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Abstract 


A linear state space model (LSSM) of cardiovascular regulation in ten normal human 

volunteers is developed using instantaneous lung volume (IL V), heart rate (HR.), pulse 

pressure (PP) and mean arterial blood pressure (MBP) time series. Closed-loop transfer 

functions are computed and physiologically interpreted and the sensitivity of the transfer 

functions is assessed by comparison of supine and standing experimental results. The 

zeros of the transfer functions are used to infer the causality relationship between HR and 

PP. Results (1) In the supine condition, changes in ILV cause changes in HR within 0.5 

s, followed shortly (0.3 - 0.5 s) by changes in PP and finally changes in MBP 1 - 2 slater. 

(2) When standing, changes in MBP occur concurrent with changes in PP. (3) MBP 

changes are dominated by blood pooling effects when standing. ( 4) Group delay is less 

affected than the magnitude by the physiological differences between the supine and 

standing conditions. (5) The relationship between HR and PP is neither completely causal 

nor anti-causal, but rather a combination of the two. (6) The minimum system delays are 

coincident with breathing frequencies between 0.2 - 0.4 Hz. Conclusions Closed-loop 

LSSM and transfer function analysis may be used to infer the time delays and causality of 

the closed-loop system response. The classical model of RSA generation is supported by 

the LS SM results. 
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Chapter 1: Introduction 

1.1 Overview 

In this thesis, instantaneous lung volume (IL V), heart rate (HR) and arterial blood 

pressure (ABP) time series are used to fit a single-input multiple-output (SIMO) linear 

state space model (LSSM) of cardiovascular regulation in healthy human volunteers. 

State space models are used extensively in the design of feedback control systems where it 

is necessary to control as well as predict the output of the system under investigation 

[Ljung 1987, Van de Vegte 1990]. The LSSM parameterization gives one easy access to 

the eigenvalues of the system under investigation. The eigenvalues are a useful estimate of 

the stability of the system and hence its sensitivity to noise and environmental conditions 

[Kailath 1980]. Thus, the LSSM is most useful for the simulation and control of mostly 

linear large-scale complex systems in industry, for example, where plant stability and 

controllability ofthe system outputs are major concerns. 

The LSSM is mathematically equivalent to a generalized ARMA model, provided 

the AR and MA model orders are appropriately selected [Ljung 1990]. However, ARMA 

model order estimation is a difficult task in practice and the model coefficients may be 
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sensitive to uncertainty in the model order estimate [Banerjee 1996, Perrot 1996, Sinha 

1983, Ljung 1987]. 

Unlike ARMA modelling techniques, the LSSM model order is estimated by 

comparing the rank of two data matrices using the singular value decomposition (SVD) 

[Moonen 1989, Golub 1996]. This vastly simplifies the order estimation procedure and 

results in a more robust model that is less sensitive to uncertainty in the order estimate 

[Moonen 1989]. Furthermore, the LSSM parameter estimation algorithm is linear, unlike 

ARMA models where the MA parameters must be estimated by non-linear iterative 

techniques [Ljung 1987]. Thus, the state-space approach may be considered to be an 

improved and yet simplified ARMA modelling technique. 

In this thesis, the LSSM transfer functions are analytically derived from the model 

parameters and are physiologically interpreted. Since the transfer functions are 

parametric, they are not significantly influenced by additive noise in the input/output data, 

which is a large improvement over the FFT technique for transfer function estimation 

[Berger 1989, Saul 1991]. Like ARMA models, the LSSM parameters are computed 

simultaneously using all available data, so the LSSM transfer functions can accurately 

characterize the frequency response between all of the measured variables. 
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1.2 Neurophysiology of Cardiovascular Regulation [Berne 1990] 

Cardiovascular regulation is the physiological process by which blood pressure 

(BP), gas concentrations and pH are varied to maintain physiological homeostasis. It is 

achieved through modulation of cardiac output, smooth muscle vascular tone and 

respiratory activity by both neurohormonal and central neurological control systems: the 

sympathetic and parasympathetic (or vagal). This thesis deals primarily with neural 

contributions to cardiovascular regulation. 

1.2.1 Sympathetic Regulation 

The sympathetic neural system is highly distributed and plays an important role in 

the regulation of three cardiovascular physiological functions: myocardial contractility, 

heart rate (HR.) and vascular resistance. It consists of both afferent and efferent nervous 

limbs. 

The afferent limb of the sympathetic system consists of both myelinated and 

unmyelinated nerve fibers. The afferent neurons have relatively high activation thresholds 

and the receptors are usually sensitive to only particular types of stimuli such as the local 

chemical environment (chemoreceptors) or mechanical distention (baroreceptors). 

The efferent neurons originate primarily in the lower brain stem or along the spinal 

cord. A typical efferent activation pathway is shown in Figure 1. Preganglionic 
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sympathetic efferent neurons synapse to postganglionic neurons using nicotinic 

acetylcholine neurotransmitter. The postganglionic efferent fibers synapse to a and J3­

adrenergic receptors on smooth muscle and cardiac tissue. They release norepinephrine 

neurotransmitter when activated, however some sympathetic efferents (i.e. neurons 

responsible for regulation of sweat glands and vasodilatation of smooth muscle of vessels 

in skin and skeletal muscle) release muscarinic acetylcholine instead. 

The adrenergic neurotransmitter released by activation of efferent sympathetic 

neurons is either carried away by the circulation or slowly reabsorbed by the efferent 

neuron. These processes are generally diffusion limited and hence sympathetic fiber 

deactivation is a relatively slow (3-7s) process [Berne 1990, Kamath 1993, Malik 1996, 

Malliani, 1992]. 

The release of epinephrine by sympathetic activation causes vasodilatation of 

capillaries at low concentrations (J3-adrenergic effect) and vasoconstriction at higher 

concentrations (a-adrenergic effect). In all other vessels (arteries, arterioles, veins, etc.), 

sympathetic efferent activation causes vasoconstriction. 

In many cases, the sympathetic response loops are positive feedback systems: 

Activation of a small population of sympathetic afferents often results in a response that 

tends to amplify the original afferent activity [Malliani 1992, Lown 1986]. These positive 

feedback control loops are counter-balanced by antagonistic activity of the 

parasympathetic (or vagal) neural subsystem, described in the following section. 
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1.2.2 Parasympathetic Regulation 

Parasympathetic (or vagal) regulation differs from sympathetic regulation in 

several ways. The vagal innervation is less widely distributed than the sympathetic 

innervation and its effects are more local to the site of innervation. The afferent and 

efferent vagal branches penetrate further into the brain stem than the sympathetic neurons, 

with relatively fewer synapses in the spinal cord. 

The typical vagal efferent activation pathway is shown in Figure 1. The main 

difference between the sympathetic and vagal reflex loops is that the vagal postganglionic 

efferent fibers have cholinergic receptors that are sensitive to muscarinic acetylcholine 

rather than norepinephrine. This neurotransmitter is rapidly hydrolyzed by 

acetylcholinesterase, especially near the sino-atrial (SA) and atrio-ventricular (A V) nodes 

of the heart. Thus, the effects of efferent vagal activation decay much faster ( < 2 s) 

compared to sympathetic activation. 
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Nicotinic 
Acetylcholine 

Figure 1: Efferent limb pathways of the sympathetic and vagal (parasympathetic) neural 

systems 


1.2.3 Neural Modulation of Cardiac Activity 

Vagal and sympathetic innervation of the heart are extensive. The sympathetic 

efferent innervation is widely distributed throughout the cardiac tissue but can be roughly 

separated into left and right branches. Most of the efferent fibers originate in the upper 

thoracic and cervical ganglia. Stimulation of the sympathetic efferent neurons to the heart 

increases the conduction velocity of cardiac electrical signals through the myocardium and 

reduces the diastolic depolarization time of the heart. This increases the instantaneous 

heart rate (HR) and the contractility of the cardiac tissue. 

In the dog, stimulation of the left branch of efferent sympathetic fibers increases 

the left ventricular contractility, which leads to increased pulse pressure (PP). Stimulation 
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of the right branch increases both HR. and contractility. The HR and contractility return to 

baseline values within 3-8 s following sympathetic efferent stimulation of the intact canine 

heart. 

The vagal efferent cardiac innervation is more clustered than the sympathetic 

innervation, with most of the innervation near the A V and SA node. Most of the efferent 

fibers originate from the medulla oblongata in the brain stem. 

Vagal and sympathetic efferent activity operate on the basis of accentuated1 

antagonism. Vagal activation causes inhibition of sympathetic efferent nerves and 

attenuates the response of cardiac tissue to the adrenergic compounds released by the 

sympathetic fibers, thereby reducing heart rate and decreasing cardiac tissue contractility. 

Stimulation of the left branch of the cardiac vagal efferents in the dog retards electrical 

conduction of the heart and may even stop propagation through the A V node 

(dromotropy). Stimulation of the right branch decreases the firing rate of the SA node 

(chronotropy) and hence decreases HR. The cholinergic neurotransmitters released by the 

vagal efferent fibers are quickly hydrolyzed by acetylcholinesterase contained in the SA 

and AV nodes. Thus, the effects ofvagal activation are of short duration (0.5-2s). 

1 Accentuated antagonism implies that the effect of vagal activity on the end organ is approximately 
proportional to the amount sympathetic activity prior to vagal activation (and vice-versa). Hence, the 
vagal and sympathetic control mechanisms are mutally dependent. 
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1.2.4 Baroreceptor Reflex 

The baroreceptors compnse several groups of predominantly vagal afferent 

neurons that are sensitive to mechanical distention in the blood vessels. The most 

important baroreceptors with respect to modulation ofHRV are located in the aortic arch 

just outside the left ventricle and mainly in the carotid sinus at the bifurcation of the 

carotid artery in the neck. The firing rate of the receptors is proportional to the relative 

change in blood pressure in the artery. The carotid baroreceptors have highly adaptable 

thresholds. Thus, they are most sensitive when blood pressure changes rapidly. 

Abolishment of the pulse pressure via an external damping mechanism in the dog 

significantly reduces the carotid baroreceptor activity. 

Increased activation of either set of baroreceptors in the dog causes an immediate 

activation of vagal cardiac efferents and concurrent withdrawal of sympathetic cardiac 

efferent activity. This results in decreased HR and myocardial contractility. Baroreceptor 

stimulation also modulates smooth muscle tone through sympathetic deactivation, which 

causes the arterioles and veins to dilate and hence lowers the blood pressure. This 

processes is associated with significant lag time (3-7 s) because of the longer lasting 

effects of adrenergic neurotransmitter release from the sympathetic neurons. 
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1.2.5 Bainbridge Reflex 

A group of afferent vagal nerve fibers innervates the right atrium of the heart and 

is sensitive to atrial stretch or intravascular blood pressure. The neurons synapse in the 

medulla to vagal cardiac efferents forming the vagal-vagal reflex loop that is responsible 

for the Bainbridge reflex modulation ofheart rate. The Bainbridge reflex causes the heart 

rate to increase whenever the preload pressure to the heart increases or the right atrium is 

otherwise distended (for example, during inspiration). The reflex is antagonistic to the 

baroreceptor reflex, as shown in Figure 2. 

increased right 
atrial filling 

stimulate atrial 
stretch receptors 

Bainbridge 
reflex 

increased left 
ventricular filling 

increased cardiac 
output 

Baroreceptor 
reflex 

Figure 2: Antagonistic modulation of heart rate via the baroreceptor and Bainbridge reflex loops 
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1.2.6 Chemoreceptor Reflex 

The chemoreceptors comprise a large set of central and peripheral afferent fibers 

originating in the medulla oblongata, in large vessel bifurcations throughout the 

cardiopulmonary vasculature and in the heart itself The receptors are sensitive to the 

partial pressure of oxygen (Pa02), carbon dioxide (PaC02) and pH of arterial blood. The 

main function of the chemoreceptors appears to be modulation of respiratory tidal volume 

and breathing frequency to maintain the concentration of blood gases and pH within 

physiological limits. 

