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ABSTRACT 

The rapid development of the use of lasers in therapeutic and diagnostic 

medicine in the past few years has generated interest in measuring the optical 

properties of tissue. In particular, the dev~lopment of photodynamic therapy 

(PDT) has necessitated studies of the optical properties of tissue at wavelengths 

around 630nm, this being the wavelength at which the photosensitizer commonly 

used in PDT, namely dihematoporphyrin ether (DHE), is normally activated. 

The control of the volume of tissue from which information about the 

interaction coefficients of the tissue is obtained is an important problem in diffuse 

reflectance spectroscopy and other applications of light, because it is critical to 

understanding which tissue volumes are sampled by the injected photons that 

eventually are re-emitted. This report describes a simple model that predicts the 

parameters that control the volume of tissue interrogated by photons during 

reflectance spectroscopy. 

In optical fiber based diffuse reflectance spectroscopy, incident radiation is 

applied at one point on a tissue surface and collected at another point, a radial 

distance, r, away. Information about the light multiply scattered by the tissue is 

used to deduce optical scattering and absorption coefficients of the tissue. In this 

report both steady state and pulse techniques are studied. In the steady state 
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method, the spatial dependence of the backscattered light is the measured 

quantity, while the pulse technique uses the temporal broadening of a picosecond 

(ps) pulse to determine the interaction coefficients. 

The relative contribution of a volume element of tissue to the observed 

signal depends on its location, the measurement geometry and the optical 

properties of the tissue. Knowledge of this dependence would allow some control 

of the volume interrogated by reflectance spectroscopy, and would provide insight 

into the influence of inhomogeneities. 

In the work reported here a simple diffusion model of light propagation in 

tissue based on the Boltzmann radiative transfer equation has been used to 

derive mathematical expressions for the relative time spent by photons in a given 

tissue volume element. Using optical interaction coefficients typical of mammalian 

soft tissues, results are presented for both steady state and pulse irradiation in 

both semi-infinite and infinite media. 

The residency time depth profile calculated by this model for index matched 

and zero fluence boundary conditions has the same shape as that predicted by 

Weiss (1989), who used a somewhat different model based on a 3-dimensional 

random walk theory. These profiles are characterized by a build-up region near 

the surface and exponential fall far away from the surface in the 'diffusion region'. 

The influence of the absorption coefficient Jla and the fiber separation on the 

residency time as predicted by this model is in good agreement to that predicted 

iv 



by the random-walk theory (i.e the depth-profile of the residency time tends to 

sharpen as the absorption coefficient increases. This is attributed to the fact that 

long trajectories are less likely with large absorption probabilities. As well, the 

greater the fiber separation, the wider and flatter the depth distribution of the 

residency time. This is because photons that reach the surface at greater r 

values have, in general, migrated farther from the immediate vicinity of the source 

and detector and hence have sampled a larger volume of tissue). All the 

integrations in this report were performed numerically using the IMSULIB on the 

Microvax computer system in the Hamilton Regional Cancer Center. The 

adequacy of this numerical integration was tested and was found to be good. 

This model therefore suggests that during diffuse reflectance spectroscopy, 

the volume sampled by re-emitted photons can be controlled by changing 

parameters such as the fiber separation (in both steady state and time-resolved 

techniques) and the detection time (in the time-resolved method). 
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CHAPTER ONE 

INTRODUCTION. 

Among the range of therapeutic procedures used to treat patients with 

localised malignant tumours, photodynamic therapy (PDT) is a relative 

newcomer and still an experimental form of treatment. It has been shown (Kessel 

1984) to cause significant tumour regression and even cures in early disease. 

This technique was first performed clinically around 1975 (Dougherty 1975), and 

involves the destruction of malignant solid tumours by photoactivation of a tumour 

localizing drug. 

In a typical PDT treatment, a photosensitiser, currently dihematoporphyrin 

ether (DHE) which is a purified form of hematoporphyrin derivative (HPD), is first 

administered intravenously to the patient. Then after a period of delay of about 

one to three days to allow accumulation of the drug in the tumour tissue, the 

volume to be treated is irradiated with visible light, usually at a wavelength of 

630nm, this being the longest wavelength at which DHE is normally activated. 

Upon the absorption of a photon, the photosensitizer, which preferentially 

accumulates in malignant tissue, is raised to an excited state, which upon non­

radiative de-excitation, generates biologically reactive molecular product(s), most 

likely singlet oxygen C02) which results directly or indirectly in tumour cell death. 
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The biological response to this new form of cancer treatment primarily 

depends on several physical factors including the local concentration of the 

photosensitizing drug in the tumour site, and the amount of activating light 

reaching the treatment volume (Wilson and Patterson 1986). Much of the on­

going research work in PDT has been to develop better understanding of these 

dependencies. The experimental and theoretical methods used to determine 

these quantities and other parameters that are of clinical importance such as the 

tissue optical properties are mostly based on measurements of the light that is 

diffusely reflected back from the tissue (i.e the reflectance data). For a general 

review of the physical aspects of PDT and its clinical application the reader is 

referred to publications by Dougherty (1985) and Wilson and Patterson (1986). 

The development of this new form of cancer therapy has necessitated studies of 

the optical properties of tissue at wavelengths around 630nm. 

In research work in PDT, and other diagnostic and therapeutic applications 

of light, the control of the volume of tissue from which information about the 

interaction coefficients of the tissue is obtained is an important problem, because 

it is critical to understanding which tissue volume is sampled by the injected 

photons that eventually are re-emitted from the tissue. 

According to Jacques (1989), catheter-based reflectance spectroscopy will 

measure the optical absorption coefficient of a tissue volume at the catheter tip. 

Reliable measurements of large volumes are possible in organs (e.g brain, liver, 
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kidney) and tumours. Measurements of Jla in smaller tissue volumes would be 

useful in measuring blood and clots within vessels, the superficial wall of the 

gastrointestinal and oesophageal tract or the first mm of tissue at a catheter tip 
. 

which receives strong therapeutic laser irradiation. In these studies, a simple 

model of light propagation in tissue, based on the diffusion approximation to the 

radiative transfer equation is developed. This model could predict parameters that 

control the volume of tissue sampled by the injected photons. 

1.1 MODELLING PHOTON PROPAGATION IN TISSUE. 

The science of the interaction of light with living systems is usually called 

photobiology, and 'light' is that part of the electromagnetic spectrum 

encompassing the ultraviolet, visible and the infra-red regions (Wilson, in press). 

The propagation of light in biological media is particularly important in many 

photobiological and photomedical applications, since all photobiological effects 

results in the first instance, from the absorption of optical energy by tissue 

components, so that the spatial, and in some cases also the temporal, distribution 

of light in tissue is a major factor in the final biological result. 

Thus the development of accurate and workable theoretical descriptions of 

light distribution in turbid media can be quite useful. This has created a demand 

for models that can accurately predict the photon propagation in tissue once the 

optical properties of the medium are known, or conversely, give the optical 

properties of the medium when the photon distribution is specified. The most 
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common approach to developing such appropriate models of light distribution in 

tissue has been to consider the propagation of light in tissue as the transport of 

discrete photons, which is described by the Boltzmann radiative transfer equation. 

Another approach which has been rarely used is to consider it as the propaga­

tion of electromagnetic waves (governed by Maxwell's equations) through a 

dielectric. 

In principle, the latter approach, is the most fundamental (lshimaru 1989) 

and it is possible to account for the wave-dependent phenomena such as 

interference, polarization, diffraction, refraction and reflection, and to determine 

both amplitude and phase dependencies (Wilson 1990). However, its main 

drawback is the mathematical complexity involved, and as such its usefulness is 

limited. Fortunately, for most purposes in photobiology, one is primarily interested 

in the local energy or power (fluence and fluence-rate) within or outside the 

tissue, rather than in the component amplitudes and phases of the light field 

(Wilson, in press). For example, in transmission or reflection spectroscopy, the 

relevant quantity is the fluence or fluence rate of the light which has interacted 

with, and then propagated out of the tissue. 

This allows the light to be described empirically, as equivalent to the 

propagation of discrete photons whose number density and flow rate define the 

local fluence rate. Though the photon transport model does not incorporate the 

wave-dependent effects, it has, nevertheless been successful and useful as a 
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model to describe the light fluence or fluence rate from and within tissues. 

The diffusion theory approximation to the one-speed transport equation, 

has been used to describe photon propagation in a turbid biological medium. This 

approach has been suggested by several sources (Wilson in press, lshimaru 

1989, Flock et al 1989, Wilson et al 1989, Profio 1989, Patterson et al 1989 and 

Reynolds et al 1976). Substantial experimental evidence (Flock et al 1989, 

Patterson et al 1989 and Wilson et al 1989) indicate that optical propagation in 

turbid media may be described by a diffusion theory approach. Further 

substantiation is demonstrated in this report. The diffusion theory applies for 

optically dense media and only when scattering events are much more probable 

than absorption events (Duderstadt and Hamilton 1976). This is the case for 

mammalian tissues in the red and near infra-red regions of the spectrum (Wilson 

and Patterson 1986, Wilson et al1988, Flock et al1987, and Flock 1988), and 

as a result, the diffusion model has found wide application in tissue optics. But 

since the model requires diffused light within the tissue, results are not as 

accurate near boundaries and internal light sources. A formal discussion of the 

radiative transfer equation and its diffusion approximation is presented in 

chapters 2 and 3 respectively. 

1.2 REFLECTANCE SPECTROSCOPY. 

In the form of reflectance spectroscopy used here, collimated light, as for 

example, a direct beam from a laser, is incident normally on the interface 
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between a turbid tissue and a transparent medium (usually air) at one point, and 

the light that is re-emitted at this interface at another point, a radial distance from 

the point of incidence, into the external transparent medium is measured (Figure 

3.5.1 ). This observed quantity (i.e the reflectance) has been shown by several 

research groups (Patterson et al 1989, Bonner et al 1981, Weiss et al 1989, 

Groenhuis et al 1983 and Reynolds et al 1976) to contain informations about 

parameters of photon interaction within the medium. 

In the steady state method, the observable quantities are the number and 

angular distribution of photons emerging from the surface of the tissue at any 

point (Patterson et al1990). The time dependence of these quantities constitute 

the observable quantities in the time-resolved technique. Since the mean free 

path of light in tissue is of the order of a few tens of microns (Patterson et al 

1990), the photons that escape the tissue usually have been multiply scattered. 

One goal of tissue optics research has been to deduce the information of interest 

(e.g absorption and scattering coefficients of the tissue) from the observable 

parameters. Since there is no straightforward relation between these parameters 

of interest and the observable quantities, the desired parameters can be obtained 

by using a physical model of the detection process (Patterson et al 1990). 

Some work has already been done in this area by Patterson and co­

workers (1989 and 1990), who used the steady state and more recently the time­

resolved diffusion approximation of the radiative transfer equation to show that, 
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the absorption, Jla, and the transport scattering, (1-g)J.L5 , coefficients can be 
,, 

obtained using the spatial or temporal distribution of the diffuse reflectance from 

a point source. In previous work, Patterson et al (1987) demonstrated that 

reflectance spectrophotometry is capable of quantifying clinically relevant 

amounts of hematoporphyrin derivative in realistic phantoms and that DHE can 

be readily detected in vivo by this technique. 

Earlier work in this area was performed by Groenhuis et al (1983) who also 

used a diffusion model to calculate the number of photons per unit area leaving 

the surface of a semi-infinite homogeneous medium as a function of the distance 

from the centre of a normally incident finite collimated beam. Estimation of Jla and 

(1-g)Jl.s from measurements of the absolute photon fluence at a number of 

discrete distances was permitted by the graphical results presented. 

In a related study, it has been demonstrated by a somewhat different 

analysis that surface emission can be used to infer parameters such as the 

fraction of time that photons re-emitted at the tissue surface have spent at depth 

z, in the tissue (Weiss et al1989), the mean path length travelled by the detected 

photons as a function of the separation between emitting and detecting probes 

and, the probability of photon absorption as a function of depth (Bonner et al 

1987), the root-mean-square (rms) blood cell speed and the number density of 

blood cells in tissue (Bonner et al 1981 ). 

Feather et al (1981) and Anderson et al (1981) used a reflectance 
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technique to demonstrate qualitative changes in the amount of pigments such as 

bilirubin, melanin and haemoglobin in the human skin. The technique has also 

been used by Reynolds et al (1976) to exploit the different absorption 

characteristics of haemoglobin and oxyhemoglobin to measure the oxygenation 

of blood in vivo. Recent work reported by Bacci et al (1986) indicated that 

measurement of the reflectance spectrum from the skin can be used for the 

detection of hematoporphyrin in the subcutaneous tissue of mice. 

Thus, different information of clinical importance can be inferred by 

analyzing photons re-emitted from tissue. In this report, therefore, a theoretical 

model of photon propagation in tissue based on the diffusion approximation to the 

radiative transfer equation is developed. This study is similar in purpose to that 

of Weiss et al (1989), who used a rather different approach based on a 3-

dimensional random-walk theory. However, by using a somewhat simpler 

diffusion model, the distributions of the 'residency time' of re-emitted photons are 

easily determined. 

