EVALUATION OF THE LENGTH-TENSION RELATIONSHIP IN AN ELDERLY POPULATION

ΒY

CHARMAINE S. VAN SCHAIK, B.Sc.

A Thesis

Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements

for the Degree

Master of Science

McMaster University

(August, 1992)

MASTER OF SCIENCE (1992) (Human Biodynamics) TITLE: Evaluation of the Length-Tension Relationship in an Elderly Population AUTHOR: Charmaine S. van Schaik, B.Sc. (McMaster University) SUPERVISOR: Dr. Audrey L. Hicks

NUMBER OF PAGES: XII, 96.

*

ABSTRACT

The effects of aging on the muscle length (as inferred by joint angle)-tension relationship was studied in the ankle dorsiflexors of male and female subjects aged 20-40 years $(\bar{x}=25.3; 15\sigma, 15\varphi)$ and 60-80 years $(\bar{x}=68.8; 15\sigma, 15\varphi)$ at 10 joint angles (15°D through 30°P, in 5° increments). Isometric twitches, voluntary contractions, and 1-sec evoked tetanic contractions (20, 50 & 80 Hz) were measured in the R-tibialis The resting joint angle for the ankle anterior muscle. dorsiflexors was similar between elderly and young adults $(13^{\circ}P \pm 3.44)$. On average, evoked and voluntary torque output increased upon muscle lengthening beyond resting length, and decreased upon shortening. Evoked single twitches of the TA revealed that peak total torque occurred at the extreme of plantarflexion (30°P) in both elderly and young adults. Most importantly, elderly individuals produced similar twitch torque values at all joint angles compared to young adults. voluntary torque stronger Maximal was at the more plantarflexed compared to the dorsiflexed angles, for all subjects, regardless of age, with maximum torgue plateauing at 15°P. Elderly subjects demonstrated much reduced MVC torque values compared to young adults at all joint angles (ave.= 18% reduction, p<0.01) while maintaining no less than 96% motor

iii

unit activation (MUA). Stimulation of the dorsiflexors at 20, 50, & 80 Hz revealed that the 1-sec peak tetanic torques declined from a maximum at 30°P through to 15°D for all subjects. Elderly adults produced significantly less tetanic torque at all joint angles compared to young adults (p<0.05). There was no difference between the elderly and young adults in the rate at which the rise in tetanic torque was developed at all joint angles, but elderly adults displayed a significantly greater twitch/tetanus ratio as compared to young adults (p<0.005).

In conclusion, these results suggest that there is no age-associated change in the elastic properties of the ankle dorsiflexors, and thus, the length-tension relationship of this muscle group is similar between elderly and young adults.

iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to all of those who not only made my Master's education enjoyable, but also those who allowed me the opportunity to travel this educational road.

To Neil McCartney, Tim Lee, and especially my supervisor, Audrey Hicks, without whose efforts and encouragement, the challange of persuing an education in exercise physiology with no formal background would not have been provided. The collective friendship, support, and willingness to help offered by each of you will always be remembered.

To my thesis committee, Digby Sale, Jim Dowling, Neil McCartney, and Audrey Hicks; thanks for your patience, help, and understanding in the process of my thesis project and ultimately its defence.

To Mary Cleland, whose unlimited self-giving made graduate school an enjoyable and easy atmosphere to work in.

To John Moroz, whose was always available no matter how simple or gross my technical questions were.

To a great friend, teacher, and support system, Cynthia Cupido, who was always there to lend a hand, ear, or simply a sympathetic heart - thanks Cyn!

To my fellow graduate students with whom I have enjoyed experiencing the trials and tribulations of the Human Biodynamics programme.

And finally, but most certainly the individuals to which I express my most heartful gratitude, My Family, Gilles, Mom, Dad, Cyndy, and Lyane, all of whom have been unlimited in their support for any of my educational and life choices. For the sacrifices you have made, support you have offered, and perseverance you have shown, I am eternally grateful. I can only hope I may one day offer the same in return. And to you Gilles a special note, you cannot honestly say that you have never done a THESIS!

TABLE OF CONTENTS

-

Chapter 1.	INTE	RODUCTION	1
	1.1	The Relationship between Length and Tension in Skeletal Muscle	1
	1.2	The Length-Tension Relationship	4
	1.3	Sliding Filament Theory of Muscular Contraction	7
	1.4	Factors which Affect the Length- Tension Relationship	9
	1.5	Evaluation of the Length-Tension Relationship to Date	_ 14
	1.6	Aging Effects in Human Skeletal Muscle 1.6.1 Morphological Changes 1.6.2 Mechanical Changes 1.6.3 Motor Neuron Changes	16 17 21 23
	1.7	Skeletal Muscle Changes in Old Animals	25
	1.8	Summary and Statement of Purpose	27
Chapter 2.	. METH	HODS	29
	2.1	Subjects	29
	2.2	Stimulating and Recording Apparatus	29
	2.3	Experimental Protocol	33
	2.4	Statistical Treatment	36
Chapter 3.	. RESU	JLTS	37
	3.1	Effect of Age on Resting Joint Angle	37
	3.2	Effect of Joint Position on Passive Tension	37

3.3	Effect of Joint Position on Single Twitch Characteristics	38			
3.4	Effect of Joint Position on Maximal Voluntary Contractions (MVCs) 3.4.1 Effect of Joint Position on Percent Motor Unit Activation (%MUA)	39 43			
3.5	Effect of Joint Position on Tetanic Torque at Different Frequencies 3.5.1 Effect of Joint Position on the Rise of Tetanic Torque 3.5.2 Effect of Joint Position on the Twitch/Tetanus Ratio	43 45 48			
Chapter 4. DISCUSSION					
4.1	The Influence of Joint Position on Single Twitch Characteristics	51			
4.2	The Effect of Age on Single Twitch Characteristics	54			
4.3	The Influence of Joint Position on Maximal Voluntary Contractions	59			
4.4	The Influence of Joint Position on Tetanic Torque at Different Frequencies	61			
4.5	Summary	65			

•

LIST OF FIGURES

-

<u>Figure</u>		Page
1.	The length-tension curve of the double sartorius of the frog R. esculenta for the (A) passive tension, (B) active tension developed on contraction, and (C) total tension which the contracting muscle was sustaining. Adapted from Evans & Hill, 1952.	3
2.	The influence of joint position on isometric muscular contraction of the (A) plantar- flexors, (B) dorsiflexors, and (C) biceps brachii.	6
3.	Length-Tension curve in single frog muscle fibre. (Taken from McComas, 1977)	10
4.	The leg holder-foot plate apparatus. Joint position could be varied 30° from the horizontal plane in either direction.	30
5.	The effect of joint angle on peak twitch torque in females and males of different ages.	41
6.	The effect of joint angle on the torque produced during the brief maximal voluntary contractions (MVCs) in females and males of different ages.	42
7.	The effect of joint angle on the percent motor unit activation (% MUA) achieved by females and males of different ages.	44
8.	The effect of joint angle on the normalized torque produced by the 80 Hz train in males and females aged 60-80 years.	46
9.	The effect of joint angle on maximal tetanic torques produced by 20, 50, & 80 Hz trains in females and males of different ages.	47
10.	The effect of joint angle on the rise time in tetanic torque at 3 frequencies (20, 50, & 80 Hz) in females and males of different ages.	49

11. The effect of age on the twitch/tetanus ratio 50 at $30^{\circ}P$.

- -

LIST OF TABLES

TablesPage1.Group means for time to peak torque (TPT), 40
half-relaxation time (1/2 RT), and peak
twitch torque at the ten joint angles
in females and males of different ages.

A1-A12 Individual subject data Appendix A-L

LIST OF ABBREVIATIONS

APB	=	adductor pollicis brevis
Ca	=	calcium
CAT scan	=	computerized axial tomography
CSA	=	cross sectional area
D	=	dorsiflexion (direction of ankle rotation)
EHB	=	extensor hallucis brevis
gms	=	grams
Hz	=	hertz
ITT	H	interpolated twitch torque
kHz	=	kilohertz
min	=	minute
mm	=	millimeter
ms	=	millisecond
MUA	=	motor unit activation
MU	=	motor unit
MVC	=	maximal voluntary contraction
M-wave	==	compound muscle action potential
n	I	number
Nm	=	Newton meter
NMJ	=	neuromuscular junction
Р	=	plantarflexion (direction of ankle rotation)
PEE	=	passive elastic component
P _t	=	peak isometric twitch torque
R	=	right
sec	=	second
SEC	=	series elastic component
ТА	=	tibialis anterior muscle
TPT	=	time to peak torque
T-tubules	=	transverse tubules
twt/T	=	twitch:tetanus ratio
yrs	=	years

SYMBOLS

-

1/2	RT	=	half-relaxation	time
μ m		=	micrometer	
Δ		=	change	
x		=	mean	
%		=	percent	
0		=	degree	

CHAPTER 1

INTRODUCTION

THE RELATIONSHIP BETWEEN LENGTH AND TENSION IN SKELETAL 1.1 MUSCLE: The passive, total, and developed (active) tensions during isometric contractions of skeletal muscle vary as the length of the muscle is changed. This phenomenon, termed the length-tension relationship, has been an integral part of skeletal muscle research since the mid-nineteenth century (Heindenhain, 1864; Blix, 1894). Blix, (1894), proposed that the variable factor among the mechanical conditions which determines the mechanical performance is the initial length of the muscle. While Heindenhain agreed in theory, there was a considerable lack of consensus between the exact interdependence of total tension sustained by a contracted initial muscle and the length of the muscle. Blix demonstrated the relation is often expressed as an S-shaped curve, while Heindenhain had discovered an initial increase followed by a diminution of tension with increasing initial length during an isometric contraction. In the years to follow, collaborative efforts towards improved experimental techniques gradually revealed that while Heindenhain's results were not actually incorrect, as they were only flawed in

1

methodology, the observations of Blix proved to be more widely accepted.

Currently, the relationship between the various forms of tension has been described as follows:

The passive tension is the tension produced when muscle is stretched and NOT stimulated and is therefore reflective of the elastic components of the muscle (i.e. connective tissue). In contrast, the active tension is the tension produced by the muscle in response to electrically evoked or voluntary stimuli and hence is indicative of the contribution of the mechanical contractile elements to tension developed. The total tension is simply the algebraic sum of the passive and active components of tension and therefore represents whole muscle tension. By the early 20th century the relationship between the tension developed and muscle length was described (Figure 1) in which tension increases to a maximum with increasing length of muscle, and then diminishes again (Evans & Hill, It can be seen from this figure that the composite 1914). length-tension relationship is a reflection of the active and passive tensions within the muscle. Therefore, the total, passive, and active muscle tensions are affected by changes in muscle length. Thus, when a muscle is stretched or shortened

Figure 1:

The length-tension curve of the double sartorius muscle of the R. esculenta frog for the (A) passive tension, (B) active tension developed on contraction, and (C) total tension. The X-axis indicates muscle length measurements in millimeters (mm), whereas the Y-axis represents corresponding tension values in grams (grms). Adapted from Evans & Hill, 1914.

-

beyond an optimal length, the corresponding active tension will decline.

The definition of "optimal length" in human skeletal muscle is somewhat confusing in the literature. Some authors state that optimal length for tension development is reached at resting length (Ganong, 1979), and therefore use the two terms interchangeably. Others are more literal in their interpretation and use "resting length" as the length the muscle assumes at rest in the body (Zierler, 1974). Currently, the most appropriate clarification between the two terms has been provided by Marsh et al., 1981. Marsh and colleagues term "optimal length" as the muscle length (as inferred from joint angle) at which the greatest torque is achieved. This is independent of the resting length, which is the muscle length when the joint is in its natural resting position. Therefore, there is no obligatory correspondence between the resting and optimal positions for a joint (Marsh et al., 1981).

1.2 <u>THE LENGTH-TENSION RELATIONSHIP</u>: Since the classic investigation of Evans & Hill, (1914) the length-tension relationship went relatively unnoticed until the 1940's when Ramsey & Street, using more advanced technological methods, described the first account of a complete length-tension relationship for single isolated muscle fibres. They demonstrated that the maximum tension of isolated frog skeletal muscle fibres decreases linearly with stretching, but exponentially with shortening past an optimal length. Many later studies have been conducted on single muscle fibres (Page & Huxley, 1963; Huxley, 1957; Gordon, et al., 1966a), and whole mammalian muscle preparations (Banus & Zetlin, 1938; Buller et al., 1960; Buller & Lewis, 1963; Close, 1972) and confirm the early findings of Ramsey & Street (1940).

In addition to those studies described above, the lengthtension relationship has also been investigated non-invasively in several human skeletal muscles including tibialis anterior (Marsh et al., 1981; Vander Linden et al., 1991), plantar flexors (Herman & Bragin, 1967; Kitai & Sale, 1989; Sale et al., 1982), extensor hallucis brevis (EHB) (Sica & McComas, 1971), adductor pollicis brevis (Botelho et al., 1954), and biceps brachii (Ismail & Ranatunga, 1978). In each case, length-tension relationships have been established across a full range of movement, however joint angle is commonly used in human studies to estimate muscle length, for example as illustrated in figure 2. The variations in torque that are evident at the different joint angles in figure 2 have been suggested to be due to several factors: (a) lever arm; (b) degree of motor unit activity; and (c) muscle length (Sale et al., 1982). For the purpose of this thesis, explanations for

Figure 2:

The influence of joint position on isometric muscular contraction of the (A) plantarflexors, (B) dorsiflexors, and (C) biceps brachii; solid circles representing MVCs, open circles representing maximal twitch contractions and, solid triangles representing submaximal twitch contractions. All values are means ± standard error of the mean. Taken from Sale et al., 1982; Marsh et al., 1981; and Ismail & Ranatunga, 1978.

the variation in torque across joint angles will be limited primarily to the effects of muscle length.

The new surge of research regarding the length-tension relationship in the mid-20th century, coupled with the advent of the electron microscope, led to the emergence of several new features. Of significant importance was the classic work of A.F. Huxley and co-workers, and H.E. Huxley and co-workers in the 1950-1960's. Their description of the sliding filament theory of muscle contraction enabled researchers to develop hypotheses to accurately explain the length-tension relationship based on the interaction of actin and myosin during muscle contraction.

1.3 <u>SLIDING FILAMENT THEORY OF MUSCULAR CONTRACTION</u>: The contractile material in skeletal muscle consists of a long series of partially overlapping arrays of actin and myosin filaments which form the myofibrils. When a muscle fibre shortens isometrically, the two sets of interdigitating filaments (actin and myosin) slide with respect to one another (Huxley & Niedergerke, 1954; Huxley & Hansen, 1954). Thus, when a muscle changes length, independent of the mode of length change, the lengths of the actin and myosin filaments themselves remain constant. Shortening, and consequently the development of tension, are produced by a distribution of force-generators, or cross-bridges, within each region of

overlap (Huxley, 1957; 1963). The tension developed by the muscle is proportional to the number of cross-linkages between When a muscle is stretched beyond optimal the filaments. length, there is a reduction in the amount of overlap between If the cross-bridges are distributed actin and myosin. evenly, this would result in a decreased number of attached cross-bridges. Conversely, when the muscle is appreciably shorter than optimal length, the thin filaments overlap, also reducing the number of cross-linkages. Therefore, it is thought that each attached cross-bridge contributes a fixed amount of tension, with maximum tension being produced when there is optimal overlap between the actin and myosin filaments, i.e., maximum cross-bridge formation.

Application of this direct proportionality between generated tension and filament overlap to the results of Ramsey & Street, (1940), however, resulted in a significant anomaly to become apparent. Scrutinization of the lengthtension curve reported by Ramsey & Street, (1940), (Huxley & Peachey, 1959; 1961) revealed that developed tension did not fall to zero until muscle fibre lengths much greater than the length of zero overlap. These authors attributed the discrepancy to their observation that skeletal muscle fibres do not stretch uniformly. In isolated fibre preparations of frog muscle, they observed no overlap between the filaments in the middle portion of stretched fibres, however, an appreciable amount of overlap was evident in the very distal fibre ends. Moreover, electron microscopic observations provided further evidence for the sliding motion of one set of filaments relative to the other, and thereby provided the first concrete evidence for contraction depending on the physical interaction of the filaments in the area where they overlap. Additional support for non-uniformity of muscle fibre contraction (Posolsky, 1964) and cross-bridges and physical interaction site (Gordon et al., 1966a) was provided in the years to follow.

Collectively, these findings have provided the framework for a coherent understanding of tension development in contracting vertebrate skeletal muscle to consist of 3 components (Figure 3): maximal tension occurring in sarcomere lengths of 2.05 μ m to 2.0 μ m; tension gradually declining as sarcomere lengths decrease from 2.05 μ m to 1.65 μ m and reaching zero at 1.3 μ m or less; and lengthening of sarcomeres beyond 2.2 μ m causing a steep decrease in tension generating capacity, approaching zero tension at 3.65 μ m.

1.4 FACTORS WHICH AFFECT THE LENGTH-TENSION RELATIONSHIP:

The mechanical properties of stretched muscle can be described in terms of 3 constituents: (1) the main contractile proteins; (2) a passive elastic component (tendons and tendon bundles) in series with the contractile one (SEC); and (3) a passive <u>Figure 3</u>:

-

Length-tension curve of single frog muscle fibre (taken from McComas, 1977).

elastic component (intramuscular areolar and reticular tissues) in parallel with (1) and (2) (PEE) (Hill, 1953). Researchers have identified a variety of factors which affect the active length-tension relationship. These factors include the tendons, which are in series with the contractile elements (Ramsey & Street, 1940; Huxley, A.F. & Peachey 1961; Huxley, A.F., 1973; Marsh et al., 1981) the connective tissue lying between fibre bundles (Weber, 1846; Banus & Zetlin, 1938; Huxley, A.F., 1973), sarcotubular calcium release (Close, 1972; Blinks et al., 1978; Stevenson & Williams, 1982), and, as previously discussed, the degree of actin and myosin overlap.

Tendon elasticity makes a sizable contribution to the influence of joint position on muscle tension. Marsh et al., (1981) explained that at progressively shorter than resting muscle lengths the series elastic component, residing in the tendon, becomes gradually more slack thereby absorbing a large portion of the force developed by the muscle fibres. Conversely, as a muscle is stretched the tendon loses part of its elasticity resulting in a greater proportion of the developed tension being transmitted to the attachments of the tendon.

It has been known since the time of Weber, (1846) that resting muscle has elastic properties. The elasticity of whole muscle is due to the meshwork of connective tissue surrounding the muscle fibres and to the sarcolemma and sarcoplasmic reticulum membranes. These structures which comprise the elastic nature of resting muscle are directly influenced by changes in resting muscle length. The nature of the relationship between passive elasticity and increasing muscle length is explained as tension rising slowly at first, almost linearly, up to 130% of resting length, beyond which tension increases exponentially as the muscle is further stretched (Guyton, 1981; Ganong, 1979). The exponential relationship between passive elasticity and increasing muscle length is well established in isolated muscle fibres (Sichel, 1934; Ramsey & Street, 1940; Buchthal, 1942; Buchthal & Kaiser, 1951), empty sarcolemma (Ramsey & Street, 1940; Sichel, 1941; Fields & Faber, 1970), and in whole muscle (Weber, 1846). When muscle contracts it must first stretch the connective tissue elastic element to effectively take up the slack in the system before any torque can be developed at the musculotendinous junctions. Muscles which have more connective tissue, are not only more resistant to stretching, but also show a greater tendency to return to resting length after a contraction has terminated.

Although other factors may be of more significance, changes in calcium (Ca) release also may play a role in determining the influence of fibre length on maximum tension development. Reductions in calcium efflux, and therefore depressed force production, have been reported during activity (Sopis & Winegrad, 1957; Frank & Winegrad, 1976) and high degrees of fibre lengthening and shortening (Blinks et al., 1978; Close & Lannergren, 1984). The mechanism of the decreased release of calcium at fibre lengths greater than optimal is unknown, though it seems that the junctional region between the terminal cisterna and the T-tubules could be responsible (Blinks et al., 1978). At high fibre lengths, electron microscopy experiments (Frank & Winegrad, 1976) have shown a reversible distortion of this junctional region which is associated with reduced calcium efflux during activity (Sopis & Winegrad, 1967; Frank & Winegrad). Decreased force at fibre lengths less than optimal may be due to, in part, decreased calcium release in the core of the fibre. This hypothesis has been substantiated by microscopic observations (Taylor & Rudel, 1970; Costantin & Taylor, 1973) which verify decreased activation of the core of the muscle fibre. Even if the cytoplasmic calcium concentration reaches saturating levels during a twitch at all fibre lengths, changes in the amount of calcium released would be expected to have an influence on the duration of activity, and therefore on the extent of shortening or amount of force developed by a twitch (Blinks et al., 1978).

1.5 EVALUATION OF THE LENGTH-TENSION RELATIONSHIP TO DATE: It is clear from animal studies that the isometric tension developed by a muscle depends in a characteristic way on the length at which it is held, declining steeply on either side of an optimum length. However, the evaluation of the lengthtension relationship in humans has only been looked at in a young population; a population whose elastic components and muscle properties are functioning optimally (Herman & Bragin, 1967; Haffajee et al., 1972; Ismail, 1978; Marsh et al., 1981). With the advent of literature on the effects of aging on skeletal muscle, it has become increasingly evident that muscular properties of elderly individuals the differ significantly from those of young individuals. To date, the evaluation of contractile properties in elderly muscles has involved an assumption that is inherently problematic; that the length-tension relationship in the elderly is equivalent to that of a young population. Such an assumption could be troublesome if in fact the relationship is not the same in people of different ages. For example, in a comparison of populations it is important to know that the experimental length of the muscle is optimal for tension development in each population, otherwise one is not comparing the true capabilities of the different age groups. Presently, only a few studies have examined the length-tension relationship in elderly human (Botelho et al., 1954; Sica & McComas, 1971) and

animal-muscle (Arabadjis et al., 1990). Botelho et al., (1954) were the first to examine this relationship in an elderly versus young population. However, flaws such as small sample size (n=11), gender restriction (females), and a low upper range in age (61 yrs) made the interpretation of the results, as truly representative of an elderly population, questionable. In examining fast and slow twitch motor units in the EDB muscle of subjects aged 3-94 years, Sica and McComas, (1971) showed that the relationship between the initial length of the muscle and its active tension changes with age; an appreciably greater fraction of the maximum twitch tension was achieved in the resting position by elderly subjects. One possible explanation was that the difference may be partially due to the loss of elasticity in tissues which is known to occur with aging. Additional possibilities were that the influence of the length of the tendon on twitch tension is less, or that some other structural changes took One study has place within the muscle belly itself. investigated the effects of increasing muscle length on tension development in the senescent rat. Arabadjis et al., (1990) found no difference in the stimulating voltage required to elicit maximal contractile tension in the plantaris muscle of young and old rats. In contrast to the results of Sica & McComas, (1971), these authors observed no variation in the

percentage of maximal force at any muscle length between the young and aged rats.

AGING EFFECTS IN HUMAN SKELETAL MUSCLE: 1.6 From а physiological point of view, the loss of motor function which parallels the aging process is a very complex phenomenon involving alterations in other body systems, i.e., nervous, vascular, and endocrine, with which advanced aging is commonly associated. The characteristic decline in muscular performance which accompanies the aging process is therefore not only caused by primary aging of skeletal muscle, but also secondary influences on muscle tissue by of disuse, malnutrition, and the influences of disease. Adding to this complication is the fact that skeletal muscle lacks homogeneity, and therefore considerable variations occur between the muscles themselves. Thus, several problems have inhibited research in aging human muscle. The intent of this section is not to be totally comprehensive, as this is not the central focus of this thesis, but to present some of the literature on aging skeletal muscle that might be relevant to the length-tension relationship. For a more detailed description of changes in muscle function with age, excellent reviews can be found by Fitts (1980) and Grimby and Saltin (1983).

Several physiological changes in skeletal muscle occur with advancing age, and these changes often affect the functional capabilities of elderly individuals. Various research groups (Sica & McComas, 1971; Davies & White, 1983; McDonagh et al., 1984; Vandervoort & McComas, 1986; Klein et al., 1988) have shown that elderly individuals (60+ yrs) are significantly weaker than their younger counterparts, 20-40 years of age. This age-related loss in voluntary strength is not apparently associated with progressive weakness beyond young adulthood, but rather there seems to be a critical later age (late 6th decade) at which strength begins to decline (Asmussen et al., 1962; Kroll & Clarkson, 1978; Larsson et al., 1979; Vandervoort & McComas, 1986). This is in agreement with previous findings of preserved muscle strength in middle age (Petrofsky & Lind, 1975; Fugl-Meyer et al., 1980; Belanger et al., 1983). Furthermore, it is now generally accepted that, in addition to the loss of strength that occurs with age, elderly muscle is also slower to contract (Davies et al., 1983; Davies & White, 1983; McDonagh et al., 1984; Vandervoort & McComas, 1986; Klein et al., 1988; Cupido et al., 1992; Hicks et al., 1991) and less elastic (Botelho et al., 1954; Campbell et al., 1973; Lexell, 1983).

1.6.1 <u>Morphological Changes</u>: One of the most profound age related alterations which occurs in skeletal muscle is the

marked- muscle wasting, or decreased muscle volume. The observation that older subjects have less muscle capacity for tension generation has largely been determined from the body composition of elderly individuals (Forbes & Reina, 1970; Parizikova et al., 1971; Steen et al., 1977; MacLeenan et al., 1980; Dill et al., 1982). However, these early investigations of body composition were generated from anthropometric measurements such as densitometry, Potassium 40 scanning, or basic skin fold thickness, and therefore were unable to discern whether in fact the loss of lean body tissue was due to loss of muscle mass, or to the loss of other fat free In addition, differences in the lean tissue lost by tissue. different muscle groups could not be assessed due to the lack of direct tissue measurement. Recently, an alternative tool has been to use ultrasonic imaging or computerized axial tomography (CAT scan) for measuring muscle mass in the elderly. With the aid of both of these techniques, elderly muscle has been shown to have reduced cross sectional areas (CSA) in both males and females as compared to young adults (Young et al., 1982; Stodes et al., 1983; Borkan et al., 1983; Vandervoort & McComas, 1986). The most accurate assessment of the degree of muscle wasting in the elderly was performed by Lexell et al. (1983). These investigators conducted a post mortem study comparing the CSA of the M. vastus lateralis muscle between 2 groups of healthy males (\bar{x} =72, \bar{x} =30 yrs) who had suffered a sudden death accident. Their findings indicate an 18% reduction in vastus lateralis CSA of elderly males as compared to young adult males.