The Pa02 carotid chemoreceptors are activated by a drop in Pa02 in the arterial 

blood. The response to afferent stimulation is bimodal. Mild activation results in 

enhanced respiration concurrent with increased vagal activation in cardiac muscle and 

sympathetic activation in smooth muscle. This causes HR. to decrease and preload blood 

pressure to the heart to increase. More intense afferent activation causes HR. to increase 

rather than decrease. 

The PaC02 receptors are activated by a rise in PaC02 in the arterial blood. 

Activation of the PaC02chemoreceptors results in increased ventilation and breathing rate 

as well as vasoconstriction. The most important PaC02 receptors are distributed 

throughout the medulla oblongata and are associated with approximately 80% of PaC02 

response. The remaining 20% of the PaC02 response is attributed to peripheral 
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chemoreceptors in the aortic and carotid arches. Activation of the peripheral PaC02 

receptors decreases the left ventricular systolic pressure. 

The pH chemoreceptors are located in the vasculature and the heart itself but not 

in the brain. The receptors are activated by a drop in arterial blood pH. The reflex 

response is increased ventilation and systemic vasoconstriction through sympathetic 

activation in smooth muscle. 

1.2.7 Frank-Starling Effect 

The cardiac muscle also responds to changes in loading conditions independent of 

autonomic modulation. Specifically, if the resting fill volume of the ventricles is increased 

by increased preload (venous) blood pressure then the subsequent ventricular contraction 

will be more forceful (Frank-Starling mechanism). This results in increased stroke volume 

and PP for the contraction. The Frank-Starling mechanism is intrinsic to the cardiac tissue 

itself but the response is modified by autonomic activity because neurotransmitters also 

modulate the contractility of the cardiac tissue. 

1.3 Respiratory Sinus Arrhythmia (RSA) 

A large component ofHRV is associated with respiratory activity. This results in 

what is commonly called respiratory sinus arrhythmia (RSA) in HR. and BP time series 
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[Berne 1990, Berger 1989, Bianchi 1997, DeBoer 1987, Freyschuss 1975, Kamath 1993, 

Malik 1996, Novak 1993, Piepoli 1997]. The arrhythmia has been studied extensively and 

is the physiological basis of the transfer function analysis of cardiovascular regulation 

presented in this thesis. 

There are several physiological mechanisms that may potentially contribute to the 

generation of heart rate and blood pressure oscillations coincident with respiratory 

activity. The classical model of RSA is shown in Figure 3. In this model mechanical 

distention of the thoracic cage during inspiration imposes a positive pressure gradient on 

the venous return of blood to the heart thereby increasing blood flow to the lungs. The 

pressure gradient also activates vagal afferent stretch receptors in the right atrium which 

increases HR. via the Bainbridge reflex. The enhanced blood flow propagates through· the 

lungs and eventually (i.e. after a short time delay) raises the left ventricular filling volume, 

which results in increased stroke volume and PP via the Frank-Starling mechanism. The· 

increase in PP is sensed by the aortic and carotid baroreceptors, which respond 

antagonistically by slowing HR. through cardiac vagal activation and reducing arterial 

blood pressure via sympathetic deactivation in smooth muscle [Berne 1990]. Stretch 

receptors in the lungs are also believed to contribute to the response, although the nature 

of this contribution has proven to be difficult to characterize [Taha 1995, Freyschuss 

1975]. Finally, a direct coupling between the medulla and the cardiac efferent nerves is 

also hypothesized to contribute or modulate RSA [Berne 1990]. The nature of this 
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coupling, if it exists, is topic of current research and considerable debate [Triedman 1994, 

Novak 1993, Piepoli 1997, DeBoer 1987]. 

respiratory centre 
(medulla) 

l 
change in change in 

inttathoracic ~ lung volume 

1pressure (stretch receptors) 

1 cardiac vagal 

change in Bainbridge centre (medulla) 
~ ~ 

te~ venous return· reflex 

1 
change in pulse 

baroreceptorpressure ~ reflex(Frank-Starling) 

Figure 3 Classical model of RSA generation 

1.3.1 Validation of the Classical Model of RSA 

The contribution of the Frank-Starling mechanism to the classical model ofRSA is 

supported by results in humans that show that HRV RSA is reduced but not abolished in 

heart and lung denervated patients [Bernardi 1989, Bemru:di 1990, Taha 1995]. DeBoer 

et al. [1985] have fit a mathematical model of the known reflex components of the 
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classical RSA model using HR, BP and instantaneous lung volume (IL V) time series from 

normal humans with typical values for constants characterizing the baroreceptor and 

Bainbridge reflexes and Frank-Starling law of muscle fiber contraction. The model works 

surprisingly well, as evidenced by relatively low prediction error residuals, but other 

physiological data suggests that the simplified model may be inadequate because it does 

not describe all the relevant contributions to RSA. For example, single nerve recordings 

in the anesthetized dog show that sympathetic and vagal efferent nerve activities are also 

coupled to efferent phrenic nerve activity [Berne 1990]. The coupling to pherenic nerve 

activity persists even when respiratory motion is disabled and the blood is continuously 

oxygenated by an external system. Thus, in the dog, a component of RSA appears to be 

driven by intrinsic oscillations generated in the medulla. 

This result is not supported by studies in humans which show that the RSA in 

human HRV is virtually abolished during short term voluntary apnea [Passino 1997]. This 

suggests that the central respiratory drive does not play a significant role in generation of 

RSA in humans. However, it is likely phrenic nerve activity is- also suppressed during 

voluntary apnea. Thus, centrally generated respiratory rhythms may in fact contribute to 

RSA in humans under normal breathing conditions but may be inhibited during consciously 

controlled respiration or apnea. 

A particularly insightful study [Taha 1995] has shown that the afferent innervation 

of lung also plays an essential role in generation of neurally mediated RSA in humans. 

They report that RSA is virtually abolished during controlled voluntary breathing in 
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patients with denervated lungs that have intact cardiac innervation and normal 

baroreceptor gain. Large differences in HRV RSA magnitudes between the two groups 

suggests that the baroreceptor reflex may play an insignificant role in generation ofRSA in 

humans. This is contrary to the explanation offered by the classical model of RSA 

generation and suggests that the classical model may not be entirely accurate. 

However, other investigators have shown that RSA-type oscillations in HR.V and 

PP in humans may be induced by suitable stimulation of carotid baroreceptors using an 

external neck suction device [Sleight 1995, Piepoli 1997]. Thus, in intact subjects the 

baroreflex may play an important role for the generation ofHRV RSA but it appears that 

the baroreceptor mediated mechanisms may be disabled when lung afferents are severed. 

Taha et al. [1995] also show that during positive pressure ventilation at a fixed 

frequency in normal conscious humans, the magnitude of the RSA drops dramatically 

compared to active (voluntary) controlled ventilation values. Since positive pressure 

ventilation does not result in atrial stretching (Bainbridge reflex) and suppresses normal 

phrenic nerve activity but not lung stretch afferent activation, they conclude that there are 

influences other than lung stretch afferents and the Bainbridge reflex responsible for the 

generation of RSA, but that the key mechanisms are not redundant and are, in fact, 

mutually dependent. 

The exact physiological mechanisms responsible for the generation ofRSA are still 

unclear. A number of investigators have suggested possible mechanisms and simple 

models but none have been able to fully integrate all the physiological results into a model 



16 

in which all plausible contributions are unambiguously characterized. Most physiological 

studies in RSA have been done either in anesthetized animals [Malliani 1992, Lown 1986, 

Berne 1990] or in humans with one or more of the regulatory systems disabled or 

otherwise controlled [Berger 1989, Bernardi 1989, Casadel 1992, Chon 1997, Freyschuss 

1987, Jose 1966, Novak 1993, Passino 1997, Piepoli 1997, Sanders 1988, Saul 1991, 

Seals 1993, Taha 1995, Taylor 1995, Triedman 1994, Woo 1996]. These studies have 

provided critical information regarding the afferent and efferent components of 

cardiovascular regulation. However, little is known about how the various components 

interact under normal physiological conditions because it is difficult to record all of the 

relevant physiological signals invivo without surgical, pharmacological or mechanical 

intervention. 

1.3.2 Effect of Controlled Breathing on RSA 

The magnitude of the RSA in HR.V depends on the state ofthe cardiac innervation, 

physiological state and breathing patterns. Actively controlled (voluntarily paced) 

respiration in humans partially overrides the normal respiratory control mechanisms and 

thus significantly changes the physiological state. This results in increased RSA in HRV 

and BP compared to spontaneous respiration with similar mean tidal volume and breathing 

rate. Previous investigators have shown that the magnitude of RSA in HR.V during 
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controlled breathing is proportional to tidal volume and is inversely proportional to 

breathing rate [Taha 1995, Freyshuss 1975]. 

1.4 Closed-Loop Modelling of Cardiovascular Regulation 

A number of investigators have used generalized linear and non-linear system 

identification approaches to model the physiological responses to controlled respiration in 

order to better characterize the closed-loop RSA response in humans [Saul 1991, Mullen 

1997, Christini 1995, Chon 1997, De Boer 1987, Marmarelis 1993]. Generalized 

modelling techniques have allowed for accurate prediction of the normal physiological 

responses to controlled respiration. The main benefit of generalized modelling methods is 

that they have the potential to characterize the closed loop system response without 

making apriori assumptions regarding the underlying physiological components of the 

system that may contribute to the responses. The generalized model parameters can be 

used to better describe the integrated effect of the underlying physiological processes 

involved. Thus, it is hoped that models of the closed loop system characteristics may help 

fill the knowledge gap between the functional characteristics of the system components 

and the integrated response of the closed loop system. 

The main disadvantage of the generalized modelling techniques is that the 

assumptions that must be made to fit the model (i.e. complete observability, identifiability, 

stationarity and often linearity) are usually rather poor assumptions when applied to 
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complex biological systems. Thus, the resulting models are often limited by uncertainty 

with respect to the reliability of the model and the subsequent interpretation of the model 

parameters in terms ofplausible physiological mechanisms. 

Previous investigators have used paced broad band breathing together with 

pharmacological interventions (Atropine and Propanalol) and changes in posture (standing 

and supine) to estimate non-parametric transfer functions between respiration, heart rate 

and blood pressure in healthy human subjects under two different physiological conditions 

[Saul 1991]. They found that between 0 - 0.5 Hz, vagal HR. control (supine during 

adrenergic blockade with Propanalol) is characterized by a maximum gain near 0.15 Hz, a 

small decrease in gain with frequency above 0.15 Hz, and approximately 0° phase shift 

between IL V and HR. Under vagal blockade (standing with Propanalol), they found that 

HR. control is characterized by lower gain at all frequencies with a phase shift that 

decreases from 180° at 0 Hz to -180° at 0.5 Hz. They also found that the ILV--)- PP and 

ILV --)- SBP magnitude functions were diminished but not abolished under total 

autonomic blockade (Propanalol + Atropine) and thus concluded that some, but not all 

blood pressure variablity is due to HR.V. 

Unfortunately, the set of transfer functions in [Saul 1991] are calculated using the 

fast Fourier transform (FFT) ofthe HR., IL V and BP time series taken two at a time. This 

technique is only reliable in feedforward systems where the input is strictly controlled 

[Saul 1991, Ljung 1987]. Thus, the output-output transfer functions (e.g. HR. --)- PP) 

derived using the spectral methods are not reliable and cannot be used to characterize the 
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relationships between the system outputs even when this information is encoded in the 

input-output data. 

