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Abstract 

A model of two predators competing for the same prey also involving predation in­

teraction between the two predators is considered. Coexistence in forms of equilibria 

and periodic orbits is obtained by using bifurcation and dynamical systems theory. 

Global dynamics is obtained by studying the survival functions and persistence is 

obtained by using ·a theorem of Freedman and Waltman. Finally, numerical results 

for a specific example demonstrate the above. A Hop£ bifurcation at the interior 

equilibrium and its unstable periodic orbit are observed. 
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Chapter 1 

Introduction 

1.1 The background 

During the last several decades, much work in mathematical biology and ecology has 

been focused on studying the dynamics of predator-prey systems using population 

models, for example, see [6, 16, 18, 31, 35]. The classical predation population model 

goes back to the Kolmogorov model in the general case, see [7, 10, 11] and Chapter 5 

of [8]. 

In the Kolmogorov predation model as shown below, it is assumed that the 

growth rate of a species is proportional to the number of the species present. 

x' = xf(x, y) 
{ y' = yg(x,y). 

Some conditions must be put on f and g to make x a prey and y a predator, see 

Chapter 5 of [8]. 

Some population models deal exclusively with predation interaction among the 

species and ignore other types of interactions. However, natural ecosystems may not 

be so simple. Instead, there are usually many species and the interactions among 

them may be very complicated. Besides the main predation interaction, some ecosys­

tems are usually affected by certain seasonal or environmental factors. Imagine how 

complex and complicated a natural ecosystem is. For example, consider barracudas 
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2 CHAPTER 1. INTRODUCTION 

eating the other fish. Besides being predators, they have cleaner fish that swim with 

them and clean their teeth. A model trying to take all possible factors into consid­

eration would be mathematically intractable. Therefore restricting the model to a 

chemostat, where interaction and outside influences are easy to control, simplifies it 

reasonably and is very useful, as pointed out by Waltman et al. in [35]. 

A chemostat is an experimental apparatus that is used to culture microorgan­

isms in the laboratory. It is of ecological interest for being a laboratory model of a 

very simple lake where mathematics is tractable, the parameters are measurable and 

the experiments are reasonable, [34). Therefore it is of great importance both analyt­

ically and experimentally. The importance was well demonstrated in [2, 5, 6, 34, 35] 

and some other articles. 

The apparatus consists of three connected vessels. The first contains all of the 

nutrients needed for growth of a microorganism. The nutrient is pumped at some rate 

into the second vessel, the culture vessel. The culture vessel is charged with a variety 

of microorganisms, so it contains a mixture of nutrient and organisms. Its output is 

collected in the third vessel which represents the "production" of the chemostat. 

The culture vessel is well stirred and all other significant parameters affect- ing 

growth, for example, temperature, are measured and therefore controlled. Since the 

output is continuous, the chemostat is often referred to as "continuous culture" to 

contrast it with the more common "batch culture" of microorganisms. A schematic 

is shown in Figure A.l. Some specific applications were studied in [35]. 

For the chemostat, a model based on the population densities can be derived 

and described by a system of ordinary differential equations ( 0 .D .E.), see [34]. 

Because population densities must be non-negative, we restrict ourselves to 

the positive cone of the phase space. Understanding under what conditions distinct 

populations can coexist and avoid extinction is of importance to the ecologists. Cor­

responding to coexistence are attractors in the interior of the positive cone such as 

equilibria and periodic orbits of an O.D.E. system. 

Mathematically, an equilibrium of an O.D.E. system is a point in the phase 

space at which the vector field of the system vanishes. Hence an equilibrium represents 

the zero speed or stationary state of the system. A system once going into such a state 
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will stay there forever provided that there is absolutely no disturbance. A periodic 

orbit is a closed loop in the phase space that the system goes along. It returns to 

the same state after a constant period of time. Thus the system repeats the state 

again and again. These two kinds of phenomena display some sort of balance among 

the species. Therefore if stable and situated in the positive cone, they represent 

coexistence of species. 

One important aspect related to coexistence is the stability of the equilibria and 

the periodic orbits. In a natural ecosystem, a lot of factors contribute to the system, 

some of them impose disturbance. For example, a system may be disturbed by some 

environmental events such as infective diseases or disasters like floods or typhoons, 

which suddenly change the system considerably. These kinds of disturbances may 

force the population densities to fluctuate drastically, and hence may pull the system 

from an unstable state to a totally different one. Therefore if an equilibrium or 

a periodic orbit is unstable, a small perturbation by the disturbance caused by the 

external events will make the system lose the balance and may result in the extinction 

of some species. Therefore stability plays an important role in ecosystems. 

Using bifurcation and dynamical systems theory, one can analyze the local 

and global dynamics by studying the eigenvalues at the equilibria and the Floquet 

exponents at the periodic orbits. When the invariant sets of the O.D.E. systems are 

too complicated to describe, persistence is a useful concept for answering questions 

related to species survival: Do some of the species considered become extinct or do 

all of them coexist. However, the specific type of the coexistence, when it occurs, is 

usually not specified, see [4, 13]. 

Now let's go back to the model. Among various predation population models, 

the foodchain and foodweb models are of interest. The former consists of links of a 

chain with one species on each link, where one species feeds on the one next to it, 

that in turn feeds on another next to it. The latter consists of one or more species 

feeding on one or more other species. Both are clearly described in Figure A.2. 

Pioneer's work goes back to Volterra, Lotka and Verhulst. The single species 
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logistic growth model is attributed to Verhulst, see [32, 8, 35]. The functional model 

x' = x(a-j3y) 
{ y' = y(-1 + bx), 

where y is the predator, x the prey and a,/3,/,b > 0, is well known as the Lotka­

Volterra predator-prey model, see [8, 25, 33]. Another model frequently studied in­

volves the Holling type or Michaelis-Menten type response function, 

x' = x(a- a':~J 
{ y' = y(-!+a'::), 

where again y is the predator, x the prey and a,'' m, a > 0. Models using these 

types of response functions have been intensively studied, see [1, 2, 11, 12, 14, 15, 

16, 19, 20, 21, 22, 29, 30, 34, 36]. The Michaelis-Menten type of functional response 

is assumed to be a good model for most microorganisms and small invertebrates. In 

microorganisms, resource uptake occurs at the level of enzyme-mediated transport of 

specific nutrients across the cell wall, and uptake rates are generally characterized by 

the Michaelis-Menten equations for enzyme-catalyzed reactions, see [35]. 

The model considered here consists of two predators x1 and x 2 competing for 

the same prey s, while one of the predators, x2 , eats the other x1 as well. Therefore 

predator x1 is also a prey. The preys is self-renewable and assumed to have a logistic 

growth rate. Thus it has an upper limit J(, called the carrying capacity of the envi­

ronment. This is the concentration that would appear if both predators are absent. 

It is assumed that the amount of the consumption of the predator x 2 feeding on x1 is 

proportional to a parameter t:, which is the main bifurcation parameter for the model. 

Due to the energy, time or even taste, this interaction between the two predators af­

fects the predation of x2 on s, usually reducing it by an amount proportional to an 

increasing function g( t:). Finally the Michaelis-Menten type response functions are 

assumed. The model interactions are shown in Figure A.3. 

One can see clearly from the figure that this model has two extreme cases. 

First, E = 0. Thus g( t:) = 0. It becomes a model of two predators competing for the 

same prey without any interaction between the two predators. It was well studied 

in [3, 17, 21, 29, 35]. An interior periodic orbit was obtained in [3]. The stability 
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of this periodic orbit was obtained in [29]. However, in this case there is no interior 

equilibrium in general. Secondly, g(t) = 1 for large t. It becomes the simple foodchain 

model, which is similar to that studied by Freedman and Waltman in [9]. They used 

the Lotka-Volterra type instead of the Michaelis-Menten type response function for 

the upper trophic consumption of x 2 on x1 . There exist at most two interior equilibria 

for this case. Under different conditions, there could be one or two or none. But the 

bifurcation was disregarded in [9] because the parameter t can be incorporated in the 

response function and did not appear explicitly in their model. Thus our model here 

unifies the two cases while including each as a limiting case. At intermediate value 

of t, as expected, the model inherits some properties of both extreme cases while 

it displays some quite different characters as well, for example, the stable interior 

periodic orbit inherited from the case t = 0, the interior equilibrium, the interior 

Hopf bifurcation and its unstable periodic orbit. 

1.2 Thesis outline 

This thesis is organized as follows. The model and its explanation are given in Sec­

tion 2.1. Some preliminary results are given in Section 2.2. In Chapter 3, we analyze 

the equilibria and their local dynamics. Furthermore, the existence and the unique­

ness of the interior equilibrium are obtained by using fundamental analysis and the 

Implicit Function Theorem. Section 4.2 shows that the steady-state bifurcation at 

the equilibrium Pi in the s - Xi plane generates the interior equilibrium P0 when t 

varies. Section 4.3 shows that the steady-state bifurcation at the limit cycle f' 1 in the 

s - x1 plane generates a stable interior periodic orbit r when either t increases or D 2 

decreases or both. This interior periodic orbit collapses to the limit cycle f' 2 in the 

s- x 2 plane when either t increases or D1 increases or both. In Section 4.4, the other 

extreme case, i.e. the simple foodchain is considered. There exist at most two interior 

equilibria. Under different conditions, there may exist one interior equilibrium or two 

or none. The bifurcations of these interior equilibria are also considered. It is fol­

lowed by the global dynamics and the persistence using a theorem of Freedman and 

Waltman in Section 5.2 and Section 5.1, respectively. Finally numerical results for a 
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specific case with a fixed set of parameters are given in Chapter 6. These demonstrate 

all the results in Chapter 3, Sections 4.2 and 4.3, which give the interior equilibrium 

and the stable interior periodic orbit. Moreover, a Hop£ bifurcation at the interior 

equilibrium and its unstable periodic orbit are observed. Thus at least two interior 

periodic orbits exist, one stable and the other unstable. 



