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Abstract 

Oscillatory states in the Electroencephalogram (EEG) reflect the rhythmic synchronous 

activation in large networks of neurons. Time-frequency methods quantify the spec­

tral content of the EEG as a function of time. As such, they are well suited as 

tools for the study of spontaneous and induced changes in oscillatory states. We 

have used time-frequency techniques to analyze the flow of activity patterns between 

two strongly connected brain structures: the entorhinal cortex and the hippocampus, 

which are believed to be involved in information storage. 

EEG was recorded simultaneously from the entorhinal cortex and the hip­

pocampus of behaving rats. During the recording, low-intensity trains of electrical 

pulses at frequencies between 1 and 40 Hz were applied to the olfactory (piriform) 

cortex. The piriform cortex projects to the entorhinal cortex, which then passes 

the signal on to the hippocampus. Several time-frequency methods, including the 

short-time Fourier transform (STFT), Wigner-Ville distribution (WVD) and multi­

ple window (MW) time-frequency analysis (TFA), were used to analyse EEG signals. 

To monitor the signal transmission between the entorhinal cortex and hippocampus, 

the time-frequency coherence functions were used. The analysed results showed that 

stimulation-related power in both sites peaked near 15 Hz, but the coherence be­

tween the EEG signals recorded from these two sites increased monotonically with 

stimulation frequency. 
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Among the time-frequency methods used, the STFT provided time-frequency 

distributions not only without cross-terms which were present in the WVD, but also 

with higher resolutions in both time and frequency than the MW-TFA. The STFT 

seems to be the most suitable time-frequency method to study the stimulation-induced 

signals presented in this thesis. The MW-TFA, which gives low bias and low variance 

estimations of the time-frequency distribution when only one realization of data is 

given, is suitable for stochastic and nonstationary signals such as spontaneous EEG. 

We also compared the performance of the MW-TFA using two different window func­

tions: Slepian sequences and Hermite functions. By carefully matching the two win­

dow functions, we found no noticeable difference in time-frequency plane between 

them. 
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Glossary 

Neurobiology Terms 

Dentate gyrus: A major component of the hippocampus that receives extensive 

cortical input via the entorhinal cortex. 

Electroencephalogram: A recording of the electrical activity of brain through sur­

face or implanted electrodes. 

Entorhinal cortex: A cortical region surrounding the hippocampus which receives 

processed cortical information and sends it on to the hippocampus (dentate gyrus). 

Hippocampus: A brain structure receives processed information from several dif­

ferent sensory systems. 

Neuron: A cell in the nervous system that is organized to generate and transmit 

electrochemical signals. 

Olfactory bulb: The brain structure that receives input from olfactory receptors. 

Piriform cortex: The area of the brain that receives input from the olfactory bulb; 

this area is also referred to as olfactory cortex. 

Stimulus binding: The linking of individual neuronal representations of different, 

local features of external stimuli by a common oscillatory pattern of discharge. 

Synapse: The connection between neurons, via which an electrochemical signal is 

transmitted. 
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Abbreviations 

EEG: electroencephalogram 

ED: exponential distribution 

MW: multiple window 

MWM: multiple window method 

RID: reduced interference distribution 

STFT: short-time Fourier transform 

TFA: time-frequency analysis 

WT: wavelet transform 

WVD: Wigner-Ville distribution 
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Chapter 1 

Introduction 

One of the great challenges in neurobiology is the understanding of how sensory infor­

mation is represented by spatiotemporal patterns of neuronal activity and how these 

representations are transmitted from one brain region to another during their further 

elaboration and processing (Hebb, 1949). The measurement of electrical brain ac­

tivity, and its correlates with behavior, can provide us with useful clues about these 

processes. Unfortunately, current technology does not allow us to record the indi­

vidual activities of more than about 50 neurons at a time (and very few laboratories 

around the world are able to record from more than three or four). With such small 

numbers of cells sampled, there is little that we can say about the nature of the 

networks of millions of cells that mediate cognitive functions. 

The alternative to multiunit recording is the use of large electrodes to record 

the summed electrical activity of very large numbers of neurons (the EEG) (Berger, 

1929). While the spatial resolution of the EEG is poor, the temporal resolution is 

quite good and can provide us with some insights into the activity of large networks 

of neurons. Spontaneously occurring EEG can be used to monitor the activity of 

neuronal networks during naturally occurring behaviors (Knott et al., 1842; Scheuler 
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CHAPTER 1. INTRODUCTION 2 

et al., 1990), and changes in EEG activity following the presentation of experimentally 

controlled stimuli can offer further insights into the processes of perception, learning, 

and memory (Ehlers et al., 1987). Such stimuli could range from relatively normal 

sensory (e.g., auditory or visual) signals to the application of electrical stimulation 

directly to brain sites through implanted electrodes. Both spontaneous and evoked 

EEG activity can be oscillatory in nature, and EEG recordings are used extensively 

to monitor neuronal activation patterns, and the flow of neuronal signals between 

brain sites. 

EEG time series usually contain multiple frequency components, which vary 

spontaneously and in response to experimental manipulations. Further, these data 

sets can be quite large, especially when multiple brain sites are sampled in studies 

of the relationships between EEG activity in connected regions of the brain. This 

necessitates the need for effective techniques for the analysis of these large data sets. 

In this thesis, we explore the application of time-frequency analysis (TFA) techniques 

to the description of the genesis and propagation of oscillatory EEG activity in brain 

sites believed to be involved in information storage. We have used these techniques to 

monitor the responsiveness of particular brain sites to rhythmic stimulation. We have 

also used coherence analysis to measure the transmission of induced signals between 

brain sites. 

This thesis is organized as follows: Chapter 2 gives a biological background of 

EEG signals and the brain sites where EEG is measured. Chapter 3 explains briefly 

experimental set-up procedures and data collecting methods. Chapter 4 introduces 

conventional time-frequency analysis methods, describes the application of TFA to 

experimental data, and reports major experimental results. Chapter 5 is devoted 

to multiple window (MW) time-frequency analysis (TFA). The application of MW­

TFA to experimental data and a comparison of MW-TFA using two sets of window 

functions are given in this chapter. The final conclusions are covered in Chapter 6. 



Chapter 2 

EEG Signals 

2.1 Introduction 

EEG signals result from the combined electrical activity of very large numbers of 

neurons. Synaptic communication between neurons results in the activation of the 

post-synaptic cell by the flow of small current across the dendritic membrane of the 

post-synaptic cell. The membrane currents give rise to potential differences which 

are generally referred to as field potentials. The neuronal elements in the brain are 

embedded within the conductive extracellular medium. Therefore, the volume con­

ducted field potentials can be recorded from the scalp in human objects, or from 

electrodes implanted into specific brain regions in experimental animals. If the acti­

vated membrane regions across neurons are spatially diffuse, the spatial averaging of 

the many membrane currents in the extracellular space reduces the amplitude of the 

EEG. However, when many cells of the same type are activated simultaneously via 

synapses in the same local region, the resulting field potentials can add up spatially 

and result in relatively large amplitude EEG signals. 

EEG signals provide an effective method for monitoring the dynamics of 
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CHAPTER 2. EEG SIGNALS 4 

spontaneous or stimulus driven neuronal activity with extreme temporal resolution. 