The FFT technique is also very sensitive to noise in the measured data and 

windowing effects. Thus, the method requires relatively long data records to accurately 

estimate the transfer functions using ensemble averaging in the frequency domain. This is 

a disadvantage because it appears that the characteristics of cardiovascular regulation 

change continuously. 

Finally, the non-parametric modelling technique used by [Saul 1991] has limited 

spectral resolution because the transfer functions are not parametric. This is a major 

disadvantage because one is then unable to reliably differentiate the phase function results 

to estimate the group delay of the system from the transfer function estimates. As it turns 

out, the group delay is an important parameter in transfer function interpretation and can 

be used to unambiguously infer the time delays of the system under investigation (see 

Section 1.6.4 for a detailed treatment of this topic). In [Saul, 1991] these time delays 

were incorrectly associated with the phase delays, leading to erroneous interpretation of 

the transfer function results. For example, in [Saul 1991] they observe that at most 

frequencies the vagal HR. response to respiration "is characterized by a near zero by 

slightly positive phase". From this result, they erroneously conclude that "this implies that 

HR. response actually leads the changes in IL V by a very small amount" when, in fact, it is 

the slope ofthe phase function (i.e. the group delay function) that defines this time delay. 
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More recently, other investigators have used similar experimental methods to 

calculate a specialized auto-regressive moving-average (ARMA) model of the 

cardiovascular regulation [Mullen 1997]. Unlike cross-spectral techniques, ARMA 

modelling facilitates characterization of all the output responses simultaneously during the 

parameter estimation. ARMA models can also separate the feedforward and feedback 

paths of a closed loop system more reliably than spectral models2 [Ljung 1987]. The 

ARMA modeling technique is also less sensitive to noise and hence requires less input-

output data to accurately fit the model parameters [Ljung 1987]. 

The ARMA model results in [Mullen, 1997] are presented as a group of impulse 

response functions that characterize the IL V ~ HR, IL V ~ ABP and ABP ~ HR. 

transfer functions. Their results show that the ABP ~ HR. impulse response decreases 

sharply at time t = 0 toward negative values. This reflects a very rapid decrease in HR in 

response to increased ABP, which they attribute to the baroreceptor reflex. They also find 

that HR rises in anticipation to corresponding changes in ILV, as shown by non-zero IL V 

~ HR impulse response values for timet < 0. They claim that the non-causal IL V ~ HR 

impulse response supports the hypothesis that both HR and IL V and partially controlled 

by a common neural subsystem. Finally, they found that the IL V ~ ABP impulse 

response is characterized by a small decrease followed rapid increase in ABP. They 

explain the initial ABP decrease by the decrease the intrathoracic pressure upon inhalation. 

2 The reliability of the closed-loop ARMA models depends on the identifiability ofthe closed loop system. 
Unique parameterization of a closed loop system is often not possible. even when the system input is 
persistently exciting [Ljung 1987]. 
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The subsequent increase is believed to be caused by increased cardiac filling after a 1-2 sec 

delay. 

Unfortunately, the impulse response functions in [Mullen, 1997] are expressed 

exclusively in the time domain and hence do not facilitate interpretation of the frequency 

response of the system. This is a major limitation of the impulse response technique 

because oscillation appears to be a fundamental property of biological systems. The 

interpretation of the impulse responses in terms of physiological responses to respiration is 

also difficult to justify because normal respiration patterns do not resemble a train of 

impulses. 

Mullen's decision to use a specialized ARMA model over the generalized model 

also introduces assumptions about the cardiovascular system that are not justifiable from 

the input-output data or known physiology. Specifically, in [Mullen 1997], the HR. signal 

is assumed to vary discontinuously as a tachogram. The model structure also enforces 

causality on IL V ---+ ABP and ABP ---+ HR. but not on IL V ---+ HR., which is allowed to be 

non-causal. These assumptions make the physiological interpretation of the impulse 

response functions less reliable. 

Other investigators have extended the ARMA modelling technique in [Mullen 

1997] using a second order nonlinearity in order to calculate the two dimensional Volterra 

kernels as well as the system impulse responses [Marmarelis 1993, Chon 1997, Chon 

1996]. Unfortunately, a detailed physiological interpretation of the non-linear parameters 
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was omitted. This may be because the physiological interpretation of parameters from 

generalized nonlinear models is a difficult task in practice. 

1.5 Linear State-Space Models (LSSMs) 

A generalized discrete time invariant LSSM may be written as 

x(k+I)= A x(k)+ Bii(k)+w(k) (I).... ~ .... ~~ 
Nxl NxN Nxl Nxm mxl Nxl 

y(k) = c x(k)+ Dii(k)+v(k) 
~ .... ~ -~ ~ 

nxl nxN Nxl nxm mxl nxl 

u(k): '' ' H ; ' HHHH kih sample of input data where m is the number of inputs 
·!Q!rH:: H oOoHOO :::: : :· :: kth sample of output data where n is the number of outputs 

::,rQ;~~P:~~::y~p~~~~·:,· ,:::=:=::::::=::::::=::::::=:::=::::::::::::::::::::==:::])¢$¢riptiij))::::f::: .....•••••.......•,,,:·;;;;;;;;•:;,•;;;··: 
):~C))iiHi::::::::::: i) :::=:::::::::::::::::::: :: initial value of theN-element state-space vector 

:::N)::=::::::::::::i'!fiffHH!ii'ii!iiii!ii!l:!!)!'ii! system order 
:· ~~i~~i~~iJ.;),':':i!f:i::i:)))ii).'U !,:::,_. state-space system matricies (time invarient) 
U!w(k)~!~(k)jiiji/': ':••::::::'': !!! kth sample ofthe state and measurement noise vectors 

The state and measurement noise vectors, w(k) and v(k), are not explicitly 

modelled by the LSSM algorithm used in this thesis but are assumed to contribute to the 

final prediction error of the model. Thus, no assumptions are made about the statistical 

properties of the noise signals except that they are not correlated with each other or the 

system inputs, outputs and states. 
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For the SIMO LSSM developed in this thesis, the input u(k) is the kth sample of 

the instantaneous lung volume (IL V) time series and the output y(k) is a 3 by 1 vector 

consisting of the kth sample of the instantaneous heart rate (HR), mean arterial blood 

pressure (MBP) and pulse pressure (PP) time series. The generation ofthese time series is 

described in Chapter 2. The system order, initial state vector, and system matricies may be 

estimated from the input-output data in four steps [Moonen 1989]. 

Step 1 

Form a composite (block Hankel) data matrix using the 1st half of the input-output 

data 

where U and Yare block Hankel matrices of the input and output data respectively. For 

the LS SM models in this thesis U and Yare 

/LV(I) ILV(2) ILVU) 


ILV(2) ILV(3) ILV(j+1) 

(3)U= . 

ILV(i) ILV(i +1) ILV(i + j -1) (txj) 
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HR(1) HR(2) HRU) 

MBP(l) MBP(2) 1Y1MBP(j) 

PP(l) PP(2) PPU) 

HR(2) HR(3) HRU+1) 

Y= 
MBP(2) 

PP(2) 

MBP(3) 

BP(3) 

MBPU+1) 

PPU+1) 
(4) 

HR(i) HR(2i+1) HR(i+ j-1) 


MBP(i) MBP(2i+1) MBP(i+ j-1) 


PP(i) PP(2i+1) PP(i+ j-1) 

(3ixj) 

The choice ofoptimal values fori andj is discussed in Section 1.5.1. 

Step 2 

Calculate the singular value decomposition (SVD) ofHand U. 

H =UH •SH .v; 
(5) 

V=Uu •Su •VrJ 

The elements along the main diagonal of the S matricies are the singular values of U 

and H respectively [Golub 1996, Strang 1980]. The SVD of H has the useful property 

that the columns of VH form an orthonormal basis for the rowspace of H, where the 

relative importance of each vector in VH to the 'energy' in H is represented by the 

magnitude of the corresponding singular value in SH· Thus, the vectors in VH are the 

prinicipal components ofthe time series in H [Golub 1996]. 
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If the input is sufficiently exciting and the system is linear and noise free (i.e. 

w(k) = v(k) = 0) then the rank of H will be greater than the rank of the U alone by an 

amount equal to the LSSM state space dimention [Moonen 1989]. 

Rank(H)=Rank(U)+N (6) 

This allows one to estimate the system order, N, by visual comparison of the singular 

value plots ofH and U prior to further computation of the model parameters, as illustrated 

in Figure 4. 

Unlike ARMA modelling, the LSSM technique does not require the minimization 

of an information function applied to a set of hypothetical models to estimate the correct 

model order. This significantly reduces computation time while increasing the reliability of 

the order estimate [Moonen 1989]. 

Step 3 

The first N principal components of H are the first N columns vectors in Vn. 

These vectors define an orthonormal basis for the intersection of the span of the input and 

output data spaces (i.e. the state-space), as shown in Figure 4. A valid realization of the 

state-vector sequence x(k) may be found from any linear combination of these N principal 

vectors [Moonen 1989]. A particularly useful realization is 
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where x(k) is the state vector realization at discrete time k, V,., is the (n,m)th element of 

VH· In this case the state-space time series are mutually orthogonal. This corresponds to 

a minimal realization of (1), provided the system under investigation is completely 

controllable and observable [Kailath 1980, Moonen 1989]. 

In practice, noisy input-output data complicates the state vector reconstruction 

because noise increases the rank of H and U and hence introduces extraneous non-zero 

singular values into the S matricies. This makes it difficult to determine the correct system 

order from comparison of the singular value distributions of U and H. However, if the 

signal to noise ratio is large, the singular values introduced by the noise will all be smaller 

than smallest 'signal' singular values, as illustrated in Figure 4. This makes the singular 

value distribution discontinuous at the transition from the signal to noise subspaces. 

Moreover, using the first N principal components ofH for the state-space reconstruction 

ensures that reconstruction is robust with respect to the model order estimation error. 

This is because the principal components are ordered with respect to their impotance in 

representing the time series in H [Golub 1996]. Thus, although the contribution of 

additive noise makes it difficult to place an exact upper limit on the system order, one is 

assured that the resulting system model still performs reasonably well. 
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Step 4 

The matrices A, B, C and Dare found by solving an over-determined set of linear 

equations in least squares 

x(2) x(J) 

HR(l) HR(j - 1) [A B][ x(1) xU -1) J 
MBP(1) MBPU -1) - C D ILV(1) ILVU -1) (S) 

PP(l) PPU-1) 

where x(k) is an N by 1 vector representing the kth sample of the state-space sequence 

found in Step 3. 

A more efficient way to compute the LSSM matricies without explicit computation 

of x(k), Vu, or the least squares solution of (8) is presented in [Moonen 1989]. The 

method is more computationally efficient and numerically robust but it is less intuitive than 

the proceedure described above. The improved algorithm in [Moonen, 1989] was 

rewritten as a MATLAB function for fitting the LSSMs presented in this thesis. An 

annotated version of this MATLAB implementation is included in Appendix A. 
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N State-Space N-additional 
Singular Values '414~- Singular Values 

·i
-8 ~ ~ 

~ ~ 

~ Input Noise Space 
1---------__,~ 

Input-Output Noise Space i -.............. _ 
l:.l.l ......... 

Singular Value# 

Figure 4: Determining a basis for the state-space. The dotted curve represents a typical 
singular value distribution for the input data matrix U. The solid curve is the distribution 
for the combined data matrix H. The output data adds N dimensions to U and the first N 
singular values in H form an orthonormal basis for the state space of the system. 