Chapter 2 

The model and the preliminaries 

2.1 The model 

The system considered here is a three species model with two predators feeding on the 

same prey, while one predator also eats the other predator. Thus one of the predators 

is also a prey. The Michaelis-Menten type response functions are used to model the 

consumption. The model is given by the following system of ordinary differential 

equations. 

s' s(1 _ ..!.) _ ffi]SX] _ ffi2SX2 ( 1 - (c))
I K Yt(at+s) Y2(a2+s) g 
ffi] SX] - D X - ffi3X]X2lx'1 1 1 (2.1.1)
a1 +s y3(a3+xi){

x' m2sx2(1 - g(c)) _ D x + m3x)X2l
2 2 2a2+s a3+x1 ' 

with 

s(O) 2 0, x;(O) 2 0, i = 1, 2, 

where s is the density of the prey at time t, and x1 , x 2 are the densities of the two 

predators at time t. mi is the maximum growth rate of Xi feeding on s ( m3 of x 2 

on Xt ), Di the death rate of Xi. Yi is the yield factor for x; feeding on s (y3 for x 2 

on x1 ) under the basic assumption that the conversion to biomass is proportional 

to consumption. ai is the half-saturation constant for Xi on s (a3 for x 2 on xi), 

which is the prey density at which the functional response of the predation is half 

maximal. The parameters 1 and J( are the intrinsic rate of increase and the carrying 

7 




8 CHAPTER 2. THE MODEL AND THE PRELIMINARIES 

capacity for the prey population, respectively. t: is the rate for x 2 feeding on x1 and 

the function g( t:) is the reduction rate for x 2 feeding on s due to the consumption of 

x 2 on x1 , thus satisfying the following conditions. g(O) = 0, 0 ~ g( t:) ~ B ~ 1 and 

0 ~ g'( t:) ~ B1 for 0 ~ t: < +oo, where B and B1 are positive constants. Hence all 

parameters stated above are positive. No time delay from the consumption on the 

preys to the yield of the predators is assumed. 

When t: = 0, the system reduces to the system studied in [17] and [3]. When 

g(t:) = 1, it reduces to a simple three species foodchain model, which is similar to 

that studied in [9]. To simplify system (2.1.1), one can use the following scaling. 

~ mi t D·1
--+Xi, --+ mi, --+ t, - -+ Di, fori= 1,2, 
~ 1 1 1 

and 
a3 m3 YIY3 
--+ a3, --+ m3, ---+ Y3· 
Y1 I Y2 

Then (2.1.1) becomes 

s(1 _ ~) _ _ m2SX2 ( 1 _ g(t:))ffi] SX]s' 
R a1 +s a2+s 

m}SXI _ D X _ maXIX2(x'1 1 1 (2.1.2)
a1+s Ya(aa+xl){ 

ffi2SX2 (1 - g(t:)) - D X + ffi3XlX2fX~ a2+s 2 2 aa+x1 ' 

with 

s(O) 2:: 0, xi(O) 2:: 0, i = 1, 2. 

Thus we study system (2.1.2) instead of (2.1.1). 

2.2 Some preliminary results 

We consider the solutions in the positive octant and have the following results. 

Lemma 1 The positive octant is invariant under the flow of system (2.1.2). 

Proof Notice that system (2.1.2) has three invariant sets s = 0, x1 = 0 and x 2 = 0, 

which are the boundaries of the positive octant. By the uniqueness of the solutions 



9 CHAPTER 2. THE MODEL AND THE PRELIMINARIES 

of system (2.1.2), any solution with initial value in the interior of the positive octant 

does not intersect any of the three boundary planes, and thus stays in the interior 

forever. This shows that the interior is also invariant under the flow of system (2.1.2). 

This completes the proof. 

I 

We use the eventual uniform boundedness to describe the solutions of sys­

tem (2.1.2). 

Definition 1 The solutions of a differential equation x' = F(x, t) with x E Rn are 

said to be eventually uniformly bounded if there exists a compact region V C R n, 

independent of the solutions, such that for any initial value x 0 E R n, there exists a 

time t0 (x0 ), such that the solution x(t, x0 ) with initial value x0 satisfies x(t, x 0 ) E V 

for allt ~ to(xo). 

Lemma 2 The solutions of system (2.1.2) with initial conditions in the positive oc­

tant are eventually uniformly bounded. 

Proof Suppose (s(t),x 1(t),x 2 (t)) is a solution of (2.1.2) with s(O) ~ 0 and xi(O) ~ 0, 

i = 1, 2. By Lemma 1, one has s(t) ~ 0 and Xi(t) ~ 0, i = 1, 2 for any t ~ 0. 

Step 1. s(t) is eventually uniformly bounded by J( + a 1 for any a 1 > 0. 

From the first equation of (2.1.2), one has s' ::; s(1 - slK). Then s' < 0 and s(t) 

is decreasing for any s > K. There exists t1 > 0, such that s(ti) < J( + a 1 . If 

not, s(t) ~ J( + a1 for any t. Then limt-..oo s(t) exists by the monotonicity. Denote 
0 0s = limt-..00 s(t). s(t) ~ s ~ J( +a 1 . s'(t) ::; s(1- slK) ::; s0(1- s0 I I<) < 0 for any 

t since s(t) ~ s0 and s(1- slK) is decreasing for s >I<. By Mean Value Theorem 

s(t)- s(O) = s'(e)t ::; s0 (1 - s0IK)t-+ -oo as t-+ +oo. 

0where ~ E [0, t]. This contradicts limt-..oo s(t) = s • Thus t 1 exists. Furthermore 

one has that s(t) < I< + 0'1 for any t ~ t1. If not, there exists ti > t1 such that 
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s(t;') = ]{ + u1 and s(t) < ]{ + u1 for t1 ::; t < ti'. This obviously implies that 

s'(ti') ~ 0. But 

This contradiction shows that s(t) ::; ]{ + u1 for any t 2:: t 1 . 

Step 2. x 1 (t) is eventually uniformly bounded by some constant C1 . 

It is obvious that s(1 -sf I<) ::; K/4. From the first equation of (2.1.2), one has 

s'::; K/4-m1sxtf(a1 + s) together with x~::; m1sxtf(a1+ s)-D1x1from the second 

equation. Combining these two gives (xi + s )' ::; - DI xi + I</4. Thus (xi + s )' ::; 

-Dt(Xt + s- Ct) fort 2:: tl, where cl = K/(4Dt) + ]{ + O"t. Then (xl + s- Cl)'::; 

-D1 (x1 + s- C1 ). It is equivalent to ((xi+ s- Ct)eD1t)'::; 0. Taking the integral on 

both sides from t1 to t, one obtains 

Thus for any fixed 0"2 > 0, there exists t2 > ti, such that XI ::; CI + 0"2 for all t 2:: t2. 

Take CI = CI + u2. Then xi(t) ::; CI for all t ~ t2. 

Step 3. x 2 (t) is eventually uniformly bounded by some constant C2. 

Suppose m1 > D1 . One has 

from the second equation of (2.1.2) and 

from the first one. Combining these two inequalities with the third equation of (2.1.2) 

gives 

(x2 + y3x1 + s)' 	 < -D2x2 + K/4 + CtY3(mt- Dt) 

< -D2(x2 + y3x1 + s- C2), 
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where c2 = Cly3(ml - DI)/D2 + I<j(4D2) + f{ + (}"1 + Y3Cl. In the same way as in 

step 2, one has 

x2(t) +Y3XI(t) +s(t)- c2 ~ 

(x2(t2) + y3x1(t2) + s(t2)- C2)eD2 (t2 -t) ~ 0 as t ~ +oo. 

Thus for any fixed <r3 > 0, there exists a sufficiently large t3, t3 > t2 such that 

X2 + Y3XI + s ~ c2 + 0"3 for any t ~ t3. Take c2 = c2 + (}"3· X2 ~ c2 for all t ~ t3. 

Then take 'D = [0, I< +<r1] x [0, C1] x [0, C2], the solution (s(t), x1(t), x2(t)) E 'D 

fort ~ t 3 • Thus it is eventually uniformly bounded by 'D. 

I 
In order to organize the domain of the parameters, it is necessary to give some 

results on the survival function fi (s). This function plays an important role in the 

analysis of the competition between the predators. 

Definition 2 The function fi(s) = m;s - D· +or s > -ai zs called the survival 
ai+s '' J' 

function of the species Xi. 

Lemma 3 

(i). fi(s) is monotonically increasing with the upper bound mi-Di· 


(ii). fi(s) vanishes at Ai = ai/(bi -1) > 0 ifbi > 1, where bi = mi/Di· 


(iii). f1(s) and h(s) intersect at a unique point for the branch s > -ai if m1 - D1 > 

m2 - D2 and a2 > a1. 


Proof (i). ff(s) = (a7~:;) 2 > 0. Thus fi(s) is increasing. lims-++oo fi(s) = mi-Di, 

which is the upper bound. (ii). It is easy to see that fi(Ai) = 0 if bi > 1. fi(s) is shown 

in Figure A.4. (iii). Set JI(s) = h(s). Then C:rs - D1 = =~ss - D2. This reduces 

to (m1 - D1)- (m2 - D2)- :1~! = -::~;. Denote M = (m1- D1)- (m2- D2)1
and take the translation u = a1 + s. Then M-~ u = - ( a 2 

m -a
2 aJ+ 

1 
. We obtain a u 

quadratic equation Mu 2 + Nu- m1a1(a2 - a1) = 0, where N is the coefficient of 

the first order term. Since M > 0 and a2 > a1, it is easy to see that this quadratic 

function of u has two distinct roots, one is positive, the other negative, as shown in 
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Figure A.5. Thus there exists a unique intersection of f 1 ( s) and f 2 ( s) for the branch 

s > -a1 corresponding to the positive root of u. The negative root corresponds to 

the intersection on the branch s < -a1 , which has no interest for our system. The 

intersection is shown in Figure A.6. 

I 
The extreme case of (2.1.2), where t: = 0, has been well studied, for example 

see [3, 17). Some of the results are given in the following lemmas. The other extreme 

case, where g(t:) = 1, will be discussed in section 4.4. 

Lemma 4 Suppose t: = 0. 


(i). Necessary conditions for each Xi, i = 1, 2, to survive are bi > 1 and 0 < Ai < I<. 


In such case, there exists a unique equilibrium Pi in the interior of the s - Xi plane 


with the componentsP1 (A. 11 xi,O) andP2(A 2 ,0,x;) where xi= (1-,.\)I<)(ai+.\i)jmi. 