EEG-based measures can reflect both the temporal nature of neuronal activity within 

one site, and the relationships between neuronal activity in sites linked by multiple 

synapses. Although the EEG signal can be recorded with arbitrary temporal resolu­

tion, it has poor spatial resolution. The populations of cells which contribute to the 

recorded EEG and their distance from the recording electrode are not always well 

understood. 

2.2 Temporal Processing of EEG Signals 

Oscillatory states are the most striking feature of EEG activity because they reflect 

not only the synchronization of massive numbers of neurons, but also a temporally­

ordered rhythmicity of activation (Lopes da Silva, 1991). Rhythmic synchroniza­

tion can result either from intrinsic oscillatory properties of individual neurons or 

from synaptic interactions in networks of neurons and the action of neuromodula­

tory systems (Lopes da Silva, 1991; Steriade et al., 1990). Oscillatory states in EEG 

activity fall into distinct categories that are discriminable by the amplitude and fre­

quency ranges of the oscillation, the brain sites in which they may be observed, and 

the underlying neural mechanisms which serve to generate the oscillations. In scalp 

recorded normal human EEG, there are distinct oscillatory rhythms distinguishable 

by frequency and are commonly referred to as delta (0.5-4 Hz), theta (4-8 Hz), al­

pha (8-13 Hz) and beta (13-30 Hz) (Dutertre, 1974; Michel et al., 1992). Analogous 

rhythms are also observed in experimental animals at slightly different frequencies 

which depend on the species and preparation (Bland, 1986; Hogan and Fitzpatrick, 

1988). 

Because oscillatory states in the EEG reflect ordered temporal patterns of 

synchronous neural activity within and between brain areas, a common notion is 
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that different oscillatory states may be indicative of distinct information processing 

states in which the oscillatory patterns play an active role. This agrees with current 

theoretical notions which emphasize the role of both spatial and temporal aspects 

of processing in neuronal computation (Hebb, 1949; Lopes da Silva, 1991; Singer, 

1993). These notions hold that the rhythmic synchronization during oscillatory states 

can serve to enhance perception, learning, and the transmission of neuronal signals 

between different regions of the brain. 

2.3 Oscillatory Patterns in the Hippocampus and 

Olfactory System EEG 

In this thesis, we studied the transmission of neuronal signals from the entorhinal 

cortex to the hippocampus. The hippocampus is a brain structure involved in spa­

tial memory and the integration of sensory information. The entorhinal cortex and 

the hippocampus are strongly connected. Much of the information the hippocampus 

receives from cortical areas, including the olfactory (piriform) cortex, is funnelled 

through the entorhinal cortex (Witter et al., 1889) (Fig. 2.1). There are all types of 

sensory information communicating between the entorhinal cortex and the hippocam­

pus and different information may have different representations. We have chosen to 

monitor the transmission of olfactory inputs from the piriform cortex to these two 

structures. The piriform cortex input to the entorhinal cortex is not only one of its 

largest inputs, but also it carries putatively unimodal sensory (olfactory) informa­

tion (Lopes da Silva et al., 1990). This allows a less ambiguous interpretation of the 

types of sensory information that could be involved in the signal transmission. 

The hippocampus and olfactory system display a variety of oscillatory rhythms 

related to signal transmission between brain regions. The most prominent rhythm in 
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OLFACTORY 
BULB 

DENTATE GYRUS 
(HIPPOCAMPUS) 

6 

Figure 2.1: The trajectory of the polysynaptic pathway tested in the experiments 
reported in this thesis. This figure is a highly schematic representation of the rat brain 
as seen from the side. The olfactory bulb is a brain structure that receives input from 
olfactory receptors. The information flow runs from olfactory bulb to piriform cortex 
to entorhinal cortex to the dentate gyrus ofthe hippocampus (referred to in the thesis 
simply as the hippocampus). In our experiments, bipolar stimulating electrodes were 
implanted into the the piriform cortex, bipolar recording electrodes were implanted 
into the entorhinal and hippocampal dentate gyrus. 
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the entorhinal cortex and hippocampus is the theta ( 4-12 Hz in rat) rhythm. The 

theta activity in these two structures is highly coherent, so that the theta rhythm 

may serve to temporally coordinate neural activity in these sites to enhance the.trans­

mission of neural signals from one site to the other. 

In the olfactory system, the gamma (35-85 Hz) rhythm is most commonly 

seen in the spontaneous EEG and in response to olfactory stimuli (Freeman, 1978; 

Freeman and Schneider, 1982). One function ofthe gamma oscillatory state is thought 

to facilitate the transmission of neural signals from one region to another in order to 

aid in stimulus binding1 (Bressler, 1990). Beta-frequency (15-35 Hz) activity is also 

observed in the olfactory bulb and piriform cortex during odor sampling (Bressler, 

1984). The beta rhythm may contribute to the transmission of olfactory representa­

tions to the hippocampus (Boeijinga and Lopes da Silva, 1989; Vanderwolf, 1992), 

and recent studies have suggested that beta burst elicited in both the olfactory bulb 

and hippocampus by certain odors may serve such a role (Vanderwolf, 1992; Reale 

et al., 1994). 

To further explore the role of oscillatory activity in the flow of olfactory signals 

to the hippocampus, we applied low intensity, rhythmic electrical stimulation to the 

piriform cortex to mimic the oscillatory activity in the system. Our objective is to 

determine the frequencies for optimal signal transmission from the piriform cortex to 

the hippocampus via the entorhinal cortex. 

2.4 EEG Analysis 

EEG is never fully deterministic. Therefore, it is usually treated as a random or 

stochastic process. It should be stressed that the biophysical process underlying 

1stimulus binding: the linking of individual neural representations of different, local features of 
external stimuli by a common oscillatory pattern of discharge 
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EEG generation is not necessarily random in nature. It may have such a high degree 

of complexity that only a stochastic approach is justified. 

EEG mainly contains frequency-related activities. Hence, the most common 

analysis is frequency analysis for which both parametric and nonparametric methods 

have been employed. Parametric methods, which include AR and ARMA models, and 

Inverse AR filtering, assume the EEG is generated by a specific model. Nonparametric 

methods include auto- and cross-correlation, auto- and cross-spectral functions. 

The traditional frequency analysis has been widely used to quantify the dif­

ferent oscillatory activities in the EEG (Dumermuth and Molinari, 1987), but the 

statistical assumptions underlying these methods require the time series to be wide­

sense stationary. In reality, the neural processes that generate the EEG are intrinsi­

cally dynamic over many time scales, and the EEG can be considered quasistationary 

only for periods of a few seconds under controlled conditions (Sugimoto et al., 1978). 

Indeed, it is often the nonstationary nature of the EEG that is of primary interest. 

Transient changes in the power or peak frequency of EEG rhythms can provide in­

formation about the dynamics and reactive properties of neuronal substrates that 

mediate those rhythms. Unfortunately, these transients are not quantified with tra­

ditional frequency analyses that do not include time. 