1.5.1 Choosing the Data Matrix Dimensions 

The rectangularity is defined as the ratio of the number of columns to the number 

of rows in the data matrix H. 

It should be selected empirically to maximize the number of columns in the data matrix 

subject to the constraint Rank(H) < 4i, or more generally 
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This is done because the lowest frequency component that can be accurately estimated 

from the input-output data is limited by length of the rows in H. Thus, maximizing the 

number of columns is necessary in order to model the lowest frequencies possible, given a 

limited data set. At the same time, the accurate estimation of the system order requires 

that the singular value spectrum be distributed enough to accurately differentiate between 

eigenvectors associated with the signal and noise subspaces by visual inspection of the 

singular value spectrums of H and U. In practice, if the rectangularity is selected so that 

Rowspace(H) has only a few singular values that are very close to zero, then the spread of 

the singular value spectrum is maximized. This result follows from the general matrix 

property [Golub 1996] 

Rank(H) = Rank(HT) =#of nonzero singular values in the SVD of H (11) 

Thus, decreasing the matrix rectangularity beyond this point has no useful effect on the 

singular value distribution but unnecessarily increases the frequency of the minimum 

resolvable frequency component in the input-output data by reducing the length of each 

rowinH. 
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1.6 Calculation of System Transfer Functions 

A polynomial transfer function matrix G(z) may be calculated from the LSSM 

matricesA,B, C and D [Kailath 1980] 

G(z) = y(z) = C(zl- Af1B +D (12) 
u(z) 

where I is an N by N identity matrix. This result is easily derived by taking the z-transform 

of the noise free version of(l) (i.e. w(n) = v(n) = 0) and solving for y(z)lu(z). Note that 

for the (SIMO) case considered in this thesis, the elements of G(z) are rational functions of 

the complex variable z where the lh row of G(z) is the discrete time transfer function 

between the input and the lh output [Kailath 1980]. 

The transfer functions are found by evaluating the rows of G(z) on the unit circle 

z = exp(j2tif/), 0 _:5; f :::.; -1 
(13)

2T 

where T is the sampling period of the input-output data in H and f is frequency in Hz. 

Since the LSSM is expressed in discrete time, the transfer functions are strictly 

bandlimited [Oppenheim 1989]. Note that the LSSM transfer functions are relatively 

noise free. This is because the system matrices are found from a least squares solution of 

the over-determined set of equations in (8). 
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1.6.1 Interpretation of Transfer Functions 

The magnitude function 

is the gain between the input (ILV) and the system outputs (HR, PP, and 1\ffiP) as a 

function offrequency [Oppenheim 1989]. 

The phase function 

(p(j) = arctan(Im{G(/)}J (15) 
Re{G(j)} 

is a measure of the distortion of the input signal (ILV) morphology as it passes through 

the system to the outputs. Phase distortion may take many different forms. In the simplest 

case, the phase shift will be constant with frequency. In this case a 90° phase shift 

indicates that the output is a frequency weighted function of the first derivative of the 

input, where the weighting function is the magnitude function (14). Similarly, a -90° 

phase shift function indicates an output dependence on the moving average or integral of 

the input function. Finally, a ±180° phase shift indicates that the input is inverted to 

produce the output [Oppenheim 1989, Van de Vegte 1990]. 

An arbitrary constant phase shift between ±180° indicates that the net response of 

the system output is a combination of the basic integral, derivative and inverter type 

responses. Clearly, the particular combination of the basic responses is not unique so even 



32 

with a perfectly constant phase function there is still ambiguity with respect to the 

underlaying physical mechanisms responsible for the phase response of the system. Note 

that the phase plot is cyclic with period 21t, so a phase shift exceeding ±180° is also 

ambiguous. This property introduces discontinuities in the phase function whenever the 

'true' phase shift of the system exceeds ±180°. The discontinuties in the phase function 

may be removed by 'unwrapping' the phase [Oppenheim 1989]. This implies adding 

multiples of±1t to the principal value phase function after a discontinuity. 

Unwrapping the principal phase function (15) allows for net phase shifts in excess 

of ±180° and hence smooths out the appearance of the phase plot. However, phase 

unwrapping can only be accurately done in situations were the phase function is analytic. 

Specifically, with non-parametric techniques (e.g. [Saul, 1991]), noise in the phase 

function and limited spectral resolution may introduce anomalous discontinuities in the 

phase function that make it difficult or impossible to reliably unwrap the phase. 

In addition to phase distortion information, the phase function also encodes the 

time delays of the system under investigation [Haykin 1989, Oppenheim 1989]. 

Extracting time delay information from the phase function is described in Section 1.6.4. 

1.6.2 Determining Causality from Transfer Functions 

It is often impossible to uniquely determine the relationship between the outputs of 

a multi-output system using only input-output data collected during closed-loop operation 
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[Ljung 1987]. This is because the relationship between the outputs of a closed loop 

system may be either causal, anti-causal, or neither [Oppenheim 1989]. For a SIMO 

system, determining the causality of the system outputs with respect to each other, if such 

a relationship exists, may require additional information or assumptions about the system 

that cannot be inferred from the input-output data alone [Ljung 1987, Oppenheim 1989, 

Kailath 1980]. 

In the simple case of a single-input single-output (SISO) system, causality implies 

that the output of the system is a function of only the past and present values of the input. 

Similarly, anti-causality implies that the output depends only on present and future values 

of the input. Specifically, if a SISO system is described by a transfer function G(z), 

causality depends on the choice of the region of convergence (ROC) of G(z), as illustrated 

in the following example (adapted from [Oppenheim1989, p 207]). 



34 

Example 1 
Consider a linear time invariant system with input and output related through the 
difference equation 

5
y[n]--y[n-1]+ y[n-2] = x[n]

2 

The discrete time transfer function for this system is then 

The pole zero plot for G(z) is shown in Figure 5. There are three possible choices for 
the ROC. If the system is assumed to be causal, then the ROC is outside the outermost 
pole, i.e. lzl > 2. In this case, the system will not be stable since the ROC does not 
include the unit circle. Ifwe assume the system is stable, then the ROC will be 1/2 < lzl 
< 2. In this case, the system will be non-causal. For the third possible choice ofROC, lzl 
< 1/2, the system will be unstable and anti-causal. 

Figure 5 Zero-pole plot for Example 1. 

Thus, if G(z) is such that the ROC is unknown and not unique, as in the above 

example, then one cannot make a definitive statement regarding the stability and causality 

of the physical system represented by G(z). It is also clear that if G(z) is stable and has 



35 

poles both inside and outside the unit circle then the system is neither totally causal nor 

anti-causal but rather a combination of the two. 

The determination of causality is further complicated by the fact that the inverse of 

a stable and causal system, G"1(z), may also be stable and causal, stable and non-causal, 

unstable and causal, or unstable and non-causal, depending on the locations of the zeros of 

G(z) and the ROC. In general, G(z) may be said to be strictly causal if and only if G(z) is 

stable and causal and 6"1(z) is stable and anti-causal. This is the only case in which one 

can conclude that the input must drive the output at all times. This result plays an 

important role in the analysis of causality for single-input multi-output (SIMO) systems 

like the one examined in this thesis. 

1.6.3 Extracting Closed-Loop Transfer functions from the LSSM 

The LSSM systems developed in this thesis may be decomposed into a set of 

global and local transfer functions shown in Figure 6. Here, the set of global transfer 

functions {G(z)} are the rows ofthe G(z) transfer function matrix in (12) obtained from the 

LSSM parameters as outlined in Section 1.6. 
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Figure 6 Schematic diagram of the system under investigation. The global transfer 
functions Ga may be derived from the LSSM parameters and (12). 

Under certain conditions (see Appendix B for details), the set {ll,.,,J may be found 

from {G(z)} 

This simplifies to 

where num{G,(z)} is the numerator polynomial ofG,(zl. In this case, the poles ofH,.,m(Z) 

are given by the zeros of Gm(z). As shown in Appendix B, the G,(z) and Gm(z) will have 

common zeros, in which case H,.,m(z) will have multiple pole-zero cancellations. Clearly, 

only the poles and zeros that remain after cancellation are relevant to H,.,m(Z). 

3 This is because all the G,.(t) share the common denominator (zl-Al1 from (12). 
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The global transfer functions {G(z)} are strictly causal because IL Vis the control variable4
. 

Similarly, the set {F(z)} is strictly causal even though {F(z)} is not known. However, the 

set ofclosed-loop transfer functions {H(z)} may or may not be causal because none of the 

outputs are explicitly controlled. From the results of Sections 2.4.2 and 2.4.3 one can 

conclude that H,.,m(Z) will be stable and strictly causal if and only if the all the zeros of 

Gm(z) that are not common to Gn(Z) are contained inside the unit circle lzl < I and all the 

zeros of Gn(z) that are not common to Gm(Z) are located outside the unit circle. If this is 

not the case then the closed loop causality is not clearly defined. For such systems, the 

group delay function plays an important role in clarifying the temporal relationships 

between the system outputs. 

1.6.4 Interpretation of Group Delay 

The group delay function 

is the delay of the envelope of a narrow band IL V signal as it travels through the system 

[Oppenheim 1989, Haykin 1989]. A negative group delay over some frequency band/L < 

f < /u means that the output changes are anticipatory to the input, provided the input 

4 Under normal physiological conditions respiration is controlled by the medulla, in which case causality 
of G(!) is no longer guarenteed. This is a limitation of the paced breathing method for system modelling. 
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signal is bandlirnited toJL <f<fu5
• For example, ifthe input signal (ILV) is an amplitude 

modulated sinusoid6 

ILV(t) =s(t) cos(2;if0 t) (19) 

where s(t) represents a slowly varying tidal volume7 and/o is the mean breathing frequency 

(assumed constant), then the output function Y(t) will be [Haykin 1989, Oppenheim 1989] 

Y (t) = s(t- ra) cos(2;if0 t + <l>(j0 )) (20) 

Here, it is assumed that IG(f)l = I (unity gain at all frequencies) and that Fa(f) is constant 

over the bandwidth of the IL V signal. Thus, if Fa is negative the output response to 

changes in tidal volume will precede the actual change in tidal volume by Fa seconds. 

This apparently non-causal behaviour is possible even in causal systems because narrow 

band signals are correlated in time and hence they are predictable given past values. 

Note that the interpretation ofthe group delay is in the time domain. Thus, it is the 

group delay, not the phase delay, that defines the time delays of the system under 

investigation [Haykin 1989]. This is an important result that has been frequently 

5 In general, no real signal is strictly band-limited. This limits of the interpretation of group delay as the 
time delay of real signals through a system. 
6 This is a gross simplification of the true ILV signal properties but the results from this analysis may be 
extended to include any bandlimited ILV signal, which is a better approximation to the real ILV signal. 
7 Slow compared to the mean breathing frequency fo 
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overlooked in the literature and has resulted in inaccurate physiological interpretation of 

closed loop system transfer functions [Saul 1991, Berger 1989]. 

