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AlJstract 


Lateral inhibitory networks (LINs) of neurons are thought to be prominent in 

sensory systems and are known to enhance spatial edges and peaks in their input 

excitation patterns. It is postulated, based on experimental findings, that lateral 

inhibition contributes to central, sub-cortical, auditory processing. Previous compu­

tational LIN models of the central processing of auditory nerve activity were based 

on hishly simplified, non-spiking models of neurons. A more biologically realistic LIN 

modd of spiking neurons was thus developed to investigate the plausibility of such 

networks achieving contrast enhancement and speech feature extraction. 

The model developed is a single-layer, uniform, recurrent LIN structure. Each 

neuron in the LIN is described by a leaky integrate-and-fire model with conductance­

based synaptic input. Input spike instances were obtained from Bruce and colleagues' 

[2003] model of the auditory periphery for synthesized speech stimuli or from a 

Bern)ulli approximation of a Poisson process to represent spontaneous activity from 

the auditory nerve. 

The effect of neural and network parameters on contrast enhancement exhibited 

in the mean spike rates was measured. It was found that the spiking LIN is able to 

achiEve contrast enhancement if the values of the neuronal parameters fall within a 

very specific and narrow range. Furthermore, the spatial edge in the input had to 

be h gh and steep. Compared to non-spiking neuron models, it is quite difficult for 

spiking neurons to achieve contrast enhancement. The spiking LIN was found to be 

capable of making formant frequencies more distinct in the average rate profiles of 

speech stimuli presented at high intensities. However, synchrony of the neural activity 

to the formant frequencies was largely lost. This architecture of spiking neurons is 

therefore unlikely to be how contrast enhancement and speech feature extraction is 

reali:~ed in the central auditory system. 
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CJ1apter 1 

Introduction 

Lateral inhibition occurs when a cell projects a signal to its neighbours that sup­

presEes their activity. Such intercellular signals are known to enhance spatial edges in 

the profiles of cellular activity. Lateral inhibition is thought to exist in many sensory 

systEms. For example, lateral inhibition in the retina is the mechanism by which 

the optical illusion of Mach bands is created (as will be explained in Section 3.1). 

Electrophysiological experiments indicate that the tuning curves1 of neurons in audi­

tory centres of the brain become sharper toward the thalamus. This finding suggests 

that lateral inhibition contributes to auditory signal processing in the brain. The ac­

tion of lateral inhibitory processes on abnormal spontaneous-type neural activity has 

been hypothesized as a mechanism of tinnitus, an auditory condition often referred 

to a~; "ringing of the ears". Computational lateral-inhibitory-network (LIN) models 

were thus developed to investigate the plausibility of a LIN as a central processor of 

spontaneous and speech-driven auditory nerve activity, and as a central mechanism 

of tinnitus. 

1Plots of stimulus intensity required to induce an increase in neural activity versus the acoustic 
stimdus frequency. 
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1.1 Scope of Work 

The ultimate goal of computational modeling of the human auditory system is 

to develop a highly realistic model that can completely account for all empirical 

observations. Obviously, the ultimate goal is an indefinite one that is unrealistic for 

any discrete project. The intention of the endeavour reported here is not to address 

this massive problem, but rather to make a small contribution toward the ultimate 

goal. 

Models of the mammalian auditory periphery such as the Bruce et al. model have 

already been fairly well developed and therefore reflect many of the physiological fea­

tures observed. In contrast, the development of models of the central auditory system 

has been limited because the detailed anatomy and physiology of the central auditory 

system remains largely unknown to date. Nonetheless, computational models based 

on the little that is known of the central auditory system can and have been devel­

oped to evaluate the plausibility of conceptual models. The lateral-inhibitory-network 

models that will be outlined in Section 3.3 were created with the latter intention. 

The objective of this project is to further develop existing auditory LIN models 

in order to assess the plausibility of a more realistic LIN model of spiking neurons 

performing contrast enhancement. The approach taken was to analyze the effect of 

neural and network parameters on contrast enhancement achieved by a LIN model of 

spiking neurons. It was thought that the model presented in this report might serve 

as a preprocessor to a model of the auditory cortex that is currently being developed2
. 

1.2 Contributions of this Work 

The processing of auditory nerve activity by a uniform, single-layer, recurrent LIN 

model of spiking neurons is novel in that the time instances of action potentials is 

accounted for. For neural units, this model employs the biologically realistic leaky 

2 A joint project between the departments of Electrical and Computer Engineering and Psychology 
at McMaster University by Drs. Melissa Dominguez, Suzanna Becker and Ian Bruce. 
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integ~ate-and-fire model of a neuron where previous models used non-spiking models 

of neJral activity. 

The spiking LIN is able to achieve contrast enhancement in the form of a spurious 

peak and valley flanking an edge in neural activity only if the values of the neural pa­

rameters fall within a very specific and narrow range. Furthermore, the spatial edge in 

the input has to be high (on the order of hundreds of spikes per second) and steep for 

contrast enhancement to be observed. A spurious peak of activity at a steep transition 

between normal and impaired regions of hearing is therefore produced when speech 

stimulus is presented to the ear at a high intensity. Compared to non-spiking neuron 

models, it is quite difficult for spiking neurons to achieve contrast enhancement. The 

difficulty arises due to the relatively short duration of the excitatory and inhibitory 

postf;ynaptic potentials (EPSPs and IPSPs) elicited by the input spike trains. As 

such interaction between the EPSPs and IPSPs can only occur if the input spikes 

occur close to one another in time and space. The spatial and temporal frequency 

of s:r:ikes must, therefore, be high. Contrast enhancement improves when the dura­

tion of disturbances in the inhibitory conductance is long, the neurons are densely 

connected and have a short refractory period, and the inhibition is of the hyperpolar­

izing type. Inhibitory interactions are most effective when the threshold potential for 

spiking is set to just allow a single excitatory input spike to induce an output spike 

in the absence of inhibitory input, as the presence of any inhibition will prevent an 

output spike from being generated. This threshold value was around 20 m V above 

the resting potential of the cell, which is consistent with patch clamp data from the 

inferior colliculi of mice [Basta & Vater, 2003] and rats [Koch & Grothe, 2003]. For 

a membrane capacitance of around 8 pF, a membrane time constant and absolute 

refrcdory period on the order of 1 ms are required to produce contrast enhancement. 

The time-course of the disturbance in excitatory conductance due to a single input 

spik1~ must be similar to the membrane time constant and an order of magnitude 

shorter in duration than that of the inhibitory conductance to achieve significant 

contrast enhancement (e.g., 2 ms versus 20 ms, respectively). Non-spiking neurons 

3 
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achieve contrast enhancement more easily because the graded membrane potential is 

used to modulate the inhibitory input, which has a much slower time-course. The 

slower modulation of the inhibition increases the opportunity for interaction between 

the excitatory and inhibitory inputs, thus facilitating contrast enhancement. 

The spiking LIN was found to be capable of enhancing formant frequencies in the 

speech stimuli presented at high intensities. When the stimulus is presented at lower 

intensities, no enhancements were observed. However, the same spiking LIN severely 

degraded the synchrony of the neural activity to the formant frequencies as measured 

by power ratios of synchronous rates. 

A uniform, single-layer structure of spiking neurons is therefore unlikely to be 

the mechanism of contrast enhancement in the central, subcortical auditory system 

if the action potential is the primary information carrier. As such, this work does 

not support the hypothesis of lateral inhibition as a central mechanism of tinnitus. 

Since non-spiking neurons have not been found in the auditory system, the biological 

plausibility of this neural network architecture being the mechanism of contrast en­

hancement is greater if the graded membrane potential of the spiking neurons is the 

primary modulator of lateral inhibitory activity. 

1.3 Thesis Layout 

Following this introduction, Chapter 2 contains a description of the anatomy and 

physiology of neurons and the auditory system, the leaky integrate-and-fire model 

of a neuron and the acoustics of speech sounds. The knowledge presented in that 

chapter is fundamental to the understanding of material presented in later sections. 

Chapter 3 provides context for the development of a LIN of spiking neurons and why 

the results of this work are significant. A detailed description of the model is then 

given in Chapter 4. Simulation results are summarized in Chapter 5, followed by a 

discussion in Chapter 6 that relates these findings to published results of previous 

models. The latter chapter also reveals limitations of this model and proposes the 

4 
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inves·;igation of a modified version of this model. In the final chapter, a summary of 

findings and suggestions for future work conclude this report. 

1.4 Related Publications 

P::trts of this thesis have appeared in the following publications: 

Bruce, I. C., Bajaj, H. S., & Ko, J. (2003). "Lateral-inhibitory-network 
models of tinnitus," in D. D. Feng & E. R. Carson (Eds.), Proceedings of 
the [Jh !FAG Symposium on Modelling and Control in Biomedical Systems 
(pp. 359-363). Oxford, UK: Elsevier Ltd. 

Ko, J. and Bruce, I.C. (2004). "Lateral-Inhibitory-Network Models of the 
Central Processing of Auditory Nerve Activity," in Abstracts of the 2"fh 

ARO Midwinter Research Meeting. 

Ko, J. and Bruce, I.C. (2004). "Lateral-Inhibitory-Network Models of the 
Central Processing of Auditory Nerve Activity," in Abstracts of papers pre­
sented at the 2004 Meeting on Computational and Systems Neuroscience. 

A journal article is currently being prepared for submission to Neural Computa­

tion. 
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Chapter 2 

Background 

2.1 Anatomy and Physiology of a Neuron 

A nerve cell, or neuron, is the fundamental functional unit of the nervous system. 

The properties and function of neurons differ depending on their location in the 

nervous system. As shown in Figure 2.1, a typical neuron consists of four main 

parts: The cell body, or soma, contains the cell nucleus and delineates the input (or 

information-gathering) parts from the output (or information-transmitting) parts of 

the cell; the dendrites are tree-like structures that make connections with other cells 

to collect input; the axon serves as a transmission medium along which electrical 

signals propagate; and, the telodendria are the branches of the end of the axon where 

connections are made with other cells to transmit the electrical signal generated by 

the neuron. 

A neuron processes and transmits information via electric currents. An electric 

current is generated and propagated in neurons by the movement of ions. Ions that 

are commonly found in the cytoplasm and extracellular fluid include Na+, K+, Ca2+ 

and Cl-. At equilibrium, there is a higher concentration of Na+, Ca2+ and Cl-, and 

a lower concentration of K+ outside the cell than inside. An electric potential is 

created across the semi-permeable cell membrane by a difference in electric charge. 

This time varying potential difference is referred to as the transmembrane potential 

6 
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-cell body 

axon 

• 


Figure 2.1: Illustration of a typical neuron. (Reprinted with permission 
from Levine & Miller, 1994, Fig.43.1, p.896.) 

(or simply the membrane potential) and is denoted by Vm ( t). The membrane potential 

that is characteristic of the cell at equilibrium is known as the resting potential, Vrest , 

and is typically around -70 mV (intracellularly negative). When vm(t) becomes more 

positive or negative than Vrest due to ionic movement , the cell is said to be depolarized 

or hyperpolarized, respectively. 

Ions and other molecules may pass through the semi-permeable membrane by 

means of passive or active transport mechanisms. Diffusion, simple or facilitated, is 

one means by which molecules may pass through the cell membrane. Diffusion is 

driven by concentration and electrical potential gradients, thereby making it a form 

of passive transport , not requiring the use of stored energy. Simple diffusion allows 

small, lipid soluble molecules to pass through the lipid bi-layer that makes up the cell 

membrane, governed only by the laws of diffusion. Diffusion may also be facilitated 

by carrier proteins that form pore-like channels through the cell membrane, allowing 

only specific molecules to pass through. The forces that drive diffusion may oppose 

one another. For example, since Cl- is concentrated outside the cell, the concentra­

tion gradient across the cell membrane drives Cl- into the cell. At the same time, the 

usually negative vm(t) tends to push Cl- out of the cell. An equilibrium is reached 

when these two opposing forces are balanced. The electrical potential required to 

exactly counterbalance the concentration gradient for a particular ion is known as 

an equilibrium or reversal potential. Another means by which molecules may pass 

7 




M.A.Sc. Thesis - Jennifer Ko McMaster University- Electrical Engineering 

through the cell membrane is by active transport. This form of transport requires the 

use of stored energy, usually in the form of adenosine triphospate (ATP), to pump 

molecules through the membrane. Active transport proteins, embedded in the cell 

membrane, harness energy from ATP to pump molecules across the cell membrane. 

Active transport allows the movement of molecules against an electrochemical gra­

dient. An example of an active transport protein is the sodium-potassium pump 

present in all cells. This lipoprotein transports three Na+ ions out of the cell for 

every two K+ ions that are transported into the cell. The same lipoprotein acts as 

the enzyme ATPase to release the energy required to cleave K+ from the complex at 

the inner surface of the cell membrane. These sodium-potassium pumps prevent the 

depletion of Na+ from the extracellular fluid and K+ from the intracellular fluid that 

would otherwise result after a neuron's transmission of action potentials (which will 

be described in a paragraph to follow). 

The ability of neurons to generate and transmit electrical signals is facilitated by 

gated ion channels. Ionic channels have only two states: open and closed. In the 

closed state, there is no current flow through the ionic channel. In the open state, a 

few nanoamperes of current flows through the ionic channel. With a constant input, 

the current through a channel switches randomly between the open and closed states. 

There are two kinds of ionic channels: electrically controlled and chemically controlled 

channels. The rate of open and closed states of electrically gated channels varies 

systematically with the membrane potential. Most electrically controlled channels 

remain closed most of the time when vm(t) is close to Vrest, thereby allowing very few 

ions to pass through the cell membrane. The membrane can therefore be thought 

of as having low ionic conductances at rest. However, when vm(t) increases, the 

probability of channels opening increases, thereby allowing many ions to pass and the 

ionic conductances to increase. For chemically gated channels, the probability of the 

channel being open is dependent on the binding of neurotransmitter molecules to the 

channel complex, which is a synaptic receptor. 

The majority of neurons carry information by means of action potentials, which 

8 
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are brief, but dramatic, positive disturbances (thus also referred to as spikes) in 

vm(t) from Vrest that sweeps along the neuron. An action potential is initiated by a 

depolarization to threshold of some part of the neuron (CD of Figure 2.2) , usually in a 

dendrite or the soma. When the threshold potential, Vth, is reached, the probability of 

electrically controlled Na+ channels opening increases, allowing Na+ to flood into the 

cell causing vm(t) to increase rapidly up to a peak on the order of 40 mV (i.e., 110 mV 

above Vrest ). This local current causes adjacent parts of the neuron to depolarize and 

thus a wave of disturbance to travel down the axon. The probability of Na+ channels 

being open decreases shortly after opening, thereby halting the influx of Na+ (CV). 

Simultaneously, many electrically controlled K+ channels open (®), allowing K+ to 

rush out of the cell (®)causing vm(t) to repolarize and sometimes even hyperpolarize 

before returning to Vrest (®). Once an action potential is initiated , the Na+ and K+ 

+ 30mV ; • iIK+ 

N<~+ ~ 
POtdSSI U11"1 (ldl<?~ 

0 

+ 
Acl h.•e SO{) i m 

and_p ota>>i m 
I' 

pumf"· ' I I; 
+ ! I

' "' 
a 

;.I l!-55 mV 

-90mV 

-70 mV -+------:~ 

Q) 

open 

Repola rizatio 
1 

' 

Figure 2.2: Main features of an action potential. The membrane potential is 
shown along the ordinate and time on the abscissa. (Reprinted with permis­
sion from Charand, 2000.) 

channel dynamics dominate the neural activity. Due to the interplay between the 

Na+ and K+ conductances, a refractory period follows the spike. For a short period 

9 
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immediately following the spike, no action potential can be generated. This period 

typically lasts for about one millisecond and is referred to as the absolute refractory 

period. As the ionic conductances return to their resting levels, action potentials can 

be induced only by strong input, i.e., Vth is elevated. This phase following the absolute 

refractory period is known as the relative refractory period and has a duration of a few 

milliseconds. Action potentials are aU-or-nothing events because the electrically gated 

channels of a neuron all have very similar thresholds. Hence, when a depolarization 

causes the conductance of one channel to increase, all the channels in the vicinity 

will undergo the same increase. By the same token, once the threshold is reached, 

all action potentials of a neuron are of nearly the same magnitude, shape and speed, 

regardless of the stimulus strength. 

Since action potentials are nearly identical to one another, they are only the 

medium by which information is conveyed. Spikes can be thought of as forming the 

basis of a binary system, where the digits are 'spike' and 'no spike'. Information, 

such as the intensity of a sensory stimulus, is thus contained in the spike train1 

of a neuron and is encoded in the frequency and timing of the spikes. Frequency 

codes consider the mean frequency or firing rate of a neuron to bear information. 

In contrast, temporal codes consider the precise timing of spikes to be important. 

One type of temporal code encodes information in the synchrony of spikes between 

neurons and/or the stimulus. 

Axons of many types of neurons are covered in an insulating myelin sheath made 

of Schwann cells. Schwann cells are a special kind of glial cell2 
. These Schwann cells 

are wrapped around the axon and are spaced such that a small section of neural 

membrane is left exposed between them. The exposed sections are called nodes of 

Ranvier. This myelin sheath alternating with nodes of Ranvier allows for a much 

faster transmission of spikes down the axon. The speedy transmission occurs because 

the myelin insulation forces the action potential to jump from one node of Ranvier 

to the next (i.e., saltatory conduction) in order to close the current loop. Without 

1 Spike trains are records of spike instances in time. 

2 Glial cells provide neurons with structural and metabolic support. 


10 




M.A.Sc. Thesis - Jennifer Ko McMaster University - Electrical Engineering 

the myelin sheath, an action potential travels down an axon as a wave of disturbance 

due to very short-range, local current loops. Hence, the delay between the location 

of spike generation and the terminating synapse is reduced by the myelin sheath to 

about one tenth of that without the insulation. 

Neurons form connections with each other and with other cells via synapses. There 

are two types of synapses: electrical and chemical. Electrical synapses are the simplest 

type of connection between cells. Also known as gap junctions, electrical synapses 

allow the free flow of ions between the cells, thus making the effective function of 

the cell pair a single electrical unit. Transmission of action potentials across elec­

trical synapses is therefore extremely fast, but they possess little ability to process 

information. Hence, electrical synapses are useful in situations that require extremely 

rapid response, but are not well suited for learning or other types of more complex 

behaviour. A chemical synapse is illustrated in Figure 2.3. This type of synapse dif­

roleased 
neurotransmitter 

Figure 2.3: Illustration of a typical chemical synapse between 
two vertebrate neurons. (Reprinted with permission from Levine 
& Miller, 1994, Fig. 43.10, p.905.) 
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fers from electrical synapses in that the electrical signal is converted into a chemical 

one, then back into a electrical signal in the postsynaptic neuron. When an action 

potential in the presynaptic neuron reaches the axon terminal, it triggers an increase 

in the probability of electrically gated Ca2+ channels opening. This causes an influx of 

Ca2+. The presence of Ca2+ inside the axon terminal causes synaptic vesicles contain­

ing neurotransmitter molecules to fuse with the cell membrane. Neurotransmitters 

are thus released into the synaptic cleft. Some of the neurotransmitters successfully 

diffuse across the synaptic cleft and bind to neurotransmitter receptors on the surface 

of the postsynaptic cell membrane. The type of neurotransmitter dictates whether 

the synapse is excitatory or inhibitory. A common neurotransmitter of inhibitory 

synapses in the brain is 1-aminobutyric acid (GABA), while glutamate is a com­

mon excitatory neurotransmitter. A neurotransmitter-receptor complex triggers the 

opening of chemically gated channels to allow specific ions to flood the postsynaptic 

neuron resulting in a local disturbance in current through the cell membrane. The 

neurotransmitters remaining in the synaptic cleft are either deactivated by enzymes 

or transported back into the presynaptic terminal to be reused, thus clearing the 

synaptic cleft for the next spike. 

Synaptic activity causes a local disturbance in the ionic channel conductances 

and therefore the current through the postsynaptic membrane. If the current is 

inward and the cell is thus depolarized, the disturbance is called an excitatory post­

synaptic current (EPSC). Conversely, if the current is outward, the neuron is said to 

have an inhibitory postsynaptic current (IPSC). If the ion gated by the inhibitory 

neurotransmitter-receptor complex has an equilibrium potential that is more nega­

tive than the resting potential, then the IPSC causes the membrane to hyperpolarize. 

However, if the ion has an equilibrium potential that is very close to Vrest, then vm(t) 

does not hyperpolarize, but remains near Vrest· The latter case is known as shunting 

or silent inhibition. In both cases, the neuron is inhibited from firing an action po­

tential by keeping its membrane potential away from its spiking threshold potential. 

An example of hyperpolarizing inhibition is the operation of the GABAB receptor. 
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This receptor controls K+ -selective channels. When activated, K+ channels tend to 

open. thereby increasing the membrane conductance and causing an IPSC. Because 

the reversal potential of K+ is lower than the resting potential of the membrane, 

hype:~polarization occurs as K+ leaves the cell. An example of shunting inhibition is 

the cperation of the GABAA receptor. When in complex form, Cl- channels tend 

to open. However, because the reversal potential of Cl- is very close to the resting 

potential of the membrane, hyperpolarization does not occur (hence the name silent 

inhibition). In the presence of excitatory activity, the increase in Cl- conductance 

facilitates the shunting of excitatory currents, thereby greatly reducing the excita­

tory postsynaptic potential. Postsynaptic potentials from numerous synapses on a 

dendrite are integrated by the neuron. 

Neuromodulators are compounds that regulate synaptic activity by modulating 

neurotransmitter synthesis, storage or release. They do so by altering the ability of 

neurotransmitters to bind to their receptors or by altering the fate of neurotrans­

mitters in the axon terminal or in the synaptic cleft. Neuromodulators thus govern 

the Efficacy of synapses. Changes in the efficacy of synapses is called plasticity and 

facilitates complex behaviour such as learning and memory. 

2.2 Leaky Integrate-and-Fire Model of a Neuron 

The idea of the leaky integrate-and-fire model was first introduced by Lapicque 

in tl:.e early 1900s despite a lack of understanding, at the time, of the mechanism 

of m~ural activity. Lapicque's model [1907] (described in detail by Tuckwell [1988]) 

is a simple electric circuit consisting of a capacitor in parallel with a resistor and 

battery to represent the membrane capacitance, the leakage resistance across the cell 

membrane and the resting potential ( C, R and Vrest in Figure 2.4). Although this 

simple circuit cannot generate action potentials, Lapicque postulated that an action 

potential would bn generated when the capacitor was charged to a certain threshold 
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potential. Once the threshold was reached and the action potential generated, theca­

pacitor would discharge and thereby reset the membrane potential to its resting state. 

Modern versions of the leaky integrate-and-fire model do exactly that to produce ac­

tion potentials. Another non-linear feature that is often incorporated into the model 

is the refractory period [Stein, 1967; Jacket al., 1975]. Although Hodgkin and Hux­

ley later came up with a much more complex model that explained the mechanism of 

neural activity [Hodgkin & Huxley, 1952], the leaky integrate-and-fire neuron remains 

more widely used in neural network models because it is fairly simple, yet it captures 

the main features of a neuron's function, including the action potential. Stein [1967] 

has shown that the simple leaky integrate-and-fire neuron can approximate features 

of spike trains, generated by empirical means or by complex models such as that of 

Hodgkin and Huxley, that are crucial to neural coding (e.g., the frequency-current 

relation). 

+ 

c 

rL---------L---,---~------~ 

Figure 2.4: Circuit Diagram of the leaky integrate-and-fire 
model. Iin, R, C, and Vrest represent the injection current, 
leakage resistance, membrane capacitance and resting po­
tential, respectively. The switch labelled tref is used to 
implement the refractory period. 

