ARM WEIGHTLIFTING EXERCISE IN CARDIAC PATIENTS

INTRA-ARTERIAL PRESSURE DURING ARM WEIGHTLIFTING EXERCISE IN CARDIAC PATIENTS

By

LYNN MARIE HODGE, B.Sc.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements for the Degree Master of Science

McMaster University

[©] Lynn Marie Hodge, September 1996

MASTER OF SCIENCE (1996) (Kinesiology)	McMASTER UNIVERSITY Hamilton, Ontario
TITLE:	Intra-arterial Pressure During Arm Weightlifting Exercise in Cardiac Patients
AUTHOR:	Lynn Marie Hodge, B.Sc. (University of Waterloo)
SUPERVISOR:	Neil McCartney, Ph.D.
NUMBER OF PAGES:	ix, 106

•

ABSTRACT

This study investigated the circulatory response to double-arm weightlifting exercise and compared the responses during free weight and machine equipment weightlifting in eight patients (mean age = 57.6 ± 10 years) with well-documented coronary artery disease. Subjects performed bench press and overhead press exercises at 40 and 60% of 1 repetition maximum using both the free weights and machine equipment. Intra-arterial pressure was measured in the subclavian artery using a Millar catheter-tip pressure trandsucer. Arterial pressures rose in parallel with both modes of lifting (free weight and machine equipment), while heart rate did not increase substantially. Mean peak systolic (169 to 197 mmHg) and diastolic (95 to 119 mmHg) pressures recorded during the final repetitions of each weightlifting set did not, however, exceed values considered to be acceptable for dynamic exercise. Individual subjects recorded diastolic pressures as high as 150 mmHg during one or more of the weightlifting exercises, and individual mean arterial pressures reached values as high as 181 mmHg during overhead press machine equipment exercise at 60% of 1RM. While these high arterial pressures associated with weightlifting exercise increased myocardial oxygen demand (RPP=9643 to 15290), the increase in diastolic pressure may have augmented oxygen supply (DPTI=3448 to 3926

mmHg-s-min⁻¹). However, because of the proportionately larger increase in RPP compared to DPTI, the ratio of oxygen supply to demand decreased with arm weightlifting exercise (DPTI:RPP=0.3741 to 0.2629). Nevertheless, the estimated myocardial oxygen supply to demand relationship appears to be more favourable during double-arm weightlifting exercise compared to estimated values from previous maximal cycle ergometer testing. These results suggest that double-arm weightlifting exercise at 40 to 60% of 1RM is safe and appropriate for patients with coronary artery disease and can be performed using either free weights or machine weightlifting equipment.

This thesis is dedicated to....

....the cardiac patients whose interest in this thesis study and support of the MacTurtle Cardiac Exercise Rehabilitation Program must have allowed them to withstand the Millar catheter.

ACKNOWLEDGEMENTS

To my supervisor, Dr. Neil McCartney, for sharing his expertise, and to my examining committee, Dr. Duncan MacDougall, Dr. Robert McKelvie and Dr. Michael Sharratt for their assistance with this thesis project and for their manuscript suggestions.

To Colleen Connolly and Ellen Dixon for their support of this thesis project and assistance with patient recruitment.

To Joan Martin, Kelly Smith, Adrian Harvey and Debbie O'Leary for their much appreciated assistance with equipment setup, subject testing and data collection, and to John Moroz for his expert technical advice.

To my Christopher and my family and friends for their constant love, patience, support and encouragement, without which this thesis may never have been completed.

Thank you.

TABLE OF CONTENTS

PAGE

1

1.0	INTI	RODUCTION	1
	1.1	Pathophysiology and Etiology of Coronary Heart Disease	1
	1.2	Historical Perspectives on Exercise Rehabilitation	2
	1.3	Cardiovascular Response to Static (Isometric) Exercise	6
	1.4	Cardiovascular Response to Static-Dynamic Exercise	8
	1.5	Safety of Weightlifting in Cardiac Patients	9
		1.5.1 Acute Cardiovascular Response to Weightlifting	9
		1.5.2 Benefits of Weightlifting Training in Cardiac	
		Rehabilitation	14
		1.5.2.1 Effects of Weightlifting Training on Muscle	
		Strength	14
		1.5.2.2 Psychological Effects of Weightlifting Training	20
	1.6	Summary and Statement of Purpose	21
2.0	MET	HODS	25
	21	Subjects	25
	2.1	Evercise Protocol	25
	2.2	Intra-arterial Pressure Measurement	25
	2.5	Flectrocardiogram Measurement	20
	2.4	Intrathoracic Pressure Measurement	27
	2.6	Data Analysis	28
	2.7	Statistical Analysis	29
3.0	RES	ULTS	30
	3.1	Arterial Pressures	30
	3.2	Rate-Pressure Product	32
	3.3	Diastolic Pressure Time Index	32
	3.4	Diastolic Pressure Time Index to Rate-Pressure Product Ratio	33
	3.5	Heart Rate	33
	3.6	Electrocardiogram	34

4.0	DISCUSSION		35
	4.1	Safety of Weightlifting Exercise - The ECG Response	35
	4.2	Circulatory Response to Arm Weightlifting Exercise	36
	4.3	Double-Arm Weightlifting Exercise	37
	4.4	Exercise Mode	41
	4.5	Supine Versus Upright Exercise	42
	4.6	Myocardial Oxygen Supply and Demand	44
	4.7	Summary and Recommendations	49
Table	S		52
Figure Legends		55	
Figur	es		56
REFE	REN	CES	68
APPE	ENDI	CES	
	А	Consent Form	77
	В	Study Data	80

C	Analysis of Va	riance Summary Tables	07
C	Analy 515 01 V a	analice Summary Tables	77
	-	•	

LIST OF TABLES AND FIGURES

TABLES]	PAGE
Table 1	Subject Characteristics	52
Table 2	Subject Medications	53
Table 3	Subject 1 Repetition Maximums	54
FIGURES		
Figure 1	Resting Arterial Pressure Trace	56
Figure 2	Subject 1 Repetition Maximums	57
Figure 3	Exercise Arterial Pressure Trace	58
Figure 4	Mean Systolic Blood Pressure	59
Figure 5	Peak Systolic Blood Pressure	60
Figure 6	Mean Diastolic Blood Pressure	61
Figure 7	Peak Diastolic Blood Pressure	62
Figure 8	Mean Arterial Pressure	63
Figure 9	Rate-Pressure Product	64
Figure 10	Diastolic Pressure Time Index	65
Figure 11	Diastolic Pressure Time Index to Rate-Pressure Product Ratio	66
Figure 12	Heart Rate	67

1.0 INTRODUCTION

Although there have been significant declines in cardiovascular disease morbidity and mortality over the past few decades, coronary heart disease remains the leading cause of death in Canada and most of the industrialized countries of the world (Feinleib, 1995; Nault & Wilkins, 1995). While the incidence of heart disease is declining, the prevalence is increasing dramatically with advances in medical knowledge and technology, and the treatment of heart disease has become a major source of health care expenditure worldwide (Avezum, Flather & Yusuf, 1994). The potential of exercise, however, in the primary and secondary prevention of coronary heart disease and in the savings of millions of health care dollars is substantial, and it has been suggested that physical activity could be today's "best buy" in public health (Morris, 1994).

1.1 PATHOPHYSIOLOGY AND ETIOLOGY OF HEART DISEASE

Coronary heart disease is almost always the result of atherosclerosis, a progressive disease characterized by a thickening in the intimal layer of the blood vessel wall due to the accumulation of lipids. The most accepted theory of the development of atherosclerosis is the response-to-injury hypothesis which suggests that plaque formation begins in response to injury to the endothelial lining of the vessel wall. Injury results in the accumulation and proliferation of smooth muscle cells in the intima and the formation of the atherosclerotic plaque (Ross & Glomset, 1976a, 1976b; Ross, 1986). The majority of lesions in the coronary arteries tend to occur proximally in the three main arteries at their points of bifurcation, and symptoms of ischemia in cardiac patients usually correlate with lesions that result in at least 60-75% occlusion of the lumen of the coronary artery (Brannon, Geyer & Foley, 1988; ACSM, 1988).

Based on the results of the Framingham Heart Study (Kannel, McGee & Gordon, 1976), several risk factors for the development of coronary heart disease have been established. These risk factors include cigarette smoking, hypertension, elevated serum levels of cholesterol, abnormal glucose tolerance (diabetes), family history of early atherosclerosis (onset at less than age 60), sedentary lifestyle, male gender, age, stress and Type A behaviour (Blessey, 1985). Most important to the present study is the strong inverse relationship between physical activity and coronary heart disease (Blair et al., 1993). Furthermore, exercise programs for the primary and secondary prevention of coronary heart disease can lead to significant risk factor reduction. Thus, cardiac exercise rehabilitation may potentially be important in retarding the atherogenic process associated with coronary heart disease.

1.2 HISTORICAL PERSPECTIVES ON EXERCISE REHABILITATION

The importance of physical activity for patients with heart disease was noted over 200 years ago. Heberden, in 1772, published a report referring to a patient with angina pectoris "who set himself the task of sawing wood for half an hour every day and was nearly cured". This initial positive attitude toward physical activity in the treatment of heart disease was, however, forgotten, and following Herrick's clinical description of myocardial infarction in 1912, patients were generally confined to bed rest for 2 months. The fear was that physical activity would result in ventricular aneurysm, heart failure, cardiac rupture and sudden death (Certo, 1985).

In the late 1930's, work by Mallory and colleagues (1939) reinforced the supposed importance of bed rest following an acute myocardial infarction. They described the speed of healing of myocardial infarction as a one to two month process from initial necrosis to the formation of a fibrous scar. It was therefore suggested that to advise less than three weeks bed rest would be unwise, even for patients with the smallest myocardial infarcts.

By the late 1940's, studies had appeared which questioned the traditional prescription of prolonged bed rest and physical inactivity following an acute myocardial infarction (Dock, 1944; Harrison, 1944; Taylor et al., 1949). Levine and Lown (1951) were the first to advocate the chair treatment of acute coronary thrombosis. Patients were kept in a chair for varying and increasing portions of the day beginning no later than the first week following the attack. This method of treatment was shown to have both physiological and psychological benefits, and raised questions as to the appropriateness of prolonged bed rest in the treatment of cardiac patients.

The concept of early ambulation was first characterized by Newman et al. (1952) as 3 to 5 minutes of walking along the bedside twice daily, beginning 4 weeks after myocardial infarction. Brummer and colleagues (1956) soon reported the safety of early ambulation within 14 days of a myocardial infarction. By 1957, Hellerstein, a well-known cardiologist, described an orderly plan for the rehabilitation of the patient with heart disease. His plan suggested that the period of bed rest be as brief as possible, and that exertion in the form of graded exercise be advised. A similar program was developed by Cain, Frasher & Stivelman (1961) to provide a sequence of increasing activity levels for safe return to self-care after myocardial infarction. These reports did much to increase awareness of the safety and potential benefits of early mobilization in the treatment of heart disease.

The late 1960's and early 1970's brought a flurry of research devoted to early mobilization and shortening of the length of hospital stay following an acute myocardial infarction (Abraham et al., 1975; Bloch et al., 1974; Boyle & Lorimer, 1973; Harpur et al., 1971; Hutter et al., 1973; Lamers et al., 1973). With this research came what we now define as phase I (inpatient), phase II (outpatient) and phase III/IV (community based) cardiac rehabilitation. Even as early as the 1960's, studies investigating the benefits of physical training in the management of coronary artery disease began to appear. Cardiac exercise rehabilitation has now become an accepted form of treatment for patients with coronary artery disease (O'Connor et al., 1989).

The traditional approach to cardiac exercise rehabilitation has been to involve large muscle groups in aerobic activities such as walking and stationary cycling (McKelvie & McCartney, 1990). The training effects and benefits of this type of exercise in cardiac patients are now well documented (Bjernulf, Boberg & Froberg, 1974; Clausen, Larsen & Trap-Jensen, 1969; Detry et al., 1971; Frick & Katila, 1968; Hagberg, 1991; Kasch & Boyer, 1969; Oldridge et al., 1989; Paterson et al., 1979; Redwood, Rosing & Epstein, 1972; Varnauskas et al., 1966). Training effects include an increase in maximal oxygen uptake, improvements in resting and exercise heart rate and arterial pressure, increased myocardial oxygen supply, decreased myocardial oxygen demand and a decrease in the angina threshold or increase in time to onset of angina. Recent meta-analyses have also demonstrated a reduction in mortality (O'Connor et al., 1989; Oldridge et al., 1988). Furthermore, exercise training has been shown to have a beneficial effect on other coronary heart disease risk factors and in reducing patient anxiety and depression (Bernadet, 1995; Ewart, 1989; Goldberg, 1989; Haskell, 1994).

Although aerobic exercise has been shown to be a safe and effective form of exercise in the primary and secondary prevention of heart disease, it does not address an important component of rehabilitation, namely muscle strength. This despite that fact that many activities of daily living such as lifting, carrying and stair climbing, require significant amounts of muscle strength. Recent studies have indicated that a decrease in muscle strength may be common among cardiac patients (McCartney et al., 1989; Oldridge et al., 1989). Weightlifting training has been shown to be an effective form of exercise in increasing muscular strength (Gettman et al., 1978; Harris & Holly, 1987; Stewart, Mason & Kelemen, 1988; Stewart, 1989). However, it has not traditionally been used in cardiac exercise rehabilitation.