(ii). There is no periodic orbit in the interior of the s -xi plane if 0 < ,.\i < I< < 

ai +2,.\i. Pi is asymptotically stable in this case. 


(iii). Pi comes from the bifurcation at (I<,O,O) when I< increases through ,.\i· For 


I< < ,.\i, there is no equilibrium in the interior of the s -xi plane. 


(iv). A Hopf bifurcation occurs at Pi when]( = ai +2,.\i. This gives a unique periodic 


orbit around Pi in the s - Xi plane for ]( > ai +2.\i. 


Proof The proof of (i) and (ii) is in [17). The proof of (iv) is in [24, 23, 29). Smith 

showed the Hop£ bifurcation when ]( = ai + 2,.\i and the uniqueness for small ](­

(ai +2,.\i) > 0 in [29). Liou and Cheng [24) and Kuang and Freedman [23) showed the 

uniqueness for any I<- (ai + 2,.\i) > 0. 

Now we prove (iii). It is easy to see that there is no equilibrium in the interior 

of the s- Xi plane for ]( < ,.\i· To prove the bifurcation at (K, 0, 0), we consider the 

reduced 2-dimensional system 

s' s(1 - .!...) - m;sx;
K a;+s 

{ X~ m;sx; _ D·x· 
I a;+s I I" 

The linearization at (I<, 0) is 

s' 


{ x'
I 
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The two eigenvalues at (K, 0) are -1 and fi(K). 

By Theorem 5 in Chapter 4, a bifurcation at (K, 0) gives birth to a pair of equilibria in 

the interior of the s-xi plane. One is in the positive cone, the other not. Furthermore, 

lim>.;-+K xi = 0. Thus lim;.;-+K Pi = (K, 0, 0). This completes the proof. 

While the case with one predator absent is discussed in Lemma 4, the one with 

two competing predators will be discussed in the following lemmas. 

Lemma 5 Suppose t: = 0 and 0 < >.1 < >.2 < ]{. 
(i). limt-+oo x 2 = 0 if b1 ~ b2. Thus the inequality b1 < b2 must hold if x2 survives. 

(ii). If a1 < a2 and]{ < a2 + 2>.2, then limsupt....oo x1(t) > 0. Thus x1 survives. 

The proof is in [17]. 

Lemma 6 Suppose t: = 0 and 0 < >. 1 < >.2 < ]{. 

(i). If there exists a compact invariant set of the flow of (2.1.2) in the interior of the 


positive octant, f 1 ( s) and f 2(s) intersect in (0, K). 


(ii). If a1 < a2 and m 1 - D 1 > m2- D2, (i) implies 1 < b1 < b2 and D1 > D2. 


Proof With the cylindrical coordinate substitution s = s, x1 = p cos 0, x2 = p sin 0, 

system (2.1.2) with t: = 0 becomes 

(2.2.1) 

(i). If / 1 ( s) and h(s) do not intersect in (0, K), h(s)- fi (s) does not vanish in 

(0, K). Thus()' does not vanish in (0, K) x (0, 7r/2). Since >.1 < >.2, / 1(>.2) > f1(>.1) = 

I 
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0 = f 2 (>.2 ). Thus j 1 (s) > f 2 (s) for s E (O,K). Hence()'< 0 for 0:::; t < +oo. If 

there exists a compact invariant set, O(t) attains a maximum and minimum on the 

set. Denote 0° = O(to) = maxo<t<oo O(t). Then 0 < 0° < 1r /2 and ()'(to) = 0. This 

contradicts()'< 0 for() E (0, 1r /2). 

(ii). The survival of x1 and x 2 implies 1 < b1 < b2 by Lemmas 4 and 5. Since 

m 1 - D1 > m2 - D2 and a1 < a2 , f 1 ( s) and h (s) intersect at a unique point by 

Lemma 3. If D1 :::; D 2 , they intersect at some -a1 < s < 0. This contradicts (i). 

I 

From the above lemmas, it is reasonable to consider the coexistence of system 

(2.1.2) in the parameter region 0 < >.1 < >. 2 < K, 1 < b1 < b2 , a1 < a2 and D1 > D2 • 

For c = 0, conditions for coexistence are given in [3]. In the following sections, all 

parameters are assumed to be in this region with c > 0 unless stated otherwise. 



Chapter 3 

Equilibria and their local 

dynamics 

It is easy to see that there are two equilibria of system (2.1.2) on the s-axis, E0 (0, 0, 0) 

and E1(K, 0, 0). They have very simple local dynamics. The linearizations are 

at E0 , and 

s' = (/(- s)- :;~~x1- ::t~x2(1- g(t)) 

X~ = f1(K)x1
{ 

x~ = J2(K)x2 

at El? where / 2 (s) = ;:rs(1- g(t))- D2 • The dynamics at Eo and E1 are shown in 

Figures A.7 and A.8. 

Lemma 7 (i). There exists a unique equilibrium P1(5.1? xl? 0) in the s- x 1 plane for 

any E > 0, where 5.1 = A1, x1 =xi. Thus P1 = P1 independent of L 

(ii). If B < 1 - (a2 + K)j(b2K), there exists a unique equilibrium P2 (5. 2 , 0, x2) in 

the s- x 2 plane for any E > 0, where 5.2 = a2/[b2(1- g(t)) -1] and x2 = a2(1­

1t)/[m2(1- g(t))- D2]. Thus P2 depends onE and 5.2 is increasing in t. 

(iii). If g( to) = 1 - a~ +f~ for some to > 0 while g( t) < 1 - ag:f forE < Eo, then P22

1.5 
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collapses to E1(K, 0, 0) when E increases to E0 • 


(iv). ForE 2: Eo, there is no equilibrium in the interior of the s - x 2 plane. 


Proof (i) and (ii) can be easily shown by simple direct calculation. For the mono­

tonicity, one notices that g( E) is increasing in E. Thus .X 2 is increasing in L One notices 

that for m2 = m2 (1- g(E)), (iii) and (iv) are analogous to (iii) of Lemma 4. The only 

difference is that Eis chosen as the bifurcation parameter. One has lim!-+!o .X2(E) = J{ 

and lim!-+!o x2( E) = 0. Thus lim!-+!o p2 = E1. 

I 

Theorem 1 For .X; < J{ < a;+2.X;, the unique equilibrium P; is asymptotically stable 

in the s- x; plane. A Hopf bifurcation occurs at P; when a;+ 2.X; = K, while P; loses 

its stability. The bifurcation generates a unique stable periodic orbit f\ around P; in 

the s- x; plane for a;+ 2.X; < K, while P; becomes unstable. The orbit I\ and its 

period T1 are independent of E while f' 2 and T2 are dependent on g( t:). 

Proof ·with the absence of one predator, system (2.1.2) reduces to a 2-dimensional 

one, either 
s(l _ ~) _ mtsxts' 

R a1+s 

{ x'1 f1(s)x1, 

or 
s' s(1- JJ- ':;~2 (1- g(E)) 

{ x'2 J2(s )x2. 

Clearly, the former one does not involve E while the latter one does. With m2 = 
m 2 (1- g(E)), the latter one is analogous to the former one, which is exactly the same 

as considered in Lemma 4. Thus the proof is similar. Since the former one does not 

involve E while the latter does, f'1 and T1 are independent of E while f' 2 and T2 are 

dependent on g(E). 

I 
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Next consider the interior equilibrium. Notice that / 2 has similar properties 

to f2. Let the right hand side functions of system (2.1.2) equal zero. One has 

(3.0.1) 

Obviously f 1 (s) > 0 and / 2 (s) < 0 at the equilibrium in the interior of the positive 

octant. Since ]2 (s) vanishes at 5.2 2: .\2 > >.1, then .\1 < s < 5.2. From the third 

equation of (3.0.1), one has x1 = (::~.f;(!r Substituting into the second equation, 

one has x2 = y3 a~j((\. Substituting both into the first equation, one has 
(mJ 2 s 

Then 

(3.0.2) 

Let L(s) = m3(1- s/K),R1 (s) = m2 y: a~~!(s),R2(s) = -(1-; + :;~!)]2 (s). Then2
(3.0.2) becomes 

tL(s) + R1 (s)g(t) = R1(s) + R2(s). (3.0.3) 

The right hand side function R1 (s) + R2(s) is positive for >. 1 < s < 5. 2 < K. It is 

also uniformly bounded with respect to t since / 2 (s), the only term involving t, is 

uniformly bounded and all the other terms are bounded for >. 1 < s < 5.2. 
Denote the left hand side function of (3.0.3) by R(s, t). For t > 0 and s E 

(>.ll5.2), R(s,O) = O,R(s,t) > 0, lim(....+ooR(s,t) = +oo uniformly forB< 1- ag7{ 
and 

~~(s,t) = L(s) + R1 (s)g'(t) > 0. 

Summarizing the above, one has 

2
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Theorem 2 Suppose B < 1 - ag i{. For any fixed s E (.\ 1 , :\2 ), there exists E8 > 0,
2

such that (3.0.3) is satisfied and hence there exists an interior equilibrium. For suffi­

ciently small E and large c., there is no such equilibrium. Under certain assumptions 

on the parameters, the uniqueness of the interior equilibrium holds. 

Proof By the above discussion, one knows that for any fixed s E ( .\11 :\2), R(s, c.) 

will intersect the right hand side function for some E8 > 0, thus giving the interior 

equilibrium P0 (so, xw, x2o) with .\1 < s0 < :\2 and E8 m3 + J2(so) > 0. Since the right 

hand side function attains a positive maximum and minimum, there is no intersection 

of the functions on each side of equation (3.0.3) for sufficiently small E or large c. 

For the conditions of the existence and the uniqueness of the interior equilib­

rium, more detailed arguments are required. Rewriting (3.0.3), one has 

(3.0.4) 

(3.0.5) 

R
where 


1 (s) = m2y3 a3 [f1(s)- (m1- D1)]. 

a2 + s 

Before completing the proof, we need several lemmas. 

Lemma 8 Given two positive functions f and h: R -+ R+. If both f and h are 

decreasing and convex, and iff" and h" exist, then f · h is decreasing and convex. 

Proof Since f and g are decreasing and convex, J', h' :::; 0, and J", h" ~ 0. Then 

(J · h)' = f' · h + f · h' :::; 0 and (! · h)" = f" · h + 2f' · h' + f · h" ~ 0. Thus f · h is 

decreasing and convex. 