A variety of studies have been undertaken to speculate on the physiological events underlying this atrophy. Generally, two hypotheses have been proposed:

(1) a decrease in the mean area of type I and type II fibres, with type II fibres being more greatly affected (Jennekens et al., 1971; Larsson, 1978; Poggi et al., 1987; Larsson et al., 1979; Grimby et al., 1982; Nygaard & Sanches, 1982; Aniansson, 1978; 1986; 1980), and/or

(2) a reduction in the total number of fibres (Lexell et al., 1983; Aniansson, 1986). This would be consistent with findings of an increased proportion of type I fibres, and thus, a more homogeneous fibre type distribution in aged muscles (Larsson, 1978; Sjostrom et al., 1980; Lexell et al., 1983; Poggi et al., 1978). However, contradictions to these results have been reported elsewhere (Grimby et al., 1982).

Thus, there is considerable lack of agreement on the effects of aging in the number and size of muscle fibres. A possible explanation for unaltered mean fibre area in whole muscle studies may be due in part to imprecise measurements which do not account for the existence of blood vessels, the general increase in connective tissue which occurs with advancing age, and the influence of post mortem event on the fibre size (Lexell et al., 1983). Moreover, a meaningful interpretation of the age-related changes in skeletal muscle concerning alterations in fibre composition and size must realize that the characteristics of the atrophy are not uniform among all muscles, and can therefore not be solely based on the analysis of a single muscle (Aniansson et al., 1986). For example, in humans, age related muscle atrophy is more marked in the lower extremities than in the upper extremities (Asmussen et al., 1962; Serratice et al., 1968; Tomlinson et al., 1969; Kamon & Goldfuss, 1978; McDonagh et al., 1984). However, it is also conceivable that at least some of the noted changes in muscle with advancing age can be related to a possible alteration of the length-tension relationship. For example, reduced fibre size would be an advantage at short muscle lengths because the action potential would not have to penetrate as deeply into the fibre to activate all of the myofibrils.

Increased stiffness beyond middle age has been a characteristic feature of elderly muscle (Botelho et al., 1954; Campbell et al., 1973; Lexell, 1983). Stiffness is the ratio of the change in tension to the change in length $(\Delta T/\Delta L)$ (Buchthal et al., 1944) and therefore is a measure of muscle elasticity. Accordingly, for a given length, an increase in the passive tension of a muscle is an indication of the stiffness of the passive elastic structures, the tendons.

Extensibility, the reciprocal of stiffness (Walker, 1953), is a measure of the compliance of the structures, so that the greater the passive tension at a given length the less extensible are the structures (Botelho et al., 1954). Increased rigidity of the non-muscular structures in older women has been documented (Botelho et al., 1954), and therefore corresponds with observations of increased connective tissue with advancing age (Lansing, 1951; Lowry et al., 1942; Jennekens et al., 1971; Lexell et al., 1983). This in agreement with findings that tissues with less is connective tissue are more extensible (Hill, 1952). With these changes, it is not unusual to observe declines in flexibility in the aging population (Smith & Zook, 1986). Johns & Wright, (1962) attributed 98% of the observed decline in flexibility with advanced age to changes in the connective tissue, ligaments, joint capsules, and tendons. However, more current reports suggest that the alterations in flexibility which occur with age are more precisely related to disuse than to age degeneration (Chapman et al., 1972; Lesser, 1978; Munns, 1981). The well documented decline in elasticity († stiffness, \downarrow extensibility) with advancing age could be profitable at short muscle lengths since the series elastic component (SEC) could be more readily taken up, thereby implicating muscle elasticity as an influencing factor in an age-related altered length-tension relationship.
Mechanical Changes: Aside from the morphological 1.6.2 changes that occur during the aging process, several research groups have demonstrated changes in the mechanical or contractile properties of aging muscle. The contractile properties of elderly muscle are significantly different when compared to the younger adult population. Davies et al., (1983) demonstrated that the triceps surae muscle of elderly men and women was slower to contract and weaker than that observed in young individuals, as indicated by longer times to peak tension and half relaxation time of the maximal twitch as well as a slower rise in tetanic force. Further support for an increased time to peak tension (Davies & White, 1983; McDonagh et al., 1984; Vandervoort & McComas, 1986; Klein et al., 1988) and slower relaxation time in elderly muscle (Davies & White, 1983; Vandervoort & McComas, 1986; Klein et al., 1988; Newton et al., 1988; Cupido et al., 1991; Hicks et al., 1991) has been well documented in the literature. In addition, there has been some support for less pronounced agerelated mechanical changes in upper limb skeletal muscle as compared to the lower limbs (McDonagh et al., 1984). Based on the slower contractile properties of elderly muscles, which may be attributed to an increase in the proportion of the slower Type I fibres, one could expect a reduction in the peak twitch tension of the older adult population since this fibre type population is unable to generate the same magnitude of

force as compared to the Type II fibre population. However, this expectation has met with some uncertainty. Vandervoort & McComas, (1986) demonstrated that the twitch tension of both the plantarflexors and dorsiflexors decreased with age; they reported a decrease of almost 40% when comparing the twitch torque of elderly subjects to those of young adult subjects. In contrast, Hicks et al., (1991) found no difference in the twitch torque of the ankle dorsiflexors between elderly and young adults. To further add to the quandary concerning the effects of aging on evoked torque production, Cupido & coworkers, 1991, have recently observed greater evoked twitch torques in the tibialis anterior muscle of elderly subjects. An age-related alteration in the length-tension relationship, at least for the ankle dorsiflexors, might explain the similar and greater twitch torque in the elderly versus the young adults (Sica & McComas, 1971). For example, the unequivocal prolongation of twitch contraction time with aging would be advantageous at short muscle lengths since a longer active state would allow for the series elastic component (SEC) to be more readily taken up.

1.6.3 <u>Motor Neuron Changes</u>: In addition to the morphological and mechanical properties of aged muscle, research has also focused on the age associated changes in the electrical nature of muscle. There is evidence that the number of motor neurons is decreased in elderly human muscle. In a pioneering study of motor neuron counting, Gardner, (1940) estimated a 25-30% reduction of myelinated fibres in the eight and ninth thoracic ventral roots of cadavers between the third and eight to ninth decade of life. However, failing to account for the effects of disease in these subjects made it difficult to discern the true effects of the aging process alone on motor unit numbers. In the early 70's, McComas and non-invasive electrophysiological co-workers, using а technique where motor unit counts are obtained by dividing the individual motor unit potential into the compound muscle action potential, estimated the number of functioning motor units in elderly muscles. Reduced motor unit estimates have been reported for the extensor hallucis brevis (Sica & McComas, 1971) and the extensor digitorum brevis (Campbell et al., 1973), dorsi and plantarflexor muscles of the foot (Vandervoort & McComas, 1986), and thenar and hypothenar muscles of the hand (Sica et al., 1974; McComas, 1977). Inasmuch as other investigations support this finding of a decreased number of functioning motor units with advancing age (Brown, 1973; Hansen & Ballantyne, 1978; Salberg & Fawcett, 1982), none nearly reflect the number of motor units which would be expected based on the number of motor neurons alone. The considerably lower number of motor units for any given muscle has been suggested to possibly be a result of a

decreased percentage of functioning motor units (McComas, 1977) and/or a collateral reinnervation process (Cavanagh, 1964; Campbell et al., 1973; Sabin, 1982). In addition to the decline in the number of functioning motor units in the elderly, researchers have also noted an enlargement of the surviving motor units, which is in accordance with the reinnervation process (Brown, 1973; Campbell et al., 1973; Hansen & Ballantyne, 1978; Stalberg & Fawcett, 1982). Furthermore, Campbell et al., (1973) and Hicks et al., (1991) have demonstrated that the surviving motor units of elderly individuals display reduced muscle membrane excitability, as inferred by a smaller compound muscle action potential.

SKELETAL MUSCLE CHANGES IN OLD ANIMALS: Ultrastructural 1.7 changes in aging muscle have been studied mainly in the rat. However, as was seen in the human literature, animal studies have also yielded some inconsistent and apparently contradictory results. Many studies have reported a decrease in the total number of fibres in aged rodent limb muscles (Rowe, 1969; Tauchi et al., 1971; Gutmann & Hanzlikova, 1972; Hooper, 1981; Larsson & Edstrom, 1986). However, others have shown that the total fibre number in the tibialis anterior (Larsson & Ansved, 1987) and soleus muscles of rats (Eddinger et al., 1985; Brown, 1987; Alnageeb & Goldspink, 1987) remains consistent with advancing age. This lack of consensus as to the effects of aging on total fibre number may be due in part to the methodology employed or to the sampling of muscles, or areas within muscles (Arabadjis et al., 1990). In order to clarify some of the uncertainty in the literature, Arabadjis et al., (1990) compared histological sectioning and direct counting as methods of determining total fibre number in young and old rat plantaris muscle. Their results indicate that a reduction of approximately the same magnitude (9% & 5%, respectively) in the mean number of muscle fibres in aging rats was found using both methods. However, histological sectioning tended to overestimate fibre number estimates in young rats, while an underestimation was observed in old rats. It appears then, that a decline in the number of fibres does occur with advanced aging in animals.

Smaller fibre area is also a prominent feature in aged rat muscle (Tauchi et al., 1971; Bass et al., 1975; Klitgaard et al., 1989). For the mouse, however, both reductions (Banker et al., 1983) and increases in fibre size (Rowe, 1969) have been reported, although, the mean ages of the animals were considerably different.

Electrophysiological studies of aged rodents have revealed prolongation of the isometric twitch duration in slow (Fitts et al., 1984) and fast twitch muscles (Gutmann & Hunzlikova, 1971; Gutmann & Syrovy, 1974; Fitts et al, 1984). However, reports of decreased contraction time in the slow twitch⁻ soleus have also been cited (Gutmann & Hanslikova, 1966; Gutmann & Syrovy, 1974).

Therefore, it appears that many aging related muscular changes in humans and animals are muscle specific and seem to be related to muscle function. Although many of the effects of aging in skeletal muscle remain controversial, a large portion of this can be attributed to differences among the species, preparations, or methodologies used (De Luca et al., 1990).

1.8 SUMMARY AND STATEMENT OF PURPOSE: In summary, much remains yet unresolved regarding how the length-tension relationship regulates muscle function, specifically in an elderly population. A considerable amount of research is still required to develop a more thorough understanding of the Despite the many aging process in skeletal muscle. conflicting properties reported in aged skeletal muscle, decreased elasticity beyond middle age has been unequivocal. Although several authors have suggested that elasticity changes, or influences of tendon length, may explain some of the peculiar findings in senescent muscle, no attempts to determine the validity of such speculation have been undertaken. The short term impact of such a project might explain some of the differences found between young and aged muscles. Furthermore, the long-term benefits of such a study

might allow a more accurate evaluation of muscular properties in individuals of different ages. Therefore, the purpose of the research outlined in this thesis was to examine the effects of aging on the muscle length (as inferred by joint angle)-tension relationship. It was hypothesized that based on the changes that are known to occur in skeletal muscle with advancing age, optimal functioning in the elderly would occur at a shorter muscle length as compared to young adults.

CHAPTER 2

METHODS

2.1 <u>SUBJECTS</u>: Sixty subjects aged 20-40 (\vec{x} =25.3 yrs; 159, 15 σ) and 60-80 yrs (\vec{x} =68.8; 159, 15 σ) voluntarily participated in this study. Volunteers were recruited from the Hamilton-Wentworth region through McMaster University and the Hamilton media. All subjects were in good health and free from any neurological deficit and orthopaedic disability. Older subjects were living independently within the community, and while all were able to walk free of any assistance, some were involved in more strenuous activities, such as swimming, running, and weight training. The procedures utilized in this study were approved by the McMaster University Ethics Committee.

2.2 <u>STIMULATING AND RECORDING APPARATUS</u>: All measurements were conducted on the right tibialis anterior muscle (TA) with the subjects seated in a vertically adjustable chair such that the R-leg was flexed 90° at the knee, while the leg was secured in the leg holder and foot plate first employed by Marsh et al., 1981 (refer to Figure 4). The muscle under

29

Figure 4:

-

The leg holder-foot plate apparatus. Joint position could be varied 30° from the horizontal plane in either direction.

investigation was chosen because of its simplistic innervation as well as its common usage across individuals. In addition, current literature favours experimentation with the dorsiflexors, therefore making any results easily comparable with the existing research.

Briefly, the subject's leg was secured by 2 clamps; one positioned over the knee, and the other positioned over the mid-lower leg to prevent any vertical (up or down) or horizontal (back and forth) leg movement. In addition, a velcro strap was anchored to the metal frame behind the leg in the mid-lower calf position to further prevent any leg movement. The subject's foot was fastened to the foot plate by two velcro straps tightened over the top of the foot. Strain gauges housed on the under side of the foot plate measured torque production. The plane of the foot plate could be set at up to 40° plantarflexion (that is, 40° of downward rotation of the foot-plate from the horizontal) through 40° dorsiflexion (40° of upward rotation of the foot-plate from the horizontal).

The stimulating electrodes consisted of a lead plate cathode and rubber anode. The cathode (radius=15mm) was wrapped in gauze, dampened and secured over the common peroneal nerve just distal to the proximal head of the fibula, while the anode (37mm x 45mm) was placed on the anterior aspect of the leg, approximately 50 mm distal to the patella.

31

Prior to electrode placement, the skin was shaved, scraped, and cleansed with alcohol, while the electrodes were covered with conducting gel in order to minimize electrical resistance.

A high-voltage stimulator (Devices Systems, Model 3072) triggered by a Stoelting (WoodDale, Illinois) laboratory controller with custom interfacing, was used to deliver single 50 µsec rectangular pulses and 1 sec tetanic trains (20,50, and 80 Hz) to the peroneal nerve. The EMG signals from the recording electrodes were fed into amplifiers with bandwidths of 20 Hz to 1.5 kHz and were displayed on a VGA computer monitor (CTX, model 2431P). Concomitantly, data were streamed continuously to disc by means of a Datag (Arkon, Ohio) waveform scrolling board (WFS-200DC; Datag Instruments Inc.) configured in an IBM compatible system.

Custom designed Advanced CODAS software was used to analyze all of the voluntary and evoked mechanical recordings: voluntary torque; evoked single twitch torque (Pt), time to peak torque (TPT), ½ relaxation time (½RT); and evoked tetanic torque (Pt), rise of tetanic torque, and twitch/tetanus ratio. During the maximal voluntary contractions (MVCs) the interpolated twitch technique (Belanger and McComas, 1981) was used as an assessment of the degree of muscle activation achieved by the subjects. A theoretical motor unit activation was calculated as follows:

$$%$$
 MUA = Pt - ITT x 100, where ITT represents the
Pt interpolated twitch torque.

2.3 EXPERIMENTAL PROTOCOL: Prior to any data collection, the experimental test began with an orientation of the subjects to the purpose and procedures of the study, as well as any discomfort involved with the stimulation. Passive tension, isometric twitches, voluntary contractions (MVC), and 1 sec evoked tetanic contractions (20,50, and 80 Hz) were measured in the R-tibialis anterior muscle at 10 joint angles (15°D through 30°P in 5° intervals). In order to avoid any potentiation effects, evoked twitches were collected at all joint angles first, followed by collection of MVC and evoked tetanic contractions.

The protocol commenced by adjusting the foot-plate to 15°P and securing the subject's leg, as described above. Prior to the collection of any evoked responses, passive tension measurements were made as the torque created about the ankle joint at each joint angle in a random order which was preserved for the remainder of the testing session. Readings were taken only after the subject had relaxed his/her muscle completely. Passive tension data collection began by releasing the foot plate and observing the natural resting position of the ankle joint (0 tension). Passive tension measurements were then recorded at the 10 joint angles in the predetermined order for that subject. However, with each joint angle change the foot plate was set back to the resting position and the system was zeroed in order to avoid any changes in the oscilloscope readings due to the passing of time.

Subsequent to the collection of the passive tension surrounding each joint angle, the foot-plate was then readjusted to 15°P in order to determine the voltage required for maximum torque production, after which isometric twitches were collected at each joint angle. Initially, reevaluation of the voltage required for maximum torque production by an evoked twitch was performed at each joint angle prior to collection of the twitch response. However, since no apparent change was observed in the required voltage for maximal torque production, the procedure for subsequent subjects was to simply evoke twitches at each of the joint angles at the same voltage required for maximal torque production at 15°P. The active torque was calculated by subtracting the passive tension generated from the total twitch torgue achieved at the same angle. In cases where the total twitch torque was zero, the active torque was also taken to be zero, regardless of the amount of passive tension, as in these instances the passive tension was in the plantar- as opposed to dorsi-flexion direction.

Upon completion of the evoked single twitch data collection, subjects performed 2 MVCs at the ascribed joint angles with sufficient time (2-3 min) being allotted in between the two contractions to avoid any fatigue effects. As mentioned previously, the maximal voluntary contractions were interpolated to assess the degree of motor unit activation.

The last step in the experimental protocol involved 1 sec tetanic contractions at three frequencies, 20,50, and 80 Hz at each of the joint angles. Once again, the order in which the 3 tetanic frequencies were received was varied to accommodate any systematic effects. For each joint angle, a preserved random order of 20, 50, and 80 Hz tetanic pulses were delivered to the peroneal nerve at one minute intervals. Throughout the tetanic stimulation protocol, subjects were instructed to remain relaxed, despite the ensuing muscle activation, and to restrain from any natural tendencies to resist the working muscle.

Thus, the sequence of events for the 10 joint angles were as follows:

- (1) determination of the resting joint angle,
- (2) collection of the passive tension surrounding the ankle joint in the prescribed joint angle order,
- (3) determination of the voltage at which peak isometric twitch torque is achieved by the dorsiflexors at 15°P,
- (4) collection of the resting isometric twitch torque produced by the dorsiflexors at each joint angle

- (order as assigned above) by the voltage previously determined to produce peak twitch torque at 15°P,
- (5) collection of maximal voluntary contractions (MVCs) at each joint angle, including assessment of the extent of motor unit activation by use of the interpolated twitch procedure (order as assigned above),
- (6) collection of evoked tetanic torque (20, 50, and 80 Hz at 1 min intervals) at each of the joint angles (order as assigned above).

2.4 <u>STATISTICAL TREATMENT</u>: A 3-way (age x gender x joint angle) between (age, gender)-within (joint angle) analysis of variance was used to test for significant differences between ages, genders, and joint angles in passive tension, single twitch, and MVC dependent variables. The maximal voluntary contraction which achieved greatest torque was used for statistical analysis. For the 1 sec evoked tetanic pulses, a 4-way (age x gender x joint angle x frequency) mixed analysis of variance was used to determine the level of significance in dependent variables. In both cases, a level of 0.05 was considered statistically significant. A Tukey A post-hoc was employed to examine significant differences between means. Unless otherwise indicated, throughout the text values are stated as means ± standard error of the mean.

CHAPTER 3

RESULTS

3.1 Effect of Age on Resting Joint Angle: All subjects, regardless of gender or age, were able to have their ankle joint comfortably moved from 30°P through to 15°D. The present investigation found the resting joint angle for the ankle dorsiflexors to be similar between elderly and young adults, regardless of gender. On average, the resting position for the ankle joint was approximately 13°P (SE=0.88; range 05°P-21°P).

3.2 Effect of Joint Position on Passive Tension: Although passive tension measurements were made in the present study, several methodological difficulties were encountered which resulted in the passive tension values being inaccurate. For example, one particularly disturbing finding was at the more plantarflexed joint angles the passive torque values were actually greater than the maximum evoked total twitch torques. Due to the design of the leg-holder foot plate apparatus, the pressure exerted by the clamp stabilizing the upper leg (refer to Figure 4), which was set to prevent movement of the lower leg, greatly contributed to the passive torque measurements in

37

the more plantarflexed positions (i.e. positions more plantarflexed than the resting joint angle). In reassessing the passive tension results at the highest plantarflexed angle (30°P), it was later found that by only securing the foot in the 2 velcro straps and eliminating the clamp stabilizing the upper leg, the passive tension torques were reduced to approximately one-half the previous value. In the more dorsiflexed positions, a different problem was encountered which also affected the passive tension recordings, the heal of the foot raised off the foot-plate at extreme dorsiflexion. For these reasons, the passive tension measurements of the present research cannot be used in any statistical analysis. Furthermore, the active tension values which were to be generated by mathematical subtraction of the passive torque from the total peak torque would also be inaccurate, and hence are not reported in this research.

3.3 Effect of Joint Position on Single Twitch Characteristics: The effect of joint position on the time course of the twitch revealed gradually shorter time to peak torques (TPT) and one half relaxation times (1/2 RT) when movina from the extreme range of plantarflexion to dorsiflexion in both age groups. In agreement with previous literature, the measurement of evoked contractile properties revealed significantly slower twitches in the elderly versus young adults at all joint angles, as can be seen from the increased time to peak torque (TPT) and one half relaxation time (1/2 RT) (Table 1).

The peak evoked twitch torque systematically varied across joint angles; a continuous decline was observed from extreme plantarflexion through to extreme dorsiflexion (Figure 5) (Table 1). It can be seen that while males produced significantly larger torque values than females in both age groups, there was no effect of age on dorsiflexor twitch torque at any of the joint angles investigated.

3.4 Effect of Joint Position on Maximal Voluntary Contractions (MVCs): The maximal voluntary contraction (MVC) torque of the ankle dorsiflexors was significantly different across joint angles; maximal torque plateaued at 15°P and progressively declined as the joint angle became more dorsiflexed. There was a main effect of both age and gender for MVC torque, such that young adults generated significantly greater torque than the elderly adults, and males consistently achieved greater torque values than females (Figure 6).

39

Table 1:

Group means (\pm standard error of the mean) for time to peak torque (TPT), half-relaxation time (1/2 RT), and total peak torques at the ten joint angles in females and males of different ages.

TABLE I

_

<u></u>			TWITCH		<u> </u>	TWITCH
•	TPT	1/2 RT	TORQUE	TPT	1/2 RT	TORQUE
(n	nsec)	(msec)	(Nm)	(msec)	(msec)	(Nm)

Young Adults (20-40yrs)

.

-:

Female					Male				
	30P	79.3 ± 3.2	85.7 ± 3.3	3.5 ± 0.3		30P	73.8 ± 2.3	76.8 ± 4.3	5.3 ± 0.4
	25P	75.4 ± 3.5	81.9 ± 3.2	2.9 ± 0.3		25P	73.4 ± 2.3	72.0 ± 4.9	4.4 ± 0.4
	20P	71.9 ± 4.0	70.5 ± 4.8	2.4 ± 0.3		20P	71.9 ± 1.7	65.8 ± 6.0	3.7 ± 0.4
	15P	71.6 ± 5.3	68.7 ± 5.1	2.0 ± 0.3		15P	70.2 ± 2.8	57.9 ± 3.9	2.9 ± 0.4
	10P	54.6 ± 8.6	55.0 ± 8.4	1.4 ± 0.3		10P	61.7 ± 4.1	53.1 ± 6.1	2.0 ± 0.4
	05P	· 44.6 ± 9.0	40.4 ± 8.6	0.9 ± 0.2		05P	49.6 ± 7.3	44.9 ± 8.4	1.4 ± 0.3
	000	27.7 ± 8.7	26.0 ± 8.8	0.5 ± 0.2		000	35.0 ± 7.4	37.4 ± 8.8	0.7 ± 0.2
	05D	11.9 ± 6.5	15.0 ± 9.1	0.2 ± 0.1		05D	17.8 ± 6.0	19.5 ± 8.3	0.3 ± 0.1
	10 D	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0		10D	6.2 ± 4.7	5.0 ± 4.0	0.2 ± 0.1
	15D	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0		15D	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0

Elderly Adults (60-80yrs)

Female					Male			
	30P	90.5 ± 2.7	99.9 ± 6.6	3.5 ± 0.2	30P	92.6 ± 2.5	100.7 ± 3.6	5.6 ± 0.5
	25P	88.8 ± 3.6	89.4 ± 5.1	2.9 ± 0.1	25P	90.1 ± 2.2	92.3 ± 3.9	4.8 ± 0.6
	20P	85.9 ± 2.5	85.2 ± 4.5	2.4 ± 0.1	20P	81.4 ± 6.1	78.7 ± 6.9	4.0 ± 0.5
	15P	81.3 ± 3.9	75.5 <u>±</u> 5.7	1.9 ± 0.2	15P	77.1 ± 6.1	73.6 ± 6.1	3.4 ± 0.5
	10P	72.9 ± 5.0	62.8 ± 6.3	1.5 <u>±</u> 0.2	10P	73.7 ± 5.8	72.1 ± 8.9	2.8 ± 0.5
	05P	60.1 ± 5.3	54.3 ± 6.7	1.0 ± 0.1	05P	55.9 ± 9.3	47.8 ± 8.1	2.0 ± 0.4
	000	40.0 ± 8.2	27.4 ± 6.4	0.5 ± 0.1	000	45.3 ± 8.9	39.7 ± 7.8	1.3 ± 0.3
	05D	18.0 ± 8.0	12.3 ± 6.2	0.3 ± 0.1	05D	31.4 ± 8.7	22.8 ± 6.8	0.7 ± 0.3
	100	22.6 ± 13.8	9.4 ± 5.1	0.2 ± 0.1	10 D	22.6 ± 8.6	13.7 ± 5.4	0.5 ± 0.2
	15D	17.9 ± 12.3	8.0 ± 6.0	0.1 ± 0.1	15D	12.4 ± 5.9	9.9 ± 4.7	0.2 ± 0.1

Figure 5:

•

- -

The effect of joint angle on peak twitch torque in females and males of different ages. Values are means \pm standard error of the mean (n=15 in each group).

Figure 6:

The effect of joint angle on the torque produced during the brief maximal voluntary contractions (MVCs) in females and males of different ages. Values are means \pm standard error of the mean (n=15 in each group).

3.4.1 <u>Effect of Joint Position on Percent Motor Unit</u> <u>Activation (% MUA)</u>: Joint angle had a significant effect on the degree of motor unit activation across all subjects: full activation was more frequently attained at the dorsiflexed angles, as illustrated in Figure 7. However, even at the more difficult joint angles for obtaining full activation, subjects achieved no less than 96 % MUA. Among the genders and different age groups however, there was no effect for joint angle on % MUA.