The group delay function is closely related to the magnitude function of H(z) 

[Oppenheim 1989]. Specifically, a stable pole in the H(z) will be respresented as a 

positive spike in both (14) and (18) at the frequency ofthe pole. The magnitude of this 

spike depends on the proximity of the pole to the unit circle (lzl = 1) and tends to inifinity 

when the pole is located on the unit circle [Oppenheim 1989]. Similarly, a zero in the 

transfer function will be represented as a negative spike in (14) at the frequency of the 

zero and either a negative or positive spike in (18) depending on whether the zero is inside 

or outside the unit circle respectively. As with the pole, the spike magnitude tends 

towards ± oo as the zero is moved towards the unit circle [Oppenheim 1989]. Thus, 

strongly non-linear regions of the group delay functions are caused by poles or zeros that 

are located close to the unit circle in the LSSM transfer functions. They have no simple 

physical interpretation because the smallest bandwidth of the IL V signal is at least 0.05 

Hz8
. Unfortunately, large spikes in the transfer functions often interfere with the nearby 

values of the magnitude and group delay functions near to the spike frequency, often 

obscuring the more stable regions of these functions. One way to avoid this problem 

would be to move all the poles and zeros of the system function away from the unit circle, 

although this clearly would diminish the model accuracy and hence the validity of the 

8 This bandwidth limitation is based on the observation that one cannot generally predict the ILV time 
series further than 20s, or -o.os-1 s into the future givin only past values of the ILV signal. In general, the 
predictability of a time series is inversely proportional its assumed bandwidth. 
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transfer functions. One may also pass the group delay function through a low pass filter to 

remove the spikes, but again, this would effect the reliablity ofthe group delay function. 

Poles and zeros may be positioned close to the unit circle by the LSSM algorithm 

in order to model a strong resonance or damping in the system under investigation and/or 

by large amplitude intrinsic o~cillations in the system outputs caused by unobservable 

system inputs. Both possibilities have the same effect on the transfer function and pole­

zero plots of G(z). However, if the source of the oscillation is an external input, then the 

prediction error power spectral density {PEP) of the model output will have a spike at the 

oscillation frequency, indicating a forced resonance phenomena where the forcing function 

is unknown and hence unpredictable beyond its second order statistics. 
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Chapter 2: Methods 

2.1 Objectives 

The mam objective of this work is to develop a closed-loop model of 

cardiovascular regulation in humans and to interpret the model results in terms of normal 

physiology. In light of the previous work in this area, the secondary objectives of this 

work are (a) to refine the experimental and computational methodology used to generate 

the model, (b) to correct previous misinterpretations of transfer function results and (c) to 

investigate the theoretical limits and reliability of closed-loop system identification 

techniques. 

2.2 Experimental Protocol 

The experimental protocol was designed with three goals in mind: (a) to 

characterize the sensitivity of the LSSM technique to physiological changes caused by 

changes in posture (supine vs. standing), (b) to determine the reproducability of the LSSM 

results through repeated experiments with the physiological state held constant and (c) to 
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avoid any unneccassary physiological stresses or changes from the paced breathing 

requirements of the experiments. 

Ten healthy, non-smoking human volunteers (6 male, 4 female, Age: 22-26 yrs.) 

participated in this study. No subject had a history of cardiopulmonary disease. All 

experiments were performed between I PM and 5 PM, 1-3 h after the last meal. Three 

different respiratory pacing waveforms with identical second order statistics (duration 300 

s each) were generated in MATLAB by filtering 300 s white noise time series through a 

low pass digital filter (lOth order FIR, 0.5 Hz cut-oft). The pacing waveforms are shown 

in Figure 7. Twelve seconds of a sinusoidal breathing series (peak amplitude % maximum 

tidal volume, period 4 s) were smoothy attached to the start of the filtered noise series as a 

"lead-in" pacing series for the subjects. This ensured a smooth and reproducable 

transition between the physiological state associated with uncontrolled (spontaneous) 

breathing just before the experiment and controlled breathing during the experiment. 

Filtered white noise was used as the pacing signal so that the input to the system would be 

persistently exciting [Ljung 1987]. The cut-off frequency of the pacing waveforms was 

choosen to avoid undue physiological and mental strain from otherwise difficult or 

impossible breathing requirements. Three different waveforms were used to check the 

reproducability ofthe results from each subject and to avoid introducing a 'memory effect' 

into the results that may occur if the exact same waveform is used repeatedly in several 

consecutive trials on human subjects. The pacing waveforms were stored for visual 

playback using MATLAB on a personal computer (DELL XPS M200S). 
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During each of the experiments, one of the pacing waveforms was slowly scrolled 

across a computer screen, with I 0 s of the waveform displayed on the screen at any point 

in time. An example of the pacing waveform display is shown in Figure 8. The subject 

was instructed to observe this waveform and modulate his instantaneous lung volume 

(TI..V) according to a marker (a yellow dot) superimposed on the animated waveform, 

which indicated the current level of the pacing TI..V signal. Since both current and future 

values of the pacing signal were visible during the waveform animation, the subject was 

able to accurately pace his lung volume without physiological or psychological stress from 

unpredictable breathing requirements. 

~ 
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Figure 7: The three different ILV pacing waveforms used in this experiment The physiological 
data was recorded immediately after the last cycle of the periodic 'lead-in' part of the pacing 
waveform. 
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The Lead IT electrocardiogram (ECG, HP7807C amplifier), instantaneous lung 

volume (IL V, HP7807B chest-abdomen conductance plethysmography amplifier) and 

instantaneous arterial blood pressure (ABP, Ohmeda 2300 Finapres) were measured 

during each of the three paced breathing series (after the 12 s "lead-in" series) while 

supine. One to two minutes recovery time was allowed between the paced breathing 

experiments to ensure that initial physiological conditions were the same for each of the 

paced breathing series. The time series were sampled at 500Hz with 12-bit resolution 

(DATAQ DI-420 data aquisition system) and stored on a personal computer for off-line 

analysis. 

After the supine recordings, the subject was required to stand-up. Five minutes 

were allowed for the physiological state of the subject to stabilize. The three paced 

breathing experiments were then repeated in the standing condition for comparison. 

first part of the random last part of the periodic 
pacing series "lead-in" time series 

current time 
4s marker 

Figure 8 : An example of the respiration pacing waveform display. During the experiment, the 
waveform is animated and appears to move from right to left, with new pacing values appearing at 
the right edge of the screen. The current time marker moves up and down along the waveform but 
remains in the centre of the screen, indicating the current lung volume requirement to the subject. 
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2.3 Data Analysis 

The recorded data were preprocessed using MATLAB to extract the relevant 

physiological information from the raw signals. Preprocessing is required to ensure that 

the input-output data can be linearly related and to remove components from the signals 

that might interfere with the LSSM algorithm. Thus, preprocessing removes some 

information from the input-output data (i.e. very low frequency baseline drift) but ensures 

that the remaining information can be accurately modelled. 

2.3.1 Estimation ofHR Time Series 

The R-waves were detected from the ECG signal usmg a MATLAB peak 

detection algorithm developed in our laboratory [Kamath 1993]. A uniformly sampled HR 

time series was constructed at a sampling rate of2 Hz using linear interpolation of the R-R 

intervals, as shown in Figure 9. 

The interpolated HR series was high pass filtered (80th non-causal FIR filter with 

zero phase distortion) in order to remove frequency components< 0.07 Hz from the time 

senes. 
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2.3.2 Estimation of MBP and PP Time Series 

Mean blood pressure (MBP) and pulse blood pressure (PP) event series were 

formed using the mean ABP and the maximum change in ABP between each R-R interval 

from the ECG. The series were re-sampled at 2 Hz using linear interpolation of the event 

series with the R-R intervals from the ECG as the time reference, as shown in Figure 9. 

The interpolated MBP and PP were high pass filtered {80th order non-causal FIR filter 

with zero phase distortion) in order to remove frequency components< 0.07 Hz from the 

time series. 

2.3.3 Synchronization of ILV Time Series 

The IL V was low-pass filtered {1Oth order FIR linear phase, 1 Hz cutoff with 

delay compensation) and resampled at 2 Hz. The start and end times of the series were 

selected to coincide with the first and last R-waves in the ECG. This synchronized the HR. 

and IL V time series to within± 0.5 heart beats, on average. 

Since the linear interpolation of the HR. series is a non-causal process (see Section 

5.6 for details), the IL V time series was advanced in time by 1 s prior to system 

identification in order to enforce causality on the input-output data. The effects of this 

artificial time lag were removed from the phase and group delay results after system 
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identification. The time-advanced IL V series was high pass filtered (80th non-causal FIR 

filter with zero phase distortion) in order to remove frequency components < 0.07 Hz 

from the time series. 

R-R 

Iinterval 
) 

1/R-R 
interval I ) 

Interp. 

HR 
 ll 

) 

pp I ) 

-
Interp. 

pp ll 

Figure 9 Conversion of HR and PP event series into interpolated discrete time series. ll..V time 
series was synchronized with the interpolated HR, PP and MBP series by using the first 
and last R-waves to define the start and end times of the synchronized ILV time series. 
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2.4 Fitting the LSSM 

A group of linear discrete time state-space models (LSSM) of cardiovascular 

regulation were estimated using the first 150 s of supine and standing data from each 

subject and the MATLAB algorithm in Appendix A. The rectangularity of the input­

output data matrix was choosen to be 7, based on the theoretical results of Section I. 5 .1. 

The rectangularity allowed for a maximum model order Nnuu: = 20 with a minimum 

resolvable frequency component Fm~n > 0.069 Hz, or 10 cycles of a component with a 

period of 14.5 s, which is sufficient to accurately model the system at physiologically 

relevant breathing rates (0.07-0.5Hz). 

The model order was between 15 - 18 and was selected by visual examination of 

the singular value distributions of the input and input-output data matrix of each set of 

results as outlined in Section 1.5. 

Parametric transfer functions between IL V and HR, PP and MBP in each LSSM 

were computed using the method outlined in Section 1.6. The magnitude, phase and group 

delay functions were computed from the parametric transfer functions using the methods 

outline in Section 1.6.2. The poles and zeros of the HR ~ PP closed loop transfer 

function were derived from the IL V ~ HR and IL V ~ PP transfer functions using the 

results from Section 1.6.3 in order to investigate causality of the HR ~ PP response. The 

magnitude, phase and group delay of the closed loop transfer functions were computed 
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using the results of Sections 1.6 and 1.6.3, were the ROC is assumed to include the unit 

circle. 

2.4.1 Model Validation 

The models were validated using the remaining 150 s of data from each subject by 

comparing the measured system outputs (HR, BP and PP) with those predicted by the 

model given only the ILV signal as input. The prediction error (PE) was computed as the 

difference between the actual and predicted time series for each of the system outputs on 

the validation data. The auto and cross power spectral density functions for the prediction 

errors and ILV were estimated using the MATLAB functions psdO and csdO respectively, 

with 64 s data segments, overlapped by 50% and windowed with a Hamming window. 

The spectral resolution using these parameters was 0.03 Hz [MathWorks 1996, Ljung 

1987]. The coherence function between the PE and ILV was computed from these 

spectral estimates using the relationship [Ljung 1987, Saul1991] 

where SILv and SPE are the spectral density estimates of ILV and the PE respectively and 

SILv,PE is the cross spectral density estimate. 
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Visual comparison of the predicted time series with the measured response was 

used as a qualitative measure of the model accuracy, which was checked by examination 

ofthe coherence between the ILV and PE. A significant coherence relationship (f >0.5) 

between PE and IL V in regions of relatively large PEP was interpreted as poor model 

performance that could be caused either by a poor fit to the data or non-stationarity of the 

system being modelled. 
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Chapter 3: Results 

3.1 Time Series 

The interpolated time series from a typical subject in the standing condition are shown in 

Figure 10. In four ofthe ten subjects, .MBP was observed to slowly decrease during the 

paced breathing by as much as 10 mmHg while HR slowly increased by up to 12 bpm. 