The operation of the leaky integrate-and-fire model can be divided into two parts: 

linear and non-linear. The linear portion involves all of the circuit elements other 

than the switch. Using basic circuit theory, one can derive the following differential 
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equation for the linear operation governing all subthreshold activity of the model: 

dvm(t) 
T dt + Vm = Iin(t) · R + Vrest (2.1) 

The non-linear operation of the model is represented by the switch in the electric 

circmt. Once the membrane potential, vm(t), reaches a threshold potential, Vth(t), 

the nodel's function that immediately follows is non-linear. As soon as the mem­

brane potential reaches the threshold potential, an instantaneous spike of arbitrary 

heigU above the threshold potential is issued to represent the occurrence of an action 

potential. Immediately following the spike, the membrane potential is held at the 

resting potential for the duration of the absolute refractory period, tref. 

The leaky integrate-and-fire model is a point model because the whole cell is 

reprEsented by one circuit. A limitation of this type of model is that there is no 

reprEsentation for position of input or delay of signal transmission across the neuron. 

As a result, interaction between inputs at various locations on the cell membrane 

cannot be simulated. However, due to the high speed of transmission along myelinated 

axons, the inherent inability of the integrate-and-fire models to simulate delays is of 

little consequence in many applications. 

2.3 The Auditory System 

The auditory system can be divided into two main sections: peripheral and central. 

The peripheral auditory system is the ear, from the pinna to the auditory nerve (shown 

in Figure 2.5). The auditory nerve provides the only input from the ears to the central 

auditory pathways of the brain. Hearing is a mechanoreceptive sense in that the ear 

responds to mechanical vibrations of air. The intensity of these mechanical vibrations 

of the air are quantified by a relative measure of the air pressure waves. This measure 

is known as the sound pressure level (SPL) that has units of dB and is given by 

Equation 2.2, where Pis the impinging sound pressure in units of Pa and 2 x 10-5 Pa 

is the reference. The reference is associated with the minimum pressure fluctuation 
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that is detectible by the ear for vibrations of 1000 Hz. 

Lp = 20logw (2 x 1~-5 Pa) (2.2) 

Sound pressure waves travelling through the air are amplified in the ear canal. 

These sound pressure waves cause the tympanic membrane to vibrate , which in turn 

moves the middle ear bones. These bones are attached to the oval window. The oval 

window then induces pressure waves through the fluid that fills the cochlea of the in­

ner ear. The cochlea has three tubes that are coiled in parallel: the vestibular, central 

auditory 
tube ­ - T---:or-'= 

pharynx I 

D outerear 

CJ middle 

inner ear 

Figure 2.5: General anatomy of the human ear - the peripheral auditory 
system. (Reprinted with permission from Levine & Miller, 1994, Fig. 44.16 , 
p.936.) 

and tympanic canals. The central and tympanic canals are separated by the basilar 

membrane. As illustrated in Figure 2.6 , the organ of corti that sits on the basilar 

membrane houses the inner and outer hair cells (IHCs and OHCs) that transduce the 

mechanical signal into neural activity. When the basilar membrane vibrates, it causes 

the stereocilia to brush against the tectorial membrane and thus bend. The bend­

ing of the stereocilia causes K+ channels within the stereocilia to open. K+ is then 
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Figure 2.6: Illustration of a trans-section through an unwound 
cochlea, showing the anatomy of the organ of Corti. (Reprinted 
from Junqueira & Carneiro, 2002 , Fig. 24-24, p.486.) 
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able to flood the hair cell via the stereocilia because the extracellular fluid potential 

is approximately +80 m V while the intracellular potential is approximately -50 m V. 

This large potential difference across the cell membrane drives diffusion of K+ into the 

cell, thus depolarizing the cell. This depolarization is proportional to the intensity of 

the stimulus. Depolarization of the hair cell activates electrically gated ionic channels 

that allow K+ to leave the cell and Ca2+ to enter the cell. The increased concentration 

of Ca2+ within the cell then triggers the release of neurotransmitters into the synaptic 

cleft. The amount of neurotransmitter released is proportional to the depolarization 

of the hair cell and thus also proportional to the stimulus. IHCs synapse with audi­

tory nerve fibres. Hence, the main function of the IHCs is to transduce the acoustic 

signal into an electrochemical signal that is transmitted to the central auditory sys­

tem. Very few auditory nerve fibres synapse with ORCs. ORCs have an electromotile 

response that causes the active amplification of sounds by increasing the sensitivity 

and frequency selectivity of the basilar membrane. When depolarized, ORCs shorten, 

and when hyperpolarized, they contract, thereby pushing the tectorial membrane to 

generate vibrations or low-level sounds that influence the mechanical properties of the 

basilar membrane. The sounds emitted are called otoacoustic emissions ( OAEs) and 

can be recorded by extremely sensitive microphones placed in the ear canal. Both 

IHCs and ORCs are organized in tonotopic order along the basilar membrane. In 

other words, hair cells that transduce high frequency components are located toward 

the base (near the oval window) of the basilar membrane, while hair cells that trans­

duce low frequency components are found toward the apex (deep within the coil) 

as illustrated in Figure 2. 7. In mammals, this tonotopic ordering is established by 

the physical properties of the basilar membrane. The basilar membrane is narrower, 

thinner and stiffer at its base than towards its apex. This means that the resonant 

frequency of the membrane changes from the base to the apex. The basal end of 

the basilar membrane vibrates with the greatest amplitude at high frequencies. High 

frequency vibrations die out quickly as they travel beyond their resonant location to­

ward the apex. Conversely, low frequency vibrations grow in amplitude as they travel 
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along t he basilar membrane unt il they peak near t he apex. Each of t he auditory nerve 

fibres is associated with t he same frequency components as t hose t ransduced by its 

convergent hair cells. The auditory nerve processes the information it receives from 

the hair cells in order to t ransmit t he sensory information efficiently to the central 

auditory system in t he brain. 

Semicircular 
/Canal 

Stapes 
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Auditory Nerve 
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Figure 2. 7: Illustration of how the tonotopic map is established by 
the basilar membrane. (Reprinted from Sachs et al. , 2002 , Fig. lB, 
p.l 58.) 

The frequency response of a neuron is reflected in a t uning curve - a plot of 

threshold for tonal stimuli versus frequency of t he tone, illustrat ed in Figure 2.8. A 

common measure used to quant ify t he sharpness of the tip of the t uning curve is t he 

Q10 index, which is t he ratio of t he characteristic frequency to t he bandwidt h 10 dB 

above the lowest t hreshold. The frequency of maximal sensitivity (i.e., the t ip of the 

t uning curve) defines the characteristic frequency ( CF) of t he neuron. 

The main nuclei of t he cent ral auditory system are shown in Figure 2.9. The 

tonotopic map is maintained t hroughout t he cent ral auditory system all the way up to 

the auditory cortex. The auditory nerve t ransmits t he neural signal into t he brainstem 

where t he auditory neurons synapse with t he cochlear nucleus. Information from the 
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Figure 2.8: A tuning curve shows the sensitivity (represented 
as a threshold to tonal stimuli) of a neuron as a function of fre­
quency. The tip of the tuning curve defines the characteristic or 
best frequency (CF= BF) of the neuron. The Q10 index quan­
tifies the sharpness of the tuning curve. (Reprinted from Sachs 
et al., 2002, Fig.2A, p.159.) 
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Lateral lemniscus 

Corpus 
callosum 

Nuclei of 
lateral lemniscus 

Superior olivary 
complex 

Figure 2.9: Diagram outlining the major central auditory pathways. 
(Reprinted from Ehret & Romand, 1997, Fig.4.2.) 
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auditory nerve is split into three streams: one going to the dorsal cochlear nucleus 

(DCN), another going to the anterior ventral cochlear nucleus (AVCN) and a third 

to the posterior ventral cochlear nucleus (PVCN). Auditory nerve fibres whose target 

cells are in the AVCN have very large axon terminals that form tight synapses. These 

synapses allow the preservation of timing of spikes to the order of microseconds. It is 

believed that this pathway conducts timing-critical, binaural processing tasks such as 

spatial localization. The AVCN provides input to the superior olivary complex (SOC). 

From the SOC, this binaural pathway projects to the inferior colliculus (IC) via the 

lateral lemniscus (LL). The PVCN is part of the intermediate brainstem pathway 

whose functionality we know very little about. The intermediate brainstem pathway 

starts at the PVCN, connects to the periolivary nuclei, then to the nuclei of the LL 

and finally to the IC. The monoaural contralateral pathway starts at the DCN. The 

complex neural circuitry through the DCN includes descending input and allows fine 

frequency discrimination. It is therefore possible that this pathway contributes to the 

perception of the quality of sound. Furthermore, the DCN integrates vestibular and 

somatosensory information into its representation of spectral cues from the auditory 

stimulus. It has therefore been hypothesized that the DCN contributes to sound 

source localization by correcting the spectral cues for the position and movement 

of the head and pinnae and for eliminating neural activity related to self-generated 

noise [Oertel & Young, 2004]. The DCN provides direct input to the IC via the LL. 

All three auditory pathways, along with other sensory pathways, provide input 

to the IC where signals are integrated and routed. The IC's sensitivity to spectral 

changes could theoretically explain neural responses to spatia-temporal patterns that 

would be necessary in speech perception. The IC is known to play a key role in spatial 

localization and provides input to the thalamus. The primary nucleus responsible 

for auditory function in the thalamus is the medial geniculate body (MGB). The 

thalamus serves as a relay site to the cortex and is also capable of performing intensity 

and duration comparisons. The MGB projects to the auditory cortex where several 

tonotopic and nontonotopic maps exist in parallel, each performing a specific function 
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in th~ demodulation of sounds. The auditory cortex is part of the temporal lobe and is 

functionally divided into a number of parts. The tonotopic cortex has four divisions: 

the primary auditory cortex (AI), the anterior auditory field (AAF), the posterior 

auditory field, and the ventral posterior auditory field. The nontonotopic cortex 

includes the secondary auditory cortex (All) that receives input from both AI and 

MGB. The auditory cortex is important in the discrimination of sound patterns and 

the hterpretation of the meaning or significance of the sounds heard. 

The signals from both ears are transmitted through central auditory pathways of 

both sides of the brainstem (i.e., bilateral transmission of both signals). However, 

tram:mission through the contralateral pathway is predominant. Cross-overs between 

sides occur at the trapezoid body, the commissure of probst, and the inferior collicular 

commissure. Due to the redundancy in transmission, the source of hearing impairment 

is rarely in the central auditory system. 

lpon briefly reviewing the literature, it becomes quite obvious that relatively little 

is known about the central auditory pathways compared to the auditory periphery. 

Currently, a lot of experimental research is actively being conducted to improve our 

understanding of the central auditory system. However, due to the complexity and 

after inaccessibility of the brain, progress is slower in this area than for peripheral 

systEms. 

2.4 Speech Sounds 

Speech sounds may be classified in a number of ways, one of which is by the type 

of source. If periodic puffs of air originate from the source, the speech sound is said 

to be voiced. Otherwise, the speech sound is called unvoiced. Subclasses of speech 

sounds include: fricatives, which are generated by a constriction in the oral tract 

that causes a noisy source; plosives, which have an impulsive source in the oral tract; 

and, whispers, whch result from a partially closed glottis causing a noisy source. 

Examples of voiced sounds are vowels and.examples of unvoiced sounds are /f/ (a 
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fricative), /h/ (a whisper), and /P/ (a plosive). 

For voiced sounds, pitch is determined by the period of the puffs of air from 

the source. The inverse of the pitch period is the first harmonic and fundamental 

frequency, F0 . Peaks in the spectral envelope are called formants. These formant 

frequencies are the resonant frequencies of the vocal tract. Formant frequencies are 

important features of speech because they convey information about the vocal tract 

configuration over time and allow us to distinguish between voiced sounds. 

There are a number of ways to analyze speech sounds. One method is to capture 

the time-varying frequency content of the sound in order to observe the spectral 

energy shifts. The spectrogram is just such a graphical display of the magnitude of 

the time-varying spectral characteristics. A spectrogram is the magnitude squared of 

the short-time Fourier transform of the sound waveform, p(n), as given by: 

200 

w[n, T]p[n]e-jwn (2.3)S(w, T) = ~ 
n=-inf 

The short-time Fourier transform involves taking the Fourier transform of pieces of 

the waveform. The waveform is broken into pieces by a sliding window, w[n, T], 

that is tapered at its ends (such as the Hamming window used in this project) to 

prevent distortion of the spectrum. A short window results in a wide band spectrogram 

characterized by fine temporal resolution and poor spectral resolution. In contrast, a 

narrowband spectrogram can be created with a longer window which results in poor 

temporal resolution and fine spectral resolution. 

For more detailed information on speech production, classification and signal pro­

cessing, the reader is referred to Quatieri's book [2002]. 
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Cl1apter 3 

Motivation 

3.1 Lateral Inhibition in Sensory Systems 

Knowledge of inhibitory processes in the nervous system has been documented 

since the 1600s: In 1662, Descartes described how antagonistic muscles facilitate limb 

moVE~ment1 in his work entitled De Homine. Ernst Mach, an Austrian physicist, 

philcsopher and psychologist, was probably the first to describe lateral inhibition in 

a ser.sory system, namely Mach bands in vision2 . Mach first noticed this phenomena 

by c:1ance in his experiments involving colour wheels (rotating discs with coloured 

secti)ns) [Mach, 1865]. When a disc with various patterns of black and white sec­

tiom painted on it is spun, the patterns blur or fuse to form annular rings of different 

shades of grey. Mach observed that for ring patterns that possessed a darker ring 

toward the outer edge of the disc and a bright centre with a gradient between these 

two 1reas is perceived to also have a brighter ring between the white centre and the 

gradient and a darker ring between the darker ring and the gradient. A stylized 

example of this phenomenon is shown in Figure 3.1. Mach found that the brighter 

1To move a limb, one muscle must contract while the antagonistic muscle must relax. 
2A comprehensive review of Mach's life and work on Mach bands can be found in a book written 

by R1tliff [1965]. This book contains the English translations of Mach's original papers. 
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and darker bands were perceived regardless of how the spatial distribut ion of illumi­

nation was generated (e.g., by fusion of moving patterns or shadow patterns). He 

also found that t he bright and dark bands are not symmetrical. As is evident in 

Figure 3.2, the overshoot is usually much larger in magnitude than the undershoot , 

especially when there is a large stimulus gradient and a sudden step [Ratliff, 1965; 

von Bekesy, 1967a]. Although Mach bands occur in all patterns of illumination , they 

ligh :\t r --------­
~ - - __ _ -__ - __ __ __ __ _ __ ______ .. __ - __- - - - - - - - - --!I 

1/
darkL________________________________ 

Distance from left edge 

Figure 3.1: A black and white visual stimulus is shown in the 
upper half of this diagram. In the lower plot, the solid black line 
traces the actual brightness of the stimulus, while the dashed 
line indicates the perceived brightness. Note that the ampli­
tudes of brightness are arbitrary and should not be compared. 
(Reprinted from Kaiser, 2002). 

are more pronounced in simple, rectilinear patterns. Despite his inability to study 

neural events directly at t he time, Mach was able to deduce from the results of his 

psychophysical experiments that the phenomenon must be attributed to reciprocal 

inhibition of neighbouring units - lateral inhibition - in the retina. Mach bands result 

from contrast enhancement achieved by lateral inhibit ion in the retina as long as the 
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inhibltory influence has some spatial extent. Lateral inhibition results in contrast 

enhancement because the inhibitory influence from neighbouring regions diminishes 

as exdtation to these regions decreases. In vision, at the boundary between brightly 

and darkly illuminated regions, the processing unit on the bright side of the edge 

receives less inhibition from its neighbours that lie in the dark region than do other 

units that are completely surrounded by equally illuminated units in the bright field. 

Similarly, units on the dark side of the edge receive more inhibition from their neigh­

boum in the bright region. These differential effects result in a peak and a valley in 

the r~sponse of the units on the bright and dark sides of the boundary, even though 

no such maximum or minimum occurs in the stimulus. As shown in Figure 3.2, if 

the htensity of illumination in the bright and dark regions is held constant as the 

width of the gradient between the two regions is varied, it is evident that the steeper 

the gradient, the higher and deeper the peak and valley. To explain the sharpness 

of irr.ages perceived, Mach suggested that a by-product of contrast enhancement is 

sharpening of edges [Mach, 1865]. Inhibition is a negative process in that informa­

tion [s suppressed as it is transmitted and any information lost cannot be recovered. 

Hownver, by selectively discarding less significant information via inhibition, the more 

signiJ.cant information that remains appears enhanced [Hartline, 1974]. 

It was not until three-quarters of a century later that electrophysiological mea­

surement techniques became developed enough to discover inhibitory interaction in 

the retina3 of the eye. It was largely the work of Hartline and colleagues [1949] that 

renewed interest in sensory inhibition, for which he won a Nobel Prize [Hartline, 

19671. Their work was focused on the optic nerve of the lateral eye of the Limulus 

polyphemus (the horseshoe crab) because it is much simpler than that of vertebrates. 

Using electrophysiological recordings of action potentials, they found that sensory 

elements in this eye, called ommatidia, inhibited each other. The magnitude of the 

inhibition was affected positively by: increased intensity of the inhibiting illumina­

tion, increased area (or number of ommatidia) covered by the inhibiting illumination, 

3The retina lines the dorsal, interior wall of the eye and is responsible for transducing lightwaves 
into neural signals. 
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Figure 3.2: The effect of the boundary gradient width on the 
height and depth of Mach band peaks and valleys. The X-axis 
represents the spatial location of the neuron, the Y-axis repre­
sents the perceived illumination, and the Z-axis represents the 
trials with varying gradient widths. (Reprinted from Ratliff, 
1965, Fig. 2.13, p.59.) 

28 




M.A.Sc. Thesis- Jennifer Ko McMaster University- Electrical Engineering 

and by the proximity of the illuminated inhibiting ommatidia [Hartline et al., 1956]. 

They also found that the mechanism of the inhibition was a repolarization of the 

membrane potential that was depolarized by illumination [Tomita, 1958]. Hartline 

and Ratliff [1958] deduced from their experiments that inhibitory influences on a 

single ommatidium combine by simple addition according to: 

n 

rp = ep- L Kpj(rj- r~j) (3.4) 
j=l 
jfp 

wher3 rp is the response of an optic nerve fibre, measured by frequency of discharges in 

its axon [spikes/s]; ep is the excitation that the ommatidium would receive in response 

to bE,ing the only receptor illuminated; Kpj is the inhibitory coefficient representing 

the inhibitory influence of neuron j on neuron p; rj is the response of neuron j; 

and, r~j is the threshold frequency that must be exceeded before a receptor can 

exhibit inhibition. Similar results were found in the retina of other animals such as 

frogs [Barlow, 1953] and cats [Kuffi.er, 1953]. 

It is now known how Mach bands arise from lateral inhibitory mechanisms of 

the retina. The four classes of interneurons in the retina are: horizontal, bipolar, 

amacrine and ganglion cells. Photoreceptors (rods and cones) synapse with bipolar 

cells and horizontal cells, as illustrated in Figure 3.3. As their name suggests, hori­

zontal cells transmit signals horizontally to bipolar cells. The bipolar cells transmit 

signals vertically from photoreceptors and horizontal cells to ganglion and amacrine 

cells. Amacrine cells transmit signals both horizontally and vertically between other 

interneurons. Finally, the ganglion cells transmit the pre-processed signal to the brain 

via the optic nerve. It should be noted that the ganglion cell is the first level in the 

visual system to transmit information by action potentials. All other neurons in the 

retina transmit signals by electrotonic conduction. The significance of electrotonic 

conduction is that it allows transmission of a graded signal (instead of a binary, aU­

or-nothing train cf action potentials). Thus when photoreceptors hyperpolarize in 

resp<)nse to light, the hyperpolarization is proportional to the intensity of impinging 
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Pigment layer 
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Figure 3.3: Neural organization of the retina. The periph­
eral area shown on the left side of the illustration contains 
both cones and rods. The foveal area only contains cones 
and is illustrated on right side. (Reprinted from Guyton 
& Hall, 2000, Fig. 50-11 , p.586 with permission from Else­
vier.) 
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light. This graded signal is then transmitted through the neural network of the retina 

to the ganglion cell. The ganglion cell then converts the graded signal into a neural 

code of action potentials for long-haul transmission to the brain. The interneurons 

of th~ retina are the only non-spiking neurons known to exist in the mammalian ner­

vous system. For a comprehensive description of the anatomy and physiology of the 

eye, ;he reader is referred to standard texts such as those by Levine & Miller [1994]; 

Guyton & Hall [2000]. 

The complexity of the neural circuitry in the retina facilitates some signal pro­

cessing in the peripheral visual system, including edge-detection or contrast enhance­

ment. Horizontal cells are all inhibitory, i.e., when they are excited, they produce 

an irhibitory effect on postsynaptic neurons to which they connect. An example of 

an irhibitory neural arrangement is illustrated in Figure 3.4. When light falls on a 

photl)receptor, the photoreceptor excites a bipolar cell. The bipolar cell or photore­

ceptor then excites the horizontal cells connected to it. These horizontal cells inhibit 

the Edivity of neighbouring bipolar cells, which in turn lowers the firing rate of the 

ganglion cells associated with those neighbouring bipolar cells. These inhibitory hor­

izontal connections provide the mechanism for lateral inhibition in vision, exactly as 

Mach had deduced. 

Von Bekesy, who is best known for winning the 1961 Nobel Prize in medicine for 

his discovery of the workings of the basilar membrane [von Bekesy, 1961], also ex­

tensively studied lateral inhibition in sensory systems. He classified lateral inhibitory 

architectures into four types: simple, forward, backward and central. These architec­

tureE are shown in Figure 3.5. Von Bekesy demonstrated by means of psychophysical 

expe:iments that Mach band-like contrast enhancement exists in sense organs other 

than the eye (e.g., skin sensation, hearing, and taste) [von Bekesy, 1967b,a]. Others 

have also attempted to demonstrate the existence of lateral inhibition in hearing via 

psychophysical experiments (e.g. Houtgast [1972]), but the most convincing evidence 

is provided by Katsuki and Suga [1995]. Using electrophysiological techniques, Kat­

suki and colleagues [1958; 1959] measured frequency-tuning curves of single neurons 
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Figure 3.4: An illustration of a typical arrangement 
of cells in the peripheral area. Excitatory synapses ex­
ist between the rods and the horizontal cells (H), while 
inhibitory synapses connect horizontal cells and bipo­
lar cells (B). The graded signal from the bipolar cell 
is then converted to action potentials transmitted by 
the ganglion cell (G). (Reprinted from Guyton & Hall, 
2000 , Fig. 50-14, p.589 with permission from Elsevier.) 
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A 8 c D 


inhibited 

Figure 3.5: Illustration of four types of lateral inhibitory archi­
tectures. Configuration A is the simple type of lateral inhibition, 
where a neuron inhibits its neighbour directly. B the forward 
type, C the backward type and D the central type. (Reprinted 
from von BekE§sy, 1967b, Fig. 24, p.41.) 

at different levels of the auditory system of cats. They found that the frequency­

tuning curves became sharper toward higher centres of the central auditory system. 

Figure 3.6 shows a comparison of tuning curves at the level of the auditory nerve 

and the IC. It is quite obvious from the plots that the tuning curves of neurons from 

the auditory nerve have much wider tails (or skirts as Suga calls them), which means 

that the neurons are not sharply tuned for high intensity stimuli. The tuning curves 

of neurons in the IC are pencil-shaped and thus sharper for high intensity stimuli. 