1.3 DIFFUSE REFLECTANCE. 

Tissue is a scattering and absorbing medium and, obviously, has a higher 

refractive index than air. So when a laser beam is incident on a human tissue, 

at the air-tissue interface, part of the light is reflected back owing to specular 

reflection. The rest of the light penetrates the tissue where the photons are 

multiply scattered elastically {i.e scattered without loss of energy) by cytoplasmic 
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organelles and cell boundaries (Weiss et al 1989). Some photons are absorbed 

in the tissue and some are reflected back to the surface where they are re­

emitted. The absorption and scattering of these photons in the medium are 

governed by the absorption coefficient, the scattering coefficient Jls and 

anisotropy ,g (i.e the average cosine of scatter), respectively. The path length of 

each photon that successfully escapes the tissue as observable reflectance is not 

the same. Some photons enter the tissue and are immediately scattered and 

escape. Other photons wander through the tissue for some time before they 

migrate to the surface and escape. Therefore the path length, L, is not a single 

value, but a distribution of path lengths (Delpy et al1988 and Bonner et al1987). 

In reality the spatial distribution of the light fluence in the irradiated tissue 

volume depends not only on the absorption and the scattering coefficients of the 

tissue at any point but also on the heterogeneity of these properties, on the 

irradiation geometry, on the boundary conditions and on the shape and size of 

the tissue volume. But for simplicity one usually considers the case of a large 

volume of optically homogeneous tissue irradiated by a collimated beam incident 

normally on the tissue surface, (figures 3.4.1.1.1.1 and 3.4.1.1.2.1 ). 

The distribution of diffuse ( i.e multiply scattered) reflected light likewise 

depends critically on the tissue optical properties. As the scattering in tissue 

increases, the probability of photons being backscattered through the irradiated 

surface after multiple scattering also increases and it is measured by the diffuse 
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reflectance (Wilson, in press). In the case of a pure absorbing medium, all the 

incident photons will be absorbed as expected, so that there will be no 

reflectance. For a scattering-dominated medium, it has been shown (Patterson 

et al 1989) from the diffusion theory model of light propagation in tissue that the 

total diffuse reflectance R, depends only on the transport albedo (a) of the tissue, 

a= ~/(Jla+Jls), where Jls1 = (1-g)Jl8 , and in the case of refractive index mismatch 

at the surface, also on the tissue refractive index. 

There are published data on the dependence of the total diffuse reflectance 

on the transport albedo for various values of the scattering-to-absorption ratios 

(Wilson 1990). The local diffuse reflectance R(r) is the ratio of the photon flux per 

unit area on the tissue surface to the incident flux after accounting for the loss 

due to specular reflection, and the total diffuse reflectance, R,, is the local diffuse 

reflectance integrated over the irradiated surface: 

.. 
Rt = J R(~21erdr 

0 

1.4 TIME-RESOLVED REFLECTANCE. 

1.1 

In the previous discussion a steady state condition was assumed as would 

be obtained for a continuous irradiation or for a pulsed irradiation where the pulse 

length is large compared to the propagation time of the light in tissue. However, 

with the introduction of picosecond pulsed laser sources and fast photodetector 
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systems such as multichannel plate photomultiplier tubes and streak cameras, 

it has become both feasible and of practical interest in tissue spectroscopy to 

examine the broadening of the light pulse in tissue (Patterson et al 1989). Light 

photons take a finite time to propagate in tissue at a speed c', where c' = c/n, c 

is the speed of light in vacuo (expressed in this report as 0.3mmps-1
) and n is 

the refractive index of the medium. Thus the underlying principle of the time­

resolved technique is that photons re-emitting a tissue surface are spread in time 

following an incident short light pulse. This is due to the different path lengths 

taken in transversing a highly scattering medium such as tissue. 

At any particular time, t, following a short incident pulse, for a scattering 

dominated medium, the total distance, L, (i.e optical path length) travelled by a 

photon is, L = c't. For the case of the incident photons that are unscattered, this 

path length corresponds to the depth below the tissue surface. However, for 

scattered photons, at time, t, there is a spread (broadening) in the spatial 

distribution of the photons, and the pattern of photon distribution develops 

gradually with time. Finally, after the light has become essentially completely 

diffused, the fluence-time dependence is governed by the absorption. On the 

tissue surface, the time dependence of the local, R(r,t), and the total, R,(t), diffuse 

reflectance also depends initially on the scatter and absorption, but at later times 

is absorption dominated (Wilson, in press). 

Studies of the time course of transmitted light in turbid media have been 
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performed (Kuga et al 1983). Diagnostic application of time-resolved 

measurements of reflectance and transmission for spectroscopy (Chance et al 

1988 and Delpy et al 1988) and the potential of the time-resolved technique to 

determine tissue optical properties from R(r,t) (Patterson et al 1989 and Wilson 

et al 1989) have both been considered. 

Ultrashort laser pulses in the femtosecond and picosecond range will 

therefore probably enjoy increased use in medicine. One application is the 

disruption of tissue by laser-induced plasma, for example, in ophthalmology, to 

disrupt the residual lens membrane following ocular lens surgery (Puliafito et al 

1983), in urology, to fragment kidney stones (Nishioka et al 1987), and in 

vascular surgery, to ablate calcified plaque (Prince et al 1987). A second 

application is ablation of normally non-absorbing tissue by initiating nonlinear 

absorption with femtosecond pulses (Jacques 1989). A third application is the 

production of laser induced photochemical reactions, which have been developed 

principally around the technique of PDT (Gomer 1987). 

1.5 TISSUE OPTICAL PROPERTIES. 

The interaction of light field with tissue is usually specified by the 

absorption and the scattering coefficients of the tissue. The angular dependence 

of the scattering is described by the phase function which is a measure of the 

relative probability of scattering through a particular angle. In optically turbid 

tissue {excluding the transparent structure of the eye), the nature of the light field, 
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i.e the spatial and temporal distribution of light within and from the tissue, 

depends primarily on the relative contributions of absorption and scattering 

(Wilson, in press). 

The linear (i.e one-photon) absorption and scattering properties of several 

mammalian tissues have been measured using a variety of in vitro and more 

recently, in vivo techniques. For example, 

1. direct measurement in optically thin tissue samples (Flock et al 1987, 

Marchesini et al 1989 and Jacques and Prahl 1987), 

2. from the diffuse transmittance and reflectance through optically thick samples 

(Parsa et al 1989, Peters et al and Anderson et al1981), 

3. by 'doping' homogenized tissue with known concentrations of an exogenous 

absorber (Wilson et al 1986), 

4. through 'mapping' of the fluence distributions within intact, bulk tissue (Wilson 

et al 1985 and Marijnissen et al 1987) and 

5. by measuring the spatial and/or temporal distribution of diffusely reflected or 

transmitted light (Patterson et al 1989, Marijnissen and Star 1984). 

Of all these techniques, the last two can be done in vivo. The first 

technique listed above can yield values of the absorption coefficient, the 

scattering coefficient, the total attenuation coefficient, Jlt, and the scattering 

angular distribution or phase function, S(e), without the need for any model of 
. 

light propagation in tissue. The other methods may yield Jla (the mean free path, 
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mfp, that a photon travels before absorption occurs is equal to 1/)18 ), lls (the 

mean free path between scattering events is equal to 1/lls) and the scattering 

anisotropy parameter, g, or some combination of these such as the transport 

scattering coefficient, J.Ls'. However, this requires the application of suitable 

models of light propagation, such as diffusion theory (Jacques and Prahl 1987, 

Flock et al1988) or Monte Carlo simulations (Wilson and Adam 1983, Groenhuis 

et al 1983 and Flock et al 1988). The experimental and theoretical descriptions 

of how these parameters are determined and some typical values that have been 

measured for some soft mammalian tissues can be found elsewhere (Wilson and 

Patterson 1986 and Wilson 1990). 

Around 630nm (Flock et al 1989), the range of interaction coefficients for 

mammalian soft tissue is 0.01 mm-1 < lla < 0.5mm-1
, 35mm-1 < lls < 70mm-1 and 

0.7 < g < 0.99. To facilitate the following discussion, the following optical 

parameters will be assumed as representative values: J.la = 0.01 - 0.2mm-1 and 

~ = 1.0 - 5.0mm-1
• 

1.6 PROJECT PROPOSAL. 

The scattering of light by turbid media has been studied extensively in the 

past (lshimaru 1978), and its applications include atmospheric optics (Ito 1980 

and Weinman and Shipley 1972), optics in the ocean (Jerlov 1976), scattering by 

stellar and interstellar media (Shihov 1974 arid Lee and Jokipii 1975) and optical 

scattering in biological media (Bonner and Nossal 1981, Patterson et al 1989, 
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Flock et al 1988 and Wilson et al 1989). 

There is therefore a need for better understanding of the migration paths 

of photons in tissue. The purpose of this project therefore is an attempt to 

accurately and non-invasively analyze the statistics of photon paths in tissue 

during both the steady state and time-resolved diffuse reflectance spectroscopy 

once the bulk scattering and absorption properties of the tissue are specified. 

The possible approaches to the solution of this problem include; a Monte 

Carlo simulation, Random-walk theory and an analytical method (which is based 

on the diffusion theory). Each of these methods has its own advantages and dis­

advantages. For example, in the case of Monte Carlo simulation which is 

performed by tracing individual photon histories, the principal advantage is that 

complex geometries and inhomogeneities can be modelled in a straightforward 

manner (Wilson et al 1985). Another advantage is that a variety of physical 

quantities can be scored during the same run. However, its main drawback is that 

many photon histories are required to obtain accurate results and this may be 

expensive in computation time. In some cases, as for example, in the problem 

being analyzed here, another disadvantage of the Monte Carlo method is that 

large computer memory will be required. For computational efficiency, which is 

important, especially in routine clinical use of light, fast, though approximate 

analytical approach may be used. This is the method that would be used in this 

report. 
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1.7 SIGNIFICANCE OF RESULTS. 

The main results of this report will be mathematical expressions for the 

average residency time in an elemental tissue volume of a photon that is injected 

into a tissue and subsequently is re-emitted through a small area dA, on the 

tissue surface, a radial distance, r, from the point of injection. From these 

expressions one can deduce some characteristics of the migration paths of those 

photons that contribute to diffuse surface reflectance measurements at any point, 

once the bulk optical properties of the tissue are specified. 

The relative contribution of an elemental volume of tissue to the observed 

signal depends on the residency time of those photons in that volume element. 

This quantity in turn depends on the location of the volume element, the 

measurement geometry and the optical properties of the tissue. Knowledge of 

this dependence would allow some control of the volume interrogated by 

reflectance spectroscopy, and would provide insight into the influence of 

inhomogeneities. Though the objective in this report is not to deduce the optical 

properties of tissue, the model could certainly be used to determine Jla and (1-

g)J..Ls (Patterson et al 1990). 

The results should also pertain to other variety of bio-medically important 

measurements, particularly when the receiving and transmitting fibers of the 

probes are far apart from each other. For example, in Doppler laser techniques 

(Weiss et al1989), it frequently is important to determine the depth of penetration 
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of injected photons, both for those absorbed within the tissue and those re­

emitted from the irradiated surface. The distribution of the absorption depths is 

critical in evaluating therapeutic procedures such as laser ablation and photo­

chemical therapy (Dougherty et al1978 and Dorion et al1983). Unfortunately, the 

model used here is restricted to those photons that eventually are re-emitted on 

the tissue surface, however, it is worth mentioning that this analysis can certainly 

be used to determine absorption depths. 

The model could be used to determined the distribution of depths sampled 

by the diffusely reflected photons since it corresponds to the average residency 

time at a given depth, z (Bonner et al 1987). Such distribution is important for 

interpreting remote-sensing measurements such as laser Doppler evaluation of 

microcirculatory blood flow (Tahmoush et al 1983), spectroscopic sensing of 

tissue oxygenation (Reynolds et al 1976 and Johnson 1970) and fluorescence 

(Dougherty et al 1978 and Doiron et al 1983). 

1.8 SCOPE OF WORK. 

In the work reported here, a simple diffusion model of light propagation in 

tissue has been used to investigate the statistics of photon paths in tissue during 

both the steady state and time-resolved diffuse reflectance spectroscopy. Two 

irradiation geometries are considered: an infinite medium with an isotropic point 

source of photons (figure 3.4.1.2.1) and a semi-infinite medium (the probability 

that a photon reaches a tissue boundary other than the illuminated surface before 
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being absorbed or re-emitted is negligibly small) with a collimated beam of 

photons (figure 3.4.1.1.1.1 and 3.4.1.1.2.1 ). 