1.3 CARDIOVASCULAR RESPONSE TO STATIC (ISOMETRIC) EXERCISE

Weightlifting has traditionally been avoided in cardiac patients due to fears of an inappropriate rise in arterial pressure. These fears have probably been based on the acute cardiovascular response to static (isometric handgrip) exercise. Substantial increases in systolic and diastolic pressure occur, and mean arterial pressure commonly increases to 140 mmHg during sustained isometric handgrip exercise (DeBusk et al., 1978; Hanson & Nagle, 1987; Lind, 1970). Smaller increases in cardiac output have been demonstrated in cardiac patients, with no change or a decrease in stroke volume and a small increase in peripheral resistance (Hanson & Nagle, 1987; Helfant, DeVilla & Meister, 1971). Furthermore, significant increases in left ventricular end diastolic pressure occur, suggesting an increased pressure load on the heart (Hanson & Nagle, 1987; Helfant, DeVilla & Meister, 1971; Longhurst & Stebbins, 1992). These changes associated with isometric exercise have been viewed as potentially dangerous in cardiac patients (Lind, 1970).

In comparing the cardiovascular responses to static and dynamic exercise in patients with coronary artery disease, however, several studies have demonstrated that these fears may not be warranted (DeBusk et al., 1978; Ferguson et al., 1981; Kerber, Miller & Najjar, 1975). Kerber, Miller & Najjar (1975) evaluated the effects of isometric (handgrip) and combined isometricdynamic (treadmill plus briefcase) exercise compared to a submaximal treadmill stress test. Isometric exercise was much less likely to produce myocardial ischemia than dynamic exercise. It was concluded that higher arterial diastolic (coronary perfusion) pressure may retard the development of myocardial ischemia during isometric or combined isometric-dynamic exercise in cardiac DeBusk et al. (1978) compared the cardiovascular responses to patients. dynamic exercise (arm and leg ergometry to exhaustion) and static exercise (handgrip contraction at 25 and 50% of maximal voluntary contraction) seven weeks after myocardial infarction. It was found that ischemic ST segment depression and ventricular arrhythmias were more frequent with dynamic exercise. In a third study, Ferguson et al. (1981) compared coronary blood flow during sustained isometric handgrip of 30, 50 and 70% of maximal voluntary contraction to that during symptom-limited bicycle ergometer leg exercise. They concluded that the lower incidence of ischemia in isometric exercise compared

with dynamic exercise was due to a lower myocardial oxygen demand and possibly a greater subendocardial perfusion.

1.4 CARDIOVASCULAR RESPONSE TO STATIC-DYNAMIC EXERCISE

Most activities of daily living are a combination of static and dynamic exercise. Several studies have investigated the cardiovascular response to this type of exercise in patients with coronary artery disease (Bertagnoli, Hanson & Ward, 1990; DeBusk et al., 1979; Kerber, Miller & Najjar, 1975; Sheldahl et al., 1985; Wilke et al., 1985, 1989).

Sheldahl et al. (1985) had patients lift 30-50 pound boxes for 30 minutes (four 6-minute stages with 2 minute rest periods between each stage) which averaged 85% of each patient's maximum oxygen consumption. While significant fluctuations in systolic and diastolic pressures were observed with lifting and releasing of the weight, patients did not demonstrate an increased risk with repetitive static-dynamic lifting. In similar weight-carrying studies (Wilke et al., 1985, 1989), patients did not demonstrate ischemic responses and the incidence of arrhythmias was rare. Furthermore, an attenuation of exercise-induced ST segment depression has also been demonstrated during static-dynamic exercise (treadmill walking 1.5 to 2.0 mph carrying 15 to 25 kg) (Bertagnoli, Hanson & Ward, 1990). Thus, it appears that combined static and dynamic exercise is well tolerated in patients with coronary artery disease.

1.5 SAFETY OF WEIGHTLIFTING IN CARDIAC PATIENTS

Weightlifting is a form of static-dynamic exercise which has consistently been shown to be safe and acceptable in patients with coronary artery disease. Following is a summary of the acute cardiovascular response to weightlifting, and the effects and benefits of weightlifting training in cardiac exercise rehabilitation.

1.5.1 Acute Cardiovascular Response to Weightlifting

For weightlifting to be an accepted form of exercise in cardiac patients, cardiovascular responses should be no greater than those considered to be acceptable in dynamic exercise. The cardiovascular response during weightlifting compared to dynamic exercise in patients with coronary artery disease has been examined by a number of investigators (Butler, Beierwaltes & Rogers, 1987; Faigenbaum et al., 1990; Featherstone, Holly & Amsterdam, 1987, 1993; Haslam et al., 1988; Vander et al., 1986; Wiecek, McCartney & McKelvie, 1990).

In a study by Vander et al. (1986), the acute cardiovascular and electrocardiographic responses during Nautilus resistance exercise were compared to those found during symptom-limited graded treadmill exercise testing. Nautilus stations included 1 abdominal, 1 lower back, 5 lower extremity and 6 upper extremity exercises performed at 40-60% of maximal voluntary contraction. In contrast to the treadmill exercise testing, no significant arrhythmias, abnormal hemodynamics, ST segment depression or symptoms occurred during Nautilus exercise. Therefore, it was suggested that Nautilus exercise using light to moderate loads is relatively safe for cardiac patients.

Butler, Beierwaltes & Rogers (1987) used echocardiography to evaluate left ventricular wall motion following a session of upper body circuit weight training and traditional aerobic treadmill exercise. While a worsening of wall motion, indicative of the development of exercise-induced ischemia, occurred in 5 of 61 left ventricular segments with aerobic exercise, only 1 segment showed a worsening of wall motion with circuit weight training. It was concluded that circuit weight training compared favourably with traditional aerobic exercise and appears to be a safe form of training in patients with heart disease.

Faigenbaum et al. (1990) investigated the physiologic and symptomatic responses during moderate to heavy resistance exercise in cardiac patients. Subjects performed 2 sets of seven repetitions at 75% of maximum voluntary contraction on each of seven upper body resistance exercises. Indirect measures of systolic and diastolic pressures (measured immediately following exercise), heart rate and rate-pressure product were all within normal limits and no patient complained of angina or developed ischemic electrocardiographic changes. These results suggest that aerobically trained cardiac patients may perform moderate to heavy resistance exercises without experiencing complications.

Recent studies by Featherstone, Holly & Amsterdam (1987, 1993) assessed the safety of, and the physiological responses to, weightlifting at 40, 60 80 and 100% of maximal voluntary contraction compared to maximal treadmill exercise. Weightlifting included double-leg quadricep extension, and single-arm overhead press, bench press and biceps curl to allow for indirect blood pressure measurement at peak exercise in the nondominant arm. Peak systolic blood pressures were found to be similar for weightlifting and aerobic exercise, whereas the peak diastolic pressures were significantly higher during weightlifting. The peak heart rate response was lower during weightlifting with an accompanying decrease in the peak rate-pressure product (RPP). The lower peak RPP during lifting suggests that myocardial oxygen demand was less Furthermore, as coronary blood flow occurs mainly during weightlifting. during diastole, the slower heart rate (longer diastolic time period) and higher diastolic pressure (increased coronary perfusion pressure) associated with weightlifting (McKelvie & McCartney, 1990) would improve myocardial oxygen supply, as was indicated by a higher diastolic pressure time index. Thus, the estimated myocardial oxygen supply-to-demand ratio appears to be more favourable during weightlifting.

It should be cautioned that the application of the DPTI may not be appropriate for an atherosclerotic coronary artery because arterial pressure falls across a coronary obstruction (Epstein, Cannon & Talbot, 1985). This pressure drop varies directly with the length of the stenosis, and more importantly, inversely with the fourth power of the vessel radius (Epstein, Cannon & Talbot, 1985). In other words, the larger the obstruction and smaller the radius, the greater the resultant pressure drop. Consequently, the myocardial perfusion pressure is determined by the gradient between the diastolic coronary pressure distal to the obstruction and the left ventricular end-diastolic pressure (Epstein, Cannon & Talbot, 1985). Therefore, the DPTI calculated from the pressure gradient between the aorta and left ventricle would overestimate the coronary blood supply to the myocardium (Braunwald & Sobel, 1992).

In a study by Haslam et al. (1988), blood pressure was measured directly using an intra-arterial catheter placed in the brachial artery. Subjects performed repetitions of single-arm curls, and single-leg and double-leg presses at 20, 40, 60 and 80% of maximal voluntary contraction. The magnitude of the pressor response varied according to the amount of weight lifted, with peak systolic and diastolic pressures occurring at 80% of maximum. These increases in pressure were substantially greater than those found in studies where blood pressure was measured indirectly after exercise using a sphygmomanometer (Faigenbaum et al., 1990; Featherstone, Holly & Amsterdam, 1987, 1993). Only the double-leg exercise at 60% and single-leg and double-leg exercise at 80% elicited a maximal rate-pressure product that exceeded the value at 85% of maximum power output during cycle ergometer testing. This comparison between weightlifting and dynamic exercise would probably be more favourable, however, had arterial pressure been measured directly during cycle ergometer testing, as systolic blood pressure (and rate-pressure product) is typically underestimated by 15% using indirect blood pressure measurement methods (Wiecek, McCartney & McKelvie, 1990). It was concluded that weightlifting exercises that used relatively few repetitions (10-15) and a resistance of less than 80% of maximum voluntary contraction resulted in clinically acceptable arterial pressure responses.

A comparison of direct and indirect measures of arterial pressure during weightlifting was undertaken by Wiecek, McCartney & McKelvie (1990) in patients with coronary artery disease. Simultaneous direct (brachial artery catheter) and indirect (auscultation) measures of blood pressure were taken at rest, immediately before, during and after weightlifting exercise. Subjects performed 15 repetitions of single-arm curl, single-arm military (overhead) press and single-leg and double-leg press exercises at 40 and 60% of maximum voluntary contraction. Indirect measures of systolic blood pressure underestimated direct systolic pressures by 13 (at rest) to 34% (immediately after arm exercise), while diastolic pressures were similar using either method. The highest intra-arterial pressures were recorded during the final repetitions of the set, and immediately after the last repetition, both systolic and diastolic pressures decreased within 1 to 2 seconds to near resting values. Thus, it does not appear to be possible to draw conclusions about the pressor response during lifting from measurements made immediately following weightlifting exercise.

1.5.2 Benefits of Weightlifting Training in Cardiac Rehabilitation

Most studies on the effects of weightlifting training have had cardiac patients perform multiple sets of 12 to 15 repetitions, with light to moderate loads of 30 to 50% of 1 repetition maximum. This approach to weightlifting which combines reduced intensities with a greater number of repetitions, results in modest gains in muscle strength as well as increased muscular endurance. Following is a summary of the effects and benefits of weightlifting training in cardiac rehabilitation.

1.5.2.1 Effects of Weightlifting Training on Muscle Strength

The first study was published by Kelemen and colleagues (1986) investigating the safety and efficacy of 10 weeks of circuit weight training in patients with documented coronary artery disease. All patients had participated in a supervised cardiac rehabilitation program for a minimum of 3 months before the study (mean number of months was 30-40). Subjects were randomized to control and experimental groups, each group continuing with their regular walk/jog exercise routine, while the experimental group substituted circuit weight training for a volleyball program. Circuit weight training consisted of 2 sets of 10-15 repetitions of 10 arm, leg and abdominal exercises performed at 40% of 1 repetition maximum (1RM). Following the 10-

week training program, the 1RM increased significantly in all but one exercise in the weight trained group (average 24% increase in strength) compared to an increase in only 1 leg exercise in the control group. Furthermore, a significant improvement in treadmill time (symptom-limited standard Bruce protocol exercise test) in the circuit weight trained group compared with the control group was also observed, which was a surprising finding as both groups had continued their aerobic exercise training program. Thus, circuit weight training, when added to an aerobic exercise program, appears to be safe and to result in significant increases in aerobic endurance and musculoskeletal strength compared with traditional exercise.

In a similar 10-week weight training study, McCartney et al. (1991) compared the effects of combined weightlifting and aerobic training (n=10) with the effects of aerobic training alone (n=8) on strength and maximal power output in 18 men with coronary artery disease. The weightlifting training consisted of 4 single-limb exercises performed in turn by both limbs. Initially subjects performed 2 sets of 10 (arms) to 15 (legs) repetitions at 40 to 50% of 1RM, which was gradually increased to 3 sets at approximately 80% of 1RM by the end of the study. After 10 weeks, the average increase in 1RM in the combined training group for all exercises was 29% compared to an average increase of 8% in the control group. More importantly, in the combined training group, the pre-training 1RM could now be lifted an average of 14 times. This suggests that

many strength-related activities of daily living that would require almost maximal effort before training may be reduced to a submaximal level even after only a short period of weightlifting training. Combined training also resulted in a 15% increase in maximal power output during cycle ergometer testing, which was in agreement with the results of Kelemen et al. (1986). It was suggested that this improvement may be related to the attenuation of perceived exertion (diminished effort) arising from stronger leg muscles, which could result in improved function in many strenuous activities of daily living and an enhanced quality of life.