Suga and his colleagues have called such a pencil-shaped frequency-tuning curve a 

'level-tolerant' sharp frequency tuning curve. Some people have argued that these 

results do not show that tuning curves are sharpened since the Q10 values remain the 

same. In rebuttal, Suga suggests that the Q10 measure is a poor indication of tuning 

curve sharpness as it does not account for a neuron 's response to high intensity stim­

uli. The sharpening of tuning curves is commensurate with observations that animals 

(including humans) are able to perform fine frequency discrimination even at high 
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Figure 3.6: Frequency-tuning curves of four auditory nerve 
fibres (A) and four IC neurons (B) of cats. (Reprinted 
from Suga, 1995, Fig. 2, p.289.) 
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sound pressure levels (SPLs). Such fine frequency discrimination cannot be explained 

by the tuning curves at the level of the auditory nerve alone. The tuning curves were 

sharpest at the MGB, but were broad in the auditory cortex. Frequency discrimina­

tion must therefore be made level-tolerant by some subcortical mechanism. Like von 

Beke:3y, Katsuki, Suga and their coworkers believe that this subcortical mechanism 

is lateral inhibition [Katsuki et al., 1959; Suga, 1995]. Results from Yang and col­

leagues support the latter hypothesis. Yang and colleagues [1992] used bicuculine, an 

antagonist specific to the inhibitory neurotransmitter, GABA, to show that tuning 

curves in the IC of the mustache bat broaden with disinhibition. It may then be 

inferred that inhibition exists in the IC and plays a key role in the sharpening of tun­

ing curves. However, the architecture of the inhibitory neural circuits that produces 

such sharpening of tuning curves is unknown. Lateral inhibition or on-CF inhibition4 

coulc. theoretically produce these results. Neurophysiologic studies suggest the exis­

tence of on-CF inhibition at the level of the cochlear nucleus [Caspary et al., 1994] 

and lC [Palombi & Caspary, 1996] in chinchilla. The findings of Yang and colleagues 

are in agreement with Gerken's [1996] conclusion from his electrophysiological studies 

on cats that lateral inhibition occurs in the vicinity of the IC. This conclusion was 

based on results that showed hyper-responsiveness of the cochlear nucleus, SOC, IC 

and MBG in normal hearing cats in the presence of a sustained sound and in cats 

with induced hearing impairment. The higher the nucleus in the auditory system up 

to the IC, the greater the hyper-responsiveness. 

Although the neural circuitry that gives rise to the experimental observations 

described above is not precisely known, there appears to be convincing evidence for 

the existence of LINs in the central auditory system. LIN models would provide 

a means of evaluating the plausibility of various network configurations and their 

functions in the auditory system. 

40n-CF inhibition is said to occur when a neuron's inhibitory field is aligned with its target. 
On-CF inhibitory tuning curves have elevated tips and may have slightly broader tails compared to 
the eJCcitatory tuning curves of the target cells. 
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3.2 Tinnitus 

Tinnitus is an auditory disorder where a sound is perceived in the absence of a 

corresponding acoustic stimulus and is often referred to as ringing of the ears. For a 

more comprehensive overview of tinnitus the reader is referred to the recent review 

written by Lockwood and colleagues [2002]. According to the Tinnitus Association 

of Canada, 360,000 Canadians suffer from tinnitus. A broad range of sounds may 

be perceived by tinnitus sufferers. These sounds range from tones to white noise. 

Tinnitus sufferers can often modulate the phantom sounds somatically [Levine et al., 

2003; Cacace, 2003], such as by changing their direction of gaze or clenching their 

jaw [Pinchoff et al., 1998]. Tinnitus can be acute or chronic in nature. Acute tinnitus 

has sudden onset and is a temporary condition. Chronic tinnitus usually has a gradual 

onset and is a permanent condition. In some cases, tinnitus can be very debilitating, 

yet treatment is severely limited due to a lack of understanding of the underlying 

mechanisms. However, considering that our understanding of tinnitus is still in its 

early stages and the increase in public recognition the condition has received [Geary, 

1998], there is hope that with greater knowledge of the underlying mechanisms of 

tinnitus, effective treatments will arise. The work reported in this thesis aims to 

contribute to this end. 

Animal behavioural models have been developed to show that tinnitus can be 

induced and tested for in human and animal subjects. Kaltenbach [2000] provides 

an excellent review of these models. Some of these models involve training animal 

subjects to indicate by some identifiable behaviour that they hear a conditioning 

sound. When this behaviour is then exhibited in the absence of a stimulus, the animal 

is presumed to be experiencing tinnitus. Using this general method, and surveying 

clinical experience, it has been found that tinnitus can be induced in subjects (both 

animal and human) by chemical and mechanical agents. Such chemical agents include 

high doses of the commonly used drugs quinine or salicylate. Quinine is a drug that 

was originally made from the bark of the Cinchona tree and is best known for its 

use in the treatment and prevention of malaria. Various forms of salicylate (e.g., 
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sodium salicylate, acetylsalicyclic acid a.k.a. Aspirin), are used to relieve pain, reduce 

fever and inflammation, and improve circulation. Tinnitus induced by these chemical 

agents is usually of the acute kind that subsides when the drug therapy is ceased, 

and is perceived as a high pitched tone or narrow-band noise. However, extremely 

high doses of these drugs are known to cause permanent hearing loss and chronic 

tinnLus. The mechanical agent is exposure to intense sound, i.e., very loud sound for 

an extended duration. Exposure to explosive sounds (loud, but short-lived sounds) 

are likely to only cause acute tinnitus. However, intense sounds, such as those present 

in ncisy industrial work environments, usually result in chronic tinnitus. Obviously, 

therE is a greater focus on furthering our understanding of the chronic tinnitus than 

the a.cute form due to its persistence and therefore greater impact on patients' lives. 

Even though methods of inducing tinnitus have been found, it is not well understood 

how these agents cause tinnitus. 

A number of neurophysiologic models of tinnitus have been hypothesized to sug­

gest the anatomical source of tinnitus, which in fact remains unknown. Since the 

tinnitus in many patients who underwent surgical transection of their auditory nerves 

remained after surgery and, in some cases, was worsened by the surgery, both periph­

eral and central mechanisms are implicated [Kaltenbach, 2000]. Peripheral mecha­

nisms that have been proposed include IHC, OHC, and auditory nerve dysfunction. 

IHC dysfunction may result from trauma in the cochlea that causes an increase in the 

ion conductance across the cell membrane. The increased flux of ions would trigger an 

incrEase in the spontaneous release of neurotransmitters, which in turn causes over­

activation of the postsynaptic neuron [Zenner & Ernst, 1995]. The increased activity 

could cause a spurious perception of sound. A fraction of the population produce 

meatmrable OAEs in the absence of acoustic stimulus, which is known as spontaneous 

OAEs (SOAEs). Some believe that these SOAEs could be a source of tinnitus [Pen­

ner, 1992; Plinkert et al., 1990]. Since OAEs are associated with OHC function, this 

mechanism of tinnitus suggests OHC dysfunction. Auditory nerve function can be 

hampered if the cranial nerves become microvascularly compressed. Moller [1995] 
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hypothesized that compression of the auditory nerve causes a decrease in excitatory 

input to the central auditory system, which results in decreased inhibition of certain 

neurons. When neurons experience less inhibition, they become hyperactive. Tinni­

tus patients who experienced tinnitus for a shorter period of time benefit more from 

vascular decompression than those who had tinnitus for a long time. This clinical 

data is consistent with Moller's hypothesis, for long term tinnitus might cause plas­

tic reorganization in the central neural circuits. Such reorganization might lead to 

a chronic state of hyperactivity that could be perceived as tinnitus since sound is 

believed to be encoded in the auditory system as a higher rate of neural firing. 

Central mechanisms of tinnitus that have been hypothesized include hyperactivity, 

changes in spike patterns, and reorganization of the tonotopic map. Hyperactivity, 

an increase in spontaneous activity, of some neurons may be perceived as a phantom 

sound. Experiments involving chemical induction of tinnitus in animal models pro­

vide supporting evidence for this hypothesis. Moderate doses of salicylate were found 

to increase spontaneous discharge rates in Ali neurons tuned to high frequencies, but 

decrease rates in AI and AAF [Eggermont & Kenmochi, 1998]. Increased spontaneous 

activity in neurons with high characteristic frequencies was also found at the level of 

the IC in rats [Chen & Jastreboff, 1995]. Hence, the hyperactivity may originate from 

subcortical areas. On the other hand, experiments involving intense sound to induce 

tinnitus provided evidence at the auditory nerve level that the impairment caused 

a decrease in activity. This led to the notion that tinnitus might not be the result 

of hyperactivity itself, but rather contrast enhancement at the edge between regions 

of normal and low activity due to lateral inhibition [Eggermont, 2003; Gerken, 1996; 

Kral & Majernik, 1996]. However, Kaltenbach has demonstrated that intense sound 

exposure induces hyperactivity in the DCN of rodents [Kaltenbach, 2000]. A corre­

lation between electrophysiologic recordings of activity in the DCN and behavioural 

evidence of tinnitus is strong. Kaltenbach therefore suggests that DCN activity may 

serve as an index of the severity of the tinnitus. Findings of hyperactivity in the IC 

of different animals due to sound exposure is commensurate with hyperactivity in the 
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DCN as the activity in the DCN is relayed to the IC. Studies have also revealed an 

incre'lSe in activity in the auditory cortex and IC of tinnitus sufferers who"turn on" 

their tinnitus by somatosensory means [Cacace, 2003]. Again, this hyperactivity may 

originate in subcortical structures and be relayed up to the cortex. 

Moller [1984; 1995] proposed that another hypothesis for a central mechanism of 

tinni~us is an alteration of spike train patterns. Normally, interspike intervals (ISis) of 

spon;aneous discharges are highly irregular. In the presence of a stimulus, ISis become 

highly regular, thereby creating periodicities in spike trains. These periodicities are 

usualy phase-locked with the stimulus for frequencies lower than 6 kHz. The spike 

trains of a group of neurons thus appears to have bursts of spikes while the waveform 

cycles are in their positive phase (i.e., neurons are synchronously phase-locked to the 

stimulus). Phase-locking is believed to be important in encoding the lower frequency 

components of sounds in normal hearing. When tinnitus is induced by either salicylate 

or noise exposure, bursting that looks like synchrony to a stimulus has been observed 

in tbe auditory nerve in the absence of a real sound stimulus [Liberman & Kiang, 

19781. Administration of salicylate or quinine causes increased synchronization of 

spontaneous activity between neurons in AI [Ochi & Eggermont, 1996, 1997]. Spurious 

synchrony might be interpreted by the brain as being phase-locked to a nonexistent 

soun:l stimulus, thus causing tinnitus. The advantage of this hypothesis is that it 

could explain the occurrence of tinnitus in patients without hearing loss. 

Changes in the tonotopic map have also been hypothesized to have some relation 

to tirmitus. As described in Section 2.3, the IC and auditory cortex are organized 

tonotopically such that each frequency is represented by a strip of neurons. It has 

been found that when the input to a strip is degraded by some form of hearing 

loss, adjacent strips expand and take over the function of deafferented neurons. This 

change indicates that neural plasticity (an adaptive process of change that facilitates 

learr.ing by means of altering synaptic efficacy) occurs. Cortical reorganization results 

in a tonotopic ma:J that has wider than normal representations of the frequencies at 

the Edges of the damaged regions [Rajan et al., 1993; Robertson & Irvine, 1989; Irvine 
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& Rajan, 1997]. Phantom limb pain experienced by amputees is often thought of as a 

somatosensory equivalent to the tinnitus of the hearing impaired. Indeed, the cortical 

reorganization of both conditions is very similar. Cortical reorganization has been 

found to occur in patients who suffer from tinnitus [Muhlnickel et al., 1998]. Seki and 

Eggermont have shown that cortical regions that have undergone reorganization due 

to hearing loss exhibit higher rates of spontaneous activity that might be perceived 

as tinnitus [Seki & Eggermont, 2003]. 

The peripheral and central mechanisms of tinnitus that have been proposed are 

not mutually exclusive. In fact, it is very unlikely that any one of these mechanisms 

alone could generate the percept of tinnitus. For example, from the evidence described 

above, one could hypothesize that some form of dysfunction in the peripheral auditory 

system could cause a decrease in spontaneous activity in the auditory nerve. Lateral 

inhibition might then reconcile the seemingly disparate findings between the decreased 

spontaneous activity in the auditory nerve and increased spontaneous activity in cen­

tral neurons with CFs that are presumed to be associated with the induced tinnitus. 

Lateral inhibition would act on the edge between normal and impaired signals from 

the auditory nerve to create a spurious peak in the brainstem or midbrain. This 

peak of activity might be transmitted up specific neural circuits towards the auditory 

cortex as a higher rate of spikes. Furthermore, these same spikes may occur in bursts 

that are synchronized between a group of neurons. Since the cortex loses normal input 

to regions associated with the impaired CFs, plasticity might facilitate the expansion 

of neighbouring normal regions of input into the region of impairment. However, the 

spurious peak is located exactly in this neighbouring region that expands into the 

region of impairment. The perceived spectrum of tinnitus might therefore look like a 

spatially expanded version of the spurious peak, which Norena and colleagues [2002] 

have shown to be the case through psychoacoustic tests. Tinnitus in patients with 

seemingly normal audiograms and auditory brain stem responses (ABR) might be ex­

plained by hearing losses in narrow frequency notches that would not show up on tests 

using the traditional audiometric frequencies. The associated notch in the auditory 
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nerve response could be processed as described above to generate tinnitus. 

C:msidering a broader scope of effect, Cacace [2003] proposed that the biological 

basis of tinnitus is not in hearing alone, but rather involves a multimodal neural net­

work that spans other sensory and sensorimotor systems as well as those of attention, 

cognition and emotion. As Kaltenbach [2000] aptly suggests, the cause of tinnitus 

must be separated from the epiphenomena in order to reconcile the hypothesized 

mechanisms with each other. This thesis aims to contribute to the solution of the 

latter problem. 

3.3 Existing Models 

Real biological neural networks are very difficult to explore directly. This is par­

ticularly true of the central nervous system due to the complexity of the neural con­

nections. Hence, computational models are useful in the analysis of the behaviour of 

hypothetical neural networks, the results of which might complement empirical stud­

ies. J=>reviously developed models that are relevant to this thesis will be described in 

this :>ection. 

3.3.1 The Bruce et al. Model of the Auditory Periphery 

The Bruce et al. model of the auditory periphery is a phenomenological, computa­

tional model that has been shown to correlate well with physiological data, especially 

of c~:.ts [Bruce et al., 2003]. This model takes an impinging sound pressure wave on 

the 1;ympanic membrane as input and calculates the response of an auditory nerve 

fibre of a specific characteristic frequency. The model consists of a series of blocks 

that represent the middle ear, the tuning of the basilar membrane (influenced by the 

function of the OHC), the synapse between the IHC and the auditory nerve, and 

the auditory nerve itself. Refer to [Bruce et al., 2003; Zhang et al., 2001] for details 

of these blocks. The auditory nerve response is characterized by its simulated spike 

times. 
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Despite the high level of development of the Bruce et al. model of the auditory 

periphery, it alone cannot explain the mechanism of tinnitus, for physiological exper­

iments have shown that tinnitus involves the central auditory system. Furthermore, 

the auditory periphery only accounts for the first steps of speech feature extraction: 

mainly the physiological origin of the tonotopic map and synchrony of neural activ­

ity to lower harmonics. A model of the central auditory system would therefore be 

desirable as an extension to models of the ear. 

3.3.2 	 The Kral and Majernik Model of Central Auditory 

Processing 

Kral and Majernik are supporters of the idea that lateral inhibition plays a signif­

icant role in the central mechanism of tinnitus [Kral & Majernik, 1996]. They agreed 

that an edge created by a decrease of activity in a subpopulation of neurons acted 

on by lateral inhibition would give rise to a spurious peak that could be perceived as 

tinnitus. However, they also suggested that spontaneous activity of auditory nerve 

fibres processed by some form of LIN might account for tinnitus that nearly every­

one perceives when in an acoustically shielded chamber. The spontaneous activity 

is Poisson-like noise that is masked by ambient acoustic noise that we usually find 

ourselves in. Since most ambient acoustic noise spans a wide frequency band, a LIN 

should be able to suppress it. 

The model that Kral and Majernik implemented consisted of nine layers of one 

thousand processing elements connected in a nonrecurrent, forward-type LIN archi­

tecture [Kral & Majernik, 1996]. The diagram in Figure 3.7 illustrates the pattern of 

connectivity in their model. 

A neuron only receives excitatory input from the neuron directly below it and 

inhibitory input from M neurons to either side from the layer below, weighted uni­

formly. The activity of the ith neuron-like processing element in the (k + 1)th layer is 
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Figure 3. 7: Illustration of the architecture of Kral and Ma­
jernik's non-recursive LIN model. (Reprinted with permission 
from Kral & Majernik, 1996, Fig. 1, p.l13.) 

given by the following equation: 

(3.5) 


where w[x] are the weights (with w[i] being positive for the excitatory input and all 

othe~ weights being negative for lateral inhibitory input), 8 is the neuron's threshold 

value and f is the linear threshold input-output function of a processing element 

shown in Figure 3.8. 

A single excitatory input was chosen because it was known that convergent ex­

citatory input opposes the sharpening effect of lateral inhibition. Furthermore, they 

found no physiological evidence of such convergence. The processing elements are 

non-spiking, but Kral and Majernik claim that the input and output curves represent 

an analogy to rate-place profiles (spike rate versus characteristic frequencies). The 

input was considered representative of auditory nerve activity. 

Not only was this model able to sharpen an input excitation curve with a single 
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0 

Figure 3.8: Input-Output Function of Kral and Ma­
jernik's Processing Element. (Reprinted with permis­
sion from Kral & Majernik, 1996, Fig. 2, p.l14.) 

maximum, it was able to separate the two maxima of a smooth M-shaped profile of 

input activity, i.e., perform contrast enhancement. They also showed that this model 

suppresses white noise, as expected. To simulate sensorineural hearing loss, Kral and 

Majernik used a step-like fall out of activity in a band of neurons amongst others that 

are noisy. Again, the contrast enhancement feature of lateral inhibition appears at the 

borders of the defect so long as the defect is wider than M. The spurious peaks at the 

edges could be perceived as tinnitus. Spontaneous activity from the auditory nerve is 

a Poisson-like process which has an uneven probability density function of lSI across 

the neurons. When the response to this type of input was simulated, parts of the 

excitation curve were amplified such that there appeared to be a number of narrow 

peaks. These spurious peaks could explain tinnitus in normal hearing subjects. 

This model is unrealistic in a number of aspects. Firstly, the processing elements 

do not capture key features of neural processing, especially the timing information 

contained in trains of action potentials. The temporal aspect of input integration 

is therefore not addressed. Secondly, the nonrecursive nature of the network archi­

tecture requires there to be many layers in order for the lateral inhibitory effects 

to materialize. Thirdly, although the inhibition is proportional to the neural activ­

ity, the use of uniform inhibitory weights is unrealistic. It may be inferred from 

single-unit electrophysiological studies such as those performed by Ramachandran 
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and colleagues [1999] that various inhibitory architectures exist. A pattern where 

inhibitory effects decrease with distance is clear [von Bekesy, 1967b; Hartline, 1974]. 

3.3.3 The Gerken Model of Central Auditory Processing 

Gerken's model also relates tinnitus to lateral inhibition in the central auditory 

system. It relies upon the processing of unevenness in the auditory nerve response by 

central mechanisms of lateral inhibition to generate a spurious peak. The LIN model 

that he uses is inspired by the LIN in the visual system and has a single layer of two 

hundred neural units. As shown in Figure 3.9, a neural unit (e.g. N2) of a given 

characteristic frequency receives excitatory input from a lower level in the auditory 

system. This neural unit also has lateral projections that inhibit the activity of its 

neighbours, but not itself. Because the collateral projections are of the simple-type 

architecture, this is a recurrent network. The strength of lateral inhibition to each of 

the neighbouring neurons is governed by the number of inhibitory connections. The 

pattern and range of lateral inhibition used is shown in the insert of Figure 3.9. The 

neural units are non-spiking entities that process mean input firing rates. (Details 

of tl e computations were not provided.) A baseline input represents spontaneous 

activity from the auditory nerve. Cochlear injury is simulated by lowering the input 

firing rate, while acoustic stimulation is simulated by increasing the input firing rate. 

Gerken's results for two types of input are shown in Figure 3.10. The normal 

input consists of uniform spontaneous activity and a response to tonal stimulus from 

the .mditory nerve. The impaired input reflects peripheral damage at the higher 

characteristic frequencies with lower spontaneous activity in the impaired region. 

The tonal stimulus is within the impaired region of hearing. The output for the 

normal case shows amplification of the response to the tone, flanked by valleys. The 

output for the impaired case shows contrast enhancement at the edge of the impaired 

region and a larger response to the tone than in the normal case. The tonal response 

is st~onger in the impaired case than in the normal case because lateral inhibition is 

reduced in the impaired region since the strength of the inhibition is proportional to 
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Figure 3.9: Illustration of a single neural unit's connections 
in Gerken's recursive LIN model. All neurons in the model are 
actually connected as N2 is here to create a web of mutual inhibi­
tion. Input and output connections are excitatory, while lateral 
connections are inhibitory. The inlay shows the amount and ex­
tent of the lateral inhibition used in the simulations. (Reprinted 
from Gerken, 1996, Fig. 3, p.79.) 
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the activity of the neural units. This would not be the case in vivo since the auditory 

nerve response to the tonal stimulus would be lower from an impaired ear. Again, 

the spurious peak at the edge of the impaired region was postulated to give rise to 

tinnitus. 

baar_ impair. 

norm. hear. 

norm. near. 

hear. impair. 

0 7 

Figure 3.10: The response of Gerken's model to normal and im­
paired input. The input from the auditory nerve contains spon­
taneous activity and a tonal stimulus at 4.7 kHz. (Reprinted 
from Gerken, 1996, Fig. 4, p.79.) 

Gerken's model is more realistic than Kral and Majernik's model because of its 

spat'al distribution of inhibitory strength and its recurrent architecture. However, the 

model is still unrealistic because the neural units are too simple. Temporal aspects 

are lost due to the non-spiking nature of the neural units. 

3.3.4 The Shamma Model of Central Auditory Processing 

To emphasize the importance of both time and space in neural codes, Shamma 

[198 5] distinguished between three classes of auditory processing algorithms: spatial, 

temporal and intermediate. Spatial processing schemes are based on the mean spike 

rate of fibres. The spatial distribution of this average measure may be interpreted as a 

2 3 4 5 6 
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spectral estimate of the stimulus. However, this scheme performs spectral extraction 

inadequately, for it is known that temporal cues play a key role in the encoding of 

lower frequencies (i.e., less than 5kHz). Temporal processing schemes extract spectral 

estimates from the periodicities in the spike trains. An example of an intermediate 

scheme that Shamma gives is that of Young and Sachs [1979]. The spatial aspect of 

the Young and Sachs scheme is that it retains a tonotopic representation, but it uses 

the synchronous rate as the information carrier, which is temporal in nature. 

To evaluate the hypothesis that a LIN constitutes the central auditory processor, 

Shamma [1985] presents results for a single-layer, nonrecurrent LIN model of non­

spiking neurons, though he also describes the implementation of a recurrent network. 

The dynamics of the neural units or processing elements that Shamma uses in his 

model is comparable to the linear portion of the leaky integrate-and-fire model. Fig­

ure 3.11 shows the model of a neuron that Shamma uses, from which the governing 

equation can be derived using basic circuit theory: 

dY(t)
T-;{t + Y(t) = E(t) (3.6) 

where Y(t) represents the membrane potential, E(t) represents the input to the neu­

ron in volts, and T is the membrane time constant. Shamma then applies a non-linear 

transformation G to Y(t) in order to approximate the instantaneous firing rate of the 

neuron, Z(t) = G(Y(t)). G incorporates the effects of saturation of the firing rate 

(due to the refractory period) and threshold potential in a sigmoid type function. 