In chapter 2, the fundamental parameters of the propagation medium are 

defined and the radiative transfer equation is derived. Since the solution of this 

equation is very difficult to obtain, the diffusion approximations are introduced 

subject to some boundary conditions. One of the two boundary conditions 

incorporates index mismatch. The solutions of the diffusion equation for both 

irradiation geometries are presented in chapter 3. Using these solutions, 

approximate analytical expressions for the relative time spent by re-emitted 

photons in an infinitesimal volume element dV at r' in a semi-infinite medium are 

obtained. A similar expression for photons emitted from a point source and 

observed in a point detector in an infinite medium is also derived. The residency 

time at depth z, obtained by Weiss et al (1989) for a semi-infinite medium, is also 

introduced. 

In chapter 4, the results and a discussion on the computational methods 

used are presented. The results obtained in the semi-infinite medium with a zero 

boundary condition in the steady state method are compared to that of Weiss et 

al (1989). 

The significance of an inhomogeneous medium and slab geometry on the .. 
photon residency time distribution in tissue are considered to be outside the 

scope of this report. 
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The geometrical presentation of the model to be analyzed is illustrated in 

figures 3.4.1.1.1.1, 3.4.1.1.2.1 and 3.4.1.2.1. In figures 3.4.1.1.1.1 and 

3.4.1.1.2.1, a narrow collimated infinitesimally short pulsed light beam is incident 

normally on the surface of a semi-infinite homogeneous medium at a point 

0(0,0,0) at time t = 0. Photons enter the medium and are scattered by scattering 

sites. Some are absorbed in the medium and some are reflected back to the 

surface where they are re-emitted. A detector is positioned on the surface at a 

point D(r,O,O), a radial distance, r, from the point of incidence. Two techniques 

are considered: The steady state technique and the time-resolved method. In the 

steady state method, experimental data consist of measurements of the reflected 

intensity on the tissue surface, taken as a function of the distance, r, from the 

point of incidence of photons. In the time-resolved technique, the measured 

quantity is the reflected intensity, taken as a function of both r and time t. The 

coordinate system measures penetration of the medium in terms of the 

coordinate, z, which is positive in the downward direction (into the medium), and 

the coordinates x,and y, measured perpendicular to the z-axis. 

In figure 3.4.1.2.1, a point source of photons is placed in an infinite medium 

at 8(0,0) and a point detector is positioned at a point D(r,O), a distance r, 

from the source, and measures the spatial dependence of the multiply scattered 

light or the temporal broadening of a picosecond pulse. 



CHAPTER TWO 

THEORY I 

2.1 ASSUMPTIONS OF THE RADIATIVE TRANSFER THEORY. 

In order to determine the distribution of photons in a random medium such 

as tissue, one must investigate the process of photon transport, that is, the 

motion of the photons as they stream about in the tissue, frequently being 

scattered by scattering sites and eventually either being absorbed in or escaping 

from the medium. Such investigation requires accounting for both the photon 

motion and the photon interactions in the tissue. As discussed under section 1.1, 

the transport model (which assume that light photons propagating through tissue 

can be treated as neutral particles and that wave phenomena can be ignored) is 

a feasible approach to the problem of photon transport in tissue. 

The variables which characterize the state of an individual photon include; 

its position, r. the direction of motion, n, and the time, t, at which the photon is 

observed. It will be assumed that the ptiotons are mononergetic and that 

scattering is elastic (i.e there is no photon energy loss in the process). Further 

more, fluorescence of the medium will be ignored. Thus, all photons within the 

medium will have the same wavelength or energy. It is important to make 

mention here that both inelastic scatter and fluorescence can be included 

20 
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(Moulton 1990) but will require a more complicated model. 

2.2 DEFINITIONS OF THE FUNDAMENTAL PARAMETERS OF THE 

PROPAGATION MEDIUM. 

The fundamental quantity of interest is the photon angular density n{I,n,t), 

(units: m-3Sr1
), defined such that 

is the expected number of photons in d3r about r moving in solid angle dn about 

the direction nat timet. The photon density- (i.e the number of photons per unit 

volume at a position r at time t, units: m-3
), is therefore defined as the angle 

integral of the photon angular density, i.e 

N(c,~ = J n(c,R,~d.n 2.1 
4~ 

Other quantities of interest are the radiance, energy fluence rate and photon 

angular flux, defined as follows; The radiance, L(r.n,t),{units: wm-2Sr1
), is related 

to the photon angular density by the equation 

L(c,n, ~ = hv c' n(c,n, ~ 2.2 

where hu is the energy of an individual photon and dis the speed of light in the 

medium. 

Similarly the energy fluence rate, F(r,t), (units: wm-2
) is defined as 
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F(c, ~ = hv c' N(c. ~ 2.3 

It is also common to define the photon angular flux, (units: m·2s-1Sr1
), as; 

q> (c,.C., ~ = c' n(c,.C., ~ 2.4 

and the photon fluence rate, (units: m·2s-1
), as the angle integral of the photon 

angular flux, i.e 

<l>(c, ~ = f q> (t,ll, ~d.O. = c' N(t, ~ 2.5 
4'11 

A related concept is the photon angular current density (units: s·1Sr1
), defined as 

J(c,.C., ~ = c'.C.n(c,.C., ~ = .C.q> (c,.C., ~ 2.6 

and the photon current density, (units: s·\ is 

J(c,~ = c' f .C.n(r,.C.,~d.C. = f .C.q>(c,.C.,~d.C. 2.7 
4n 4n 

Finally, it is necessary to define the various interaction coefficients before 

an exact equation describing photon transport in a turbid biological medium can 

be developed. The attenuation of visible light in tissue can be considered as due 

essentially to absorption and elastic scattering. The absorption coefficient, Jla{r,t), 

is the probability that a photon will be absorbed per unit infinitesimal path length 

at a position r in the medium at time t, and is related to the rate 
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at which photons in d3rdn at (I,n,t) are absorbed. Similarly the differential 

scattering coefficient Jls(r.n'~n.t), which is the probability per unit infinitesimal 

path length per unit solid angle of photon scatter from an initial direction d to a 

final direction n is such that 

represents the rate at which photons moving in the direction n' are scattered to 

the new direction n. The total scattering coefficient, Jls(r.t), i.e the probability that 

a photon will be scattered per unit infinitesimal path length at a position r in the 

medium at time t, is given by the integral of the differential scattering coefficient 

over all final directions, i.e 

~ s(l,~ = J IJ 8(!,~-+.C.,~dD 2.8 
4n 

Note, it has been assumed, as is generally the case, that, the scattering and 

absorption coefficients are independent of the original direction of the photon. An 

assumption that is reasonable for a random medium, such as tissue (Wilson et 

al 1985). The total attenuation coefficient, J..Lt(r.t). sometimes referred to as the 

extinction coefficient, is the sum of the absorption and scattering coefficients, 

2.9 

and its inverse, [J..Lt(r,t)]-1, is the mean free path between photon interactions. The 
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scattering phase function, S(S), describes the angular dependence of the 

scattering, where e is the angle between the incident beam and the scattered 

photon in the scattering plane. S(S) is given by 

2.10 

where the integral of S(S) over 47t Sr is unity. In most models of light propagation, 

a useful simplifying parameter often used is the average cosine of scatter, 

denoted by g, (Duderstadt and Hamilton 1976), 

1 

g = J S(a}cosad{cosa) 2.11 
-1 

Thus, g = 0 represents isotropic scattering, while 0 < g s 1 represents forward 

scattering. 

2.3 THE TRANSPORT EQUATION. 

Now, consider an arbitrary volume, V, of surface area, S, located anywhere 

within the tissue. The objective is to examine this 'control' volume carefully to 

determine how the photon population within it changes. It is evident that the 

total number of photons in V at a time, t, travelling in a direction, n, in dO can 

be obtained by integrating the photon angular density over the entire volume, i.e 

Hence the time rate of change of the number of photons in V must be given by 
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a balance relation such that 

_E_[jn(c..Q ~tcJ3~d.Q = ~sin of photons _ Loss of photons 2.12 at ' ''' 'J m v in v 
v 

If it is assumed that, the arbitrary volume V is chosen not to be time dependent, 

then, 

2.13 

The various ways by which photons can appear (i.e the gain mechanisms) 

or disappear (i.e the loss mechanisms) in the volume will now be considered and 

they shall be represented by mathematical expressions. 

2.3.1 GAIN MECHANISMS. 

There are two main gain mechanisms that contribute to the population of 

photons in the chosen volume, V. First of all, there is the gain due to photon 

sources in the volume. If the source density S(I,n,t) is specified so that 

is the rate at which photons are produced in d3r at r moving in dn about n, then, 

the production of photons in V is 

The second gain term in the volume is that due to those photons which initially 

were in a different direction n!, and then suffering a scattering collision in V 
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which changes their initial direction into the direction of interest n. If the 

probability of scattering from n' ton is given in terms of the differential scattering 

coefficient, ~(r.n'-7.Q,t), then the rate at which those photons moving in the 

direction n' are scattered to the direction of interest n is 

If c'~-1 6(l,~ ... .n.~n(.c,~.~(j31jd.C. 
v 

However, contributions from any initial direction, n', must be considered, hence 

the total rate becomes, 

If (j3rf d~c'~-1 6(.c,~ ... .n.~n(.c,~.~]d.C. 
v 4n 

2.3.2 LOSS MECHANISMS. 

Conversely, there are some loss mechanisms that occur in the volume 

which results in loss of photons. The two most significant loss mechanisms are 

the loss due to the net leakage of photons from the volume V, and the loss due 

to those photons in V suffering a collision. If j(r,n.t) is the photon angular current 

density, then the net rate at which photons in the direction n pass out through 

a small surface element dS is 

and utilising the relation in equation 2.6, the expression above can be rewritten 
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in terms of the photon angular density as 

But it would be more convenient to convert the surface integral above to a 

volume integral, similar to the other terms. The common way to convert such 

surface integral to volume integral is to use Gauss's theorem: 

f dS·A(l) = f cPtV·A(l) 2.14 
s v 

to write 

2.15 
s v 

It is obvious that an absorption interaction removes a photon from V. By 

definition a scattering collision changes a photon direction, but since one is only 

keeping track of photons in V with this specific direction n, a scattering collision 

can also be considered to amount to loss of photons. The rate at which photons 

suffer collisions at a point r at time t is 

c' ~ ~I,~ n(t,.C., ~ 

Hence integrating this collision rate over the entire volume V, gives the total loss 

due to collision in the volume as 
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[c' J"' ~t.~n(.c;n,~({-Jtjd.n 
v 

If all these terms are now combined such that 

The time rate of change _ Gain terms Loss terms 2.16 
of photons in V - in V - in V 

Then, 

lf j_n(.c;.c.,~(iStjd.C. = l[ S(t,.c.,~(iStjd.n - [c' fvnn(.c;n,~(iStjct.n 
vat v v 2.17 

+ [c'f (iStJ d.C.(~ ... n)n(t,~.~ - [c'f"' ~t,~n(.c;n,~(iStjdll 
v 41t v 

or 

f (iSl[j_n(.c;ll,~ + c'.O.Vn(.c;.C.,~ + CIJ. ~.c;~n(t,.C.,~ 
v at 2.18 

- f ~c'f.L .(.c;~ ... .n.~n(t,.C.,~ - S(t,.C.,~]ct.n = 0 
47t 

Notice that, it has rightly been written, 

c'v.n = c'.n v 2.19 

since n does not depend on r. 
Recall that the volume V being examined was chosen to be arbitrary, that is to 

say, equation 2.18 must hold for any volume V in the medium. However, the 

only way this can occur is if the integrand itself were to vanish (Duderstadt and 

Hamilton 1976). Hence, 
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a A ,.. A d A 

S(r • .o..~ = -n(r • .o..~ + c .O.Vn(r • .o..~ + ~ ~r.~n(r • .o..~ 
at 2.20 - f dfid ~ s<fi -._d)n(r,.O.~ 

4n 

Using equation 2.4, equation 2.20 can be rewritten in terms of the photon 

angular flux density, i.e 

2.21 

Equation 2.21 is the classical Boltzman transport equation. It is a far more 

fundamental and exact description of the photon population in a medium, and the 

fundamental cornerstone on which almost all of the various approximate methods 

used in photon transport are based. Its major drawback, however, is that, despite 

all the assumptions that were made to derive it, it is usually very difficult to solve 

for any but the simplest modelled problems. Applications to practical situations 

generally requires further, even more restrictive approximations (Moulton 1990). 

2.4 SOLUTION OF THE TRANSPORT EQUATION. 

An analytical solution of the transport equation is possible, but only under 

a few conditions (Wilson and Patterson 1988). Thus the Boltzmann transport 

equation is usually solved numerically on a computer. Chandrasekhar (1950), has 

solved the transport equation for a homogeneous, semi-infinite, isotropically 
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scattering medium irradiated with a collimated beam of infinite extend. And a 

similar solution has been presented by Rybick (1971) for a similar medium 

irradiated with a narrow collimated beam. There are a number of numerical tech­

niques which have evolved to handle more general conditions such as anisotropic 

scattering and slab geometries (Wilson and Patterson 1985). The most direct 

method is that of discrete ordinates described by Duderstadt and Hamilton 

(1976), which amounts to a numerical solution of a discrete version of the 

transport equation. The solution for the general case of finite beam and a 3-

dimensional geometry containing inhomogeneities still represents a formidable 

computing task (Wilson and Patterson 1986). 