Sparling et al. (1990) examined the effect of a 6 month circuit weight training program on blood pressure and strength. Circuit training consisted of 12-20 repetitions at 30 to 40% of 1RM on 12 Nautilus exercises performed three times per week along with the patient's aerobic exercise program. While no significant changes in blood pressure occurred with training, significant increases in strength were observed with a mean increment of 8.2 kg or 22% for all 12 exercises. It was concluded that a carefully supervised, long-term program of low-resistance strength training appears to be safe and beneficial in terms of strength gain in cardiac patients.

A three-year follow-up study of patients involved in circuit weight training was conducted by Stewart, Mason & Kelemen (1988). Muscular strength in 17 circuit weight trained men who had attended greater than 50% of available sessions over a 3 year period was compared to 8 patients who had participated in a cardiac aerobic exercise program. Only the circuit weight trained patients improved arm and leg strength by 13 and 40%, respectively.

The safety of a much higher intensity resistance training program in aerobically trained, male cardiac patients was investigated by Crozier Ghilarducci, Holly & Amsterdam (1989). The 10 week program consisted of 8-12 repetitions of 6 resistance exercises performed 3 days per week at 80% of maximal voluntary contraction. Strength gains of 12-53% were reported which, on average, were greater than those reported by others (Kelemen et al., 1986; Stewart, Mason & Keleman, 1988; Sparling et al., 1990). This finding was expected with a training intensity of 80% compared to 30 to 50% of maximal voluntary contraction, although it is difficult to draw conclusions from these results as no control group was included in this study.

The weightlifting training studies mentioned thus far have included low risk cardiac patients who had participated in traditional cardiac exercise rehabilitation for at least 3 months prior to the addition of weightlifting training. However, several recent studies have examined the effectiveness and safety of strength training in patients early after myocardial infarction (Daub, Knapik & Black, 1996; Stewart et al., 1994; Squires et al., 1991).

The first report of the safety of weightlifting training in Phase II cardiac rehabilitation was by Squires et al. (1991). They examined the hemodynamic

responses to weightlifting in 13 male cardiac patients 7-8 weeks following myocardial infarction or coronary artery bypass graft surgery. Subjects performed 1 set of 10-14 repetitions of 3 weightlifting exercises 3 times per week for an average of 6 sessions (range 2 to 12). No clinical complications or electrocardiographic signs of ischemia or arrhythmia were seen. Furthermore, although 1 repetition maximums were not measured, training loads increased by 70 to 82%. It was concluded that moderate weight training is feasible and safe for cardiac patients as an adjunct to aerobic exercise training during early outpatient rehabilitation.

Stewart and colleagues (1994) conducted a randomized trial of circuit weight training in male cardiac patients enrolled into rehabilitation as soon as 2 weeks after an acute myocardial infarction. All patients participated in traditional exercise rehabilitation for 2 weeks, at which point baseline testing and randomization took place. For the following 10 weeks, control patients (n=7) continued with their usual exercise program while the weight training patients (n=8) cycled for 10 minutes and then performed 2 circuits of 12-15 repetitions of 6 weight exercises at 40% of 1RM. Telemetry ECG showed no sustained arrhythmias or ischemic episodes during training, and there were no adverse events. Weight training patients increased their 1RM strength by 22 and 29% for the arms and legs, respectively, while control patients showed smaller changes in leg strength and no change in arm strength. Weight trained patients also showed a 15.5% increase in maximal oxygen uptake during cycle ergometer testing, whereas no change was observed in the aerobic training control group. Thus, circuit weight training can be safely incorporated into the rehabilitation program early after myocardial infarction, and may result in greater increases in strength and maximal oxygen uptake than those observed with a cycling only program.

In a recent study, Daub, Knapik & Black (1996) examined the safety and effectiveness of strength training at different intensities in patients early after myocardial infarction. Fifty-seven men, 6 to 16 weeks post-infarction, were randomly assigned to a control group or one of three treatment groups. All groups trained aerobically, 3 times per week for 12 weeks. The three treatment groups also performed 6 upper body strength training exercises on each training day of the last 10 weeks. The treatment groups differed in their strength training intensity with group 20 performing 20 repetitions at 20% of 1RM, group 40 performing 10 repetitions at 40% of 1RM and group 60 performing 7 repetitions at 60% of 1RM. In the three treatment groups, 30 of 42 subjects had one or more cardiovascular complications during aerobic exercise as compared to only 1 subject with complications during weightlifting exercise. Maximal strength remained unchanged in the control group, but increased in groups 20, 40 and 60 by 10.5%, 11.9% and 13.5%, respectively. The increases in strength in the treatment groups were all significantly different from the results of the control

group, however were not significantly different from each other. The fact that significant gains in strength resulted from weight training at a very low intensity (20% or 1RM) has clinical significance when higher risk patient populations are being considered. Thus, as the majority of cardiac patients return to work within 4 months of their myocardial infarction (Daub, Knapik & Black, 1996), with uncomplicated patients returning as early as 4 weeks post-infarction (Dennis et al., 1988), the use of weightlifting training in early Phase II cardiac rehabilitation will likely assume more importance in the future (McCartney & McKelvie, 1996).

1.5.2.2 Psychological Effects of Weightlifting Training

One of the most beneficial aspects of cardiac exercise rehabilitation may be an improved sense of emotional well-being and self-efficacy. Self-efficacy is defined as one's level of certainty that one can successfully perform a given task or behaviour (Ewart, 1989). As many cardiac patients' perceptions of their physical capabilities (self-efficacy) and inappropriate fears of exertion often exert greater influence over their return to normal activities than does their actual medical or physical status, strategies to increase self-efficacy may be very meaningful (McCartney & McKelvie, 1996). One study in particular has examined the effects of weightlifting training on self-efficacy (Stewart, Mason & Kelemen, 1988). Following 10 weeks of circuit weight training, self-efficacy for tasks requiring significant arm or leg strength increased by 13 and 5.6%, respectively. Self-efficacy for the same tasks in aerobically trained patients decreased by 16 and 20%, respectively. Therefore, because increasing patient self-efficacy can influence which physical activities they attempt, how hard they exert themselves, and how long they are likely to persevere, the addition of weightlifting training in cardiac rehabilitation appears to be an effective way to achieve this important goal (Ewart, 1989).

In conclusion, weightlifting training can provide a safe and effective method for increasing muscular strength and endurance and improving selfefficacy and psychological well-being in cardiac patients, and should be prescribed as a supplement to regular aerobic exercise training in cardiac rehabilitation. Specific safety guidelines for weightlifting training in cardiac patients can be found in several good review articles (Franklin et al., 1991; Kelemen, 1989; McKelvie & McCartney, 1990; Sparling & Cantwell, 1989; Verrill et al., 1992).

1.6 SUMMARY AND STATEMENT OF PURPOSE

Since the early part of the century, physical activity in the rehabilitation of patients following an acute myocardial infarction has gained increasing importance. Studies investigating the benefits of physical training in the management of coronary artery disease began to appear as early as the 1960's and helped to define what is now known as cardiac exercise rehabilitation. While the traditional approach to cardiac rehabilitation involved the prescription of aerobic exercises such as walking and cycling, weightlifting training has recently been demonstrated to be a safe and effective form of exercise in increasing muscle strength, and is now recommended as a supplement to regular aerobic exercise training in many cardiac rehabilitation programs.

Based on the reports of the acute and chronic effects of weightlifting in patients with coronary artery disease, however, there are still gaps in our knowledge of the safety of this form of exercise in cardiac patients. Specifically, little is known about the circulatory response to double-arm exercise and to different modes of weightlifting exercise.

The importance of direct (intra-arterial) methods of blood pressure measurement is now known. However, although previous methods proved useful to investigate the cardiovascular responses to leg and single-arm exercise (Haslam et al., 1988; Wiecek, McCartney & McKelvie, 1990), the response to double-arm exercise could not be measured. Despite this lack of information, double-arm weightlifting exercise is currently being prescribed in many cardiac rehabilitation programs. The cardiovascular response to double-arm weightlifting exercise may be significantly higher than the response to singlearm exercise, however, as arterial pressure increases with the amount of muscle mass activated, although not in a linear fashion (McCartney et al., 1993). Recently, a study was conducted by O'Brien (1994) in healthy young subjects which allowed continuous measurement of arterial pressure during double-arm exercise using a Millar catheter-tip pressure transducer. A comparative study in cardiac patients has not yet been undertaken.

To date, information on the acute responses to arm weightlifting exercise has been collected during lifting on machine weight equipment. Only one previous study has attempted to compare the blood pressure responses during free weight and hydraulic resistive exercise (Freedson et al., 1984). Subjects performed 10 repetitions of bench press free weight exercise at 25 and 50% of maximum isometric strength, and 10 repetitions of bench press hydraulic resistive exercise at fast and slow lifting speeds. The use of the hydraulic equipment, however, prevented proper comparison of the response to the two modes of exercise. It is hypothesized that the pressor response may be greater, however, when lifting with free weights due to the effect of muscle mass, as several accessory muscles may have to be recruited in order to perform the exercise properly. Thus, the arterial pressure response to free weight and equipment weightlifting should be compared, as many cardiac rehabilitation programs only have access to the free weight mode of weightlifting.

This thesis project will attempt to resolve these issues, and to provide recommendations to guide the prescription of arm weightlifting exercise for patients with coronary artery disease.

The purpose of the present study is to investigate the cardiovascular response to double-arm weightlifting exercise in patients with coronary artery

disease. A secondary purpose is to compare the responses during free weight and machine equipment weightlifting exercise. The two arm exercises will also allow comparison of the arterial pressure response during exercise in the supine position and exercise in which the weights are lifted over the head.

2.0 METHODS

2.1 SUBJECTS

The subjects included 8 men (mean±SD: age=57.6±10 years, height=172.9 ± 3.6 cm, weight=82.0 ± 6.8 kg; Table 1) with well-documented CAD who had been participating in the Chedoke-McMaster Cardiac Exercise Rehabilitation Program for ≥ 8 months before the start of the study. Of the 8 subjects, all had a previous myocardial infarction (1 subject had 2 previous MIs) and 2 had coronary artery bypass graft surgery. Subjects were taking common heart medications, listed in Table 2, which remained unchanged throughout the study. included: Exclusion criteria unstable angina, significant ventricular dysrhythmias, evidence of myocardial dysfunction, previous anterior myocardial infarction, resting diastolic pressure over 95 mmHg, resting systolic pressure over 160 mmHg and a maximal exercise capacity < 6 METS (ACSM, The procedures and associated risks were described in detail to the 1988). patients and they gave signed informed consent prior to their participation in the study. The project was approved by the McMaster University Faculty of Health Sciences and Affiliated Institutions Ethics Committee. The laboratory was equipped with appropriate resuscitation equipment and the study was supervised by a cardiologist at all times.

2.2 EXERCISE PROTOCOL

Within one week prior to the study day, subjects' one repetition maximums (1RM) were measured for the bench press (BP) and overhead press (OP) using both the free weights and the weightstack resistance machine (model 4141-162; Global Gym and Fitness Equipment Limited, Weston, Ontario).

25

The 1RM was determined by having the subject perform single repetitions with progressively heavier weights, resting one to two minutes between attempts. The heaviest weight that the subject could lift only once was considered to be the 1RM (Table 3).

On the study day the intra-arterial catheter was inserted. The subject performed the following exercises in random order: bench press and overhead press at 40% and 60% of 1RM, using both the free weights and the weightlifting equipment. Weightlifting sets consisted of ten repetitions. Between each exercise the subject rested for two to three minutes or until arterial pressures returned to near pre-exercise levels.

2.3 INTRA-ARTERIAL PRESSURE MEASUREMENT

Intra-arterial pressure was recorded from the subclavian artery of the subject's right arm by a Millar catheter with a pressure sensor at its tip (Millar Mikro-Tip Catheter Transducer, model MPC-500; Millar Instruments, Inc., Houston, Texas). After administration of a subcutaneous local anesthetic (1.0 cc of Xylocaine 2%; Astra Pharmaceuticals Inc., Mississauga, Ontario), the Seldinger technique was used to place a six French percutaneous introducer (Super Arrowflex Percutaneous Sheath Introducer, product CP-07611; Arrow Medical Products Ltd., Mississauga, Ontario) in the brachial artery. The Millar catheter was inserted through the sheath and advanced a premeasured distance to where the catheter tip would be considered to lie within the subclavian artery. The distance was determined by measuring from the point of incision, up around the curve of the shoulder to the mid-clavicle area. The portion of the catheter remaining outside of the artery and the catheter's
connector were securely fixed to the arm to minimize possible movement of the catheter tip during exercise.

The arterial pressure signals were transmitted to a strain gauge bridge amplifier (Accudata 143; Honeywell, Denver, Colorado). Using a computer online data acquisition software/hardware package (WINDAQ, Dataq Instruments, Inc., Akron, Ohio), the signals were sampled at a rate of 300 Hz and continously displayed on a computer monitor and saved on the computer hard drive. Upon removal of the Millar catheter after completion of the exercise, the system was calibrated with a mercury manometer by injecting static air pressures of 0 and 100 mmHg into a sealed tube containing the pressure transducer.

2.4 ELECTROCARDIOGRAM MEASUREMENT

A 12-lead electrocardiogram (1515-B Automatic Cardiograph, Hewlett Packard) was recorded at rest and immediately after the completion of each weightlifting set in order to monitor the occurrence of dysrhythmias and ischemic changes with exercise.