Time-frequency analysis methods, describing the frequency content of a signal 

as a function of time, are able to quantify these transients. Indeed, these methods 

have a long history of application to the EEG (Adey et al., 1967; Kawabata, 1973; 

Gersch, 1987; Gath et al., 1992; Zaveri et al., 1992; Xu et al., 1994; Haykin et al., 

1996). One advantage of these techniques is the ability to both quantify changes in 

EEG activity, and to correlate these changes with experimentally applied stimuli. 

In the following chapters, time-frequency analysis of EEG from the entorhinal 

cortex and the hippocampus will be presented. 



Chapter 3 

Experimental Set-up 

3.1 Animal Preparations 

Male Long Evans hooded rats (320-460g) were anaesthetized with 0.9 mgjkg ketamine 

and 0.05 mg/kg xylazine and were placed in a stereotaxic frame with the skull surface 

on the horizontal plane. The level of anaesthesia was monitored closely, and 10 

to 20% supplemental doses were administered as required. Bipolar, Teflon-coated 

stainless-steel twisted-wire electrodes (125 p,m exposed tips) were implanted in the 

right piriform cortex (P 3.6 mm, L 6.5 mm, and V 8.5-9.0 mm relative to bregma), 

medial entorhinal cortex (P 8.8 mm, 15.0 mm, and 0.1 to 0.2 mm above the ventral 

brain surface), and dentate gyrus of the hippocampus (P 3.5 mm, 12.2 mm, V 4.3 

mm) (see Fig. 2.1). One tip of each bipolar electrode was 0.5 mm longer than the 

other except in the entorhinal cortex where the tip separation was 1.0 mm. 

The vertical positions of the stimulating electrodes were adjusted during 

surgery to minimize current thresholds for field potentials, and recording electrode 

placements were then adjusted slightly to maximize field potential amplitude. Elec­

trode leads were connected to gold-plated Amphenol pins which were mounted in 
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CHAPTER 3. EXPERIMENTAL SET-UP 10 

a 9-pin connector, and the assembly was embedded in dental cement and anchored 

to the skull with stainless-steel jeweller's screws. One skull screw placed above the 

contralateral frontal cortex served as a ground and reference electrode. A two week 

recovery period preceded experimental testing. 

3.2 Data Collection 

Animals were placed in a 30 x 40 x 30 em wooden chamber with a Plexiglas front and 

a wire-grid floor. Data were collected while animals were in a quite, resting state. 

Animals were habituated to the testing chamber for at least 20 minutes one or two 

days prior to the start of testing. Electrical stimuli were generated with a Grass S88 

stimulator, and photoelectric stimulus isolation units (Grass SIU6B) were used to 

deliver 0.1 ms biphasic constant-current pulses. 

EEG signals were recorded simultaneously from the entorhinal cortex and 

hippocampus. Bipolar EEG recordings were obtained to eliminate coherence due 

to activity at the common reference electrode (Fein et al., 1988). EEG was analog 

filtered (0.3 and 100Hz) and amplified using a Grass Model12 Neurodata Acquisition 

System. Signals were digitized at 256 Hz with a 12-bit A/D board and stored on 

computer hard disk. EEG was visually screened during acquisition for the presence 

of movement artifacts. 

3.3 Experimental Design 

In these experiments we want to determine the frequencies for optimal signal transmis­

sion from the piriform cortex to the hippocampus via the entorhinal cortex. Rhythmic 

stimulation was applied to the piriform cortex and EEG was recorded in both the en­

torhinal cortex and hippocampus. This procedure enabled tight experimental control 
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over the temporal characteristics of the input signal, and allowed the determination of 

the frequency response characteristics of both the entorhinal cortex and hippocampus. 

Two recording protocols were carried out using similar methods. In a group 

of 7 animals, 30 s duration samples of EEG were recorded from the entorhinal cortex 

and hippocampus during stimulation of the piriform cortex with a pulse-train which 

was ramped from a frequency of 1 to 40 Hz over a period of 25 s. A total of 10 

samples were recorded for each animal. 

In an experiment to further test the frequency dependence of the propagation 

of electrically-induced oscillatory activity (n=8), samples of EEG were recorded from 

the entorhinal cortex and hippocampus during stimulation of the piriform cortex with 

constant-frequency trains. In these tests, low-frequency trains were delivered during 

the middle 10 s of 30 s EEG samples. The stimulation frequencies ranged from 2 to 

35 Hz. A total of 15 samples were recorded for each condition. 

For both protocols, the stimulation train intensities were set to the threshold 

for a weak hippocampal response during a 10 Hz piriform cortex train. 

3.4 Histology 

Animals were deeply anaesthetized with chloral hydrate and perfused through the 

heart with 0.9% saline followed by 10% formalin. The brains were removed and 

stored in a solution of 20 % glucose in 10% formalin. Frozen, 40 {-lm thick coronal 

sections were placed on gelatin-coated slides, dried, and stained with thionin to verify 

electrode placements. All electrodes were found within target structures. 



Chapter 4 

Time-Frequency Analysis 

4.1 Time-Frequency Representations 

The time-frequency representations, which map a one-dimensional signal into a two­

dimensional function of time and frequency, can be divided into two main classes: 

linear and nonlinear time-frequency representations (Cohen, 1995). The linear meth­

ods include the short-time Fourier transform (STFT) and wavelet transform (WT). 

The nonlinear methods include the Wigner-Ville distribution (WVD), the exponential 

distribution (ED), and the reduced interference distribution (RID). The STFT and 

WVD are commonly used time-frequency methods and they were used in this thesis. 

The advantages and disadvantages of each of these two methods will be discussed 

briefly in this chapter. More details of these two methods and other time-frequency 

methods can be found in some excellent books and reviews (Cohen, 1989; Boashash, 

1991; Hlawatsch and Boudreaux-Bartels, 1992; Cohen, 1995). 

12 



CHAPTER 4. TIME-FREQUENCY ANALYSIS 

4.1.1 The Short-Time Fourier Transform (STFT) 

The Fourier transform X(!) of a signal x(t) is defined as 

X(f) =I: x(t)e-j21rftdt. 

13 

( 4.1) 

The Fourier transform of a signal gives the frequency content of the signal. However, 

it does not provide the time location of the observed frequency component. This 

limitation is overcome by the STFT. 

The STFT is a natural extension of the ordinary Fourier transform. It local­

izes the frequency components in time by sliding a window h(t) along the signal x(t) 

and then taking the Fourier transform as shown below (Cohen, 1989; Hlawatsch and 

Boudreaux-Bartels, 1992; Cohen, 1995) 

X(t,J) =I: x(T)h(t- T)e-jZ1rfTdT. ( 4.2) 

By moving the window h(t), this process maps the signal into a two-dimensional 

function in a time-frequency plane. The squared magnitude of the STFT is called the 

spectrogram. 

The main advantage of the STFT method is its ease of implementation. It is 

the most efficient method in computation of time-frequency distributions. Further­

more, the STFT is a linear signal decomposition and there are no cross-terms between 

the multiple signal components. The major drawback inherent in this method is the 

tradeoff between time and frequency resolution, that is, the time and frequency res­

olution cannot be made better simultaneously. 