CHAPTER THREE 

THEORY II 

3.1 THE PHOTON DIFFUSION EQUATION. 

Another way of solving the transport equation is to simplify it from an 

integra-differential (i.e containing both derivatives in space and time as well as 

integral over angle) equation to a partial differential equation which can then be 

solved by standard techniques.The transport equation can be rewritten in terms 

of the angle-integrated flux, <J>(I,t), i.e 

ci»(r.~ = f cp(r,.O.,~d.Q 3.1 
4n 

Integrating the Boltzmann transport equation 2.21 over all directions, n, i.e 

f dDS(c,.n,~ = ~~ dn~cp(c,.n,~ + f dn.c.Vcp(r,.n,~ 
4n c 4n at 4n 3.2 

+ f d.n~~c,~cp(c,.n,~ - J J d.n~.(-'l!-+.C.)cp(c,-'l!,~ 
4n 4n4n 

or rearranging the terms gives 
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J d.O.S(r,.Q,~ = J,.E_ J dQ«p(l,fi,~ + v J dQ.Q«p(l,fi,~ 
4n c at4n 4K 3.3 
+ JJ ,(r,~ J dQ«p(r,.O.,~ - J d.o!_ J d.O.JJ .(.o!_ -+.O.)«p(r,.o!_,~ 

4n 4K 4n 

Using the relations summarized in table 3.1 .1 and equation 2.9, the transport 

equation simplifies to 

3.4 

Now, according to Fick's law which is also occasionally referred to as the 

diffusion approximation, 

3.5 

where D(r,t) is know as the diffusion coefficient defined as, 

3.6 

J.ltr is the transport cross section, defined such that, 

3.7 

where g is the average cosine of the scattering angle in a photon scattering 

collision. Using equations 3.7, and 2.9, equation 3.6 can be rewritten as, 

D<r.~ = [3{1:1 .<r.~ + <1-t/J!:' .<r.~n-1 3.8 

It is assumed here that the differential scattering coefficient depends only on the 
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cosine of the angle between nand n'. It should be noted that equation 3.5 is 

valid, if it is used to describe the photon flux far away from boundaries or isolated 

sources as it is assumed here. It is further assumed that the propagation medium 

is only weakly absorbing, and the photon current is changing slowly on a time 

scale comparable to the mean time between collisions (Duderstadt and Hamilton 

1976). 

Substituting equation 3.5 into equation 3.4, the time dependent photon 

diffusion equation is derived as 

1 a Vl S(c,~ = d atcl>(c.O - D(c.O cl>(c.O + J.L,.(c.OcJ>(c.~ 3.9 

So far, the description of the interaction parameters of the propagation medium 

has been generalized. This is necessary in some cases. For example, the 

determination of the spatial dependence of the absorption and scattering 

coefficients may be the goal of an imaging problem, while the time dependence 

of these parameters may indicate metabolic response to some external stimulus 

(Moulton 1990). However, for simplicity in this report, it will be assumed that the 

medium in which the photons are propagating is uniform or homogeneous such 

that the diffusion and the absorption coefficients do not depend on position. 

Furthermore the properties of the medium are assumed to be constant in time. 

Then the diffusion equation simplifies to, 
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1 a ,...,...Q 
S(t, ~ = --a 4>(C. ~ - uv-4>(C. ~ + 1J. ,.4>(t, ~ 

c' t 
3.10 

The diffusion theory is attractive because of its simplicity and because the 

differential equation obtained above can be solved even for complex geometries 

using numerical techniques. When solving this equation, it must be remembered 

that only photons which have been scattered at least once in the medium may 

satisfy the equation (Duderstadt and Hamilton 1976). 

TABLE 3.1 .1 For isotropic photon 
sources and scattering (Duderstadt and 
Hamilton 1976) 

41t = f41tdn 

<J>(I,t) = f 41tcp(r.n.t)dn 

S(r.t) = f41tS(r.n.t)dn 

J(r,t) = f4Jlcp(r.n.t)dn 

J.Ls(r.t) = f4nJ.ls(r.n'~n.t)dn 

3.2 INITIAL AND BOUNDARY CONDITIONS. 

Since the photon diffusion equation has derivatives in both space and time, 

one must assign suitable boundary and initial conditions to complete the speci-

fication of any problem. Since the diffusion equation itself is only an approxi-
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mation to the more exact transport equation, one can use the transport theory 

boundary condition as a guide in the development of appropriate diffusion 

boundary conditions (Duderstadt and Hamilton 1976). The appropriate initial 

condition involves specifying the photon flux; <j>(I,t), for all positions rat the initial 

time, t = 0. And since only a single time derivative appears in the equation, the 

initial condition can be chosen to be the specification of the initial value of the 

photon flux for all positions, i.e 

In/tis/ condition : ~(t,O) = ~ 0 (1) 3.11 

Generally, there are no photons within the volume of interest prior to 

irradiation. As a result the initial distribution of photons is assumed to be 

identically zero everywhere in the volume. 

~(l,~ = 0 t < 0 3.12 

The presence of photon sources within the volume, V, depends on the irradiation 

geometry. The illumination of the surface with a temporally narrow pulse of mono­

directional light may be expressed mathematically by defining S(r,O,t) = 0 in V 

and incorporating the incident beam into the initial and boundary conditions so 

that the photon flux at av is <j>(r av•n, t) for all n ·n < o, where n is the outward 

normal to av (Moulton 1990). 

Alternatively, the initial scattering events could be written as an internal 
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source function, 

3.13 

where ro is the initial position. The presence of the phase function describes the 

angular distribution of first scatters while the o-function defines the temporarily 

narrow, mono-directional nature of the incident beam. The attenuation of the 

beam through scatter and absorption is described by the exponential decay 

(Moulton 1990). 

The boundary conditions depend on the particular physical problem of 

interest (Duderstadt and Hamilton 1976). It has been demonstrated that a useful 

approach is to set the diffuse fluence rate to zero at an extrapolated boundary 

some distance beyond the actual surface, i.e 

3.14 

The application of this boundary condition forces the fluence rate to zero outside 

the volume of interest on the surface described by U:av+nre). According to 

Hamilton and Duderstadt (1976), if the interface is between tissue and a non­

scattering medium with the same refractive index, this extrapolated boundary is 

located at 

Z9 = 0.7104ltr = (0.7104)30 3.15 
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where A,r is the transport mean free path. Hemenger (1977), has demonstrated 

that a mismatch in the index of refraction at the surface of the medium , for 

example, an air-tissue interface, can be accounted for by changing the position 

of this extrapolated boundary. 

The development of such expressions for the position of the extrapolated 

boundary in terms of the optical properties of the medium has been pursued by 

many other authors (Moulton 1990). For the purposes of this report only two of 

the most commonly used expressions for the position of the extrapolated 

boundaries and the zero boundary condition will be used. Specifically, the 

influence of the Milne, and the Marshak extrapolated boundary conditions and the 

zero boundary condition developed by Patterson et al (1989), on the average 

residency time at a depth z of re-emitted photons will be considered. The 

Marshak extrapolated boundary condition incorporates an index-mismatch at the 

boundary, while the Milne extrapolated boundary and the zero boundary 

conditions are generally considered for an index-matched boundary. 

Moulton (1990), has presented a detailed discussion on the exact as well 

as approximate boundary conditions often used in photon transport. The results, 

even for the relatively simple approximate boundary conditions are still complex 

and require further simplifications. It was demonstrated that the expression for the 

position of the extrapolated boundary which results from the solution of the Milne 

problem can be obtained when (1-a)<<1 as, 



Z8,1111ne "' J,o.710446[1-0.0199(1-s~2+ ... ] 
lls 
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3.16 

where the dimensionless parameter a= ~/J.ltr and is referred to as the transport 

albedo. The corresponding expression obtained from the Marshak problem for an 

index-mismatched boundary condition was shown to be, 

3.17 

where 

X: = 
(1-RJ(1-ll~ 

3 I 

(1 +RJ+(1-RJllc 3.18 

and 
llc = cos(8J 

nv and nm are the refractive indices of a non-scattering medium (taken here to be 

equivalent to that of air, i.e, 1.0) and the medium of interest ( taken here to be 

tissue i.e 1.4) respectively. 

Patterson et al have demonstrated that, for such applications where the 
. 

probe fibers are wide apart compared to the extrapolation length, the pulse shape 

is insensitive to the exact location of the extrapolated boundary, hence for 

simplicity one could ignore the extrapolation length and assume that the fluence 

rate vanishes on the true (physical) boundary, 
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3.19 

Application of this boundary condition forces the fluence rate to zero on the 

physical boundary of the volume at all times, though the true flue nee rate is non-

zero on this boundary (Duderstadt and Hamilton 1976). 

3.3 SOLUTION OF THE DIFFUSION EQUATION. 

3.3.1 THE FUNDAMENTAL SOLUTION. 

Moulton (1990), has recently determined the solution of the diffusion 

equation in various geometries and for different boundary conditions. This was 

accomplished through the development of the appropriate Green's function. Using 

the properties of the fundamental solution, E(In,t), of the n-dimensional diffusion 

equation 

in an infinite medium such that the initial and boundary conditions are 

it was demonstrated that, 

E<!n,O} = 0 

lim E<!.n,~ = 0 
l!izl~ .. 

3.20 

3.21 
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Ef.!:n,~ = 1.(~c'(47tDc') ~ t ~exp( lral
2 

-~ c'~ 3.22 
4Dc1t IJ 

where 1 +(t) is the Heaviside step function 

1 (~ = {1 
+ {0 

r~o 

t<O 
3.23 

Considering only the positive times, the fundamental solution in n-dimensional 

spherical coordinates for an infinite medium is 

3.24 

3.3.2 INFINITE MEDIUM. 

It will be assumed that the diffuse photon fluence rate, <j>(I,t), satisfies the 

diffusion equation given by equation 3.1 0. Then utilizing the fundamental solution 

above, the fluence rate per incident photon at r in 3-dimensional spherical 

coordinates for an infinite medium can be obtained as 

3 3 2 

cl>(t,~ = c1(47tDc1) 2 t 2exp( ltl -~ c'~ 
4Dc1t IJ 

3.3.3 SEMI-INFINITE MEDIUM. 

3.3.3.1 ZERO BOUNDARY CONDITION. 

3.25 

The problem posed in figure 3.3.3.1.1 can be solved by using equation 3.25 
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and making two assumptions. The first assumption is that all the incident photons 

are initially isotropically scattered at a depth Z0 , directly below the source fiber on 

the tissue surface, where Z0 is actually the mean distance between scattering 

events and is defined as 

3.26 

so that the actual source term can be represented by the simple delta function 

described below. 