2.5 INTRATHORACIC PRESSURE MEASUREMENT

An attempt was made to estimate intrathoracic pressure in order to investigate the use of the Valsalva maneuver during weightlifting. Subjects were instructed to maintain an open glottis while expiring through a mouthpiece against a closed system. Intrathoracic pressure was recorded as mouth pressure by a pressure transducer attached to the mouthpiece. Subjects could not, however, perform this technique properly, and the measurement was therefore discontinued.

2.6 DATA ANALYSIS

During the weightlifting exercises, an event marker was used to designate the beginning and end of each repetition. This allowed the pressure waveforms to be analyzed by repetition. Each pressure waveform was analyzed beat-by-beat using customized WINDAQ software. The program marked the peak and valley of the pressure waveforms, allowing for detection of the peak systolic (PSBP) and diastolic (PDBP) pressures and for the calculation of the average systolic (XSBP) and diastolic (XDBP) pressures and heart rate (HR) on a per repetition basis. The rate-pressure product (RPP) was calculated from the product of the average systolic pressure and average heart rate per repetition. The program also integrated the waveforms over the duration of each repetition and divided the value by the time per repetition to determine the mean arterial pressure (MAP). The diastolic phases of the pressure waveforms were also sectioned and then integrated by the WINDAQ software. Diastole was defined from the inflection point just prior to the dicrotic notch, indicating aortic valve closure, to the inflection point indicating mitral valve closure (Berne & Levy, 1993). The latter was not always evident, at which times the inflection point indicating the aortic valve opening was used and thus necessitated the inclusion of the isovolumetric contraction period of systole into diastole. The duration of this period was minimal, making its inclusion insignificant. The WINDAQ software reported the area under the diastolic pressure curve, which was then multiplied by the heart rate and averaged to determine the diastolic pressure time index (DPTI) per repetition. The DPTI was divided by the RPP to determine the DPTI:RPP ratio (Figure 1).

No pressure adjustments were made to the pressure waveforms for the vertical column effect of the arterial system because the catheter-tip transducer measured subclavian arterial pressure which closely approximates aortic pressure (O'Rourke, Kelly & Avolio, 1992).

2.7 STATISTICAL ANALYSIS

Statistical analysis was accomplished by a 4-factor analysis of variance with repeated measures. The exercise factor consisted of two levels (bench press and overhead press), the mode factor had two levels (equipment and free weight), the intensity factor had two levels (40% and 60%) and the repetitions factor consisted of 11 levels (pre-exercise and repetitions 1-10). A separate ANOVA was done for each of the 9 dependent variables. When a significant interaction occurred (p<0.05), a Tukey HSD post hoc test was done to assess the significance of differences among specific means.

3.0 RESULTS

All subjects completed the 1RM testing and weightlifting exercises without dyspnea, chest pain, significant dysrhythmias or ischemic ECG changes. Preliminary 1RM testing results (Figure 2) revealed higher 1RMs when lifting with the machine equipment compared to the free weights for both the overhead press (34.7 vs. 31.9 kg) and bench press (58.2 vs. 46.6 kg) exercises.

A typical arterial pressure trace during lifting (overhead press, equipment, 60% of 1RM) is presented in Figure 3. The highest pressures were reached during the final repetitions of the set, and within 5 seconds of the final lift there was a rapid decrease in both systolic (206 to 161 mmHg) and diastolic (120 to 80 mmHg) pressure. The following results will address the differences between exercises (overhead press and bench press), modes (free weight and machine equipment), intensities (40 and 60%) and repetitions (pre-exercise and repetitions 1-10) for each of the dependent variables measured. Data are reported as means and standard deviations.

3.1 Arterial Pressures

The systolic pressure increased significantly during both of the exercises at both intensities and modes. Significant increases were found between preexercise and exercise values and every 3-5 repetitions throughout exercise. The average systolic blood pressure (XSBP) increased from a pre-exercise range of 141±11 mmHg to 153±19 mmHg (mean=146 mmHg) to a range of 164±12 mmHg to 191±18 mmHg (mean=178 mmHg) (Figure 4). The peak systolic blood pressure (PSBP) increased from a pre-exercise range of 142±10 mmHg to 155±18 mmHg (mean=147 mmHg) to a range of 169±13 mmHg to 197±17 mmHg (mean=184 mmHg) (Figure 5). For both the XSBP and PSBP, significant differences were found between exercises, the overhead press showing the higher systolic pressure response. Significant differences were also found between the 40% and 60% intensities. No significant differences were evident between the two modes of exercise.

The diastolic pressure increased significantly during both of the exercises at both intensities and modes. Significant increases were found between pre-exercise and exercise values and every 3-6 repetitions throughout exercise. The average diastolic blood pressure (XDBP) increased from a pre-exercise range of 67±8 mmHg to 80±15 mmHg (mean=75 mmHg) to a range of 91±7 mmHg to 112±15 mmHg (mean=103 mmHg) (Figure 6). The peak diastolic blood pressure (PDBP) increased from a pre-exercise range of 69±8 mmHg to 81±16 mmHg (mean=77 mmHg) to a range of 95±7 mmHg to 119±15 mmHg (mean=107 mmHg) (Figure 7). A significant difference was found between the 40% and 60% intensities for both the XDBP and PDBP. No significant differences were found between exercises or between modes.

The mean arterial pressure (MAP) increased significantly during both of the exercises at both intensities and modes (Figure 8). Significant increases were found between pre-exercise and exercise MAPs and every 2-4 repetitions throughout exercise. MAP increased from a pre-exercise range of 97±8 mmHg to 110±16 mmHg (mean=104 mmHg) to a range of 122±8 mmHg to 147±17 mmHg (mean=135 mmHg). A significant difference was found between the 40% and 60% intensities. MAP did not differ significantly between exercises or between modes.

3.2 Rate-Pressure Product

The rate-pressure product (RPP) increased significantly during both of the exercises at both intensities and modes (Figure 9). Significant increases were found between pre-exercise and exercise RPPs and every 1-4 repetitions throughout exercise. RPP increased from a pre-exercise range of 8985±1903 to 10811±2647 (mean=9643) to a range of 12229±1795 to 18205±3592 (mean=15290). A significant difference was found between exercises, the overhead press showing the higher RPP response. A significant difference was also found between the 40% and 60% intensities. No significant difference was evident between the two modes of exercise.

3.3 Diastolic Pressure Time Index

The diastolic pressure time index (DPTI) increased significantly during both of the exercises at both intensities and modes (Figure 10). Significant increases were found between pre-exercise and exercise values. DPTI increased from a pre-exercise range of 3186±329 mmHg•s•min⁻¹ to 3609±493 mmHg•s•min⁻¹ (mean=3448 mmHg•s•min⁻¹) to a range of 3776±410 mmHg•s•min⁻¹ to 4257±848 mmHg•s•min⁻¹ (mean=3926 mmHg•s•min⁻¹). No significant differences were found between each of the two exercises, intensities or modes.

3.4 Diastolic Pressure Time Index to Rate-Pressure Product Ratio

The DPTI:RPP ratio decreased significantly during both of the exercises at both intensities and modes (Figure 11). Significant decreases were evident between pre-exercise and exercise (excluding repetition 1) values and every 5-9 repetitions throughout exercise. DPTI:RPP decreased from a pre-exercise range of 0.3868±.0881 to 0.3426±.0790 (mean=0.3741) to a range of 0.3085±.0537 to 0.2236±.0547 (mean=0.2629). A significant difference was found between exercises, the overhead press showing the largest decrease. A significant difference was also found between the 40% and 60% intensities. No significant difference was evident between the two modes of exercise.

3.5 Heart Rate

The heart rate (HR) increased significantly during both of the exercises at both intensities and modes (Figure 12). Significant increases were evident between pre-exercise and exercise HRs and every 1-6 repetitions throughout exercise. HR increased from a pre-exercise range of 62 ± 12 beats•min⁻¹ to 71 ± 13 beats•min⁻¹ (mean=66 beats•min⁻¹) to a range of 75 ± 11 beats•min⁻¹ to 96 ± 13 beats•min⁻¹ (mean=85 beats•min⁻¹). A significant difference was found between exercises, the overhead press showing the higher HR response. The HR was also significantly different between the 40% and 60% intensities. No significant difference was evident between the two modes of exercise.

3.6 Electrocardiogram

No ischemic electrocardiographic changes were found with arm weightlifting exercise. One subject did have supraventricular and ventricular premature beats at rest which did not appear to worsen with exercise and were not accompanied by any symptoms of ischemia.

4.0 DISCUSSION

Exercise training is now widely used in the rehabilitation of patients with coronary artery disease. Until recently, though, exercise rehabilitation included only continuous aerobic exercise involving large muscle groups. This despite the fact that many activities of daily living require significant amounts of muscle strength. It is well known that weightlifting training can be used to increase muscular strength. However, this type of exercise has traditionally been contra-indicated in patients with coronary artery disease due to fears of an inappropriate rise in arterial pressure. Recent studies have demonstrated the safety of this form of exercise in cardiac patients, and it is now used throughout the world in many cardiac exercise rehabilitation programs. Nevertheless, there are still gaps in our knowledge of the safety of weightlifting exercise in cardiac patients. Specifically, little is known about the circulatory response to doublearm exercise and to different modes of weightlifting exercise. Therefore, it was the purpose of this study to investigate the response to double-arm weightlifting exercise and to compare the responses during free weight and machine equipment weightlifting exercise in patients with coronary artery disease.

4.1 SAFETY OF WEIGHTLIFTING EXERCISE - THE ECG RESPONSE

The electrocardiogram (ECG) response during arm weightlifting exercise could not be accurately measured due to the electromyographic activity

35

of the chest muscles during lifting. Therefore, a 12-lead ECG was recorded immediately following each set of arm weightlifting exercise to monitor the occurrence of dysrhythmias and ischemic changes with exercise. No patient demonstrated any ST segment depression or complained of any chest discomfort or angina with weightlifting exercise. One patient did have supraventricular and ventricular premature beats at rest which did not worsen with weightlifting exercise. Six subjects, however, had previously demonstrated myocardial ischemia (ST segment depression, angina, T wave inversion) during maximal cycle ergometer testing. This study confirms the reports of others (Faigenbaum et al., 1990; Ferguson et al., 1981; Haslam et al., 1988) which suggest that fewer ischemic changes occur with weightlifting exercise than during traditional exercise testing.

4.2 CIRCULATORY RESPONSE TO ARM WEIGHTLIFTING EXERCISE

The major significance of the present study is that it is the first to measure the intra-arterial pressure response to double-arm exercise in cardiac patients. As illustrated in Figure 3, and as described by previous investigators (Haslam et al., 1988; Wiecek, McCartney & McKelvie, 1990), arterial pressures change in response to the different phases of each repetition, reach the highest values during the last two repetitions of each set, and immediately decrease below pre-exercise levels upon completion of the exercise before returning to normal. Furthermore, the magnitude of the response changes according to the amount of weight lifted, so that arterial pressures are least when lifting at 40% of 1RM and greatest when lifting at 60% of 1RM (Haslam et al., 1988).

The significant arterial pressure increases that occurred in the present study are indicative of the pressor response that accompanies weightlifting exercise. Weightlifting results in mechanical compression of the blood vessels by the contracting muscles, and elevation of intra-thoracic pressure generated by a Valsalva maneuver, causing a rise in arterial pressure (MacDougall et al., 1992). Furthermore, arm weightlifting exercise results in very little attenuation in total peripheral resistance (TPR) due to minimal vasodilation of the small active arm muscle mass and vasoconstriction of the large inactive leg muscle mass (Rowell, 1993). Thus, the mechanical compression of the muscle vasculature combines with a potent pressor response and a Valsalva response to produce parallel increases in systolic and diastolic pressures during arm weightlifting exercise (MacDougall et al., 1985).

4.3 DOUBLE-ARM WEIGHTLIFTING EXERCISE

Until recently, the intra-arterial pressure response to double-arm exercise could not be measured. Despite this lack of information, double-arm weightlifting exercise is currently being prescribed in many cardiac rehabilitation programs. The circulatory response to double-arm weightlifting exercise may be significantly higher than the response to single-arm exercise, as arterial pressure increases with the amount of muscle mass activiated, although not in a linear fashion (McCartney et al., 1993). Therefore, the purpose of the present study was to investigate the response to double-arm weightlifting exercise in patients with coronary artery disease using the Millar catheter-tip pressure transducer.

The arterial pressure responses to double-arm bench press and overhead press were reported. Mean peak systolic and diastolic arterial pressures recorded during the final repetitions of each weightlifting set did not exceed the value of 250/120 mmHg considered to be acceptable for dynamic exercise (ACSM, 1988). Individual subjects did, however, record diastolic pressures as high as 150 mmHg during one or more of the weightlifting exercises, and individual mean arterial pressures reached values as high as 181 mmHg during overhead press machine equipment exercise at 60% of 1RM.

Single-arm exercise was not included in the present study for two main reasons. The first was that we wanted to minimize the length of time that the catheter remained in the artery in an attempt to prevent possible complications. The second was related to the fact that single-arm bench press and overhead press exercises are difficult to perform properly, and thus, are usually performed with both arms during weightlifting training.