4.1.2 The Wigner-Ville Distribution (WVD) 

The WVD of signal x(t) is defined as (Boashash, 1991) 

Wx(t, f) =I: z(t + T /2)z*(t- T j2)e-jZ1rjT dT, (4.3) 
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where z( t) represents the analytical signal associated with x( t) and the superscript 

asterisk (*) denotes complex conjugation. The reason for using the analytical signal 

is to avoid the cross-terms between positive and negative frequencies and the need 

for over sampling, as would be required for the real signal (Boashash, 1991 ). 

The WVD yields high resolution in both time and frequency. However, it 

suffers from two serious shortcomings: ( 1) the generation of cross-terms (or interfer­

ence) due to the presence of multiple components in the signal, and (2) the presence 

of "negative" values that prevents it from being strictly interpreted as an energy 

distribution. 

4.2 The Time-Frequency Coherence 

Coherence is a measure of the consistency of phase-relationship between two time 

series (Marple, 1987). For stationary processes, coherence is defined as the squared 

magnitude of the complex average of multiple cross-spectra, normalized to the power 

in each of the two signals. It provides a frequency-specific measure of the phase 

coupling between two signals and has been applied to the EEG in a number of clinical 

and experimental contexts (Shaw, 1984; Boeijinga and Lopes da Silva, 1989). 

We extended the STFT to the computation of a time-frequency coherence 

function (Xu et al., 1994). Let X(n)(t, f) and y(nl(t, f) denote the STFT's of the 

signals x(n)(t) and y(n)(t), respectively. The superscript (n) denotes the nth realization 

(sweep) of the two signals. The time-frequency coherence function between the signals 

x(t) and y(t) is defined as follows: 

rz t - II:::'==l X(n)(t, f)Y*(n)(t, nl2 
xy( ,f)- I::;'==liX(n)(t,f)I2I::;'==liY(n)(t,f)12' ( 4.4) 

where N is the number of sweeps of the x(t) and y(t). Note that t refers to the time 
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coordinate relative to the start of each sweep. Note also that for a fixed t, the time­

frequency coherence function r;y(t, f) reduces to the ordinary coherence function. 

The time-frequency coherence function is used to measure the efficacy of the 

transmission of oscillatory signals from the entorhinal cortex to the hippocampus. 

4.3 Experimental Results 

4.3.1 The Detection of Nonstationarities in EEG Signal 

We applied the STFT and WVD to the characterization of two different nonstationary 

EEG data sets. First, we collected samples of 8-10 Hz spindle discharges, which are 

obvious spontaneous transient events in the cortical EEG. Second, we experimentally 

imposed nonstationarities into the entorhinal cortex EEG by applying low-intensity 

stimulation trains to the piriform cortex (first protocol in Section 3.3). Fig. 4.1 shows 

examples of both types of EEG trace and the results of two different types of time­

frequency analysis. As can be seen, the nonstationarities are well delineated by using 

these procedures. There are some striking differences between the STFT and the 

WVD images1
•
2

: (1) the WVD exhibits a higher resolution than the STFT, both in 

time and frequency, and (2) the presence of the cross-terms in the WVD makes its 

interpretation more difficult (particularly for the spindle waves-Fig. 4.1). 

We also experimented with the pseudo-WVD, a windowed WVD, which has 

the effect of suppressing the cross-terms of the WVD (Boashash, 1991; Cohen, 1995). 

1 In the STFT displays presented in Fig. 4.1, darkness is a measure of the magnitude of the STFT. 
In the WVD displays, darkness is a measure of the square root of the WVD. The reason for using 
amplitude, rather than power, as the z coordinate was merely for providing a better contrast. Same 
conventions are used in other time-frequency images. 

2Besides the differences mentioned in the text, there is also a big difference in computation time 
for calculating the STFT and WVD. For 30 s EEG signal (Fig. 4.1, right), it took only about 15 s 
to get the STFT result, but 30 minutes to get WVD result. The programs were written in Matlab 
and run on SUN SPARCstation 10. 
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Figure 4.1: Nonstationary EEG samples and their time-frequency representations. 
The spindle discharge in the upper left panel was recorded from the rat frontal cortex. 
It is a typical example of a nonstationarity in the spontaneous EEG. The EEG trace 
in upper right panel shows a rather extreme form of nonstationarity, though of much 
lower amplitude, that is induced in the entorhinal cortex by stimulation of the piriform 
cortex. The stimulation consisted of a train of pulses that was ramped from 1 to 40 
Hz. The middle panels show the results of STFT analysis of these EEG segments. 
The lower images show the results of standard WVD analysis. 
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Hanning and Gaussian windows were used to perform the pseudo-WVD. The results 

were very similar to those obtained by using the standard WVD, except for certain 

reduction of cross-terms in some parts of the WVD image. 

The STFT was used in all the following experiments. 

4.3.2 Frequency-Dependent Thansmission of Externally Im­

posed Signals 

The STFT was applied to the EEG from the entorhinal cortex and hippocampus 

under two stimulation protocols (see Section 3.3). The STFT representations were 

obtained by using a 2.0 s moving window (Hanning window) with a 1.9 s overlap 

between consecutive computations. A total of 10-15 sweeps of EEG were used to 

calculate the time-frequency coherence; these sweeps were disjoint in time. 

Typical examples of the raw EEG, STFT representations and time-frequency 

coherence are shown on Figs. 4.2 and 4.3. 

Spontaneous EEG 

Power in the spontaneous EEG was concentrated at low frequencies under 20 Hz 

(Figs. 4.2 and 4.3). Theta frequency activity was evident in both the entorhinal 

cortex and hippocampus EEG recordings, consistent with normal patterns of EEG 

activity in these sites (Vanderwolf, 1969). Variations in amplitude at frequencies near 

8 Hz in both the entorhinal cortex and hippocampal STFT representations reflect 

nonstationarities in theta activity (Fig. 4.3). 
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Figure 4.2: Examples of EEG activity in the entorhinal cortex and hippocampus 
during stimulation of the piriform cortex with a pulse-train which ramped from 1 
to 40 Hz. Top panels show the raw EEG, and time-frequency representations of 
these traces are shown below. Power in both sites evoked by stimulation showed the 
greatest increase for stimulation frequencies near 17 Hz in this animal. Coherence 
between the EEG recordings (bottom panel) tended to increase monotonically with 
stimulation frequency. Upper harmonics, which are only faintly observed in the EEG 
power, are marked in the coherence measurements. 
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Figure 4.3: Examples of EEG activity in the entorhinal cortex and hippocampus dur­
ing application of a low intensity, 14Hz stimulation train to the piriform cortex. Top 
panels show the raw EEG, and STFT representations are shown below. Coherence 
between the EEG recordings is shown on bottom panel. Note the enhanced power 
and coherence at 4-8 Hz (within the theta band) throughout the sweep, and the en­
hanced power and coherence at the 14 Hz input frequency and its harmonics during 
the middle 10 s. 
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Stimulation-Driven EEG 

Stimulation-induced responses could seldom be seen in the time-domain above the 

background noise (Fig. 4.3, upper panels). The effects of the stimulation train, how­

ever, are evident in the STFT images (Figs. 4.2 and 4.3). Changes in EEG activity 

during train delivery were reflected in power spectral peaks in both recording sites 

at train frequency and its upper harmonics. The amplitude of train-induced spectral 

peaks changed with the frequency of stimulation. The peak value was found to be 

near 15 Hz (Fig. 4.2). 