I 

Lemma 9 Both the left hand side function and the right hand side function of equa­

tion (3.0.5) are decreasing and convex ins. 
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Proof First, L(s) is decreasing and linear, therefore is convex. Secondly, since both 

m2y3a3/ ( a2+ s) and m1- D1 - f1 (s) are positive, decreasing and convex, - R1(s) = 
[m1 - D1 - fi(s)]m2y3a3/(a2+s) is decreasing and convex by Lemma 8. Thirdly, 

both -/2 ( s) and 1 - s/ ]( + a3m!/ ( a1 + s) are positive, decreasing and convex. Thus 

R2 (s) = -/2(s)(1- sj]( + a3mi/(a1+s)) is decreasing and convex by Lemma 8. 

Last, R3(s) is decreasing and convex. Obviously, the sum of decreasing and convex 

functions is decreasing and convex. This completes the proof. 

I 
Lemma 9 describes how the two functions of both sides of equation (3.0.5) can 

intersect in a simple way. By the construction of (3.0.5) from (3.0.4), the functions of 

both sides of (3.0.4) intersect in a similar way to the one of (3.0.5). By the arguments 

of Lemma 9, L(s) and R2(s) are decreasing and convex. There can be two ways in 

which the functions of both sides of (3.0.4) intersect ( see Figures A.9 and A.lO ), 

t:L(.A1) < R2(-A1) 
(3.0.6){ t:L(3;2)- R1(.);2)(l- g(t:)) > 0 

and 
t:L(,\1) > R2(-A1) 

(3.0.7){ t:L(3;2)- R1(.);2)(1- g(t:)) < 0. 

Lemma 10 If 

B can be chosen small enough such that 

R1(.);2(B)) R2(-A1) 

L(.A2(B)) < L(.A1) . 


Then the interior equilibrium exists for 

and we have case (3.0.6). 
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Proof (3.0.6) is equivalent to 

R1(:\2) R2(-X1) 

L(,\2) (1 - g(E)) < € < L(-\1). 


Since R2(s) > R2(s), where R2(s) = -[1-s/K +a3mtf(a1+s)]f2(s), it suffices that 

R1(:\2) R2(-X1) 
L(-\2) < € < L(,\1) . 

Notice that :\2 depends on €. Since R1 (s) is increasing and L(s) is decreasing, ~\~) 

is increasing. Thus ~1S:2/ is increasing in € by (ii) of Lemma 7. To set B, let 

R1(:\2(B)) R2(-\1) 
(3.0.8)

L(-\2(B)) < L(-\1) . 

Logically, it is necessary that ~\\~2/ < ~2S~\) when B = 0. By the definitions of R1 ( s) 

and R2 ( s) , one has 

m2y3a3J1(-X2) -(L(,\1) + a3mt/(a1 + -\1))!2(,\1) 
(a2 + -\2)L(A2) < L(-X1) . 

Thus 

(3.0.9) 

Hence one can choose € E ( ~\\:2/://, ~2S~1/) to meet (3.0.6) by choosing B small 

enough such that (3.0.8) holds. 

I 
The uniqueness can be obtained by putting further restrictions on the param­

eters. 

Lemma 11 Jf < a2(1-B)(at+-\I) and m < l[D - m + (K+a2)(m2(1-B)-D2)2] then 
J Y3 - al(a2+-\1) 3 - ! 2 2 m2a2(1-B) J 

the interior equilibrium is unique. 

Proof Consider the derivatives of the functions of (3.0.5). Let EL'(s)- R~(s)(1-

g( E)) > R~(s) +R;(s) for s E (-\1, :\2) in case (3.0.6). Then the two functions intersect 

at most once. This gives the uniqueness. This inequality is equivalent to 

EL1(s)- R~(s)(1- g(E)) > R~(s). (3.0.10) 
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In order to show this, it suffices to show that eL'(s)-R~(s) > R~(s) since -R~(s) < 0. 

Direct calculation gives L'(s) = -m3jK, R~(s) = m2y3a3[(:f~<:/2 + (a +:)~~!+s)2] and2 

Then one has 

To show this, it suffices to show that 

m2y3a3f1 (s )j(a2 + s)2 > m1a3]2(s )j(a1 + s)2 


_ m2y3a3m1a1 > _ a3m1m2a2(l-gh!)) 

(a2+s)(a1+s)2 - (a1+s)(a2+s)
{ 

-em3j ]{ 2': -(1- sf K)m2a2(1- g(e))j(a2 + s)2+ J2(s)j K. 

The first inequality is obviously true since ]2 ( s) < 0. The latter two are equivalent 

to the system 

For the first inequality to hold, it suffices to show that y3 < a2 (l-t)~l~.\1 ). The second 
- a1 a2 1 

one is equivalent to 
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To show this, it suffices to show that tm3 ~ D2 - m2 + m2 a2{K+~2 ~~l-B), where .5.2 = 
a2+ 2 

a 2 /[b2 (1 -B)- 1]. This is equivalent to 

D2)2(I<+ a2)(m2(1- B) ­
tm3 ~ D2-m2+ ( B) . m 2a2 1­

Hence if 

(3.0.11) 

the uniqueness holds. I 
Lemmas 8 and 10 complete the proof of Theorem 2 in case (3.0.6). Similar 

results in case (3.0.7) can be obtained in the same way. 

I 

Remarks 

1. If (3.0.8), (3.0.9) and (3.0.11) hold, there exists a unique equilibrium in the interior 

of the positive octant. 

2. The first inequality of (3.0.11) can be further reduced to y3 ~ 1 - B, since 

This is easier to test in specific cases. 

For the unique interior equilibrium P0 , the relation between t and s0 , the 

s-component of P0 , can be derived by the following theorem. 

Theorem 3 In case of (3.0.6) or (3.0.7), there exists a function t(s) on the s­

component of Po determined by (3.0.4) for small B 1 . t(s) is decreasing in case (3.0.6) 

and increasing in case (3.0.7). 

Proof Let F(t,s) = tL(s)- R1(s)(1- g(t))- R2(s). 

3 1 2oF L(s) + R 1(s)g'(t) _ (1 _ }s{ + a m ) m s g'(t)at a1 + s a 2 + s 

L(s) + g'(t)[RI(s) _ (1 _ }s~ + a3m1) m2s ]. 
i a1 + s a2 + s 
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R1 (s)- (1- sf J{ + a3mi/(a1 + s))m2s/(a2 + s) is bounded for -\1 < s < ~2· Since 

L(s) > 0 and g'(t:) < B1, ~~ > 0 for small B1 . 

By the Implicit Function Theorem (see page 196 of [32] or Appendix B of [8] ), 

there exists a unique function t:(s) satisfying F(t:(s),s) = 0. Thus (3.0.4) determines 

the function t:(s). 

Regarding t: as a function of s and taking the derivative with respect to s on 

both sides of (3.0.4), we obtain 

t:'(s)L(s) + t:(s)L'(s)- R~(s)(1- g(t:)) + R1(s)g'(t:)t:'(s) 

Then 

, m 2 s s a3m 1
t:'(s)[L(s) +R1(s)g (t:)- g'(t:) (1- }' + )]

a2 + s i a1 + s 
= -[t:(s)L'(s)- R~(s)(1- g(t:))] +R;(s). (3.0.12) 

Notice 

m1L(s) +g'(t:)[RI(s) _ m2s (1 _ s, + a3 
)] > O. 

a 2 + s 1i a 1 + s 

as shown above. The right hand side of (3.0.12) is negative in case (3.0.6) by (3.0.10). 

Thus t:'(s) < 0. t:(s) is decreasing. In case (3.0.7), (3.0.10) is reversed. Thus the right 

hand side of (3.0.12) is positive. Then t:'( s) > 0. t:( s) is increasing. 

Remark 

In Theorem 3, t:(s) should be written as t:(s0 ), a function of the s-component s0 of P0 • 

However, it may cause misunderstanding. So we omit the subindex for simplicity. 

Now consider the local dynamics at P1 and P2 • Notice that Theorem 1 states 

that Hop£ bifurcation in the coordinate plane occurs at Pi when Pi loses its stability 

and generates a unique stable periodic orbit f\. 

I 
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In the direction orthogonal to the plane, the stability depends on E. One can 

see it clearly with the following theorem. 

Notation 

By saying the stability in the orthogonal direction, we mean the stability in the 

direction orthogonal to the coordinate plane. 

Theorem 4 Assume E = 0. 


(i). For .\1 < .\2 , P2 is repelling and P1 is attracting in the orthogonal direction. 


(ii). There is no periodic orbit in any plane()= ()0 E (0, 1r /2), where ()0 is a constant. 


(iii). (i) also holds for sufficiently small E > 0. 


Proof (i) Take the same cylindrical substitution as in (2.2.1). Consider()' at Pi, 

O'(P1) = ~[!2(.\1)- !1(.\1)] sin(2 · 0) = 0. 

O'(P2) = ~[!2(,\2)- J1(.\2)]sin(2 · ~) = 0. 

()()' 
()()(PI) = [!2(.\1)- !1(.\1)] cos(2 · 0) = !2(.\1) < 0. 

()()' 7r 

7JB(P2) = [!2(.\2)- !t(,\2)] cos(2 · 2) = !1(.\2) > 0. 

Thus P1 is attracting while P2 is repelling. 

(ii) If there is a periodic orbit (s(t), x1(t), x2(t)) in() = ()0 E (0, 1r /2), O(t) =00 • 

Thus O'(t) _ 0. Then f 2(s)- f 1 (s) = 0. By Lemma 3, s(t) =s, a constant. Then 

s'(t) =0. From system (2.2.1) p' = pf2(s). For .\1 < .\2, f 2(s) =/= 0. If f2(s) > 0, 

p' > 0. Thus p is unbounded. Hence so are x1 and x 2 , contradicting boundedness. 

If f 2 (s) < 0, p converges to 0. Then both x 1 and x 2 become extinct while s remains 

constant. This also contradicts the basic assumption. Therefore there is no such 

periodic orbit. 

(iii) The proof will be given in Corollary 1 in Section 5.2. 