S(r.~ = ~(z-zJ~(~ 3.27 

According to Patterson et al (1989), this localization of the first interactions will 

not produce inaccuracies for measurements of the fluence rate made far from the 

source or for detection times which are long after pulse incidence. The second 

assumption which has already been discussed under section 3.2, is that the 

fluence rate should be set to zero on the physical boundary, (z = 0). As 

demonstrated by Patterson et al (1989), this boundary condition can be met by 

adding a negative or image source of photons to the infinite medium problem as 

shown in figure 3.3.3.1.1 

The fluence rate per incident photon (units: mm-2s-1
) at any point in the 

medium can then be written in cylindrical coordinates as the sum of contributions 



Semi-Infinite Homogeneous Medium 
Irradiated with a Pencil Beam. 
Boundary Condition: so(r,O,t) o 

or so(r,O) 0 

~== --~ ------------------------------------------ ----------------------------------------------· 
0 . 

z=O r 

/ 
Figure 3.3.3.1.1 

42 

A collimated pencil beam normally incident upon the 

surface of a semi --infinite homogeneous medium. The 
beam is assumed to create an isotropic photon source 

at a depth ~ 0 • The boundary condition is met by ass-­

uming an image source at ~ = --z
0

. 
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from the two sources, i.e 

3 3 

cl>(p,z,~ = c'(41tDC) 2 t 2exp( -~ .c'~{e 
3.28 

Hence the photon density per incident photon, N(p,z,t), (units: mm-3
) is easily 

obtained from equation 3.28 by just dropping the factor d, (see equation 2.5). i.e 

3 3 

N(p,z,~ = (41tDc'} 2 t 2exp( -~ .c'~{e 
3.29 

The number of photons reaching the surface per unit area per unit time per 

incident photon can be calculated from Fick's law 

3.30 

which leads to the final expression for the diffuse reflectance, R(r,t) (units: m-2s-1
), 

determined by Patterson et al (1989) for a 3-dimensional radially symmetric 

problem as, 

R(r.~ = IJ(r,~ I 
3 5 ~.~ 3.31 

= Z
0
(41tDc)-2 t-2exp( -IJ .c'~e 4Dc't 

3.3.3.2 EXTRAPOLATED BOUNDARY CONDITION. 

The extrapolated boundary condition described by equation 3.14 for a 3-



44 

dimensional semi-infinite geometry is 

cl>(r,-z,~ = 0 3.32 

and the source function is as given by equation 3.27. The solution of this problem 

is obtained by placing an image source of photons at z = -zP where zP = Z0 +2Ze 

as shown in figure 3.3.3.2.1. Utilizing the solution for the infinite medium 

problem, the assumption that the fluence rate vanishes on the surface z = -ze, 

and that all the incident photons are initially isotropically scattered at Z0 , the 

fluence rate per incident photon at any point in the medium can be written in 

cylindrical coordinates as, 

3 3 

cl>(p,Z,~ = C1(4nDc') 2 t 2exp( -JL 8d~{8 
3.33 

hence the photon density per incident photon becomes, 

3 3 

N(p,z,~ = (4nDc) 2 t 2exp( -JL 8d~{8 
3.34 

The diffuse reflectance per unit area per unit time per incident photon is 

determined from Fick's law by Moulton (1990) for a radially symmetric 3-

dimensional geometry as, 



Semi-Infinite Homogeneous Medium 
Irradiated with a Pencil Beam. 
Boundary Condition: so(r,-Ze ,t) o 

or cp(r,-ze) 0 
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Figure 3.3.3.2.1 
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A collimated pencil beam normally incident upon the 

surface of a semi-infinite homogeneous medium. The 
beam is assumed to create an isotropic photon source 

at a depth z 0 . The boundary condition is met by ass­

uming an image source at z = -z P, (zp = z 0 +2ze)· 
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3.35 

3.4 STATISTICS OF THE RESIDENCY TIME OF RE-EMITTED PHOTONS. 

3.4.1 PULSE STATE. 

3.4.1.1 SEMI-INFINITE MEDIUM. 

3.4.1.1.1 ZERO BOUNDARY CONDITION. 

Assume NP photons enter the tissue (see figure 3.4.1.1.1.1) at timet= 0 ps. 

The number of photons that will leave the tissue surface through dA about r in 

a time interval dt at timet is 

Nj1(r,~dAdt 

where R(r,t) is the photon diffuse reflectance given by equation 3.31. The total 

time (pico-seconds, ps) spent by these photons in the tissue before they exit 

through dA at (r.t) is 

tNj1(r,~dAdt 

To determine what fraction of this total time is spent in an elemental 

volume dV about some arbitrary location r in the medium, consider a time interval 

dt' at time t' during the propagation of the photons in the tissue. Then the number 
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of photons in dV during this time interval is 

NpN(p,z,t'}dV 

where N(p,z,t') is the probability of finding a photon in the vicinity of [at time t' 

after entry into the tissue (i.e the photon density per incident photon). And it is 

obtained from equation 3.29 as 

The probability that a photon which is in dV in the tissue at ([,t) will escape 

through dA on the tissue surface at (I-[,t-t') thereafter, is the so called escape 

function (units: mm-2ps-1
), which from equation 3.31 and the geometry of the 

problem in figure 3.4.1.1.1.1 is obtained as, 

3 s _ ~+z2+p2-2rpcos(8) 
E(r,z,t.p,e,t'} = z

0
(4rcDd} -i(t-t'} -is-"ae'<t-t'>s 4Dc'Ct-t'> 

3.37 

Thus, the joint probability of a photon escaping from the tissue in the vicinity of 

rafter a timet through dA on the tissue surface having been in dV in the tissue 

in the vicinity of [at timet' after entry into the tissue will be 

N pH(p ,z,t'}dVE(r,z,t,p ,e,t'}dAdt 

Photons that reach dV in the vicinity of rat timet' will have different paths 

in the tissue because some photons enter the medium and are immediately 



Semi-Infinite Homogeneous Medium 
Irradiated with a Pencil Beam. 
Boundary Condition: cp(r,O,t) 0 

or cp(r,O) = 0 

z =-z e·-----------------------

z 

Figure 3 .4 .1.1.1.1 

A geometrical presentation of the model being 
analyzed. Photons enter the medium at 0(0,0,0) 
at t=O. A detector positioned at D(x,y,O) mea­
sures the reflectance as a function of r (steady 
state) or r ·and t (pulse state). The boundary 
condition is so(r,O,t)=O or so(r,O)=O. 
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scattered into dV while others wander through the tissue for some time before 

they reach dV. We must consider all possible times t', that contribute to the time 

the photons spend in dV in the tissue at (r',t') and still escape at (I,t) through dA 

on the irradiated surface. This can easily be calculated by taking the time integral 

of the expression above, i.e, 

t- lt-il 
c' 

d1lr,z,t,p,a) = NPdVdAdt J N(p,z,f)E(r,z,t,p,a,r)df 3.38 
Iii 
c' 

The lower limit of the integration is the time for a direct flight of a photon from the 

point of incidence to dV ( i.e the shortest time a photon will take to reach dV), 

and the upper limit is the maximum time taken by an incident photon to 

eventually reach dV after wandering through the tissue and still escape at r. 

Substituting for N(p,z,t') and E(r,z,t,p,e,t'), the residency time dT(r,z,t,p,e) (in 

picoseconds) of re-emitted photons at (z,p) and source-detector distance r is 

obtained as 

UL 3 5 _ r2+z2+e2-2rpcos(8) 

d7tr,z,t,p,6) = NPdVdAdtf ~{2-(t-f) -2s 4Dc'Ct-t'> 
LL 3.39 

_ (z-z,i+e2 _ (z+z,i+e2 

X exp( -J.L ac'~(S 4Dflt' -8 4Dc't' )df' 

where 



c' 
snd 

1 

UL = t [r2+z2+p2-2rpcos(e)] 2 
c' 
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3.40 

which can be evaluated numerically. The residency time at depth z is critical to 

interpreting data in a situation in which the measured property (e.g micro­

circulatory blood flow) is not uniform with depth in the tissue (Weiss et al 1989). 

It should be noted that the entire expression has units of time, as it should, since 

it represents the total time spent by NP photons in an elemental volume dV in the 

medium before re-emitting at the tissue surface. The integrand itself has units of 

mm-5 and will be represented by L(r,z,t,p,S), i.e 

UL 3 5 r2+z2+p2-2rpcos(8) _ (z-z,l+P2 

L(r,z,t,p,6) = J ~t'-i(t-t')-is-"r'ts 4Dc'<t-t') {s 4Dc't' 

LL 3.41 
- (z+zti+P2 

-8 4Dc't' }dt' 

Notice that the volume integral of dT(r,z,t,p,e) should just be equal to the total 

time spent by the photons in the medium before they exit, i.e, 

or 

NPc/Adtf L(r,z,t,p,6)cf3t!_ = tNrfi(r,~c/Adt 
v 

3.42 
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J L(r,z,t,p,6)cf3i. = tR(r,(J 3.43 
v 

Suppose, instead of calculating the absolute amount of time photons spent 

in dV one is interested in calculating the relative amount of time spent by these 

photons in the volume element. This would just be the normalised form of the 

residency time in the volume element, dT"(r,z,t,p,e). From equations 3.39, and the 

expression for the total time photons spent in the medium it can easily be shown 

to be, 

or 

UL 3 5 _ r2+z2+p2-2rpcos(8) 

NPdVdAdtf ~ {2(t-t') -29-ll,c'tB 4Dc'(t-t') 

u 
_ (z-z,i+P2 _ (z+z,l+P2 3. 44 

X {8 4Dc't' -B 4Dc't' }cit' 
dTn(r,z,t,p,6) = -------"'----------..4---

3 5 r2+z2 

tNPdAdt{41tDC) 2 t 2 z0exp( -~ adfJB 4Dc't 

UL 3 5 r2+z2+p2-2rpcos(8) 

dVJ ~t/2(t-t')-i.B-Il,c'tB 4Dc'<t-t') 
u 

3.45 

dT"(r,z,t,p,e) is unitless as it should, since it represents the relative amount of 
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time a photon spent in dV before escaping at the surface. Notice that the . 
normalization was to the total time photons spent in the medium before they 

escape at (I,t). 

3.4.1.1.2 EXTRAPOLATED BOUNDARY. 

The escape function is obtained from equation 3.35 and the geometry of 

figure 3.4.1.1.2.1 as 

3 5 _ r2+z2+p2 -2rpcos(8) 

E{r,z,t,p,e,t~ = ~ (41CDC~ -2(t-t~ -2e -~&.c'<t-t~{z0s 4Dc'<t-t~ 
3.46 

r 2+z2+p2-2rpcos(8) 

+ZpS 4Dc1(t-t? } 

and the probability of finding a photon in dV in the vicinity of r at time t' after 

entry into the tissue (i.e the photon density per incident photon) is obtained from 

equation 3.34 by substituting t by t'. i.e 

Utilizing the same discussion under section 3.4.1.1.1, for the zero boundary 

condition, the total time dT(r,z,t,p,e), spent by NP photons in an elemental volume 

dV in the tissue, assuming the fluence rate is set to zero on the extrapolated 

boundary z = -Z9 , becomes 



Semi-Infinite Homogeneous Medium 
Irradiated with a Pencil Beam. 
Boundary Condition: cp(r,-ze,t) 0 

or cp(r,-ze) 0 

z=-zp---- -------- ---
--- ---- --- ---

z 

Figure 3.4.1.1.2.1 

A geometrical presentation of the model being 
analyzed. Photons enter the medium at 0(0,0,0) 
at t=O. A detector positioned at D(x,y,O) mea­
sures the reflectance as a function of r (steady 
state) or r and t (pulse state). The boundary 
condition is cp(r,-z e ,t)=O or cp(r,-ze )=0. 

53 



54 

UL 3 5 _ r2+z2+e2-2rpcos(8) 

d7{r,z,t,p,8) = ~ NPdVdAdt J ~t1-2(t-t~ -2{z
0
e 4Dc'(t-t~ 

LL 
_ r2+z2+p2-2rpoos(8) (z-zJ2+e2 _ (z+z1l+e2 

+zP6 4Dc1(t-t~ }{6 4Dc't' _6 4Dc't' 16 -~~,c'tdt' 
3.48 

wh6f8 

~ = (4nDc~-3 

and L(r,z,t,p,e) is therefore given as 

UL 3 5 _ r2+z2+p2-2rpcos(8) 

L(r;z,t,p,e) = ~ f ~t,-2(t-n -26 -l'.c'ttzo6 4Dc'<t-t~ 
LL 3.49 

_ r2+z2+p2-2rpoos(8) _ (z-zJ2+e2 _ (z+z,l+e2 

+ZpB 4Dc1(t-t~ }{6 4Dc1t1 
_ 6 4Dc1t1 }dt' 

The normalized (to the total time spent by photons in the medium) version of 

equation 3.48 is 

UL 3 5 _ r2+z2+p2-2rpcos(8) 

dVJ ~t'-2(t-tf2e -I'.C''tzo6 4Dc'<t-t~ 
LL 

- r2+z2+p2-2rpcos(8) - (z-zJ2+p2 - (z+z,i+e2 

+ZPB 4Dc1(t-t~ }{e 4Dc1t1 -B 4Dc1t1 }dt' 3.50 

3 5 - r2+z! - r2+z! 

t(4nDc~ 2 t 2exp(-lJ.8C 1~{z0e 4Dc't+zp6 4Dc't} 

3.4.1.2 INFINITE MEDIUM. 

The problem analyzed in this report can also be solved for a point source 

and a point detector situated in an infinite medium. 
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Similar to the reflectance problem for a semi-infinite medium already 

discussed, assume NP photons are emitted from a point source situated in an 

infinite medium at S(O,O) at timet= 0 ps, (figure 3.4.1.2.1 ). The photon density 

in dV at rat any timet thereafter can easily be determined. Given that a photon 

is in dV at rat time t, to determine how much time it has spent in dV' about some 

arbitrary location r1 in the medium, consider a time interval dt' at timet' after 

being emitted from the source in the medium. Then the number of photons in dV' 

at r1 during this time interval is 

. 
where N(x,y,t') is obtained from equation 3.25 as 

3 3 -~ 
N(x,y.t') = (4nDc')-2{2exp(-~ 8c't')6 40(1t' 

3.51 

The probability that a photon which is in dV' at (r1,t') will be in dV at (I2,t-t') 

thereafter is just 

N(r-x,y. t- t')dV 

where 

Therefore, the combined probability of detecting a photon in dV at (r,t) having 



Infinite Homogeneous Medium with 

a Point Source and Point Detector. 