The .MBP and HR returned back to their original mean values within 1-2 minutes of 

spontaneous breathing. Most ofthe subjects began to feel drowsy after the first or second 

paced breathing trials in the supine condition. The drowsiness persisted for several hours 

after the experiments were completed. 
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Figure 10 : Interpolated time series from a typical subject in the standing condition. 
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3.2 Simulations 

The preprocessed HR, MBP and PP time series from a typical subject during paced 

breathing in the standing condition are shown in Figure ll(a). Superimposed on these 

plots are the predicted values for the time series, generated by passing the last 120 s of the 

IL V time series through the individual's LSSM. The simulations show that the LSSM 

captures most of the fast HR. and PP variations associated with IL V. This is confirmed by 

the normalized prediction error power spectral density function (PEP) shown in Figure 

ll(b), which shows that PE is concentrated at low frequencies (<0.15 Hz). The 

coherence function in Figure ll(b) shows that the PE and IL V are not correlated 

wherever the PE power is significant, which confirms that the linear model has been fit 

correctly, even though the low frequency PEP is significant. 
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Figure 11 (a) Measured (heavy line) and predicted (light line) time series for a supine subject. The 
LSSM is able to capture much of the time series variability. (b) Corresponding 
prediction error power density spectrums (SPE, thin line) and coherence function (heavy 
line) between ILV and PE. Prediction error power is concentrated at low frequencies 
(<0.15 Hz). Coherence function values are generally< 0.5 and indicate that the PE and· 
ILV time series are not correlated, as expected. 
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3.3 Supine Transfer Functions 

The combined set of supine transfer functions for the 10 subjects are shown in 

Figures 12 and 13. The inter-subject variability is high and there appears to be one outlier 

in the set with an abnormally large magnitude function. The common features of the 

supine state transfer function results are discussed below. 

ILV~HR 

The magnitude functions resemble a low pass filter with attenuation -16 ± 5 

dB/decade. Thus, slow breathing has a markedly greater effect on HR. than faster 

breathing. The phase functions generally decrease with frequency. A best fit line along 

the linear region of the phase functions yields a mean slope of -120° ± 60° per Hz or 

equivalently a mean group delay of about 0.3- 0.6 s. If this linear trend is removed then 

the net phase shift is -30° ± 50° indicating that HR. generally lags ILV by up to 1f4 of the 

breathing cycle and that the particular response varies considerably with breathing 

frequency. 

The group delay function has several spikes at the low frequency end ( <0.15Hz) indicating 

a resonant phenomena in HR. at low frequencies. The spikes tend to obscure any other 
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information contained in the group delay function except in the 0.2 - 0.4 Hz band, where 

the group delay is relatively stable at 0 ± 0.5 s. 

The IL V -7 PP magnitude functions resemble the IL V -7 HR magnitude functions. 

However the IL V -7 PP magnitude functions have a significantly higher attenuation 

constant (26 ± 8 dB I decade) which indicates a more rapid drop-off with frequency of the 

PP response to IL V. 

The phase functions are relatively stable with a net phase of ±180° ± 30° and a 

linear trend of -320° ± 30° per Hz which yields a mean group delay of about 1 s or about 

twice the mean group delay of the IL V -7 HR results. The net phase shift indicates that 

PP changes oppose changes in ILV. 

The group delay functions are scattered at low frequencies, again because of spikes 

in the group delay functions below 0.15 Hz. The function is relatively stable at 

frequencies >0.15Hz with a local minimum delay of 1 ± 0.5s around 0.3 Hz. 

ILV-7MBP 

The attenuation constant ofthe magnitude functions is 11 ± 2 dB/decade, roughly 

in between the attenuation constants ofPP and HR. magnitude functions. 
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The phase functions generally decrease linearly with frequency with a net slope of 

-600° ± 180° per Hz, which yields about I. 6 - 2 s mean group delay. The detrended phase 

is relatively constant with frequency and has net phase shift of either 0° ± 30° (7 subjects) 

or ±200° ± 30° (3 subjects). 

The local group delay functions vary significantly between subjects and therefore a 

detailed analysis of the system time delays between IL V and MBP is not feasible. 

HR~PP 

The magnitude functions are essentially constant with frequency. The variance of 

the magnitude function is greater than expected, probably because the large number of 

near pole-zero cancellations in the closed-loop transfer functions makes the computation 

of the HR. ~ PP magnitude function numerically unstable. The phase and group delay 

functions are less affected by this problem. The best fit line to the phase function has a 

mean positive slope -180° ± 30° per Hz or a mean group delay of about 0.5 ± 0.2s s. The 

mean group delay is reflected in the local group delay function, which is stable between 

0.15- 0.4 Hz. Thus HR. generally leads PP by about 0.5 s when supine. This implies that 

the time delay between IL V and PP is actually caused by a time delay between HR. and PP. 
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HR~MBP 

The magnitude function results are quite similar to the ILV -+ :MBP transfer 

function except that the gain function is flatter and the mean slope of the phase function is 

reduced to approximately -360° ± 60° per Hz or about 0.8- 1.2 s. Thus, part of the delay 

between IL V and :MBP (1.5 - 2 s) may be attributed to a delay between HR. and :MBP. 
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Figure 12: LSSM transfer functions for 10 subjects in the supine condition 



--

-- ----
--

---
--

--

60 

a. 
a. 
;"­

0::: 
:I: 

a. 
al 
:JE 

t 
0::::::r: 

.,... ....,.N N N 

-- ~ 
0 

• 

·-· 
""":

.·· ­
0.-· ­.. ­-
(")- ci-· · ­
N· ­
ci· ­......_. ... ···­

• ........
... ........ 

ci........
···-· . ........ -.._. -· ­
0 

0 0 0 0 0 0 
CX) <0 N 0....,. 

. ·- • 

-·­

.. 

- • -
0 0 0 0 
0 0 0 

"'1"I 

............ 
. ·­
· ­· ­· ­

• . - . 
- . 

. .. .. . 
•••.. 

-
--... .·- .
.. . . . - . 
.- - ..
- .
·-·..
·­

0 0 0 0 
0 0 0 

1.0 
ci 

....,. 
ci 

(") 

ci 

~ 
0 

0 

0 

· ­·-· 
· ­-


.. ­
· ­.·- ­

0 0 0 0 
0 0 0 
(") 

~ 
0 

""": 
0 

(") 

ci 

N 
0 

.,... 
ci 

0 
0 
0 

.-...... . . 
·· ­....... .
·-· 
._ ..... 
··~· 

··­
. ­
· ­. ­
........ -· .. - ­........ 

··~· 

1.0 0 1.0 
I 

~ 
00 ....... --.
---
~ 

................. 
 ....,.....,. 
cici --- .
·- ­·--· ..... ~.. 

·· ­ (") -· ­ ¥~ ci ­0 .. - ­·-- ~ · ­ r:::....._..._. II) ...._..... ::J 
N r:rN ·-· 
 ci :!:!ci .......... 
 LL.. .·- ­,.... ....... .
--· .......
.... ... cici 

~ 

). -- ..... .. ...... ...
--- ..
...........
............ 

00 

1.0 0 1.0 
I 

....,. N N 
I "'1" (s) ~e1aaureE> 

() aselld 

1.0 
ci 

....,. 
ci 

(") ¥
ci ­ :;:... 
0 
r::: 
II) 
::J 

N r:r 
II)ci .... 

LL. 

0 

0 

Figure 13 : LSSM closed-loop transfer functions for 10 subjects in the supine condition 
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3.4 Changes on Standing 

The transfer function results from the ten subjects in the standing condition are 

shown in Figures 14 and 15. The results are mostly similar to the supine model results. 

The differences between the transfer function results are described below. 

ILV~HR 

The magnitude functions are attenuated by approximately 50% on standing with 

the attenuation constant relatively unchanged (17±5 dB/decade compared to 16±5 

dB/decade). The phase functions become flatter with essentiaily zero slope and mean 

phase of -50° ± 60° between 0.1 - 0.5 Hz. Thus the HR. response to IL V becomes more 

dependent on the integral ofiLV than the derivative when standing. 

The group delay functions are essentiaiiy unchanged by standing. The value of the 

group delay function at the local minimum appears slightly reduced although the change is 

not statistically significant. 

ILV~PP 

The IL V ~ PP magnitude functions are essentially unchanged upon standing with 

the exception of the attenuation constant which decreases from 26 ± 8 dB I decade to 14 ± 
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2 dB when standing. This indicates that PP response becomes less dependent on breathing 

frequency when standing but the peak magnitude of the response is relatively unchanged. 

The phase functions are unchanged upon standing, with PP 180° ± 3 0° out of 

phase and delayed by about 1 s (phase slope -360° ± 50° per Hz). The group delay 

function is also essentially unchanged upon standing. 

ILV~MBP 

The IL V ~ MBP magnitude function is amplified by about 50% upon standing 

with a comparable increase in the attenuation constant from 11 ± 2 dB/decade to 24 ± 5 

dB/decade. The phase function has a detrended net phase shift of ±180° ± 30° and the 

slope ofthe best fit line is reduced to -180° ± 30° per Hz which yields significantly smaller 

mean group delay of about 0.5 s, compared to 1.5 - 2s when supine. 

The group delay function is much less variable for the standing transfer function 

results and exhibits the same morphology as the group delay functions for the HR. and PP 

transfer functions. The local minimum in the group MBP group delay is 0 ± 1.5 s at 0.25 

Hz. 
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HR~PP 

As with the supine closed-loop transfer function, the HR ~ PP magnitude 

functions are affected by numerical stability problems because of multiple pole-zero 

cancellations, although the problem appears to be worse in the standing condition results. 

This makes it difficult to reliably interpret the magnitude function results. The phase and 

group delay functions, however, are less affected by this problem and are essentially 

unchanged upon standing. 

HR~MBP 

As the HR. ~ PP results, the HR. ~ MBP magnitude functions are numerically 

unstable. The net phase shift is unchanged upon standing (±180° ±30°) but the mean 

group delay is decreased from 1 ±1 s to 0 ±1 s. 
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Figure 14: Group LSSM transfer functions for 10 subjects in the standing condition 
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Figure 15: LSSM closed-loop transfer functions for 10 subjects in the standing condition. 
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3.5 Intra-Subject Variability 

The standing condition transfer function results from a single subject using the 

three different IL V pacing waveforms as the input stimulus are shown in Figure 16. Intra­

subject variability is significant, particularly in the magnitude function and at low 

frequencies. The phase functions and group delay functions are re.Iatively reproducible if 

the spikes in the group delay functions are removed. Variability of the transfer function 

results reflects changing physiological conditions which may occur spontaneously over 

time or in response to the different IL V pacing functions patterns during the experiment. 
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Figure 16: LSSM transfer functions from a single subject using the three different ILV pacing 
waveforms. 
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3.6 Causality of HR ~ PP 

The zero-pole plots of the HR.~ PP transfer functions from nine of the subjects in 

the standing condition are shown in Figure 17. Most of the uncancelled poles and zeros 

are located inside the unit circle with a few located outside lzl = 1. Thus, neither the HR. ~ 

PP nor the PP ~ HR. transfer functions are strictly causal. This implies that changes in 

HR. both cause and are caused by changes in PP, as expected. The presence of poles and 

zeros both inside and outside the unit circle indicates that some changes in PP are based 

on future values of HR. and vice-versa. The means that PP and HR. must share a common 

input (for example, IL V). 
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Chapter 4: Discussion 

4.1 Prediction Errors 

The concentration of PE power at low frequencies has been observed previously 

with ARMA models of the system and by examination of cross-spectral coherence in non­

parametric transfer function models. The PE observed in this work may be caused by an 

exogenous, non-observable system input and/or non-linear distortion of the IL V. Previous 

investigators have used non-linear generalized techniques (2nd order N ARMA and 

Volterra kernels) to characterize the system more accurately [Marmarelis 1993, Chon 

1996, Christini 1995]. They have found that the PE is moderately reduced but not 

eliminated with the introduction of nonlinearity into the system model. Thus, the most 

likely cause of the large PE in this work is an unobservable exogenous input to the system 

that results in large amplitude LF fluctuations in HR. and BP. However, it is still possible 

that IL V may modulate this input of the system response in a non-linear fashion. 