E(t)• 

Figure 3.11: Shamma's model of a neuron. (Reprinted with 
permission from Shamma, 1985, Fig. l(a), p.l624.) 
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Figure 3.12 illustrates the single-layer recurrent and nonrecurrent LINs that Shamma 

explored. The recurrent LIN architecture is similar to Gerken's LIN except that 

ShaiiJma's includes the possibility of divergence of input across a spatial range of 

neurc,ns. The divergence of the excitatory and inhibitory input is governed by the 

weigl:.ting matrices v(i, j) and w(i, j) respectively, where each weight represents the 

effectiveness of the input or output at i on neuron j. Combining the excitatory and 

inhibitory inputs with Equation 3.6 results in Equation 3.7 for processing elements 

in th~ recurrent LIN and Equations 3.8 and 3.9 for the nonrecurrent LIN. Thus, the 

insta1taneous firing rate of neuron i is given by Zi for the recurrent LIN and Xi for 

the nonrecurrent LIN. 

"'""' iT dY:dtt + Yi = "'""' ~ v(i,j)Ej- ~w(i,j)G(Yj), = 1, ... ,N (3.7) 
j j 

d}i v "'""' (.Tdt+Li=~V'l,J.)E
j, i = 1, ... ,N (3.8) 

j 

xi= G(Yi)- L w(i,j)G(yj), i = 1, ... ,N (3.9) 
j 

Shamma found that the single-layer, nonrecurrent LIN with direct excitatory input 

(i.e., no divergence of excitatory input) is primarily a spatial pattern processor. This 

LIN is capable of sharpening spatial edges of both synthetic and real auditory nerve 

activity. As a result, Shamma's LIN was able to enhance the lower harmonics and 

formants of speech that evoked auditory nerve activity in a cat. Shamma's model is 

more realistic than those of Gerken, and Kral and Majernik as it incorporates some 

membrane potential dynamics. However, like the other existing models, the neural 

unit~; that Shamma uses do not spike. Inhibition is thus modulated directly by the 

merrbrane potentials of neighbouring neurons, in a fashion akin to the mechanism of 

lateral inhibition in the retina. Since non-spiking neurons have not been found in the 

auditory system, Shamma's model is unrealistic. 
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(Lf'.) 

apic:QI fnlxdl 


(H.f.) 

basal-­
(a) Recurrent LIN 

(b) Nonrecurrent LIN 

Figure 3.12: Schematic diagrams of Shamma's recurrent 
and nonrecurrent LINs. Each hollow circle represents a 
neural unit. Presynaptic terminals represented by a 'Y'­
shaped symbol are excitatory, while 'T'-shaped synaptic ter­
minals are inhibitory. (L.F.= low frequency, H.F.=high fre­
quency.) (Reprinted with permission from Shamma, 1985, 
Fig. 1(b,c), p.1624.) 
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C]h.apter 4 

T1~e Model 

A biologically inspired, computational model of a neural network was constructed 

to investigate the plausibility of spiking neurons achieving contrast enhancement and 

speech feature extraction. The lateral-inhibitory-network (LIN) model considered 

in this thesis consists of a single, uniform layer of leaky integrate-and-fire neurons 

with synaptic input. The synaptic input is represented by excitatory and inhibitory 

conductances that are modulated by spike trains. The input spikes are generated 

by a Bernoulli approximation of a Poisson process [Edwards & Wakefield, 1990] to 

reprEsent spontaneous neural activity, and in other simulations by the Bruce et al. 

model [2003] of the auditory periphery in response to speech-like input. The output 

is a ~;eries of spike trains from the leaky integrate-and-fire neurons. All simulations 

were implemented in MATLAB 1
. 

4.1 Complexity of the Model 

Choosing the appropriate level of detail to incorporate into a model is nontrivial. 

As Protopapas and colleagues [1999] pointed out, there exists a continuum of models 

from realistic to what they call demonstration models. Demonstration models are 

1A programming language for technical computing released by The MathWorks, Inc., Natick, 
MA, USA 
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highly theoretical and "are primarily intended to provide support for a particular 

preexisting theory or functional point of view" [Protopapas et al., 1999, p.462], while 

realistic models are more closely tied with empirical data. There is, at the same 

time, too much and too little information about the neurons in the central auditory 

system to create an ideal model. For example, there exists an abundance of elec­

trophysiological data that correlates with animal behaviour, but it is often not well 

understood where this signal originated. Since relatively little is known about the 

details of the interconnection of neurons in the central auditory system, it would be 

impossible to incorporate a high level of detail specific to these neurons in any model, 

which eliminates the possibility of designing a highly realistic model for this project. 

So long as there exists a limitation on computing resources, the tradeoff between the 

possible size of the network to be modelled and the amount of detail incorporated 

will always exist. This tradeoff further justifies forgoing the use of a highly realistic 

model of neural units in this network. Instead, the leaky integrate-and-fire model 

of a neuron, that Arbib [2002] describes as being the simplest realistic model, has 

been selected, for the goal here is to capture the general behaviour of a fairly large 

network of neurons; namely, to show how contrast enhancement might be achieved. 

Expenditure of computational resources or complexity is thus balanced between mod­

elling interactions of many neurons and modelling biological details of the neurons 

themselves. 

4.2 Neural Network Architecture 

The architecture of the LIN model is based on the recurrent LINs proposed by 

Gerken [1996] and Shamma [1985]. The types of possible connections for a neuron in 

this LIN are shown in Figure 4.1. The structure of the whole LIN would consist of each 

neuron having the same lateral connections, thus forming a web of interconnections. 

Neurons of the single layer of n leaky integrate-and-fire neurons only receive a small 

number of convergent excitatory projections from the layers below. Each neuron has 
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lateral projections that inhibit the activity of its neighbours (i.e., reciprocal inhibition) 

in tle same layer, making this model a recurrent network. 

Figure 4.1: In this schematic diagram of the lateral inhibitory net­
work the large circles represent neural bodies whose behaviour is sim­
ulated with the integrate-and-fire model described in section 2.2. Hol­
low ellipses represent excitatory synapses while filled ellipses represent 
inhibitory synapses. The membrane potential, input and output spike 
trains, and excitatory and inhibitory weights are represented by Vi, Sin,i, 

Saut,i, Vi,j and Wi,j respectively. (Reprinted from Bruce et al., 2003, Fig.l, 
p.360.) 

The convergent excitatory input is scaled by Vi,j that follows a Gaussian function; 

the input from a source of the same characteristic frequency is most heavily weighted 

(i.e., centre of Gaussian function), while the attenuation of lateral input increases 

with spatial distance from the centre frequency. Figure 4.2 shows a sample of a 

poss[ble distribution of excitatory synaptic weights. Inhibitory synaptic weights, Wi,j, 

are governed by two Gaussian functions of length k; one on each side of the centre 

frequency (see Figure 4.3 for an example; c.f. [Gerken, 1996, Fig.3]). This implies 

that the neuron at the centre frequency is not inhibited by its own activity. Each 

weight, Vi,j or Wi,j thereby specifies the effectiveness of the ph synapse on the ith 

neuron. These weights are constant in time such that plasticity is not simulated. 

An arbitrary scaling factor, a, is multiplied with the inhibitory synaptic weights 

to scale the inhibition relative to the excitation. The model parameter a is varied in 
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Figure 4.2: Excitatory synaptic weights, Vi,J relating the ith 

input spike train's (sin,i) effect on the ih neuron. 
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Figure 4.3: Inhibitory synaptic weights, Wi,j relating the effect 
of the ith neuron's output on the lh neuron. (Reprinted with 
permission from Bruce et al., 2003, Fig.3, p.361.) 
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this investigation. 

4.3 The Spiking LIN Model 

F::>r the purposes of this investigation, the network elements used were leaky 

integrate-and-fire models of a neuron with excitatory and inhibitory synaptic input, 

and 1n absolute and a relative refractory period. Note that the resting potential, 

Vrest, was set to 0 volts for this project such that the membrane potential, vm(t), is 

alwa:rs a relative measure from the resting potential. To accentuate the latter point, 

the relative membrane potential of the ith neuron will be indicated by vi(t). 

Lumped excitatory and inhibitory synaptic conductances were used instead of 

direct current injections to make the model more realistic. The use of synaptic con­

ductances also facilitates the evaluation of the effect of shunting inhibition versus 

hyperpolarizing inhibition. Synapses can be represented in the electric circuit of the 

leaky integrate-and-fire model as a variable conductance in series with a synaptic 

reversal potential or battery [Koch, 1999]. As shown in Figure 4.4, the excitatory 

and nhibitory synaptic input of this lateral-inhibitory-network are modelled in this 

fashbn. 

The excitatory synaptic reversal potential, EE, is set to a positive value greater 

than the threshold potential, Vth, so that the synaptic current will flow inward to 

gene::ate a depolarization toward or past Vth· In contrast, the inhibitory synaptic 

reversal potential, E1 , is set equal to or less than the resting potential so that the 

syna::>tic current will flow outward to pull the membrane potential downward towards 

the resting potential or a hyperpolarization, respectively. 

To obtain the time course of the excitatory and inhibitory variable conductances, 

GE,i(t) and GI,i(t), spike trains, sin,i(t) and Sout,i(t), are convolved with unitary con­

duct:tnces, gE(t) and g1(t). The time course of the unitary excitatory and inhibitory 
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lc 
+ 

Vmtref 

V rest 

Figure 4.4: Circuit Diagram of the leaky integrate-and-fire model 
with synaptic input. R, C, and Vrest represent the resistance, mem­
brane capacitance and resting potential. GE(t), G1(t), EE and E1 
are the excitatory and inhibitory conductances and reversal poten­
tials respectively. The switch labelled tref is used to implement the 
refractory period. Vm is the membrane potential and output. 

conductances are alpha functions of the form: 

ex ) 2 ntG(t)=c· - te-loT (4.10)( lOT 

where G(t) is the conductance in Siemens, tis time in seconds, ex is a constant that 

governs the width of the function, and T(= R · C) is the membrane time constant 

in seconds. c is a scaling factor to bring the alpha function within a realistic order 

of magnitude for synaptic conductances. Examples of the time courses of unitary 

excitatory and inhibitory conductances are shown in Figure 4.5. Alpha functions, 

coined by Jack and colleagues2 
, are often used to approximate observed trajectories 

of EPSPs and IPSPs in order to avoid significantly increasing the complexity of the 

phenomenological model with details such as individual channel dynamics. Here, 

alpha functions are used to represent conductance trajectories in order to acquire re­

alistically shaped EPSPs and IPSPs. The squared constants in Equation 4.10 ensure 

2 See [Jack et al., 1975, Eqn.3.50]. This book provides a comprehensive review of the electrical 
properties of excitable cells. 
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Figure 4.5: The unitary excitatory and inhibitory conduc­
tances shown here have alpha values of 11 and 3 respectively, 
a membrane time constant of 2.75 ms and a scaling factor of 
0.30365 nS. Note that the negative of the unitary inhibitory 
conductance is plotted. 
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that the area under the curve remains constant as a and r are varied. The area of 0.01 

is arbitrary, but the function is further scaled such that the resulting conductances 

are on the order of nanosiemens to maintain biological plausibility. The model incor­

porates both excitatory and inhibitory conductances whose time courses are governed 

by different alpha values. The alpha value of the inhibitory conductance should be 

much smaller than that of the excitatory conductance so that the time course of the 

inhibitory conductance is much slower than that of the the excitatory conductance as 

illustrated in Figure 4.5. The excitatory and inhibitory alpha values are parameters 

that are varied in this investigation. Incorporating these conductances into the leaky 

integrate-and-fire model described in Section 2.2 gives the following equation for the 

linear operation of the model: 

dv(t) = V. YE(t)(EE- v(t)) + W. g1(t)(E1- v(t)) _ v(t) 
(4.11)

dt C C T 

Note the similarity between Equation 4.11 and the one deduced by Hartline and 

Ratliff from their experiments on the horseshoe crab (Equation 3.4). Both equations 

involve subtracting the sum of weighted activity from neighbouring neurons from the 

excitatory input to the neuron in order to calculate the activity of a neuron. This 

similarity provides an indication of the biological plausibility of the configuration 

under consideration. 

For the non-linear operation of the model, tref is held as a constant such that 

adaptation is not simulated. Theoretically, the threshold potential, Vth,i, should be 

set to infinity while the membrane potential is allowed to vary even though it is not 

permitted to spike. However, during preliminary tests it was found that the membrane 

potential could wander unrealistically high above the threshold potential during the 

short duration of the refractory period. To avoid this problem and maintain simplicity 

of the model, the membrane potential is held at rest as described above. After the 

absolute refractory period, a relative refractory period is implemented that allows the 

threshold potential to decay exponentially from infinity (approximated by some value 

above the spike value, here 5 V) to the fixed threshold: 
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-3.5~ ( )Vth,i = 5e 2 ms 4.12 

where tth represents the time since the end of the absolute refractory period, for at 

most 2 ms. Simultaneously, the model re-enters the linear operation mode such that 

the nembrane potential begins to vary again. 

4.3.1 Input 

The input to the lateral-inhibitory-network model is an array of spike trains; 

one Hpike train for each neuron. The input generated is stored in an n x t matrix, 

Bin, where n is the number of neurons and t is the number of ~-second time bins 

(i.e., t = duration of impi~ging sound wave). For this project, input spike trains, that are 

representative of auditory nerve activity, were generated in one of two ways. The first 

method is to send an impinging sound wave (with units of Pascals) into the Bruce et 

al. model of the auditory periphery that was briefly described in Section 3.3.1. The 

output from the Bruce et al. model (which would be the input to the LIN model) 

is an array of spike trains. However, the time steps from the Bruce et al. model is 

2 11s, which is much smaller than is necessary in the LIN model (~ =0.02 ms). To 

resolve this discrepancy, every ten time bins from the Bruce et al. model are summed 

to rr.ake longer time steps. In the case that multiple spikes are found in any bin, 

the ~;pike count for that bin is reset to one. Since the probability of there being a 

spike in any given time bin is so low, there is very little chance of the latter case 

bein.s found. The Bruce et al. model can be configured to respond as a normal ear 

(i.e., without impairment), or an impaired ear. The impairment is implemented by 

setting the scaling constants, CoHc[i] and CIHc[i], of the outer and inner hair cells 

resp~~ctively to a value between zero and one, where one represents normal function 

and zero a complete loss. Figure 4.6 shows the only set of scaling factors used for 

an impaired case in this project. The CoHcs are designed to fit the 50th percentile 

of the Q10 data from Miller and colleagues [1997] while the C1Hcs account for the 
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Figure 4.6: Scaling constants for inner and outer hair cell im­
pairment. 

minimum threshold shift in the auditory nerve population that cannot be explained 

by the outer hair cell impairment, as explained in [Bruce et al., 2003]. 

The second method was to use the Bernoulli approximation of a Poisson process 

(described in Appendix A) to simulate spontaneous activity from the auditory nerve 

when there is no impinging sound wave, i.e., in the perfectly quiet environment of 

a sound-proof, anechoic chamber. This spontaneous activity was generated by mul­

tiplying a firing rate by the time step and comparing this probability to uniformly 

distributed values between zero and one generated by MATLAB's pseudo-random 

number generator. If the randomly generated number is less than or equal to the 

specified probability, a spike is generated. All time bins are filled this way. The 

emulated spontaneous activity is not uniform across all of the neurons. Neurons with 

lower characteristic frequencies receive a higher rate of spontaneous activity, while 

those at the upper end of the tonotopic map receive a lower rate of spontaneous 

activity. The use of this type of input is intended to grossly represent sensorineural 

hearing loss in the high frequencies and to evaluate the plausibility of spiking neurons 

achieving contrast enhancement. The results of this method would be identical to 
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what would have been acquired from the Bruce et al. model if a constant sound 

wave of 0 Pa were sent through. Since the Bruce et al. model would blindly apply 

the numerous filters to the null input, the second method was used to save compu­

tatio:1 time. High frequency, tone-like input could be generated in a similar fashion 

by creating a spatially narrow, Gaussian-shaped peak of a higher rate of spontaneous 

activity. 

4.4 The Non-Spiking LIN model 

To evaluate the effects of the spiking behaviour of neural units on contrast en­

hancement, a non-spiking LIN model was created for comparison. The only difference 

between this model and the spiking LIN model is the neural units. For the non-spiking 

LIN model, Lapique's model (a simple R-C circuit) described in Section 2.2 was used. 

The operation of this model is completely linear (i.e., no threshold potentials, action 

poteo.tials or refractory periods) and conductance-based synapses were not used. In­

stead, sin,i(t) was convolved with the same alpha function as G(t), but was scaled 

to n~present an excitatory current injection, iEPSC,i(t). The inhibition is modulated 

directly by the membrane potential of neighbouring neurons. The governing equation 

of tl:is model is: 
dv(t) . 

T · -- = V ·"'EPsc(t)- W · v(t)- v(t) (4.13)
dt 

V and W obey the same weighting functions as in the spiking model, except that 

Vi,J 1ow have units of Ohms. 

~·4 Simulations.~J 

All simulations were coded and run in MATLAB version 6.5, release 13, on ma­

chines described in Table 4.3. A sample set of scripts used can be found in Ap­

pendix C. Notice that for some of the longer simulations, the job was broken into 

parts in order to be run in parallel on the GRID server. The data collected then had 
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to be concatenated for analysis. 

Type: Personal 

Computer 

Server 64-Node Grid 

Blade Server 

Operating 

System: Windows 2000 

Red Hat Linux 8.0 

(Psyche), kernel 

2.4.18-18.8.0smp 

Red Hat Linux 7.3 

(Valhalla), kernel 

2.4.20-20. 7.0smp 

Processor(s): Intel Pentium IV, 

2.00GHz 

Intel Pentium IV Xeon, 

dual 2.20GHz 

64 x Intel Pentium IV 

Xeon, dual 2.40GHz 

RAM: 1GB 1GB 1GB 

Table 4.3: Computing Resources 

For a network of n neurons, the excitatory and inhibitory synaptic weights, Vi,J 

and VVi,J, are stored inn x n matrices, V and W, whose functions are described in 

Section 4.2. However, the neurons at and near the extremities of the network (i.e., 

i ~ k or i ::;:: n- k) must have fewer inhibitory synapses and possibly fewer excitatory 

synapses coming from the outer side. To mitigate the confounding edge effect that 

would result, the weights of the synapses that do exist are increased such that the 

sum of the excitation and inhibition are equal to those of the middle neurons. The 

linear equation (either Equation 4.11 or 4.13) is then solved using a 4th-order Runge­

Kutta algorithm (described in Appendix B.2) with a fixed time step~- Preliminary 

versions of the model employed Euler's method (described in Appendix B.1) to solve 

the linear equations, and intracellular current injections (excitatory and inhibitory 

postsynaptic currents) instead of synaptic conductances. The column vector v(t) of 

length n that results from all of these methods is the relative membrane potential 

or output at a given time. In the case of the spiking model, if any vi(t) is greater 

than Vth,i(t), then that vi(t) is set to an arbitrarily high value (0.15 V unless stated 

otherwise) and Sout,i(t) is set to 1. Vth,i(t) is also updated to include the relative 

refractory period described in Section 2.2. If a spike occurred within the last tref 

seconds, then vi(t) is set to zero, as is Sout,i(t), regardless of the potential computed 

using Equation 4.11. 
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Although minimal effort was spent on maximizing the computational efficiency of 

the code, a considerable amount of time was spent on making the code comprehensible 

and on minimizing computation time. The rationale for this investment of effort was 

that the simulations employing the Bruce et al. model were lengthy. Since the 

Bruc~~ et al. model was the source of a significant portion of the computations and 

it was beyond the scope of this project to modify that model, there appeared to be 

little advantage in optimizing the code for the LIN model. Note that a modified 

version of the Bruce et al. model is now available and should run more quickly. 

Furthermore, the Bruce et al. model is currently being re-written in C-language 

to maximize computational efficiency while adding functional features to make the 

model more realistic3 . However, as mentioned in Section 4.3.1, use of the Bruce 

et al. model was avoided for investigating spontaneous-type input in an effort to 

improve efficiency. Computation time was reduced significantly by compiling the 

computationally heavy portions of the code inC-language (namely earandlin.m) and 

by running some simulations in parallel on a 64-node computing grid. 

3Development of the Bruce et al. model is a project of the Auditory Engineering Laboratory of 
MclV aster U nversity. 
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Chapter 5 

Results 

The effect of various neural and network parameters on the network's mean output 

discharge rate of each neuron was evaluated first with the spontaneous activity type 

input (for which the method of generation is described in Section 4.3.1). The model's 

processing of speech-driven activity was then examined using the mean spike rate 

measure as well as a measure of synchrony to the formant frequencies. 

5.1 Spontaneous Activity as Input 

Unless indicated otherwise, the high and low rates of spontaneous activity are 200 

and 20 spikes/s respectively, and the drop from the high to the low rates occurs with 

one intermediate step, i.e., the ramp width is across three neurons with input rates 

of 200, 110, 20 spikesjs. The higher rate represents normal spontaneous activity in 

the auditory nerve, while the lower rate models spontaneous activity in a region of 

peripheral impairment. 

First a comparison between the use of Euler's method and the 4th-order Runge­

Kutta algorithm shows that there is a slight difference in the membrane potentials 

computed. Figure 5.1 shows the time course of the membrane potentials computed 

using the two methods on the same input. The membrane potential traced by the 

dashed, red line was computed using Euler's method, where the solid, blue line was 

64 




M.A.Sc. Thesis - J ennifer Ko McMaster University - Electrical Engineering 

computed using the 4th-order Runge-Kutta algorithm. The difference in results war­

rants the use of the more computationally intensive, but more accurate 4th-order 

Runge-Kutta algorithm henceforth. 

Time [s] 

Figure 5.1: Membrane potential of the fifth neuron 
in the preliminary 100-neuron LIN computed using 
Euler 's method (dashed, red line) and the 4th-order 
Runge-Kutta algorithm (solid, blue line) . Inhibitory 
connections span 6 neurons to either side of any given 
neuron, i.e., a total span of 13 neurons. Other parame­
ter values were set as follows: tstep = 0.1 ms, T = 1 ms, 
a = 2, Vth = 0.25 V, tref = 2 ms, CXEPSP = 5, 
CXJPSP = 2. 

In Figures 5.2 and 5.3, it can be seen that t he neural activity in regions receiving 

the high rate of spontaneous activity is decreased, in large part due to the lateral 

inhibit ion . Figure 5.2 also shows t hat neural activity is decreased in the region re­

ceiving the low rate of spontaneous activity, but this decrease is minute because the 

inhibition here (proportional to the neural activity of neighbouring neurons) is weak. 

Hence, the LIN suppresses regions of fairly uniform activity. There is clearly a peak 

and valley at the edge between high and low rates of spontaneous input . The tone-like 

peak of input activity in the impaired region is sharpened by the LIN and flanked by 
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two small valleys. It is therefore evident that a LIN model of spiking neurons is capa­

ble of achieving the contrast enhancement that is characteristic of lateral inhibition. 

Figure 5.3 shows that without large, rapid spatial changes in the input excitation 

pattern, no spurious peaks or valleys are generated by the LIN processing. 

Characteristic Frequency [Hz] 

Figure 5.2: Contrast enhancement achieved by the 
preliminary LIN model of spiking neurons . Neural 
and network parameters are the same as those for Fig­
ure 5.1. 