Figure 3.4.1.2.1 

An isotropic point source of photons is positioned 
in an infinite homogeneous medium at s(O,O). A 
point detector situated at D(r,O) measures the 
number of photons reaching dV as a function of r 
(steady state) or r and t (pulse state). Calculated 
values are symmetrical about the line y = 0. 
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been in dV' at (I1,t') after emission from the source is 

NpN(x,y, t')dV' dt' N(r-x,y. t- t'}dV 

Considering all possible times t' that contribute to this time function, the residency 

time dT(r,x,y) of a photon in dV' at (I,t') that was detected in dV at (r,t) is 

t-.!!!1. 
c' 

dT(r,x,y.~ = NPdV'dV I N(x,y,t')N(r-x,y,t-t',)dt' 3.53 
lr1l 
c' 

substituting for N(x,y,t') and N(r-x,y,t-t'), the residency time in dV' of a photon 

detected in dV becomes 

1!21 
t--

c' 3 3 -~ _ <r-Xl+r 
dT(r,x,y,~ = NPdV1dV I ~t' -i(t-t') -is-"•c'ts 4Dc't' s 4Dc'<t-t') dt' 

1!11 -
c' 

whsrs 

1 1 

~ = (41tDc')-3 , 1!!1 = (X2+y2) 2 and 1!21 = [(r-x)2+y2] 2 

3.54 

As expected once again, the entire expression has units of time. And as usual 

we will represent the integrand by L(r,x,y,t), i.e 
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t- [(r-.l}2+y2] 2 
c' 

L(r,x,y;t~ = J 

3.4.2 STEADY STATE. 
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3.55 

The discussion so far has been concerned with the relation between time-

resolved reflectance to the photon residency time distribution in tissue. One can 

easily proceed to the solution of the steady state problem. Two methods are 

proposed: The first method is simply the time integral of the time-resolved 
. 

problem. The second method is based on the diffusion approximation to the 

steady state radiative transfer equation. The first method is expensive in 

computation time. On the other hand, the second method gave relatively quick 

results, and hence was used to determine most of the results in the steady state 

method. 

3.4.2.1 PHOTON RESIDENCY TIME FROM THE TIME INTEGRAL OF THE 

TIME-RESOLVED PROBLEM. 

3.4.2.1.1 SEMI-INFINITE MEDIUM. 

3.4.2.1.1.1 ZERO BOUNDARY CONDITION. 

The total number of photons that exit at r through dA (figure 3.4.1.1 .1.1) in 

the steady state, i.e assuming a continuous irradiation of photons on the tissue 
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surface is 

-

where R(r,t) is given by equation 3.31. The total time spent by the photons in the 

medium before they exit through dA at r is 

-

The total amount of this time spent in dV in the vicinity of r' in the tissue, 

dT(r,z,p,e), is just 

- -
dT{r,z,p,e) = J dT{r,z,t,p,6)dt = NPdVdAJL(r,z,t,p,6)dt 3.56 

0 0 

If equation 3.56 is normalized to the total time spent by the photons in the 

medium before they exit through dA about r on the tissue surface, one would 

obtain the normalized form of the residency time, dT"(r,z,p,e), in the steady state 

as 

.. 
NPdVdA f L(r,z,t,p,6)dt 

dTn(r,z,p,6) = __ ____;;o ___ _ .. 3.57 



or 

... 
dVJ L(r,z.t.p.a)dt 

dTn(r.z.p.a) = --0 ----.. 
JtR(r,~dt 
0 
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3.58 

L(r,z,t,p,e) is given by equation 3.41. Substituting for L(r,z,t,p,e) and R(r,t) 

equation 3.58 becomes 

• UL 3 5 _ r2+z2+p2-2rpoos(8) 

dVJ[J K,l2(t-t') -28-",c't8 4Dc'(t-t'> 

OLL 
_ (Z-Zrl+P2 _ (Z+Z1l+p2 

X {8 4Dc't' -8 48 't' }df')dt 
dTn(r,z.p.a) = ----~-------4.----&-

.. 3 6 _ r2+z! 

J t(4n De~ -2 t -2 z
0
exp( -IJ. 8c1 ~8 4Dc't dt 

0 

3.59 

Equation 5.59 above is just the time integral of the time-resolved problem, i.e the 

time integral of equation 3.45. 

3.4.2.1.1.2 EXTRAPOLATED BOUNDARY CONDITION. 

The influence of extrapolated boundary conditions on the residency time 

in the steady state technique can be determined. Substituting for L(r,z,t,p,S) using 

equation 3.49 and R(r,t) from equation 3.35 in equation 3.58, the residency time 

incorporating extrapolated boundary conditions is obtained as 
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eo UL 3 5 _ ~+Z2+p2-2rpcoa(8) 

dVj[j J<2t'-2(t-t') -28-~o~.c't{Zo8 4Dc'(t-t') 

OLL 
_ ~+z2+p2-2rpcoa(8) _ (z-z,)2+p2 _ (z+z,t+p2 

4Dc1(t-t') }{8 4Dtlt' -8 4Dc't' }dt']dt 3.60 

The equation above is the time integral of equation 3.50. 

3.4.2.1.2 INFINITE MEDIUM. 

In a similar way the total amount of time spent in dV' in the steady state, 

dT(r,x,y), about some arbitrary location r1 in an infinite medium (figure 3.4.1.2.1) 

before being detected in an elemental volume dV at f2 thereafter in the medium 

is 

.. .. 
dT{r,x,tJ = J dT{r,x,y,~dt = NPdV'dVJL(r,x,y,~dt 3.61 

0 0 

where L(r,x,y,t) is given by equation 3.55. Substituting for L(r,x,y,t), dT(r,x,y) 

becomes 

1!21 
t--

.. d 3 3 -~ _ (r-x)2+y2 
dT{r,x,tJ=NpdVdV'f[ f J<2{2(t-t') -28-~o~,c't8 4Dc't' 8 4Dc'<t-t') dt']dt 

0 1[11 
d 

Equation 3.62 above is the time integral of equation 3.54. And the integrand is 
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represented by L(r,x,y) 

1!21 t--
- c1 3 3 _ x2+r2 

_ (r-Xl+r2 

L(r,x,y) = [l J 1(2t'-2(t-tf2exp( -~-L.c'~e 4Dc't'e 4Dc'<t-t~dt1dt 3.63 
0 1!11 

c' 

3.4.2.2 PHOTON RESIDENCY TIME FROM THE STEADY STATE TRANSFER 

EQUATION. 

During the derivation of the time dependent diffusion equation (equation 

3.1 0), the energy dependence of the transport equation was eliminated, the 

medium was assumed to be homogeneous, properties of the medium were 

assumed to be constant in time and scattering was assumed isotropic in the 

interest of simplifying the model. Attention can now be turned to the remaining 

time and spatial variables. Let the time variable be completely eliminated by 

considering only steady state transport problems. Then equation 3.10 simplifies 

to 

-D\i2cJ>(l) + IJ. acl>(l) = S(l) 3.64 

This is the diffusion approximation to the steady state radiative transfer equation 

for a homogeneous medium (Duderstadt and Hamilton 1976). The solution of this 

differential equation for S(I) = B(I), for the photon fluence far enough from the 

source is (Patterson et al 1989) 



where 

1 

~eff = {3~ al~ a+(1-g) ~ J} 2 

is the effective attenuation coefficient (units: mm-1
). 

63 

3.65 

3.66 

For the case of point source in a semi-infinite medium, the fluence (units: 

mm-2
) per incident photon (see figure 3.4.1.1.1.1) about r in the tissue for a zero 

boundary condition is therefore written as the sum of the contributions from the 

two sources: 

1 

exp{-~,J(z+z,)2+p2] 2} 
1 ] 

3.67 

The reflectance (units: mm-2
) at a distance, r, from the point of incidence has 

been shown by Patterson et al (1989) to be 

R(l? = 1-DV'ct>(r,z,p)lz..o = 3.68 

The photon escape function (units: mm-2
) is easily derived from equation 3.68 

and the geometry of figure 3.4.1.1 .1.1 as 



E(r,z,p,e) = zo exp[-t.Lefflt-ill [IJ..,-t 1 ] 
21t lt-il2 lt-il 

whsrs 

1 

lt-il = {r2+Z2+p2-2rpcos(8)} 2 
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3.69 

The adequacy of the integrations which were performed numerically by the 

computer can now be tested by comparing the results of the residency time 

obtained from the time integral of the time-resolved problem to that obtained from 

the diffusion approximation to the steady state radiative transfer equation. 

It has been shown from the time integral of the time-resolved problem that, 

the total time spent by NP photons in an elemental tissue volume dV in the vicinity 

of r in the steady state is 

.. 
NPdVdA f L(r,z,t,p,B)dt 

0 

where L(r,z,t,p,S) is given by equation 3.41 or 3.49. If an absorber of volume dV 

and extra absorption L\Jla is assumed to be located at r in the tissue, then the 

number of photons that will escape the tissue at r through dA will be reduced by 

.. 
NPdVdAA!J. 8c' f L(r,z,t,p,B)dt 

0 

Using the diffusion approximation to the steady state radiative transfer equation 
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approach, it can be shown that, the absorber will reduce the signal leaving the 

tissue at r by 

Comparing the two expressions above we should have 

.. 
NPdVdAiliJ. 11c

1f L(r,z,t,p,6)dt = NPdVIl!J. 11ci>(z,p)E(r,z,p,6)dA 3.70 
0 

or 

.. 
JL(r,z,t,p,6)dt = _!_ct>(z,p)E(r,z,p,e) 
o c' 

3.71 

which affirms the fact that the time integral of the time-resolved problem for the 

solution of the steady state problem is in fact proportional to the product of the 

photon fluence and the escape function obtained directly from the diffusion 

approximation to the steady state radiative transfer equation. So that instead of 

using the time consuming expression on the L.H.S of equation 3.71, one could 

use the expression on the R.H.S which gives relatively quick results. A graphical 

presentation of this comparison is presented in figure 4.2.2.5 for typical values 
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of the optical parameters. 

·Therefore the residency time of re-emitted photons in a volume element dV 

at I in the tissue before escaping through dA at Lon the tissue surface, for zero 

boundary condition is derived as 

1 1 
exp{ -J,1~(z-zJ2+p2] 2} exp{ -!-1~(z+zJ2+p2] 2} 

dT{r,z,p,e) = A;[ 
1 

• -
1 

1 
- -

[(z-zJ2+p2J 2 [(z+zJ2+p2] 2 

X exp{ -1-lsfflt-CI} [!Jstr+ 1 1 3.72 
lr-~12 lr-~1 

where 

If this expression is normalized to the total number of photons leaving the 

medium in the vicinity of r per unit area, R(r), then equation 3.72 becomes 

1 1 

dTn(r,z, p ,e) = 
exp{ -~Jml(z-zJ2+p2] 2} exp{ -~Jml(z+zJ2+p2] 2} 

1 1 

[(z-zJ2+p2] 2 [(z+zg)2+p2] 2 

j exp[ -1-lsfflr-~11 [!Jaff+ 1 ]) ( Z0 exp[ -1Jen{f
2+z!) ~]l-

1

3 _73 . 
l lt-~12 lt-~1 21t r2+z! 

i 1 l-1 IJetr+- 1 

(r2+z!)2 
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The corresponding expression that incorporates extrapolated boundary conditions 

can also be shown to be 

dTn(r,z,p,8) = 

where 

1 
x(p.efl'+---1 1 

(r2+z;)2 

3.75 

The mean penetration depth of an incident photon can now be determine from 

this model and compared with results from the 3-dimensional random walk theory 

model. The average penetration depth of a photon that eventually escapes at the 

. 
tissue surface at a distance r from the point of incidence can be determine by 

integrating equation 3.72 over all p and e and normalized to its volume integral, 

i.e 
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2'11: .. 

J J dT{r,z,p,6)pdpdl 
dTn(r,z) = _o;;_o ______ _ 

2n•• 
3.76 

J J J dT(r,z,p,6)pdpdzdl 
000 

where dT(r,z,p,e) is given by equation 3.72. This final expression is similar to 

equation 3.77 obtained by Weiss et al (1989) and based on a 3-dimensional 

random walk theory. 

3.5 PHOTON RESIDENCY TIME FROM RANDOM WALK THEORY. 

Weiss et al (1989) have analyzed the scattering process of photons in tissue 

in terms of a random walk on a simple cubic lattice. The following assumptions 

were made in the analysis: 

1. The tissue is of semi-infinite extent, 

2. Scattering of the photons is isotropic, 

3. Beer's law applies to photon absorption in the tissue, 

4. The surface, z = 0, consist of absorbing sites, so that any photon reaching the 

surface will be trapped there and will contribute to the reflected intensity, and 

5. Properties of the tissue are taken to be isotropic. 

The model for his analysis is shown schematically in figure 3.5.1. A laser 

beam impinges on a human tissue and is scattered by scattering sites. Some 

photons are absorbed in the tissue and some are reflected back to the surface 

where they are re-emitted. For the purpose of comparison, only one result of 
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Semi-Infinite Homogeneous Medium 
Irradiated with a Pencil Beam. 