Unfortunately, this possibility cannot be validated even using non-linear modelling 

techniques because the exogenous input is not directly observable. 

The LF 'noise' in the system interferes with the LSSM modelling algorithm 

because the amplitude of the noise is usually larger than that of the signal. Thus, the first 
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N principal components of the data matrix include significant contributions from the LF 

noise. In this case, the LF power is implicitly modeled as an auto-regressive process in the 

outputs, where the unknown exogenous input is assumed to be Gaussian distributed white 

noise present in the IL V signal. This representation is obviously wrong and is responsible 

for the large group delay spikes at low frequency in the transfer function results. 

One way to reduce the impact of the LF noise on the system model would be to 

reject the first M principal components ofH, where 0 > M << N, when reconstructing the 

state-vector sequence. However, doing so risks destroying the most important signal 

information as well, particularly if M is chosen too large or if the signal and noise power 

are roughly equal. 

4.2 Comparison of LSSM Transfer Functions with Spectral Techniques 

The magnitude function results are similar to those reported by other investigators 

using spectral methods [Berger 1989, Saul 1991], up to an arbitrary scaling constant 

which depends on the scaling of the input IL V signal. Where the magnitude functions 

differ, the coherence function of the spectral technique results is <0.5, indicating that the 

spectrally derived magnitude functions are not reliable in these regions. Of course, the 

LSSM transfer functions are also not reliable at LF, as evidence by relatively high PE in 

this frequency band and the tendency of the LSSM to model large amplitude LF noise as 

an AR process in the outputs. 
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The LSSM phase functions results generally agree with those found by previous 

investigators using spectral techniques [Saul 1991, Berger 1989]. The only significant 

difference appears in the IL V ~ PP and IL V ~ BP phase functions, for which Saul et al. 

obtain a -90° ±zoo net phase shift (after linear trend removal) whereas the LSSM yields 

±180° ±zoo for these phase shifts. The reason for this difference is not known, although 

it may result from differing ways of preprocessing the input-output data. 

Saul et al. (1991] also find smaller magnitude linear trends in the phase functions. 

However, the magnitude of the linear trend is sensitive to the temporal alignment of the 

IL V time series with the output time series during the modelling procedure and thus this 

difference may simply be an artifact of different synchronization methods. 

4.3 Physiological Interpretation 

The mean group delay and the stable regions of the group delay functions indicate 

that in the supine condition, changes in IL V cause changes in HR. within 0.5 s, followed 

shortly (0.3 - 1 s) by changes in PP and finally changes in 1v1BP 1 - Z s later. These results 

support the hypothesis that the Bainbridge reflex plays a important role in the initial 

increase of HR. during inspiration. The closed-loop transfer functions furthur reveal that 

the time lags associated with these responses are mostly caused by a fixed time lag 

between HR. and PP ofabout 0.5 s or I heart beat. 
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In the standing condition, the changes in IL V effect HR. sooner but the delay 

between HR. and PP is unchanged. Thus, this is likely due to increased atrial stretching 

during inspiration while standing. The standing MBP response is also faster, which may 

be due to increased gravitational pooling of blood when standing. Gravitational pooling 

would cause systolic BP to drop faster after each heart beat and hence would lower the 

MBP more rapidly than when supine. This hypothesis is supported by the observation that 

the attenuation constant of the MBP magnitude function also increases upon standing, 

indicating that the increase in the MBP response is concentrated at low frequencies, or 

relatively slow changes like the diffusion of blood through capilliaries. Unfortunately, the 

magnitude function is not as reliable at low frequency as at higher frequencies because of 

the LF spikes introduced by the LSSM algorithm. Thus, the heightened MBP response at 

LF may also be an artifact of increased LF noise in MBP when standing. 

The diminished PP and HR magnitude functions upon standing suggests that the 

coupling between respiratory activity and cardiovascular response is diminished when 

standing. This is in agreement with results from PSIHRV analysis of vagal tone during 

spontaneous breathing [Malik 1996]. The response may be due to any number of 

physiological changes associated with standing, including diminished venous return to the 

heart because of gravitational pooling of blood, reduction in baroreceptor and/or 

Bainbridge reflex responsiveness, altered breathing patterns, etc. 

The causality analysis of the HR ~ PP zero-pole plots indicates that the HR. ~ PP 

response is neither completely causal nor anti-causal, but rather a combination of the two. 
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Thus, both HR. and PP are affected directly by IL V or some other common mechanisms 

related to respiration as well as through feedback paths. This supports the hypothesis that 

lung stretch receptors and/or direct input from the medulla may be partly responsible for 

generation ofRSA. 

For IL V inputs with power in primarily the 0.18 - 0 .3Hz band one can approximate 

each ofthe output responses with the fixed delays and phase shifts in Table 1 because the 

group delay and phase functions are essentially constant over this frequency interval. 

Table 1: Narrow Band Transfer Function Constants 

•···········:················································································ ·················~~············· ·················~.;~n·~·········· ·············~~·········· i~~~~~~~~~[~~ ~3~ ~~o ~:o~~~ ~-~ ~01 ···.....·.Hii····················. s~;ding MBP .·•0 ±0.5 
-50± 60 

0.5 ± 1 
190 ± 45 

0.5 ± 1 
0 ±30 

These fixed values may be used to describe the temporal evolution of HR. and PP 

with respect to a single IL V cycle during sinusoidal breathing at 0.25 Hz, as shown in 

Figure 13. Note that the presence of both non-zero phase shift and group delay 

parameters makes the net phase relationship between the outputs strongly dependent on 

breathing frequency. 
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Phase 1 - First Half of Inhalation 

During the first half of the inspiratory cycle, negative intrathoracic pressure from 

respiratory motion activates stretch receptors in the right atrium while the increased 

pressure gradient increases venous return to the right atrium of the heart and lungs. The 

stretch receptors activate the Bainbridge reflex, which must initially compete with the 

effects of residual acetylcholine on the heart from a baroreceptor reflex carried over from 

the previous breath, described in Phase 4. Thus, the HR. is initially slower than average 

during the first half of the inhalation and continues to decrease until the effects of the 

residual acetylcholine have dissipated and the Bainbridge reflex begins to dominate the HR. 

response. 

The PP is initially higher than average and continues to increase during the first 

half of inhalation. The two effects that likely contribute to this response are increased 

blood flow from the lungs carried over from the previous respiratory cycle and decreased 

HR. from the previous baroreceptor response. Near the end of this phase, and the 

beginning of Phase 2, the increased PP begins to activate the carotid baroreceptors which 

then begin to compete with the Bainbridge reflex to decrease HR. 
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Phase 2 - Second Half of Inhalation 

During the second half of the inhalation the HR. increases because of the 

dominance of the Bainbridge reflex response to atrial stretch. The increased HR. decreases 

the diastolic filling time and hence the stoke volume. This causes the pulse pressure to 

level-off and begin to decrease during this phase of inspiration. Total cardiac output 

begins to rise at this time, despite the drop in stroke volume and PP. This causes the l\1BP 

to begin to rise as the arterial and venous pressure begin to adjust to the change in cardiac 

output. 

Phase 3 - First Half of Exhalation 

During the first half of exhalation, the baroreceptor reflex (activated in Phase 1 and 

2) begins to overcome the Bainbridge reflex and decrease the HR. The PP begins to 

increase at ·this time from the combined effect of the decreasing HR. (increasing diastolic 

filling time) and the increasing flow of oxygenated blood from the lungs. 
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Phase 4 - Second Half of Exhalation 

During the final stage of exhalation, HR continues to decrease because of the 

baroreceptor reflex activated in Phase 1 and 2. The PP also continues to increase in 

response to lower HR. (longer diastolic filling time) and increased blood flow from the 

lungs. 

1----1 
It 

Figure 18: Phase relationships between Il..V, HR, and PP based on the 
group transfer function results for a breathing rate of 0.25 Hz. 

The above analysis is based on the assumption that the classical model for RSA 

generation is essentially correct. The contributions of lung stretch reflexes, chemo­

receptor activation and central medullar influences are not included in this interpretation 

but may well play a role. Other interpretations of the transfer functions are certainly 
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possible. Nevertheless, the fact that the transfer function analysis results are not contrary 

to the expected (classical) behavior is reassuring. 

4.4 Clinical Significance of Transfer Function Analysis 

The transfer function analysis presented in this thesis may be of use in diagnosis of 

cardiorespiratory dysfunction. Until now, there has been no way to accurately determine 

the actual time delays embedded into the closed loop activity of the cardio-respiratory 

system. The results from this work show that the time delays (for example, the HR.~ PP 

delay) tend to be somewhat more stable with respect to changes in physiological condition 

(standing vs. supine) particularly in the 0.2 - 0.4 Hz band. This suggests that accurate 

estimation of time delays may be a more robust assessment of cardiovascular integrity than 

the more common used power spectral analysis of HR. variability (PS/HRV). For 

example, a patient with an impaired Bainbridge reflex but no other physiological 

abnormalities might be expected to have slightly reduced power in the high frequency 

(HF) band of PSIHRV. However, the HF power is strongly dependent on autonomic 

arousal and physiological state [Malik 1996]. Thus, the correct diagnosis oflow HF as a 

dysfunctional Bainbridge reflex would be unlikely because the specificity of the P S/HR V 

diagnosis is poor. By using transfer function analysis however, one would likely find an 

increased time delay between IL V and HR, reflecting the disabled Bainbridge response. 

According to the results from this work, this time delay would be relatively independent of 
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physiological state. Thus, the transfer function analysis could be used to make a more 

reliable diagnosis of certain physiological disorders. 

4.5 Intra-Subject Variability 

The variability of the transfer functions for the same subject may be caused by 

physiological changes between experiments and/or different physiological responses to the 

three different paced breathing series. The inherent variability has been observed in 

PS/HRV experiments which show that vagal tone varies significantly even under 

stationary conditions [Bianchi 1997, Kamath 1993]. Relatively large intra-subject 

variability indicates that the transfer function analysis technique is highly sensitive to 

physiological changes. However, the transfer functions are not generally reducible to 

specific physiological changes, so the specificity of the technique is relatively poor. 
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Chapter 5: Limitations 

5.1 Linearity 

The LSSM technique as developed in this thesis is suitable only for linear systems. 

If the system is strongly non-linear or has both linear and non-linear components then the 

technique will fail to capture the system dynamics. Unfortunately, the parameters from 

non-linear system modelling techniques are not easily related to the underlying physiology, 

unless the non-linearities are chosen based on known physiological mechanisms. Thus, 

extending the LSSM algorithm to include generalized non-linear behavior would not be 

productive. 

5.2 Stationarity 

The LSSM technique developed in this thesis assumes that the system being 

modelled is stationary over the input-output data set. Although the amount of data 

required by the LSSM is less than with other techniques the amount is still significant. 

One effect of non-stationarity on the LSSM model is that the estimated system order 
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(based on the SVD of the input-output data) will be surprisingly large and the model will 

still not perform well. 

5.3 Effects of Exogenous Unknown Inputs 

The LSSM technique is well suited for linear system modelling with fairly high 

levels of background noise. However, if the system 'noise' is actually caused by an 

exogenous input that has a large effect on the outputs, then the LSSM method will fail 

because it will erroneously model the noise as an AR process that is excited by noise in the 

input. 