Effect of Joint Position on Tetanic Torque at Different 3.5 There was a main effect of joint angle on the Frequencies: torque produced by the 1 sec tetanic trains. As was the case with the single twitch and MVC torques, the 1 sec peak tetanic torques declined from 30°P through to 15°D for all subjects. Also, in keeping with the MVC torque results, elderly adults obtained significantly lower tetanic torques than young adults and males greater torgues than females. There was also a significant interaction between gender and age in evaluating the effect of joint angle on tetanic torque production. Compared to their younger counterparts, the older males showed a significantly greater reduction in tetanic torque than the older females at the plantarflexed joint angles (24% VS 9%

Figure 7:

The effect of joint angle on the percent motor unit activation (% MUA) achieved by females and males of different ages. Values are means ± standard error of the mean (n=15 in each group).

.

- ⊠ males 60-80 yrs

reduction respectively in 80 Hz torque at 30°P), while the opposite was true for the dorsiflexed angles (23% VS 54% reduction respectively in 80 Hz torque at 15°D). Therefore aging effects were similar across joint angles in males (approximately 23% reduction in torque), however, for females the effects became progressively more pronounced towards extreme dorsiflexion (Figure 8).

As expected, there was also a significant effect of the frequency of tetanic stimulation on torque production of tibialis anterior. During the 20 Hz trial, the evoked torque was significantly lower as compared to the 50 and/or 80 Hz trial (Figure 9). This finding was typical of all subjects, however, the reduction was considerably reduced in extreme dorsiflexion (77% VS 28% for 30°P and 15°D respectively).

3.5.1 Effect of Joint Position on the Rise of Tetanic Torque: The duration of time for which 10-90% of the torque is developed (rise) during the 1 sec tetanic trains was the same for young and elderly adults with no significant difference between males and females. Conversely, time between 10-90% torque development during the different tetanic trains was significantly affected by joint angle, as Figure 8:

The effect of joint angle on the normalized torque produced by the 80 Hz train in males and females aged 60-80 years.

Figure 9:

The effect of joint angle on maximal tetanic torques produced by 20, 50, and 80 Hz trains in females and males of different ages. Values are group means \pm standard error of the mean (n=15 in each group).

illustrated in Figure 10. At the plantarflexed angles, the 20 Hz trial produced significantly slower duration of torque development than the 50 or 80 Hz trials, whereas the same was not true at the dorsiflexed angles; 80 Hz trains produced the slowest rate of torque development.

Effect of Joint Position on the Twitch/Tetanus and 3.5.2 Evaluation of the twitch:tetanus ratio was Twitch/MVC Ratios: performed at 30°P since maximum twitch torque occurred at 30°P. The twitch/tetanus ratio was greater in elderly, as compared to young adults at 30°P, regardless of gender. As expected, stimulus frequency significantly influenced the twitch/tetanus ratio; the greater the frequency of stimulation, the smaller the twitch/tetanus ratio (Figure 11). The twitch/tetanus frequency stimulation ratios for low (20 Hz) were significantly larger when compared to the medium (50 Hz) or high (80 Hz) frequency, however, there was no apparent difference in the ratios between the 50 and 80 Hz stimulation frequencies.

Figure 10:

The effect of joint angle on the rise time in tetanic torque at 3 frequencies (20, 50, & 80 Hz) in females and males of different ages. Values are means, collapsed across age and gender, \pm standard error of the mean (n=60 at each frequency).

-,

49
Figure 11:

-

The effect of age on the twitch/tetanus at $30^{\circ}P$. Values are means \pm standard error of the mean (n=30 at each frequency).

* indicates 80 or 50 Hz is significantly (p<0.05) different from 20 Hz frequency.

* indicates elderly are significantly (p<0.05) different from young adults.

CHAPTER 4

DISCUSSION

Few studies have considered the possibility of the length-tension relationship being affected by the natural skeletal muscle changes (i.e. contractile, morphological etc...) which accompany the aging process. The aim of the current investigation was to provide a better understanding of muscle function in elderly adults by considering the influence of muscle length on tension development in an aged population. The influence of joint position on the contractile properties of aged skeletal muscle was evaluated under the following conditions: isometric single twitches, voluntary contractions, and 20, 50, and 80 Hz stimulation of the ankle dorsiflexors.

The Influence of Joint Position on Single Twitch 4.1 Characteristics: In the present study significant differences in the contractile properties of the tibialis anterior muscle (TA) were observed when the ankle joint was positioned at different joint angles; the 1/2 RT and TPT were more dorsiflexed shorter at the as compared to the plantarflexed angles, as well as the twitch torques being These differences greatly reduced at extreme dorsiflexion.

51

were expected in view of the appreciably shorter muscle lengths at the dorsiflexed positions. At short muscle lengths (i.e. shorter than resting length) there is a considerable amount of added slack to be taken up before the active force generating mechanisms of muscle can be initiated. This slack, largely manifested in the SEC of the muscle, therefore demands more time to be absorbed at short muscle lengths, as compared to muscle lengths greater than resting length. Thus, the greater time demanded to take up the SEC results in less time for the generation of force, as depicted by the reduced peak torque of the resulting twitch. Hence, the resulting twitch is diminished not only in peak torque obtained, but also in its time factors, TPT and 1/2 RT.

Similar changes in the contraction and half-relaxation times at extreme dorsiflexion have been reported elsewhere (Marsh et al., 1981). In young male subjects (19-37 yrs) Marsh and colleagues found the mean contraction and halfrelaxation times of maximal isometric twitches of TA were significantly reduced at full dorsiflexion compared to full plantarflexion. In as much as the decline in TPT and 1/2 RT with increased dorsiflexion in the current report supports the findings of Marsh and colleagues, there still remains sizable differences in the abruptness of the decline between the studies. At the extreme dorsiflexed position (15°D) the present investigation found a total loss of the twitch, while Marsh and colleagues only report a 15% and 25% decline in TPT and 1/2 RT respectively, at extreme dorsiflexion. Overall, the present study supports the notion of reduced contractile speed with increasing dorsiflexion, however, the findings herein suggest that progressive shortening of the dorsiflexor muscles results in an extreme loss of contractile ability for the TA.

Despite the dissimilar reports in the human literature, the present study indirectly supports some of the existing animal research (Blinks et al., 1978; Stevenson & Williams, As discussed in Section 1.4, the amount of time 1982). required for tension development reflects either the process of calcium activation of the contractile filaments and/or the effectiveness of the tension-generating mechanisms. As was first suggested by Close, (1972), and since supported by others (Blinks et al., 1978; Stevenson & Williams, 1982), fibre length does influence the release and/or binding of the activator, calcium. Moreover, Taylor & Rudel, (1970) using frog muscle fibres, claim that incomplete activation of fibres stimulated at short muscle lengths is not due to contractile element dysfunction. Rather, they suggest T-tubular collapse and increased intracellular pressure may result in impaired transmission of the T-tubular action potential. Therefore, despite the fact that the present study did not measure calcium levels, the observed decrease in active state duration

of the twitch at short muscle lengths offers support to those who have demonstrated an interdependence between fibre length and the release and/or binding of calcium.

The demonstration in the present study of an increased total twitch torque in all subjects as the TA muscle was lengthened, with peak torque in males aged 20-40 yrs (~5.3 \pm .04 Nm) being recorded at an angle of 30°P, is comparable to the values obtained by Marsh et al., 1981, where males aged 19-37 yrs achieved maximum torque (~4.0 Nm) at 30°P. Since the twitch torque had still increased exponentially between 20 and 30°P, it is possible that an increase in twitch torque may even occur at joint angles beyond 30°P.

The Effect of Age on Single Twitch Characteristics: The 4.2 slower contraction time of the ankle dorsiflexors in the elderly as compared to young adults in the current study is in agreement with previous findings of increased TPT and 1/2 RT for the TA of adults aged 60-100 yrs (Vandervoort & McComas, 1986; Cupido et al., 1992). Furthermore, increases in TPT and 1/2 RT of elderly muscle have also been demonstrated for the triceps surae (Davies & White, 1983; McDonagh et al., 1984; Klein et al., 1988), elbow flexors (McDonagh et al., 1984), first dorsal interosseous (Newton et al., 1988), and plantarflexors (Vandervoort & McComas, 1986). This agerelated slowing of the contractile properties of elderly

skeletal muscle could be speculated to involve the same mechanisms suggested to account for the muscle atrophy which has been shown to occur with age. For example, a reduction in Type II fibres (Lexell et al., 1983; Aniansson, 1986), with a subsequent increase in the proportion of Type I fibres (Larson 1978; Sjostrom et al., 1980; Lexell et al., 1983; Poggi et al., 1987), could possibly result in retarding the muscle's contractile capabilities. The same argument would be true for Ι а type II to type conversion, deinnervation/reinnervation process (Cavanagh, 1964; Campbell et al., 1973; Sabin, 1982), and decreased percentage of functioning motor units (Sica & McComas, 1971; Campbell et al., 1973; McComas, 1977).

Despite the TA muscle of elderly adults in the present study exhibiting slower contractile tendencies, there was no effect of age on the peak total twitch torque. Elderly individuals produced similar torque values at all joint angles compared to young adults. Similar torque values between elderly and young adults is in agreement with previous research from our lab where no observable changes in twitch torque were apparent between adults of different ages. Hicks et al., 1991, reported peak twitch torque values of 3.2 and 3.7 Nm at 20°P for the ankle dorsiflexors of young and elderly adults respectively, closely paralleling the 3.1 and 3.2 Nm respectively, reported in the present research. Thus, it appears that any age-related changes in muscle morphology, contractile properties, etc. does not appear to affect the torque-angle relationship of the ankle dorsiflexors. However, similar twitch torques between elderly and young adults is not a unanimous finding. Vandervoort & McComas, 1986, and more recent research from our lab (Cupido et al., 1992) have documented decreases and increases respectively, in the twitch torque of elderly TA muscle.

Under identical stimulation procedures to the present investigation, Cupido and co-workers reported peak twitch torques of 4.6 and 3.2 Nm at 20°P for the ankle dorsiflexors of elderly and young adults, respectively. The current research reports similar values for young adults $(3.1 \pm .35 \text{ Nm})$ however, the peak twitch torque of elderly dorsiflexors is sizably reduced (3.2 ±.3 Nm) compared to the work of Cupido and associates. These authors suggest that their unique finding of an increase in elderly twitch torque may be attributed to an alteration in the length-tension relationship with age. However, since the present research does not support the possibility of an altered length-tension relationship in the ankle dorsiflexors of elderly adults, the greater twitch torque observed by Cupido & Co-workers could not be due to the TA of elderly subjects being at a more optimal length for the uptake of the series elastic component within the muscle or the effects of increased muscle stiffness

and connective tissue. Therefore, we can only speculate that this disparity in elderly twitch torque values between the present research and that of Cupido & Co-workers, 1990, may reside in differences among the subject populations. The elderly group of Cupido and co-workers consisted of 7 males and 2 females with a mean age of 67.7 ±1.2 years. While the mean age of the present study's elderly population is comparable (68.8 yrs), the distribution of the male and female genders is dissimilar. The present research fairly represents both genders in its elderly group $(n=15\sigma, n=15\varphi)$, compared to the already mentioned 7:2, male:female ratio of Cupido and coworkers' elderly population. It was previously stated that gender significantly influenced the amount of torque generated by the ankle dorsiflexors; with males consistently producing higher twitch torgues than females. In keeping with these findings, it seems possible that the elevated elderly torque values of Cupido and co-workers research may reflect their biased representation of the male population amongst the elderly group.

In contrast to the findings of Cupido and coworkers, Vandervoort and McComas (1986) found reduced twitch torque values in elderly (2.6, 1.7 Nm, σ & \circ respectively), as compared to young adults (4.2, 2.7 Nm, σ & \circ respectively) at 30°P. Once again, the twitch torque values for young adults are similar to those reported in the current study, however,

the values reported for elderly individuals are sizably reduced compared to those of the present investigation. Unlike Cupido and co-workers, Vandervoort and McComas's population was not as biased towards a particular gender. Rather, their elderly population was well represented, both in relation to gender, and to the size of their young adult population; they cited twenty-three 60-69 yr-olds (13d,109), twenty-five 70-79 yr-olds (16d,99), and twenty-one 80-100 yrolds (13¢,8º). Therefore, there must be an alternate explanation for the incongruent findings between the reported twitch torque results in the present research and those of Vandervoort & McComas. These discordant results may be accounted for by the fact that the conclusions of Vandervoort and McComas, 1986, seem to have been made primarily by comparison of their 20-32 yr-old and 80-100 yr-old groups. Since the oldest individual in the current study was 78 years, and the elderly group as a whole had a mean of 68.8 yrs, it is conceivable that the aging process is further advanced in individuals 80 years and older. The peak torque values for the 20-32 yr-olds and 80-100 yr-olds from Vandervoort and McComas's research were 3.445 and 2.26 Nm, respectively. However, regrouping of their 60-69 yr-olds and 70-79 yr-olds into one 60-79 yr-old group results in an average peak twitch torque of 2.91 Nm, which is not much different from the 3.2 Nm In fact, the data from reported in the present study.

Vandervoort and McComas' subject population is within one standard deviation of the mean from the current study, with a slightly stronger young adult group (3.1 vs 3.4 Nm, respectively) and slightly weaker old adult group (3.2 vs 2.9 Nm, respectively). Therefore, while the present study finds no support for reduced twitch torque values in elderly individuals 60-80 yrs (\bar{x} =68.8yrs), further aging (i.e. 80+ yrs) may result in reduced evoked strength characteristics.

The Influence of Joint Position on Maximal Voluntary 4.3 Contractions: In the present study, the influence of joint position greatly affected the generation of maximal voluntary contraction torque. All subjects were able to achieve much greater torque values in the more plantarflexed angles as compared to the dorsiflexed angles when asked to perform an MVC. In addition, the results of the present study indicate the influence of tendon elasticity by a marked levelling of the MVC torque at the more plantarflexed joint angles (15-20°P). Tendon elasticity reflects force utilized in taking up of the series elastic component (SEC) residing in the long TA Upon maximal tendon stretch, the SEC is fully taut tendon. and therefore limits the amount of cross-bridge interaction between the actin and myosin filaments. This effect results in a marked flattening of the length-tension curve upon extreme stretching of the TA tendon. An additional argument

for the lack of an optimal angle for MVC torque produced, may be that the long extensors of the toes may have rather different length-tension curves as compared to TA (i.e. with an optimal length greater than that of TA)(Marsh et al., 1981).

As predicted, there was an effect of aging on MVC torque. Elderly subjects produced much reduced torque values at all joint angles as compared to the young adults. Thus, while twitch torque was unaffected by age, maximal voluntary torque influenced by the aging process. These apparently is contradictory results might be explained by the difference in contractile properties in elderly versus young muscle; elderly muscle is slower to contract. The prolonged contraction time of elderly muscle has significant implications when analyzing the amount of torque generated during evoked single twitches as compared to voluntary contractions. As summarized in Section 1.3, each cross-bridge contributes a fixed amount of tension to the total, thus the greater the number of crossbridges formed the greater the amount of tension produced. Additionally, increased cross-bridge cycling also plays a significant role in tension generation. The turnover between the formation and disengagement of cross-bridges can increase tension production if the duration for which cycling occurs increases. Thus, the increased duration of evoked twitches in elderly TA muscle may allow more time for cross-bridge cycling, thereby permitting evoked torque values to approach that of young adults. However, under maximum voluntary efforts, the dorsiflexors of elderly individuals were unable to generate torque values comparable to the young adults, which may be due to the muscle fibre atrophy and/or fibre type conversions that is thought to accompany the aging process. The possibility of the lower MVC torques in the elderly being due to incomplete muscle activation is unlikely, as the results from the interpolated twitch data revealed at least 96% motor unit activation across all joint angles, with no significant age effect apparent.

4.4 The Influence of Joint Position on Tetanic Torque at The present study also evaluated the Different Frequencies: effect of joint angle on tetanic torque at different frequencies. In agreement with the findings of Marsh et al., 1981, the present study found that joint position directly influenced the force-frequency curve. For a given joint angle, the force-frequency curve is typically characterized as torque increasing rapidly in the low-frequency range and more slowly as higher frequencies are employed (Marsh et al., 1981). Upon manipulation of dorsiflexor muscle length in the present research, the force-frequency curve was altered; with stretching beyond increased resting length (5°P) the relationship became more steep in the low-medium frequency

range, whereas the force-frequency curve developed more slowly upon shortening (refer to Appendix M). However, while these authors found maximal torque for TA was obtained in the resting position (05-10°P) for stimulus frequencies above 30 Hz, our findings suggest that maximal torque is achieved at 30°P, regardless of stimulus frequency. This dissimilar finding between the present research and that of Marsh and colleagues may be attributed to methodological differences. The tetanic stimulation results in the current study are based on dorsiflexor activation via supramaximal stimulation of the In contrast, Marsh and colleagues employed peroneal nerve. direct motor point stimulation of the tibialis anterior muscle by the cathodal electrode being applied directly over the tibialis anterior muscle. Therefore, the results of Marsh et al., 1981, were not influenced by other muscles which are coinnervated by the peroneal nerve; extensor digitorum longus, peroneus tertius, brevis, and longus. Under the present methodology, the influence study's of some of the plantarflexor muscles (peroneus brevis & peroneus longus) Therefore, the undefined maximum joint cannot be avoided. angle for tetanic frequencies greater than 30 Hz in the current report may reflect the possibility that with increased plantarflexion the reduced influence of the plantarflexor muscles contribution is greater than the natural decrease in dorsiflexor torque. An alternative possibility, as previously mentioned, may be that the action of the other dorsiflexor muscles activated by peroneal nerve stimulation have a different length-tension relationship than the TA.

It was apparent in this research that aging does affect the amount of torque produced during a 1-sec tetanic burst, regardless of the frequency of stimulation. An unusual and perhaps surprising finding was that the magnitude of the aging effect was more pronounced in the dorsiflexed positions and less pronounced in the plantarflexed positions for females despite a uniform magnitude across all joint angles for males. This finding may be explained by the fact that females possess a more elastic musculature. Therefore, at short muscle lengths more time would be required to take up the elasticity of female muscle before actual tension could be generated. The greater energy and time expended to take up this elasticity, may leave less time available, as compared to males, for active torque production.

In comparing the torques achieved by the 80 Hz stimulation and maximal voluntary contractions several notable observations became apparent. Firstly, the present study found that the maximum torque developed by the dorsiflexors during the 80 Hz stimulation was on average 72.5% of MVC dorsiflexor torque. This is almost 2-fold the value (42%) reported by Marsh et al., 1981 for the percentage of torque generated during a 100 Hz tetanus compared to the torque generated by the ankle dorsiflexors during maximum voluntary effort. In view of the different methods of stimulation employed in the two studies (peroneal nerve VS percutaneous stimulation over TA motor point), these apparently discrepant results can be easily explained by the greater contribution of the other dorsiflexor muscles to torque production with peroneal nerve versus motor point stimulation. The fact that the 80 Hz stimulation in the present study was not able to generate torque equal to that of the MVC likely reflects the antagonistic effects of the peroneus muscles which act to plantarflex, rather than dorsiflex the foot.

In addition, the present research found no differences in the rate of rise of tetanic torque between elderly and young adults regardless of frequency, thereby suggesting that the elastic properties of elderly dorsiflexor muscles are similar to young adults.

Not surprisingly, the current study found an elevated twitch/tetanus ratio at 30°P in elderly adults. Since the present investigation revealed similar twitch torgues and rate of rise of tetanic torques between elderly and young adults, there is really no evidence for a reduction in elastic properties in elderly versus young dorsiflexor muscle. As explained on page 58, the increased contraction time of the ankle dorsiflexors in elderly individuals probably contributes to the increased twitch torque, and hence, elevated twitch/tetanus ratio observed in this population as compared to young adults. The observation of an increased twitch/tetanus ratio in elderly adults in the current study is in agreement with previous literature (Botelho et al., 1956). However, Botelho and Co-workers attributed their results to an increased stiffness or rigidity of the non-muscular structures of elderly women between 45-61 years of age.

4.5 <u>Summary</u>: In summary, the results of the present research offers considerable insight into the contractile characteristics of elderly muscle.

- As previously demonstrated in existing literature, the time course of the twitch declines with increasing dorsiflexion, as evidenced by shorter TPT and 1/2 RT times, and the contractile capabilities of elderly adults are substantially slower, as compared to young adults.
- Peak total twitch torque occurs at the extreme of plantarflexion (30°P) in both elderly and young adults.
- 3. Elderly individuals produced similar torque values at all joint angles compared to young adults.
- 4. In performing maximal voluntary contractions, all subjects, regardless of age, were stronger at the more plantarflexed compared to the dorsiflexed angles. Furthermore, the relationship between joint angle and MVC torque was similar between elderly and young adults.
- 5. MVC torque was found to be influenced by the aging process. Elderly subjects demonstrated much reduced torque values compared to young adults at all joint angles.

- 6. In the evaluation of joint position on tetanic torque of different frequencies, stretching of the ankle dorsiflexors beyond resting length resulted in an increased steepness of the force-frequency curve, in contrast to a more slowly developing curve upon shortening.
- 7. Elderly adults produced significantly less torque at all joint angles compared to young adults.
- 8. There was no difference in the rate at which the rise in tetanic torque was developed at all joint angles between elderly and young adults.
- 9. Finally, the twitch/tetanus ratio was greater in elderly, as compared to young adults, at 30°P. Combined with the similar total twitch torque and rate of rise of tetanic torque results in elderly and young adults, the twitch/tetanus results herein ultimately indicate that the elastic properties of elderly ankle dorsiflexors are similar to those of young adults.

Overall, the present study demonstrates that the optimal length at which maximal force of ankle dorsiflexors is developed is similar between elderly and young adults, independent of the mode of contraction. Therefore, despite the age-related changes that occur in skeletal muscle morphology, contractile properties, influences of tendon length, etc..., the present research suggests that the lengthtension relationship, as estimated by joint angle, for the ankle dorsiflexors is unaffected by the aging process.

References

- Almaqeeb, M.A. and G. Goldspink. Changes in fibre type, number and diameter in developing and ageing skeletal muscle. J. Anat. 153: 31-45, 1987.
- Aniansson, A. Muscle function in old age with special reference to muscle morphology, effect of training and capacity in activities of daily living. *Thesis* University of Gothenburg, Sweden, 1980.
- Aniansson, A., M. Hedberg, G. Henning, and G. Grimby. Muscle morphology, enzymatic activity, and muscle strength in elderly men: A follow-up study. *Muscle Nerve* 9: 585-591, 1986.
- Aniansson, A., G. Grimby, M. Hedberg, A. Rundgren, and L. Sperling. Muscle function in old age. Scand. J. Rehabil. Med. 6: 43-49, 1978.
- Arabadjis, P.G., R.R. Heffner, and D.R. Pendergast. Morphologic and Functional Alterations in Aging Rat Muscle. J. of Neuropath. and Exp. Neuol. 49(6): 600-609, 1990.
- Asmussen, E., and Heeboll-Nielsen. Isometric muscle strength in relation to age in men and women. *Ergonomics* 5: 167-169, 1962.
- Banker, B.Q., S.S. Kelly, and N. Robbins. Neuromuscular transmission and correlative morphology in young and old mice. J. Physiol. 339: 355-375, 1983.
- Banus, M.G., and A.M. Zetlin. The relation of isometric tension to length in skeletal muscle. J. Cell. Comp. Physiol. 12: 403-420, 1938.
- Bass, A., E. Gutmann, and V. Hanzlikova. Biochemical and histochemical changes in energy supply enzyme pattern of muscles of the rat during old age. *Geronologia* 21: 31-45, 1975.
- Bellenger, A.Y., A.J. McComas, and G.C.B. Elder. Physiological properties of two antagonistic human muscle groups. Eur. J. Appl. Physiol. 51: 381-393, 1983.
- Blinks, J.R., R. Rudel, and S.R. Taylor. Calcium transients in isolated amphibian skeletal muscle fibers: detection with aqueorin. J. Physiol. London. 277: 291-323, 1978.

- Blix, M. Die lange and spannung des muskels. IV Skand. Arch. F. Physiol. 5: 173, 1894.
- Borkan, G.A., D.A. Hults, S.G. Gerzof, A.H. Robbins, and C.K. Silbert. Age changes in body composition revealed by computed tomography. J. Gerontol. 38: 673-677, 1983.
- Botelho, S.Y., L. Cander, and N. Guiti. Passive and active tension-length diagrams of intact skeletal muscle in normal women of different ages. J. Appl. Physiol. 7: 93-98, 1954.
- Brown, W.F. Functional compensation of human motor units in health and disease. J. Neurol. Sci. 20: 199-209, 1973.
- Brown, M. Change in fibre size, not number, in ageing skeletal muscle. Age Ageing 16: 344-248, 1987.
- Buchthal, f. The mechanical properties of the single striated muscle fibre at rest and during contraction and their structural interpretation. Dan. Viol. Medd. Kbh. 17: 1-140, 1942.
- Buchthal, F., E. Kaiser, and G.G. Knappies. Elasticity, viscosity and plasticity in the cross striated muscle fibre. Acta Physiol. Scandinav. 8: 16-37, 1944.
- Buchthal, F., and E. Kaiser. The rheology of the cross striated muscle fiber with particular reference to isotonic contractions. Dan. Biol. Medd. Kbh. 21: 1-318, 1951.
- Buller, A.J., J.C. Eccles, and R.M. Eccles. Differentiation of fast and slow muscle in the cat hind limb. J. Physiol. (London) 150: 399-416, 1960.
- Buller, A.J., and D.M. Lewis. Factors affecting the differentiation of mammalian fast and slow muscle fibres. Pages 149-159 in E. Gutmann and P. Hnik, Eds., The Effect of Use and Disuse on Neurmuscular Functions. The Czechoslovak Academy of Sciences, Prague.
- Caccia, M.R., J.B. Harris, and M.A. Johnson. Morphology and physiology of skeletal muscle in aging rodents. *Muscle Nerve* 2: 239-244, 1979.
- Campbell, M.J., A.J. McComas, and F. Petito. Physiological changes in ageing muscles. J. Neurol. Neurosurg. Pschiatr. 36: 174-182, 1973.