Contrast enhancement is very difficult to achieve with shunting inhibition. Vth 

must be set such that one input spike is just able to cause an output spike without 

lateral inhibition. Such a configuration was used to generate the data shown in Fig­

ure 5.4(a) that clearly shows small peaks and valleys. If E1 is set to hyperpolarize, 

as in Figure 5.4(b), then contrast enhancement is much stronger. Figure 5.5 shows 

that contrast enhancement cannot be achieved with shunting inhibition if Vth is set 

any lower than described above. The mean output spike rates produced with hyper­

polarizing inhibition is more realistic than those generated with shunting inhibition 

when compared to the control group results of Koch & Grothe [2003] and Basta & 

Vater [2003]. 
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Characteristic Frequency [Hz] 

Figure 5.3: LIN processing of a high rate of sponta­
neous input across all neurons. This input is intended 
to simulate the normal auditory periphery response to 
silence. The same model as in Figure 5.2 was used. 

Figure 5.6 shows the mean input and output firing rates to and from a 100-neuron 

LIN. A spurious peak and valley at the edge of impairment is clearly evident. The 

500-neuron LIN that was used to generate the data in Figure 5. 7 may be considered 

a more densely populated and connected network of neurons covering the same range 

of CFs as that of Figure 5.6. This means t hat the span of inhibitory connections 

cover the same CFs as those of the 100-neuron network. Both networks receive 

spontaneous-type input that drops from high to low rates over three neurons. In 

comparing Figures 5.6 and 5. 7, it can be seen that the peak and valley in the 500­

neuron network have greater magnitudes than those of the 100-neuron network. In 

the 500-neuron network the range of CFs represented by three neurons is narrower 

than in the 100-neuron network. If the ramp width of the otherwise identical input 

presented to the 500-neuron network is made to span the same range of CFs as three 

neurons in the 100-neuron network, Figure 5.8 results. From t he latter result , it can 

be seen that increasing the ramp width of spontaneous input decreases t he magnitude 

of the spurious peak and valley slightly, but not to the level of t he 100-neuron network. 
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Characteristic Frequency [Hz) 

(a) Shunting Inhibition: E1 = 0 V 

Characteristic Frequency (Hz] 

(b) Hyperpolarizing Inhibition: E1 = -0.02 V 

Figure 5.4: Shunting inhibition. A 100-neuron network 
with lateral inhibitory connections spanning 6 neurons to 
either side of each neuron. Other parameter values were set 
as follows: tstep = 0.02 ms for 5 s , T = 1.5 ms, C = 8 pF, 
a= 32, Vth = 0.0231 V, tref = 2 ms, CtGE = 11, CtGJ = 0.5, 
and EE = 0.1 V. 
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Characteristic Frequency [Hz] 

Figure 5.5: Shunting inhibition with the same parame­
ters as in Figure 5.4(a) except Vth = 0.0200 V. Contrast 
enhancement is lost. 
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Characteristic Frequency (Hz] 

Figure 5.6: Mean spike rates of neurons in a lOG­
neuron network with lateral inhibitory connections. In­
hibitory connections span 6 neurons to either side of 
any given neuron, i.e. , a total span of 13 neurons . Other 
parameter values were set as follows: tstep = 0.1 ms 
for 7 s, T = 1 ms , C = 7.5 pF, a = 2, Vth = 0.02 V, 
tref = 2 ms, C'£GE = 10, CXGJ = 3, EE = 0.1 V and 
E1 = - 0.02 V. 
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Characteristic Frequency [Hz] 

Figure 5.7: Average spike rates of neurons in a 500­
neuron network with lateral inhibitory connections. In­
hibitory connections span 32 neurons to either side of 
any given neuron, i.e., a total span of 65 neurons cov­
ering the same CF range as the case with only 100 
neurons. Other parameter values are the same as for 
Figure 5.6 

The effect of t he span of inhibitory connections on cont rast enhancement was 

quantified by a series of simulat ions. A measure of contrast enhancement to be 

defined is the index of edge-enhancement given by: 

rpeak - rhighsp 
I d n eXEE = ----~------~~---­ (5.14) 

r highsp . ( r highsp - r lowsp ) 

where rpeak is the peak value of the spurious peak, rhighsp is the average of the normal 

region, and nowsp is t he average of the impaired region in the mean firing rate of the 

LIN. This measure provides an indication of the significance of the peak wit h respect 

to the magnitude of the edge and t he high spontaneous input rate. Figure 5.9 shows 

t he results of these simulations. The straight line fi t highlights the upward t rend in 

the significance of t he peak as the lat eral spread of inhibition is increased. 
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Characteristic Frequency [Hz] 

Figure 5.8: The effect of increasing the ramp width 
between high and low rates of spontaneous activity to 
match the CF span of the ramp used in the 100-neuron 
LIN of Figure 5.6. Neural and network parameters are 
the same as in Figure 5.7. 

The effect of lateral excitation is shown in Figure 5.10. Although the spike rates 

are increased compared to the rates from the level of the auditory nerve , the spuri­

ous peak is significantly decreased compared to equivalent results from the network 

without lateral excitation shown in Figure 5.7. However, the magnitude of the val­

ley is increased. This occurs largely because the the neurons on the normal side of 

the edge receive less excitation compared to its neighbours further into the normal 

region combined with an increase in inhibition. For neurons on the impaired side of 

the edge, the increased inhibition due to the increase in neural activity of neurons in 

the impaired region dominates over the increase in excitatory input, thus causing a 

deeper valley. 

To further explore the effect of the ramp width from high to low rates of spon­

taneous input , the width was varied systematically and compared with the the non~ 

spiking model. Input to the spiking and non-spiking models is made identical for all 

simulations in this set, except at the ramps , by seeding the pseudo-random number 
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Figure 5.9: The effect of varying the span of in­
hibitory connections on contrast enhancement. Neu­
ral and network parameters values were set as follows: 
tstep = 0.05 ms for 5 s, T = 1 ms, C = 7.5 pF, a = 2, 
Vth = 0.02 V, tref = 2 ms, acE = 10, G.GJ = 3, 
EE = 0.1 V and EI = -0.02 V. 

generator in MATLAB, thereby causing it to produce the same set of input spike 

trains in each simulation. The input is the same between simulations run with the 

spikmg and non-spiking models for the same ramp width. It is evident from Fig­

ure 5.11 that as the ramp width is increased, contrast enhancement is decreased in 

both the spiking and non-spiking models. This result is consistent with Mach's find­

ings in the visual system that are shown in Figure 3.2. For the non-spiking model, the 

mean membrane potential was used as an equivalent measure to the mean spike rate 

of the spiking model. The results of the simulations shown in Figure 5.11 suggest that 

greE,ter contrast enhancement is achieved by the non-spiking model than the spiking 

model, especially at the valleys. To quantify the change in contrast enhancement as 

the ramp width of the spontaneous input is varied, a series of simulations were run 

and the spurious peak height measured. A peak index is defined to be the differ­

ence between the peak height from the average of the mean spike rate in the normal 
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Characteristic Frequency [Hz] 

Figure 5.10: Average spike rates of neurons in a 500­
neuron network with both lateral excitatory and in­
hibitory connections. Excitatory connections span 17 
neurons while inhibitory connections span 32 neurons 
to either side of any given neuron. Other parameter 
values are the same as those in Figure 5. 7. 
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(a) Ramp across 3 spiking neurons. (b) Ramp across 3 non-spiking neurons. 

250 

i 
~ 

~ ! 
,i 
& 

~ ' 

0 ,.. ••' ••'CharacleristicFrequency (HZ) CharacteristicFrequency [Hz] 

(c) Ramp across 6 spiking neurons. (d) Ramp across 6 non-spiking neurons. 
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(e) Ramp across 15 spiking neurons. (f) Ramp across 15 non-spiking neurons. 

Figure 5.11: Effect of varying the ramp width of the rate of spontaneous input. LINs 
consisted of 100 neurons with inhibitory connections spanning 6 neurons to either side. 
Other parameter values for the spiking models were set as follows: tstep = 0.02.ms 
for 5 s, T = 1 ms, C = 7.5 pF, a = 32, Vth = 0.015 V , t re f = 2 ms, O'.GE = 11 , 
O'.GJ = 3, EE = 0.1 V and E1 = - 0.02 V. Parameters for the non-spiking models were: 
t step = 0.02 ms for 5 s, T = 1 ms, a= 1, and O'.J = 11. 
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hearing region and the standard deviation of the output from the normal region of 

hearing, as given by the equation: 

Indexpeak = rpeak - rhighsp - rY (5.15) 

where rpeak and rhighsp have the same definitions as in Equation 5.14, and rY is the 

standard deviation of the mean spike rate in the normal region of hearing. The stan­

dard deviation is subtracted from the peak height (rpeak-rhighsp) in order to introduce 

a penalty for large fluctuations in a region with a uniform rate of spontaneous input. 

This peak index is plotted against the ramp width in Figure 5.12. The peak index 

appears to decay exponentially as the ramp width is increased. 

35 
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25 
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Figure 5.12: Peak indices versus ramp width of spon­
taneous input activity of 100-neuron network with lat­
eral inhibitory connections span 6 neurons to either 
side of any given neuron. Other parameter values were 
set as follows: tstep = 0.02 ms for 5 s, T = 1.5ms, 
C = 8 pF, a = 32, Vth = 0.015 V, tref = 2 ms, 
acE = 11, O:GJ = 0.5, EE = 0.1 V and E1 = -0.02 V. 
The exponential curve was fit to the data by inspection. 

* 

The effect of numerous model variables on contrast enhancement was evaluated by 
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running several series of simulations. Each series of simulations considers the effect 

of varying two parameters. The range of values considered were chosen to remain 

close to being biologically realistic where relevant and to span the values that give 

the greatest contrast enhancement. The results of the simulations are summarized in 

contour plots. 

In the first series of simulations, the rates of spontaneous input activity were varied 

between 20 and 400 spikesjs. As can be seen in Figure 5.13, the greater the difference 

between the rates , i.e., the greater the magnitude of the edge, the better the contrast 

enhancement. The peak index measure was unnecessary in this case because none 

of the neural or network parameters were varied. Hence, the peak height itself is 

plotted. In simulations with an input edge height of 380 spikesjs, the average firing 
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Figure 5.13: Effect of varying the high and low spontaneous 
rates. The 100-neuron network has lateral inhibitory connec­
tions that span 6 neurons to either side of each neuron. Other 
parameter values were set as follows: tstep = 0.05 ms for 5 s, 
T = 1 ms, C = 7.5 pF, a = 2, Vth = 0.02 V, tref = 2 ms, 
acE= 10, O'.GJ = 3, EE = 0.1 V and E1 = -0.02 V . Amplitudes 
of the inhibitory and excitatory conductances were normalized 
to 10- 8 before they were scaled by a. 
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rate in the normal region of output was about 115 spikes/s. This rate is unrealistically 

high, for electrophysiologic recordings from guinea pigs [Torterolo et al., 2002] and 

cats davis have shown that the spontaneous spike rate of neurons in the IC are well 

below 50 spikes/s. However, it is this high rate of input and output spikes that 

facilitates the coincidence between excitatory and inhibitory activity necessary for 

contrast enhancement to occur. The high rate of input might be achieved in vivo by 

the convergence of excitatory input projected from a few neurons. Lower input spike 

rates result in lower output spike rates. In the latter case, the sparseness of input 

and output spikes makes the coincidence of excitatory and inhibitory activity rare. 

Contrast enhancement is therefore not visible, which is shown in Figure 5.13 as the 

dark blue-coloured diagonal band across the plot. 

The membrane capacitance, C, and the lateral inhibition factor, a, were then 

varied. Figure 5.14 shows that for a given set of fixed parameters, there is a narrow 

range of values of C and a that optimize contrast enhancement. For the configuration 

presented, a membrane capacitance, C, of about 8 pF and a lateral inhibition factor, 

a, of 32 results in the best contrast enhancement. 

In Figure 5.15 it can be seen that contrast enhancement improves as Vth is increased 

to 0.015 V, but deteriorates rapidly when Vth is increased beyond 0.02 V. This can 

presumably be attributed to contrast enhancement being most effective when Vth is 

close to a value that just allows a single input spike to trigger a postsynaptic action 

potential as seen when shunting inhibition was considered. The optimum membrane 

time constant for this set of fixed parameters appears to be 2. 75 ms. These values for 

Vth and r are consistent with patch clamp data from the inferior colliculi of mice Basta 

& Vater [2003] and rats Koch & Grothe [2003]. 

When the alpha values of the excitatory and inhibitory conductances were varied, 

it was found that o:E had to be fairly large and o:1 very small to obtain contrast 

enhancement. From Figure 5.16, the optimum alpha values are 11 for o:E and 0.5 for 

o:1. Contrast enhancement deteriorates rapidly as o:1 is increased from 0.5. Contrast 

enhancement is less sensitive to the value of o:E, though values below 6 yield little to 
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Membrane Capacitance [F) x 10-'2 

Figure 5.14: Effect of varying the membrane capacitance, C , 
and the lateral inhibition factor , a. The 100-neuron network has 
lateral inhibitory connections that span 6 neurons to either side 
of any given neuron. Other parameter values were set as follows: 
t step = 0.02 ms for 5 s, T = 1 ms, Vth = 0.02 V, t ref = 2 ms, 
O'.GE = 11, O'.GJ = 0.5 , EE = 0.1 V and E1 = -0.02 V. 

no contrast enhancement in combination with any value of a1 . 

Finally, the duration of the absolute refractory period, tref , was varied. For each of 

the simulations shown in Figure 5.17 the input used is identical. From Figure 5.17 it 

is evident that as the duration of the absolute refractory period is increased, contrast 

enhancement decreases. This result would be expected since a longer refractory period 

makes coincidence between excitatory and inhibitory act ivity of the neurons less likely. 

5.2 Response to Synthesized Speech Stimulus . 

As described in Section 4.3.1 , synthesized speech processed by the Bruce et al. 

model was used as input to the LIN model of spiking neurons. The stimulus was 
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Figure 5.15: Effect of varying the membrane time constant , 
T , and the threshold potential, Vth· The 100-neuron network 
has lateral inhibitory connections that span 6 neurons to either 
side of any given neuron. Other parameter values were set as 
follows: t step = 0.02 ms for 5 s, C = 7.5 pF, a= 36, tref = 2 ms, 
CXGE = 11 , CXGJ = 0.5 , EE = 0.1 V and E1 = - 0.02 V. 
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Figure 5.16: Effect of varying the alpha values of the excitatory 
and inhibitory unitary conductances. The 100-neuron network 
has lateral inhibitory connections that span 6 neurons to either 
side of any given neuron. Other parameter values were set as 
fo llows: tstep = 0.02 ms for 5 s, T = 1 ms , C = 7.5 pF, a = 36, 
Vth = 0.02 V, tref = 2 ms, EE = 0.1 V and E1 = - 0.02 V. 
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Figure 5.17: Effect of varying the absolute refractory period , 
t re f· The LIN consisted of 100 neurons with inhibitory connec­
tions spanning 6 neurons to either side. Other parameter val­
ues for the spiking models were set as follows: t st ep = 0.02 ms, 
T = 1 ms, C = 7.5 pF , a = 32, Vt h = 0.015 V, 0:GE = 11 , 
ac1 = 3, E E = 0.1 V and E1 = - 0.02 V. 
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procEssed by the model of the ear five times, then summed to simulate the effect of 

five auditory nerve fibres of the same CF converging onto a single subcortical neuron. 

The average of thirty trials was used to generate a PSTH (the output). 

First, a single vowel, /r/, was considered. When the vowel is presented to the 

model of a normal ear at a level of 65 dB SPL, the spatia-temporal pattern of output 

(Figure 5.18(b)) of the LIN is a highly attenuated and smeared version of the auditory 

nerve activity (Figure 5.18(a)). No discernable enhancement of peaks or edges in the 

spatial pattern was observed, even at the formants and harmonics. 

Vvhen the same vowel is presented to the impaired model of the ear at a higher 

level of 95 dB SPL, the spatia-temporal pattern of output (Figure 5.19(b)) of the 

LIN is again a highly attenuated and smeared version of the auditory nerve activity 

(Figure 5.19(a)). From the spatia-temporal plots, there appear to be no enhancements 

at the transitions between the normal and impaired regions of hearing. 

To further investigate the LIN processing of speech-type input, the synthesized 

sentence, "five women played basketball" was presented to the normal model of the 

ear at 35 and 65 dB SPL and to the impaired model of the ear at 95 dB SPL. The 

spectrogram of the synthesized sentence at 65 dB SPL is shown in Figure 5.20. The 

100-neuron network had lateral inhibitory connections spanning four neurons to either 

side of each neuron. Other parameter values were set as follows: tstep = 0.02 ms, 

T = 1.5 ms, C = 8 pF, a = 32, Vth = 0.015 V, tref = 2 ms, aaE = 11, etai = 0.5, 

EE =0.1 V and E1 = -0.02 V. 

1Nith the 35 dB SPL stimulus, the LIN appears to attenuate and smear the audi­

tory nerve activity (Figure 5.21) as in the case of the single vowel. The main features 

of tJ.e spatia-temporal pattern from the auditory nerve are preserved, but formant, 

harmonics and other such spatial features do not appear to be enhanced. This latter 

point is clarified by comparing the plots of the mean spike rates over a 10 ms-window 

in Figure 5.22. The window begins at 1.1s into the sentence and isolates part of the 

first 'a' of the word 'basket ball'. Notice that with this low intensity stimulus, even the 

auditory nerve response appears to have an upward-shifted second formant frequency. 
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Figure 5.18: LIN processing of normal auditory periphery re­
sponse to synthesized voiced speech / r. / presented at 65db SPL. 
The LIN consisted of 100 neurons with inhibitory connections 
spanning 4 neurons to either side. Other parameter values for 
the spiking models were set as follows: t step = 0.01 ms, T = 3 ms, 
C = 30 pF, a = 2, Vt h = 0.08 V, t ref = 2 ms, acE = 10, 
ac1 = 3, EE = 0.1 V and E1 = -0.02 V. 
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Figure 5.19: LIN processing of impaired auditory periphery 
response to synt hesized voiced speech IcI presented at 95 dB 
SPL. Parameters of the LIN are the same as those of Figure 5.18. 
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Figure 5.20: Spectrogram of synthesized speech: A male speaker saying, 
" Five women played basketball" at 65 dB SPL. 
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Figure 5. 21: LIN processing of speech presented to a normal ear at 35 dB 
SPL. 
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When the intensity of the stimulus is increased to 65 dB SPL, the LIN appears 

to suppress spatially uniform or smooth patterns (see Figure 5.23). Examples of this 

are the regions between 2 and 4kHz, around 0.8 sand between 1 and 5kHz, around 

0.2 s into the sentence. Enhancement of spatial edges also seems to occur. Such edge 

enhancements are in the regions near the fundamental and first formant frequencies. 

To clarify the existence of the spatial edge enhancement, the input and output mean 

spike rates in the same 10 ms-window as was shown for the case of the 35 dB SPL 

stimulus that starts at 1.1 s into the sentence is plotted in Figure 5.24. By comparing 

the input and output, it is obvious, particularly around the characteristic frequencies 

of 150 and 300 Hz, that contrast enhancement at spatial edges occurs. Furthermore, 

the first and third formants are enhanced and sharpened. The second formant is 

sharpened but is shifted to slightly lower CFs. 

The LIN response to the auditory nerve activity evoked by the 95 dB SPL stimulus 

is similar to the that of the 65 dB stimulus in the normal region of hearing at the 

low frequencies. In Figure 5.26, the first formant is clearly enhanced. Contrast 

enhancement does not appear to be prominent at the transition between normal and 

impaired regions of the spatio-temporal pattern (Figure 5.25). However, looking at 

10 ms-windows (e.g. Figure 5.26), there is clearly an enhancement at the transition 

between normal and impaired regions (around 1.5 kHz) due to the spatial edge created 

by the impairment. 

To quantify the synchrony of the LIN's response to formants of the speech stimu­

lus, power ratios of synchronous rates defined by Miller et al. [1997] were computed. 

The synchronized rate: 

,"'N-1 w(n)s(n)e-j27rkn/NI
R(kft) = =L...J=n"--=~0=====--- (5.16)VN L::~ol w2(n) 

is the Fourier transform of the Hamming windowed PSTH, w(n) · s( n). N is the length 

of the window and ft is the frequency resolution of the calculation, i.e., the inverse 
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Figure 5.22: 10 ms-window of LIN processing of speech presented to 
a normal ear at 35 dB SPL starting at 1.1 s into the sentence. F1- F4 
indicate the first through to fourth formant frequencies. 
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Figure 5.23: LIN processing of speech presented to a normal ear at 65 dB 
SPL. 
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Figure 5.24: 10 ms-window of LIN processing of speech presented to a 
normal ear at 65 dB SPL starting at 1.1 s into the sentence. 
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Figure 5.25: LIN processing of speech presented to a normal ear at 95 dB 
SPL. 
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Figure 5.26: 10 ms-window of LIN processing of speech presented to a 
normal ear at 95 dB SPL starting at 1.1 s into the sentence. 
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of the window duration. For the purposes of this investigation, a 12.75 ms-Hamming 

window was applied. The denominator in Equation 5.16 corrects the attenuation 

incurred by the window, w(n), normalizing the Fourier transform to units of spikesjs. 

The power ratio defined by: 

(5.17) 


provides a measure of "the degree to which synchrony to a particular formant dom­

inates the response" [Miller et al., 1997, p.3604]. (m · Fx) are the harmonics of the 

formant, Fx, and (n · Fo) are the harmonics of the fundamental frequency, F0 . (u · Fx) 

and ( v · F0 ) are limited to frequencies less than or equal to 5 kHz because phase lock­

ing of auditory nerve fibres to stimuli has only been observed below that frequency. 

For further background information on these measures and details of them, the reader 

is referred to the article by Miller et al. [ 1997]. 

Figures 5.27, 5.28 and 5.29 were generated from the same data as Figures 5.21, 

5.23 and 5.25. As can be seen in Figures 5.27, 5.28 and 5.29, synchrony to formants 

deteriorates when the neural signal is processed by the LIN, regardless of the intensity 

of the stimulus and the impairment of the ear. At the output of the LIN, synchrony 

to the third formant is non-existent. There are only traces of synchrony to the second 

formant in neurons of CFs that are very close to the formant frequency. Synchrony 

is only significant at the output of the LIN to the first formant because the auditory 

nerve response is most highly synchronized to this formant. 

Numerous simulations on the same sentence were run with various combinations 

of neural and network parameter values. All of these simulations produced results 

similar to the ones described above in terms of both spatia-temporal spike rate pat­

terns and synchrony. Note that the model parameters used in the synthesized speech 

simulations presented herein were those that generated the greatest contrast enhance­

ment in the spontaneous-type input simulations. Hence, suppression of uniform input 

and contrast enhancement, characteristic of lateral inhibition, that were found was 

expected in the spatia-temporal patterns of output from the LIN. 
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Figure 5.27: Power ratios as a measure of synchrony to the LIN's re­
sponse to speech presented to a normal ear at 35 dB SPL. 
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Figure 5.28: Power ratios as a measure of synchrony to the LIN's re­
sponse to speech presented to a normal ear at 65 dB SPL. 
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Figure 5.29: Power ratios as a measure of synchrony to the LIN's re­
sponse to speech presented to an impaired ear at 95 dB SPL. 
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Chapter 6 


Discussion 


The results reported in the previous chapter demonstrate that a uniform, single­

layer LIN model of spiking neurons can be made to behave in a fashion similar to 

that of the simpler LIN models of Kral and Majernik, Gerken, and Shamma. For 

sets of parameters that are able to perform contrast enhancement, the results for 

the spontaneous-type input are similar to those found by Kral and Majernik, and 

Gerken. Specifically, this LIN enhances the edge between normal and impaired regions 

of hearing by producing a spurious peak and valley and sharpens tone-like input as 

does Gerken's model. A difference arises when the magnitudes of the spurious peak 

and valley relative to the input edge or peak height are considered. Gerken's non­

spiking LIN model appears to generate much greater contrast enhancement than this 

spiking LIN model. This LIN model is similar to Kral and Majernik's model in that 

it produces spurious peaks at spatial edges in the input, sharpens tonal input, and 

suppresses uniform regions of input. The spiking LIN model was also able to enhance 

large, rapid spatial changes, the lower harmonics and formants in speech-driven neural 

activity, just as Shamma's model does. However, the spiking LIN model was only 

able to perform such spatial contrast enhancement for fairly high intensity stimuli. 