Boundary_Condition: cp(r,O) = 0 

z=O / 

z 

/ 
Figure 3.5.1 

A collimated pencil beam normally incident upon the 
surface of a semi-infinite homogeneous medium. The 
path represents a cartoon of a typical path travelled 

by a photon inserted into the medium at s(O,O,O) and 
exiting at a point on the surface at a radial distance 
r from the point of entry. (Weiss et al 1989). 



70 

interest will be stated, but for a detailed description of the analysis, the reader is 

referred to Weiss et al (1989). The end result of the calculation, which is the 

normalized form of the fraction of time that photons re-emitted at a distance, r, 

from the initial injection point have spent at depth, z, is 

A plot of p(r,z) as a function of z is shown in figure 4.2.2.5 for typical values of 

Jl, where Jl = Jl8 L, (L = 1/~). 



4.1 INTRODUCTION. 

CHAPTER FOUR 

RESULTS AND DISCUSSION 

The purpose of this report has been to develop a model that relates the 

fundamental optical properties of tissue, (i.e J.la and~). the radial distance along 

the tissue surface between the point of incidence and the point of re-emission 

and detection of photons, to the time that photons have spent in an elemental 

volume dV in the tissue. In addition to these relations which were developed for 

both the steady state and the time-resolved methods, the influence of delaying 

the detection time (in the pulse state technique) on the residency time was also 

of interest. 

These residency times can be indirectly measured experimentally in 

phantoms, as is currently being done by research groups at the Hamilton 

Regional Cancer Centre, but, so far, no work has been done in living tissues. 

Knowledge of the residency time would allow some insight into the depth 

distribution of injected photons that are eventually re-emitted. In this respect, 

once the characteristic scattering and absorption parameters for a given 

homogeneous tissue are specified, for the wavelength to be used in diagnosis or 

therapy, other relevant information can be obtained according to the model. For 
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instance, one could infer the volume sampled by the re-emitted photons. 

4.2 RESULTS. 

4.2.1 TIME-RESOLVED TECHNIQUE. 

72 

A model has been developed, which can be used to determine non 

invasively the residency time of diffusely re-emitted photons in an elemental 

tissue volume. The development of the time-resolved and spatial distribution of 

the residency time of there-emitted photons has been possible by the use of the 

diffusion approximation to the time dependent and the time independent radiative 

transfer equation respectively. 

The solution of the Boltzmann transport equation for the fluence rate per 

incident photon at a point r in 3-dimensional cylindrical coordinates in an infinite 

homogeneous medium was first developed. This was used to solve the problem 

posed in figure 3.4.1.1.1.1 for a semi-infinite homogeneous medium. The fluence 

rate per incident photon at (I,t) inside the medium was mathematically derived 

(equation 3.28) and hence the reflectance (i.e the number of photons leaving the 

tissue surface) per unit area per unit time per incident photon at a radial distance 

r, from the point of incidence was obtained. The latter equation (i.e equation 

3.31 ), as it has already been discussed, has been used extensively by a number 

of authors (Patterson et al1989 and Chance et al 1989) to pursue the determina­

tion of the optical properties of tissue directly from the temporal dependence of 

the diffuse reflectance. 
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The influence of extrapolated boundary conditions on the fluence rate and 

hence on the reflectance which are mathematically shown in equations 3.33 and 

3.35 respectively have been studied extensively by Moulton (1990). These 

equations (3.28, 3.31, 3.33 and 3.35) have been the cornerstone of the analysis 

in this report. 

The calculations of the integrals have been done numerically using the 

IMSULIB on the Microvax computer system in the Hamilton Regional Cancer 

Centre. The results of these calculations for typical values of the optical 

properties of soft tissue are presented in this chapter. The results presented have 

been in most cases for a mismatched refractive index at the tissue surface, as 

for example, between a transparent medium (e.g air) and a turbid biological 

tissue. This is usually the case in practical applications, where photons are 

incident on the interface between air and living tissue. The index of refraction of 

the transparent medium from which photons are being incident is considered here 

to be equivalent to that of air, having a value of 1.0 and that of the medium 

through which the photons propagate is taken to be that of soft tissue with a 

value of 1 .4. 

Figures 4.2.1.1, 4.2.1.2, 4.2.1.3, 4.2.1.4, 4.2.1.5, 4.2.1.6 and 4.2.1. 7 show 

the normalized (to the total time photons spent in tissue before escaping at the 

surface) version of the residency time in an elemental volume as a function of 

depth in tissue for pulse irradiation. These residency time depth distributions were 
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made along a line midway between the source and detection fibers. The curves 

have been calculated using equation 3.50, and except for figures 4.2.1.2, 4.2.1.4 

and 4.2.1.6 which were calculated for 'late times', the detection time, t, has been 

taken at the time, tmax• at which the maximum number of re-emitted photons are 

detected on the tissue surface (i.e Rmax(r,tmax)). The Marshak approximation 

(equation 3.17) was used to calculate the position of the extrapolated boundary. 

The terms 'early time' used in this report refers to trr,, and 'late time' means 

delaying the detection time of there-emitted photons. Here, the late time values 

have been taken as the time at which the number of re-emitted photons on the 

tissue surface has fallen to (1/10)1
h of its maximum value. The time at which the 

peak occurs in the reflectance-time spectrum for a zero boundary condition can 

easily be obtained from the relation 

d 5 , r 
-logJR(r.~] = ---IJ. c + = 0 
dt 2t 8 4Dc1t 

4.1 

It has been demonstrated by Wilson et al (1989) that 

4.2 

The corresponding result incorporating an extrapolated boundary condition which 

has been used in most cases here is not straightforward. The values of tmax for 

the extrapolated boundary condition used in this report has therefore been 
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obtained, using equation 3.35, by numerically calculating R(r,t) for various values 

oft, fiber separation r, and typical values of Jla, J.L~ and noting the time (tmax) of 

maximum reflectance (Rmax(r,tmax)). The corresponding late time value is then 

determined by noting the time at which R(r,t) has fallen to (1/10)1
h Rmax(r,tmax)· 

The influence of the various fundamental optical parameters J.La and ~ on 

the depth distribution of the residency time for early detection times are 

demonstrated in figures 4.2.1.3 and 4.2.1.5 respectively. Figures 4.2.1.4 and 

4.2.1.6 show the same residency time depth distribution as in figures 4.2.1.3 and 

4.2.1.5 but for late detection times. The fiber separation is r = 30mm, and the J.La 

and~ values are typical of soft mammalian tissue. It is interesting to note that 

the depth distribution tends to sharpen as the absorption coefficient increases, 

and this is readily understood, because long trajectories are less likely with large 

absorption probabilities. In some of the results a scattering to absorption ratio of 

5:1 has been used which may be too small but it should be mentioned here that, 

generally good results could be obtained in the diffusion theory if the scattering 

to absorption ratio is about 1 0:1. Figures 4.2.1.1 and 4.2.1.2 show the normalized 

form of the residency time as a function of depth for various values of the fiber 

separation. The main difference between these two plots is that, the former has 

been determined for early detection times and the latter for late times. The most 

significant implication is that, the greater the fiber separation the wider and flatter 

the depth distribution. The effect of delaying the detection time of the emergent 
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Figure 4.2.1.1 

The residency time of a photon in an ele­
mental volume dV in tissue before reemit­

ting at the surface, normalized to the total 
time spent in the tissue, and given as a 
function of depth, for different values of 
the fiber separation. The curves have been 
calculated for early times using equation 3.50. 
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for early times using equation 3.50. The optical 
parameters are typical of soft tissue. The Marshak 
approximation was used to calculate z8 _. 
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for late times using equation 3.50. The optical 
parameters are typical of soft tissue. The Marshak 
approximation was used to calculate Ze: 
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as a function of depth, for different 
values of the transport scattering coeffi­
cient. The curves have been calculated 
for early times using equation 3.50. 

80 



Semi-Infinite 3-Dimensional Me di urn 
Extrapolated Boundary, ze : Marshak 

Index Mismatch : nv = 1.0, I1m = 1.4 

-10 -- ------
., ---:..::. .... ----- .................... .. 

/ ,,' 
/,' 

/ ,' 
/j 

/ ' 
I ,/ 

: 
I 

I 
I 
I 

-----------
------ ' ' ' ' ' ' ' -12 I 

cp(r,-ze ,t) = 0 
-1 

/-La = 0.02mm 

' ' ' ' 

-14 

r = 30.0mm . 
I -1 

-- l-is = l.Omm 
I ·------· 1-L s 
I 

··············· 1-L s 

-1 
2.5mm 

5.0mm 1 

' ' ' 

-1 6 L.._ _ _,__---~. __ ....1....__---l.... __ .L.._ _ _....j_ _ ___j____J 

0 2 4 6 8 10 12 14 

DEPTH" (mm) 

Figure 4.2.1.6 
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tesimal volume in tissue before reemitt­
ing at the surface, normalized to the 
total time spent in the tissue, and given 
as a function of depth, for different 
values of the transport scattering coeffi­
cient. The curves have been calculated 
for late times using equation 3.50. 
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photons on the distribution is shown in figure 4.2.1.7 and as expected, the depth 

distribution widens and flattens with delay in the detection time. 

Figure 4.2.1.9 shows the distribution of the residency time as a function of 

both z and p for pulse irradiation in a semi-infinite medium and a zero boundary 

condition. The results have been obtained using equation 3.45. The orientation 

of the plane in which measurements were made is e = 0 degree (i.e plane A in 

figure 4.2.1.8) with the source and detection fibers positioned at -10mm and 

+10mm respectively. Figure 4.2.1.10 shows the same distribution as in figure 

4.2.1.9 but measurements in this case were made in a vertical plane midway 

between the source and detector and perpendicular to the plane containing the 

source and detection fibers (i.e plane B). In both cases the fiber separation is r 

= 20mm, Jla = 0.02mm·1 and ~ = 1.0mm·1• The most significant difference 

between the plots appears in their symmetry. It could be observed that the plot 

in figure 4.2.1.9 is symmetrical about a line midway between the two fibers, 

whereas the plot in figure 4.2.1.1 0 is symmetrical about the plane containing the 

source and detector. This result is not surprising, since in the first instance, for 

e = 0 degree, the source and detection fibers are separated by a distance and 

are in the same plane, but in the second instance, e = 90 degrees, the position . 
of the source and detection fibers appears to be located at a single point (in this 

case at the origin) and hence the distribution should always be symmetrical about 

the plane containing that virtual single point. As it has usually been the case for 



Planes in which Measurements 
were made. 

Plane A: e 
Plane B: e 

Figure 4.2.1.8 
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X 

Diagrammatical presentation of the planes in 
which calculations were made to obtain figs 
4.2.1.9, 4.2.1.10, 4.2.2.8 and 4.2.2.9. Plane A con­
tains both the source and the detection fibers, 
positioned at -10mm and + 10mm respectively. 
Plane B is midway between source and detector. 
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!so-residency time distribution of photons incident on the 
surface of a semi-infinite homogeneous medium and detec­
ted at a radial distance of 20mm away. The lines have been 
calculated using equation 3.45, and Lhe detection Lime is 
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in figure 4.2.1.9. But in this case calculations are made 
in a plane perpendicular to and midway between the source 
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almost all the results in the pulse state, the detection time used was the value for 

the 'early time'. It is worth mentioning here that at points very close to the surface 

of the tissue, there is some asymmetry about the two fibers. 

Finally, figures 4.2.1.11 and 4.2.1.12 show the same depth distribution as 

in figure 4.2.1.9 but for a point source and a point detector in an infinite 

homogeneous medium. The main difference between the two plots is that figure 

4.2.1.11 has been determined for a time of t = ?OOps and figure 4.2.1.12 has 

been for a late time of t = 2000ps. Both plots have been calculated using 

equation 3.55. The absorption and the transport scattering coefficients used are 

0.02mm-1 and 1.0mm-1 respectively which are typical of soft tissue, and the fiber 

separation is r = 20mm. Notice the symmetry in both cases. 

4.2.2 STEADY STATE. 

The solution of the steady state problem has been obtained from two 

different approaches. First by using the time integral of the time-resolved problem 

and secondly from the diffusion approximation to the steady state radiative 

transport equation. Almost all the results obtained in the steady state method 

have been calculated using equation J.74. 

Comparison shows that 

.. 
· c'f L(r,z,p,6)dt = cf>(z,p}E(r,z,p,e} 

0 

4.3 

at least to the fourth decimal place. A plot of this comparison is presented in 
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Semi-Infinite 3-Dimensional Medium 
Zero Boundary Condition: cp(r,O)==O 
Index Matched: nv == 1.0, nm == 1.0 
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state obtained from the time integral of the time 
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figure 4.2.2.1. The comparison of these two results is very important, as it serves 

as a test of the adequacy of the integration performed numerically using the 

computer. It also affirms that the residency .!ime obtained in the steady state 

method from the time integral of the time-resolved problem is in fact equal to that 

obtained from the diffusion approximation to the steady state radiative transfer 

equation. A second test of the adequacy of the numerical integration has been 

to show that the volume integral of equation 3.45 and/or 3.59 is unity. The results 

obtained for both cases are reasonable, though the method used was crude. 