- Cavanagh, J.B. Peripheral nerve changes in orthocresyl phosphate poisoning in the cat. J. Pathol. Bacteriol. 87: 365-383, 1964.
- Chapman, E.A., H.A. deVries, and R. Swezey. Joint stiffness: Effects of exercise on young and old men. J. of Gerontol. 27(2): 218-221, 1972.
- Close, R.I. The relations between sarcomere length and characteristics of isometric twitch contractions of frog sarterius muscle. J. Physiol. 220: 745-762, 1972.
- Close, R.I., J.I Lannergren. Arsenazo III calcium transients and latency relaxation in frog skeletal muscle fibres at different sarcomere lengths. J. Physiol. 355: 323-344, 1984.
- Costantin, L.L., and S.R. Taylor. Graded activation in frog muscle fibers. J. gen. Physiol. 61: 424-443, 1973.
- Cupido, C.M., A.L. Hicks, and J. Martin. Neuromuscular fatigue during repetitive stimulation in elderly and young adults. European Journal of Applied Physiology 1992. in press.
- Davies, C.T.M., and M.J. White. Contractile properties of elderly human triceps surae. *Gerontology* 29: 19-25, 1983.
- De Luca, A., M. Mambrini, and D.C. Camerino. Changes in membrane ionic conductances and excitability characteristics of rat skeletal muscle during aging. *Pflugers Arch.* 415: 642-644, 1990.
- Dill, D.B., M.K. Yousef, T.S. Vitez, A. Goldman, and R. Patzer. Metabolic observations on Caucasian men and women aged 17 to 88 years. J. Gerontol. 37: 565-571, 1982.
- Eddinger, R.J., R.L. Moss, and R.G. Cassens. Fiber number and type composition in extensor digitorum longus, soleus and diaphragm muscles with aging in Fisher 344 rats. J. Histochem. Cytochem. 33: 1033-1041, 1985.
- Evans A. and A. Hill. The relation of length to tension development and heat production on contraction in muscle. J. of Physiol. Vol. LXIX: 10-16, 1914.

- Fields, R.W., and J.J. Faber. Biophysical analysis of the mechanical properties of the sarcolemma. Can. J. Physiol. Pharmacol. 48: 394-404, 1970.
- Fitts, R.H., J.P. Troup, F.A. Witzmann, and J.O. Holloszy. The effect of ageing and exercise on skeletal muscle function. Mech. of Ageing and Develop. 27: 161-172, 1984.
- Forbes, C.B., and J.C. Reina. Adult lean body mass declines
 with age; some longitudinal observations. Metabolism 19:
 653-663, 1970.
- Frank, J.S., and S. Winegrad. Effect of muscle length on Ca⁴⁵ efflux in resting and contracting skeletal muscle. Am. J. Physiol. 231: 555-559, 1976.
- Fugl-Meyer, A.R., L. Gustafsson, and Y. Burstedt. Isokinetic and Static plantar flexion characteristics. Eur. J. Appl. Physiol. 45: 221-234, 1980.
- Ganong, W.F. Review of Medical Physiology (9th ed.). Los Altos, CA: Lange, 1979, p. 41-42.
- Gardner, E.D. Decrease in human neurones with age. Anat. Rec. 77: 529-536, 1940.
- Gordon, A.M., A.F. Huxley, and F.J. Julian. Tension development in highly stretched vertebrate muscle fibres. J. Physiol. 184: 143-169, 1966a.
- Grimby, G., and F. Saltin. The ageing muscle. Clin. Physiol. 3: 209-218, 1983.
- Grimby, G., B. Danneskiold-Samaie, K. Hvid, and B. Saltin. Morphology and enzymatic capacity in arm and leg muscles in 78-81 year old men and women. Acta Physiol. Scand. 115: 125-134, 1982.
- Gutmann, E. and V. Hanzlikova. Age changes in the Neuromuscular System. Bristol: Scientichnica. 1972.
- Gutmann, E. and V Hanzlikova. Motor unit in old age. Nature 209: 921-922, 1966.
- Gutmann, E. and I. Syrovy. Contraction properties and myosin ATPase activity of fast and slow senile muscle of the rat. *Gerontologia* 20: 239-244, 1974.

- Guyton, A.C. Textbook of Medical Physiology (6th ed.). Toronto, ON: W.B. Saunders Company, 1981, p. 128.
- Haffajee, D., U. Moritz, and G. Svantesson. Isometric knee extension strength as a function of joint angle, muscle length and motor unit activity. Acta Orthop. Scand. 43: 138-147, 1972.
- Hansen, S. and J.P. Ballantyne. A quantitative electrophysiological study of motor neurone disease. J. Neurol. Neurosurg. Psychiat. 41: 773-783, 1978.
- Herman, R., and S.J. Bragin. Function of the gastrocnemius and soleus muscles. A preliminary study in the normal human subject. Phys. Ther. 47: 105-113, 1967.
- Hicks, A.L., C.M. Cupido, J. Martin, and J. Dent. Twitch potentiation during fatiguing exercise in the elderly: the effects of training. Eur. J. Appl. Physiol. 63: 278-281, 1991.
- Hicks, A.L. C.M. Cupido, J. Martin, and J. Dent. Muscle excitation in elderly adults: the effects of training. *Muscle Nerve* in press. 1990
- Hill, A.V. Proc. Roy. Soc., London, s. B 139: 464, 1952.
- Hill, A.V. The mechanics of active muscle. Proc. R. Soc. Lond. Ser. B 141: 104-117, 1953.
- Hooper, A.C.B. Length, diameter and number of ageing skeletal muscle fibres. *Gerontol*. 27: 121-126, 1981.
- Huxley, A.F. Muscular contraction. J. Physiol. 243: 1-43, 1974.
- Huxley, A.F., and R. Niedergerke. Interference microscopy of living muscle fibres. *Nature*, Lond. 173: 971-973, 1954.
- Huxley, A.F. and L.D. Peachey. The maximum length for contraction in vertebrate striated muscle. J. Physiol. 156: 150-165, 1961.
- Huxley, A.F. and L.D. Peachey. The maximum length for contraction in striated muscle. J. Physiol. 146: 55-56p, 1959.
- Huxley, H.E., and J. Hanson. Changes in the cross-striations of muscle during contraction and stretch and their

structural interpretation. Nature, Lond. 173: 973-976, 1954.

- Huxley, H.E. Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. J. molec. Biol. 7: 281-308, 1963.
- Huxley, H.E. The double array of filaments in cross-striated muscle. J. biophys. biochem. Cytol. 3: 631-648, 1957.
- Ismail, J.M., and K.W. Ranatunga. Isometric tension development in human skeletal muscle in relation to its working range of movement: the length-tension relation of biceps brachii muscle. *Exp. Neurol.* 62: 595-604, 1978.
- Jennekens, F.G.I., B.E. Tomlinson, and J.N. Watson. Histochemical aspects of five limb muscles in old age. An autopsy study. J. Neurol. Sci. 14: 259-276, 1971.
- Johns, R.J. and U. Wright. Relative importance of various tissues in joint stiffness. J. Appl. Physiol. 17: 824-828, 1962.
- Kamon, E. and A. Goldfuss. In-plant evaluation of the muscle strength or workers. Am. Ind. Hyg. Asso. J. 39: 801-807, 1978.
- Kitai, T.A. and D.G. Sale. Specificity of joint angle in isometric training. Eur. J. Appl. Physiol. 58: 744-748, 1989.
- Klein, C., D.A. Cunningham, D.H. Paterson, and A.W. Taylor. Fatigue and recovery contractile properties of young and elderly men. Eur. J. Appl. Physiol. 57: 684-690, 1988.
- Klitgaard, H. and T. Clausen. Increased total concentration of Na-K pumps in vastus lateralis muscle of old trained human subjects. J. Appl Physiol. 67: 2491-2492, 1989.
- Kroll, W. and P.M. Clarkson. Aged isometric knee extension strength, and fractionated resisted response time. Exp. Aging Res. 4: 389-409, 1978.
- Lansing, A.I. Some physiological aspects of aging. Physiol. Rev. 31: 274-284, 1951.
- Larsson, L. and L. Edstrom. Effects of age on enzymehistochemical fibre spectra and contractile properties of

fast- and slow-twitch skeletal muscles in the rat. J. Neurol. Sci. 76: 69-89, 1986.

- Larsson, L.G., G. Grimby, and J. Karlsson. Muscle strength and speed of movement in relation to age and muscle morphology. J. Appl. Physiol. 46: 451-456, 1979.
- Larsson, L., G. Grimby, and J. Karlsson. Muscle strength and speed of movement in relation to age and muscle morphology. J. Appl. Physiol. 46: 451-456, 1979.
- Larsson, L. Morphological and functional characteristics of the ageing skeletal muscle in man. A cross-sectional study. Acta Physiol. Scand. [suppl] 457, 1978.
- Larsson, L. and T. Ansved. Effects of age on the motor unit; a study on single motor units in the rat. Annals New York Academy of Sciences 303, 1987.
- Lesser, M. The effects of rhythmic exercise on the range of motion in older adults. Am. Corr. Ther. J. 32(4): 118-122, 1978.
- Lexell, J., K. Henriksson-Larsen, and M. Sjostrom. Distribution of different fiber types in human skeletal muscles: Effects of aging studies in whole muscle cross sections. *Muscle Nerve* 6: 588-595, 1983.
- MacLennan, W.J., M.R.P. Hall, J.I. Timothy, and M. Robinson. Is weakness in old age due to muscle wasting? Age Ageing 9: 188-192, 1980.
- Marsh, E., D. Sale, A.J. McComas, and J. Quinlan. Influence of joint position of ankle dorsiflexion in humans. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51(1): 160-167, 1891.
- McComas, A.J. Neuromuscular Function and Disorders. London: Butterworths. 1977.
- McDonagh, M.J.N., M.J. White, and C.T.M. Davies. Different effects of ageing o the mechanical properties of human arm and leg muscles. *Gerontology* 30: 49-54, 1984.
- Munns, K. Effects of exercise on the range of joint motion. In E.L. Smith & R.C. Serfass (Eds.), Exercise and aging: The scientific basis. Hillside, NJ: Enslow Publishers.

- Newton, J.P., R. Yemm, and M.J.N. McDonagh. Study of age changes in the motor units of the first dorsal interosseous muscle in man. *Gerontology* 34: 115-119, 1988.
- Nygaard, E. and J. Sanchez. Intramuscular variation of fiber types in the brachial biceps and the lateral vastus muscles of elderly men: how representative is a small biopsy sample. Anat. Rec. 203: 451-459, 1982.
- Page, S.G., and H.E. Huxley. Filament lengths in striated muscle. J. Cell Biol. 19: 369-390, 1963.
- Parizkova, J., E. Eiselt, S. Sprynarova, and J. Wachtlova. Body composition, aerobic capacity, and density of muscle capillaries in young and old men. J. Appl. Physiol. 31: 323-325, 1971.
- Petrella, R.J., D.A. Cunningham, A.A. Vandervoort, and D.H. Paterson. Comparison of twitch potentiation in the gastrocnemius of young and elderly men. *Eur. J. Appl. Physiol.* 58: 395-399, 1989.
- Petrofsky, J.S. and A.R. Lind. Aging, isometric strength and endurance, and cardiovascular responses to static effort. J. Appl. Physiol. 38: 91-95, 1975.
- Podolsky, R.J. The maximum sarcomere length for contraction of isolated myofibrils. J. Physiol. 170: 110-123, 1964.
- Poggi, P., C. Marchetti, and R. Scelsi. Automatic morphometric analysis of skeletal muscle fibers in the aging man. The Anatomical Record 217: 30-34, 1987.
- Ramsey, R., and S.F. Street. The isometric length-tension diagram of isolated skeletal muscle fibres of the frog. J. Cell. Comp. Physiol. 15: 11-34, 1940.
- Rowe, R.W.D. The effect of senility on skeletal muscles in the mouse. *Exp. Gerontol.* 4: 119-126, 1969.
- Sabin, T.D. Biologic aspects of falls and mobility limitations in the elderly. J. Am. Geriat. Soc. 30: 51-58, 1982.
- Sale, D., J. Quinlan, E. Marsh, A.J. McComas, and A.Y. Belanger. Influence of joint position on ankle plantarflexion in humans. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 53(6): 1636-1642, 1982.

- Serratrice, G., H. Roux, and R. Aquaron. Proximal muscle weakness in elderly subjects. J. Neurol. Sci. 7: 275-299, 1968.
- Sica, R.E.P., A.J. McComas, A.R.M. Upton, and D. Longmire. Estimations of motor units in small muscles of the hand. J. Neurol. Neurosurg. Psychiat. 37: 55-67, 1974.
- Sica, R.E.P., and A.J. McComas. Fast and slow twitch units in a human muscle. J. Neurol. Neurosurg. Psychiat. 34: 113-120, 1971.
- Sichel, F.J.M. The elasticity of isolated resting skeletal muscle fibres. J. Cell. Comp. Physiol. 5: 21-42, 1934.
- Sichel, F.J.M. The relative elasticity of the sarcolemma and of the entire skeletal muscle fiber. Am. J. Physiol. 133: P446-P447, 1941.
- Sjostrom, M., K.A. Angquist, and O. Rais. Intermittent claudication and muscle fiber fine structure: Correlation between clinical and morphological data. *Ultrastruct. Pathol.* 1: 309-326, 1980.
- Smith, E.L. and S.K. Zook. The aging process. Benefits of physical activity. J. of Phys. Ed., Rec. and Dance 57: 32-34, 1986.
- Sopis, J.A., and S. Winegrad. Effect of stretch on Ca⁴⁵ efflux and on sarcoplasmic reticulum in frog skeletal muscle. *Fedn Proc.* 26: 597, 1957.
- Stalberg, E. and P.R.W. Fawcett. Macro EMG in healthy subjects of different ages. J. Neurol. Neurosurg. Psychiat. 45: 870-878, 1982.
- Steen, B., A. Bruce, B. Isaksson, T. Levin, and A. Svanborg. Body composition in 70-year-old males and females in Gothenburg, Sweden. A population study. Acta Med. Scand. Suppl. 611: 87-112, 1977.
- Stevenson, D.G., & D.A. Williams. Effects of sarcomere length
 on the force and pCa relation in fast and slow twitch
 muscle fibres from the rat. J. Physiol. (Lond.) 333: 637 653, 1982.
- Stokes, M., M. Crowe, and A. Young. The relationship between quadriceps size and strength in elderly men. Eur. J. Clin. Invest. 13: A17, 1983.

- Tauchi, H., R. Yoshika, and J. Kobayashi. Age changes of skeletal muscles of rats. *Gerontologia* 17: 219-227, 1971.
- Taylor, S.R., and R. Rudel. Striated muscle fibers: Inactivation of contraction induced by shortening. Science, N.Y. 167: 882-884, 1970.
- Tomlinson, B.E., J.N. Walton, and J.J. Rebeiz. The effects of aging and cachexia upon skeletal muscle: a histopathological study. J. Neurol. Sci. 9: 321-346, 1969.
- Tomonaga, M. Histochemical and ultrastructural changes in senile human skeletal muscle. J. Am. Geriatr. Soc. 25: 125-131, 1977.
- Vandervoort, A.A., and A.J. McComas. Contractile changes in opposing muscles of the human ankle joint with aging. J. Appl. Physiol. 61(1): 361-367, 1986.
- Vaner Linden, D.W., C.G. Kukulka, and G.L. Soderberg. The effect of muscle length on motor unit discharge characteristics in human tibialis anterior muscle. Exp. Brain Res. 84: 210-218, 1991.
- Walker, S.A. Tension and extensibility changes in muscle suddenly stretched during tetanus. Am. J. Physiol. 172: 37-41, 1953.
- Weber, E. Muskelbewegung. In: Handworterbuch der Physiologie, edited by R. Wagner. Brunswick, Germany: Bieweg, 1846, Vol. III, pt. 2, p. 1-122.
- Young, A., J. Stokes, and M. Crowe. The relationship between quadriceps size and strength in elderly women. *Clin. Sci.* 63: 35P-36P, 1982.
- Zierler, K.L. Mechanism of muscle contraction and its energetics. In: Medical Physiology, edited by V.B. Mountcastle. St. Louis, MO: Mosby, 1974, Vol. 1, p. 77-120.

Appendix A

:

Table A1. Individual Data for Passive Tension Measurements at Joint Angles of 30°P-15°D.

				Р	ASSIVE	TOROU	JE (Nm))				
Subject (#)	Gender	Age (yr)	30P	25P	20P	15P `	10P	05P	000	05D	10D	15D
1	F	76	4.98	` 3.49	1.95	Q.61	-1.37	-2.42	-3.22	-5.13	-6.84	-9.64
2	F	71	5.98	4.35	0.02	-2.61	-7.57	-7.89	-10.33	-11.89	-11.82	-11.95
3	F	68	13.16	7.40	4.03	1.34	-0.66	-3.74	-3.74	-3.37	-4.13	-6.01
4	F	67	4.98	2.69	1.51	0.63	-0.29	-1.98	-3.13	-3.22	-5.15	-5.98
5	F	72	3.49	1.25	2.44	-0.05	-0.51	-2.00	-2.49	-5.13	-4.88	-6.98
6	F	62	8.03	1.95	3.52	1.93	1.15	-0.90	-1.66	-3.32	-4.64	-7.01
7	F	72	3.27	3,34	1.17	0.00	-1.83	-3.00	-3.37	-8.23	-11.06	-15.38
•	F	68	3.56	2.10	1.12	-0.20	-1.44	-2.78	-4.64	-6.03	-5.74	-9.74
10	F	65	5.93	4,44	2.59	1.27	0.00	-2.03	-2.78	-3.86	-6.32	-8.23
11	F	73	13.92	8,06	5.91	3.64	1.83	-0.34	-2.34	-3.25	-5.15	-8.69
12	F	62	6.54	3.86	2.47	1.15	-0.22	-1.88	-2.86	-5.32	-5.66	-4.25
13	F	72	6.71	5.27	3.27	2.25	0.00	-2.25	-2.91	-3.61	-4.25	-7.74
14	F	70	3.74	3.20	2.12	0.20	-1.27	-2.64	-5.10	-5.66	-8.50	-10.64
13	r M	/U 65	2.04	1.47	0.00	-1.47	-1.00	-5.08	-0.47	-9.18	-12.77	-10.10
17	M	62	2.25	-0.95	3.17	-1.00	0.90	-2.49	-5.00	-6.69	-5.98	-12.13
18	M	69	6.62	4,39	2.43	1.78	-0.90	-7.28	-5.18	-7.20	-7.35	-12.45
19	м	68	10.52	6.64	5.96	2.34	0.00	-1.76	-4.32	-4,79	-6.62	-9.89
20	M	78	4.30	3.64	1.25	0.68	-0.78	-2.29	-4.30	-5.59	-9.18	-11.13
21	M	73	3.64	2.69	1.78	0.78	-0.76	-1.34	-2.59	-4.71	-5.25	-6.96
22	M	62	3.56	2.12	1.56	0.27	-1.22	-2.29	-3.42	-5.18	-5.25	-10.86
23	M	70	3.47	5.71	1.00	2.05	-0.22	-7.08	-0.03	-12.11	-13.33	-13 31
25	M	70	5.79	3.52	2.22	1.34	0.00	-1.22	-2.56	-4.59	-6.45	-9.55
26	M	73	6.35	4.49	2.51	1.12	-0.07	-2.25	-4.37	-8.33	-10.74	-15.89
27	M	72	6.05	4.35	2.27	1.17	0.00	-1.93	-3.93	-5.37	-7.45	-10.35
28	м	71	4.42	2.56	-0.29	1.37	-2.10	-4.25	-5.35	-9.52	-13.40	-22.68
29	M	64	3.34	2.22	1.17	-0.46	-1.86	-3.71	-5.64	-8.35	-12.11	-17.65
30	M	68	2.95	1.71	1.68	-0.83	-2.32	-4.10	-6.23	-9.38	-12.87	-18.19
31	F	35	5.98	4.39	2.66	1.05	-0.56	-2.22	-1.76	-5.15	-6.98	-9.23
33	F	23	5.83	4.52	2.00	0.54	-3.10	-4.96	-8.15	-8.47	-7.96	-8.96
34	F	36	6.42	3.91	2.59	1.29	0.27	-0.93	-2.47	-4,44	-6.71	-9.77
35	F	22	5.54	3.61	2.44	1.81	1.12	-0.39	-1.05	-2.00	-3.03	-4.25
36	F	26	4.52	2.27	0.88	-0.73	-0.90	-4.37	-5.37	-8.01	-10.84	-14.01
37	F	24	5.35	5.13	1.66	0.37	-1.73	-2.33	-3.23	-6.30	-12.18	-13.60
38 19	r F	23	4.67 8.50	5.03	1.95	-0.22	-0.20	-1.71	-1.56	-5.40	-7.76	-9.94
40	r F	26	5.66	3.88	2.25	0.83	0.78	-1.49	-2.93	-5.10	-6.69	-8.78
41	F	24	6.96	4.76	2.47	-0.54	-2.49	-5.15	-8.45	-13.06	-18.80	-25.85
42	F	20	6.42	4.59	2.15	0.63	-0.95	-2.49	-4.64	-6.74	-9.72	-14.84
43	F	21	8.33	5.25	3.03	1.42	0.00	-3.37	-2.03	-2.86	-4.64	-6.15
44	F	23	4.05	2.27	0.34	-1.54	-2.29	-4.10	-6.40	-7.45	-10.50	-14.33
- 45	F	22	4.39	3.42	2.32	0.85	-0.76	-1.73	-3.03	-5.35	-7.50	-8.91
46	M	25	3.27	1.10	-0.17	U.47	-0.96	-0.03	-1.23	-11.01	-14 89	-17.02
48	M	23	3.37	2.61	1.76	0.27	-1.71	-3.52	-6.06	-9.13	-14.09	-20.95
49	M	27	5.96	5.40	3.54	2.47	0.73	-1.76	-3.64	-5.22	-8.79	-11.91
50	м	23	5.44	4.27	2.81	-0.37	-3.44	-5.49	-9.84	-13.38	-19.95	-25.17
51	м	25	7.45	5.96	3.52	0.93	-1.37	-4.30	-5.57	-8.91	-11.55	-18.63
52	M	25	5.06	4.03	2_42	1.15	0.22	-1.93	-5.18	-4.66	-7.40	-10.33
53	M	34	5.15	3.20	1.98	0.98	-0.68	-2.05	-3.27	-5.81	-7.86	-10.89
54	M	24	3.03 4 17	3.20	1.98	0.39	-0.98	-7.39	-4.29	-6.23	-8.13	-11.09
32 32	M	25	7.13	3.39 5.67	3.54	-1.00	0.00	-0.20	-12.33	-14.77	-8.13	-10.89
57	M	20	8.64	5.81	3.69	1.86	-0.12	-2.59	-4.59	-7.06	-10.82	-14.28
58	M	26	8.59	7.71	5.40	3.49	1.46	-1.32	-3.37	-5.83	-11.33	-17.58
59	м	35	9.30	6.71	3.50	0.39	-1.93	-4.57	-6.96	-10.01	-13.99	-18.73
60	м	22	6.45	5.35	1.29	0.00	-2.20	-5.37	-5.64	-6.47	-5.00	-11.99

Table A2. Individual Data for Total Peak Twitch Torque at Joint Angles of 30°P-15°D.

:

-					PEAK	TOTAL	TORQ	UE (Nm)				
	Subject	Gender	Age	. 30P	25P	20P	15P	10P	05P	000	05D	10D	15D
	(II)		(vr)	•									
-			0.7	<u> </u>									
	1	F	76	3.96	3.49	2.78	2.34	1.90	1.17	0.63	0.00	1.04	1.45
	2	F	71	4.37	3.39	2.81	2.17	1.73	1.20	0.76	0.00	0.00	0.00
	3	F	68	3.52	3.20	2.17	1.86	1.29	0.46	0.98	0.00	0.00	0.00
	4	F	67	4.17	3.47	3.00	2.66	1.90	1.37	0.85	1.25	0.61	0.00
	5	F	72	2.49	2.22	1.68	1.34	0.61	0.73	0.27	0.00	0.00	0.00
	6	F	62	3.39	2.73	2.49	1.76	1.39	0,90	0.34	0.00	0.00	0.00
	7	F	72	3.61	2.95	2.51	1.76	1.49	0.51	0.39	0.00	0.00	0.00
		F	67	3.74	3.15	2.61	2.37	1.93	0.95	0.00	0.00	0.00	0.00
	,		68	4.32	3.96	3.32	3.17	2.54	1.44	1	1.76	0.54	0.42
	10		93 71	7.61	7.54	2 14	1.48	1.10	1.73	0.70	0.00	0.00	0.00
	17	r F	67	3.52	2.95	2.22	1.66	1.03	1.07	0.00	0.64	0.00	0.00
	13	F	72	3.00	2.34	1.83	1.49	1.25	1.17	0.00	0.00	0.00	0.00
	14	F	70	2.93	2.54	1.95	1.59	1.25	0.61	0.00	0.00	0.00	0.00
-	15	F	70	3.05	2.12	1.68	0.66	0.27	0.00	0.00	0.00	0.00	0.00
	16	м	65	4.25	3.17	2.42	1.76	1.20	0.66	0.00	0.00	0.00	0.00
•	17	м	62	3.93	3.39	2.29	1,90	1.15	0.00	0.00	0.00	0.00	0.00
	18	м	69	6.05	5.15	4.20	3.49	2.64	2.47	0.95	0.00	0.00	0.00
	19	M	68	5.25	4.79	3.91	3.42	2.69	1.86	1.56	0.00	0.00	0.00
	20	M	78	7.50	5.96	5.40	4.39	3,86	3.39	2.00	1.37	1.61	0.61
	21	M	73	7.62	6.54	6.13	\$.27	4,93	3.98	2.91	1.59	1.12	0.61
	22	M	62	5.44	4.76	4.05	3.61	3.17	2.05	1.39	0.61	0.00	0.00
	23	· M.	04 70	2.39	1.31	1.10	0.39	0.29	0.00	0.00	0.00	0.00	0.00
	24	M	70	7.79 6.91	6.10	5.40	3.71	1.44	3.00	3.37	0.66	0.00	0.76
	26		73	7.20	6.45	5.40	4.66	1.69	2.78	1.07	0.22	0.00	0.00
	27	M	72	4.27	3.61	2.83	2.12	1.66	0.00	0.00	0.00	0.00	0.00
	28	M	71	5.00	4.49	3.42	3.08	2.29	1.86	1.46	0.76	0.61	0.32
	29	м	64	1.17	0.42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	30	M	68	8.45	8.08	7.45	6.49	6.05	4.86	3.64	3.27	2.59	0.00
	31	F	25	5.83	5.27	4.20	3.56	2.95	1.71	6.93	0.0	0.00	0.00
	32	F	35	5.52	4.64	4.20	4.00	3.17	2.59	1.71	0.00	0.42	0.00
	33	F _	23	4.13	3.49	2.96	7.20	1.46	1.37	0.00	0.00	0.00	0.00
	34	P	36	2.27	1.45	1.71	1.31	0.83	0.54	0.39	0.00	9.00	00.0
	33 14		24	3.73	3.34	2.33	1.76	4.47	1.17	1.47	0.00	0.00	0.00
	37	F	24	3.05	2 #1	2.54	1.54	1.51	0.00	0.00	0.00	0.00	0.00
	34	F	25	3.64	2.96	2.00	1.20	0.00	0.00	0.00	0.00	0.00	0.00
	39	F	23	4.35	3.91	3.39	2.71	บา	2.00	1.05	0.63	0.00	0.00
	40	F	26	2.86	1.96	0.83	1.64	0.24	0.20	0.00	0.00	0.00	0.00
	41	F	24	3.25	2.56	2.00	1.49	1.07	0.83	0.29	0.00	0.00	0.00
	42	F	30	2_27	1.50	1.00	0.63	0.24	0.00	0.00	0.00	0.00	0.00
	43	1 - E	21	2.83	2.37	1.78	1.68	1.05	0.54	0.00	0.00	0.00	0.00
	44	F	23	2.05	1.54	1.03	0.68	0.00	0.00	0.00	0.32	0.00	0.00
	45	F	22	3.25	2.88	2.54	2.06	2.00	1.46	0.93	0.00	0.00	0.00
	46	M	25	6.42	3.96	5.52	3.61	1.51	2.15	0.00	1.03	0.00	0.00
	47	M	23	3.49	2.73	2.12	1.37	0.66	0.61	0.00	0.00	0.00	0.00
	41	M	23	5.22	4.49	3.42	2.32	1.39	0.61	0.00	0.00	0.00	0.00
	47	M	27	4.34	3.96	3.17	2.60	2.03	1.76	1.29	0.49	2.00	0.00
	50		25	4 79	3.66	2.00	2.34	0.44	0.00	0.03	0.00	0.00	0.00
	47	-	25	4.17 6.74	6.23	5.44	4 24	3.96	3.44	1.26	1.15	0.00	0.00
	51	2	ž	8.37	7.69	6.71	5.71	5.22	3.20	1.56	0.00	0.00	0.00
	54	M	24	5.20	4.10	3.37	2.81	1.51	0.00	0.88	0.00	0.00	0.00
	55	M	25	7.06	5.35	3.66	3.20	2.59	1.55	1.39	0.54	0.00	0.00
	56	м	23	3.39	2.98	2_34	1.78	1.32	0.63	0.56	0.00	0.00	0.00
	57	м	20	2.69	2.15	1.64	1.44	0.68	0.68	0.00	0.00	0.00	0.00
	58	м	26	7.59	6.91	5.64	4,86	3.06	2.98	1.78	0.59	0.00	0.00
	59	м	25	3.54	2.49	1.66	1.05	0.44	0.00	0.00	0.00	0.00	0.00
	60	м	22	5.69	4.96	4.05	3.54	2.66	1.90	0.88	0.00	0.00	0.00

Appendix C

2

Table A3. Individual Data for Time to Peak Torque (TPT) at Joint Angles of 30°P-15°D.