Several studies have examined the circulatory response to arm weightlifting exercise in cardiac patients (Butler, Beierwaltes & Rogers, 1987; Haslam et al., 1988; Sparling et al., 1990; Vander et al., 1986; Wiecek, McCartney & McKelvie, 1990). Vander et al. (1986) reported only small increases in auscultatory systolic and diastolic pressures with upper body Nautilus exercises at 40-60% of 1RM. In similar studies, no change (Sparling et al., 1990) or minimal increases (Butler, Beierwaltes & Rogers, 1987) in systolic and diastolic pressures were reported with arm circuit weight training exercise performed at comparable relative intensities. The problem with these studies, however, was that blood pressure was measured by auscultation immediately after lifting. A recent study by Wiecek, McCartney & McKelvie (1990) comparing direct and indirect measures of arterial pressure concluded that it is not possible to draw conclusions about the pressor response during lifting from measurements made immediately following exercise. Thus, it is important to use intra-arterial methods of blood pressure measurement to investigate the pressor response during weightlifting exercise.

Only two studies have examined the intra-arterial pressure response to arm weightlifting exercise in cardiac patients. Haslam et al. (1988) reported an intra-brachial pressure of 193/119 mmHg during single-arm curl exercise at 80% of 1RM. Wiecek, McCartney & McKelvie (1990) reported even higher increases in intra-brachial pressures during single-arm curl and single-arm military press exercises at only 60% of 1RM.

The intra-brachial pressure measurement method used in these studies proved useful to investigate the pressor response to single-arm exercise. However, with the catheter positioned in the brachial artery, exercise could only be performed by the non-catheterized arm. Thus, the response to double-arm exercise could not be measured. In the present study, the use of the Millar catheter-tip pressure transducer positioned in the subclavian artery allowed continuous measurement of arterial pressure during double-arm weightlifting exercise.

In comparing the response to single-arm overhead press exercise at 40% and 60% of 1RM reported by Wiecek, McCartney & McKelvie (1990) to doublearm overhead press exercise at the same relative intensities reported in the present study, differences appear to exist. Substantially higher peak arterial pressures were reported by Wiecek, McCartney & McKelvie (1990) despite the fact that subjects were performing single-arm as compared to double-arm exercise. For example, single-arm overhead press exercise at 60% of 1RM generated mean peak arterial pressures of 249/152 mmHg compared to pressures of 197/119 mmHg during double-arm exercise. These differences may be due, at least in part, to the different arterial pressure measurement sites (brachial versus subclavian), as the arterial pressure is approximately 30 mmHg higher in the brachial artery compared to the subclavian artery in the upright position due to the hydrostatic column effect (Rowell, 1993). Furthermore, the arterial pressure increases the further it is measured from the heart due to summation of the incident wave from the heart and the reflected wave from the periphery (O'Rourke, Kelly & Avolio, 1992). Thus, the arterial pressures measured in the subclavian artery are probably a much closer estimate of the true aortic pressure during arm weightlifting exercise.

4.4 EXERCISE MODE

Information on the acute responses to arm weightlifting exercise has typically been collected during lifting on machine weight equipment, yet many cardiac rehabilitation programs only have access to free weights. This study compared the responses during free weight and machine equipment weightlifting exercise. It was hypothesized that the circulatory responses may be greater during free weight lifting due to the effect of muscle mass, as several accessory muscles may have had to be recruited in order to perform the exercise properly. On the other hand, it has previously been demonstrated that the pressor response to weightlifting exercise is tightly coupled to the relative intensity of effort, or percent of 1 repetition maximum (MacDougall et al., 1985; Sale et al., 1993).

Preliminary 1RM testing revealed differences between the two modes of exercise (Figure 2). Subject 1RMs were higher during lifting with the machine equipment compared to free weights for both the overhead press and bench press. Despite these differences in weight lifted, the circulatory responses to the two modes of exercise during weightlifting at the same relative intensity were not significantly different (Figures 4-12). In other words, the circulatory responses at a given percent of 1RM were similar during lifting with the machine equipment and the free weights, even though the amount of weight lifted was more for the machine equipment mode of exercise. These results lend support to the hypothesis that the circulatory response to weightlifting exercise is dependent on the relative intensity of effort, or percent of 1RM, rather than on the actual force developed or weight lifted. In terms of the safety of weightlifting training in cardiac rehabilitation, these results suggest that 1RM testing should be done using the apparatus (free weight or machine equipment) on which the weightlifting training will be performed.

4.5 SUPINE VERSUS UPRIGHT EXERCISE

Exercise in the supine position is much more stressful to the heart than exercise performed in the upright position (Clausen, 1976). Patients with coronary artery disease typically demonstrate a reduced anginal threshold with supine exercise (Bygdeman & Wahren, 1974; Clausen, 1976; Thadani et al., 1977). This decrease in tolerance with supine exercise has been suggested to be the result of an increased heart volume related to a higher left ventricular filling pressure during exercise in the supine position (Bygdeman & Wahren, 1974). An increased end-diastolic volume augments ventricular wall tension (preload) and thereby raises myocardial oxygen consumption (demand). Furthermore, the increased wall tension tends to reduce myocardial perfusion by increasing the resistance to coronary blood flow during diastole (Bygdeman & Wahren, 1974; Clausen, 1976). Thus, with supine exercise, the augmented filling pressure increases heart volume, augmenting myocardial oxygen requirements, and compromises coronary perfusion, reducing myocardial oxygen supply, thereby precipitating angina and reducing patient exercise tolerance.

The two weightlifting exercises performed in the present study allowed comparison of the circulatory response to exercise in the supine (bench press) and upright (overhead press) positions. No patient demonstrated any evidence of ischemia (ST segment depression) or complained of any angina pain with weightlifting exercise in either the supine or upright positions. Furthermore, contrary to the suggestions just presented, estimates of myocardial oxygen demand were lower and the supply to demand relationship more favourable during supine as compared to upright exercise. The higher myocardial oxygen demand (rate-pressure product) with upright (overhead press) exercise reported in the present study, however, may have been partially due to the effect of muscle mass, as subjects probably had to recruit many more accessory leg, hip and trunk muscles in order to stabilize the torso during overhead lifting. It is recognized that the differences in stabilization afforded by the actual weightlifting benches made the comparison between supine and upright exercise difficult. Differences may also exist between body position and exercise type (dynamic versus weightlifting exercise) which have yet to be examined. Nevertheless, based on the results of the present study, it appears that exercise performed in the supine position may be safer for patients with coronary artery disease than once thought.

4.6 MYOCARDIAL OXYGEN SUPPLY AND DEMAND

The supply of oxygen to the myocardium during exercise is achieved primarily through an increase in myocardial blood flow because of the already high oxygen extraction of the myocardium at rest (Hoffman, 1978). Perfusion of the myocardium, especially the subendocardium, occurs mainly during diastole, as the compressive forces during systole impede coronary blood flow (Baird et al., 1970). Thus, the perfusion pressure during diastole and the duration of diastole can be used to estimate myocardial oxygen supply (Buckberg, Fixler & Archie, 1972). Perfusion pressure, measured as the area between the aortic and left ventricular pressure curves over the duration of diastole, multiplied by the heart rate, has been termed the diastolic pressure time index (DPTI) (Hoffman, 1978). In the present study, the DPTI was used as an estimate of myocardial oxygen supply, and was calculated as the area under the subclavian arterial pressure curve during diastole multiplied by the heart rate. It was assumed that subclavian arterial pressure closely approximated aortic pressure (O'Rourke, Kelly & Avolio, 1992), and that left ventricular end-diastolic pressure did not increase significantly in our subjects, all of whom had adequate ventricular function at rest and had no clinical evidence of depressed ventricular function during exercise (Featherstone, Holly & Amsterdam, 1993).

Myocardial oxygen demand can be estimated from measurements of the heart's oxygen consumption. Several predictors of myocardial oxygen consumption have been examined including the tension-time index, myocardial blood flow, heart rate, double product (heart rate • systolic blood pressure) and triple product (heart rate • systolic blood pressure • ejection time) (Gobel et al., 1978; Kitamura et al., 1972; Nelson et al., 1974). Of these indices, myocardial oxygen consumption correlated best with the product of heart rate and blood pressure (Gobel et al., 1978; Nelson et al., 1974). Consequently, the rate-pressure product was used in the present study as a predictor of myocardial oxygen demand. The myocardial oxygen supply to demand relationship can be estimated from the ratio of the diastolic pressure time index to the rate-pressure product (DPTI:RPP). A lower ratio would be associated with a decreased coronary blood flow during diastole and also with a decreased proportion of blood flow to the subendocardium, the potential result being myocardial (subendocardial) ischemia. On the other hand, the higher the ratio, the more likely there is adequate subendocardial perfusion (Hoffman, 1978).

The present study investigated myocardial oxygen supply (DPTI) and demand (RPP) during double-arm weightlifting exercise in patients with coronary artery disease. As expected, myocardial oxygen demand (RPP) increased significantly during both of the exercises at both intensities and modes due to significant increases in both heart rate and systolic blood pressure. The DPTI also increased with arm weightlifting exercise suggesting improved myocardial oxygen supply. However, because of the proportionately larger increase in RPP compared to DPTI, the ratio of oxygen supply to demand decreased with arm weightlifting exercise.

Compared to the results of the present study, Featherstone, Holly & Amsterdam (1993) reported similar (40% of 1RM) or lower (60% of 1RM) ratepressure products for the same exercises as performed in the present study. The lower RPPs reported with arm weightlifting exercise at 60% of 1RM may be related to a lower myocardial oxygen demand during single-arm as compared to double-arm exercise. These differences may be partially negated, however, due to the fact that Featherstone's subjects performed weightlifting exercise to fatigue. Several other reports of rate-pressure product during arm weightlifting exercise have suggested much lower myocardial oxygen demands with similar exercises at comparable training intensities (Butler, Beierwaltes & Rogers, 1987; Crozier Ghilarducci, Holly & Amsterdam, 1989; Vander et al., 1986). These differences are most likely due to the indirect technique used to measure arterial pressure. Thus, the RPPs in these earlier reports may have underestimated the demands of weightlifting.

The diastolic pressure time index (DPTI) increased with arm weightlifting exercise suggesting greater coronary perfusion. Featherstone, Holly & Amsterdam (1993) also reported increases in DPTI, however peak DPTIs were considerably lower than those reported here. Again, the differences between reports may originate from the technique used to measure arterial pressure. The auscultatory method, used in the earlier report, allowed calculation of the DPTI as the product of diastolic blood pressure, diastolic time interval and heart rate. The diastolic blood pressure was, however, only a single value equal to the lowest point on the arterial pressure curve. With intra-arterial pressure measurement, the DPTI was calculated more precisely by integrating the entire diastolic pressure curve, and therefore, the mean pressure during diastole was used in calculating the DPTI. Thus, the myocardial oxygen supply may have also been underestimated in the earlier report.

The DPTI:RPP ratio indicated that the myocardial oxygen supply to demand balance decreased with arm weightlifting exercise. Ratios were even lower in an earlier published report (Featherstone, Holly & Amsterdam, 1993), most likely due to the underestimation of both the RPP and the DPTI with auscultatory blood pressure measurement. When compared to dynamic treadmill exercise, however, the DPTI:RPP ratio was more favourable during weightlifting (Featherstone, Holly & Amsterdam, 1993). While subjects in the present study did not perform dynamic exercise, their results can be compared to previous indirectly measured cycle ergometer testing values. The diastolic pressure response to weightlifting (107 mmHg) was much greater than during cycle ergometer exercise (76 mmHg), whereas systolic pressures were similar (184 mmHg and 183 mmHg during weightlifting and cycling, respectively). Although, had arterial pressure been measured directly during cycle ergometer testing, systolic pressures would have been higher than those recorded during weightlifting, as systolic blood pressure is typically underestimated by 15% using indirect methods (Wiecek, McCartney & McKelvie, 1990). The heart rate response was lower during weightlifting (85 beats • min⁻¹ as compared to 128

beats•min⁻¹ during cycling) with an accompanying lower rate-pressure product (15290 as compared to 23618 during cycling) reflecting a lower myocardial oxygen requirement. Furthermore, as coronary blood flow occurs mainly during diastole, the slower heart rate (longer diastolic time period) and higher diastolic pressure (increased coronary perfusion pressure) associated with weightlifting (McCartney & McKelvie, 1996) would improve myocardial oxygen supply. Thus, although the DPTI:RPP ratio decreased with arm weightlifting exercise, the myocardial oxygen supply to demand balance is likely to be substantially more favourable during weightlifting compared to maximal cycle ergometer exercise testing.

4.7 SUMMARY AND RECOMMENDATIONS

The major significance of this study is that it is the first to measure intrasubclavian pressures during weightlifting exercise in patients with coronary artery disease. The circulatory response to double-arm weightlifting during both machine equipment and free weight modes of lifting were reported. Systolic and diastolic pressures rose in parallel with both modes of lifting, while heart rate did not increase substantially. Pressures did not, however, exceed values considered to be acceptable for dynamic exercise. Furthermore, while the high arterial pressures associated with weightlifting increased myocardial oxygen demand, the increase in diastolic pressure may have augmented oxygen supply. However, because of the proportionately larger increase in RPP compared to DPTI, the ratio of oxygen supply to demand decreased with arm weightlifting exercise. Nevertheless, the estimated myocardial oxygen supply to demand relationship appears to be more favourable during double-arm weightlifting exercise compared to maximal cycle ergometer testing in this aerobically trained group of cardiac patients. These results suggest that double-arm weightlifting exercise at 40 to 60% of 1RM is safe and appropriate for patients with coronary artery disease and can be performed using either free weights or machine weightlifting equipment.