Coherence 

During spontaneous EEG activity, coherence function was flat except for a peak in the 

theta band, indicating a consistent phase relationship between EEG activity in the 

two sites only at this frequency. The time-frequency coherence was strongly affected 

by train delivery. It showed peaks at the train frequency and its upper harmonics 

when activities at these frequencies were present at both recording sites (Figs. 4.2 

and 4.3). 

Frequency Dependence 

To determine the effects of stimulation, the total power at the stimulation frequency 

and its upper harmonics during the spontaneous EEG was subtracted from the mea­

sures during train delivery. For the coherence measures, the mean coherence in spon­

taneous EEG was subtracted from the coherence measure during evoked EEG. The 

measures were standardized for each animal to a percent of the maximum train­

related value observed. To reduce the estimation variance, we averaged the STFT of 

the 10-15 sweeps obtained in the same experimental condition. The results that are 

described next were based on the averaged STFT. 
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Figure 4.4: Stimulation-related power in the entorhinal cortex and hippocampus and 
coherence as a function of piriform cortex stimulation frequency-during delivery of 
ramped frequency trains. Train-evoked power in both site showed similar "tuning 
curve" and peaked at frequencies near 15 Hz. Hippocampal response showed a sec­
ondary peak at about 27 Hz. Coherence increased monotonically with stimulation 
frequency. 

In the experiment when ramped frequency trains were delivered to the pir­

iform cortex, we found that the largest stimulation-dependent increase in power oc­

curred at about 15 Hz in both the entorhinal cortex and hippocampus (Fig. 4.4). 

There was also a secondary peak in the hippocampus at a mean frequency of 27 Hz. 

In contrast, the coherence function did not fall off with stimulation frequency; rather 

it increased monotonically (Fig. 4.4). 

When low-intensity, 10 s fixed frequency trains were applied to the piriform 

cortex, the largest entorhinal cortex and hippocampal EEG responses were evoked 

at frequencies between 12 and 16 Hz (Fig. 4.5). Stimulation-related coherence values 

increased monotonically with stimulation frequency upto 35 Hz. Both the respon­

siveness of the entorhinal cortex and hippocampus to 12-16 Hz stimulation, and the 

increase in coherence with train frequency, were consistent with the results observed 

during delivery of ramped frequency trains. 
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Figure 4.5: Stimulation-related power in the entorhinal cortex and hippocampus and 
coherence as a function of piriform cortex stimulation frequency-during delivery 
of fixed-frequency trains. The "tuning curves" for the train-evoked power in the 
entorhinal cortex and hippocampus were similar, and peaked at frequencies between 
12 and 16 Hz. Coherence values were not reduced at higher stimulation frequencies. 

4.3.3 Postmortem Testing 

To assure that the electrically initiated signals transmitted to the hippocampus was 

synaptically generated within the entorhinal cortex, postmortem recordings were ob­

tained. EEG was recorded from the entorhinal cortex and the hippocampus 5 minutes 

after death from anaesthesia, while stimulation trains were applied to the piriform 

cortex. As shown in Fig. 4.6, the electrical artifacts from the stimulation trains were 

small and well-filtered. 

4.4 Discussion 

Time-frequency signal processing techniques provide an effective tool for observing 

the time course of changes in oscillatory states in EEG activity. The time-frequency 

coherence method has allowed the investigation of the temporal relationship between 
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Figure 4.6: Representative EEG traces recorded during experimental tests (the animal 
is alive) from the entorhinal cortex and hippocampus are shown in upper panels. 
EEG's recorded from the same sites 5 minutes after death from anesthesia are shown 
in the bottom panels. A 14 Hz stimulation train was applied to the piriform cortex 
in both cases. As can be seen, the electrical artifacts from the stimulation trains are 
minimal. 
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rhythmic activities in different regions of the brain. These methods provide additional 

tools for investigating the role that oscillatory states play in determining the flow of 

neuronal activity from one brain site to another. 

4.4.1 Stimulation-Evoked Responses 

The methods and results presented here demonstrate that computationally strait­

forward analytical techniques can be used to quantify the frequency tuning or pre­

ferred frequencies of neural transmission between brain sites. These results indicate 

that signal transmission from the piriform cortex via the entorhinal cortex to the 

hippocampus is optimal for frequencies of neural activity near 15 Hz. It suggests that 

the understanding of temporal neural information processing in other brain pathways 

can be effectively explored by applying similar time-frequency analysis. 

Increases in power and coherence in EEG activity in entorhinal cortex and 

hippocampus at stimulation related frequencies were induced during stimulation of 

the piriform cortex. Changes in the EEG were more apparent in the time-frequency 

plane than in the time domain alone, particularly for low frequencies of stimulation. 

This clearly shows the power of the time-frequency analysis. The time-frequency 

analysis also resulted in a more dynamic description of the changes in power and 

coherence of both spontaneous and train-driven EEG activities. 

Background rhythms in olfactory cortex often peak around 40 Hz. Therefore 

it was surprising to find peaks in the power occurring around 15 Hz. It has been re­

ported recently that certain odors do, in fact, trigger responses in this frequency range 

in the olfactory cortex and hippocampus (Vanderwolf, 1992; Heale et al., 1994). It 

has been concluded that these odors are activating systems that are tuned to respond 

to predator signals. This finding, together with our results, suggests that frequency 

near 15 Hz effectively transmit efferent activity between sites in the olfactory system, 
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and points to a role for rhythmic activity near 15 Hz in the gating of sensory input to 

the hippocampus via the entorhinal cortex (Reale et al., 1994; Chapman and Racine, 

1997; Chapman et al., 1997). 

Coherence has previously been reported as a measure of temporal coupling 

of dominant rhythms in the EEG across multiple sites in the brain (Boeijinga and 

Lopes da Silva, 1989). Spectral activity in the entorhinal cortex and hippocampus was 

coherent at the stimulation frequency and its upper harmonics (necessary for complete 

description of non-sinusoidal activity at the stimulation frequency). These peaks in 

coherence result from the consistent temporal relationships between train-induced 

EEG activity in both entorhinal cortex and hippocampus. While the stimulation­

induced responses in the entorhinal cortex and hippocampus were tuned at 15 Hz, 

the coherence function increased monotonically. This indicates although the neural 

signals above 15 Hz were reduced in magnitude, their phase coupling was even more 

consistent. 

The temporal characteristics of neuronal activity in the system studied here 

can be further explored by artificial neural network modelling techniques to under­

stand the underlying neural mechanisms. The EEG signals and results obtained here 

can be used to train or validate the artificial neural network models. 

4.4.2 Time-Frequency Analysis 

Both the STFT and WVD have been used in this study and their advantages and 

disadvantages may be drawn from Fig. 4.1. 

EEG time series usually contain multiple frequency components. The cross­

terms of WVD due to these multicomponent co-exist with real components and make 

it hard to interpret the WVD result. This drawback limited direct use of the WVD 

in EEG analysis. Recently, a new class of time-frequency distributions called the 
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reduced interference distribution (RID) has been proposed ( Choi and Williams, 1989; 

Jeong and Williams, 1992). The RID could be regarded as "smoothed" WVD. It 

provides high resolution in time and frequency while suppressing cross-terms. It has 

been applied to the tracking of rapid dynamic changes in temporal lobe epilepsy with 

good results (Zaveri et al., 1992). 