			T	ME TO	PEAK	TOROU	E (TPT) (ms)				
Subject	Gender	Age	30P	25P	20P	15P	10P	05P	000	05D	10D	150
(#)		(yr)			-		-					
1	F	76	96.54	105.86	91.88	86.55	95.21	69.91	67.26	0.00	202.40	179.76
2	F	71	\$2.56	94.54	81.56	69.57	78.89	80.89	56.92	0.00	0.00	0.00
3	F	68	79.23	76.56	86.55	90.55	73.24	38.62	0.96	0.00	0.00	0.00
•	r 7	87 72	98,34	100.33 #1.22	75.07	74.57	63.67 54.58	73.90 50 07	67.91 31.26	0.00	37.26	0.00
6	P	62	\$7.22	96.54	88.55	19.85	82.56	73.24	42.61	0.00	0.00	0.00
7	F	72	102.53	91.21	90.55	83.22	87.88	43.94	61.92	0.00	0.00	0.00
8	F	67	107.19	109.85	103.20	105.19	92.54	63.25	0.00	0.00	0.00	0.00
9	F	68	111.85	109.19	105.19	103.20	76.56	67.24	84.55	79.23	51.93	49.27
10	F	65	84.55	76.56	71.90	61.13	\$6.55	82.56	55.26	34.62	0.00	0.00
11	F	73	84.55	87.22	79.23	64.58	45.94	65.25	65.25	0.00	0.00	0.00
12	P	62	\$3.89	77.23	79.89	63.91	66.38	\$7.92	0.00	50.60	0.00	0.00
[3	F	72	92.54	83.22 67.81	15.00	83. <u>11</u>	19.89 44.60	(1.24	0.00	0.00	0.00	0.00
14		70	80.30 84 55	69.91	78.54	49.93	22.64	0.00	0.00	0.00	0.00	0.00
16	M	65	91.21	85.89	84.55	85.22	79.89	59.25	0.00	0.00	9.00	0.00
17	M	62	117.18	101.20	88.55	83.89	75.23	0.00	0.00	0.00	0.00	0.00
18	м	69	87.88	81.89	\$5.22	77.23	69.24	68.58	53.26	0.00	0.00	0.00
19	м	68	88.55	\$1.23	79.23	89.21	\$5.22	63.25	75.90	0.00	0.00	0.00
20	M	78	103.20	98.54	87.88	89.88	86.55	89.21	68.58	74.57	79.23	39.95
21	M	73	94.54	91.86	85.89	80.56	79.89	86.55	71.24	67.24	55.26	35.29
72	M	62	72.37	79.23	78.30	\$1.23	72.37	92.38	49.27	40.61	0.00	0.00
23	м М	70	89 21	93.21	83.22	90.55	90.55	87.88	86.55	79 21	63.25	71.90
25	M	70	83.22	83.22	78.56	73.24	76.56	73.90	70.57	61.92	0.00	0.00
26	M	73	84.55	99.87	\$5.89	86.55	92.54	88.55	51.26	19.97	0.00	0.00
27	м	72	91.88	91.88	93.87	87.88	80.56	0.00	0.00	0.00	0.00	0.00
28	м	71	97.87	95.87	99.87	95.21	85.89	79.89	73.24	55.26	73.90	38.62
29	м	64	93.21	75.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30	м	68	95.21	90.55	88.55	84.55	77.90	79.23	79.23	72.57	67.24	0.00
31	F	25	85.22	77.23	78.56	76.56	75.90	67.24	60.59 67.34	0.00	0.00	0.00
32	F	23	79.23	67.60 77.60	81.89	80.56	68.58	73.23 69.91	0.00	0.00	0.00	0.00
34	F	36	93.21	78.56	89.21	\$5.22	57.92	49.27	51.93	0.00	0.00	0.00
35	F	22	87.88	85.22	75.23	\$1.23	79.89	73.24	67.24	71.24	0.00	0.00
36	F	26	82.56	65.25	79.89	76.56	65.91	63.91	0.00	0.00	0.00	0.00
37	F	24	79.23	82.56	79.23	71.24	66.58	0.00	0.00	0.00	0.00	0.00
38	F	25	70.57	69.24	61.25	48.60	0.00	0.00	0.00	0.00	9.00	0.00
39	F _	23	107.86	107.19	96.54	99.87	110.52	109.85	90.55	63.91	0.00	0.00
40		20	66.33	0[.07	49.00	33.20	19.00	8.33	0.00	0.00	0.00	0.00
41	r 8	20	44 25	57.60	31.29	JH.JF 41.78	15.00	0.00	0.00	0.00	0.00	0.00
4		21	73.24	72.57	75.23	73.24	53.93	50.60	0.00	0.00	0.00	0.00
44	F	23	71.90	61.25	65.25	45.27	0.00	0.00	0.00	43.94	0.00	0.00
45	F	22	79.23	82.56	67.91	67.91	70.57	56.59	59.25	0.00	0.00	0.00
46	M	25	79.89	77.23	79.89	63.91	68.58	49.93	0.00	42.61	0.00	0.00
47	м	23	60.00	68.33	71.67	61.67	36.67	43.33	0.00	0.00	0.00	0.00
4	M	23	71.90	75.23	71.24	66.58	51.93	40.61	0.00	0.00	0.00	0.00
49	M	27	64.33	64.33	66.67	65.00	66.67	60.00	56.67	30.67	66.67	0.00
50	M	23	T2.37	72.37	73.24	70.37	/1.90	39.23	30.63	42.27	23.97	43.97
31 47	ML 14	25	17.44 17.44	60.01	75.71		75.00	71.60	63.01	51.24	0.00	0.00
53	M	21	77.23	73.90	75.23	79.89	\$1.29	79.23	61.92	0.00	0.00	0.00
54	M	24	67.24	72.57	67.91	79.23	\$7.92	0.00	41.94	0.00	0.00	0.00
55	м	25	93.87	84.55	72.57	82.56	77.23	78.56	71.90	39.28	0.00	0.00
56	M	25	69.91	72.57	67.91	73.24	61.92	51.26	52.60	0.00	0.00	0.0
57	м	20	66.58	61.25	66.58	68.58	53.93	61.25	0.00	0.00	0.00	0.0
58	M	26	79.23	92.54	78.56	88.55	69.91	77.23	70.57	58.59	0.00	0.00
59	M	35	65.25	57.26	56.59	45.27	29.96	0.00	0.00	0.00	0.00	0.00
60	M	22	\$2.56	83.89	\$2.56	79.23	77.90	69.24	49.93	0.00	0.00	0.00

Appendix D

Table A4. Individual Data for Half-Relaxation Time (1/2 RT) at Joint Angles of 30°P-15°D.

				HALF -	RELAX	ATION	TIME	(1/2/ RT)	(ms)			
Subject	Gender	Arc	30P	25P	20P	15P	10P	(1/2/ I(1)	000	05D	100	150
(10)	00000	(vr)	501					••••		0.00		150
(#)		01)				· ·				·····		
1	F	76	117.84	96.54	93.87	11.11	71.24	69.24	30.28	0.00	54.49	85 77
2	F	71	106.86	11.11	108.85	116.51	95.54	\$7.55	\$3.93	0.00	0.00	0.00
3	7	68	105.19	101.86	85.89	70.57	63.25	29.29	45.94	0.00	0.00	0.00
4	7	67	107.19	89.88	82.56	71.24	69.91	59.92	43.28	40.61	36.62	0.00
5	F	72	77.23	64.54	61.92	51.93	29.29	29.96	19.31	0.00	0.00	0.00
6	7	62	99.20	74.57	80.56	62.58	69.24	57.26	25.31	0.00	0.00	0.00
7	F	72	73.90	79.23	67.91	62.58	52.60	50.60	23.97	0.00	0.00	0.00
8	*	67	149.80	12317.00	109.85	109.19	100.53	105.86	0.00	0.00	0.00	0.00
•		68	132.49	113.85	108.52	103.20	H .55	62.5	\$1.23	81.89	49.93	34.62
10	r 7	63 73	83.87 85.22	73.23	87.86 71.60	67.24 45.61	39.92	51.35	30.40	21.97	9.00	Q.00
11		() ()	60.55	81.87 80.56	74.57	43.71 57 81	1.74 17.60	41.94	47.30	34.34	0.00	0.00
13		*4	179 01	173.17	105.86	95 87	77 90	74 57	0.00	.28 0.00	0.00	00.0
14	, P	70	51.26	54.49	\$5.93	55.26	41.94	29.29	0.00	0.00	0.00	0.00
15		70	\$5.22	\$8.55	77.23	42.61	7.32	0.00	0.00	0.00	0.00	0.00
16	M	65	100.53	\$6.55	72.57	56.59	51.26	45.94	0.00	0.00	0.00	0.00
17	M	62	141.15	125.17	105.19	96.54	105.86	0.00	0.00	0.00	0.00	0.00
18	M	69	97.20	93.87	77.90	91.21	62.58	67.91	49.27	0.00	0.00	0.00
19	м	68	97.20	95.21	51.93	78.56	78.56	83.22	52.60	0.00	0.00	0.00
20	м	78	99.87	95.21	\$3.22	\$3.22	63.25	57.92	61.25	41.94	42.61	29.96
21	м	73	95.21	97.20	91.20	78.56	75.23	61.92	61.25	51.93	41.94	35.29
22	м	62	97.87	89.8E	84.55	73.90	77.23	67.91	63.25	34.62	0.00	0.00
23	м	64	98.54	77.90	64.SE	56.59	38.62	0.00	0.00	0.00	0.00	0.00
24	M	70	102.53	101.86	103.86	94.54	\$6.55	\$3.22	\$0.56	73.90	55.26	58.59
25	M	70	74.57	69.34	63.25	67.91	53.26	49.27	45.27	29.96	0.00	0.00
27		در در	08 54	78.24	97.67	81.44	141.19	43.71	34.45	1.32	0.00	0.00
±/ 28	Ň	71	101.20	4.54	95 87	72.57	74 57	67.34	45 25	41 M	21.07	73.07
29	M	- 64	87.88	59.92	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30	M	68	105.86	101.20	91.21	\$5.22	70.57	67.91	\$7.92	59.92	41.28	0.00
31	F	25	72.57	75.90	65.25	65.25	66.58	57.92	47.27	0.00	0.00	0.00
32	F	35	90.55	\$4.55	\$1.23	77.90	58.59	69.24	61.25	0.00	31.92	0.00
33	F	23	93.21	\$4.55	85.89	69.24	56.59	49.27	0.00	0.00	0.00	0.00
34	F	36	76.56	80.56	65.91	67.91	60.59	47.27	43.94	0.00	0.00	0.00
35	F	22	91.88	91.86	97.87	91.21	92.54	89.21	87.85	85.22	0.00	0.00
36	F	26	\$7.22	95.87	\$5.89	75.56	89.66	69.91	0.00	0.00	0.00	0.00
37	F	24	85.22	\$7.22	75.90	88.33	71.90	0.00	0.00	0.00	0.00	0.00
36	-	25	19.37	10.37	47.73	49.73	0.00	0.00	0.00	0.00	0.00	0.00
39		2) 24	141.04	114-34	40.00	61.25	71 12	1 47	99.34 A.00	114.34	0.00	0.00
41		2	82.56	62.58	60.59	51.26	N.C	13.45	18.64	0.00	0.00	0.00
42	, in the second s	20	95.21	71.56	55.26	35.29	23.97	0.00	0.00	0.00	0.00	0.00
43	P	21	74.57	74.57	61.92	63.91	73.90	35.95	0.00	0.00	0.00	0.00
44	F	23	71.90	77.23	51.93	55.93	0.00	0.00	0.00	27.30	0.00	0.00
45	F	22	75.90	64.56	72.57	61.25	57.26	62.58	34.62	0.00	0.00	0.00
46	м	25	71.24	58.59	65.25	65.91	53.93	41.94	0.00	33.29	0.00	0.00
47	м	23	58.33	58.33	53.33	50.00	56.67	40.00	0.00	0.00	0.00	0.00
41	м	23	76.56	63.91	50.60	41.28	35.29	18.64	0.00	0.00	0.00	0.00
49	м	27	73.33	73.33	65.00	58.33	48.33	56.67	46.33	26.67	\$8.33	0.00
50	м	23	68.SE	55.93	47.94	40.61	33.29	32.62	23.30	19.31	16.64	10.65
51	M	25	71.24	62.58	53.93	53.93	17.98	0.00	20.64	0.00	0.00	0.00
52	M	25	79.89	90.55	79.23	79.23	70.57	64.58	66.58	70.57	0.00	0.00
53	M	34	84.55	84.55	78.56	67.24	65.91	66.SE	63.91	0.00	0.00	0.00
54	M	24	\$1.23	72.57	67.91	53.93	71.24	0.00	43.28	0.00	0.00	0.00
33	M	25	141.17	123.17	(32.47	84.33 44.33	93.67	102.33	102.33	33.73	0.00	0.00
30 47	M	23 26	(1.90	67.89	03.43 44 41	JJ.73 46 77	BC.10	87.21 17 10	0.00	0.00	0.00	0.00
31 4#	M.	_0 7∡	37.40 101 #4	21.74 27 80	44.81 20 44	43.47 10 44	37.93	41.3U #7 44	U.UU #1 #9	U.UU Inte	0.00	0.00
, 10 50		14	61 24	40.01	37.00	11 24	87.41 15 04	0.00	0.00	0.00	0.00	0.00
60	M	,, 71	73.24	67.24	57.26	57.92	42 27	51.24	59.92	0.00	0.00	0.00

:

Appendix E

*

Table A5. Individual Data for Maximal Voluntary Contractions (MVCs) at Joint Angles of 30°P-15°D.

			-	<u> </u>	AVC	TOROUE	(Nm)					
Subject	Gender	Age	30P	25P	20P	15P	10P	05P	000	05D	10D	15D
(#)		(yr)										
										17.14		
1		76 71	37.23	42.80	(1.79	40.75	41.02	25.66	18,81	17.33	13.10	11.36
•		68	29.17	28.50	24 93	21.00	18 74	18.67	14.17	8 81	15.44	30.06
4		67	25.92	25.05	23.96	22.18	20.29	24.32	16.26	13.57	18.57	17.62
5	7	72	29.05	25.61	29.30	23.08	19.13	19.90	20.95	16.92	13.83	10.32
6	F	62	32.06	30.36	33.47	31.29	36.02	26.17	22.96	2.71	13.35	16.12
7	T.	72	34.17	32.46	30.97	27.48	27.82	24.27	21.55	17.86	11.33	8.96
1	P	67	16.04	10.87	18.81	19.39	12.67	19.32	11.94	11.94	8.06	3.37
7 10		96 45	27.390	28.00 17.00	11.50	14.13	20.83	AU.45 77 45	16.07	77.01	24.47	1.54
11	, i	73	26.70	21.74	27.60	26.53	31.65	27.29	29.06	21.47	19.42	16.77
12	÷.	62	27.57	28.40	25.32	22.82	26.41	18.76	13.50	13.18	7.43	6.33
13	,	72	24.03	24.54	23.52	19.00	17.57	16.82	12.89	11.60	9.21	8.01
14	7	70	22.04	20.49	20.68	17.89	11.04	10.05	4.95	3.06	3.96	3.33
15	F	70	30.92	29.10	27.77	23.69	20.07	16.29	11.41	9.42	9.13	7.01
16	M	- 65	50.19	52.38	48.52	44.05	37.55	29.22	20.00	16.75	10.83	7.69
17	M	62	49.11	33.32	49,80	46.00	41.94	40.73	36.99	32.11	23.00	20.97
18	M	68	40.44	40.48	40.14	41.01	17 77	17.45	17 21	33.83	11.47	24.71
20	Ň	71	37.14	35.70	37.35	33.74	31.94	29.95	24.76	24.85	21.50	18.06
21	M	73	42.11	43.03	41.07	42.09	34.32	36.99	37.94	35.10	30.58	26.04
22	м	62	56.70	57.57	56.41	55.15	54.71	49.17	44.27	38.42	31.53	27.77
23	M	64	45.19	41.82	35.41	29.95	26.02	20.44	11.94	11.41	8.11	9.42
24	м	70	54.71	55.97	56,70	56.60	\$0,53	49.76	47.33	35.61	36.87	30,27
25	M	70	50.85	54.78	\$3.28	62.91	59.30	58.37	57.86	58.52	58.01	40.45
26	M	73	42.28	43.88	41.80	36.89	37.23	37.57	28.54	27.23	20.46	14.0
77 ~~	M	72	34.22	33.24	33.39	30.27	28.37	23.01	17.32	14.49	30.76	7.91
28	M	4	36.00	18.91	18.74	17.18	15.22	12.44	9.15	7.10	4.40	5.00
30		64	49.22	56.04	58.13	59.85	54.49	55.87	54.83	44.22	36.24	26.26
31	F	25	\$2.77	\$3.54	\$3.30	50.95	49.90	44.83	43.88	42.89	38.35	35.46
32	F	35	42.11	41.55	37.45	39.83	37.45	34.83	26.99	21.84	14.95	13.64
33	F	23	39.34	36.88	37.38	39.10	34.17	31.43	22.23	25.53	15.92	13.83
34	F	36	24.47	23.76	24.44	23.64	21.02	19.36	18.64	13.06	11.60	11.92
33		<u>и</u> ж	29.93	20.0/ 14.34	28.7U	24.13	24.20 10.14	23.37	21.04	18.74	10.12	14.00
30		24	45.83	44.72	44.70	47.50	36.92	32.94	27.84	24.76	22.55	18.7
38		25	34.07	35.39	34.17	31.72	29.03	23.64	17.46	15.15	13.54	12.74
39		23	30.78	30,95	30.92	29.76	27.97	26.12	21.20	18.16	15.41	12.43
40	F	26	38.11	38.42	33.79	31.12	32.31	26.55	21.60	17.09	13.11	10.34
41	7	24	34.71	34.15	36.60	33.52	31.87	27.31	34.32	17.91	12.22	12.3
42		20	24.85	26.75	10.80	24.08	18.67	26.60	13.52	11.72	16.31	14.0
43	7	21	32_52	12-22	26.12	30.95	27.43	29.30	27.79	24.71	19.63	12.7
44	F	73	36.60	34.81	32.38	77.31	24.10	72.18	18.43	13.80	10.07	14.1
40	P M	24	34.14 66.48	56 80	47.01	54.05	47.65	47.97	37.21	26.53	16.46	13.9
47		23	45.96	4.30	46.16	47.31	46.53	37.94	34.47	27.43	21.12	17.34
	M	23	46.65	46.63	43.91	41.29	35.27	32.96	20.95	29.54	12.01	11.10
49	м	27	50.19	\$3.54	54.49	52.80	53.81	49.00	43.50	39.81	32.10	28.0
50	м	23	57.21	59.25	59.26	62.43	60.32	50.29	49.08	42.74	36.50	29.7
51	M	25	55.29	56.65	57.99	58.01	56-21	45.34	35.46	30.32	24.37	19.2
52	M	25	41.92	43.93	39.03	44.37	38.35	39.78	38.69	34.08	31.72	30.0
53	M	38	70.27	72.62	72.67	71. 89	71.38	68.33	60.56 10.30	35.83	47.65	40.6i
м 	M	24	54.11 61.71	JJ.JZ 61.67	52.30 68.14	30.97 60.71	47.55 67.77	54.04 51 66	JY.JU 44 81	37.94 30.41	32./4 10.44	17 4
در کمک		21	43.93	43.45	47.57	42.14	39.13	32.21	35.97	30.87	26.21	24.3
57	M	20	48.50	50.44	49.81	46.00	39.34	36.41	13.59	28.30	25.27	22.2
54	M	26	63.25	66.02	62.79	61.77	55.80	62.79	40.05	37.57	23.52	17.3
59	м	35	49.59	45.27	43.28	40.49	40.44	38.50	35.24	31.14	27.35	25.4
60	м	22	44.34	49.76	46.46	48.93	43.35	42.09	38.69	36.12	32.99	29.27

Appendix F

-

Table A6. Individual Data for 20 Hz Tetanic Torque at Joint Angles of 30°P-15°D.