I 
The local dynamics at P1 and P2 for small E > 0 are shown in Figure A.11. 
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The bifurcations 

4.1 A bifurcation theorem 

To prove the bifurcations of system (2.1.2), we need a bifurcation theorem for the 

O.D.E. systems. 

Theorem 5 Consider the O.D.E. system 

X'= Z(X,ry) (4.1.1) 

where Tf is a parameter. Z(O,ry) = 0 for any 'TJ E R. Let 1r1 (ry),···,1rn(TJ) be then 


eigenvalues of(4.1.1) at (O,ry), Re(1ri(TJ)) the real part of1ri(TJ). Suppose 1r1(ry) is real 


and simple, 1r1 (0) = 0, and Z is en. 


(i). lf1r~(O) > O,Re(1ri(TJ)) < O,i = 2,···,n, there exists a unique cn-1 curve fs of 


stable equilibria in a small neighborhood of (0, 0) in Rn x R+. 


(ii). If 1r~ (0) < 0, Re(1ri(Tf)) > 0, i = 2, · · · , n, there exists a unique cn-1 curve fu of 


unstable equilibria in a small neighborhood of(O,O) in Rn x R+. 


(iii). lf1r~(O) > O,Re(1ri(TJ)) > O,i = 2,· · · ,n, there exists a unique cn-1 curve fu of 


unstable equilibria in a small neighborhood of (0, 0) in Rn x R-. 


These unique cn-1 curves are tangent toRn and the eigenvector of 1r1 (0) = 0 at (0, 0). 


2.5 
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These points and the points of (0, 'TJ) are the only equilibria in a small neighborhood 

of (0, 0). 

Proof Consider the flow </>a of ( 4.1.1) for any fixed a > 0. 

4>~ has fixed point (0, 'TJ ), at which the n eigenvalues are wi('TJ) = e11";(7J), i = 1, · · ·, n. 

Wt ('TJ) = e11"I(7J) is real and simple, W1 (0) = 1. </>~ is en since Z is en. 

(i). If 1r~ (0) > 0 and Re(7ri( 'TJ)) < 0, i = 2, .. ·, n, w~ (0) = 1r~ (O)e11"1 (o) > 0, the 

norm JJwi('TJ)II = eRe(11";(7J)) < 1,i = 2,···,n. By the theorem on page 24 in Marsden 

and McCracken [26] and Ruelle and Takens [28], there exists a unique en-l curve Rs 

of attracting fixed points of </>a in a small neighborhood of (0, 0) in Rn x R+. Rs is 

tangent to Rn and also tangent to the eigenvector of 1r1 (0) at (0, 0). These points 

of Rs and the points of (0, 'TJ) are the only fixed points of </>a. Thus the points on 

Rs are stable equilibria of (4.1.1). These points and the points of (O,'TJ) are the only 

equilibria in a small neighborhood of (0, 0). 

(ii). Consider the reverse time equation. Taking the substitution T = -t, one 

has 
dX dX 
dT = -dt = -Z(X, 'TJ). (4.1.2) 

At (0, 'TJ ), (4.1.2) has the eigenvalues 7i"i(T/) = -7ri( 'TJ ), i = 1, · · ·, n. 7i"1 (0) = 0, 7i"~ (0) > 
0, Re(?i"i('TJ)) < 0, i = 2, · · ·, n. By (i), there exists a en-I curve Ru of stable equilibria 

of (4.1.2) in a small neighborhood of (0,0) in Rn x R+. Ru is tangent to Rn and 

the eigenvector of 7r1 (0) at (0, 0). Thus Ru is the en-l curve of unstable equilibria of 

(4.1.1). 

(iii). Take the substitution T = -t, ( = -'TJ, (4.1.1) becomes 

dX ­
h = Z(X,(), ( 4.1.3) 
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where Z(X, () = -Z(X, -() since 

dX 	 dXa;;= -dt = -Z(X, TJ) = -Z(X, -(). 

Then eigenvalues at (0,() are .Bi(() = -7ri(-(),i = 1,···,n. ,81 (0) = 0,,8~(0) > 0. 

Re(,Bi(()) = -Re(1ri(-()) < O,i = 2,·· · ,n. By (i), there exists a unique cn-l curve 

Ru of stable equilibria of ( 4.1.3) in a small neighborhood of (0, 0) in Rn x R+ . Thus 

Ru is of unstable equilibria of ( 4.1.1) in Rn x R- . 

I 

4.2 	 The bifurcation at P1 or P2 generating an in­

terior equilibrium. 

By Theorem 1, Hop£ bifurcations occur in the coordinate planes at P1 and P2 • We 

will show that there is another bifurcation at P1 or P2 in the direction orthogonal to 

the plane, that gives birth to the interior equilibrium. 

Theorem 6 The interior equilibrium comes from the bifurcation at P1 and collapses 

to P2 for ]{ < ai + 2.Xi, i = 1, 2 1 or comes from the bifurcation at P2 and collapses to 

P1 for ]{ > ai +2.Xi, i = 1, 2 when t increases. 

Proof We consider the limit of the interior equilibrium P0 (s 0 , x10 , x20 ). Notice P0 

satisfies (3.0.1) and s0 satisfies (3.0.4). Regard t as a function of s0 determined by 

(3.0.4), and take the limit of (3.0.4) as s0 approximates to .X1 • Then 

one has 

while 
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Thus lim50 _,.,\1 Po= P1. 

Take the linearization of (2.1.2) at P1 for any E > 0. 


0 

0 

where 
_.!!!:ili_(l- g(t:)) )a2+-\1 

m3x1•V= 
y3(a3+x1) ' 

!2(>.1) + :~i: 
It is easy to see that one eigenvalue is 

- m3x1 E
7ri(E) = /z().I) + _ , 

a3 +xi 

and its eigenvector crosses the s- XI plane transversally. The other two eigenvalues 

satisfy a quadratic equation 

By the Routh-Hurwitz criterion, the real parts of the eigenvalues have the same sign 

as 

if J{ < ai + 2>.I 

.6.1 { : ~ if J{ = ai + 2>.I 

>0 if J{ > ai + 2>.I. 

, ( ) m3x1 m2>.I '( )
71"1 E1 = - - g ti > 0 

a3 + XI ai + >.I 


if B1 is sufficiently small. By Theorem 5, if J{ < a1+2>.1, a stable interior equilibrium 


is generated from the bifurcation at P1 when Eincreases through E1; If J{ > ai + 2>.t, 


an unstable interior equilibrium collapses to P1 when E increases through EI. By 
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Theorem 5, there exists another equilibrium in either case, but it is not in the positive 

octant. Thus we are not interested in it. 

The same discussion can be made for P2 • Taking the limit of (3.0.4) when s0 

approaches .X2 , one has 

Where " - l1"m "(s ) Subst1"tut1·ng 1"nto x = Yaaafl(so) one has 
'-2 - so_,.::\2 '- 0 · 20 (ma+h(so)' 

while 

Thus lim50 _,.):. Po = P2.
2 

Take the linearization at P2 for any c. Then 

where 

_ m1::\2 
a1 +.>.2 -=r;2 (1- g(c)) ) 

/1 ().2) - ~3!!( 0 . 

0 

One eigenvalue is 1r1(c) = JI(.X2)- ~;!;(. Its eigenvector crosses the s- x2 plane 

transversally. The other two eigenvalues satisfy 

In the same way as above, by the Routh-Hurwitz criterion, the real parts of the 

eigenvalues have the same sign as 
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< 0 if K < a2 + 2.:\2 

= 0 if K = a2 + 2.:\2 

> 0 if K > a2 +2:\2. 

if B 1 is sufficiently small. By Theorem 5, if ]{ < a2 +2.:\ 2 , a stable interior equilibrium 

collapses to P2 when E increases through t:2 ; If K > a2 + 2>.2 , an unstable interior 

equilibrium is generated from P2 when E increases through t:2• Similarly, there is 

another equilibrium by Theorem 5, which has a negative coordinate. So we are not 

interested in it. 

In case (3.0.6), t:(s0 ) is decreasing by Theorem 3. So is s0 (t:). Thus E2 < E1• 

For K > ai + 2>.2 , i = 1, 2, when E increases from 0, the bifurcation occurs first at 

P2 with s0 = .:\2 when E = E2 • This bifurcation makes P2 obtain stability in the 

orthogonal direction and generates an unstable interior equilibrium P0 • Then when E 

increases through E1, a bifurcation occurs at P1 with s0 = >.1• This bifurcation makes 

P1 lose its stability and makes P0 collapse to P1 . In case (3.0.7), t:(s0 ) is increasing 

by Theorem 3. So is so( E). Thus E1 < E2• ForK< ai +2:\i, i = 1, 2, when E increases 

from 0, a bifurcation occurs first at F1 with s0 = .:\1 when E = t:1 • This bifurcation 

makes F1 lose its stability in the orthogonal direction and generates a stable interior 

equilibrium P0 • Then when E increases through E2 , a bifurcation occurs at P2 with 

so = >.2. This bifurcation makes P2 obtain its stability in the orthogonal direction 

and makes Po collapse to P2 . 

I 
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4.3 The bifurcations at the limit cycles f'1 and f'2 

In [3], Butler and Waltman showed the existence of the interior periodic orbit coming 

from the bifurcation at r1 for E = 0. For E > 0, similar results hold when E varies as 

one of the bifurcation parameters. 

We consider the Poincare map at the limit cycles to show the bifurcation. 

Lemma 12 The spectrum of the linearization ofthe Poincare map union {1} is equal 

to the spectrum of the linearization of the solution map. 

The proof is on page 60 in Marsden and McCracken [26]. 

Lemma 13 One of the Floquet exponents of system (2.1.2) at f\, i = 1, 2, is negative, 

another is 0. 

Proof See Butler and Waltman [3]. 

Theorem 7 Suppose f{ > a1 +2~1 • "When D 2 decreases or E increases, a bifurcation 

at f' 1 occurs and generates a stable interior periodic orbit r while f' 1 loses its stability 

in the orthogonal direction. 