There are certain limitations to RID also. The RID, like the WVD, is not a 

non-negative distribution. This drawback prevents it from being strictly interpreted 

as an energy distribution. Further, with negative values in time-frequency distribu­

tion, it would be impossible to build time-frequency coherence functions whose values 

are between 0 and 1. 

For the applications in this thesis, the WVD and RID have another disadvan­

tage. The WVD and RID do not weight signal evenly across time for a signal with 

a finite time interval. They weight the middle part of a signal the most when the 

whole series enter the calculation, and the weights decay toward the beginning and 

end parts of the series. Hence they are not appropriate for monitoring the magnitude 

change of stimulation-induced responses, especially when the stimulation frequency 

ramps from 1 to 40 Hz. On the contrary, the STFT treats each segment of a signal 

equally by sliding the same window through the whole course of the signal. 

With high resolution in both time and frequency, the WVD and RID have 

good applications in signal detection. On some occasions the cross-terms may be of 

value in revealing weak components (Haykin and Bhattacharya, 1997). Our primary 

interest in time-frequency distributions is in their use as a tool for "signal analysis". 

The features such as positive distribution (its squared magnitude), no cross-terms 

and good visual presentation possessed by the STFT makes it very appropriate for 

the studies reported here. 
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4.4.3 Time-Freqwency Representations of Random Processes 

As mentioned in Section 2.4, EEG has been treated as a random process. When we 

estimate power spectrum of a random process, we must consider the bias and variance. 

The power spectrum estimation of stationary random processes is well established. 

The periodogram is the classical spectrum estimator. While it is unbiased, it has high 

variance and usually the variance can be reduced by segmenting the time series and 

then averaging the individual results. 

In this thesis a similar averaging method was used because we were mainly in­

terested in the stimulation-related effects. Multiple realizations (sweeps) of the EEG 

signal were recorded for the same stimulation condition. The STFT's of these sweeps 

were then averaged to reduce the estimation variance. The averaged STFT provided 

a good estimate for stimulation-evoked power in time-frequency plane. However, the 

nonstationarity in the spontaneous EEG corresponding to individual sweep was not 

preserved. Therefore, we need a time-varying spectrum estimate with low bias and 

variance provided that only one realization of a non-stationary signal is given. For 

stationary signals, Thomson developed multiple window method (MWM) to estimate 

the power spectrum with low bias and variance given a single, short time series (Thom­

son, 1982). In the next chapter we will introduce multiple window time-frequency 

analysis, an extension of Thomson's MWM, to estimate the time varying spectrum. 



Chapter 5 

Multiple Window Time-Frequency 

Analysis 

To date research in time-frequency analysis has been focused on deterministic signals. 

Only recently, attention has turned to non-stationary random processes (Martin and 

Flandrin, 1985; Frazer and Boashash, 1994; Bayram, 1996). 

To design a time-frequency distribution estimator for a random process, we 

must consider the bias and variance issues. The conventional time-frequency dis­

tribution are typically designed for deterministic signals and to achieve a variety of 

localization, positivity, cross-term reduction and other goals. Consequently, these de­

signs do not address the bias and variance control issues central to statistical estimator 

design. 

To construct a low bias and variance time varying spectrum estimator, sev­

eral researchers have extended Thomson's multiple window method to nonstationary 

signals (Frazer and Boashash, 1994; Bayram, 1996). In the following sections, we will 

first briefly review Thomson's MWM for stationary signals. Then we will introduce 

the multiple window time-frequency analysis method and apply it to EEG signals. 

28 
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We will also compare the performance of multiple window time-frequency analysis by 

using two sets of window functions. 

5.1 Thomson's Multiple Window Method 

The classical spectrum estimator for stationary signals is the periodogram. In prac­

tice, to reduce the high variance of the periodogram, averaged periodograms are 

computed. This is done by segmenting the signal, computing a periodogram for each 

segment, and then averaging the individual results. However, this procedure increases 

the bias of the spectrum estimate due to the use of a shorter window for each segment. 

If we have enough data, we may get the power spectrum estimate with desired bias 

(or frequency resolution) and variance. However, when data length is limited, the 

tradeoff between bias and variance is inevitable. 

For short, time limited signals, Thomson suggested using a different set of 

windows to compute several periodograms of the entire signal and then averaging the 

resulting periodograms to construct a spectrum estimate (Thomson, 1982). To get 

an estimate with low bias and low variance, the windows must be, (1) optimally con­

centrated in frequency (to minimize bias), and (2) mutually orthogonal (to minimize 

variance). The optimum windows satisfying these requirements for signals with finite 

length are Slepian sequences or discrete prolate spheroidal sequences. 

5.1.1 Slepian Sequences 

The Slepian sequences are the eigenvectors of the Toeplitz eigenvalue equation (Slepian, 

1978) 

~1 

sin 2nW(n- m) (k)(N W) = .\(N W) (k)(N W) 
LJ ( ) vm ' ' vn ' 
m=O 7r n- m 

(5.1) 
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Figure 5.1: Eigenvalues for the case N=256 and NW=4. As we can see the first 8 
eigenvalues are very close to 1 corresponding to the first K = 2NW = 8 windows 
that have a negligible effect on the bias of the spectrum estimator. 

where N is the length of the eigenvectors (or data), and W is a half-bandwidth that 

defines a small local frequency band centered around frequency f: If- f'l :S W. 

Equation (5.1) derived from the operation of a time-limitation followed by band­

limitation of the signal (Slepian, 1978). Therefore, the Slepian sequences are the 

orthogonal time-limited functions most concentrated in the frequency band [-W, W]. 

The Slepian sequences are ordered by their eigenvalues: 

1 > >.o > >.1 > ... > A(N-1) > 0. 

The eigenvalue, >.k, gives the fraction of energy within the band [-W, W]. The 

first 2NW eigenvalues are very close to 1 (Fig. 5.1), indicating that the spectra of 

these lower-order Slepian sequences have large energy concentration within the local 

frequency band [-W, W]. Fig. 5.2 shows an example of the Slepian sequences and 

their Fourier transform. 

As shown in Fig. 5.2, the data windows have different shapes and weight the 
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Figure 5.2: The first 4 Slepian sequences and their Fourier transform for the case 
N=512 and NW=4. (a) the first 4 individual sequences. (b) the sum of magnitude 
square of the 1st 4 sequences. (c) complex amplitude square of the Fourier transform 
of the Slepian sequences in (a), (d) the sum of individual forms in (c). As we can 
seen, the combination of the 4 windows covers more data samples than a single bell­
shaped window. In (a) and (c), 0-order: solid line; 1st-order: dashed line; 2nd-order: 
dash-dotted line; 3rd-order: dotted line. 
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signal differently. A combination of these windows in the MWM therefore provides a 

more uniform weighting to different parts of the record (Fig. 5.2, a, b). This leads to 

a smaller variance of the spectral estimate than with the use of a single conventional 

bell-shaped window. In Thomson's MWM, only the first few Slepian sequences with 

their eigenvalues close to 1 are used. Hence the signal power concentration within 

the analysis band [-W, W] is large. This concentration property results in a low bias 

estimate of the spectrum. 

