.228 0.2107

10 hidden units nnet 0.101 0.204

100 hidden units nnet 0.109 0.207

500 hidden units nnet 0.092 0.212

100-100 DBM 0.0753 0.1627

200-200 DBM 0.0637 0.1593

In conclusion, with a total of two groups, all methods performed well. However,

with more than two groups the algorithms started to fail. Increasing the number of

26

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

hidden units did improve the accuracy in the first experiment. However, when we

generated 4 groups, we did not notice a significant improvement as the number of

hidden units increases.

27

Chapter 4

Arabic/Persian Handwritten Digits

Recognition

Recognition of HUDA data set (Arabic/Persian handwritten digits) is performed using

DBMs, nnet, and Boosting methods. This is the largest data set of Arabic hand digits

which is created by Khosravi and Kabir (2007). The data set itself consists of a 60000

training set, a 20000 test set, and a 22,352 remaining set. We will train and test our

classifiers using the same training and test subsets, and we will choose the first 22000

digits in the remaining set as a validation set. Each of the images in the data set

contains of a digit (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). In this analysis, we will classify the test

images into one of the 10 digit classes. We will also compare the error rate of the three

classifiers. To analyse the images, these training and test sets were grey-scaled, so all

samples have binary units. Since the images come in different sizes, we normalize and

unify the size of each picture to be 28×28 pixels as a preprocessing step. This means

there are 784 pixels in each picture, and 85 columns, as the first column denotes the

real number the image represents.

28

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

All corresponding computations were performed using Matlab software supported

by SHARCNet, a network of high performance computers. The Wobbie cluster is a

contributed network of 149 computers, and a total of 1456 computing cores. All tests

were performed on Wobbie cluster with 8 to 16 cores.

4.1 Discriminative Performance

4.1.1 Boosting Ensemble

We created an ensemble of classification trees using AdaBoostM2 with specifying that

each tree should be split a maximum of five times. The ensemble achieves a misclas-

sification rate of around 0.08 after accumulating about 150 weak learners. Figure

4.1 shows the behaviour of the cross-validated misclassification rate as the number of

trees in the ensemble increases. Table 4.1 shows the classification performance of the

training set for three different values of tree size and learning rate.

Table 4.1: The error rate of adaBoostM2 with different parameters.

Shrinkage value

.001 0.1 1

25 trees 0.4026 0.2930 0.1559

50 trees 0.3411 0.2505 0.1235

150 trees 0.3392 0.1526 0.0824

With maximum of five splitters, the number of trees N , and λ learning rate that

yields the lowest misclassification rate is N = 150 and λ = 1. Then, a final predictive

model is created based on these parameters and the entire training data. This model

29

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

has an error rate of 0.2183 on the test set.

Figure 4.1: The misclassification rate as the number of trees increases.

4.1.2 Neural Network

The standard network implemented here is a two-layers feed-forward network; the

first, a hidden layer that contains the sigmoid transfer function; while the next layer

(the output layer) is a softmax transfer function. Using neural network pattern recog-

nition tool (Demuth et al., 2008), we train three neural networks: one with 10 hidden

units; another with 50 hidden units, and a third with 500 hidden units. Figure 4.2

shows the performance of the networks. Performance is measured in terms of cross

entropy error of (2.12), and presented in log scale. It rapidly decreases as the number

of hidden units increase. The overall output is very accurate; the 10-hidden-units

achieves an error rate of 0.037; the 50-hidden-units achieves an error rate of 0.014;

while the 500-hidden-units achieves an error rate of 0.0096.

30

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

(a)

(b)

(c)

Figure 4.2: The classification performance of nnet with different hidden units: (a) 10 hidden units,

(b) 50 hidden units, and (c) 500 hidden units. 31

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

4.1.3 Deep Boltzmann Machine

Using the the publically available code (Larochelle, 2010), we trained two two-layer

DBMs each consisting of a binary visible layer followed by two binary hidden layers.

The DBM is with 500 units and 1000 hidden units in the first and second hidden

layer respectively. The other is with 1000 hidden units in both layers. Following

Salakhutdinov and Larochelle (2010), the data is subdivided into 600 mini-batches

and after each mini-batch the weights are updated. For the stochastic approximation

algorithm, we used five-Gibbs updates. Pretraining of DBMs was done with 200

epochs over the training set. The overall DBM training was done for 500 epochs.