5.4 Non-Sinusoidal Breathing Patterns 

Transfer function results are difficult to interpret in the time domain when the input 

function is not near-sinusoidal. This complicates the interpretation of the LSSM results in 

terms of physiology because normal breathing patterns are never sinusoidal. One way to 

overcome this technical difficulty may be to transform the transfer functions using a set of 

normalized respiration wavelets as an alternative basis set to the complex exponenti~ls. In 

this case, the frequency axis ofthe transfer functions could refer to time dilated res~iration 

wavelets rather than sinusoids. 
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5.5 Non-Physiological Experimental Conditions 

The transfer functions developed in this thesis require controlled respiration to 

enforce causality on the system outputs and to ensure that all the system states are 

persistently excited for reliable identification of the parameters. Unfortunately, respiration 

is normally connected in feedback with the other components of cardiovascular regulation. 

The true inputs to the system are numerous and generally not observable. Thus, the 

transfer functions developed using paced respiration are not entirely representative of 

normal cardio-vascular regulation. 

The interpolated time series results also show that controlled breathing has a 

marked effect on physiological state, causing drowsiness and sometimes reduced blood 

pressure over the course of the controlled breathing experiment. The consequences of 

these physiological changes on the 'true' transfer function results are difficult to quantify. 

5.6 Temporal Uncertainty in the Input-Output Data 

Representation ofHR. and BP discrete event series as a discrete time series limits 

the temporal resolution of any analysis method, independent of sampling rate. This is 

because the time series must be interpolated from the HR. and BP point series and 

interpolation assumes that the time series changes in a predictable way in between the 

'known' points ofthe event series. Thus, the temporal uncertainty of the HR. and BP time 
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series is limited to about half a heart beat or 0. 5 s. This uncertainty is inherent in the HR. 

and BP event series and cannot be corrected or eliminated. The temporal resolution of the 

time series limits the physiological reliability of the group delay function for comparing 

small changes in time delays between the system outputs. 

Another source of temporal uncertainty is introduced during the alignment of the 

continuous time IL V series and the interpolated HR and BP series. To align the time 

series, one must arbitrarily decide if the first HR time series value corresponds to the first 

or to the second R-wave in the ECG and hence the start and end times of the IL V series. 

Since interpolation ofHR. and BP is a non-causal process which depends on both past and 

future R-R intervals, neither alignment is strictly correct. The uncertainty in this alignment 

is about one R-R interval and affects the HR. and BP results identically as a constant delay 

or time advance of the system input with respect to the outputs. 

The alignment uncertainty is generally independent from the interpolation 

uncertainty. Thus, the total temporal uncertainty in the group delay function is 

approximately 0. 7 - 1.5 s. Note that this uncertainty refers to the physiological 

interpretation of the group delay results and not to the LSSM group delay function itself 

However, the temporal uncertainty may be one reason why the inter-subject and intra­

subject group delay variability is high. 
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5.7 Reliability of Closed-Loop Transfer Functions 

Interpretation of the closed-loop system responses is limited by the reliability of the 

close-loop system transfer functions. Specifically, if the zeros of the zeros of the LSSM 

transfer functions are not entirely reliable, then the closed-loop magnitude functions will 

be affected by problems with numerical instability from partial pole-zero cancellations 

where there should be total cancellation. One way to circumvent this problem may be to 

manually delete pole and zeros that "nearly" cancel from the numerators of G(z) prior to 

computing the closed loop transfer functions. 

More importantly, it can be shown that the closed-loop identifiability of a system is 

not guaranteed, even when the system inputs are persistently exciting [Ljung, 1987]. 

Unfortunately, the LSSM may still perform well, as judged by the simulation results on 

validation data, even if the input-output data does not contain enough information to 

uniquely determine the output-output transfer functions. Thus, it may be very difficult to 

decide ifthe closed-loop transfer functions are reliable. 
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Chapter 6: Conclusions 

Closed-loop analysis of cardiovascular regulation was reexamined and improved 

usmg state-space modelling techniques. Physiological interpretation of the system 

transfer functions was facilitated by the theoretical development and application of group 

delay and causality analysis in SIMO systems. The new techniques allow one to infer 

physiologically relevant time delays from analysis of input-output data and describes a 

causality relationship between the system outputs, if such a relationship exists. The results 

of the analysis on ten healthy human subjects generally supports the classical model 

hypothesis for the generation of RSA in humans and extend the model to include 

measurable time delays for BP and HR. responses to IL V. 
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Appendix A: LSSM Algorithm in MATLAB 

function [A,B,C,D]=LSSM(u,y,R) 
%Linear State-Space Modelling (LSSM) algorithm 
%adapted from: Moonen, M. Int. J. Control. Vol. 49 No. 1 p. 219-232, 1989 
%c. Andrew May 1998. 
%The only changes from the paper are in terminology as follows: 
% (i) "x" is the dimension ofthe state space (not "n") 
% (ii) "n" is the number of outputs (not "I") 
%(iii) "TR" and "TL'' are temporary matrices only (not in the paper at all) 
% Arguments: 
% u,y input and output data matrices with the data organized in rows 
% with the first sample of the data corresponding to the first column. 
% R =matrix rectangularity (ratio of# columns to# block rows). 
%Outputs: 
%matrices A,B,C,D in the LSSM equations: 
% x(k+ 1 )=Ax(k) + bu(k) and y(k)=Cx(k)+Du(k) 
%This is a prediction error model where measurement and state noise 
% are not explicitly modelled and hence contribute to the model prediction errors. 
m=size(u,l);% number ofinputs 
n=size(y, 1 ); % number of outputs 
Rmin=max(m,n)*R;% true rectangularity ofthe joint data matrix H 
N=length(u); 
j=:fix(Rmin*N/(1 +Rmin)); % number ofcolumns in H 
% j >> max(m,n)*number ofblock rows in H [Moonen 1989] 
H=[];Uh=[]; %initialize input-output and input Hankel data matrices 
for k=l:N-j+l 

H=[H;u(:,k:k+j-l);y(:,k:k+j-1)]; %fill the rest of the matrix up row by row 
Uh=[Uh;u( :,k:k+j-1 )]; 

end 
I=size(H,l); %total number of rows in H 
i=:fix(I/(m+n)/2); %1/2 the number ofblock rows in H 
%minimum resolvable frequency of the LSSM 
% is proportional to the length of the rows in H 
%The number of columns in H is the length of the rows. 
[V,S,U]=svd(H',O); %perform SVD ofdata matrix H (economy size) 

% His the concatenation ofHI and HI in [Moonen 1989] 
S=S'; 
%Note: the parameter order in above SVD is reversed 
% and the arguments are transposed. 
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% This is done to utilize the 'economy size' 
% SVD routine in MATLAB. ie. ifH=U*S*V' then H'=V*S'*U'. 
%This is required since the economy size SVD only works if#rows>#cols in H. 
% Perform SVD on input data matrix and compare singular value distributions 
S_ u=svd(Uh); 
figure; 
plot( diag(S), 'b-') 
hold on 
plot(S _ u, 'r-'); 
zoom on 
legend('input AND output data','input data'); 
title('Singular Value Distributions'); 
x=input([' Please estimate the system order (maximum= ',int2str(n*i-1),'): ']); 
% The system order is limited because this algorithm computes a basis for 112 
% of the state-space realization using all of the data. Although it limits 
% the realizable system order, the method is less sensitive to noise 
% and round-off error. It essentially assumes that the basis for the state-space 
% does not change from the 1st half to the 2nd half of the input-output data. 
% (i.e. that the system is stationary and sufficiently excited by the input sequence 
%so that all modes of the system are expressed in both sections ofthe input­
% output data. 
U11 =U(1 :(m*i+n*i), 1 :2*m*i+x); 
% sub-matrices extracted U to increase computational efficiency 
U12=U(1 :(m*i+n*i), 1 :2*n*i-x); 
S11=8(1 :2*m*i+x, 1 :2*m*i+x); 
[Vq,Sq,Uq]=svd((U12'*U11 *811)',0); 
%same "economy size" SVD as before 
Uq=Uq(l :(2*n*i-x), 1 :x); 
%Use the ls~ "x" principal components ofthe SVD 
% (ie. the 1st "x" columns ofUq) as a basis for X2 [Moonen 1989] 
TL=[Uq'*U12'*U(m+n+ 1 :(i+ l)*(m+n),:)*S;U(m*i+n*i+m+ 1 :(m+n)*(i+ l),:)*S]; 
TR=[Uq'*U12'*U(l :m*i+n*i, :)*S;U(m*i+n*i+ 1 :m*i+n*i+m, :)*S]; 
ABCD=TL *pinv(TR); %mean square solution of the above equation 
%solve TL=ABCD*TR for ABCD 
[Rows,Cols]=size(ABCD); 
A=ABCD(l :Rows-n, 1 :Cols-m); 
B=ABCD(l :Rows-n,Cols-m+ 1 :Cols); 
C=ABCD(Rows-n+ 1 :Rows, 1 :Cols-m); 
D=ABCD(Rows-n+ 1 :Rows,Cols-m+ 1 :Cols); 
%Segment ABCD state space matrix into A,B,C, and D 
% where u,y,x are all column "vectors" 
%(or block column matrices for MIMO systems). 
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Appendix B: Closed Loop Transfer Functions 

In this section I derive the relationship between the global and closed-loop transfer 

functions of the LSSM for a one-input two-output system. However, the results may be 

extended to include any SIMO system through an analogous analysis. 

Consider the SIMO system shown in Figure 19 
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Figure 19: Schematic diagram of a 

single-input two-output system. 

Here, G1 and Gz are the "global" causal transfer functions from U(z) to Y(z) 

which are derived from the LSSM parameters and (12). The goal of this analysis is to 
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extract the closed-loop transfer functions Fx, F1 and H from Gt and Gz. The two 

equations relating the closed-loop to global transfer functions may be written by inspection 

G 1 =F1 +F1 H 
(Bl) 

Gz = Fz + F~H-1 

Since G1 and Gz are the rows of the transfer function matrix in (12) the two global 

transfer functions have a common denominator polynomial (lzi-AI). The right side of(Bl) 

can be expressed in terms of this common denominator 

G = num(H)[num(F; )den(F2 )den(H) + num(F2 )num(H)den(F; )] 
1 den(F1 )den(F2 )den(H)num(H) (B2) 

G = den(H)[num(F2 )den(F; )num(H) + num(F; )den(H)den(F2 )] 

2 den(F; )den(F2 )den(H)num(H) 

where num( •) and den( •) are numerator and denominator polynomials respectively. This 

allows one to solve for H directly from the ratio of G1 to Gz 

Gl = num(H) = H 
(B3)

G2 den(H) 

It is important to realize that the existence ofH is an assumption which cannot be 

derived from the input-output data alone. Furthermore, ifH is assumed to exist, then F 1 

and Fz are not uniquely identifiable. Conversely, ifH is assumed not to exist, then F1 and 

Fz are unique and equal to Gt and Gz respectively. 
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The complete identifiably ofH requires specification of an appropriate ROC as 

well as the location ofthe poles and zeros ofH. Again, the selection ofthe ROC, if it is 

not unique, is an assumption that cannot be validated by the information in the input­

output data. These limitations are inherent in the identification of closed-loop systems 

from input-output data. The advantage of the LSSM technique over specialized ARMA 

models is that the assumptions need not be made until after the model parameters are fit 

and the transfer functions are to be interpreted. 

In the case where the number of inputs is greater than two, the above analysis 

holds only if all the system outputs are interdependent (i.e. all ofthe H functions exist). If 

this is not the case, then the equations must be rederived appropriately and may not have a 

unique solution. 
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