5.1.2 MWM Outlines 

Steps to compute the spectral estimate of x( n ), ( n = 0, 1, ... , N -1) using Thomson's 

MWM are as follows: 

1. Specify N and W, where N is the number of data point, and W depends on 

the desired time-bandwidth NW (or frequency resolution). 

2. Use (5.1) to compute1 Ak's and llk's; actually the first I< = 2NW terms with 

the largest eigenvalues are needed2
. 

3. Apply vk to the entire length-N data x(n) and take DFT to get kth spectrum 

estimate Xk(j) as shown below: 

N-l 

xk(f) = L x(n)v~e-jZ1rfn. (5.2) 
n=O 

We call xk(J) the kth eigencoefficient and lxk(J)I 2 the kth eigenspectrum. 

4. Average I< eigenspectra to get an estimate of the spectrum as shown below 

A 1 K -l 1 2 

S(J) = rr L \ lxk(J)I · 
I\ k=O Ak 

(5.3) 

1The calculation do not need to be repeated every time. A database could be built for common 
N and Wand the sequences could be retrieved whenever needed. 

2Thomson suggested the use of]{ = 2NW -1 to [{ = 2NW- 3 to minimize higher order window 
leakage. 
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As shown in Fig. 5.1, the first few eigenvalues are very close to one. Equation 5.3 

can be simplified to 

(5.4) 

Equation (5.3) is the crude multiple window spectrum estimate. We use only 

the first few largest K ( K ~ 2NW) eigenvalues and their corresponding eigenvectors. 

K controls the tradeoff between bias and variance. Larger K gives smaller variance 

but larger bias. 

While the lower-order eigenspectra have excellent bias properties, there is 

some degradation as k increases towards 2NW. Thomson also developed an adap­

tive MWM estimate (Thomson, 1982). In the adaptive version, a set of frequency­

dependent weights dk(f), instead of 1/ Ak, is used to downweight the higher-order 

eigenspectra. The adaptive MWM results in a lower bias at higher frequencies than 

the crude MWM but it requires more computation. In the applications described 

below, we used only the very first few eigenspectra (K ~ 2NW- 3) and found there 

was no big difference in both low and high frequencies using the two methods. In the 

EEG analysis, we used the MWM described in (5.4). 

5.1.3 Coherence 

Coherence can be obtained from one realization of the multichannel data using Thom­

son's MWM. Given two time series x(n) and y(n), (n = 0, 1, 2, ... , N -1), their eigen­

coefficients xk(f) and Yk(f) can be obtained using (5.2). The estimated coherence 

is (Thomson, 1982) 

(5.5) 

where K ~ 2NW is the number of windows used and the asterisk denotes complex 

conjugation. 
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5.2 Multiple Window Estimate of Time-Frequency 

Distribution 

Thomson's MWM has been extended to the time-frequency analysis (TFA) (Frazer 

and Boashash, 1994; Bayram, 1996). The multiple window(MW) TFA performs in 

a similar way as the STFT. Instead of applying a single sliding window along the 

signal, the MW-TFA applies a set of sliding windows and then takes the average: 

1 k=K-1 

XMw(t, f)= }T 2::: \Xk(t, f)\ 2
, 

i k=O 

(5.6) 

where Xk(t, f) is the STFT using the k-th window hk(t) computed as follows: 

(5.7) 

where x(t) is the signal to be analysed. 

The multiple window time-frequency coherence is defined as 

(5.8) 

Two sets of windows have been used in MW-TFA (Frazer and Boashash, 1994; 

Bayram, 1996). One of them is the Slepian sequences described previously and the 

other is called Hermite functions. We will give a brief overview of Hermite functions 

before we apply MW-TFA to EEG data and give a comparison using these two sets 

of windows. 

5.2.1 Hermite Functions 

The Hermite functions are the eigenfunctions of a localization operator over the re-

gion (Daubechies, 1988) 

(5.9) 
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Figure 5.3: Eigenvalues >..k(R), k = 0, 1, ... , 20 for R = 3, R = 5, and R = 7. 

The k-th order Hermite function is defined as, 

(5.10) 

The eigenvalues of the localization operator over the region (5.9) are given by 

>..k(R) = 1- e-R2/2 t ~2-i R2i. 
i=O Z. 

(5.11) 

The Hermite functions are optimally concentrated in the circular time-frequency re­

gion (5.9). Similar to Slepian sequences, the eigenvalues >..k give the fraction of energy 

within the region (5.9). The closer the k-th eigenvalue is to 1, the better the concen­

tration of the k-th order Hermite function is. Hence, for a given R, there are only a 

few Hermite functions with good concentration in the region (5.9). Fig. 5.3 shows a 

plot of >..k(R) for different values of R. The first 4 Hermite functions and their Fourier 

transforms are shown on Fig. 5.4. 
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5.2.2 MW-TFA of EEG 

The MW-TF A was applied to the EEG signals in a similar fashion to that used in 

the STFT case. The MW time-frequency distribution was obtained by using a set of 

2.0 s windows with a 1.9 s overlap between consecutive computations. The multiple 

window time-frequency coherence was calculated using (5.8). Examples of MW-TFA 

results are shown in Figs. 5.5 and 5.6 

Spontaneous and Train-Driven EEG 

The results using MW-TFA shown in Figs. 5.5 and 5.6 are similar to those using 

the STFT in Figs. 4.2 and 4.3. Both the theta activity and increased activity at 

stimulation-related frequency and its upper harmonics are evident in MW-TFA im­

ages. Fig. 5.5 shows that the stimulation-related power in the entorhinal cortex and 

hippocampus is peaked near 17 Hz, but the coherence increases monotonically with 

the stimulation frequency. 

The differences of the STFT and MW-TFA images are also apparent. The 

MW-TFA results in poor resolution in both time and frequency due to wider effective 

time window and broader frequency bandwidth. The variance of MW-TFA represen­

tation is lower than that of STFT image, this being benefited from averaging. 

Coherence 

One advantage of the MW-TFA is the ability to obtain time-frequency coherence from 

one realization of the data, which is impossible with the STFT. The time-frequency 

coherence in Fig. 5.6 shows the clear nonstationarity of the coherent activity between 

the entorhinal cortex and hippocampus in the theta range. The time-frequency coher­

ence in Figs. 4.2 and 4.3 does not show the time correspondence for the spontaneous 

EEG for individual realizations. 
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Figure 5.5: Time-frequency representations of EEG's shown in Fig. 4.2 using MW­
TFA with Slepian Sequences. Parameters of the sliding windows: N = 512, NW = 4, 
J{ = 4. 
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Figure 5.6: Time-frequency representations of EEG's shown in Fig. 4.3 using MW­
TFA with Slepian Sequences. Parameters of the sliding windows: N = 512, NW = 4, 
I<= 4. Note high coherence values in theta range only at times when theta activity 
appears in both the entorhinal cortex and hippocampus. 
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5.2.3 Comparison Between the Two Window Functions 

The shapes of the Slepian sequence and Hermite functions are very similar (Figs. 5.2 

and 5.4). To make a fair comparison between the two window functions, the 0-order 

windows of the two functions were matched with least-mean-squared error in time 

domain. To achieve a good concentration in time-frequency plane, 4 windows were 

used in all the cases, except for NW = 2 where only 2 windows were used. Figs. 5. 7-

5.10 show the results. 