Figure 4.3: Two deep Boltzmann machines used in the experiment.

Finally, after fine-tuning, the 500–1000 hidden units DBM achieves an error rate

of 0.0107 on the test set; and the 1000–1000 hidden units DBM achieves an error rate

of 0.009.

DBM with 1000-1000 units outperforms nnet and Boosting in our experiment. To

our knowledge, DBM with 1000-1000 units has the best error rate achieved for the

Huda data set. This is compared to .0381 obtained by K-nearest neighbour (KNN),

0.0097 obtained by Convolutional Neural Networks, and 0.0188 by random forest

32

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

algorithm (Zamani et al., 2015).

4.2 Generative Performance

4.2.1 Generating the Digits using DBMs

As mentioned previously, DBMs end up learning the full input structure. As in

Salakhutdinov and Larochelle (2010), we generated samples from the DBM model

by randomly initializing all binary states and running the Gibbs sampler for 100,000

steps. Figure 4.4 shows two digit-samples; one from our real handwritten digits, and

the other from the generated ones. The images shown are the probabilities of the

visible units given the states of the hidden units. We can see the generated samples

mimic the real handwritten digits.

33

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

(a) Training Samples

(b) 500-1000 DBM

Figure 4.4: Digits samples from the training set and digits generated from DBM.

34

Chapter 5

Conclusions and Future Work

This thesis demonstrated different approaches on a pattern recognition for Ara-

bic/Persian digits. The data set had 60,000 training samples, 22,000 validation sam-

ples and 20,000 test samples. Three supervised classifiers were used: Boosted ensem-

ble trees, an architecture for combining many classifiers. The boosting techniques

implemented here was Adaptive boosting founded by Freund and Schapire (1997).

This algorithm trains learners sequentially based on pseudo-loss errors. The second

method was two-layer feed-forward nueral network. It consists of a hidden layer that

contains the sigmoid transfer function; while the next layer (the output layer) is a

softmax transfer function. The other method was deep Boltzmann machine DBM

(Salakhutdinov and Hinton, 2009), which is an undirected graphical models that con-

sists of composed modified RBMs. The DBM models presented in this paper only

work in the binary visible units,(i.e. variables are valued from 0 to 1) but other types

of unit can be used for dealing with data that is not well-modeled by binary (or

logistic) visible units Hinton (2010).

35

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

On the simulated data, the results showed that all classifiers had similar perfor-

mances, the standard nnet and DBM had zero error rate when the number of groups

were two. On the real data, however, we were able to achieve a very good clas-

sification accuracy with a one layer neural network; a less than 0.01 error rate was

achieved by two hidden layer DBM with 1000 hidden units in each layer. Furthermore,

AdaboostM2 achieved a 0.2183 classification accuracy.

From this analysis, we could conclude that an nnet with one hidden layer was the

more practical algorithm. Compared to DBM, an nnet with 500 hidden units con-

tained around 50% less parameters and performed the second best results. However,

if these digits were to be used in a finical matter such as recognition of cheque de-

posits, any small improvement will have larger benefits, and hence DBMs are helpful

even with their relatively expensive computational cost.

Future work will include using other types of processing the data. Demonstrating

other ensemble methods such as Gentle AdaBoost and linear programming boost

(Schapire and Singer (1999) and Demiriz et al. (2002)). Although Deep Boltzmann

machine was very accurate, investigation to unsupervised learning methods such as

deep belief networks is suggested (Hinton et al., 2006). Furthermore, a combination

of ensemble techniques and feature selection considered in Saeys et al. (2008) could

be applied to performed the boosting tree AdaBoostM2 to achieve faster and more

effective performance.

36

Bibliography

Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. (1985). A learning algorithm for

boltzmann machines. Cognitive science, 9(1), 147–169.

Capinera, J. L. (2008). Encyclopedia of entomology. Springer Science & Business

Media.

Carpenter, G. A. (1989). Neural network models for pattern recognition and associa-

tive memory. Neural Networks, 2(4), 243–257.