Although most of the model configurations presented did perform contrast en­

hancement, this behaviour was difficult to achieve as it requires a very narrow range 

of neural and network parameters and a lot of coincident input. In pilot tests that 
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invob·ed stimulating the Bruce et al. model of the ear with band-passed noise, it was 

found that without convergent auditory nerve fibres, contrast enhancement could not 

be achieved by the LIN due to the low levels of input activity. At low levels of input 

activity, the frequency of spikes is low, which then elicits few output spikes. Because 

the f:equency of both excitatory and inhibitory inputs are low, the chances of them 

occurring close enough in time for the inhibitory action to have any effect on the exci­

tatory action is slim. Without such coincidence of excitatory and inhibitory activity, 

later.1l inhibition is ineffective. To increase the likelihood of coincident inhibitory 

activity, the input activity had to be increased. Input activity was increased by sim­

ulating convergent input: five auditory nerve fibres for the results presented. The 

difficulty of the spiking LIN model achieving contrast enhancement is also manifested 

in the smaller spurious peaks and valleys, and the need for higher intensity stimuli 

as ccmpared to the existing non-spiking models and the results shown in Figure 5.11. 

This latter point is magnified by the fact that Kral and Majernik, and Shamma's 

mod~ls are nonrecurrent models while the model presented herein is recurrent. Re­

current networks may be thought of as performing a similar function to an infinite 

number of nonrecurrent, feed-forward network layers. In the context of LINs, the 

grea;er the number of layers in a nonrecurrent network, the more pronounced the 

lateral inhibitory effect, as is evident in Kral and Majernik's [1996] results. Hence, it 

would be expected that a recurrent LIN would achieve greater contrast enhancement 

than a single-layer, nonrecurrent network. 

The foregoing explanation is reasonable because non-spiking LIN models use the 

graded membrane potentials to convey information. Since the time course of graded 

potmtial responses is much longer than that of action potentials, the coincidence of 

excLatory and inhibitory input over time is less critical. Hence, contrast enhance­

ment is achieved more easily with a network of non-spiking neurons. This might 

explain why the retina performs contrast enhancement so effectively. All the cells 

and neurons peripheral to the optic nerve transmit information bearing signals via 

graded potentials and it is a network of these non-spiking cells that performs contrast 
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enhancement (as described in Section 3.1). 

For synthesized speech stimuli, the synchrony of LIN neural activity to the formant 

frequencies is highly degraded compared to that of the auditory nerve. A possible 

explanation for this observation is that the LIN model attenuates the neural activity 

so much that synchrony is largely lost. Even though the LIN model does enhance 

formant frequencies via contrast enhancement in the mean spike rates, the function 

of the LIN as a speech feature extractor is dependent on what the neural code is. The 

current trend in thought, based on psychophysical and neurophysiologic evidence, is 

that synchrony of neural activity to the stimulus is important at low frequencies, 

while average spike rate is the only code for high frequencies [Shamma, 1985]. Due 

to its inability to maintain or enhance synchronous responses, this LIN model could 

only be, at best, a weak speech feature extractor. 

Spiking neurons organized in a single-layer, recurrent LIN architecture is therefore 

unlikely to be how contrast enhancement and speech feature extraction is realized in 

the central auditory system if the action potential is the primary information carrier. 

Consequently, this particular model does not lend strong support to the idea that a 

subcortical LIN of spiking neurons contributes to a central mechanism of tinnitus. 

Krezberg and colleagues [2004] have found that some neurons in the visual system 

of flies and the central nervous system of leeches use both the graded potential and 

action potential of spiking neurons to transmit information synaptically. Since non­

spiking neurons have not been found in the auditory system, it is conceivable that 

auditory neurons use the graded, subthreshold portion of the membrane potential to 

achieve contrast enhancement while the spikes are primarily used to convey temporal 

cues. By comparing the plots in Figure 6.1, it can easily be seen that the membrane 

potential conveys contrast enhancement far better than the spikes alone, even when 

the spike trains and not the graded portion of the membrane potential is used for 

inhibitory interactions. One can imagine that if the graded portions of the mem­

brane potentials were used to modulate lateral inhibition, the contrast enhancement 

achieved would be more like the results that Gerken and Shamma presented. 
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Figure 6.1: Comparison of the graded potential and action po­
t entials as information carriers for contrast enhancement. The 
preliminary LIN model of 100-neuron network with lateral in­
hibitory connections was used. Inhibitory connections span 
6 neurons to either side of any given neuron i.e. total span 
of 13 neurons. Ot her parameters values were set as follows: 
t step = 0.1 ms for 7 s, T = 3 ms, a = 2, Vth = 0.25 V, tref = 2 ms , 
CXEP SP = 5, CXJPSP = 2. 
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It should be noted that other neural network architectures could perform contrast 

enhancement more effectively or better explain the mechanisms of tinnitus than the 

one considered in this study. As mentioned in Section 3.1, on-CF inhibition could 

be another mechanism of contrast enhancement. If the on-CF inhibitory fields are 

considerably broader than the target neuron's excitatory response area, then results 

that are similar to those found in this study could theoretically be produced. Synaptic 

plasticity that could be modulated by back projections from the auditory cortex may 

also facilitate contrast enhancement [Suga & Ma, 2003]. Such plasticity (that was not 

incorporated into this model) could cause a shift in the CFs of neurons that results in 

a reduced representation, i.e., centrifugal CF shift. This compressed reorganization 

would thus increase contrast enhancement. The plasticity may occur in response 

to input sustained over some period of time. If the balance between the efficacy of 

excitatory and inhibitory inputs of neurons responding to a sustained tone is skewed, 

a spurious peak in the profile of neural activity might result after the stimulus is 

terminated. Such a spurious peak could be perceived as tinnitus. 

An interesting observation from the results of the impaired ear processing the 

95 dB SPL synthesized speech stimulus is that contrast enhancement does effect the 

transition between normal and impaired regions: the LIN further distorts the impaired 

response by sharpening the edge of impairment. 
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Claapter 7 

C«lnclusions 

7.1 Summary 

To verify the validity of existing models, which employ non-spiking neural units to 

represent actual spiking neurons in a LIN, serving as a mid-brain auditory processor 

that enhances spatial changes or features of speech signals, a more biologically real­

istic model was developed. By running numerous computer simulations it was found 

that a uniform, single-layer recurrent LIN of leaky integrate-and-fire neurons is able 

to p~~rform contrast enhancement under very specific conditions and configurations. 

Contrast enhancement can be achieved by a spiking LIN with slow inhibitory conduc­

tancO) dynamics, a densely connected network of neurons with hyperpolarizing-type 

inhibition and a short refractory period. Inhibitory interactions are most effective 

when the threshold potential is set close to 20 m V above the resting potential of 

the cell, which just allows a single excitatory input spike to induce an output spike 

in the absence of inhibitory input, since the presence of any inhibition will prevent 

an cutput spike from being generated. For a membrane capacitance of 7.5 pF, a 

membrane time constant of around 3 ms is required to produce the greatest contrast 

enhc,ncement. The time-course of the disturbance in excitatory conductance due to 

a single input spike must be similar to the membrane time constant and an order 

of magnitude shorter in duration than that of the inhibitory conductance to achieve 
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significant contrast enhancement (e.g., 2 ms versus 20 ms, respectively). Even if the 

parameters of the LIN of spiking neurons are optimally set, the input must have large 

and very steep spatial changes for contrast enhancement to be evident at the output 

of the LIN model. Non-spiking neuron models proved superior at producing contrast 

enhancement than spiking neuron models. It may be concluded that spiking neurons 

organized in a single-layer LIN are unlikely to be the primary mechanism of contrast 

enhancement in the subcortical region of the central auditory system if the action 

potential is the primary information carrier. This conclusion contradicts those drawn 

in previous investigations by Gerken [1996] and Kral & Majernik [1996] that a LIN is 

likely to be the edge-enhancing central auditory processor. Since non-spiking neurons 

have not been found in the auditory system, this particular LIN is not supported as 

a central mechanism of tinnitus. 

The LIN model is also a poor speech feature extractor because it is unable to 

pass or enhance the synchronous responses present at the level of the auditory nerve, 

and because it requires fairly high (demonstrated at 65 dB SPL and higher) intensity 

stimuli in order to enhance spike rate representations of formant frequencies and 

spatial edges. The latter finding shows that Shamma's model [1985] is highly limited 

in its representation of spiking neural activity. Additionally, the LIN further distorts 

the impaired response of the auditory nerve by enhancing the edge of impairment 

when a speech stimulus is presented at 95dB SPL. 

The results of this study do not preclude the possibility of other LINs performing 

contrast enhancement or speech feature extraction in the central auditory system. For 

example, the recent physiological study by Krezberg and colleagues [2004] has shown 

the existence of a mixed neural signal of graded potentials and action potentials in flies 

and leeches. Such a mixed signal could theoretically allow spiking neurons to produce 

strong contrast enhancement. Further physiological and computational studies would 

have to be conducted to ascertain the existence and plausibility of such signals in the 

auditory system. 
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7.2 Suggestions for Future Work 

To clarify the advantages of using a mixed signal instead of action potentials, 

the LIN model could be modified to incorporate the use of the subthreshold, graded 

mern brane potential in the lateral connections. For example, the hypothesis that the 

grad~d potential actually codes for features that were thought to be coded for by the 

mean spike rate, while spikes serve to amplify temporal fluctuations via synchrony to 

the stimulus could be tested with a modified model. Simultaneously, neurophysiolog­

ical Btudies could be conducted in search of the use of mixed signals by the central 

audi1;ory system. 

A weakness of the current LIN model is that its temporal processing is not entirely 

realiBtic. Lateral inhibitory connections are realized in vivo by separate interneurons 

(e.g.. horizontal cells in the retina) while this model uses projections from the neurons 

therrselves to realize inhibitory interactions. Another reason is that neural signal 

processing delays are not represented. Since the leaky integrate-and-fire model is a 

point model, there would be little benefit to representing interneurons separately in 

the current LIN model because the additional delays incurred by such interneurons 

were not modeled. A significant improvement that could be made to this spiking 

LIN model would be to incorporate delays to simulate action potentials having to 

travErse a neuron and across synapses and adding interneurons. These modifications 

would improve the accuracy of the LIN's processing of temporal cues, thereby making 

the model more realistic. The modified model would thus improve the accuracy of 

computational investigations of bursting behaviour in neural activity and synchrony 

betw~en neurons. Such studies might elucidate Moller's hypothesis on the central 

mechanism of tinnitus (described briefly in Section 3.2). 
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Appendix A 

The Bernoulli Approximation of a 

Poisson Process 

A Poisson process is a point process where the random variable is the number 

of events (which are spikes in this study) that occur in an interval (size of the time 

bins), ~. The random variables are independent so long as the time intervals are 

non-overlapping. The Bernoulli approximation of a Poisson process is a binomial 

process that is often used when dealing with discrete time. In the context of this 

investigation, the Bernoulli approximation assumes that ~' is small enough that the 

firing rate, >.(t), is constant within the time bins and no more than one spike can occur 

in one time bin. Each time bin contains a discrete random variable with a probability 

that a spike will occur in that bin of>.·~ (a Bernoulli distribution). Equation A.18 

(c.f. Edwards & Wakefield, 1990, Eqns.3 and 4) relates the probability of at least one 

spike occurring in a bin from the Poisson process (left side) to that of the Bernoulli 

approximation (right side) via a Taylor Series expansion of the decaying exponential. 

1Ll ->.A ->.Ll (>.~)2 (>.~)3
>.e dt = 1 - e = 1 - [1 - >.~ + -- - -- + · · ·] ~ >.~ (A.18) 

0 2! 3! 

From Equation A.18 and Figure A.1 it can be seen that the approximation only holds 

for small >.~. The expected number of spikes within a bin (the first order moment) is 
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the same for both the Bernoulli approximation and the Poisson process, regardless of 

the s[ze of .X~. However, for higher order statistics such as the variance, the Bernoulli 

approximation becomes inaccurate as).~ increases, as shown in Figure A.2. Hence, 

very small .X~s are used in this study. 
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Figure A.l: Comparison of the probability of a single spike 
occurring within a time bin as derived using the Bernoulli ap­
proximation versus the Poisson process. 
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Figure A.2: Comparison of the variance in the number of spikes 
occurring within a time bin as derived using the Bernoulli ap­
proximation versus the Poisson process. 
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A]ppendix B 

Nlimerical Methods Employed 

An ordinary differential equation y'(t) = f(t, y(t)) with the initial condition 

y(t0 ) = y0 , has the exact solution, y(t), given by: 

i
tn+l 


y(tn+l) = y(tn) + y'(t)dt (B.19) 

tn 

according to the fundamental theorem of calculus. Yn+l, an approximation of y(t), 

is found by approximating the definite integrals. There are a number of ways to 

approximate the definite integrals, including the two methods described herein. 

B.l Euler's Method 

Euler's method computes Yn+l by assuming that the rate of change, f(t, y(t)), 

remains constant over a short period of time, ~- The definite integral is then approx­

imated by the area of a rectangle giving the equation: 

Yn+l = Yn + f(Yn) ·~ (B.20) 
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B.2 Fourth-order Runge-Kutta Algorithm 

Yn+I can be found using Simpson's rule (i.e., approximating the definite integral 

with the area under a parabola). Hence, acquiring Yn+l by means of the fourth-order 

Runge-Kutta algorithm involves computing the four numbers k1 through k4 given by: 

kl /:lf(Yn) 
1 

k2 /:lf(Yn + 2ki) 

1 
k3 f:lJ(Yn + 2k2) 

k4 /:lf(Yn + k3) 

(B.21) 


These four numbers are then used to approximate the definite integral of Equa­

tion B.19 to give Yn+l as shown in Equation B.21. 

The main advantage of using the fourth-order Runge-Kutta method over lower 

order methods such as the Euler or Improved Euler methods is that greater accuracy 

can be achieved with the same size of time steps. The disadvantage of higher order 

methods is that they are more computationally expensive. The fourth-order Runge­

Kutta method seems to provide a good balance between these two considerations. 
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A:ppendix C 

M:ATLAB Code 

A sample of the set of scripts with which simulations were run is provided in this 

appmdix. In all of the simulations, three functions were called: weight.m to generate 

V; vreight_2gauss.m to generate W; and Greenwood.m to calculate the characteristic 

frequencies associated with the spatial location of the neurons along the basilar mem­

brane or vice versa. The first section contains the scripts for uneven spontaneous-type 

input: the preliminary version of the model, spiking.m; the 'base case', EEopt.m; the 

non-spiking version of the model, NONspiking.m; and the functions that they call 

(wei;?;ht.m, weight_2gauss.m, and Greenwood.m). The scripts used to generate the 

conbur plots shown in Section 5.1 were looped versions of the 'base case'. An ex­

ample of such a script run on a GRID server is given in Section C.l.2. The second 

section contains the scripts for the processing of speech-like input. These simulations 

werE run by nested function calls. The main script, hear.m, loads the sound pressure 

wave and initializes the parameters, then calls the function earandlin.m to compute 

the response of the ear and LIN. earandlin.m then initializes the fixed parameters and 

calls ear.m that passes only the desired input and output data while discarding the 

unnecessary information returned by the Bruce et al. model. The function ear.m also 

sum3 the results of repeated calls of the Bruce et al. model to acquire a representation 

of convergent input of the same characteristic frequency to the spiking LIN model. 

Similar to ear.m, earandlin.m returns the desired results while discarding the fixed 
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parameters and environment variables that need not be stored. Finally, the mam 

script contains commands to store the results and produce figures for analysis. 

C.l 	 Scripts for Simulations with Spontaneous-type 
Input 

C.l.l 	 spiking.m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% spiking.m % 
% - ­ preliminary version of the recurrent LIN (spiking) model in the % 
% central auditory pathways % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 


clear all; 

close all; 

clk=clock; 

h=waitbar(O,'Starting ... ','Name','spikingLIN.m Progress'); 


%% Create time steps [s] 

tsp = [O:ie-4:5]; %Max. run time is 7 sees (for my computer) 


%% Set number of neurons to be used (>50) 

numofneurons = 100; 


%% Membrane Time Constant [s] 

mtau = 1e-3; 


%% Create random input 

rand ( 'seed' , 0) ; 

inputs_uniform = rand(numofneurons,length(tsp)); 


%% Gerken's mean, spontaneous firing rate 

%% [spikes/s] 

%% -- impaired hearing when highspon > lowspon 

%% -- normal hearing when highspon = lowspon 

highspon=200; 

lowspon=20; 

down=[highspon (highspon+lowspon)/2 lowspon]; 

wave = gausswin(10,4)*210+lowspon; 

bigsig(1:ceil(numofneurons/2)-1)=highspon; 

bigsig(ceil(numofneurons/2):ceil(numofneurons/2)+2)=down(1:end); 

bigsig(ceil(numofneurons/2)+3:numofneurons) = lowspon; 

bigsig(ceil(numofneurons/1.2):ceil(numofneurons/1.2)+length(wave)-1)=wave(1:end); 

bigsig=bigsig.'; 


%% Random 	 input corresponds to Gerken's average firing rate 
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inputs = inputs_uniform < repmat (bigsig*tsp(2), 1, lengthCtsp)); 


%% Define Excitatory Post-Synaptic Current Filter (normalized) 

EPSCa1pha = 5; 

EPSC=(1/mtau*tsp(1:round(0.01/tsp(2))).*exp(-EPSCalpha/mtau*tsp(1:round(0.01/tsp(2)))))/ ... 


n.ax(1/mtau*tsp(1:round(0.01/tsp(2))).*exp(-EPSCalpha/mtau*tsp(1:round(0.01/tsp(2))))); 

%% Define Inhibitory Post-Synaptic Current Filter (normalized) 

IPSCc:.lpha = 2; 

IPSC=,(1/mtau*tsp(1:round(0.01/tsp(2))).*exp(-IPSCalpha/mtau*tsp(1:round(0.01/tsp(2)))))/ ... 


ntax(1/mtau*tsp(1:round(0.01/tsp(2))).*exp(-IPSCalpha/mtau*tsp(1:round(0.01/tsp(2))))); 

%% Shape excitatory spikes 

inpu1:s2 = filter (EPSC, 1, inputs, [] , 2) ; 


%% Effectiveness coeffients of inputs 
%% -·· widthofwindow=1 b/c no lateral excitation 
%% -·· selfsyn=1 b/c not using this function to account for inhibition 
V = ~reight(1,size(inputs2,1),1); 

%% Coefficients of inhibitory interactions (2 gaussian humps as in Gerken's model) 

%% -·· a = arbitrary coefficient describing weight of inhibitory compared 

% to excitatory interactions 

a= :1; 


W = ueight_2gauss(13,size(inputs2,1)); 

W = a*W/max(sum(W,2)); 


%% Initialization 

spik•~s=zeros (numofneurons, length (tsp)); % keeps track of spikes generated 

spik·~s2=zeros(numofneurons,length(tsp)); %for lateral inhibition 

[spikes2(: ,1) ,Zi] = filter(IPSC,1,spikes(: ,1), [] ,2); %all Os 

y = :~eros (numofneurons, length (tsp)) ; % [V] 

y(:,L) = V*inputs2(:,1)*tsp(2)/mtau; %set initial condition of neurons [V] 

ythr·~s= 0. 25; % threshold potential [V] 

tref = 2e-3; % refractory period 

tref~amp = round(tref/tsp(2)); %refractory period[# of samples] 


%% C1lculate output membrane potential [V] using Shamma's rate equation 

for Lp=2:length(tsp); %% lp=n+1 index 


fn = [V*inputs2(: ,lp-1) - W*spikes2(: ,lp-1) - y(: ,lp-1)] /mtau; % rate eqn 

1.% Using Euler's method of approximation (rectangles) 
1. y(:,lp)=y(:,lp-1)*(1-1/mtau*tsp(2))+V*inputs2(:,lp)/mtau*tsp(2)- ... 
1. W*spikes2(:,lp-1)/mtau*tsp(2); 
1. y(:,lp)=y(:,lp-1) + tsp(2)*fn; %same eqn 

1.% Using the Runge-Kutta method of approximation (parabolas) 

K1 = fn*tsp(2); 
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K2 (fn- 0.5*K1/mtau)*tsp(2); 

K3 (fn- 0.5*K2/mtau)*tsp(2); 

K4 (fn- K3/mtau)*tsp(2); 

y(:,lp) = y(:,lp-1) + (1/6)*(K1 + 2*K2 + 2*K3 + K4); 


%% Determine if 'lp' is in a refractory period. 

%% If so, set membrane potential to zero. 