The well-matched windows differed only slightly in the time domain (Fig. 5. 7 

and Fig. 5.8, left) for the first four windows. The Hermite windows had higher leakage 

and wider bandwidth than those of Slepian sequences (Fig. 5.8, right) in the frequency 

domain. The differences were larger for higher NW values. Both the higher leakage 

and broader bandwidth will introduce more bias into the estimation. However, the 

differences of the two functions did not introduce noticeable difference in MW-TFA 

results (Figs. 5.9 and 5.10). 

Selection of Time Window Length 

As shown in Fig. 5.8, the actual time windows are shorter and the frequency band­

width are wider as NW value grows. For piecewise stationary signals, as shown in 

Fig. 5.10, longer time windows give better frequency resolution and reasonably good 

time resolution. For highly nonstationary signal, as the one in Fig. 5.9, longer win­

dows work better when the signal varies slowly (around 15 s) and shorter windows 

has better results when the signal varies fast (around 25 s). It indicates that for 

signals containing the frequency content varying with time at different rate, it may 

be necessary to use different window lengths (or sizes) for different parts of the signal. 
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Figure 5.9: Time-frequency representations ofMW-TFA using Slepian sequences (left) 
and Hermite functions (right) of the EEG recorded from the entorhinal cortex shown 
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5.3 Discussion 

5.3.1 MW-TFA and STFT 

The MW-TFA provides us a useful tool to estimate the time-frequency distribution 

with low bias and low variance for a single realization of data, which is usually the 

case for time varying signals. Although the MW-TFA has poorer time and frequency 

resolutions than those of the STFT, it has a lower variance. This is consistent with 

the observation made by Frazer and Boashash (1994). The most appealing property 

of the MW-TFA is that it enables us to estimate the time-frequency coherence from 

a single realization. This provides us an effective tool for investigating the temporal 

relationship between EEG signals in different brain regions from time to time. To 

our knowledge, it is the first attempt to extend Thomson's MW coherence to time­

frequency coherence. 

To study the stimulation-evoked signals in this report, we were able to record 

more than one realization of the signal under the same condition. The high variance 

of single STFT was reduced by averaging the STFT's of these realizations without 

sacrificing the bias (due to the same window length). The averaged STFT could thus 

provide us a low variance estimate with better time and frequency resolutions than the 

MW-TFA. The averaged STFT is more suitable for repeatable signals in the current 

study. For spontaneous EEG which is impossible to obtain multiple realizations, the 

MW-TFA should be the one to use. 

5.3.2 Slepian Sequences and Hermite Functions 

We made a fair comparison between these two windows by matching them in terms 

of having least-mean-squared errors in the time domain. Although there were slight 

differences in time and frequency domain alone for the first few windows, there were 
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no apparent differences in the time-frequency representations. 

The Hermite functions concentrate their energy in the circular region (5.9) 

in the time-frequency plane. The Hermite functions are independent of R and the 

R-dependence is completely contained in the eigenvalues. For a given R, the number 

of Hermite functions which could be used is fixed to achieve a good concentration 

in the region (5.9). This fixed concentration region is reflected in Fig. 5.8. When 

using 4 windows, as time range t increases, the increase in frequency band companies 

with the decrease of the actual time window. Hence, the concentration region in the 

time-frequency plane is kept the same for windows with different t range. The Slepian 

sequences concentrate their energy in a rectangular region- [-T, T] x [-W, W] in the 

time-frequency plane, where [-T, T] is the time limit of the windows (N data points) 

and [-W, W] is the frequency bandwidth. This rectangular region is maintained 

when 2NW windows are all employed. When we use only fixed number of windows 

for different NW values, these windows concentrate in a similar constant region in 

time-frequency plane as that of Hermite functions. 

In the way the MW-TFA is implemented, it is the natural extension of Thom­

son's MWM. The MW-TFA performs multiple window spectral estimation in a piece­

wise fashion. Within a given window centered in timet, it uses the Thomson's MWM 

to estimate the spectrum at timet. Hence, it is still a problem of spectral estimation 

of the time-limited signal. Since the Slepian sequences are optimal for the analysis 

of time-limited signals, for matching windows in time domain for Slepian sequences 

and Hermite functions, the estimation using Slepian sequences should give better es­

timates. The Hermite functions and associated eigenvalues, however, are much easier 

to calculate in practice. We used fixed sliding windows for the MW-TFA and the win­

dows were needed to be calculated only once. As mentioned in Section 5.2.3, adaptive 

windows may be necessary to capture time varying components in the signal. In this 

case, the simplicity of calculation of the Hermite functions might outweigh the loss 
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of optimality. 

The MW-TFA is a technique that is still in a state of development. Recently, 

Friedlander and Scharf (personal communication) have developed a more general form 

of MW-TFA. However, the design of the windows has not been addressed yet. 



Chapter 6 

Conclusions 

Time-frequency analysis of EEG has been used to monitor neuronal oscillations in 

two strongly connected brain structures: the entorhinal cortex and the hippocampus. 

We have also used time-frequency coherence functions (Equations 4.4 and 5.8) to 

investigate the temporal relationships between rhythmic activities in the two sites. 

By applying various frequencies of stimulation to the piriform cortex, we found: 

• The response of these structures to stimulation trains occurred most strongly 

near 15 Hz. This suggests that rhythmic activity near 15 Hz may play an im­

portant role in gating the olfactory input to the hippocampus via the entorhinal 

cortex. 

• The coherence between the EEG signals recorded from these sites was found 

to increase monotonically with stimulation frequency up to about 35 Hz. This 

indicates although the neural signals above 15 Hz were reduced in magnitude, 

their phase coupling was even more consistent. 

The time-frequency analysis used in the thesis provided an effective tool for investi­

gating the role that oscillatory states play in determining the flow of neuronal activity 

48 
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between brain sites. 

We used several time-frequency analysis methods to study the EEG signals. 

These methods include the STFT, WVD and MW-TFA. The WVD offered the highest 

resolution in both time and frequency among these methods, but its cross-terms and 

negative values made it difficult to interpret the results. The MW-TFA produced a 

low bias and low variance estimation of the time-frequency distribution, given only one 

realization of data, but it had poorer time and frequency resolution than the STFT. 

The STFT provided a time-frequency presentation with no cross-terms and reasonably 

good time and frequency resolution; it seems to be the most suitable method for the 

stimulation-induced signals studied in this thesis. For the spontaneous EEG, which 

is both stochastic and nonstationary, the MW-TFA would be a better choice than 

the STFT. 

We also compared the performance of the MW-TFA using Slepian sequences 

and Hermite functions. By carefully matching the two window functions, we found 

there was no noticeable difference in time-frequency plane between them. Although 

the Slepian sequences are the optimal windows, the Hermite functions would be more 

suitable when adaptive windows are needed owing to their simplicity in calculation. 
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