Based on the results of this thesis study, new recommendations can be made to guide the prescription of arm weightlifting exercise for patients with coronary artery disease.

1. Double-arm weightlifting exercise is safe and appropriate in patients with coronary artery disease and may be incorporated into a weightlifting training program.

2. Double-arm weightlifting exercises should be limited to 60% of 1RM as intensities greater than this may produce unacceptable increases in arterial pressure and rate-pressure product and decreases in the diastolic pressure time index to rate-pressure product ratio.

3. Weightlifting may be performed with machine equipment or free weights. However, machines are preferable to free weights because they are safer, easier to learn and do not require the use of a spotter.

4. 1RM testing must be done using the mode of exercise (machine equipment or free weight) on which the weightlifting training will be performed.

Weightlifting training is a safe and effective form of exercise in increasing muscular strength and endurance in patients with coronary artery disease. Arm weightlifting training may be particularly important as many activities of daily living are performed by the arms and require significant amounts of upper body strength. Furthermore, many of these activities frequently demand a combination of static and dynamic effort. Therefore, arm weightlifting training should play an important role in the rehabilitation of patients with coronary artery disease.

SUBJECT	AGE (years)	HEIGHT (cm)	WEIGHT (kg)
1	61	173	80
2	65	168	81.8
3	57	173	82
4	71	171	76
5	38	180	89
6	58	170	71
7	50	173	92.3
8	61	175	84
Mean	58	173	82
SD	10.0	3.6	6.8

TABLE 2SUBJECT MEDICATIONS

MEDICATIONS	NUMBER OF SUBJECTS	
ASA	6	
BETA-BLOCKERS	5	
CALCIUM CHANNEL BLOCKERS	1	
NITRATES	1	
ACE INHIBITORS	1	
HYPERLIPIDEMIC AGENTS	3	

TABLE 3SUBJECT 1 REPETITION MAXIMUMS (KG)BP=BENCH PRESSOP=OVERHEAD PRESS

SUBJECT	BP EQUIPMENT	BP FREE	OP EQUIPMENT	OP FREE
1	52.5	40.9	30	27.3
2	46.3	38.6	23.8	25
3	62.5	56.8	37.5	40.9
4	54	47.7	26.3	25
5	77.5	61.4	50	38.6
6	42.5	29.5	28	23.6
7	70	47.7	42	38.6
8	60	50	40	36.4
Mean	58.2	46.6	34.7	31.9
SD	11.8	10.2	9.1	7.3

FIGURE LEGENDS

Figure 1	Resting arterial pressure trace.
Figure 2	Subject 1 repetition maximums for the overhead press and bench press using both the equipment and free weight modes of weightlifting.
Figure 3	Arterial pressure trace during 10 repetitions of an overhead press at 60% of 1RM using the machine equipment mode of exercise. Double event markers indicate the beginning and end of the set and single event markers indicate the end of each repetition.
Figure 4	Mean systolic blood pressure Top: Bench press. Bottom: Overhead press. Mean systolic blood pressure at 40% (left) and 60% (right) of 1RM prior to exercise (pre) and during repetitions 1-10 of a weightlifting set using the equipment (O) and free weight (I) modes of lifting.
Figure 5	Peak systolic blood pressure. Details as in Figure 4.
Figure 6	Mean diastolic blood pressure. Details as in Figure 4.
Figure 7	Peak diastolic blood pressure. Details as in Figure 4.
Figure 8	Mean arterial pressure. Details as in Figure 4.
Figure 9	Rate-pressure product. Details as in Figure 4.
Figure 10	Diastolic pressure time index. Details as in Figure 4.
Figure 11	Diastolic pressure time index to rate-pressure product ratio. Details as in Figure 4.
Figure 12	Heart rate. Details as in Figure 4.

diastolic pressure time index = area 1 x heart rate

mean arterial pressure = area 2 ÷ base

56

FIGURE 2 SUBJECT 1 REPETITION MAXIMUMS (KG)

FIGURE 4 MEAN SYSTOLIC BLOOD PRESSURE (mmHg)

Bench press 40%

Overhead press 40%

Bench press 60%

FIGURE 5 PEAK SYSTOLIC BLOOD PRESSURE (mmHg)

Bench press 60%

Bench press 40%

Overhead press 60%

FIGURE 6 MEAN DIASTOLIC BLOOD PRESSURE (mmHg)

Bench press 60%

Overhead press 40%

Overhead press 60%

FIGURE 7 PEAK DIASTOLIC BLOOD PRESSURE (mmHg)

Bench press 60%

Overhead press 60%

FIGURE 8 MEAN ARTERIAL PRESSURE (mmHg)

Repetitions

Overhead press 40%

Bench press 60%

FIGURE 9 RATE-PRESSURE PRODUCT

Overhead press 40%

7000

pre

1

2 3

4

5 6

Repetitions

7 8 9

Overhead press 60%

10

Bench press 60%

FIGURE 10 DIASTOLIC PRESSURE TIME INDEX (mmHg.s.min⁻¹)

Overhead press 40%

Overhead press 60%

Bench press 60%

٠

FIGURE 11 DIASTOLIC PRESSURE TIME INDEX TO RATE-PRESSURE PRODUCT RATIO

Overhead press 40%

Bench press 40%

Overhead press 60%

FIGURE 12 HEART RATE (beats•min⁻¹)

Overhead press 40%

Overhead press 60%

REFERENCES

- Abraham, A.S., Y. Sever, M. Weistein, M. Dollberg & J. Menczel. (1975) Value of early ambulation in patients with and without complications after acute myocardial infarction. *N. Engl. J. Med.*, 292:719-722.
- American College of Sports Medicine (1988) *Resource Manual for Guidelines for Exercise Testing and Prescription*. Lea & Febiger: Philadelphia, U.S.A.
- Avezum, A., M. Flather & S. Yusuf. (1994) Recent advantages and future directions in myocardial infarction. *Cardiology*, 84:391-407.
- Baird, R.J., R.T. Manktelow, P.A. Shah & F.M. Ameli. (1970) Intramyocardial pressure. J. Thoracic and Cardiovasc. Surg., 59(6):810-823.
- Bernadet, P. (1995) Benefits of physical activity in the prevention of cardiovascular diseases. J. Cardiovasc. Pharmacol., 25(suppl. 1):S3-S8.
- Bertagnoli, K., P. Hanson & A. Ward. (1990) Attenuation of exercise-induced ST depression during combined isometric and dynamic exercise in coronary artery disease. *Am. J. Cardiol.*, 65:314-317.
- Bjernulf, A., J. Boberg & S. Froberg. (1974) Physical training after myocardial infarction. *Scand. J. Clin. Lab. Invest.*, 33:173-185.
- Blair, S.N., K.E. Powell, T.L. Bazzarre, J.L. Early, L.H. Epstein, L.W. Green, S.S. Harris, W.L. Haskell, A.C. King, J. Koplan, B. Marcus, R.S. Paffenbarger & K.K. Yeager. (1993) Physical inactivity (workshop V). *Circulation*, 88(3):1402-1405.
- Blessey, R. (1985) Epidemiology, risk factors, and pathophysiology of ischemic heart disease. *Phys. Ther.*, 65(12):1796-1805.
- Bloch, A., J.P. Maeder, J.C. Haissly, J. Felix & H. Blackburn. (1974) Early mobilization after myocardial infarction. *Am. J. Cardiol.*, 34:152-157.
- Boyle, J.A. & A.R. Lorimer. (1973) Early mobilisation after uncomplicated myocardial infarction. *Lancet*, 1:346-349.

- Brannon, F.J., M.J. Geyer & M.W. Foley. (1988) Cardiac Rehabilitation: Basic Theory and Application. F.A. Davis Company: Philadelphia, U.S.A.
- Braunwald, E. & B.E. Sobel. (1992) Coronary blood flow and myocardial ischemia. In: *Heart Disease. A Textbook of Cardiovascular Medicine* (4th *edition*), edited by E. Braunwald. Saunders: Toronto.
- Brummer, P., E. Linko & A. Kasanen. (1956) Myocardial infarction treated by early ambulation. *Am. Heart J.*, 52:269-272.
- Buckberg, G.D., D.E. Fixler & J.P. Archie. (1972) Experimental subendocardial ischemia in dogs with normal coronary arteries. *Circ. Res.*, 30:67-81.
- Butler, R.M., W. H. Beierwaltes & F.J. Rogers. (1987) The cardiovascular response to circuit weight training in patients with cardiac disease. *J. Cardiopul. Rehab.*, 7:402-409.
- Bygdeman, S. & J. Wahren. (1974) Influence of body position on the anginal threshold during leg exercise. *Europ. J. Clin. Invest.*, 4:201-206.
- Cain, H.D., W.G. Frasher & R. Stivelman. (1961) Graded activity program for safe return to self-care after myocardial infarction. *JAMA*, 177(2):111-115.
- Certo, C.M. (1985) History of cardiac rehabilitation. Phys. Ther., 65(12):1793-1795.
- Clausen, J.P. (1976) Circulatory adjustments to dynamic exercise and effect of physical training in normal subjects and in patients with coronary artery disease. *Prog. Cardiovas. Dis.*, 18(6):459-495.
- Clausen, J.P., O.A. Larsen & J. Trap-Jensen. (1969) Physical training in the management of coronary artery disease. *Circulation*, 40(2):143-154.
- Crozier Ghilarducci, L.E., R.G. Holly & E.A. Amsterdam. (1989) Effects of high resistance training in coronary artery disease. *Am. J. Cardiol.*, 64:866-870.
- Daub, W.D., G.P. Knapik & W.R. Black. (1996) Strength training early after myocardial infarction. J. Cardiopul. Rehabil., 16(2):100-108.

- DeBusk, R., W. Pitts, W. Haskell & N. Houston. (1979) Comparison of cardiovascular responses to static-dynamic effort and dynamic effort alone in patients with chronic ischemic heart disease. *Circulation*, 59(5):977-984.
- DeBusk, R.F., R. Valdez, N. Houston & W. Haskell. (1978) Cardiovascular responses to dynamic and static effort soon after myocardial infarction. *Circulation*, 58(2):368-375.
- Dennis, C., N. Houston-Miller R.G. Schwartz, D.K. Ahn, H.C. Kraemer & D. Gossard. (1988) Early return to work after uncomplicated myocardial infarction. *JAMA*, 260:214-220.
- Detry, J.M., M. Rousseau, G. Vandenbroucke, F. Kusumi, L.A. Brasseur & R.A. Bruce. (1971) Increased arteriovenous oxygen difference after physical training in coronary heart disease. *Circulation*, 44:109-118.
- Dock, W. (1944) The evil sequelae of complete bed rest. *JAMA*, 125(16):1083-1085.
- Epstein, S.E., R.O. Cannon & T.L. Talbot. (1985) Hemodynamic principles in the control of coronary blood flow. *Am. J. Cardiol.*, 56:4E-10E.
- Ewart, C.K. (1989) Psychological effects of resistive weight training: implications for cardiac patients. *Med. Sci. Sports Exerc.*, 21(6):683-688.
- Faigenbaum, A.D., G.S. Skrinar, W.F. Cesare & W.J. Kraemer. (1990) Physiologic and symptomatic responses of cardiac patients to resistance exercise. *Arch. Phys. Med. Rehabil.*, 71:395-398.
- Featherstone, J.F., R.G. Holly & E.A. Amsterdam. (1993) Physiologic responses to weight lifting in coronary artery disease. *Am. J. Cardiol.*, 71:287-292.
- Featherstone, J.F., R.G. Holly & E.A. Amsterdam. (1987) Physiological responses to weight lifting in cardiac patients. *Med. Sci. Sports Exerc.*, 19(2):S93.
- Feinleib, M. (1995) Trends in heart disease in the United States. Am. J. Med. Sci., 310(suppl. 1):S8-S14.
- Ferguson, R.J., P. Cote, M.G. Bourassa & F. Corbara. (1981) Coronary blood flow during isometric and dynamic exercise in angina pectoris patients. J. Cardiac Rehabil., 1(1):21-27.