% Are there any spikes within the last tref sees? 

p=any(spikes(:, max(lp-trefsamp,1):lp-1),2); 

p=p'; %column to row vector 

m=find(p); 

y(m,lp)=O; 


%% If not in refractory period and membrane potential is > threshold, 

%% generate a spike 

I=find(y(:,lp)>ythres); 

y(I,lp)=S; 

spikes(I,lp)=1; 


[spikes2(:,lp),Zi] = filter(IPSC,1,spikes(:,lp),Zi,2); 


waitbar(lp/length(tsp),h,'Computing... '); 
end 

%% Calculate CF associated with each neuron: 
f = zeros(1,numofneurons); 
for i = 1:numofneurons 

f(i)=Greenwood(1-i/numofneurons, 'freq', 'man'); 
end 

close(h) % close waitbar 


%% Plot Graph: 

figure 

semilogx(f,sum(inputs,2)./tsp(end),'r-.'); 

hold on; 

semilogx(f, sum(spikes,2)./tsp(end),'k-'); 

xlabel('Characteristic Frequency [Hz]'); 

ylabel('Mean Firing Rate (spikes/s)'); 

grid; 

xlim([f(1) f(end)]); 

legend('input','output') 


%% Print variables used on graph: 

var1=strcat('tsp=',num2str(tsp(2))); 

var2=strcat('mtau=', num2str(mtau)); 

var3=strcat('a=' ,num2str(a)); 

var4=strcat('EPSCalpha=', num2str(EPSCalpha)); 

varS=strcat('IPSCalpha=', num2str(IPSCalpha)); 
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var6=strcat('bigsig=', num2str(bigsig(1))); 
var=strvcat(var1,var2,var3,var4,var5,var6); 
text(max(f)*0.75, max(mean(y,2))*0.75, var); 

C.1.2 EEopt.m 
%%%%~.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% EEc·pt .m (Revised Base Case) % 
% recurrent LIN (spiking) in central auditory pathways % 
% -- poisson input represents spontaneous activity from auditory nerve% 
% ** to be run on GRID server as an array job for ptsdown % 
%%%%~:%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear all; 

ClOSEi all; 

clk=clock; 

% h=~raitbar(O, 'Starting ... ', 'Name', 'EEopt.m Progress'); 


% ptndown=[2:2:20]; 


%% CJ:eate time steps [s] 

tsp" [0:2e-5:5]; %simulation length 


%% Snt number of neurons to be used (>50) 

numo::neurons = 100; 


%% M<!mbrane Parameters: 

mtau = 1.5e-3; 

C=Be·-12; % Membrane capacitance [F] 


%% C:::eate random input 

rand (' seed' , 0) ; 

inpu·t;s_uniform = rand(numofneurons,length(tsp)); 


%% G·~rken's mean, spontaneous firing rate [spikes/s] 

%% -- impaired hearing when highspon > lowspon 

%% -- normal hearing when highspon = lowspon 

highspon=200; 

lOWS?On=2Q; 

down=[highspon (highspon+lowspon)/3 lowspon]; 

% wave = gausswin(10,4)*210+lowspon; % tone 

bigsig(l:ceil(numofneurons/2)-i)=highspon; 

bigsig(ceil(numofneurons/2):ceil(numofneurons/2)+2)=down(1:end); 

bigsig(ceil(numofneurons/2)+3:numofneurons) = lowspon; 

% bigsig(ceil(numofneurons/1.2):ceil(numofneurons/1.2)+length(wave)-1)=wave(1:end); 

bigsig=bigsig.'; 


%% Random input corresponds to Gerken's average firing rate 

inputs= inputs_uniform < repmat(bigsig*tsp(2),1,length(tsp)); 
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%% Define Excitatory Synapse Parameters: 

EsynE=0.1; %excitatory reversal potential [V]; must be> ythres 

GEalpha = 11; 

GEdur=O. 01; 

GE = (GEalpha/mtau/10)~2*tsp(1:round(GEdur/tsp(2))).* ... 


exp(-GEalpha/mtau*tsp(1:round(GEdur/tsp(2)))); 
sfac=3.0365e-010; % based on GEalpha=9 and Gialpha=0.5 
GE=sfac*GE; % scaled excitatory conductance [S] - scaling factor much match GI 

%% Define Inhibitory Synapse Parameters: 

Esyni=-0.02; %inhibitory reversal potential [V]; <resting potential 

% Esyni=O; % Shunting Inhibition reversal potential [V]; -= yrest 

Gialpha=0.5; 

Gidur=0.01; 

GI = (Gialpha/mtau/10)~2*tsp(1:round(Gidur/tsp(2))).*··· 


exp(-Gialpha/mtau*tsp(1:round(Gidur/tsp(2)))); 
GI=sfac*GI; % scaled inhibitory conductance [S] - scaling factor must match GE 

%% Shape excitatory spikes 

inputs2=filter(GE,1,inputs,[] ,2); %shaped conductance 


%% Effectiveness coeffients of inputs 

%% -- widthofwindow=1 b/c no lateral excitation 

%% -- selfsyn=1 b/c not using this function to account for inhibition 

V = weight(1,size(inputs2,1),1); 


%% Coefficients of inhibitory interactions (2 gaussian humps as in Gerken's model) 

%% a = arbitrary coefficient describing weight of inhibitory compared 

%% to excitatory interactions 

% a = 36; % to get back original amplitude of inhibition as when normalized 

a=32; 

W weight_2gauss(13,size(inputs2,1)); 

W = a*W/max(sum(W,2)); 


%% Initialization 

spikes=zeros(numofneurons,length(tsp)); %keeps track of spikes generated 

spikes2=zeros(numofneurons,length(tsp)); %for lateral inhibition 

[spikes2(:,1),Zi]=filter(GI,1,spikes(:,1),[],2); %all Os 

y=zeros(numofneurons,length(tsp)); %Membrane potential [V] 

y(:,1) = V*inputs2(:,1)*tsp(2)/mtau; %set initial condition of neurons [V] 

tref=2e-3; % absolute refractory period 

trefsamp=round(tref/tsp(2)); %refractory period[# of samples] 

spikevalue=0.15; 

% nominal threshold potential [V] : 

yth=0.015; 

ythres=yth*ones(numofneurons,length(tsp)+2*trefsamp); 


%% Calculate output membrane potential [V] using 
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%% Shamma's rate equation modified with Koch p19 
%% - modified to account for synaptic conduction 
for lp_time=2:length(tsp); % lp_time=n+1 index 

'1,% Determine if 'lp_time' is in a refractory period. 

~.% If so, set threshold potential higher. 

i, Did a spike occur in the last time step? 

p=any(spikes(:,lp_time-1),2); 

p=p'; % column to row vector 

i.f 	any(p) 


m=find(p); 

ythres(m,lp_time:lp_time+trefsamp)=5; 

ythres(m,lp_time+trefsamp+1:lp_time+2*trefsamp)= ... 


repmat(5*exp(-3.5*[0:trefsamp-1] ./trefsamp),length(m),1); 

Emd % if p 


fn = V*(inputs2(: ,lp_time-1) .*(EsynE-y(: ,lp_time-1)) ./C) .. . 

+W*(spikes2(:,lp_time-1).*(Esyni-y(:,lp_time-1))./C) .. . 

-y(:,lp_time-1)./mtau; %rate eqn 


~~%Using the 4th-order Runge-Kutta method of approximation (parabolas): 

IC1 fn*tsp (2) ; 

IC2 (fn-0. 5*K1/mtau) *tsp (2) ; 

IC3 (fn-0.5*K2/mtau)*tsp(2); 

IC4 (fn-K3/mtau) *tsp (2) ; 

:r(:,lp_time)=y(:,lp_time-1) + (1/6)*(K1 + 2*K2 + 2*K3 + K4); 


:r.% Set refractory period after a spike: 

'f, Are there any spikes within the last tref sees? 

ph=any(spikes(:, max(lp_time-trefsamp,1):lp_time-1),2); 

)h=ph'; %column to row vector 

1nh=f ind (ph) ; 

y(mh,lp_time)=O; 


1.% If not in refractory period and membrane potential is > threshold, 

1.% generate a spike: 

I=find(y(:,lp_time)>ythres(:,lp_time)); 

r(I,lp_time)=spikevalue; 

spikes(I,lp_time)=1; 

1. shaped inhibitory conductance: 

[spikes2(:,lp_time),Zi]=filter(GI,1,spikes(:,lp_time),Zi,2); 


% waitbar(lp_time/length(tsp),h,'Computing ... '); 
end % for lp_time 

%% Calculate CF associated with each neuron: 
f = zeros(1,numofneurons); 
for i = 1:numofneurons 

f(i)=Greenwood(1-i/numofneurons, 'freq', 'man'); 
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end 

elptime=etime(clock,clk)/3600; %Time elapsed [hours] 
%close(h) %close waitbar 
save EEopt_inslope.mat inputs spikes tsp elptime f a GEalpha Gialpha mtau yth C 

disp('Simulation is complete and has been saved.') 

%% Plot Graphs: 
%figure 
%plot(tsp,y(10,:),'k--'); 
%title('Neuron #10'); 
%xlabel('Time [s]'); 
%ylabel('Membrane Potential [V] ') 

%figure 
% % hold on; 
%semilogx(f, sum(spikes,2)./tsp(end)); 
%hold on 
%semilogx(f,sum(inputs,2)./tsp(end),'r-.'); 
%% title(['\bf 4-point edge']); 
%xlabel('Characteristic Frequency [Hz]'); 
%ylabel('Mean Spike Rate [spikes/s]'); 
%xlim([f(1) f(end)]); 
%legend('Dutput','Input') 
%grid; 

C.1.3 NONspiking.m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%NONspiking.m (Jennifer Ko, March 2004) 

%-- recurrent LIN in central auditory pathways 

%-- poisson input represents spontaneous activity from auditory nerve 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 


clear all; close all; clk=clock; 

h=waitbar(O,'Initializing... ','Name','NONspiking.m Progress'); 


%% Create time steps [s] 

tsp = [0:2e-5:5]; 


%% Set number of neurons to be used (>50) 

numofneurons = 100; 


%% Membrane Parameters: 

mtau = 1e-3; %Membrane time constant [s] 


%% Create random input 

inputs_uniform = rand(numofneurons,length(tsp)); 
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%% Gerken's mean, spontaneous firing rate 

%% [spikes/s] 

%% -- impaired hearing when highspon > lowspon 

%% -- normal hearing when highspon = lowspon 

high~pon=400; lowspon=20; down=[highspon (highspon+lowspon)/2 

loWSf·On] ; bigsig=zeros (1 ,numofneurons); 

% wave = gausswin(10,4)*210+lowspon; % tone 

bigsjg(1:ceil(numofneurons/2)-1)=highspon; 

bigsjg(ceil(numofneurons/2):ceil(numofneurons/2)+2)=down(1:end); 

bigsjg(ceil(numofneurons/2)+3:numofneurons) = lowspon; 

% bie;sig(ceil(numofneurons/1.2):ceil(numofneurons/1.2)+length(wave)-1) wave(1:end); 

bigsig=bigsig. ' ; 


%% R<ffidom input corresponds to Gerken's average firing rate 

inputs= inputs_uniform < repmat(bigsig*tsp(2),1,length(tsp)); 


%% DElfine unitary input 

Ialpha=9; dur = 0.005; I 

0. 5* (Ialpha/mtau/10V2*tsp(1: round(dur/tsp(2))). * ... 

nxp(-Ialpha/mtau*tsp(1:round(dur/tsp(2)))); 

%% Shape excitatory input 

inputs2=filter(I, 1, inputs,[] ,2); % injected voltage [V] 


%% E::fectiveness coeffients of inputs across BFs 

%% -·- widthofwindow=1 b/c no lateral excitation 

%% -·- selfsyn=1 b/c not using this function to account for inhibition 

V = 1;eight (1 ,numofneurons, 1); 


%% Coefficients of inhibitory interactions (2 gaussian humps as in Gerken's model) across BFs 

%% -·- a = arbitrary coefficient describing weight of inhibitory compared to excitatory intera 

a=1; 

W = '<eight_2gauss(13,numofneurons); W = a*W/max(sum(W,2)); 


%% l:litialization 

y=ze:ros(numofneurons,length(tsp)); % Membrane potential [V] 

y(:,l) = V*inputs2(:,1)*tsp(2)/mtau; % set initial condition of neurons [V] 


%% c~lculate output membrane potential [V] using Shamma's rate equation (4) 

%%with non-linearity (i.e. arctan) 

for lp=2:length(tsp); 


fn = (V*inputs2(:,lp-1)-W*y(:,lp-1)-y(:,lp-1))./mtau; % rate eqn 

1.% Using the 4th-order Runge-Kutta method of approximation (parabolas): 
K1 fn*tsp(2); 
K2 (fn-0.5*K1/mtau)*tsp(2); 
K3 (fn-0.5*K2/mtau)*tsp(2); 
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K4 = (fn-K3/mtau)*tsp(2); 

y(:,lp)=y(:,lp-1)+(1/6)*(K1+2*K2+2*K3+K4); 


waitbar(lp/length(tsp),h,'Computing ... '); 
end 

%% Calculate CF associated with each neuron: 
f = zeros(1,numofneurons); fori= 1:numofneurons 

f(i)=Greenwood(1-i/numofneurons, 'freq', 'man'); 
end 

elptime=etime(clock,clk)/3600; %Time elapsed [hours] 

close(h) %close waitbar 


%% Plot Graphs: 

figure plot(tsp,y(5,:)); title('Neuron #5'); xlabel('Time [s]'); 

ylabel('Membrane Potential [V] ') 


%figure 

%semilogx(f, mean(y,2)); 

% % hold on; 

%% semilogx(f, mean(inputs2,2),'r:'); 

%xlabel('Characteristic Frequency [Hz]'); 

%ylabel('Average Membrane Potential [V] '); 

%xlim([f(1) f(end)]); 

%legend('Output','Input') 

%grid on; 


C.1.4 weight.m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%weight.m function % 
%-- calculates weight coefficients determining % 
% the effectiveness of the inputs % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function V = weight(widthofwindow,numofneurons,selfsyn) 

%% Create a Gaussian wave: 
w=gausswin(widthofwindow).'; 

c=ceil(widthofwindow/2); 

%% Determine if self-synapsing or not for inhibition 
%if selfsyn==O 
% w(c) = 0; 
%end 

%% Create convolution matrix for Gaussian filter 
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Wtmp = convmtx(w,numofneurons-(widthofwindow-1)); 


%% Add rows to make convolution matrix square 

j=si:;:e (Wtmp, 1); 

d=2; 

p=1; 


whilE! d <= c 
\Ttmp = [Wtmp(p,d:end) zeros(1,d-1); Wtmp; zeros(1,d-1) Wtmp(j,1:end-p)]; 
d=d+1; 
p=p+1; 
j=j+1; 

end 


%% Account for missing excitation to first and last neurons 

rowsum=sum(Wtmp,1); 

check=any(rowsum<max(rowsum),1); 

ind=::ind(check); 

if sum(ind>O) 


d=2; 

p=1; 

1ihile p<c 


x=[Wtmp(p,d:end) zeros(1,d-1)]; 

Wtmp(p,: )=Wtmp(p,: )+x; 

z=[zeros(1,d-1) Wtmp(numofneurons-p+1, 1:end-d+1)]; 

Wtmp(numofneurons-p+1,:)=Wtmp(numofneurons-p+1,:)+z; 

d=d+2; 

p=p+1; 


·~nd 

end 

C.l.5 weight_2gauss.m 

%%%%'1.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%weight_2gauss.m function % 
%-- calculates weight coefficients that determine % 
% inibitory interactions % 
%%%%1.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function V = weight_2gauss(widthofwindow,numofneurons) 

%% Create two consecutive Gaussian waves whose spacing depends on odd/even width: 
if mod(widthofwindow,2)==0 

w [gausswin(widthofwindow/2-1).' 0 0 gausswin(widthofwindow/2-1).']; 
else 

w = [gausswin(floor(widthofwindow/2)).' 0 gausswin(floor(widthofwindow/2)).']; 
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end 

c=ceil(widthofwindow/2); 

%% Create convolution matrix for a two-Gaussian filter 

Wtmp = convmtx(w,numofneurons-(widthofwindow-1)); 


%% Add rows to make convolution matrix square 

j=size(Wtmp,1); 

d=2; 

p=1; 


while d <= c 
Wtmp = [Wtmp(p,d:end) zeros(1,d-1); Wtmp; zeros(1,d-1) Wtmp(j,1:end-p)]; 
d=d+1; 
p=p+1; 
j=j+1; 

end 


%% Account for missing lateral inhibition to first and last neurons 

rowsum=sum(Wtmp,1); 

check=any(rowsum<max(rowsum),1); 

ind=find(check); 

if sum(ind>O) 


d=2; 

p=1; 

while p<c 


x=[Wtmp(p,d:end) zeros(1,d-1)]; 

Wtmp(p,: )=Wtmp(p,: )+x; 

z=[zeros(1,d-1) Wtmp(numofneurons-p+1, 1:end-d+1)]; 

Wtmp(numofneurons-p+1,:)=Wtmp(numofneurons-p+1,:)+z; 

d=d+2; 

p=p+1; 


end 
end 

V = Wtmp; 

C.1.6 Greenwood.m 
function y = greenwood(x,type,species,param) 
%GREENWOOD Greenwood's cochlear position function. 
% Usage 
% f greenwood(x) 
% f greenwood(x,'freq') 
% f greenwood(x,'freq',species) 
% f greenwood(x,'freq','other' ,param) 
% X = greenwood(f,'dist') 
% X = greenwood(f,'dist' ,species) 
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% x = greenwood(f,'freq','other' ,[A a k]) 

% J.rguments 

% X normalised distance from base 

% type 'freq' (default) or 'dist' 

% species 'man' (default) or 'cat' or 'other' or 'model' 

% param user supplied parameters for Greenwood's equation [A a k] 


% 

% David Au, 1994. 


if nargin < 3, 
npecies = 'man'; 

end 

if na.rgin < 2, 
1;ype = 'f'; 

end 

switch species 
case 'man' 

A 165.4; 
a= 2.1; 
k = 1; 

case 'cat' 
.~ 456; 
a= 2.1; 
k = 0.8; 

case 'model' 
'~ 320.8729543315967; 
a= 2.17938764568596; 
:{ = 0. 49548345352825; 

case 'other' 
.\ param(1); 
.'!. = param(2); 
:{ = param(3); 

othe:rwise 
·3rror ('unknown species') 

end 

swit:h type 
case 'freq' 

f =A* ( 10 .-(a*(1-x)) - k ); 
case 'dist' 

f = 1- 1/a * log10( x(:)/A + k); 
otherwise 

error('unknown type') 
end 
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C.2 Scripts for Simulations with Speech Input 

C.2.1 hear.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% hear.m % 

% recurrent LIN (spiking) in central auditory pathways % 

% -- input is from Ian's model of the auditory nerve % 

% -- conductance based synapses between Ian's model and LIN % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 


clear all; 

close all; 

clk=clock; 


% mcc -x earandlin.m 


% h=waitbar(O,'Starting ... ','Name' ,'Progress'); 


%%Set number of neurons to be used (>=50): 

numofneurons = 100; 


%% Calculate CF (aka BF) and distance associated with each neuron: 

bf=zeros(1,numofneurons); 

x=zeros(1,numofneurons); 

for i =1:numofneurons 


% Normalized distance from base of basilar membrane 

x(i)=1-(0.1+0.8*i/numofneurons); 

bf(i)=Greenwood(x(i), 'freq', 'man'); %Best frequency 


end 


%% Generate stimulus: 


%% * bandpassed white noise: 

% tsp = [0:1e-5:1]; %create time steps [s] for output from LIN 

% f=20e3; % lower sampling rate for generation of input [Hz] 

% reptime=tsp(end)*1e3; % time between stimulus repetitions [ms] 

% rand_noise=0.0001*randn(1,1*reptime*f*1e-3); 

% [Num,Den]=cheby1(10,0.5,[0.2 0.4]); %Filter (passband=2-4kHz) coefficients 

% pin=filter(Num,Den,rand_noise); 


%% * pure tone: 

% tsp = [0:1e-5:1]; %create time steps [s] for output from LIN 

% ftone=6000; % frequency of tone [Hz] 

% pin=0.0001*sin(2*pi*ftone*tsp); 

% f=round(1/tsp(2)); 


%% * synthesized steady vowel: 

% [pin,f,Nbits]=wavread('eh.wav'); %synthesized vowel 
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% pir..=O. 001*pin' ; % column to row and scale to -15dB SPL 

% pir..=0.0099*pin'; % 35dBSPL 

% pir=0.31*pin'; % 65dB SPL 

% pir=9.81*pin'; % 95dB SPL 

% tsp=[0:1e-5:length(pin)/f]; % create time steps [s] for output from LIN 

% tsp=[0:2e-6:length(pin)/f]; % time steps [s] match those of Ian's model 


%%*speech (synthesized male speaker: "Five women played basketball"): 

filename = 'sent'; 

stimclb = 95; % stimulus intensity in dB SPL 

f = L,Oe3; %sampling rate [Hz] 

pin=resample(load(['speech/' filename '500k']),f,500e3); % downsampled input 

pin=:.o- (stimdb/20) *pin'; % unramped stimulus 

frmtn_kl. data = load( ['speech/' filename '_kl. txt']); 

sources.data = load(['speech/' filename '_source.txt']); 

frmtn. data = load ( ['speech/' filename '_hl. txt'] ) ; 

T = round(length(pin))/f; 

tsp" 0:1/f:T-1/f; %time vector 


%% P:.ot Spectrogram of input waveform: 

% spHcgram(pin,256,f,hamming(256),128) 

% ti1;le('\bf Input'); 


%% R<mp stimulus on and off (Ian Bruce's code): 

rt = 10e-3; % rise time = 10 ms 

mxpt:3 = length(pin); irpts = round(rt*f); tind 0.0; for lp 

1:irpts 


pin(lp) = pin(lp)*tind/irpts; 

·;ind = tind + 1. 0; 


end 	·;ind = tind + mxpts-2*irpts; for lp = (mxpts-irpts) :mxpts 
:)in (lp) = pin (lp) *((mxpts-tind) I irpts); 
"Gind = tind + 1. 0; 

end 

%% Simplified sparse connection of neurons 
%% - neuron of a given BF only connects with neurons of neighbouring BFs, 
%% not to the same BF 
%% - connections expected to be sparse but occur more randomly in nature 
reps=30; % # of trials to average over for PSTH 
impair=1; %normal (=0) or impaired (=1) ear 
outp~t=zeros(numofneurons,length(tsp)-1); 

input=zeros(numofneurons,length(tsp)-1); for lp_reps=1:reps 
[spikes,inputs]=earandlin(pin,f,tsp,bf,impair); 
output=output+spikes; 
input=input+inputs; 

% save hear.mat 
display(lp_reps); 

% waitbar(lp_reps/(reps),h,'Computing ... '); 
end % for lp_reps 
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output=output./reps; % output PSTH 

input=input./reps; %post-convergence input PSTH 

clear inputs; 

% close(h) % close waitbar 


elptime=etime(clock,clk)/3600; % Time elapsed [hours] 

save speech_EE95.mat 


%% Compute Synchronized Rate and Power Ratios: 

% [synrate,t_sp] = prvt_Jen(output,tsp,bf,frmts_kl,frmts,sources,pin,stimdb); 

% prvt_Jen 


%% Segment averaged output into time frames: 

Tw=20e-3; % length of window in time [s] 

Nw=round(Tw/tsp(2)); %length of window in indices 

if gcd(Nw,2)-=2 %make w even 


Nw=Nw+1; 
end % if gcd 
numframes=floor((length(tsp)-1)/Nw)*2-1; % 0.5 frame overlap 
frames=zeros(numofneurons,Nw,numframes); for k=1:numframes 

frames(:,:,k)=output(:,k*Nw/2-Nw/2+1:k*Nw/2+Nw/2); 
% frames(:,:,k)=input(:,k*Nw/2-Nw/2+1:k*Nw/2+Nw/2); 
end 

%% Compute average spike rate [spikes/s]: 
avg_spikes=zeros(numofneurons, numframes); for k=1:numframes 

avg_spikes(:,k)=mean(frames(:,:,k),2)./tsp(2); 
end 

%% Plot Waterfall Spectrogram: 

% figure 

% waterfall([O:numframes-1] .*Tw./2,bf',avg_spikes); 

% set(gca,'YScale','log') 

% cb=colorbar; 

% set(get(cb,'ylabel'),'string' ,'Mean Firing Rate [spikes/s]') 

% title('\bf Spatio-temporal pattern of activity for output from the 

LIN given normal input'); 

% ylabel('Characteristic Frequency [Hz]'); 

% xlabel('Time [s] '); 

% zlabel('Mean Firing Rate [spikes/s] '); 

% axis tight 

% set(gca,'View', [-8.5 65]); 

%% paperfig2(gcf,12) 


%% Plot Average Output of LIN: 

% figure 

% semilogx(bf./1e3',mean(output,2)./tsp(2)); 

% xlim([O bf(end)./1e3]); 

% xlabel('Characteristic Frequency [KHz]'); 
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%ylabel('Average Firing Rate [spikes/s]'); 

%title(['\bf Spiking, recurrent LIN (normal hearing) ',date]); 

%% title(['\bf Spiking, recurrent LIN (impaired hearing) ',date]); 

%grid on; 


%% Plot spike train of a single neuron: 
% fi~;ure 
%subplot(2,1,1); 
%plc,t(tsp(1:length(y)) ,y(20, :) , 'g') 
%yl<cbel ( 'Vm [V] '); 
%xl<cbel ( 'Time [s] ' ) ; 
%subplot(2,1,2); 
%plot(tsp(1:length(y)),inputs(20,:)) 
%hold on 
%plot (tsp(1: length(y)), spikes(20,:), 'r') 
% ylabel ('Spikes'); 
%xlabel ('Time [s] ') ; 
%legend('input','output'); 

%% P:Lot average spike rate for a 10ms (0.2-0.21 sec of sentence): 

%% avgoframe=sum(output(:,8000:8400),2)./0.01; 

%% avgiframe=sum(input(: ,8000:8400) ,2) ./0.01; 

%fip;ure 

% semilogx (bf, avgoframe, 'b') 

% xlim( [bf (1) bf (end)]) 

%gri.d on 

% xl.:~.bel ('Characteristic Frequency [Hz] ') 

%yhbel ('Mean Spike Rate [spikes/s] ') 

%tHle('\bf Output from LIN') 

%fisure 

% se:nilogx(bf ,avgiframe, 'r') 

%xlim([bf(1) bf(end)]) 

%grid on 

%xlabel('Characteristic Frequency [Hz]') 

%ylabel('Mean Spike Rate [spikes/s]') 

%title('\bf Auditory Nerve Response') 


c.~~-2 earandlin.m 

function [spikes,inputs] = earandlin(low,f,tsp,bf,impair) 

%%%'lc%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%earandlin.m % 
% Model of the mammalian auditory system (peripheral and central) % 
%-­ Takes sound-pressure wave that impinges on the ear as input % 
%-­ Output is a spike train from the LIN % 
%%%~%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% ~et Parameters: 
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numofneurons=length(bf); 

fs=500e3; % sampling frequency for Ian's model [Hz] 

pin=resample(low,fs,f); % upsample to fs 

reptime=tsp(end)*1e3; % time between stimulus repetitions [ms] 

tsp=tsp(1:length(tsp)-1); 


%% Membrane Parameters: 

C=8e-12; % Membrane capacitance [F] 

mtau = 1.5e-3; %Membrane Time Constant [s] 


%% Define Excitatory Synapse Parameters: 

EsynE=0.1; %excitatory reversal potential [V]; must be> ythres 

GEalpha = 11; 

GEdur=0.01; % (IFAC 2003) 

GE = (GEalpha/mtau/10)-2*tsp(1:round(GEdur/tsp(2))).*··· 


exp(-GEalpha/mtau*tsp(1:round(GEdur/tsp(2)))); 
sfac=3.0365e-010; % based on GEalpha=9 and Gialpha=0.5 
GE=sfac*GE; % scaled excitatory conductance [S] - scaling factor must match GI 

%% Define Inhibitory Synapse Parameters: 

Esyni=-0.02; % inhibitory reversal potential [V]; < resting potential 

% Esyni=O; %Shunting Inhibition reversal potential [V]; -= yrest 

Gialpha = 0.5; Gidur = 0.015; 

GI=(Gialpha/mtau/10)-2*tsp(1:round(Gidur/tsp(2))).*··· 


exp(-Gialpha/mtau*tsp(1:round(Gidur/tsp(2)))); 
GI=sfac*GI; % scaled inhibitory conductance [S] - scaling factor must match GE 

%% Effectiveness coeffients of inputs across BFs 
%% -- widthofwindow=1 b/c no lateral excitation 
%% -- selfsyn=1 b/c not using this function to account for inhibition 
V = weight(1,numofneurons,1); 

%% Coefficients of inhibitory interactions across BFs 
%% 2 Gaussian humps as in Gerken's model 
%% a = arbitrary coefficient describing weight of inhibitory compared 
%% to excitatory interactions 
a=32; 
W = weight_2gauss(9,numofneurons); W a*W/max(sum(W,2)); 

%% Normal or impaired ear: 
if impair==O %for normal OHC and IHC function 

COHCs = ones(size(bf)); 
CIHCs = ones(size(bf)); 

else %for "average" cat OHC and IHC dysfunction 
COHCs = interp1([0 1 1.1 1.4 1.7 2.2 3.6 4.7 6.0 7.8 inf], ... 