Carreira-Perpinan, M. A. and Hinton, G. E. (2005). On contrastive divergence learn-

ing. In Aistats, volume 10, pages 33–40.

Demiriz, A., Bennett, K. P., and Shawe-Taylor, J. (2002). Linear programming boost-

ing via column generation. Machine Learning, 46(1), 225–254.

Demuth, H., Beale, M., and Hagan, M. (2008). Neural network toolbox6. Users

Guide, pages 37–55.

Eibl, G. and Pfeiffer, K.-P. (2005). Multiclass boosting for weak classifiers. Journal

of Machine Learning Research, 6(2), 189–210.

37

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

Fischer, A. and Igel, C. (2014). Training restricted boltzmann machines: An intro-

duction. Pattern Recognition, 47(1), 25–39.

Freund, Y., Schapire, R. E., Singer, Y., and Warmuth, M. K. (1997). Using and

combining predictors that specialize. In Proceedings of the twenty-ninth annual

ACM symposium on Theory of computing, pages 334–343. ACM.

Friedman, J., Hastie, T., and Tibshirani, R. (2001). The elements of statistical learn-

ing, volume 1. Springer series in statistics New York.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. url

http://www.deeplearningbook.org.

Heaton, J. (2008). Introduction to neural networks with Java. Heaton Research, Inc.

Hinton, G. (2010). A practical guide to training restricted boltzmann machines.

Momentum, 9(1), 926.

Hinton, G. E. (2002). Training products of experts by minimizing contrastive diver-

gence. Neural Computation, 14(8), 1771–1800.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for

deep belief nets. Neural Computation, 18(7), 1527–1554.

James, G., Witten, D., and Hastie, T. (2014). An introduction to statistical learning:

With applications in r.

Khosravi, H. and Kabir, E. (2007). Introducing a very large dataset of handwritten

farsi digits and a study on their varieties. Pattern Recognition Letters, 28(10),

1133–1141.

38

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

Larochelle, H. (2010). pretraining, learning and finetuning DBM with recogne-

tion model. urlhttp : //www.cs.toronto.edu/ larocheh/code/dbmrecnet.tar.gz; re-

trieved on May 19th, 2017.

LeCun, Y., Cortes, C., and Burges, C. J. (2010). Mnist handwritten digit database.

AT&T Labs [Online]. Available: http://yann. lecun. com/exdb/mnist, 2.

Quinlan, J. R. (1998). Miniboosting decision trees. Journal of Artificial Intelligence

Research, pages 1–15.

Saeys, Y., Abeel, T., and Van de Peer, Y. (2008). Robust feature selection using

ensemble feature selection techniques. Machine Learning and Knowledge Discovery

in Databases, pages 313–325.

Salakhutdinov, R. and Hinton, G. (2009). Deep boltzmann machines. In Artificial

Intelligence and Statistics, pages 448–455.

Salakhutdinov, R. and Larochelle, H. (2010). Efficient learning of deep boltzmann

machines. In Proceedings of the Thirteenth International Conference on Artificial

Intelligence and Statistics, pages 693–700.

Schapire, R. E. and Singer, Y. (1999). Improved boosting algorithms using confidence-

rated predictions. Machine Learning, 37(3), 297–336.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural

networks, 61, 85–117.

Smolensky, P. (1986). Information processing in dynamical systems: Foundations of

harmony theory; cu-cs-321-86.

39

M.Sc. Thesis - Sarah Ali A. Alattas McMaster - Mathematics and Statistics

Tang, Y., Browne, R. P., and McNicholas, P. D. (2015). Model based clustering

of high-dimensional binary data. Computational Statistics & Data Analysis, 87,

84–101.

Vrbik, I. and McNicholas, P. D. (2015). Fractionally-supervised classification. Journal

of Classification, 32(3), 359–381.

Zamani, Y., Souri, Y., Rashidi, H., and Kasaei, S. (2015). Persian handwritten digit

recognition by random forest and convolutional neural networks. In IEEE Machine

Vision and Image Processing (MVIP), 2015 9th Iranian Conference, pages 37–40.

40