				20 H	Z PEAK	TORO	UE (Nn	1)				
Cubinet	Gender		200	250 11		150		-/ ^{D	~~~~	060	100	160
Subject	Genoer	Age	30P	23P	208	156	IUP	USP	000	050	IUD	150
(#)		<u>(yt)</u>										
1	Ŧ	76	17.92	11.79	8.72	6.25	3.34	3.34	1.90	0.00	8.00	0.00
2	F	71	25.56	26.17	25.00	21.76	17.02	12.01	7.47	3.20	0.00	2.75
3	F	68	18.24	16.75	15.43	14.36	10.18	9.23	5.74	2.64	0.85	0.00
4	F	67	19.21	15.53	17.04	15.65	13.57	11.91	8.79	6.59	3.20	0.00
5	F	72	12.70	11.33	10.79	9.47	8.01	5.20	2.81	1.17	0.00	0.00
6	r.	62	20.78	18,70	20.61	15.70	16.36	13.45	10.52	6.54	2.86	0.34
7	F	72	20.04	18.41	18.33	14.87	13.84	9.89	8.25	4.10	6.25	0.71
8	F	67	16.04	15.50	14.43	13.04	12.99	10.47	3.13	6.25	1.81	0.00
9	P	68	20.58	19.48	18.58	17.11	16.31	14.11	10.33	7.40	4.74	0.00
10	F	65	13.48	14,87	12.21	12.55	14.16	9.52	8.89	7.71	2.71	1.44
11	F	73	8.28	8.40	7.15	6.27	3.30	3.88	2.49	1.46	9.00	0.00
12	F	62	14.26	13.96	12.87	13.13	10.64	6.64	3.76	1.93	0.00	9.00
13	F	72	13.99	12.11	11.74	12.21	9.55	7.86	5.52	2.83	0.93	0.00
14	F	70	8.86	7.13	8.74	7.10	5.66	3.47	0.93	0.00	0.00	0.00
15	F	70	20.02	18.07	13.89	10.60	7.28	3.13	0.00	0.00	0.00	0.00
16	M	နေ	25.15	25.22	21.14	19.14	18.24	12.30	7.37	3.05	0.00	0.00
17	м	62	17.07	10.60	11.30	14.67	14.97	16.77	6.30	4.79	2.49	0.00
18	м	69	25.44	20.73	18.12	22.78	19.19	14.99	14.28	9.62	4,55	2.15
19	M	64	21.24	19.46	20.68	17.46	14.23	13.67	9.18	7.10	4.20	0.00
20	M	78	24.78	22.58	20.85	13.87	16.41	11.60	9.20	7.01	5.91	3.39
21	M	73	37.11	31.45	33.98	32.23	27.93	23.63	20.51	18.70	10.96	5.15
22	M	62	28.37	26.83	26.27	22.97	21.00	18.46	12.40	9.59	4.05	0.85
23	M	64	15.31	8.15	4.69	2.29	0.00	0.00	0.00	0.00	0.00	0.00
24	M	70	34.89	34.79	32.76	25.88	27.76	17.77	19.97	11.74	9.67	3.06
25	M	70	40.67	38.45	36.52	38.09	24.95	28.05	17.53	23.97	9.57	3.69
26	M	73	25.39	22.19	21.95	19.34	16.70	12.06	8.11	6.84	0.00	1.17
27	M	72	14.50	14.72	7.42	14.06	5.Si	9.47	2.66	0.88	0.00	0.00
28	M	71	16.11	14.11	11.77	10.55	9.23	7.62	10.72	4.59	2.44	1.25
29	M	64	7.06	5.59	4.25	2.96	1.66	0.00	0.00	0.00	0.00	0.00
30	M	68	25.15	23.44	21.73	15.63	17.87	12.92	10.03	12.28	6.20	3.66
31	r.	25	28.25	27.88	28.66	27.81	26.73	22.85	16.72	17.63	7.28	3.81
32			17.00	13.00	12.00	13.00	y.42	9.03	5.91	4.42	13.09	1.42
11	P	23	20.85	19.76	17.43	12.31	12.74	11.40	14.11	3.37	0.76	0.00
34	,	36	14.63	13.99	13.40	12.13	10.11	9.47	3.50	4.08	1.56	1.07
33	,		(9.90	18.66	10.94	10.20	14.70	13.20	10.80	8.37	3.96	2.39
36			20.01	19.70	17.33	15.87	13.45	9.39	7.13	4.54	1.81	0.85
37		24	22.14	24.00	12.31	18.73	11.47	10.40	3.76	2.95	1.24	0.00
84		25	13.72	8.34	17.34	6.76	3.49	0.00	3.39	1.30	1.31	0.00
, ,,		23	10.33	17.36	18.45	10.46	10.30	14.11	11.99	9.01	0.03	3.37
40			(7.36	10.63	19.84	13.30	13.76	11.69	7.4/	0.13	3.78	4.41
41		-	20.13	19.31	17.36	14.79	11.45	6.11	4.47	0.63	0.00	0.00
42		2 0	1.41	1.30	8.84	3.83	3.13	3.23	2.81	1.03	0.71	0.00
45			13.94	14.74	13.43	14.70	12.00	3.34	1.80	0.04	3.06	1.44
	-		17.70	17.49	15.04	16.42	0.79	0.40	4.34	3.13	4.14	2.06
•	r M		10.00	17.44	78.64	13.43	13.01	20.11	9.25	7.70	4.15	2.08
			21.73	34.19	20.03	27.73	14.04	20.31	13.31	1.20	2.93	0.00
41			31.64	29.03	27.00	20.14	16.50	13.67	6.60	2.54	0.00	0.00
		77	31.90	11 16	30.04	78.01	10.30	73.61	10.75	1	7.00	4.00
50 50	2	21	26.75	14 47	25 73	79.91	20.75	23.03	15.04	17.64	4.17	7 47
50	2	25	28.85	25.61	20.43	21.63	10.13	14 70	11.24	4.54	7.54	0.50
47		<u>بر</u> ۲	10.40	29.17	30.13	26.00	76.76	14.70 71 41	20.44	13.47	10.24	5.04 6.04
14 (7		18 18	50.47	47.17	47.44	47 11	49.47	74 44	24.30	13.07	10.43	5.08
55 64	~	14	21 14	74 17	70.17	16 46	17 47	16 07	10.44	12 77	11.87	1 60
~ ~		24	18 64	17 04	16 01	70 47	27.01	14.77	10.33	14.74 6 AB	1.04	0.00
,,, ,,		لم ۲4	10 44	20.71	33.03 78 m	78 76	76 41	10.44	17.74	J.78	3.79	0.00 4.04
		~	13 34	11.14	10.94	لد.بد ده	0.91 مەلىر	17.6J 4 44	1 61	1J.4J 9 40	1 10	0.00
31 4 0		20 34	40.10	40.00	10.74	7.34	9.79	3.37	3.91	4.09	1.40	0.00
36 6A	M.	28 54	90.17	77 44	41.38	J4.96 16 63	31.37	11.CL	4U. /U 0.44	14.11	■ 4.70	4.81
J7	M. 1/	~~ ((11.47	33.14	17.31	36.30	11.43	1.81	4.73	1.14	0.00	0.00
00		44	21.47	JJ.18	47.10	*****	<i>ы.</i> /I	14.30	14.77	11.47	1.81	3,44

Appendix G

:

Table A7. Individual Data for 50 Hz Tetanic Torque at Joint Angles of 30°P-15°D.

				50 H	Z PEAK	(TORQI	UE (Nm)				
Subject	Gender	Age	30P	25P	20P	15P	10P	05P	000	05D	10D	15D
(#)		(vr)							•••			
		00				···						
1	F	76	22.44	14.92	14.36	9.34	9.33	7.79	1.13	4.27	2.20	1 46
2	T	71	31.18	32.23	31.01	28.32	22.27	18.14	7.96	4.05	0.00	2.97
3	F	68	20.00	19.24	18.33	17.53	14.99	11.62	8.11	4.79	1.93	0.00
4	F	67	21.92	20.39	20.02	18.31	16.41	14.84	11.96	8.62	5.32	2.64
5	F	72	16.31	15.84	14.79	13.46	12.33	8.52	5.52	2.93	0.00	0.00
6	F	62	26.25	25.93	28.52	21.85	23.78	20.11	16.43	11.52	7.64	4.25
7	F	72	25.98	24.07	24.27	21.29	19.70	15.45	14.58	1.69	8.69	4.54
8	F	67	18.53	18.04	17.87	16.97	14.89	13.09	9.81	7.76	4.61	2.93
9	F	64	22.31	21.78	21.00	19.97	18.46	16.02	12.43	9.18	6.03	2.59
10	F	65	16.36	19.21	15.33	17.29	23.02	14.55	13.33	13.60	4.91	3.%
11	F	73	15.19	14.84	13.60	10.33	7.67	6.64	6.30	5.27	2.73	0.49
12	F	62	17.87	17.31	17.53	17.94	15.84	19.23	7.28	4.15	0.09	9.90
13		71	17.43	17.10	10.70	17.36	14.23	12.45	7.64	6.37	3.22	1.00
14		~~	13.33	11.//	10.84	9.97	8.34	4.31	1.76	0.00	0.00	0.00
13		70	12 01	11.79	17.70	14.31	10.74	3.90	2.80	0.00	0.00	0.00
17			33.91	27.63	25.11	16.87	15.10	20.85	16.49	9.43 7.13	4.47	1 20
18		69	12.01	30.52	10.32	27.88	29.84	26.29	24.17	18.29	13.04	7 47
19	M	68	33.11	33.15	32.06	30.44	27.20	23.55	22.85	16.26	12.21	6.88
20	Ň	78	28.37	24.07	24.27	20.36	19.82	17.04	11.99	9.40	7.54	5.83
21	M	73	43.29	38.40	41.75	40.65	12.76	32.79	27.20	25.39	16.31	9.99
22	M	62	35.94	35.62	33.62	30.27	27.76	23.05	16.14	12.60	6.40	3.22
23	м	64	21.17	11.60	10.13	2.59	3.52	0.00	0.00	0.00	0.00	0.00
24	M	70	42.60	44,46	42.36	40.28	37.82	32.35	28.66	19.80	15.53	7.13
25	м	70	46.39	46.44	45.02	45.07	32.93	30.27	25.17	27.56	14.36	9.42
26	м	73	31.23	30.81	28.66	26.17	25.27	21.17	14.87	12.62	2.85	5.86
27	M	72	17.85	17.87	12.01	7.47	5.83	11.67	4.61	1.34	0.00	0.00
28	м	71	22.85	19.58	19.53	15.36	17.21	13.94	16.65	9.03	5.49	3.74
29	M	64	8.30	6.76	5.27	4.64	3.34	0.00	0.00	0.00	0.00	0.00
30	M	68	29.52	32.37	28.96	27.64	31.20	18.70	18.46	18.31	9.91	7.67
31	F	25	33.96	35.69	35.64	35.55	34.03	30.20	24.10	21.24	13.45	8.01
32		20	20.34	27.08	76 34	75 78	20.04	18 17	14.10	8.45	4.47	1.00
 14		14	17 77	17.43	16.90	15.87	13.67	17.45		6.18	4 57	1.00
35	F	22	23.40	22.30	21.58	20.46	18.73	16.97	14.43	11.87	7.67	4.30
36	F	26	26.27	22.00	23.29	21.58	18.43	(5.16	11.35	8.25	4.76	3.22
37	7	24	31.84	32.18	27.29	27.73	22.90	17.68	11.62	7.89	5.52	2.47
38	F	25	15.72	12.89	18.19	10.96	12.84	10.18	9.84	7.45	5.05	1.22
39		23	22_27	22.44	23.07	27.59	20.12	17.77	17.26	13.06	9.69	3.37
40	F	*	24.44	21.90	20.95	19.75	18.14	14.70	12.79	10.74	6.74	4.42
41		24	25.63	24.56	23.46	20.56	16.54	12.52	8.35	3.32	1.71	0.00
42		20	8.28	11.04	10.13	9.62	8.84	14.06	7.18	5.32	3.27	1.83
43	P	21	21.53	19.70	19.73	19.34	18.55	10.57	13.77	11.33	6.49	3.93
44	F	23	22.09	20.24	17.77	14.38	10.82	9.06	7.18	6.67	5.49	4.71
45	F	22	21.19	21.36	20.63	20.09	18.14	16.28	13.23	10.45	7.62	4.71
46	м	25	42.21	39.67	35.21	35.52	31.86	28.64	20.12	11.28	6.71	2.55
47	M	23	36.45	34.99	32.50	30.08	26.90	21.66	17.04	11.35	5.64	0.73
44	M	23	44.85	42.99	40,06	36.55	25.95	21.41	14.53	8.98	3.61	3.08
47	M	л 	41.02	41.26	40.04	39.87	13.45	34.91	27.13	20.73 Ve 44	14.83	8.34
30	M	13 ~	4V.38 10 An	3¥.28	44.19 14 49	33.72	37.40	31.27 94 41	43.17	18.41	11.79	7 17
51	M	7	JU.UT 41 AA	47 47	39.94 An na	21.JJ	34 51	14 ma	41.83 70.47	10.48 71.41	17.80	17 55
34 (1		14	41.00V \$0.47	44.77 98.76	58 30	(((A	97.33 43.10	JJ.87 46 88	47.94 16 84	11 40	19.07	12.15
در 4		30 24	28.22	32.74	30.22	23.61	21 44	20.44	13.5	17 26	4.10	2.54
	Ň	25	50.81	49.92	(9.34	43.38	41.16	31.01	23.12	12.72	9.20	2.78
56	M	25	37.82	37.67	36.74	36.96	34.77	31.52	28.81	22.95	18.65	13.45
57	M	20	23.00	20.95	21.73	17.53	16.06	13.13	9.94	7.01	4.59	1.29
58	M	26	52.86	51.49	52.42	43.09	40.84	35.45	51.95	19.21	51.95	6.79
59	м	35	29.27	27.76	25.49	21.36	16.75	12.28	6.57	4.47	3.74	2.27
60	м	22	39.36	39.62	38.48	37.35	35.33	31.96	25.07	21.66	12.94	10.64

Appendix H

.

Table A8. Individual Data for 80 Hz Tetanic Torque at Joint Angles of 30°P-15°D.

				80 H	7 PEAL	TOPO	LIE (N-	<u></u>		<u> </u>		
Subject	Gender	•	200	260	4 FEAF 100	150		1) 05D	~~~~	050	100	160
(45	Gender		JUP	۵r	201	IJF	IUP	VJP		050		120
(#)		(1)										
1	F	76	22.12	13.53	15.63	20.26	8.59	7.67	6.05	5.15	3.90	1.54
2		71	34.03	33.33	32.06	21.78	24.98	18.87	10.69	4.05	1.20	2.34
3	F	68	20.34	20.17	16.87	17.63	13.21	12.46	8.30	4.57	1.76	0.73
4	F	67	21.92	20.65	20.46	18.51	17.09	14.94	12.11	8.74	5.66	2.71
5		72	17.09	15.92	16.21	14.18	13.35	9.18	9.38	3.54	0.63	0.00
6	F	62	27.10	26.46	27.61	24.34	23.32	20.12	16.92	12.70	8.18	5.27
7	F	72	25.27	25.76	22.63	21.85	19.97	14.55	12.23	8.67	6.54	5.35
	P	67	18.73	18.26	17.46	16.63	15.33	3.35	9.99	7.79	4.52	2.96
y 10	r -	64	23.36	23.32	15.27	21.39	20.17	17.77	14.01	16.01	9.03	2.61
11	r F	63 71	17.74	15.75	13.43	10.11	41.83	10.31	1 91	13.01	0.J4 1.54	4.13
12	F	62	18.92	18.14	17.63	18.51	16.82	10.89	8.54	5.20	0.88	0.00
13	F	72	18.21	17.97	16.99	16.63	14.45	12.96	10.06	6.47	3.52	1.76
14	F	70	12.67	12.50	12.87	11.18	10.03	6.67	3.42	0.00	0.00	0.00
15	F	70	26.15	24.02	20.17	16.26	11.94	7.25	4.06	0.00	0.09	0.00
16	M	65	37.96	38.67	37.04	29.08	24.58	21.41	12.77	8.57	3.10	0.00
17	M	62	26.54	26.00	26.95	17.70	14.16	19.19	13.43	\$.01	4,74	2_51
18	M	69	33.45	30.86	31.30	29.44	27.03	25.24	25.22	17.75	12.06	7.50
19	M	68	34.28	34.74	33.03	30.96	28.13	22.34	23.34	17.87	13.55	8.28
20	M	78	26.39	28.17	21.73	21.58	19.41	16.65	12.55	12.11	8.69	8.06
21	M	73	44.31	41.43	42.04	40.06	37.08	32.30	29.64	29.39	7 #1	12.90
24 71		64 64	23.10	37.13	10.69	7.57	5 47	2.00	0.00	0.00	0.00	0.00
24	M	70	45.14	44.46	44.38	42.46	39.77	11.67	30.20	19.46	15.65	7.71
25	M	70	47.22	47.12	46.14	46.51	33.76	34.82	29.64	27.71	19.12	10.52
26	м	73	32.71	30.79	29.79	26.73	24.71	20.61	16.55	13.43	5.08	5.96
27	м	72	21.95	20.65	15.53	13.72	12.18	17.02	7.91	3.13	5.10	0.00
28	м	71	22.90	21.17	21.68	16.70	18.60	15.16	17.09	10.06	6.18	4.03
29	M	64	8.25	6.86	5.52	4.71	3.25	1.39	0.00	0.00	0.00	0.00
30	M	64	30.10	34.62	30.76	31.01	37.99	21.73	24.83	22.02	15.33	9.28
31	F	25	34.81	34.91	36.45	36.62	35.23	30.79	24.90	23.63	14.33	8.89
34		73	28.08	21.45	77 64	27.47	73.10	19.11	14.04	1.71	3 74	0.00
33 74	F	ц Ч	18.21	17 60	17.43	16.31	13.96	12.74	9.25	6.71	4.66	3.54
15	F	2	24.17	23.86	22.58	22.24	20.26	18.60	15.55	12.60	8.81	5.54
36	F	26	26.78	26.64	24.73	22.44	19.38	15.70	12.28	9.03	5.57	3.81
37	P	24	35.30	34.28	31.74	28.66	24.02	18.55	13.13	9.06	6.93	3.56
38	F	25	16.99	16.31	15.04	12.48	13.77	9.28	9.03	8.52	4.79	2.47
39	P	23	19.19	21.85	23.44	18.63	18.97	19.12	14.62	12.70	9.40	5.71
40	F	26	23.22	22.27	21.56	20.21	18.31	15.60	13.35	10.47	7.67	4.76
41	7	24	25.83	24.61	23.00	20.80	16.80	12.79	8.45	4.52	2.71	1.44
42	F	30	8.94	19.45	12.92	10.77	9.52	0.00	7.37	5.71	5.93	2.81
43	F	21	22.29	19.34	24.14	20.24	18.53	10.21	13.84	10.94	6.23	4,69
44	7	23	22.05	20.63	19.14	14.36	10.62	10.72	7.79	7.47	3.96 9 11	4.55
40) 44		26	41.44	41.78	35.47	31.22	17.74	17.33	13.01	11.14	6.05	3.74
47		23	38.15	16.97	34.11	11.71	27.93	23.27	17.08	14.45	6.54	3.15
48		23	44.02	42.26	40.50	36.87	25.78	21.73	13.99	7.98	3.37	0.00
49	M	27	43.90	43.58	43.4	42.26	37.82	35.50	28.78	22.17	14.23	10.21
50	M	23	41.28	45.14	42.92	37.82	38.77	33.69	26.51	21.29	13.13	8.67
51	M	25	34.89	41.38	36.91	34.13	34.50	28.39	18.80	17.53	13.33	9.18
52	м	25	42.14	43.07	42.60	41.89	39.14	36.08	29.61	23.00	19.63	11.62
53	м	34	60.11	59.67	58.37	56.88	53.91	46.85	37.65	33.50	20.17	13.84
54	M	24	37.08	35.01	34.16	29.37	25.59	24.56	18.16	20.75	5.64	3.83
55	м	25	51.15	50.20	48.41	44,34	40.43	31.30	23.39	11.87	10.30	3.27
56	M	25	38.96	41.97	38.01	37.23	34.47	34.67	29.96	26.64	18.12	14.16
57	M	20	25.78	23.29	23.93	16.72	15.92	14.97	11.11	7.54	4.57	2.10
58	M	26	50.59	30.59	32.91	47.17	42.41	36.72	53.49	40.87	54.03	7.06
39	M	33	JU.76	40.87	43.93	41.83 18.47	17.49	1.30	נו./ דר דר	9.97 21.64	3.81 14 11	3.30 11 14
00	M		4U.87	-v.s/	41.14	30.0/	39.47	34.30	41.41	&I.7J	10.31	11.48
Appendix I

-

Table A9. Individual Data for 20 Hz Rise Time for Tetanic Torque at Joint Angles of 30°P-15°D.

				20294	20 11-	DICE	TIME		501	10 0.			
	C L. 1	Carla		200	20 112	KISE	IIME	(<u>ms</u>)	060	000		100	
	300 ject (40	Gender	Age	308	Dr	2018	15P	IUP	USP		050	IVD	150
	(#)		01)										
	1	P	76	480	280	890	830	100	790	90	270	400	o
	2	F	71	280	310	280	320	280	240	250	190	0	55
	3	F	68	250	270	580	360	700	270	260	230	190	0
	4	F	67	280	290	280	300	260	300	260	250	180	Q
	3	r r	72	340	370	400	390	380	490	330	630	0	0
	7	r F	72	250	310	370	310	450	390	510	590	700	660
		F	67	300	310	340	370	320	300	130	270	250	0
	9	F	68	300	310	340	550	600	580	640	460	190	0
	10	F	65	190	230	170	180	240	140	150	270	120	140
	11	F	73	130	130	100	110	90	110	60	60	0	0
	12	F	62	230	260	270	270	230	259	240	130	0	0
	13	r F	74	210	220	280	220	- 240 240	414 210	360	مە	910	9
	15	F	70	380	370	440	420	400	380		0	0	0
1	16	M	65	390	380	430	260	240	240	180	160	0	0
	17	M	62	230	230	270	280	290	330	190	210	120	0
	18	M	69	200	200	240	270	200	220	220	180	170	150
	19	M	64 	240	240	230	230	220	210	230	230	200	0
	20	M	73	430 280	210	340	340	240	670	480	180	270	490
	22	M	62	330	300	320	290	290	230	220	210	150	90
	23	м	64	420	230	360	240	0	0	0	0	0	0
	24	м	70	320	380	430	610	420	520	450	430	460	910
	25	M	70	290	320	370	340	500	600	440	410	330	110
	26	M	73	300	250	340	330	340	250	280	150	0	40
	27	M	71	100	200	200	110	190	/280 4.50	340	100	110	100
	29		64	290	310	370	360	530	0	~~~	0	م ر، 0	
	30	M	68	310	230	410	180	220	200	150	150	210	110
	31	F	25	220	240	240	260	230	220	210	210	210	130
	32	F	33	190	400	110	450	100	700	90	780	140	100
	33	r F	23	300	330	300	310	200	400 220	250	730	150	120
	35	F	22	240	270	270	2280	280	260	260	260	190	150
	36	F	26	280	380	330	30	400	230	200	150	110	90
	37	F	24	280	370	450		440	350	220	160	120	0
	34	F	25	1.50	140	290	110	860	0	110	180	60	0
	39	F	23	240	260	310	310	310	360	310	350	360	270
	40	r r	28 24	220	200	200	220	170	200	230	180	200	410
	42	r F	20	290	290	10	220	220	250	240	200	50	o o
	43	F	21	280	270	320	280	260	210	220	220	160	120
	44	F	23	240	290	240	210	280	210	240	250	260	810
	45	P	22	210	230	250	270	240	240	220	240	180	150
	46	M	25	300	300	230	260	360	280	250	150	80	0
	47	M	23	300	320	360	350	310	260	220	170	0	0
	4	M	73	290	390	390	370	320	380	210	210	170	140
	50	м	23	250	330	390	430	610	450	390	290	140	100
	51	M	25	230	220	230	220	210	200	170	140	110	50
	52	м	25	240	260	290	330	310	330	340	200	210	1 50
	53	м	38	240	240	260	270	280	260	300	240	200	160
	54	M	24	140	500	660	390	270	220	200	200	130	90
	55	M	25	280	290	390	300	460	300	210 ∡20	130	120 ∡70	0 1.40
		M. M	20	140	150	140	140	120	110	90	110	50	مبر ۵
	58	M	26	240	260	260	210	230	220	240	170	270	80
	59	M	35	260	260	260	260	260	250	210	70	0	0
	60	м	22	270	250	320	290	320	310	250	250	210	140

-

Appendix J

-

Table A10. Individual Data for 50 Hz Rise Time for Tetanic Torque at Joint Angles of 30°P-15°D.