Proof Consider the Poincare map <Pat some point off'1 . The linearization of (2.1.2) 

at f'1 is 

where 

By Lemma 4.2 in Butler and Waltman [3], the third Floquet exponent of <P at 

f' 1 is 

(4.3.1) 
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where T 1 is the period of f'1 . The associated eigenvector crosses the s - x1 plane 

transversally. Since f' 1 and T1 are independent of c by Theorem 1, ~~; = -1 < 0, 

and 
f)A1 = m3 {T1 x1 dt _ m 2 g'(t:) {T1 s dt > O 
oe: T1 lo a3 +Xt T1 lo a 2 + s ' 

if B 11 the bound of g'(e:), is sufficiently small. By Lemmas 12 and 13, <I> has two 

eigenvalues, one inside the unit circle and the other crossing the unit circle transver­

sally when D2 decreases or c increases through the value which makes A1 = 0. By the 

theorem on page 24 in Marsden and McCracken [26] and Ruelle and Takens [28], a 

bifurcation occurs at f' 1 and a unique stable periodic orbit is generated in the interior, 

while f' 1 loses its stability in the orthogonal direction. The parameter region is shown 

in Figure A.12. 

I 
When c = 0 A = 0 at D = D* = !!!1. rT1 .2.!!:!... It goes back to the case in [3].' 1 2 2 T 1 Jo a2 +s 

A similar result holds for f' 2 • 

Theorem 8 Suppose ]{ > a 2 + 2:\2 • When D1 or c decreases, a bifurcation at f' 2 

occurs and generates a unique stable interior periodic orbit while f' 2 loses its stability 

in the orthogonal direction. 

Proof The proof is similar to that for Theorem 7 except that the third Floquet 

exponent is 

( 4.3.2) 

where T2 is the period off'2 • Both T2 and f' 2 are dependent on g(c) by Theorem 1. 

Hence ~~~ = -1 < 0. The partial derivative of A2 with respect to c can be very 
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complicated. However, it is very simple if B = 0. Then forB= 0, 

8A2 m3 lT2 

- = - T x2 dt < o.
8E a3y3 2 o 

Thus for sufficiently small B and B~, ~ < 0 by continuity and the differentiability 

of the solutions on the parameters. Therefore when D1 or E or both decrease and 

make A2 change signs, by the same theorems in [26] and [28], a bifurcation occurs at 

r 2' which generates a unique stable periodic orbit, while r 2 loses its stability in the 

orthogonal direction for sufficiently small B and B1 . The parameter region for B = 0 

is shown in Figure A.13. 

I 

Remarks 

1. For A1 = 0, we have t:i satisfying A1( t:i, D2) = 0, while for A2 = 0, we have E; 
satisfying A2(t:;, D1) = 0. For certain D1 and D2, if t:i < t:;, then we know that 

as E increases from 0 , a bifurcation first OCCurS at f' 1 when E increases through Ei, 

which generates a stable interior periodic orbit while making f 1 lose its stability. 

Then, when E increases through E;, a bifurcation occurs at f 2 which makes the stable 

interior periodic orbit collapse to f 2 and f 2 becomes stable. 

2. The interesting thing is that for increasing E, while the interior equilibrium may 

either come from P1 and collapse to P2 for I< < ai + 2,\, i = 1, 2, or come from P2 

and collapse to P1 for I< > ai + 2,\i, i = 1, 2, the interior periodic orbit only comes 

from f 1 and collapses to f'2 . The reverse process can never happen for the periodic 

orbit. 

4.4 The simple food chain 

Now we consider another extreme case, the food chain model, when g(E) 1 for 

E ~ "E > 0. Thus (2.1.2) becomes 

s' s(1- s.)-ffi)SX) 

{ 
K at+s 


m1 sx1 D X max1 X2(
x' 1 1 ( 4.4.1) 1 at+s - - y3(a3+xt) 
maxl x:z!x' - D2x2.2 a3+x1 
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It is easy to see that the system has the equilibria E0(0,0,0), E 1 (K,O,O) and 

P1(:\b x1, 0). However, P2 no longer exists. The periodic orbit i\ also exists for large 

K, but f' 2 does not. 

In a similar way, we still can consider the steady-state bifurcation at f' 1 • 

Theorem 9 The steady-state bifurcation at I\ generates the stable interior periodic 

orbit r when E increases or D2 decreases. 

Remark 

Since f' 2 does not exist, this stable interior periodic orbit can not collapse to the s- x 2 

plane in the same way as before. Instead, it grows large and may collapse in some 

other ways. 

Another difference is that there may exist two interior equilibria in this case. 

We consider the system satisfied by the equilibria. 

(4.4.2) 

Let ( s0 , x 10 , x 20 ) denote the coordinates of any possible interior equilibrium. 

From the third equation, one has x10 = a3 Db . Plugging into the second equation 
[ffi3- 2 

implies x 20 = y3 a3 fl(so). From the first equation, one has 
[m3-D2 

(4.4.3) 

I 
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x 10 > 0 implies € > D2/m3 , which can be guaranteed by € > D2/m3 • x 20 > 0 implies 

f 1 (s0 ) > 0. Thus s0 > >.1 . Denote H(s) = (1- _k)(a1 + s), which determines the 

interior equilibria. It's easy to see that 

-~( _ J(- a1) 2 (I<+ a1)
2 

H( ) = 
s J( s 2 + 4/( 

The graph is shown in Figures A.14 and A.15. 

Theorem 10 Suppose € > !2:J...
m3 

(i). There is no interior equilibrium if € < ~ + !~~:a~~. 


(ii). There exists a unique interior equilibrium if € = ~+ !~(~;!~~ and J( > a1+2>.1. 


(iii). Suppose € > ~ + !~(;l;a~1 and J( > a1 + 2>.1. If € < ~ + ;:;Ir1f;), there exist 


two interior equilibria. One of them collapses to E1 (I<, 0, 0), the other to P1 when € 


increases. If € > !2:J.. + m 1'fr{f2
), there exists a unique interior equilibrium. It collapses 
- m3 m3 1 

to E1 ( K, 0, 0) when € increases. 


(iv). Suppose € > !2:;.. + 4Km}a3D1 and J( < a + 2>. . Jf € < !2:;.. + m 1 a3D 2 there exists 
1m3 m3(n+a1) - 1 J - m3 m3H(.Al)' 

no interior equilibrium. If € > !2:;.. + m 
1'tr1f2

), there exists a unique interior equilibrium.
m3 m3 1 

It collapses to E1(K, 0, 0) when € increases. 


(v). There exist at most two interior equilibria for this simple food chain. 


Proof We prove the existence by considering the quadratic function H(s). 

(") If < !2:;.. + 4Kmla3D2 th > (K+at)2 (4 4 3) h l t Th1 . € m m (K+at)2 , en m1x10 4K , • . as no rea roo . us3 3

system ( 4.4.2) has no solution. Therefore there is no interior equilibrium. 

(n"") If !2:;.. + 4Kmta3D1(K+at) then m1x10 (K+at)2
4K (4 . . 4 3) h . 1. € = m 3 m , = , as a unique rea3

root s0 = (I<- a1)/2. Thus system (4.4.2) has a unique solution. However, it is in 

the interior if and only if s0 > >.1. It is equivalent to >.1 < (I<- a1)/2 . 

(... ) s· !2:;.. + 4Km,a3Dz (K+at)2 (4 4 3) h t 1 tm . mce € > m
3 

m
3
(K+at)2 , m1x10 < 4K . . . as wo rea roo s 

with one on each side of (I<- at)j2. J( > a1+ 2>.1 implies >. 1 < (I<- a1)/2. Thus 
2H(s) is increasing at >.1 . If € < ~ + ;:;Ir1f )' H(>.1 ) < m1x10. Then the smaller 
1 

root of (4.4.3) is greater than >.1. Thus system 4.4.1 has two interior equilibria with 
2the s-components on both sides of (I<- a1)/2. If € ~ ~ + :::;'tr1f ), H(>.1 ) ~ m1x10. 
1 
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Then the smaller root is not greater than ..\1. Only the greater root of ( 4.4.3) gives 

the interior equilibrium. Thus it is unique. 

(iv). As in (iii), (4.4.3) has two roots with one on each side of (I< -a1)/2. I<~ 
2ai +2..\I implies .-\I 2:: (I< -ai)/2. Thus H(s) is decreasing at .-\I. If E > ~+ ;;:;l!1f )'
1 

H(>.I) > m 1x10• Then only the greater root is greater than .-\I, which gives the interior 
2equilibrium of (4.4.1). Thus it is unique. If E ~ ~ + ;;:;l{3(f )' H(>.I) ~ mix10• Then 

1 

no root of ( 4.4.3) is greater than AI. Thus there is no interior equilibrium. 

(v). From the above discussion, it's easy to see that there exist at most two 

interior equilibria. 

To consider the bifurcation, one can take the limit of the equilibria as the 

bifurcation parameter E varies. 

First, x 10 is decreasing in E and converges to 0 when E -+ oo. Secondly, if there 

exists a unique interior equilibrium, the s-component s0 > (I< - aI) /2 by the above 

arguments, and H(s) is decreasing at s0 • Since lim!-><:cx10 = 0, lim(_.00 H(s0 ) = 0 

by ( 4.4.3). Thus lim! ..... oo s0 = I< by ( 4.4.3) and lim!..... oo x20 = 0. Hence the interior 

equilibrium converges to EI(I{, 0, 0). 

If there exist two equilibria, the s-components of the two are on each side of 

K ;a1 
, and H (s) is increasing at the left one and decreasing at the right one. Since 

x 10 ( E) is decreasing and x 10( E) > 0 for any E > t, s0 ( E) is decreasing for the left 

one and increasing for the right one by ( 4.4.3). Therefore as before, for the right 

one lim! ..... oo x 10 = 0, lim!.....oo x20 = 0, lim(..... oo s0 = I< since f1 ( s) is bounded above 

and H( s) is decreasing. At the left one, H( s) is increasing. Before lim( .....oo x10 = 0, 

lim!..... !o so = ).I for some Eo < oo. Thus lim! ..... !o x20 = 0 and lim! ..... !o x 10 = XI. There­

fore the equilibrium converges to P1(.-\b x1, 0). Using Theorem 5, one can analyze the 

bifurcations in the same way as before. Thus we omit the details. 

I 

http:lim(_.00


Chapter 5 

The glohal dynamics 

5.1 Persistence 

We use the concept of Freedman-Waltman's persistence to describe the global dy­

namics. See [10]. 