[0.5 0.5 0.5 0.35 0.06 0.15 0.3 0.36 0.6 0.95 0.95],bf/1e3,'cubic'); 
CIHCs = interp1([0 0.5 0.8 1 1.1 1.4 1.7 2.2 3.6 4.7 6.0 7.8 9 10 inf], .. . 

[1 1 0.1 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.1 0.2 0.25 1] , .. . 
bf/1e3,'cubic'); 
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end 

%% G·~t input from Ian's model (deafcat2) of the ear 
%% -·- nerve .m and nervetone .m are functions that call deafcat2 
inpu·~ s=zeros (numofneurons, length (tsp) ) ; 

%% Downsample output from Ian's model of the ear: 
for :L=1:numofneurons 

[timeout,psth]=ear(bf(i),reptime,pin,fs,COHCs(i),CIHCs(i)); 
n=length(tsp); 
m=floor(length(psth)/n); 
inputs (i,: )=sum(reshape (psth(1 :m*n)' ,m,n)); 

end % for i 


%% Shape excitatory spikes 

inpw;s2=filter (GE, 1, inputs, [] , 2); % shaped conductance 


%% Initialization 

spikHs=zeros(numofneurons,length(tsp)); %keeps track of spikes generated 

spikHs2=zeros(numofneurons,length(tsp)); %for lateral inhibition 

[spikes2(: ,1) ,Zi]=filter(GI,1,spikes(: ,1), [] ,2); % all Os 

y=zeJ:os (numofneurons, length(tsp)); % Membrane potential [V] 

y(:,:.) = V*inputs2(:,1)*tsp(2)/mtau; %set initial condition of neurons [V] 

tref,2e-3; % absolute refractory period [s] 

trefnamp=round(tref/tsp(2)); %refractory period [#of samples] 

spiknvalue=0.15; 

% noninal threshold potential [V] : 

ythrns=0.015*ones(numofneurons,length(tsp)+2*trefsamp); 


%% Calculate output membrane potential [V] using 

%% Shamma's rate equation modified with Koch p19 

%% -· modified to account for synaptic conduction 

for l.p_time=2:length(tsp); % lp_time=n+1 index 


i;% Determine if 'lp_time' is in a refractory period. 

i;% If so, set threshold potential higher. 

p=any(spikes(:,lp_time-1),2); %Did a spike occur in the last time step? 

p=p'; % column to row vector 

if any(p) 


m=find(p); 

ythres(m,lp_time:lp_time+trefsamp)=5; 

ythres(m,lp_time+trefsamp+1:lp_time+2*trefsamp)= ... 


repmat(5*exp(-3.5*[0:trefsamp-1] ./trefsamp),length(m),1); 

e'nd % if p 


fn = V*(inputs2(:,lp_time-1).*(EsynE-y(:,lp_time-1))./C) .. . 

+W*(spikes2(:,lp_time-1).*(Esyni-y(:,lp_time-1))./C) .. . 

-y(:,lp_time-1)./mtau; %rate eqn 
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%%Using the 4th-order Runge-Kutta method of approximation (parabolas): 

K1 fn*tsp(2); 

K2 (fn-0.5*K1/mtau)*tsp(2); 

K3 (fn-0.5*K2/mtau)*tsp(2); 

K4 (fn-K3/mtau)*tsp(2); 

y(:,lp_time)=y(:,lp_time-1) + (1/6)*(K1 + 2*K2 + 2*K3 + K4); 


%% Set refractory period after a spike: 

% Are there any spikes within the last tref sees? 

ph=any(spikes(:, max(lp_time-trefsamp,1):lp_time-1),2); 

ph=ph'; %column to row vector 

mh=find(ph); 

y(mh,lp_time)=O; 


%% If not in refractory period and membrane potential is > threshold, 

%% generate a spike: 

I=find(y(:,lp_time)>ythres(:,lp_time)); 

y(I,lp_time)=spikevalue; 

spikes(I,lp_time)=1; 

% shaped inhibitory conductance: 

[spikes2(:,lp_time),Zi]=filter(GI,1,spikes(:,lp_time),Zi,2); 


end % for lp_time 

C.2.3 ear.m 
function [htimeout,hpsth] = ear(bf,reptime,pin,fs,cohc,cihc) 


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% -- generates input for LIN model using output from Bruce et al. model (2003) % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 


%% Initialize Parameters: 

stimtime=reptime-1; %duration of stimulus [ms] **longer than pin 

% t=[0:1/fs*1e3:stimtime]; %time vector [ms] 

hnrep=5; % repetitions for psth representing high spontaneous rate converging neurons 

binwidth=0.002; %bin size [ms] **must be 0.002 


%% Get output from auditory nerve: 

[htimeout,hmeout,hbmout,htausp,hvihc,hsynout,hpsth] 

deafcat2(pin,bf,hnrep,binwidth, stimtime,reptime,cohc,cihc); 

% t=timeout; 

% spk=psth; 


C.2.4 pvrt_Jen.m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% prvt_Jen.m % 
% -- this script calculates the power ratio vs time % 

136 



M.A.~c. Thesis - Jennifer Ko McMaster University- Electrical Engineering 

% Source of code: Ian Bruce (described in Miller et al. (1997)) % 
% -- modified by Jennifer Ko % 
%%%%:'.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

[b_s·~im,f_stim, t_stim] = specgram(pin,256 ,f ,hamming(256, 'periodic'), 192); 

%% Do)wnsample to normal hearing range: 

fmax,.10e3; % Maximum frequency range of hearing [Hz] 

m=ma{([1 round(1/(2*fmax*tsp(2)))]); 

n=fl•)Or(length(output (1,:)) /m); 

numocneurons=length(bf); 

psth,=zeros (numofneurons, n) ; 

for Lp_bf=1:numofneurons 


:)sth(lp_bf,:)=sum(reshape(output(lp_bf,1:m*n),m,n))./(m*tsp(2)); 
end 
% t_:)sth=[tsp(2) :m*tsp(2) :n*m*tsp(2)]; 

%% C:tlculate Synchronized Rate (Miller et al. 1997) : 

win=:lamming(256, 'periodic'); 

b_sp = specgram(psth(lp_bf,:),256,1/(m*tsp(2)),win,192); % 75% overlap 

synr:tte=zeros([size(b_sp) numofneurons]); % [freq,time,numofneurons] 

for lp_bf=1:numofneurons 


[b_sp,f_sp,t_sp]=specgram(psth(lp_bf,:),256,1/(m*tsp(2)),win,192); 
1. Synchronized rate: 
synrate(:,:,lp_bf)=abs(b_sp/length(win)/sqrt(sum(win.-2)/length(win))); 

end 
synr:~.te(1:2,:,:) = 0; %Remove low frequency/bias components 

%% Plot synchronized rate: 

figure 

% suoplot(2,1,1); 

% se:nilogx(f_sp, mean(synrate(:,: ,24) ,2)); 

% xlim([100 10e3]); 

% yl:~.bel('Synchronized Rate [/s] '); 

% xl:~.bel('Frequency [Hz]'); 

% title('\bf BF=513.4 Hz'); 

% subplot(2,1,2); 

% senilogx(f_sp, mean(synrate(:,: ,47) ,2)); 

% xlim([100 10e3]); 

% ylabel('Synchronized Rate [/s]'); 

% xlabel('Frequency [Hz]'); 

% title('\bf BF=1487.1 Hz'); 


%% Calculate Power Ratios: 


% Initialize variables 

totalpower = squeeze(sum(synrate.-2,1))'; %% [numofneurons,time] 
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flpower zeros(size(totalpower)); 

f2power flpower; 

f3power flpower; 

f4power = flpower; 


% Time shift: 

latency_comp = 5e-3; 

t_spcgrm = t_sp+tsp(2)*length(win)/2; 

t_dlyd = t_spcgrm-latency_comp; 


%Find formants: %% F = interpl(t,f,T) 

FO_kl=interplq([-100; frmts_kl.data(:,l)*le-3; inf] , ... 


frmts_kl.data([1 1:end end] ,2),t_spcgrm); 
F1=interp1q([-100; frmts.data(:,1)*1e-3; inf],frmts.data([1 1:end end],3),t_spcgrm); 
F2=interp1q([-100; frmts.data(:,1)*1e-3; inf],frmts.data([1 1:end end],4),t_spcgrm); 
F3=interp1q([-100; frmts.data(:,1)*1e-3; inf],frmts.data([1 1:end end],5),t_spcgrm); 
F4=interp1q([-100; frmts.data(:,1)*1e-3; inf] ,frmts.data([1 1:end end] ,6),t_spcgrm); 
AV=interpiq([-100; sources.data(:,1)*1e-3; inf] ,sources.data([1 1:end end],2),t_spcgrm); 
AF=interpiq([-100; sources.data(:,1)*1e-3; inf] ,sources.data([1 1:end end],3),t_spcgrm); 
silence= (AV==O).*(AF==O); 

FOdlyd_kl=interpiq([-100; frmts_kl.data(:,1)*1e-3; inf] , ... 
frmts_kl.data([1 1:end end] ,2),t_dlyd); 

F1dlyd=interp1q([-100; frmts.data(:,1)*1e-3; inf] ,frmts.data([1 1:end end],3),t_dlyd); 
F2dlyd=interp1q([-100; frmts.data(:,1)*1e-3; inf] ,frmts.data([1 !:end end],4),t_dlyd); 
F3dlyd=interp1q([-100; frmts.data(:,1)*1e-3; inf] ,frmts.data([1 1:end end],5),t_dlyd); 
F4dlyd=interp1q([-100; frmts.data(:,1)*1e-3; inf] ,frmts.data([1 1:end end],6),t_dlyd); 
AVdlyd=interpiq([-100; sources.data(:,1)*1e-3; inf] ,sources.data([1 1:end end] ,2),t_dlyd); 
AFdlyd=interp1q([-100; sources.data(:,1)*1e-3; inf] ,sources.data([1 1:end end],3),t_dlyd); 
silencedlyd = (AVdlyd==O).*(AFdlyd==O); 

% Compute power: 
for lp=l:length(t_sp) 

%for hlp= 1:floor(min(4,5e3/F1dlyd(lp))) 
for 	hlp = 1 


f1_higher = min(find(f_sp>hlp*F1dlyd(lp))); 

if isempty(f1_higher) 


f1_higher=length(f_sp)-1; 

end 

f1_lower = max(find(f_sp<hlp*F1dlyd(lp))); 

f1_range = unique(f1_lower-1:f1_higher+1); 

if length(f1_range)>4 


f1_range = f1_range(2:4); 
end 
f1power(:,lp) = f1power(:,lp)+squeeze(sum(synrate(f1_range,lp,:).~2,1)); 

end 

%for hlp 1:floor(min(4,5e3/F2dlyd(lp))) 
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for 	hlp = 1 

f2_higher = min(find(f_sp>hlp*F2dlyd(lp))); 

if isempty(f2_higher) 


f2_higher=length(f_sp)-1; 

end 

f2_lower = max(find(f_sp<hlp*F2dlyd(lp))); 

f2_range = unique(f2_lower-1:f2_higher+1); 

if length(f2_range)>4 


f2_range = f2_range(2:4); 
end 
f2power(:,lp) = f2power(:,lp)+squeeze(sum(synrate(f2_range,lp,:).~2,1)); 

Emd 

~~for hlp = 1: floor(min(4 ,5e3/F3dlyd(lp))) 
for 	hlp = 1 


f3_higher = min(find(f_sp>hlp*F3dlyd(lp))); 

if isempty(f3_higher) 


f3_higher=length(f_sp)-1; 

end 

f3_lower = max(find(f_sp<hlp*F3dlyd(ip))); 

f3_range = unique(f3_lower-1:f3_higher+1); 

if length(f3_range)>4 


f3_range = f3_range(2:4); 
end 
f3power(:,lp) = f3power(:,lp)+squeeze(sum(synrate(f3_range,lp,:).~2,1)); 

·~nd 

'f,for hlp = 1:floor(min(4,5e3/F4dlyd(lp))) 
cor 	hlp = 1 


f4_higher = min(find(f_sp>hlp*F4dlyd(lp))); 

if isempty(f4_higher) 


f4_higher=length(f_sp)-1; 

end 

f4_lower = max(find(f_sp<hlp*F4dlyd(lp))); 

f4_range = unique(f4_lower-1:f4_higher+1); 

if length(f4_range)>4 


f4_range = f4_range(2:4); 

end 

f4power(:,lp)=f4power(:,lp)+squeeze(sum(synrate(f4_range,lp,:).~2,1)); 

end 

end 

%Compute power ratio: 
f1pr f1power./totalpower; 
f2pr f2power./totalpower; 
f3pr f3power./totalpower; 
f4pr f4power./totalpower; 
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%% Plot: 
F1voiced=F1; 
F2voiced=F2; 
F3voiced=F3; 
F4voiced=F4; 

Fivoiceddlyd Fidlyd; 
F2voiceddlyd = F2dlyd; 
F3voiceddlyd F3dlyd; 
F4voiceddlyd = F4dlyd; 

F1unvoiced=F1; 
F2unvoiced=F2; 
F3unvoiced=F3; 
F4unvoiced=F4; 

Fiunvoiceddlyd = Fidlyd; 
F2unvoiceddlyd = F2dlyd; 
F3unvoiceddlyd = F3dlyd; 
F4unvoiceddlyd = F4dlyd; 

F1voiced(find((FO_kl==O)I(silence==1))) NaN; 
F2voiced(find((FO_kl==O)I(silence==1))) NaN; 
F3voiced(find((FO_kl==O) l(silence==1))) NaN; 
F4voiced(find((FO_kl==O)I(silence==1))) NaN; 

F1voiceddlyd(find((F0dlyd_kl==O)I(silencedlyd==1))) = NaN; 
F2voiceddlyd(find((F0dlyd_kl==O)I(silencedlyd==1))) = NaN; 
F3voiceddlyd(find((FOdlyd_kl==O)I(silencedlyd==1))) NaN; 
F4voiceddlyd(find((FOdlyd_kl==O) l(silencedlyd==1))) = NaN; 

Fiunvoiced(find((FO_kl>O)I (silence==1))) NaN; 
F2unvoiced(find((FO_kl>O)I (silence==1))) NaN; 
F3unvoiced(find((FO_kl>O)I(silence==1))) NaN; 
F4unvoiced(find((FO_kl>O)I(silence==1))) NaN; 

Fiunvoiceddlyd(find((FOdlyd_kl>O)I (silencedlyd==1))) NaN; 
F2unvoiceddlyd(find((F0dlyd_kl>O)I (silencedlyd==1))) NaN; 
F3unvoiceddlyd(find((F0dlyd_kl>O)I(silencedlyd==1))) NaN; 
F4unvoiceddlyd(find((F0dlyd_kl>O)I(silencedlyd==1))) NaN; 

prvt_frmts_contour_Jen 

C.2.5 pvrt_frmts_contour _Jen.m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%prvt_frmts_contour_Jen.m % 
%-- this script plots the power ratios vs time % 
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%So·uce of code: Ian Bruce (described in Miller et al. (1997)) % 
%-- modified by Jennifer Ko % 
%%%%~,%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Fo1mant PR contour plots 
figure 
spi=~;ca; 

%imagesc(t_stim,f_stim/1e3,stimdb+db(b_stim*sqrt(2)/256/20e-6)); 

imagHsc(t_stim,f_stim/1e3,db(b_stim*sqrt(2)/256/20e-6)); 

axis xy 

ylim( [0 6]); 

%cax:.s ( [stimdb-60 stimdb]) 

caxin ( [stimdb-80 stimdb]) 

%cax:Ls ( [stimdb-30 stimdb+50]) 

set (:;pi, 'xtick', 0:0.2:1. 6) 

% se·; (sp1, 'xticklabel' , []) 

% ps'"get (sp1, 'position'); 

% se·;(spi,'position',ps+[-0.04 0 0 0]); 

titl·~ ( '\bf Synthesized male speaker: "Five women played basketball" ') 

xlab·~l ('Time [s] ') ; 

ylah~l ('Frequency (kHz)') 

hold on 

plot(t_sp,[Fivoiced F2voiced F3voiced F4voiced]/1e3,'w-' ,'linewidth',2) 

plot(t_sp,[Fiunvoiced F2unvoiced F3unvoiced F4unvoiced]/1e3,'w--','linewidth',2) 

ps = get(spi,'position'); 

set(3p1,'position',ps.*[1 1 0.85 1]) 

if inpair==O 


title(strcat(['\bf Normal ', num2str(stimdb), 'dB SPL'])); 
else 

title(strcat(['\bf Impaired ', num2str(stimdb), 'dB SPL'])); 
end 
ps = get(spi,'position'); 
cb1 = colorbar('vert','peer',sp1); 
% set(spi,'position' ,ps) 
ps = get(cbi,'position'); 
set(cbi,'position',ps + [0.085 0 0 0]) 
set(cbi,'YAxisLocation','left'); 
set(get(cbi,'ylabel'),'string' ,'dB SPL') 
axes (cb1) 
text(2.3,stimdb,'0.7') 
tx1=text(3.5,stimdb-40,'PR'); 
text(2.3,stimdb-80,'0') 
set(tx1,'Horizonta1Alignment','center','Rotation',90) 
%cclormap(1-gray) 

figt.re 

sp2=,subplot (3, 1, 1); 

% sp2=subplot(4,1,2); 

%im;:,gesc(t_sp, bf/1e3 ,f3pr) 
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%imagesc(t_sp,log10(bf/1e3),f3pr) 

contourf(t_sp,log10(bf/1e3),f3pr,0.1:0.2:0.7) 

set(sp2,'xtick' ,0:0.2:2.0) 

set(sp2,'xticklabel',[]) 

set(sp2,'ytick',log10([0.1 1 5])) 

set(sp2,'yticklabel' ,[0.1 1 5]) 

axis xy 

caxis([O 0.7]) 

%ylim(yl) 

title('PR(F3) ') 

ylabel('BF (kHz)') 

%xlabel('Time (s)') 

hold on 

%plot(t_sp,F3dlyd/1e3,'k-' ,'linewidth' ,1.5) 

plot(t_sp,log10(F3voiceddlyd/1e3),'k-','linewidth',1.5) 

plot(t_sp,log10(F3unvoiceddlyd/1e3),'k--','linewidth',1.5) 


sp3=subplot(3,1,2); 

% sp3=subplot(4,1,3); 

%imagesc(t_sp,bf/1e3,f2pr) 

%imagesc(t_sp,log10(bf/1e3),f2pr) 

contourf(t_sp,log10(bf/1e3),f2pr,0.1:0.2:0.7) 

set(sp3,'xtick',0:0.2:2.0) 

set(sp3,'xticklabel',[]) 

set(sp3,'ytick',log10([0.1 1 5])) 

set(sp3,'yticklabel',[0.1 1 5]) 

axis xy 

caxis ( [0 0. 7]) 

%ylim(yl) 

title('PR(F2)') 

ylabel('BF (kHz)') 

%xlabel('Time (s)') 

hold on 

%plot(t_sp,F2dlyd/1e3,'k-','linewidth' ,1.5) 

plot(t_sp,log10(F2voiceddlyd/1e3),'k-','linewidth',1.5) 

plot(t_sp,log10(F2unvoiceddlyd/1e3),'k--','linewidth',1.5) 


sp4=subplot(3,1,3); 

% sp4=subplot(4,1,4); 

%imagesc(t_sp,bf/1e3,f1pr) 

%imagesc(t_sp,log10(bf/1e3),f1pr) 

contourf(t_sp,log10(bf/1e3),f1pr,0.1:0.2:0.7) 

set(sp4,'xtick',0:0.2:2.0) 

set(sp4,'ytick',log10([0.1 1 5])) 

set(sp4,'yticklabel',[0.1 1 5]) 

axis xy 

caxis( [0 0. 7]) 

%ylim(yl) 

title('PR(F1) ') 
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ylabel('BF (kHz)') 

xlabel('Time (s)') 

hold on 

%plot(t_sp,F1dlyd/1e3,'k-' ,'linewidth',1.5) 

plot(t_sp,log10(F1voiceddlyd/1e3),'k-' ,'linewidth',1.5) 

plot(t_sp,log10(F1unvoiceddlyd/1e3),'k--','linewidth' ,1.5) 


gtext('\bf Auditory Nerve Response') 

% gtE,xt (' \bf Output from LIN') 
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