Subject Gender Age 30P 25P 20P 15P 10P 05P 000 05D 11D 15D (f) (f) 10				10194		00111			501	100.			
Subject Cender Age SOP 23P 23P 10P 03P 000 03D 10D 15D i r					8	UHZ	RISE TIN	AL (ms)					
(f) (yr) 1 F 16 20 130 910 200 200 400 460 450	Subject	Gender	Age	30P	25P	20P	15P	10P	05P	000	05D	10D	15D
i p 76 230 130 910 230 230 240 240 240 240 230 240 230 140 140 140 250 3 p 44 140 140 240 230 140 140 140 150 220 140 160 <t< td=""><td>(#)</td><td></td><td>(yr)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	(#)		(yr)										
1 P 76 20 130 140 200 200 200 200 200 200 200 200 200 200 200 200 200 160 160 300 400 300 200 160													
1 p 11 20 200	1	P	76	230	130	910	220	520	490	690	120	110	50
3 7 64 100	2	P	71	270	250	250	270	290	450	630	410	60	200
5 7 200 100	3	,	4	190	190	240	210	200	330	180	330	40	30
4 7 12 207 236 206	4		*/	200	110	200	290	180	220	180	180	240	500
7 7	د ۲	-	14 67	220	730	260	260	280	280	230	140	480	0 (70
9 e7 360 360 360 350	,		77	540	690	780	750	760	610	790	840	120	620 600
9 9 64 130 140 150 160 130 160 170 160 160 160 160 170 170 170 180 200 180 160 160 120 170 170 170 170 170 170 170 170 170 120 180		P	67	240	240	340	270	250	250	230	140	150	130
10 P 45 100 100 100 100 100 200 200 120 300 700 300 12 P 42 170 170 210 240 160 140 460 460 550 300 13 P 70 140 150 220 230 226 530 40 0 <td>9</td> <td>1</td> <td>68</td> <td>210</td> <td>220</td> <td>270</td> <td>580</td> <td>590</td> <td>610</td> <td>\$30</td> <td>360</td> <td>560</td> <td>190</td>	9	1	68	210	220	270	580	590	610	\$30	360	560	190
11 P 73 110 170 170 210 240 460 220 340 460 350 350 13 F 72 330 500 440 430 530 440 530 500 440 530 460 500 340 100 110 440 6	10		65	130	140	130	140	470	230	120	580	1.00	100
13 F 72 150 170 170 170 170 170 140 140 140 140 400 400 300 500 500 14 F 70 140 160 150 270 470 470 460 16 6 6 15 F 70 240 150 230 270 470 420 170 180 200 116 180 <td< td=""><td>11</td><td>F</td><td>73</td><td>110</td><td>100</td><td>80</td><td>50</td><td>90</td><td>220</td><td>50</td><td>70</td><td>70</td><td>50</td></td<>	11	F	73	110	100	80	50	90	220	50	70	70	50
14 F 72 330 500 440 430 430 430 430 440 430 440 530 50 6 </td <td>12</td> <td>7</td> <td>62</td> <td>170</td> <td>170</td> <td>210</td> <td>240</td> <td>160</td> <td>210</td> <td>160</td> <td>60</td> <td>30</td> <td>0</td>	12	7	62	170	170	210	240	160	210	160	60	30	0
14 F 70 140 160 370 370 250 250 260 6 6 6 15 F 70 340 210 350 230 370 370 470 550 60 70	13	F	72	350	500	440	430	430	340	400	460	550	500
15 F 70 240 350 240 270 470 480 0 6 6 16 M 62 160 160 12	14	F	70	140	160	570	390	290	250	530	0	0	0
i6 M 63 640 640 160 120 620 260 160 160 160 17 M 62 210 170 180 170 120 170 120 170 120 160 170 120 160 170 120 160 170 120 160 170 120 160 170 120 160 170 120 160 170 120 160	15	F	70	240	350	230	240	270	470	560	0	•	•
	16	M	65	690	610	450	190	210	420	190	700	860	•
In H T H H T H H T H H T T T H T< T< <td>17</td> <td>м</td> <td>62</td> <td>210</td> <td>580</td> <td>230</td> <td>550</td> <td>600</td> <td>420</td> <td>240</td> <td>110</td> <td>104</td> <td>120</td>	17	м	62	210	580	230	550	600	420	240	110	104	120
	18	M	69	180	170	190	200	190	180	290	170	180	380
10 M 73 130	19	M		150	180	1.00	170	/10	250	200	180	100	250
11 16 10 100	20	M	78	430	(20	190	130	420	3/0	160	200	300	100
123 M 62 120 170 180 160 170 120 180 160 170 120 180 160 <th160< th=""> <th160< th=""> <th160< th=""></th160<></th160<></th160<>	21		67	210	710	190	180	180	170	140	120	10	390 70
24 M 70 200 310 330 320 200 240 340 320 360 25 M4 70 210 210 210 310 170 410 570 450 450 130 26 M4 73 180 170 200 180 170 200 180 170 200 160 90 150 00 90 27 M4 71 150 150 170 120 140 130 160 100 0	23	м	64	700	720	780	360	\$20	\$10	0	0	0	
25 M 70 210 210 210 380 170 410 570 450 450 120 26 M 77 180 170 200 180 210 180 170 120 160	24	M	70	290	310	330	320	290	230	260	360	320	560
26 M 73 180 170 200 190 210 180 170 220 173 120 27 M 77 130 130 170 180 180 160 170 160 160 160 160 170 160	25	M	70	210	210	210	380	170	410	570	450	450	120
27 M 72 130 120 170 180 180 200 160 90 150 0 28 M 71 150 150 170 120 140 130 160 120 100 90 29 M 64 190 180 160 130 160 130 160 130 90 <	26	м	73	180	170	200	190	210	180	170	220	175	120
M 71 150 150 170 120 140 130 160 120 100 90 29 M 64 190 180 160 190 0 <t< td=""><td>27</td><td>м</td><td>72</td><td>130</td><td>120</td><td>170</td><td>180</td><td>180</td><td>200</td><td>160</td><td>90</td><td>150</td><td>0</td></t<>	27	м	72	130	120	170	180	180	200	160	90	150	0
29 M 64 190 180 160 160 170 130 160 120 380 90 30 M4 66 300 290 370 210 170 130 160 120 380 90 31 F 35 450 480 90 130 60 610 70 160 110 140 110 140 110 120 320 410 240 00 33 F 23 210 280 400 590 640 280 320 410 240 00 34 F 24 190 360 440 730 310 160 160 120 110 70 34 F 23 50 420 590 40 700 780 700 700 700 700 700 700 700 700 700 700 700 700	28	м	71	150	150	170	120	140	130	160	120	100	90
30 M 68 300 290 370 210 170 130 160 120 180 190 31 F 25 160 190 180 180 170 210 140 110 140 120 33 F 23 210 290 400 590 640 290 320 440 240 00 34 F 36 170 180 440 460 420 220 170 120 130 160 110 90 35 F 22 190 360 440 460 420 220 110 100 100 170 170 170 160 120 110 100 170	29	м	64	190	190	160	160	240	190	0	0	0	0
31 F 25 160 190 180 190 210 210 140 110 140 120 32 F 35 450 460 90 130 60 610 70 640 70 120 33 F 25 210 280 400 560 640 220 120 140 240 00 34 F 25 170 180 170 170 170 170 150 160 110 60 70 35 F 22 190 360 460 460 620 220 100 120 110 70 36 F 25 50 420 580 40 700 700 700 760 460 460 39 F 25 150 150 260 330 464 520 320 450 460 40 F 26 160 150 270 120 120 120 120 120 </td <td>30</td> <td>м</td> <td>68</td> <td>300</td> <td>290-</td> <td>370</td> <td>210</td> <td>170</td> <td>130</td> <td>160</td> <td>120</td> <td>380</td> <td>90</td>	30	м	68	300	290-	370	210	170	130	160	120	380	90
32 F 33 450 480 90 130 60 610 70 640 70 120 33 F 23 210 230 400 590 640 230 130 410 240 00 34 F 34 170 180 170 170 170 170 150 160 110 60 35 F 22 190 200 190 200 200 250 200 170 290 450 36 F 24 190 340 440 440 420 220 120 110 60 70 37 F 24 190 340 440 440 420 220 120 110 10 10 38 F 25 50 420 590 40 760 760 760 760 760 760 760 760 100 110 100 <td>31</td> <td>P</td> <td>25</td> <td>160</td> <td>190</td> <td>180</td> <td>190</td> <td>170</td> <td>210</td> <td>140</td> <td>110</td> <td>140</td> <td>120</td>	31	P	25	160	190	180	190	170	210	140	110	140	120
33 F 23 210 290 400 390 440 280 320 410 240 0 34 F 34 170 180 170 170 170 150 160 110 90 35 F 22 180 200 190 200 200 290 220 110 860 70 36 F 24 190 360 440 480 420 220 120 110 80 70 37 F 24 190 360 440 480 420 220 120 110 80 170 170 180 160 110 100	32	,	35	450	480	90	130	60	610	70	640	70	120
ja ja <thja< th=""> ja ja ja<</thja<>	33		23	210	290	400	390	640	250	320	410	240	0
35 F 26 170 200 170 200 170 200 170 200 170 200 170 200 170 200 170 200 170 200 170 200 170 200 170 200 170 110 160 170 180 130 130 130 130 130 130 130 130 130 130 140 100<	34	F	36	170	180	170	170	170	170	130	190	110	90
37 F 24 110 360 600 600 220 110 100	,)) 14		24	170	100	440	490	420	270	120	110	270	-00 70
38 F 25 50 420 500 400 700 720	37		24	190	140	490	730	310	160	160	120	110	70
39 F 23 150 150 200 330 440 520 320 450 460 40 F 26 160 160 186 156 130 120 100 120 110 320 41 F 24 230 220 220 230 180 0 90 190 100 70 760 42 F 20 100 130 240 270 420 230 180 90 190 100 70 760 43 F 21 140 170 170 190 150 170 160 190 100 440 45 F 22 140 170 170 190 150 170 160 190 100 440 45 M 23 200 240 250 250 260 100 70 50 47	34		25	50	420	590	40	700	700	780	700	760	80
40 F 26 160 160 186 150 130 120 100 120 110 320 41 F 24 230 220 230 230 190 140 180 110 100 90 42 F 20 100 100 150 230 180 0 90 190 100 70 43 F 21 240 130 240 270 420 230 180 570 70 760 44 F 21 140 170 170 190 150 170 160 190 100 460 45 F 22 140 170 170 150 170 160 190 100 460 46 M 23 200 240 250 250 250 160 160 160 10 40 410 123	39	Ŧ	23	150	1.50	200	200	330	460	520	320	450	460
41 F 24 230 230 230 190 140 180 110 100 90 42 F 20 100 100 150 230 180 0 90 190 100 70 43 F 21 240 130 240 270 420 230 180 570 70 760 44 F 23 130 150 180 120 130 140 90 110 100 100 100 45 F 22 140 170 170 190 150 170 160 190 100 440 46 M 23 200 160 250 250 280 330 200 380 90 60 00 47 M 23 340 220 220 300 340 280 180 160 160 40 60 70 50 M 23 180 130 150 160 410	40		26	160	160	190	156	130	120	100	120	110	320
42 F 20 100 100 150 230 180 0 90 190 100 70 43 F 21 240 130 240 270 420 230 180 570 70 760 44 F 23 130 150 180 120 130 140 90 110 100 440 44 F 23 130 150 170 190 150 170 160 190 100 440 45 F 22 140 170 170 190 150 170 250 260 100 70 50 46 M 23 200 240 250 250 280 330 200 380 90 60 60 70 47 M 23 340 220 250 300 340 280 160 160 60 70 50 M 23 410 440 570 420 450	41	F	24	230	220	230	230	190	140	180	110	100	90
43 F 21 240 130 240 270 420 230 180 570 70 760 44 F 23 130 150 180 120 130 140 90 110 100 100 45 F 22 140 170 170 190 150 170 160 190 100 440 46 M 25 200 150 240 360 170 250 260 100 70 50 47 M 23 200 240 250 250 280 330 200 380 90 60 0 48 M 23 340 220 220 300 340 280 100 90 60 0	42	1	20	100	100	150	230	180	0	90	190	100	70
44 F 23 130 150 180 120 130 140 90 110 100 100 45 F 22 140 170 170 190 150 170 160 190 100 440 46 M 25 200 150 240 360 170 250 260 100 70 360 47 M 23 200 240 250 250 280 330 200 380 90 60 60 48 M 23 340 220 220 300 340 280 100 90 60 60 60 49 M 27 210 210 210 210 450 490 450 590 300 100	43	F	21	240	130	240	270	420	230	180	570	70	760
45 F 22 140 170 170 190 150 170 160 190 100 440 46 M 25 200 150 240 360 170 250 250 100 70 50 47 M 23 200 240 250 250 280 330 200 380 90 660 48 M 23 340 220 220 300 340 280 100 90 60 70 60 49 M 27 210 210 210 210 450 240 180 160 80 70 50 M 23 410 440 570 420 450 490 430 590 300 100 100 51 M 25 180 130 150 160 410 140 90 90 80 70 52 M 25 210 200 190 240 210 210	44	7	23	130	150	190	120	130	140	90	110	100	100
46 M 25 200 150 240 360 170 250 260 100 70 50 47 M 23 200 240 250 250 280 330 200 380 90 660 48 M 23 340 220 220 300 340 280 100 90 60 00 49 M 27 210 210 210 450 240 180 160 80 70 50 M 23 410 440 570 420 450 490 430 590 300 100 51 M 25 180 130 150 160 410 140 90 90 80 70 52 M 25 210 200 190 240 210 210 130 110 100 53 M 24 48	45	F	22	140	170	170	190	150	170	160	190	100	480
47 M 23 200 240 250 250 280 330 200 340 90 660 44 M 23 340 220 220 300 340 280 100 90 660 00 49 M 27 210 210 210 210 450 240 180 160 80 70 50 M 23 410 440 570 420 450 490 430 590 300 100 100 160 160 70 51 M 25 180 130 150 160 410 140 90 90 80 70 52 M 25 210 200 190 240 210 210 380 150 160 70 53 M 24 4807 570 460 640 650 360 220 490 40 40 54 M 24 4807 570 460 640 <td>46</td> <td>м</td> <td>25</td> <td>200</td> <td>150</td> <td>240</td> <td>360</td> <td>170</td> <td>250</td> <td>260</td> <td>100</td> <td>70</td> <td>50</td>	46	м	25	200	150	240	360	170	250	260	100	70	50
46 M 23 340 220 220 300 340 280 100 90 60 00 49 M 27 210 210 210 210 450 240 180 160 80 70 50 M 23 410 440 570 420 450 490 430 590 300 100 51 M 25 180 130 150 160 410 140 90 90 80 70 52 M 25 210 200 190 240 210 210 380 150 160 70 53 M 24 480 570 460 640 650 360 220 390 300 110 100 54 M 24 480 570 460 640 650 360 220 390 300 310 110	47	м	23	200	240	250	250	280	330	200	380	90	60
49 M 27 210 210 210 210 210 450 240 180 160 80 70 50 Mi 23 410 440 570 420 450 490 430 590 300 100 51 Mi 25 180 130 150 160 410 140 90 90 80 70 52 Mi 25 210 200 190 240 210 210 380 150 160 70 53 Mi 38 160 170 270 220 250 200 180 130 110 100 54 Mi 24 480 570 460 640 650 360 220 490 40 40 55 Mi 25 230 390 430 390 520 390 500 340 110 60 56 Mi 25 150 190 150 160 130 180 <t< td=""><td>48</td><td>м</td><td>23</td><td>340</td><td>220</td><td>220</td><td>300</td><td>340</td><td>280</td><td>100</td><td>90</td><td>60</td><td>0</td></t<>	48	м	23	340	220	220	300	340	280	100	90	60	0
50 Mi 23 410 440 370 420 450 490 430 590 300 100 51 Mi 25 180 130 150 160 410 140 90 90 80 70 52 Mi 25 210 200 190 240 210 210 380 150 160 70 53 Mi 38 160 170 270 220 250 200 180 130 110 100 54 Mi 24 4807 570 460 640 650 360 220 490 40 40 55 Mi 25 230 390 430 390 520 390 300 340 110 60 56 Mi 25 150 190 150 160 130 190 210 240 270 57 Mi	49	M	27	210	210	210	210	450	240	180	160	80	70
S1 Mi 25 180 130 160 110 140 90 90 80 100 52 Mi 25 210 200 190 240 210 210 380 150 160 70 53 Mi 38 160 170 270 220 250 200 180 130 110 100 54 Mi 24 480 570 460 640 650 360 220 490 40 400 55 Mi 24 480 570 460 640 650 360 220 490 40 40 55 Mi 25 230 390 430 390 520 390 500 340 110 60 56 Mi 25 150 190 150 160 130 190 210 240 270 57 Mi 20	50	M	73	410	440	070	420	450	490	430	590	300	100
32 M 25 210 200 190 240 210 210 260 190 160 110 160 110 160 170 70 66 57 M 20 110 100 100 80 90 80 90 170 70 66 58 M 26 200 180 200 160	51	M	25	210	200	100	160	410	140	90	90	140	10
35 M 34 100 170 170 120 120 100 100 100 100 100 100 100 100 100 100 100 400 400 54 M 24 480 570 460 640 650 360 220 490 40 400 55 M 25 150 190 150 160 130 180 190 210 240 270 56 M 25 150 190 150 160 130 180 190 210 240 270 57 M 20 110 100 100 80 90 80 90 170 70 60 58 M 26 200 180 200 160 220 150 180 110 180 50 59 M 35 140 140 140 130 120 90 50 40 50 60 M 22 230 <td>41</td> <td></td> <td>19</td> <td>160</td> <td>170</td> <td>770</td> <td>240</td> <td>210</td> <td>200</td> <td>180</td> <td>130</td> <td>110</td> <td>100</td>	41		19	160	170	770	240	210	200	180	130	110	100
51 11 22 120 110 10	د. يې		3€ 2∡	487	\$70	0، د معد	640)	650	160	220	400	40	,00 A0
56 M 25 150 190 150 160 130 180 190 210 240 270 57 M 20 110 100 100 80 90 80 90 170 70 60 58 M 26 200 180 200 160 120 90 50 40 55 59 M 35 140 140 140 130 120 90 50 40 55 60 M 22 230 220 260 300 260 330 530 634	55	Ň	25	230	390	410	390	\$20	390	500	140	110	60
57 M 20 110 100 100 80 90 80 90 170 70 60 58 M 26 200 180 200 160 120 180 110 180 50 59 M 35 140 140 140 140 130 120 90 50 40 50 60 M 22 230 220 240 260 300 260 330 530 634	56	M	25	150	190	150	160	130	180	190	210	240	270
St M 26 200 180 200 160 220 150 110 180 50 59 M 35 140 140 140 130 120 90 50 40 50 60 M 22 230 220 240 260 300 260 330 530 634	57	M	20	110	100	100	80	90	80	90	170	70	60
59 M 35 140 140 140 130 120 90 50 40 50 60 M 22 230 220 240 260 300 260 260 330 530 630	SR	M	26	200	180	200	160	220	150	180	110	180	50
60 M 22 230 220 240 260 300 260 260 330 530 63	59	M	35	140	140	140	140	130	120	90	50	40	SC
	60	м	22	230	220	240	260	300	260	260	330	530	630

Appendix K

3

Table A11. Individual Data for 80 Hz Rise Time for Tetanic Torque at Joint Angles of 30°P-15°D.

				50	HZ RISE	TIME	(ms)					
Subject	Gender	Age	30P	25P	20 P	15P	10P	05P	000	05D	10D	15D
(#)		(yr)										
1	F	76	310	660	640	310	590	130	100	120	90	50
2		71	270	250	240	270	360	440	590	390	0	360
3	F	64	190	200	420	310	590	330	190	520	70	0
4	7	67	230	200	200	210	200	210	220	200	180	620
5	7	72	270	340	270	320	320	380	180	730	0	0
6	7	62	230	250	320	250	250	270	290	280	410	600
7	7	72	180	250	170	290	330	250	510	230	500	520
I		67	270	240	310	250	190	2200	170	190	180	210
,	-	••	220	170	310	330	420	4.80	440	200	310	170
10	-	•03 77	140	100	120	100	•//	1.34	140	0040		100
11	, r , r	13	160	170	720	750	160	270	200	7V 10	~	
13		77	140	150	420	410	380	180	270	420	420	600
14	÷	70	140	150	170	160	210	450	140	0	0	0
15		70	290	290	250	300	310	420	630	Ō	0	0
16	м	. 65	250	590	240	240	190	250	150	150	120	0
17	M	62	230	210	250	210	210	190	150	120	120	120
18	м	69	190	170	180	230	190	220	180	190	170	270
19	M	68	200	190	170	190	700	240	220	230	190	430
20	M	78	440	210	500	340	540	310	610	390	380	270
21	м	73	220	160	200	340	160	170	210	170	120	420
22	M	62	230	230	200	190	190	170	160	270	100	60
23	M	64	390	200	450	150	670	0	0	0	0	0
24	M	70	280	320	340	350	410	330	290	350	300	420
23	M	70	220	220	220	210	230	300	230	410	120	110
28	M	73	210	190	210	190	180	190	2.20	240	4 0	63
27		74	190	140	190	<u>610</u>	160	140	150	130	100	e0
29		64	210	200	180	180	280	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0	0	0
30	M	a	300	320	500	230	190	130	830	140	120	100
31	Ŧ	25	170	190	180	190	190	190	150	120	130	100
32	F	35	150	170	100	480	90	90	90	560	270	80
33	F	23	480	220	220	510	540	400	460	180	100	500
34	F	36	190	190	180	190	190	200	180	160	120	100
35	F	22	180	190	190	210	210	200	220	200	150	220
36	F	26	270	300	450	310	370	170	140	110	90	80
37	F	24	540	480	450	490	330	340	230	180	110	90
36		25	70	50	610	50	720	740	720	670	90	50
39	,	23	180	190	240	300	480	270	230	310	290	270
40		20	190	100	160	140	140	140	140	90	120	120
41	r =	20	120	110	100	140	230	170	710	230	80	70
		21	200	140	190	100	200	150	170	220	100	90
4	7	23	150	150	150	1.50	100	120	100	120	100	100
45		22	160	150	160	260	160	240	150	180	160	390
46	M	25	140	1 50	330	400	390	240	280	100	70	50
47	м	23	200	220	230	380	380	390	330	300	170	100
41	M	23	300	230	230	220	170	190	130	110	90	70
49	м	27	210	220	210	230	250	220	190	150	100	90
50	м	23	370	320	570	150	430	380	360	130	130	90
51	M	25	150	160	160	1 50	110	120	110	100	80	70
52	M	25	230	230	210	220	220	200	350	150	120	110
53	м	38	190	180	360	230	250	260	220	190	140	110
54	M	24	540	650	\$20	640	530	570	370	500	40	40
55	м	25	230	270	500	510	530	330	430	110	100	50
56	M	25	160	180	170	190	200	170	250	180	620	290
57	M	20	120	110	110	120	110	100	90	90	110	60
54	M	26	210	190	210	160	400	140	210	110	210	60
59	M	35	160	160	340	180	160	130	110	80 740	20	40 640
60	<u>M</u>	72	220	210		270	300	260	310	2010	420	340

Appendix L

Ξ

Table A12. Individual Data for the Twitch/Tetanus Ratios (20, 50, & 80 Hz) at 30°P and the Twitch/MVC Ratio at 15°P.

Subject	Gender	Age	(30P)	Twt/MVC ratio (15P)		
(#)		(YT)	20 Hz	50 Hz	80 Hz	
1	F	76	0.2210	0.1765	0,1790	0.0603
2	F	71	0.1710	0.1402	0.1284	0.0532
3	F	68	0.1930	0.1760	0.1731	0.0849
4	F	67	0.2171	0.1902	0.1902	0.1199
5	F	72	0.1960	0.1526	0.1457	0.0580
•	P C	62	0.1631	0.1291	0.1251	0.0568
,	r 7		0.1801	0.1389	0.14.57	0.0040
	r e	• / 69	0.2334	0.2000	0.1997	0.1222
10	r 5	65	0 1700	0 2225	0.1935	0.0796
11	F	73	0.3152	0.1718	0.1469	0.0633
12	P	62	0.2468	0.1970	0.1860	0.0727
13	F	72	0.2144	0.1721	0.1647	0.5784
14	F	70	0.3307	0.2196	0.2313	0.0686
15	F	70	0.1523	0.1265	0.1166	0.0276
16	M	65	0,1689	0.1253	0.1120	0.0399
17	м	62	0.2302	0.1568	0.1481	0.0413
18	M	69	0.2378	0.1889	0.1809	0.0718
19	M	68	0.3472	0.1586	0.1532	0.0833
20	M	78	0.3027	0.2644	0.2842	0.1301
21	M	/3	0.3033	0.1760	0.1712	0.1232
<i>4</i>	ML	44	0.1482	0.1314	0.1461	0.0834
23	M	20	0.1474	0.1223	0.1726	0.1008
24	M N	70	0.1600	0.1490	0.1720	0.0721
24	M	73	0.2836	0.2305	0.2201	0.1263
	M	72	0.2945	0.2392	0,1945	0.0700
28	M	71	0.3104	0.2185	0.2183	0.0800
29	M	64	0.1657	0.1410	0.1418	0.0634
30	м	68	0.3360	0.2862	0.2807	0.1084
31	F	25	0.2064	0.1716	0.1675	0.0698
32	F	35	0.3136	0.2365	0.2257	0.1004
33	F	23	0.1980	0.1465	0.1457	0.0563
34	¥	36	0.1349	0.1281	0,1246	0.0638
33		4 ~	0.1973	0.10/3	0.1020	0.0070
30	r 8	20 74	0.1378	0.0056	0.0864	0.0370
37	r 2	24	0.13/6	0.7316	0.2142	0.0377
	, F	23	0.2628	0.1953	0.3267	0.0910
40	F	24	0.1475	0.1170	0.1232	0.0526
41	F	24	0.1568	0.1264	0.1256	0.0444
42	7	20	0.3039	0.2742	0.2539	0.0261
43	F	21	0.1778	0.1314	0.1269	0.0542
44	F	23	0.1158	0.0928	0.0930	0.0230
45	F	22	0.2024	0.1534	0.1513	0.0769
46	M	25	0.2011	0.1521	0.1514	0.0667
47	м	23	0.1497	0.0957	0.0910	0.0289
48	M	23	0.1633	0.1164	0.1186	0.0561
49	M	27	0.1357	0.1107	0.1034	0.0503
50	M	23	0,1973	0.1276	0.1255	0.0371
51	M	25	0.1637	0.1236	0.13/3	0.0362
32	M	23	0.2210	0.1012	0.1000	0.1093
33 64	M	J # 74	0.1637	0.1409	0.1392	0.0755
24 (C	M	24	0.1844	0.1999	0 1360	0.031
55	, v	25	0.1104	0.0894	0.0270	0.0422
		20	0.2029	0.1170	0.1041	0.0113
SE	ž	26	0,1229	0,1434	0.1500	0.0786
	-	~~				210.00
59	м	35	0,1404	0,1209	0.1151	0.0259

...

The Force-Frequency Curve for Males 20-40 years of age at Joint Angles 30°P, 10°, & 15°D.

Appendix N

ANOVA Table for Comparison of Total Torque Values for Females and Males Aged 20-40 Years and 60-80 Years at Joint Angles of 30°P - 15°D in 5° Increments.

ANALYSIS OF VARIANCE TABLE 3-Way Mixed Design - 2 Between Ss, 1 Within Ss

:

Source		Sum S	qr.	df	Mean Sqr.	Ę
Betw. Ss.		618.	6771	59		
age	4	9.06	0547	1	9.060547	1.061153
gender	-B	125.	9043	1	125.9043	14.74566
A x B		5.56	2012	1	5.562012	.6514117
Error		478.	1503	56	8.538398	
Within Ss.		1599	.075	540		
angle	-C	1328	.449	9	147.6054	355.5495
4 * C	-	1.42	9932	9	.1588813	.3827106
B * C		58.3	7671	9	6.486301	15.62409
A * B * C		1.58	4961	9	.1761068	. 424203
Error		209.	2343	504	.4151473	
F (1 , 56) = 1.06	51153	Probabi	lity = 0.3	0810	
F(1,56) = 14.7	74566	Probabi	lity = 0.0	0057	
F(1,56) = .651	14117	Probabi.	lity = 0.4	2855	
F (9, 504) = 355	5.5495	Probab	ility = 0.	00000	
F (9, 504) = .38	327106	Probab	ility = 0.	94320	
F (9, 504) = 15.	62409	Probab	ility = 0.	00000	
F (9, 504) = .42	24203	Probabi	lity = 0.9	2221	

Appendix O

ANOVA Tables for Comparison of (a) TPT and (b) 1/2 RT for Females and Males Aged 20-40 Years and 60-80 Years at Joint Angles of 30°P - 15°D in 5° Increments.

a)	Source		Sum Sqr.	15	Mean Sgr.	Ę
	Betw. Ss.		168360.5	59		
	age	-A	25410.25	1	25410.25	9.981852
	gender	- B	274.75	1	274.75	.1079294
	A x B		119.375	1	119.375	4.689381E-02
	Error		142556.1	56	2545.645	
	Within Ss.		675520	540		
	angle	-C	479407.8	9	53267.53	140.3253
	A * C		1286.75	9	142.9722	.3766387
	B 🕈 C		2313.875	9	257.0972	.6772838
	A * B * C		1193	9	132.5556	.3491976
	Error		191318.6	504	379.6004	

•	•	+	•	00	,			1100a0111Cy = 0.00205
F	(1	,	56)	=	.1079294	Probability = 0.73991
F	(1	,	56)	=	4.689381E-	-02 Probability = 0.81230
F	(9	,	504)	=	140.3253	Probability = 0.00000
F	(9	,	504)	=	.3766387	Probability = 0.94597
F	(9	,	504)	=	.6772838	Probability = 0.73131
F	(9	,	504)	=	.3491976	Probability = 0.95748

(b)	Source		Sum Sqr.	df	Mean Sqr.	Ę
	Betw. Ss.		172502.4	59		
	age	- 7	14498.88	1	14498.88	5.16057
	gender	- B	84.125	1	84.125	2.994253E-02
	x B		584.625	1	584.625	.208085
	Error		157334.8	56	2809.549	
	Within Ss.		718500.3	540		
	angle	-C	547966.1	9	60885.13	192.3705
	A * C		4414.75	9	490.5278	1.549854
	B * C		4824.625	9	536.0695	1.693746
	A * B * C		1779.125	9	197.6806	.6245846
	Error		159515.6	504	316.4993	
	F(1,56)	= 5.1605	7 Probabilit	y = 0.025	538	
	F(1,56)	= 2.9942	53E-02 Probe	bility =	0.83942	
	F (1, 56)	= .20808	5 Probabilit	y = 0.654	436	
	F (9, 504) = 192.3	705 Probabil	lity = 0.0	00000	
	F (9, 504) = 1.549	854 Probabil	lity = 0.1	12713	
	F (0 504	1 - 1 602	746 Drobabil	· · · · · · · · · · · ·	19710	-

F (9 , 504) = 1.693746 Probability = 0.08719 F (9 , 504) = .6245846 Probability = 0.77766

Ξ

Appendix P

ANOVA Table for Comparison of MVCs (Maximal Voluntary Contractions) for Females and Males Aged 20-40 Years and 60-80 Years at Joint Angles of 30°P - 15°D in 5° Increments.