Definition 3 A population p(t) is said to persist, if p(t) > 0 for all t 2:: 0 and 

lim inft-++oo p(t) > 0. A system is said to persist if each component population per­

sists. 

We introduce the Freedman-Waltman theorem. 

Lemma 14 [Freedman- Waltman Theorem} The system 

u' = uf(u,v,w) 


v' = vg(u,v,w) (5.1.1) 

{ 

w' = wh(u, v, w), 

where u(O) = uo 2:: 0, v(O) = v0 2:: 0, w(O) = w0 > 0, persists if the following 


hypotheses hold. 


(HO). f, g, h are C1 in (u, v, w). 


(H1 ). All solutions of system (5.1.1) with non-negative initial conditions are bounded 


in forward time. 


37 
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(H2). The origin E0 is unstable in the u-direction and asymptotically stable in the 


w-direction. There exists a unique equilibrium E1 on the positive u-axis at (I<b 0, 0) 


with no equilibria of the form (0, K2, 0) or (0, 0, K3). 


(H3). E1 is a hyperbolic saddle point. 


(H4). Interior to each positive coordinate plane, there is at most one equilibrium, 


which, if it exists, is unstable in the positive direction orthogonal to that plane, and 


around which there is no periodic orbit in the plane. 


The proof is in [10]. 

Theorem 11 If J( < ai +2,\,i = 1,2, system (2.1.2) persists fort: E (t:~,t:~) in case 

(3.0.7), where <is the bifurcation value at Pi in case (3.0. 7). 

Proof We check the hypotheses (HO)-(H4) for system (2.1.2). It is easy to see that 

(HO)-(H3) are satisfied by system (2.1.2). For (H4) we know that system (2.1.2) has 

P1 and P2 without f\ and f' 2. When t: increases through the bifurcation value t:~, the 

equilibrium P1 loses its stability in the orthogonal direction. And before t: increases 

to t:~, the bifurcation at P2 does not occur. Thus (H4) is satisfied. By Lemma 14, 

system (2.1.2) persists. 

I 

5.2 The global dynamics 

Now we consider the global behavior of system (2.1.2) by using the cylindrical coor­

dinate substitution and give some more results on the relation between the dynamics 

and the survival functions. 

By the same cylindrical coordinate substitution as in Lemma 6, system (2.1.2) 

becomes 

s(l _ 4) _ mtspcosB _ m2spsin6(l _ g(()))s' R at+s a2+s 

p' P[f (s) cos2 () + f- (s) sin2 () + m3p2£sin26 (sinO- cosO)] (5.2.1)1 2 2(a3+pcos6) Y3 

{ ()' l[J- ( ) _ f ( )] • 2() + £m3p(cos6+sin6/ya) · 20
2 2 s 1 s Sin 2(a3+P cos e) sin . 
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From system (5.2.1 ), one can see clearly that both the two terms involving the con­

sumption of x 2 on x1 in system (2.1.2) are positive in()', favouring the growth of x 2 • 

Hence we have the following result that is similar to Lemma 6. 

Theorem 12 Assume .A 1 < .A2. If f 1(s) and f 2 (s) do not intersect in [0, K], x 2 must 

become extinct for sufficiently small t > 0. 

Proof Since f 1(s) and h(s) do not intersect in [0, K] and .A1 < .A2, there exists 

a 8 > 0 such that f 1 (s) - h(s) > 8 for any s E [0, K]. From (5.2.1) we have 

()' = 1/2[!2(s)- f 1(s) + G(t)]sin2(), where 

-m2sg(t) tm3p(cos() + sin()/Y3)
G(t ) -

_ + . 
a2 + s a3 + p cos () 

By Lemma 2, any solutions are eventually uniformly bounded, thus G( t) ~ 

Em3[1 + ~] < tC4, where c4 is a positive constant independent of E. Therefore 
aaya ­

()' < 1/2[-8 + tC4]sin2() < 0 for sufficiently small E. Hence() decreases on (0,7r/2). 

Then limt-= ()(t) exists. Denote () 0 = limt-= ()(t). If ()0 = 0, x2 becomes extinct. If 

()
0 > 0, consider thew-limit set of the flow. There exists a compact invariant set in 

thew-limit set in()= () 0 • Similarly to Lemma 6, we have ()'(to) = 0 for some t 0 > 0 

satisfying ()(to)= ()0
• This contradicts ()'(t) < 0 for 0 < () < 1r /2. 

I 
Corollary 1 For sufficiently small t > 0 and .A1 < .A2, P1 is attracting and P2 zs 

repelling in the orthogonal direction. 

Proof 

()'(i\) = 1/2(/2(.A1)- j 1(.AI) + G(t)]sinO = 0. 

()'(P2) = 1/2[/2(~2)- !1(~2) + G( t)] sin(2 ·%) = 0. 

By the argument of Theorem 12, G(t) < min(f1 (.A2), -f2(.A1)) for sufficiently 

small t. Thus 
8()' - - ­

(PI)= [!2(.A1)- !I(.AI) + G(t)] cosO= !2(-AI) + G(t) < h(.A1) +G(t) < 0.
88 
8()' - - - - ­
8() (P2) = [h(.A2)- !I(.A2) + G(t)] COS7r = !I(A2)- G(t) > !I(.A2)- G(t) > 0. 

Therefore P1 is attracting while P2 is repelling. 

I 

http:h(.A2)-!I(.A2
http:2(.A1)-!I(.AI


Chapter 6 

Numerical results for a specific 

example 

We consider a specific example of system (2.1.1) with the following parameters fixed. 

The numerical results agree with the analytical results we obtained in the previous 

sections. We draw the graph of the functions or the trajectories of system (2.1.1), 

instead of giving the analytical expression and the tedious calculation. A Hop£ bifur­

cation is observed and demonstrated numerically. All of the numerical simulations 

were done using the computer package MatLab, copyrighted by the Math Works In­

corporated. The differential equations were solved using the built-in m-file ODE23, 

which uses the Runge-Kutta's method of order 2-3. 

Set mi = 1, m 2 = 0.6, ai = 0.5, az = 1, DI = 0.5, I< = 2.5, r = 3.3, 

YI = 0.3, Yz = Y3 = 0.5, B = 0. Then BI = 0, while D2 is undetermined and E 

is the bifurcation parameter. The derived parameters are given by bi = ~ = 2, 

..\I = b;.:_I = 0.5, ai + 2..\I = 1.5 < J{. 

On one hand for b2 > bi, D2 < 1';- = 0.3. On the other hand for a2 + 2..\ 2 < J{, 

bz > 1 + i~!2 = 7/3, then D2 < m= 1.8/7 ~ 0.25714. Furthermore for AI < ..\2, 

b2 < 1 + 17 = 3. Thus D2 > T = 0.2. Hence the interval of D2 is [0.2, 0.25714]. 

Therefore we assume D2 = 0.2555. Notice that ri and f 2 are independent of E since 

B=O. 

Clearly this example corresponds to case (3.0.6) by Figures B.1 and B.2. The 

40 
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function s0 ( ~:) is decreasing and the intersection of the two functions on both sides of 

(3.0.4) is unique with the s-component between A1 and A2• 

Taking the linearization of (2.1.1) at the interior equilibrium P0 (s0 , x10 , x20), 

one has 

where 

_ ffi)SQ ffi2SQ 

Yl(al +so) Y2(a2+so) 
(ffi3XJQX2Q (ffiJXJQ 

Y3(a3+x1o)2 Y3(a3+x1o) 
!m3a3x2o )·0
(a3+x10)2 

Here A 1 has been reduced by the system satisfied by P0 (s 0 , x10 , x20 ) , which is similar 

to (3.0.1 ). Secondly, the extreme case<:= 0 is considered. Figures B.3- B.6 show the 

stable interior periodic orbit for D2 = 0.235, and x 2 becomes extinct for D2 = 0.2555. 

In the following, D2 = 0.2555 is assumed. 

Thirdly, the interior stable periodic orbit given by the bifurcation at P1 for 

<: = 0.06 is shown in Figures B.7 and B.8, while the cases without such an orbit 

before the bifurcation for E = 0.05 and after it collapses to I'2 for E = 0.07 are shown 

in Figures B.9-B.12. 

Fourthly, Figures C.1 and C.2 show the unstable periodic orbit from the Hopf 

bifurcation at the interior equilibrium P0 for E = 0.08 while Figures C.3 -C.6 show 

the reverse time trajectory near the unstable periodic orbit either diverging to infinity 

or converging to the equilibrium P0 • The conditions for the Hopf bifurcation at the 

interior equilibrium are shown in Figures C.7-C.10. 

Finally, Figures C.ll-C.14 show the threshold at the Hopf bifurcation for 

E = 0.08. These also show the instability of the periodic orbit of the Hopf bifurcation. 

Remark 

Usually, it is not possible to obtain the unstable periodic orbit numerically. Fortu­

nately in this case, the positive real eigenvalue at P0 is small as sho\vn in Figure C.10. 

http:C.ll-C.14
http:C.7-C.10
http:B.9-B.12
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Thus the equilibrium P0 is unstable with a little tendency to diverge in this one­

dimension. Hence for € near the bifurcation value, the periodic orbit is also unstable 

in this dimension. One can still obtain the trajectory near the periodic orbit for a 

period of time before it diverges. Furthermore, one can expect that the periodic or­

bit is stable in the other 2 dimensions by the Hop£ theorem since Figure C.9 shows 

that for € = 0.08, the real part of the complex eigenvalue is positive. Thus the Hop£ 

bifurcation at the interior equilibrium is numerically demonstrated. This unstable 

periodic orbit repels the trajectories near it, thus displays a threshold in the interior 

of the positive octant. No trajectories can go through it. 



Chapter 7 

Discussion 

In this paper, the dynamics of a three species foodweb model for the Michaelis­

Menten type response function is considered. The difference of this model from pre­

vious ones is that it involves the predator-prey interaction between the two predators 

x1 and x2 • This interaction is represented by the terms involving c in the system, 

where cis the bifurcation parameter. For different amounts of the interaction repre­

sented by different values of c, the dynamics are different. 