When the residency times in elemental tissue volumes were summed over both 

z and p from Omm to 60mm at a grid size of 1.5mm and over e from 0 to 360 

degrees at a grid size of 1.0 degree, equation 3.45 gave a value of 0.99 for the 

pulse state relation (i.e a rough estimate of the volume integral of equation 3.44) 

and equation 3.59 gave a value of 0.98 for the steady state relation ( i.e a rough 

estimate of the volume integral of equation 3.59). The reason for using such a 

crude method has been the difficulty encountered in performing an n-dimensional 

(n ~ 3) integration using the IMSULIB on the Microvax computer system, 

especially in this situation where the limits of integration of the innermost integral 

are not constants. 

Figure 4.2.2.2 examines the comparison presented in figure 4.2.1.1 and 

4.2.1.2 for a steady state technique. And as expected, as it was in the time­

resolved method, the depth distribution of the residency time widens and flattens 
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Figure 4.2.2.2 

Examines the comparison presented in 
figures 4.2.1.1 and 4.2.1.2 for a steady 

state method. The curves have been cal­
culated using equation 3.74. Note that 
the results are normalized to the total 
number of photons leaving the tissue per 
unit area. The opt_ical parameters are 
typical of soft tissue. 
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with increase in the fiber separation. Figures 4.2.2.3 and 4.2.2.4 show the 

behaviour of the residency time depth profile for various values of the 

fundamental optical parameters. Comparison with the corresponding plots in the 

pulse state shows the same trend of variations. For example, the depth 

distribution tends to sharpen with increase in absorption. 

In figure 4.2.2.5, the residency time as calculated from the diffusion model 
., 

(equation 3.76) and the Random walk model (equation 3.77) for index matched 

and zero boundary condition is plotted versus depth for a semi-infinite 

homogeneous medium. The interesting thing to note here is that, both models 

predict the same residency-time depth profile, i.e, a build-up region near the 

surface and exponential fall far away from the surface of the medium in the 

'diffusion region'. 

Plots of the residency time in a vertical plane containing the source and 

detection fibers (i.e plane A in figure 4.2.1.8) which were positioned at -4.8mm 

and +4.8mm respectively, as a function of horizontal probe position at different 

probe depths in a homogeneous semi-infinite medium is shown in figure 4.2.2.6. 

The fundamental optical parameters are ~ = 1.0mm-1 and Jla = O.OSmm-1
• In 

figure 4.2.2.7, the residency time as calculated in a vertical plane perpendicular 

to the source and detection fibers (i.e plane B) is plotted versus a horizontal 

probe position at different depths. The fiber separation is r = 9.6mm and the 

optical parameters are the same as those used in figure 4.2.2.6. 
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Semi-Infinite 3-Dimensional Medium 

Extrapolated Boundary, ze: Marshak 

Index Mismatch: nv = 1.0, nm 1.4 
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Figure 4.2.2.3 

Examines the comparison presented in 

figures 4.2.1.3 and 4.2.1.4 for a steady 
state technique. The curves have been 
normalized to the number of photons 
leaving the tissue per unit area, and 
have been calculated using equation 3.74. 
The fiber separation is r = 1 O.Omm. 



Semi-Infinite 3-Dimensional Medium 

Extrapolated Boundary, ze : Marshak 

Index Mismatch: nv = 1.0, nrn = 1.4 

0 
;,~,--~-~-~-,-~-

;' ~ 

/ ,' ' 
/ ,/ ', 

I I ~ 

I / ·~ 
I ,' ',, 

I ',, 

/ ',, 
, ',' 

/ .. ',' 
,' \' 

I ' ' : \ ' -1 \ ' 
\ ' 

\ ' 

-2 

-1 \ ' 
\ ' l.Omm \\ 

, 
f.-ls 

, 
J-ls 

, 
--------· J-ls 

-1 
2.5mm 

-1 
5.0mm 

f.-la = 0.02mm 1 

so(r,-ze ) = 0 

r = 10.0mm 

\ ' 
' ' 
\ ' 
\ ' \ \ 

\ \ 

\ ' \ \ 
\ \ 

\ ' \ \ 
\ \ 
\ \ 
' \ 
\\ \ 

\ ', 
\ \ 
\ \ 
\ \ 
\ -3 ~----~----~----~----~----~--~~ 

0 2 3 4 5 6 

DEPTH (mm) 

Figure 4.2.2.4 

Examines the comparison presented in 
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Semi-Infinite 3-Dimensional Medium 
Zero Boundary Condition: <P(r,O) == 0 
Index Matched: nv == 1.0, nm 1.0 
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Figure 4.2.2.5 
A comparison of the Residency time from 
both the Diffusion and the Random Walk 
models, given as a function of depth. The 
curve (--------·) has been calculated using 
equation 3.76 and (--) from equation 
3.77. The fiber separation is r = 10.0mm, 
and the fundamental optical parameters 
are typical of soft mammalian tissue. 



Measurements from vertical plane 
containing the source and detection 
fibers (Plane A). 
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Plots of the residency time from a vertical 
plane containing the source and detection 
fibers, positioned at -4.8mm and +4.8mm 
respectively, as a function of horizontal 
probe position at different probe depths. 



Measurements from vertical plane 
perpendicular to the source and 
detection fibers (plane E). 
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Plots of the residency time from a vertical 
plane perpendicular to the source and de­
tection fibers, as a function of horizontal 
probe position at different probe depths. 
The fiber separation is r = 9.6mm. 
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Figures 4.2.2.8 and 4.2.2.9 examine the same comparison presented in 

figures 4.2.1.9 and 4.2.1.10 but for steady state measurements. The curves have 

been calculated using equation 3.76. In this case, the position of the extrapolated 

boundary has been calculated for an index matched boundary using the Milne 

approximation (equation 3.16). The optical parameters Jla = 0.02mm-1
, and Jl; = 

1.0mm-1 are typical of soft tissue and the fiber separation is r = 20mm. The 

source was positioned at -10mm and the detector at +10mm. Finally, figure 

4.2.2.1 0 shows the spatial distribution of the residency time for a point source 

and a point detector in an infinite medium separated by a distance r = 20mm. 

The curves have been calculated using equation 3.63, and once again the optical 

parameters are typical of soft mammalian tissue. 

4.3 DISCUSSION. 

If a narrow impulse of collimated light enters a tissue, it expands into a 

distribution of diffuse light. The dynamics of the light distribution can be 

considered in terms of two phases. 

phase i. The initial rapid increase in population. This phase occurs in the first 

few picoseconds depending on the optical properties of the tissue, and the 

dynamics of collected light are dominated by scattering, and 

phase ii. The subsequent 'depopulation' of the photons. This phase occurs after 

the build-up of the photon population. The dynamics of collected light become 

dominated by absorption. 
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For a continuous beam of light incident on a tissue (i.e steady state), the 

spatial distribution of the reflectance becomes of prime importance. But a 

disadvantage of these steady state techniques is that they require absolute 

measurements at a number of different locations on the surface of the tissue, 

whereas the time-resolved methods appear to overcome this complication. 

The optical properties of tissue greatly influence the volume interrogated 

by emergent photons. For example, increased transport scattering coefficient 

decreases the volume. Such a result is expected, because the mean-free-path 

between scattering sites (A. = 1/~) is reduced with increase in ~· Detected 

photons therefore have less chance of survival in the interior of the tissue and 

hence tend to remain close to the surface. Such photons will only carry 

information about the tissue optical properties from a smaller tissue volume. The 

fact that the residency time distribution tends to sharpen as the absorption 

coefficient increases is attributed to the fact that, long trajectories become less 

likely with large absorption probabilities. Another thing worth mentioning is the 

shift in the peak of the profiles. It could be observed that with increase in the 

absorption probabilities (or decrease in the transport scattering coefficient) the 

peak shifts towards the surface of the tissue. 

It is of interest to note from the results that, for a given tissue with specified 

bulk optical properties, the volume involved in the measurement of its optical 

properties can be controlled by varying the fiber separation both in the steady 
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state and in the time-resolved techniques. Moreover, in the pulse state method, 

a further control of the volume is possible by varying the detection time. For 

instance, measurement at late times will involve the use of increasingly larger 

tissue volume. These observations are demonstrated in figures 4.2.1.1, 4.2.1.2, 

4.2.1.7 and 4.2.2.2, where it can be observed that the distribution widens and 

flattens with increase in the fiber separation and/or the detection time of the 

emergent photons. 

The adequacy of the model to predict parameters that control the volume 

of tissue interrogated during reflectance spectroscopy has been tested by 

comparing its results to results obtained from a 3-dimensional random walk 

model. The two models predict similar residency-time depth profile and also tend 

to agree well. They also predict the same changes in the distribution obtained 

by increasing the source-detector separation and Jla (Weiss et al 1989). Weiss 

et al (1989) have demonstrated analytically that the mean penetration depth of 

a photon that emerges on the tissue surface at a distance r from the point of 

injection varies as r112 
; This model numerically predicts the same variation with 

6% uncertainty. Figure 4.2.2.11 shows the dependence of the mean penetration 

depth of a photon, <dT(r,z)>, as a function of r112 for relatively small values of r 

as calculated from this model. The data serve to confirm the theoretical prediction 

that <dT(r,z)> is proportional to r112 even for quite small r values, as proposed by 

Weiss et al (1989). 
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The model can be refined in order to consider the effects of possible 

macroscopic spatial inhomogeneities in the optical parameters. Monte Carlo 

simulations may be well suited for this purpose. Further work could also be done 

using a Monte Carlo approach, at least for the steady state technique as a further 

test of the potential of this model to predict photon depth distribution in a turbid 

homogeneous tissue. 
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Figure 4.2.2.11 

Average residency time of photons that emerge 
at a distance r from the point of entry, plotted 
as a function of :rll~ for different values of the 
absorption coefficient. The points have been cal­
culated using equation 3.76. 



CHAPTER FIVE 

CONCLUSION 

The model described in this report holds promise of providing insight to the 

control of the volume interrogated by photons during both time-resolved and 

steady state reflectance spectroscopy. However, the problem of inhomogeneities 

in the optical properties need to be dealt with. Further work could also be done 

using a Monte Carlo approach, at least in th~ steady state technique as a further 

test of the adequacy of this model to predict diffusely re-emitted photon depth 

distributions in tissue. It has been demonstrated that time-resolved and steady 

state reflectance spectroscopy is a powerful technique in biological medical 

research, since it could non-invasively supply both diagnostic and therapeutic 

informations of tissues. 

In this analysis it has been observed that the volume of tissue from which 

information about the interaction coefficients is contained can be controlled in a 

number of different ways. In the time-resolved measurements, the tissue volume 

can be increased by either increasing the source-detector separation or consider­

ing late-time photon reflectance measurements. Such measurements may be 

useful in determining the Jla value in larger volumes, e.g brain, liver, kidney and 

tumours. Photons that reach the surface at larger times or fiber separations after 
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the excitation pulse have, in general, migrated farther from the immediate vicinity 

of the source and detector and hence 'carry' information about a larger volume 

of tissue. Early-time or smaller source-detector reflectance data will give 

information from a smaller tissue volume, and may be useful in measuring blood 

and clots within vessels, the superficial wall of the gastrointestinal and 

oesophageal tracts or the first mm of tissue at a catheter tip which receives 

strong therapeutic laser irradiation (Jacques 1989). 

However, in the steady state, the only means of controlling the volume of 

tissue sampled by the re-emitted photons is to change the fiber separation. This 

observation has been predicted earlier by Weiss (1989) in his publication. 

As discussed by Bonner et al (1987), -knowledge of this volume is critical 

to understanding which parts of the microvasculature contribute to the flow signal 

and in absolute quantitation of the measurements used to quantify tissue meta­

bolism or photochemistry. 

Since both steady state technique and pulse irradiation were used in the 

analysis, it is worth mentioning here some of their advantages and dis­

advantages. One major disadvantage of time-resolved reflectance spectroscopy 

is in its economic constraints, for example, the requirement for picosecond laser 

and fast detector currently makes time-resolved techniques more expensive and 

hence less suited for routine clinical use. But this may change in the future as 

solid state and diode lasers become available in the appropriate wavelength 
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range (Patterson et al 1990). 

A major advantage, however, of time-resolved scattering measurements is 

the ability to deduce the absorption and the transport scattering coefficients of 

tissue from measurements of the detected pulse shape at one location on the 

tissue surface. Such a strategy is relatively insensitive to some noise sources and 

tends itself to endoscopic applications where geometrical constraints make it 

difficult to measure the spatial dependence of the diffusely reflected light 

(Patterson et al 1990). 
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