NALYSIG OF VARIANCE TABLE -Woy Mixed Design - 2 Between Ss, 1 Within Ss

=

vource	Sum Sqr.	15	Mean Sqr.	Ę
Petw. Ss.	79906.98	59		
are -A	5993	1	5993	8.411206
lender -B	33836.25	1	33836.25	47.48935
A x B	177.625	1	177.625	.2492976
Error	39900.1	56	712.5018	
Vithin Ss.	51737.02	540		
ungle -C	38948.13	9	4327.569	208.1863
\ ¥ C	490.375	9	54.48611	2.521163
3 * 0	1671.438	9	185.7153	8.934202
4 * B * C	150.4375	9	16.71528	.8041217
Error	10476.65	504	20.787	
F(1, 56) = 8	.411206 Probabi	lity = 0.9	00547	
F(1, 56) = 42	7.48935 Probabi	lity = 0.0	00000	
£ (1, 56) = .:	2492976 Probabi	lity = 0.0	62522	
F(9, 504) = 2	208.1863 Probab	ility = 0	.00000	

F	(9	,	504)	Ξ	208.1863	Probability	Ξ	0.00000
£	(9	,	504)	=	2.621163	Probability	Ξ	0.00598
٢	(9	,	504)	=	8.934202	Probability	=	0.00000
£	(9	,	504)	=	.8041217	Probability	Ξ	0.61386

92

Appendix Q = ANOVA Table for Comparison of Tetanic Torque of Different Frequencies (20, 50, & 80 Hz) for Females and Males Aged 20-40 Years and 60-80 Years at Joint Angles of 30°P -15°D in 5° Increments. 1 = Aqe2= Gender 3= Joint Angle 4= Frequency of Stimulation DESIGN 4 - way ANOVA, fixed effects 1 variable (Repeated Measure) DEPENDENT (2): BETWEEN: 1-VAR1 1 2 2 -VAR2 (2):2 1 WITHIN: 3-RFACTOR1(10) x 4-RFACTOR2(3) 3 Summary of all Effects; design: css/3: 3 general 1-VAR1, 2-VAR2, 3-RFACTOR1, 4-RFACTOR2 manova 3 df 3 df 3 MS 3 3 MS 3 3 Effect Effect 3 3 Effect 3 3 3 Error F Error 3 p-level 1 3 10842.90 3 56 3 1191.105 3 3 9.1032 3 .003834 3 1 3 33528.32 3 56 3 1191.105 3 28.1489 3 .000001 9 3 12297.94 3 504 3 36.217 3 339.5671 3 0.900000 3 3 23 7460.54 3 112 3 15.296 3 487.7353 3 0.00000 3 13 12 2356.21 3 56 3 1191.105 3 1.9782 3 3 93 2.8723 3 1002575 13 104.03 3 504 3 36.217 3 23 3 93 544.82 3 504 3 36.217 3 15.0434 3 120000 23 3 189.57 3 112 3 15.296 3 12.3933 3 .000014 14 112 3 24 3 23 593.95 3 15.296 3 38.8299 3 .00001 24 8988 3 0.000000 34 3 18 3 49.16 3 1008 3 1.975 3 123 3 93 137.33 3 504 3 36.217 3 3.7919 3 23 112 3 15.296 3 2.3483 3 124 3 35.92 3 .LUCZA. 3 18 3 1.40 3 1.975 3 .7080 3 .805.224 134 1008 3 234 3.77 3 1008 3 1.975 3 1.9068 3 .01273 3 18 3 1234 3 18 3 1.68 3 1008 3 1.975 3 .8487 3 .642476

٢1

:2

:3

4

arked effects significant at ps.0500

Appendix R

ANOVA Table for Comparison of Rise Time of Tetanic Torque of Different Frequencies (20, 50, & 80 Hz) for Females and Males Aged 20-40 Years and 60-80 Years at Joint Angles of 30°P - 15°D in 5° Increments.

1= Age
2= Gender
3= Joint Angle
4= Frequency of Stimulation

DESIGN: 4 - way ANOVA, fixed effects DEPENDENT: 1 variable (Repeated Measure) BETWEEN: 1-VAR1 (2): 1 2 2-VAR2 (2): 1 2 WITHIN: 3-RFACTOR1(10) x 4-RFACTOR2(3)

ъ.

Summary of all Effects; design: 3 css/3: 3 3 general 3 1-VAR1, 2-VAR2, 3-RFACTOR1, 4-RFACTOR2 3 3 manova df 3 MS 3 df 3 3 3 MS 3 3 3 Effect 3 Effect 3 Effect 3 Error 3 3 Error F 3 p-level 3 1 3 325624.5 3 3 1 56 3 194256.4 3 1.67626 3 .200735 32 3 13 68820.5 3 56 3 194256.4 3 .35428 3 .554100 3 9 3 506410.4 3 32108.4 3 15.77191 3 3*3 504 3 .000000 3 2 3 131375.5 3 112 3 32675.3 3 4.02064 3 3*4 ٦ .020592 3 71064.5 3 .36583 3 3 12 1 3 56 3 194256.4 3 .547730 3 13 3 9 3 5930.7 3 504 3 32108.4 3 .18471 3 .995667 3 23 3 93 20430.5 3 504 3 32108.4 3 .63630 3 .766233 3 14 3 23 18984.9 3 112 3 32675.3 3 .58102 3 .561006 3 24 3 23 8437.5 3 32675.3 3 .25822 3 .772881 112 3 3*34 3 18 3 26316.5 3 1008 3 10232.9 3 2.57175 3 .000337 3 123 3 93 16764.7 3 504 3 32108.4 3 .52213 3 .858839 3 124 3 2 3 .72876 3 .484779 23812.6 3 112 3 32675.3 3 3 134 3 18 3 9422.9 3 1008 3 10232.9 3 .92084 3 .552802 3 234 3 18 3 12119.4 3 1008 3 10232.9 3 1.18435 3 .266358 1.11590 3 3 1234 3 18 3 11419.0 3 1008 3 10232.9 3 .330231

Appendix S

ANOVA Table for Comparison of the Twitch/Tetanus Ratio at 30°P for Females and Males Aged 20-40 Years and 60-80 Years.

<pre>Betw. Ss4013127 59 age</pre>		Source -	Sum Sqr.	df	Mean Sqr.	5
age 1 100000 1 5.094545E-02 1 5.094545E-02 10.36162 gender -B 2.031326E-03 1 2.031326E-03 .351703 A x B 1.599741E-02 1 1.599741E-02 2.760785 Error .3234385 56 5.775687E-03 Within Ss. .1202423 120 frequency -C 9.166813E-02 2 4.583406E-02 187.1146 A * C 7.238338E-04 2 3.619191E-04 1.47775 B * C 3.471375E-04 2 1.735687E-04 .7086967 A * B * C 7.295609E-05 2 3.647804E-05 .1489431 Error 2.743021E-02 112 2.449125E-04 7 F (1 , 56) = 10.36162 Probability = 0.00250 F (1 , 56) = .351703 Probability = 0.00250 F (1 , 56) = 2.769785 Probability = 0.00250 F (2 , 112) = 187.1146 Probability = 0.23109 F (2 , 112) = 187.1146 Probability = 0.40803 Post Hoc Test Used was Tukey's HSD Test First Digit: Age 1= 20-40 Year-01ds, 2= 60-80 Year- Olds; Second Digit:<		Patt: Sc	1013127	59		
<pre>sender 'B 2.031226E-03 1 2.031326E-03 .351703 A x B 1.509741E-02 1 1.509741E-02 2.760785 Error .3234385 56 5.775687E-03 Within Ss1202423 120 frequency -C 9.166813E-02 2 4.583406E-02 187.1146 A * C 7.238338E-04 2 3.619191E-04 1.47735 B * C 3.471375E-04 2 1.735687E-04 .7086967 A * B * C 7.295609E-03 2 3.647904E-05 .1489431 Error 2.743021E-02 112 2.449125E-04 F (1, 56) = 10.36162 Probability = 0.00250 F (1, 56) = .351703 Probability = 0.56249 F (1, 56) = .351703 Probability = 0.00782 F (2, 112) = 187.1146 Probability = 0.00782 F (2, 112) = 187.1775 Probability = 0.23109 F (2, 112) = 1.17775 Probability = 0.23109 F (2, 112) = 1.17775 Probability = 0.40803 Post Hoc Test Used was Tukey's HSD Test First Digit: Age 1= 20-40 Year-Olds, 2= 60-80 Year- Olds; Second Digit: Gender 1= Female, 2= Male; Third Digit: Frequency 1= 20 Hz, 2= 50 Hz, 3= 80 Hz. SumMARY OF TUXEY'S HSD TEST 123 122 113 112 213 212 121 223 221 111 211 221 .01 .01 .01 .01 .01 .01 .01 .01 .01 .0</pre>			5.9815155-03) 1	5.9815155-02	10.36162
A x B 1.509741E-02 1 1.509741E-02 2.769785 Error		age i dondon P	2 031326F-0	2 1	2.031326F-03	.351703
A x B 1.0333111 00 1 1.0333111 00 1 1.0333111 00 1 Error .3234385 56 5.773687E-03 Within Ss. .1202123 120 frequency -C 9.166813E-02 2 4.583406E-02 187.1146 A * C 7.233382E-04 2 3.619101E-04 1.47775 B * C 3.471375E-01 2 1.735687E-04 .7086067 A * B * C 7.295509E-03 2 3.647904E-03 .1489431 Error 2.743021E-02 112 2.149125E-04 1489431 Error 2.743021E-02 112 2.149125E-04 1489431 Error 2.743021E-02 112 2.149125E-04 F (1 , 56) = 10.26162 Probability = 0.00250 F (1 , 56) = .351703 Probability = 0.00250 F (1 , 56) = .351703 Probability = 0.00250 F (2 , 112) = 187.1416 Probability = 0.00000 F (2 , 112) = 187.1416 Probability = 0.00000 F (2 , 112) = .7085067 Probability = 0.49893 Post Hoc Test Used was Tukey's HSD Test First Digit: Age 1= 20-40 Year-Olds, 2= 60-80 Year-Olds; Second D			1 5007115-03	> 1	1 509711F-02	2 760795
<pre>Within Ss1202423 120 frequency -C 9.166813E-02 2 4.583406E-02 187.1146 A * C 7.238338E-04 2 3.619191E-04 1.47773 B * C 3.471375E-04 2 3.619191E-04 1.47773 B * C 7.295609E-05 2 3.647304E-05 .1489431 Error 2.743021E-02 112 2.149125E-04 F (1 , 56) = 10.36162 Probability = 0.00250 F (1 , 56) = 10.36162 Probability = 0.00250 F (1 , 56) = .351703 Probability = 0.00250 F (1 , 56) = 2.769785 Probability = 0.00260 F (2 , 112) = 187.1146 Probability = 0.009782 F (2 , 112) = 187.1146 Probability = 0.00000 F (2 , 112) = 1.17775 Probability = 0.23109 F (2 , 112) = .7936967 Probability = 0.49893 Post Hoc Test Used was Tukey's HSD Test First Digit: Age 1= 20-40 Year-Olds, 2= 60-80 Year- Olds; Second Digit: Gender 1= Female, 2= Male; Third Digit: Frequency 1= 20 Hz, 2= 50 Hz, 3= 80 Hz. SUMMARY OF IUXEN'S HSD TEST 123 122 113 112 213 212 121 223 222 111 211 221 .01 .01 .01 .01 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 .01 .01 .01 .01 122 .01 .01 .01 .01 .01 .01 .01 .01 .01 121 .01 .01 .01 .01 .01 .01 .01 .01 121 .01 .01 .01 .01 .01 .01 121 .01 .01 .01 .01 .01 .01 .01 .01 121 .01 .01 .01 .01 .01 .01 .01 .</pre>			2021205	56	5 7756875-02	21100100
<pre>Within Ss1202423 120 frequency -C 9.166813E-02 2 4.583406E-02 187.1146 A * C 7.238338E-04 2 3.619191E-04 1.47775 B * C 3.471375E-04 2 1.735687E-04 1.47775 B * C 7.295609E-05 2 3.647804E-05 .1489431 Error 2.743021E-02 112 2.449125E-04 F (1 , 56) = 10.26162 Probability = 0.00250 F (1 , 56) = .351703 Probability = 0.00250 F (1 , 56) = .351703 Probability = 0.00250 F (1 , 56) = .2.769785 Probability = 0.002782 F (2 , 112) = 187.1446 Probability = 0.00000 F (2 , 112) = 1.17775 Probability = 0.23109 F (2 , 112) = 1.17775 Probability = 0.23109 F (2 , 112) = .7086967 Probability = 0.49893 Post Hoc Test Used was Tukey's HSD Test First Digit: Age 1= 20-40 Year-Olds, 2= 60-80 Year- Olds; Second Digit: Gender 1= Female, 2= Male; Third Digit: Frequency 1= 20 Hz, 2= 50 Hz, 3= 80 Hz. SUMMARY OF TUKEY'S HSD TEST 123 122 113 112 213 212 121 223 222 111 211 221 .01 .01 .01 .01 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 .01 .01 .01 .01 112 .01 .01 .01 .01 .01 .01 .01 .01 113 .01 .01 .01 .01 .01 .01 .01 .01 .01 114 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01</pre>		Error		50	5.775007E 00	
<pre>frequency -C 9.166813E-02 2 4.583406E-02 187.1146 A * C 7.233388E-04 2 3.619191E-04 1.47775 B * C 2.471375E-04 2 1.735687E-04 .7086967 A * B * C 7.295609E-05 2 3.647904E-05 .1489431 Error 2.743021E-02 112 2.449125E-04 F (1 , 56) = .351703 Probability = 0.00250 F (1 , 56) = .351703 Probability = 0.00782 F (2 , 112) = 187.1146 Probability = 0.00782 F (2 , 112) = 187.1146 Probability = 0.00000 F (2 , 112) = 1.17773 Probability = 0.23109 F (2 , 112) = 1.17773 Probability = 0.49893 Post Hoc Test Used was Tukey's HSD Test First Digit: Age 1= 20-40 Year-Olds, 2= 60-80 Year-Olds; Second Digit: Gender 1= Female, 2= Male; Third Digit: Frequency 1= 20 Hz, 2= 50 Hz, 3= 80 Hz. SUMMARY OF FUXEY'S HSD TEST 123 122 113 112 213 212 121 223 222 111 211 221 .01 .01 .01 .01 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 111 .01 .01 .01 .01 111 .01 .01 .01 .01 112 .01 .01 .01 .01 113 .01 .01 .01 113 .01 .01 .01 .01 114 .01 .05 114 .01 .05 112 123 .01 .01 .01 .01 114 .01 .05 112 123 .01 .01 .01 .01 123 .01 .01 .01 124 .01 .05 123 .01 .01 .01 124 .01 .05 123 .01 .01 .01 124 .01 .05 123 .01 .01 .01 124 .01 .05 123 .01 .01 124 .01 .05 123 .01 .01 124 .01 .05 123 .01 .01 124 .01 .05 125 125 125 125 125 125 125</pre>		Within Ss.	.1202423	120		
<pre>A * C</pre>		frequency -C	9.166813E-0	2 2	4.583406E-02	187.1146
<pre>B * C</pre>		A * C	7.238388E-0	12	3.619194E-04	1.17775
A * B * C 7.295609E-05 2 3.647904E-05 .1489431 Error 2.743021E-02 112 2.149125E-04 F (1, 56) = 10.36162 Probability = 0.00250 F (1, 56) = .351703 Probability = 0.00250 F (1, 56) = 2.769785 Probability = 0.09782 F (2, 112) = 187.1446 Probability = 0.00000 F (2, 112) = 1.47775 Probability = 0.23109 F (2, 112) = .7036967 Probability = 0.49893 Post Hoc Test Used was Tukey's HSD Test First Digit: Age 1= 20-40 Year-Olds, 2= 60-80 Year- Olds; Second Digit: Gender 1= Female, 2= Male; Third Digit: Frequency 1= 20 Hz, 2= 50 Hz, 3= 80 Hz. SCOMARY OF NEXEY'S HSD TEST 123 122 113 112 213 212 121 223 222 111 211 221 .01 .01 .01 .01 .01 .01 .01 .01 .01 .0		B + C	3.471375E-0	4 2	1.735687E-04	.7086967
Error 2.743021E-02 112 2.449125E-04 F (1, 56) = 10.36162 Probability = 0.00250 F (1, 56) = .351703 Probability = 0.56219 F (1, 56) = 2.760785 Probability = 0.00000 F (2, 112) = 187.1116 Probability = 0.20100 F (2, 112) = 1.17775 Probability = 0.23109 F (2, 112) = .7086967 Probability = 0.49893 Post Hoc Test Used was Tukey's HSD Test First Digit: Age 1= 20-40 Year-Olds, 2= 60-80 Year- Olds; Second Digit: Gender 1= Female, 2= Male; Third Digit: Frequency 1= 20 Hz, 2= 50 Hz, 3= 80 Hz. SUMMARY OF UCKEY'S HSD TEST 123 122 113 112 213 212 121 223 222 111 211 221 .01 .01 .01 .01 .01 .01 .01 .01 .01 .0		A * B * C	7.295609E-0	5 2	3.647904E-05	.1489431
<pre>F (1 , 56) = 10.36162 Probability = 0.00250 F (1 , 56) = .351703 Probability = 0.56249 F (1 , 56) = 2.769785 Probability = 0.00782 F (2 , 112) = 187.1146 Probability = 0.00000 F (2 , 112) = 1.17773 Probability = 0.23109 F (2 , 112) = .7086967 Probability = 0.49893 Post Hoc Test Used was Tukey's HSD Test First Digit: Age 1= 20-40 Year-Olds, 2= 60-80 Year- Olds; Second Digit: Gender 1= Female, 2= Male; Third Digit: Frequency 1= 20 Hz, 2= 50 Hz, 3= 80 Hz. SUMMARY OF TUKEY'S HSD TEST 123 122 113 112 213 212 121 223 222 111 211 221 .01 .01 .01 .01 .01 .01 .01 .01 .01 .0</pre>		Error	2.743021E-0	2 112	2.149125E-04	
<pre>F (1 , 33 + = 10.3162 + 135661111; = 0.50220 F (1 , 56) = .351703 Probability = 0.56249 F (1 , 56) = 2.760785 Probability = 0.00000 F (2 , 112) = 1.17775 Probability = 0.23109 F (2 , 112) = 1.17775 Probability = 0.23109 F (2 , 112) = .7086967 Probability = 0.49893 Post Hoc Test Used was Tukey's HSD Test First Digit: Age 1= 20-40 Year-Olds, 2= 60-80 Year- Olds; Second Digit: Gender 1= Female, 2= Male; Third Digit: Frequency 1= 20 Hz, 2= 50 Hz, 3= 80 Hz. SUMMARY OF FUNCY'S HSD TEST 123 122 113 112 213 212 121 223 222 111 211 221 .01 .01 .01 .01 .01 .01 .01 .01 .01 .0</pre>		E (1 1 56) = 10	26162 Drohahi	1;+ 0	00250	
<pre>F (1 , 36) = .33103</pre>		F(1, 30) = 10	50102 1150801. 51709 - Dechabil	$\frac{1}{1}$	56210	
<pre>F (1 , 36) = 2.3533 Frobability = 0.0000 F (2 , 112) = 187.1446 Probability = 0.23109 F (2 , 112) = 1.17775 Probability = 0.23109 F (2 , 112) = .7086967 Probability = 0.49893 Post Hoc Test Used was Tukey's HSD Test First Digit: Age 1= 20-40 Year-Olds, 2= 60-80 Year- Olds; Second Digit: Gender 1= Female, 2= Male; Third Digit: Frequency 1= 20 Hz, 2= 50 Hz, 3= 80 Hz. SUMMARY OF FUELY'S HSD TEST 123 122 113 112 213 212 121 223 222 111 211 221 .01 .01 .01 .01 .01 .01 .01 .01 .01 211 .01 .01 .01 .01 .01 .01 .01 .01 .01 .</pre>		F(1, 30) = .3	51705 Probabil. 260795 Dachabi	$1: + \cdots = 0$	00799	
<pre>F { 2 , 112 } = 187.1445 Freedability = 0.00000 F { 2 , 112 } = 1.47775 Probability = 0.23109 F { 2 , 112 } = .7086967 Probability = 0.49893 Post Hoc Test Used was Tukey's HSD Test First Digit: Age 1= 20-40 Year-Olds, 2= 60-80 Year- Olds; Second Digit: Gender 1= Female, 2= Male; Third Digit: Frequency 1= 20 Hz, 2= 50 Hz, 3= 80 Hz. SCMMARY OF FUXEY'S HSD TEST 123 122 113 112 213 212 121 223 222 111 211 221 .01 .01 .01 .01 .01 .01 .01 .01 .01 .0</pre>		F(1, 36) = 2	100103 LTODADI	110y = 0	000:02	
<pre>F (2 , 112) = 1.1773</pre>		F(2, 112) = 1		111ty = 0		
<pre>F (2 , 112) = .7085967 Probability = 0.49893 Post Hoc Test Used was Tukey's HSD Test First Digit: Age 1= 20-40 Year-Olds, 2= 60-80 Year- Olds; Second Digit: Gender 1= Female, 2= Male; Third Digit: Frequency 1= 20 Hz, 2= 50 Hz, 3= 80 Hz. SUMMARY OF FUKEY'S HSD TEST 123 122 113 112 213 212 121 223 222 111 211 221 .01 .01 .01 .01 .01 .01 .01 .01 .01 .0</pre>		F(2, 112) = 1		11ty = 0.	23109	
Post Hoc Test Used was Tukey's HSD Test First Digit: Age 1= 20-40 Year-Olds, 2= 60-80 Year- Olds; Second Digit: Gender 1= Female, 2= Male; Third Digit: Frequency 1= 20 Hz, 2= 50 Hz, 3= 80 Hz. SUMMARY OF FUXEY'S HSD TEST 123 122 113 112 213 212 121 223 222 111 211 221 .01 .01 .01 .01 .01 .01 .01 .01 .01 211 .01 .01 .01 .01 .01 .01 .01 .01 211 .01 .01 .01 .01 .01 .01 .01 .01 222 .01 .01 .01 .01 .01 .05 .05 223 .01 .01 .01 .05 212 .01 .01 .05 213 .01 .01 .05 214 .01 .01 .05 215 .01 .01 .05		F(2, 112) = .	1086967 Probab	111ty = t	1.40803	
First Digit: Age 1= 20-40 Year-Olds, 2= 60-80 Year- olds; Second Digit: Gender 1= Female, 2= Male; Third Digit: Frequency 1= 20 Hz, 2= 50 Hz, 3= 80 Hz. SUMMARY OF TUXEY'S HSD TEST 123 122 113 112 213 212 121 223 222 111 211 221 .01 .01 .01 .01 .01 .01 .01 .01 .01 .0		Post Ho	c Test Used wa	s Tukey	's HSD Test	
Olds; Second Digit: Gender 1= Female, 2= Male; Third Digit: Frequency 1= 20 Hz, 2= 50 Hz, 3= 80 Hz. SUMMARY OF TUXEY'S HSD TEST 123 122 113 112 213 212 121 223 222 111 211 221 .01 .01 .01 .01 .01 .01 .01 .01 .01 .0		First Digit:	Age $1 = 20 -$	40 Vear	-01ds 2= 60-	80 Vear-
Second Digit: Gender 1= Female, 2= Male; Third Digit: Frequency 1= 20 Hz, 2= 50 Hz, 3= 80 Hz. SUMMARY OF TUXEY'S HSD TEST 123 122 113 112 213 212 121 223 222 111 211 221 .01 .01 .01 .01 .01 .01 .01 .01 .01 .0	01d	s;	nge 1- 20	40 ICui	0103, 2- 00	ov rear
Third Digit: Frequency 1= 20 Hz, 2= 50 Hz, 3= 80 Hz. SUMMARY OF TUKEY'S HSD TEST 123 122 113 112 213 212 121 223 222 111 211 221 .01 .01 .01 .01 .01 .01 .01 .01 .01 .0		Second Digit:	Gender 1=	Female,	2= Male;	
SUMMARY OF TUKEY'S HSD TEST 123 122 113 112 213 212 121 223 222 111 211 221 .02 .01		Third Digit:	Frequency 1	= 20 Hz	, 2= 50 Hz, 3=	80 Hz.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		SUMMARY ()	F TUNEY'S HSD TES	ет		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		123 1	22 113 112 213 2	12 121 21	23 222 111 211	
211 .01 .01 .01 .01 .01 .01 .01 111 .01 .01 .01 .01 .05 .05 222 .01 .01 .01 .05 .05 223 .01 .01 .01 .05 121 .01 .01 .05 212 .01 .01 .05		221 .01 .	01 .01 .01 .01 .0	01 .01 .0	01 .01 .01	
111 .01 .01 .05 .05 222 .01 .01 .01 .05 223 .01 .01 .05 123 .01 .01 .05 121 .01 .01 212 .01 .01		211 .01 .	31 .01 .01 .01 .0	01.01.0	01 .01 .01	
222 .01 .01 .01 .01 223 .01 .01 .01 .05 121 .01 .01 .05 212 .01 .01		111 .01 .	01 .01 .01 .01 .0)5 .05		
223 .01 .01 .01 .05 121 .01 .01 .05 212 .01 .01		222 .01 .	at .et .01			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		223,01.	91 .01 .05			
		121 01				
		212 .01				

213 .01 .01 112 .01 .01 ...

113 .01 .01

-

-

Appendix T

ANOVA Table for Comparison of The Twitch/MVC Ratio at 15°P for Females and Males Aged 20-40 Years and 60-80 Years.

ANALYSIS OF MARIANCE TABLE

Source	Sum Sqr.	df	Mean Sqr.	F - value	Prob.
	· · · · · · · · · · · · · · · · · · ·	••••	······································		
age	7.36377E-03	1	7.36377E-03	6.007131	0.01651
gen	6.606799E-04	1	6.606799E-04	.5389618	0.47264
gen*age	4.914152E-05	1	4.914152E-05	.0400881	0.82255
Error	5.864693E-02	36	1.225838E-03		
Total	7.672052E-02	59			