Two extreme cases are observed here, a simple foodchain model with g( c) = 1 

for large c and the pure competition food web model with c = 0, and g( c) = 0. These 

two extreme cases have considerably different dynamics. For example, consider the 

interior equilibria. There is none for c = 0 in general, and there may be one or two or 

none for g( c) = 1. Thus our model unifies the two extreme cases and includes each as 

a limiting case. The dynamics, as expected, inherits some properties of the extreme 

ones. 

First, the bifurcation at the equilibrium Pi in the s- Xi plane with increasing c 

gives birth to the interior equilibrium P0 , which does not exist in the pure competition 

case c = 0 in general, except ,\1 = ,\2 . The existence and the uniqueness are given by 

fundamental analysis and the Implicit Function Theorem. 

Secondly, the bifurcation at the periodic orbit f'1 generates the stable interior 

periodic orbit r with either increasing cor decreasing D2 or both. This stable periodic 

orbit r collapses to f'2 with increasing c or increasing D1 or both. This work is similar 
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to Butler and Waltman [3], but with different parameters . The bifurcation regions 

are also given. 

The interesting thing is that for increasing t, while the interior periodic orbit r 
can only bifurcate from f' 1 and collapse to f'2 , the equilibrium P0 may either bifurcate 

from P1 and collapse to P2 or from P2 to P1 , which is determined by either (3.0.6) 

and I< > ai +2:\i or (3.0.7) and I< < ai +2:\i, i = 1, 2. 

Thirdly, some global results are given by studying the survival functions and 

using the cylindrical coordinate substitution. Although the survival functions have 

already been defined by Hale and Somolinos in [15], they were not further studied. 

From Theorem 12, one can see that for sufficiently small t these functions play a 

dominant role. They determine the victor in the competition. Thus one can conclude 

that if the intrinsic character is weaker, such as f 2 (s) < f 1 (s), the predator x2 will 

die out even though it may consume a small amount of its rival, the predator x1 . 

Lemma 6 gives the relation between the coexistence and the survival functions: coex­

istence implies the intersection of the two survival functions. Theorem 4 states that 

coexistence occurs in such a way that the ratio of the densities of the two predators 

can not be kept constant. Thus any attempt to keep it constant violates the natural 

rule. Such a property may be used in any similar case either in ecology or in environ­

mental or social sciences. Furthermore, persistence is considered by using a theorem 

of Freedman and Waltman. 

Finally, numerical results for a specific set of parameters with B = 0 show the 

existence of the interior equilibrium. It is demonstrated that the bifurcation at f' 1 

gives birth to the stable interior periodic orbit , which collapses to f' 2 with increasing 

E. It is also observed that a Hop£ bifurcation occurs at the interior equilibrium and 

generates an unstable interior periodic orbit. Usually one cannot numerically obtain 

the unstable periodic orbit due to the instability. However the positive eigenvalue 

at the equilibrium, thus the Floquet exponent at the periodic orbit, is fortunately so 

small that the trajectory stays close to the periodic orbit for a long period of time 

before it diverges. We are thus fortunate enough to obtain this unstable periodic orbit 

numerically. This unstable periodic orbit displays a threshold near the equilibrium, 

which is also numerically shown. Thus when the initial value is relatively close to the 
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s-xi plane, the trajectory is repelled away from the equilibrium and the periodic orbit 

due to the instability, and goes towards to the s- Xi plane. It places a barrier against 

the rival of Xi to win. This shows that the competition is in favor of the predator Xi 

if the initial value of Xi is relatively large enough, and may result in the extinction 

of the other. But in the specific case considered in Chapter 6, the trajectory can 

not collapse to the periodic orbit f' 1 since f'1 is repelling in the orthogonal direction 

after the bifurcation. Thus the trajectory either goes to P1 along a one-dimensional 

manifold in the extreme case or goes around for a long period of time and then 

converges to an attractor, such as f' 2 • Due to the Hopf bifurcation, there is an interval 

of the parameter E such that there exists two interior periodic orbits simultaneously, 

one stable from f' ~, and the other unstable from the Hopf bifurcation at the interior 

equilibrium. In the specific case in Chapter 6, the numerical results in Figures C.7­

C.lO show that the Hopf bifurcation occurs before the steady-state bifurcation at f' 1 . 

Even after the stable periodic orbit collapses to f' 2 , the unstable periodic orbit still 

exists in the interior. This periodic orbit for E = 0.08 can be numerically proved 

not to be the stable one because the stable one collapses to f'2 before E = 0.07. 

And numerically its instability is shown both in forward time and backward time in 

Figures C.ll-C.l4 and C.3-C.6. 

From the above, one can have a clear view. First, there is no interior equi­

librium for small c. Then bifurcation gives birth to the interior equilibrium when E 

increases. From this equilibrium, a Hopf bifurcation may present an unstable peri­

odic orbit. For large E such that g( E) = 1, there may exist even two equilibria in 

the interior. Finally when E increases large enough, the bifurcation shows that the 

interior equilibria will collapse to some equilibria on the boundary. Thus for different 

amounts of the predation interaction between the two predators, the dynamics are 

considerably different. 

http:C.ll-C.l4
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Figure A.l: A schematic diagram of the chemostat. 
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Figure A.2: The foodweb and foodchain. 

The arrows represent the consumption of the bottom species feeding on the top ones. 
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Figure A.3: The model interaction. 
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Figure A.4: The graph of the survival function fi( s ). 
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Figure A.5: The graph of the quadratic function Mu 2 +Nu- m1a1 (a2 - a1 ). 
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Figure A.6: The intersection of f 1 (s) and f 2 (s). 
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Figure A.7: The dynamics at E0 • 
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Figure A.S: The dynamics at E 1 . fi is in s - xi plane, i = 1, 2. 

s 

s 

Figure A.9: The intersection of the functions in equation (3.0.4) in the case (3.0.6). 
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Figure A.lO: The intersection of the functions in equation (3.0.4) in the case (3.0.7). 
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Figure A.ll: The local dynamics at P1 and P2 for small t: > 0 and J{ > ai +2:\i. 
fi, £~ are inS- Xi plane, i = 1, 2. 
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Figure A.l2: The parameter region of the bifurcation at f' 1 . 
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Figure A.13: The parameter region of the bifurcation at f'2forB= 0. 
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Figure A.14: The quadratic function H(s) with I<< a1 + 2A1 . 
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Figure A.l5: The quadratic function H(s) with I<> a1 + 2A1 . 



Appendix B 

The graphs of the equilibrium and 

the stable periodic orbit in the 

interior of the positive octant 

Illustration 


In the t - s, Xt, x2 graphs, 


--represents the t- s curves; 


- - - represents the t - x 1 curves; 


· · · · · · represents the t- x2 curves. 


In the s - Xt, x2 graphs, 


- - - represents the s - x 1 curves; 


· · · · · · represents the s - x2 curves. 
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Figure B.l: The unique interior equilibrium given by the unique intersection of the 
functions of (3.0.4) with t: = 0.06, D2 = 0.2555 and J{ = 2.5. 
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Figure B.2: The dependence of the s-component of the interior equilibrium on c with 
D2 = 0.2555 and J( = 2.5. 
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Figure· B.3: The t - s, x 11 x 2 graphs for the stable interior periodic orbit with E 0, 
D2 = 0.235 and the initial value (0.5, 0.5, 0.5). 
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Figure B.4: The s- x 1 , x2 graphs under the same conditions as in Figure B.3. 
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Figure B.6: The s- x1 , x2 graphs under the same conditions as m Figure B.5. 
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Figure B.7: The t- s, x11 x2 graphs of the stable interior periodic orbit with t. 0.06, 
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Figure B.lO: The s- x1 , x2 graphs under the same conditions as in Figure B.9. 
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Figure.B.ll: The t- s, x1, x2 graphs after the bifurcation at f' 2 occurs withE= 0.07, 
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Figure B.l2: The s- xb x2 graphs under the same conditions as m Figure B.ll. 
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The graphs of the Hopf 

bifurcation and its unstable 

periodic orbit in the interior of 

the positive octant 

Illustration 


In the t - s, x1 , x 2 graphs, 


-- represents the t - s curves; 


- - - represents the t - x1 curves; 


· · · · · · represents the t - x 2 curves. 


In the s- x1 , x2 graphs, 


- - - represents the s- x1 curves; 


· · · · · · represents the s - x 2 curves. 
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Figure C.l: The t - s, x
1

, x2 graphs of the unstable interior periodic orbit from the 
Hopf bifurcation with c = 0.08, D 2 = 0.2555 and the initial value (0.5, 0.5, 0.1). 
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Figure C.2: The s- x1 , x2 graphs under the same conditions as in Figure C.l. 
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Figur~ C.3: The backward timet- s, x1 , x 2 graphs near the unstable interior periodic 
orbit from the Hopf bifurcation diverging to infinity with <: = 0.08, D2 = 0.2555 and 
the initial value (0.0065, 0.5239, 0.08129130603). 
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Figure C.4: The s- x1 , x2 graphs under the same conditions as in Figure C.3. 
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Figure C.6: The s - x1 , x2 graphs under the same conditions as in Figure C.5. 
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Figure- C.7: The dependence of the real part of the complex eigenvalue at the interior 
equilibrium on € with f{ = 2 and D2 = 0.2555. 
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Figure C.8: The dependence of the real eigenvalue at the interior equilibrium on E 

under the same conditions as in Figure C.7. 
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Figure"C.9: The dependence of the real part of the complex eigenvalue at the interior 
equilibrium on c:: with J( = 2.5 and D2 = 0.2555. 
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Figure C.lO: The dependence of the real eigenvalue at the interior equilibrium on t 

under the same conditions as in Figure C .9. 
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Figure C.11: The t- s, x1 , x 2 graphs for the threshold at the interior equilibrium with 
]( = 2.5, D2 = 0.2555, E = 0.08 and initial value (0.5,0.5,0.05). 
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Figure·c.l2: The s- x1 , x 2 graphs for the threshold at the interior equilibrium under 
the same conditions as in Figure C.ll. 
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Figure' C.l3: The t- s, x1 , x2 graphs for the threshold at the interior equilibrium with 
]( = 2.5, D2 = 0.2555, E = 0.08 and initial value (0.5,0.5,0.5). 
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Figure C.l4: The s- x11 x 2 graphs for the threshold at the interior equilibrium under 
the same conditions as in Figure C.l3. 
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