- Franklin, B.A., K. Bonzheim, S. Gordon & G.C. Timmis. (1991) Resistance training in cardiac rehabilitation. J. Cardiopul. Rehabil., 11(2):99-107.
- Freedson, P., B. Chang, F. Katch, W. Kroll, J. Rippe, J. Alpert & W. Byrnes. (1984) Intra-arterial blood pressure during free weight and hydraulic resistive exercise. *Med. Sci. Sports Exerc.*, 16:131.
- Frick, M.H. & M. Katila. (1968) Hemodynamic consequences of physical training after myocardial infarction. *Circulation*, 37:192-202.
- Gettman, L.R., J.J. Ayres, M.L. Pollack & A. Jackson. (1978) The effect of circuit weight training on strength, cardiorespiratory function, and body composition of adult men. *Med. Sci. Sports Exerc.*, 10(3):171-176.
- Gobel, F.L., L.A. Nordstrom, R.R. Nelson, C.R. Jorgensen & Y. Wang. (1978) The rate-pressure product as an index of myocardial oxygen consumption during exercise in patients with angina pectoris. *Circulation*, 57:549-556.
- Goldberg, A.P. (1989) Aerobic and resistive exercise modify risk factors for coronary heart disease. *Med. Sci. Sports Exerc.*, 21(6):669-674.
- Hagberg, J.M. (1991) Physiologic adaptations to prolonged high-intensity exercise training in patients with coronary aretery disease. *Med. Sci. Sports Exerc.*, 23(6):661-667.
- Hanson, P. & F. Nagle. (1987) Isometric exercise: cardiovascular responses in normal and cardiac populations. *Cardiol. Clinics*, 5(2):157-170.
- Harpur, J.E., R.J. Kellett, W.T. Conner, H.J.B. Galbraith, M. Hamilton, J.J. Murray, J.H. Swallow, & G.A. Rose. (1971) Controlled trial of early mobilisation and discharge from hospital in uncomplicated myocardial infarction. *Lancet*, I:1330-1334.
- Harris, K.A. & R.G. Holly. (1987) Physiological response to circuit weight training in borderline hypertensive subjects. *Med. Sci. Sports Exerc.*, 19(3):246-252.
- Harrison, T.R. (1944) Abuse of rest as a therapeutic measure for patients with cardiovascular disease. J.A.M.A., 125(16):1075-1077.
- Haskell, W.L. (1994) The efficacy and safety of exercise programs in cardiac rehabilitation. *Med. Sci. Sports Exerc.*, 26(7):815-823.

- Haslam, D.R.S., N. McCartney, R.S. McKelvie & J.D. MacDougall. (1988) Direct measurements of arterial blood pressure during formal weightlifting in cardiac patients. *J. Cardiopul. Rehabil.*, 8:213-225.
- Heberden, W. (1772) Some account of a disorder of the chest. *Med. Trans. Royal Coll. Physician*, 2:5. As referenced in Certo, C.M. (1985) History of Cardiac Rehabilitation. *Phys. Ther.*,65(12):1793-1795.
- Helfant, R.H., M.A. DeVilla & S.G. Meister. (1971) Effect of sustained isometric handgrip exercise on left ventricular performance. *Circulation*, 44:982-993.
- Hellerstein, H.K. & A.B. Ford. (1957) Rehabilitation of the cardiac patient. JAMA, 164(3):225-231.
- Herrick, J.B. (1912) Clinical features of sudden obstruction of the coronary arteries. *JAMA*, 59(23):2015-2020.
- Hoffman, J.I.E. (1978) Determinants and prediction of transmural myocardial perfusion. *Circulation*, 58(3):381-391.
- Hutter, A.M., V.W. Sidel, K.I. Shine & R.W. DeSanctis. (1973) Early hospital discharge after myocardial infarction. *N. Engl. J. Med.*, 288:1141-1144.
- Kannel, W.B., D. McGee & T. Gordon. (1976) A general cardiovascular risk profile: the Framingham study. *Am. J. Cardiol.*, 38:46-51.
- Kasch, F.W. & J.L. Boyer. (1969) Changes in maximum work capacity resulting from six months training in patients with ischemic heart disease. *Med. Sci. Sports*, 1(3):156-159.
- Kelemen, M.H. (1989) Resistive training safety and assessment guidelines for cardiac and coronary prone patients. *Med. Sci. Sports Exerc.*, 21(6):675-677.
- Kelemen, M.H., K.J. Stewart, R.E. Gillilan, C.K. Ewart, S.A. Valenti, J.D. Manley & M.D. Kelemen. (1986) Circuit weight training in cardiac patients. J. Am. Coll. Cardiol., 7(1):38-42.
- Kerber, R.E., R.A. Miller & S.M. Najjar. (1975) Myocardial ischemic effects of isometric, dynamic and combined exercise in coronary artery disease. *Chest*, 67(4):388-394.

- Kitamura, K., C.R. Jorgensen, F.L. Gobel, H.L. Taylor & Y. Wang. (1972) Hemodynamic correlates of myocardial oxygen consumption during upright exercise. J. Appl. Physiol., 32(4):516-522.
- Lamers, H.J., W.S.J. Drost, B.J.M. Kroon, L.A. van Es, L.J. Meilink-Hoedemaker & W.H. Birkenhager. (1973) Early mobilazation after myocardial infarction: a controlled study. *Brit. Med. J.*, 1:257-259.
- Levine, S.A. & B. Lown. (1951) The "chair" treatment of acute coronary thrombosis. *Trans. Assoc. Am. Physic.*, 64:316-327.
- Lind, A.R. (1970) Cardiovascular responses to static exercise (Isometrics, anyone?). *Circulation*, 41(2):173-176.
- Longhurst, J.C. & C.L. Stebbins. (1992) The isometric athlete. *Cardiol. Clinics*, 10(2):281-294.
- MacDougall, J.D., R.S. McKelvie, D.E. Moroz, D.G. Sale, N. McCartney & F. Buick. (1992) Factors affecting blood pressure during heavy weight lifting and static contractions. J. Appl. Physiol., 73(4):1590-1597.
- MacDougall, J.D., D. Tuxen, D.G. Sale, J.R. Moroz & J.R. Sutton. (1985) Arterial blood pressure response to heavy resistance exercise. J. Appl. Physiol., 58(3):785-790.
- Mallory, G.K., P.D. White & J. Salcedo-Salgar. (1939) The speed of healing of myocardial infarction. *Am. Heart J.*, 18(6):647-671.
- McCartney, N. & R.S. McKelvie. (1996) The role of resistance training in patients with cardiac disease. In press, J. Cardiovasc. Risk.
- McCartney, N., R.S. McKelvie, D.R.S. Haslam & N.L. Jones. (1991) Usefulness of weightlifting training in improving strength and maximal power output in coronary artery disease. *Am. J. Cardiol.*, 67:939-945.
- McCartney, N., R.S. McKelvie, J. Martin, D.G. Sale & J.D. MacDougall. (1993) Weight-training-induced attenuation of the circulatory response of older males to weight lifting. J. Appl. Physiol., 74(3):1056-1060.
- McCartney, N., N.B. Oldridge, A. Hicks & N.L. Jones. (1989) Maximal isokinetic cycle ergometry in patients with coronary artery disease. *Med. Sci. Sports Exerc.*, 21(3):313-318.

- McKelvie, R.S. & N. McCartney. (1990) Weightlifting training in cardiac patients. Sports Med., 10(6):355-364.
- Morris, J.N. (1994) Exercise in the prevention of coronary heart disease: today's best buy in public health. *Med. Sci. Sports Exerc.*, 26(7):807-914.

Nault, F. & K. Wilkins. (1995) Deaths 1993. Health Reports, 7(1):51-60.

- Nelson, R.R., F.L. Gobel, C.R. Jorgensen, K. Wang, Y. Wang & H.L. Taylor. (1974) Hemodynamic predictors of myocardial oxygen consumption during static and dynamic exercise. *Circulation*, 50:1179-1189.
- Newman, L.B., M.F. Andrews, M.O. Koblish & L.A. Baker. (1952) Physical medicine and rehabilitation in acute myocardial infarction. *Arch. Int. Med.*, 89:552-561.
- O'Brien, J.L. (1994) Intra-arterial Pressure During Arm Exercise. M.Sc. thesis (unpublished).
- O'Connor, G.T., J.E. Burin, S. Yusuf, S.Z. Goldhaber, E.M. Olmstead, R.S. Paffenbarger & C.H. Hennekens. (1989) An overview of randomized trials of rehabilitation with exercise after myocardial infarction. *Circulation*, 80(2):234-244.
- Oldridge, N.B., G.H. Guyatt, M.E. Fischer & A.A. Rimm. (1988) Cardiac rehabilitation after myocardial infarction. *JAMA*, 260(7):945-950.
- Oldridge, N.B., N. McCartney, A. Hicks & N.L. Jones. (1989) Improvement in maximal isokinetic cycle ergometry with cardiac rehabilitation. *Med. Sci. Sports Exerc.*, 21(3):308-312.
- O'Rourke, M.F., R.P. Kelly & A.P. Avolio. (1992) The Arterial Pulse, Lea & Febiger: U.S.A.
- Paterson, D.H., R.J. Shephard, D. Cunningham, N.L. Jones & G. Andrew. (1979) Effects of physical training on cardiovascular function following myocardial infarction. J. Appl. Physiol., 47(3):482-489.
- Redwood, D.R., D.R. Rosing & S.E. Epstein. (1972) Circulatory and symptomatic effects of physical training in patients with coronary-artery disease and angina pectoris. *N. Engl. J. Med.*, 286(18):959-965.

- Ross, R. (1986) The pathogenesis of atherosclerosis-an update. N. Engl. J. Med., 314(8):488-500.
- Ross, R. & J.A. Glomset. (1976a) The pathogenesis of atherosclerosis (first of two parts). *N. Engl. J. Med.*, 295(7):369-376.
- Ross, R. & J.A. Glomset. (1976b) The pathogenesis of atherosclerosis (second of two parts). *N. Engl. J. Med.*, 295(8):420-425.
- Rowell, L.B. (1993) *Human Cardiovascular Control*. Oxford University Press: New York.
- Sale, D.G., D.E. Moroz, R.S. McKelvie, J.D. MacDougall & N. McCartney. (1993) Comparison of blood pressure to isokinetic and weightlifting exercise. *Eur. J. Appl. Physiol.*, 67:115-120.
- Sheldahl, L.M., N.A. Wilke, F.E. Tristani & J.H. Kalbfleisch. (1985) Response to repetitive static-dynamic exercise in patients with coronary artery disease. J. Cardiac Rehabil., 5:139-145.
- Sparling, P.B. & J.D. Cantwell. (1989) Strength training guidelines for cardiac patients. *Physician and Sportsmed.*, 17(3):190-196.
- Sparling, P.B., J.D. Cantwell, C.M. Dolan & R.K. Niederman. (1990) Strength training in a cardiac rehabilitation program: a six-month follow-up. *Arch. Phys. Med. Rehabil.*, 71:148-152.
- Stewart, K.J. (1989) Resistive training effects on strength and cardiovascular endurance in cardiac and coronary prone patients. *Med. Sci. Sports Exerc.*, 21(6):678-682.
- Stewart, K.J., L.D. McFarland, J.J. Weinhofer, C. Brown & E. P. Shapiro. (1994) Weight training soon after myocardial infarction. *Med. Sci. Sports Exerc.*, 26:S32.
- Stewart, K.J., M. Mason & M.H. Kelemen. (1988) Three-year participation in circuit weight training improves muscular strength and self-efficacy in cardiac patients. J. Cardiopul. Rehabil., 8:292-296.
- Squires, R.W., A.J. Muri, L.J. Anderson, T.G. Allsion, T.D. Miller & G.T. Gau. (1991) Weight training during phase II (early outpatient) cardiac rehabilitation. J. Cardiopul. Rehabil., 11(6), 360-364.

- Taylor, H.L., A. Henschel, J. Brozek & A. Keys. (1949) Effects of bed rest on cardiovascular function and work performance. J. Appl. Physiol., 2(5):236-239.
- Thadani, U., R.O. West, T.M. Mathew & J.O. Parker. (1977) Hemodynamics at rest and during supine and sitting bicycle exercise in patients with coronary artery disease. *Am. J. Cardiol.*, 39:776-783.
- Vander, L.B., B.A. Franklin, D. Wrisley & M. Rubenfire. (1986) Acute cardiovascular responses to nautilus exercise in cardiac patients: implications for exercise training. *Ann. of Sports Med.*, 2(4):165-169.
- Varnauskas, E., H. Bergman, P. Houk & P. Bjorntorp. (1966) Haemodynamic effects of physical training in coronary patients. *Lancet*, 2: 8-12.
- Verrill, D., E. Shoup, G. McElveen, K. Witt & D. Bergey. (1992) Resistive exercise training in cardiac patients. *Sports Med.*, 13(3):171-193.
- Wiecek, E.M., N. McCartney & R.S. McKelvie. (1990) Comparison of direct and indirect measures of systemic arterial pressure during weightlifting in coronary artery disease. Am. J. Cardiol., 66:1065-1069.
- Wilke, N.A., L.M. Sheldahl, F.E. Tristani, C.V. Hughes & J.H. Kalbfleisch. (1985) The safety of static-dynamic effort soon after myocardial infarction. *Am. Heart J.*, 110:542-545.
- Wilke, N.A., L.M. Sheldahl, S.G. Levandoski, M.D. Hoffman & F.E. Tristani. (1989) Weight carrying versus handgrip exercise testing in men with coronary artery disease. *Am. J. Cardiol.*, 64:736-740.

APPENDIX A

CONSENT FORM

r

.

McMASTER UNIVERSITY Department of Kinesiology

1280 Main Street West, Hamilton, ON L8S 4K1 Telephone: (905) 525-9140 FAX: (905) 523-6011

CONSENT FORM Intra-arterial Blood Pressure During Arm Weightlifting Exercise in Male Cardiac Patients

I, ______, consent to take part in a study conducted by Dr. N. McCartney, Dr. R.S. McKelvie and L. Hodge, which will examine the effects of arm weightlifting exercise on arterial blood pressure. The purpose of this study is to a) evaluate the effects of this type of exercise on the heart and b) learn more about the best type of arm exercises for cardiac patients.

I have been informed that I will be asked to perform ten repetitions each of two arm weightlifting exercises (bench press and overhead press) at 2 submaximal intensities (40% and 60% of the maximum amount I can lift once), which we have previously established to be safe and appropriate. I will be asked to perform these exercises twice: once using free weights and once using equipment.

A small tube (arterial catheter) will be inserted into the artery of my right arm. A sterilized fine wire will be advanced through the tube and into the artery. The tip will be positioned in the artery of my shoulder. I have been informed that the catheter and fine wire will be inserted by Dr. McKelvie and will remain in place throughout the exercise procedure. Out of approximately twenty procedures that have been done in this laboratory, there have been no instances where the catheter or wire have broken or become dislodged.

There may be slight bruising from the arterial catheter in my arm, but this will disappear in a few days. I have also been made aware and understand that there is a risk of a blood clot in the hand related to the arterial catheter. In rare circumstances this could result in severe, permanent damage to the hand including the loss of a finger. A published survey of complications from arterial catheterizations found a one in one thousand (1/1000) chance of a blood clot developing when the catheter was left in place for twenty-four hours. When this complication occurred there was always complete resolution of the blood clot without residual damage. In our experience, when the catheter has been in place for only a few hours, there has not been any complication related to a blood clot. The risk of a blood clot is minimized by the short duration that the catheter will be in place and the use of an anti-clotting agent, heparin. I also understand that there is risk of an infection related to the catheterization of the artery and this could result in a generalized infection of the body. However this is only a very

small potential risk as a recent survey did not find evidence of infection nor have any of the previous subjects in this laboratory suffered this complication.

I understand there is a risk of having a heart attack (approximately 1/750,000 patient hours) or collapsing while exercising, but this risk is very small. I understand that emergency equipment is available at all times in the laboratory and that Dr. McKelvie will always be present should such an event happen. If I have any problems after the test is completed, I have been informed that I can contact Dr. McKelvie by phoning him at his office at Hamilton General Hospital at 572-7155.

If I have any concerns regarding this study or the method by which it was conducted, I am aware that I can report it to the Committee for Ethics for Research of the Faculty of Health Sciences and Affiliated Institutions at McMaster University in person at HSC 3N or by phone at 521-2100, ext. 6017.

I understand that I may withdraw from the study at any time, even after signing this form, without prejudice. Any information that is collected about me during this study will be kept confidential and if the results are published, I will not be identified in any way. If I wish, the results of my test will be made available to me.

Name (print)	Signature	Date	
Witness (print)	Signature	Date	

I have explained the nature of the study to the subject and believe that he has understood it.

Name (print)

Signature

Date

APPENDIX B

STUDY DATA

BENCH PRESS EQUIPMENT 40%

PSBP											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	165	101	101	101	170	195	107	104	107	109	109
ł	100	191	101	101	172	100	10/	194	197	190	190
2	132	126	137	141	148	147	154	155	166	166	155
3	159	162	166	163	167	168	169	170	171	171	169
4	11/	108	1/1	130	138	1.47	136	138	1/6	135	145
-	114	120	141	155	100	1-47	100	150	140	100	140
5	152	166	172	172	169	167	168	168	163	161	164
6	152	153	165	162	160	165	176	178	171	179	184
7	135	174	172	173	175	175	170	175	177	177	187
	463	476	160	170	175	179	101	102	102	102	102
•	103	176	109	1/2	175	176	101	103	165	103	103
Mean	146	160	163	163	163	166	168	170	172	171	173
SD	18	23	16	15	14	14	16	17	15	18	18
PDBP											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	79	95	97	98	00	97	08	102	107	108	110
1	75	30	37	30	30	37	30	102	107	100	110
2	65	66	71	/5	79	81	84	84	106	106	94
3	79	89	90	90	90	92	94	95	96	96	98
4	57	68	73	72	75	77	72	71	77	76	75
5	96	00	100	100	100	00	100	00	06	06	00
5	00	30	100	102	100	33	100	33	90	30	30
6	80	83	92	89	86	93	95	93	99	97	99
7	73	102	99	95	96	101	99	93	94	102	102
8	95	98	95	97	100	103	105	104	106	106	104
M	77	07	00	00		00	00	00	00	00	07
Mean		07	90	90	90	95	93	93	90	90	97
SD	12	14	11	11	9	9	11	11	10	10	10
YCDD											
ASBF											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	164	181	178	174	166	173	181	184	187	192	192
2	128	123	136	140	147	146	151	151	159	161	153
-	457	120	100	101	4 6 9	140	101	101	100	107	100
3	157	162	103	101	103	163	165	100	166	167	167
4	113	128	140	138	138	145	134	137	146	135	139
5	150	165	169	170	167	164	167	165	161	159	163
ê	1/0	152	162	160	154	161	170	170	165	173	176
ž	140	102	102	100	104	107	100	474	100	170	1/0
1	132	162	166	167	169	165	162	1/1	1/2	170	180
8	159	165	165	167	171	177	180	178	179	180	180
Mean	144	155	160	160	159	162	164	166	167	167	169
SD	18	20	14	14	12	11	15	15	13	17	17
00		20			14		10	10	10		.,
XDBP											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
	79	02	05	05	07	01	07	00	102	106	107
-	70	33	30	35	70	31	31	33	102	00	107
2	64	64	70	75	78	80	83	84	96	96	89
3	78	84	89	88	88	90	92	92	94	93	94
4	56	67	73	72	75	76	70	71	76	76	74
5	85	06	09	08	08	07	00	06	04	05	07
5	85	90	90	90	90	97	99	90	94	95	97
6	78	80	88	87	84	90	93	93	95	95	98
7	68	92	94	89	93	92	91	90	90	95	100
8	95	93	93	95	98	102	103	101	103	103	102
Moon	76	04	00	97	00	00	01	01	04	05	05
Mean	/5	04	00	87	80	90	31	51	94	90	90
SD	12	12	11	9	9	8	10	10	9	9	10
MAP											
		0004	0500	0503		DEDE	DCDC	DED7		DEDO	DED40
SUBJECT	PRE	REPT	KEP2	REPS	REP4	REPO	REPO	REP/	REPO	REPS	REPIU
1	113	125	129	128	120	125	131	133	137	141	140
2	91	90	101	105	110	110	114	117	123	122	116
3	100	117	110	118	119	121	122	123	125	124	123
3	04	07	400	100	100	400	07	100	104	104	101
4	81	9/	103	100	103	106	9/	100	104	101	101
5	114	127	130	130	128	128	129	128	125	125	128
6	109	114	121	119	116	122	128	129	127	130	133
7	101	122	124	125	124	120	121	128	128	128	135
, 0	101	100	404	105	400	124	125	124	126	125	125
ø	121	122	124	125	129	134	130	134	130	135	135
Mean	105	114	119	119	119	121	122	124	125	126	126
SD	13	14	11	11	9	9	12	11	10	12	13

-

BENCH PRESS EQUIPMENT 40%

RPP											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	7771	9113	11016	10767	10405	10927	11337	11619	12144	12628	12455
2	7921	7787	9448	10189	11112	11295	11681	12049	12974	13143	12303
3	8134	9117	10029	10291	10612	10641	10893	11149	11369	11460	11611
4	7689	8609	9363	9327	9315	9725	9016	9543	10064	9211	9610
5	8658	11221	11500	11787	11946	12601	12765	12935	12986	13373	14110
6	10637	10966	12275	12075	11627	12517	13535	13573	13128	14156	14237
7	9555	11525	12382	12234	11514	11001	11275	12864	12804	12652	13741
8	14865	14006	14441	14803	15528	16525	16368	16176	16432	16491	16472
Mean	9404	10293	11307	11434	11507	11904	12109	12488	12738	12889	13067
SD	2430	2018	1728	1702	1827	2094	2175	1947	1824	2090	2054
6.87											
DPTI											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP/	REP8	REP9	REP10
1	3750	3759	4149	3784	3588	4077	4401	4084	4405	4482	4771
2	3079	3169	3114	3041	3164	2970	3197	3230	3128	3163	3006
3	3949	5014	4068	3972	4166	4140	4275	3943	4012	4044	3922
4	2552	3146	3266	3150	3176	3241	3038	3005	3191	3264	3285
5	4074	4125	3801	4419	4108	4042	3936	4023	3994	3620	3534
0 7	3432	3039	3400	3905	3407	3829	4006	3094	3082	3083	3945
/ 0	3032	4074	4170	3704	2003	2000	4020	4070	4029	4000	4469
Moon	3406	20/4	3097	3701	3609	3023	2010	3790	3700	3010	2054
SD	3490 AQO	5042	407	470	401	401	170	422	3/03	3/40	5004
00	400	537	-07	772	401	431	470	425	441	400	500
DPTI/RPP											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	0.4825	0.4125	0.3767	0.3514	0.3448	0.3731	0.3881	0.3515	0.3627	0.3549	0.3831
2	0.3887	0.4070	0.3296	0.2985	0.2847	0.2629	0.2737	0.2681	0.2411	0.2407	0.2443
3	0.4854	0.5500	0.4056	0.3860	0.3926	0.3890	0.3925	0.3537	0.3529	0.3529	0.3378
4	0.3319	0.3654	0.3488	0.3377	0.3410	0.3333	0.3370	0.3149	0.3171	0.3544	0.3418
5	0.4706	0.3677	0.3305	0.3749	0.3439	0.3208	0.3084	0.3110	0.3076	0.2707	0.2505
6	0.3245	0.3319	0.2842	0.3234	0.2999	0.3059	0.2819	0.2869	0.2728	0.2531	0.2771
7	0.3697	0.3305	0.3372	0.3405	0.3477	0.4054	0.3571	0.3170	0.3146	0.3166	0.3267
8	0.2410	0.2909	0.2491	0.2500	0.2491	0.2313	0.2333	0.2502	0.2292	0.2311	0.2355
Mean	0.3868	0.3820	0.3327	0.3328	0.3255	0.3277	0.3215	0.3067	0.2998	0.2968	0.2996
SD	0.0881	0.0790	0.0491	0.0433	0.0449	0.0608	0.0571	0.0368	0.0486	0.0538	0.0548
up											
	DDE	DED4	PEDO	DEDS	DEDA	DEDE	DEDE	0007		BEDO	
306JEC1	47	50	62	REF3 62	63	62	62	63	REF0	REP9 66	REP IU 65
2	62	64	60	73	76	79	79	80	00	80	80
2	52	56	62	64	65	65	66	67	69	68	70
4	68	67	67	68	67	67	67	70	69	68	69
5	58	68	68	69	71	77	76	78	81	84	87
6	72	72	76	76	76	78	79	79	79	82	81
7	72	71	74	73	68	67	70	75	75	75	76
8	94	85	88	88	91	93	91	91	92	92	91
Mean	65	67	71	72	72	73	74	75	76	77	77
SD	14	10	9	8	9	10	9	9	9	9	9

BENCH PRESS FREE WEIGHT 40%

PSBP											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	172	170	173	179	181	186	186	186	188	183	186
2	127	141	146	138	146	166	151	166	163	169	160
3	132	173	156	177	161	168	170	178	182	182	181
4	152	144	147	143	142	136	147	140	144	145	148
5	148	155	1/0	1/0	161	161	158	157	162	163	159
5	140	167	102	100	149	160	1/1	1/3	164	1/4	1/3
2	155	100	104	104	140	100	100	100	137	104	172
Mean	1/6	158	157	161	150	163	164	166	167	171	160
SD	140	12	10	15	13	103	13	14	14	13	109
00		•-	10	10	10		10	••		10	
PDBP											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	83	87	89	93	94	99	99	98	100	96	97
2	63	76	81	80	80	92	84	92	92	94	91
3	61	77	102	91	82	89	93	98	100	103	101
4	87	82	79	78	77	74	76	77	80	82	82
5	83	90	92	92	89	86	86	87	90	91	89
6	78	86	84	92	93	90	93	95	89	94	98
(73	87	86	94	95	88	90	99	101	91	96
	86	95	97	97	99	104	106	95	103	108	103
Mean	11	85	89	90	88	90	91	93	94	95	95
SU	10	6	8	1	8	9	9	1	8	8	1
XSBP											
SUBJECT	PRF	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REPS	REPO	REP10
1	172	169	169	177	178	183	183	184	184	170	181
2	126	141	146	131	142	164	149	164	159	164	158
3	131	163	153	171	157	166	170	175	176	178	177
4	148	142	143	143	141	136	141	140	143	145	146
5	148	152	162	162	159	155	155	157	158	160	150
6	142	153	148	159	160	156	164	165	157	165	166
7	134	150	150	143	144	151	154	151	153	159	161
8	155	158	160	158	162	163	166	162	168	170	169
Mean	144	153	154	155	155	159	160	162	162	165	164
SD	15	10	9	15	13	14	13	14	13	11	12
YDBP											
SUBJECT	DDE	DED1	PEDO	DED3	DEDA	DEDS	DEDA	DED7	DEDS	DEDO	DED10
1	81	85	87	02	0/	07	07			0/	06
2	63	74	80	76	77	92	83	90	90	94	80
3	60	74	96	83	81	87	92	97	98	97	99
4	85	82	78	77	76	74	75	77	80	80	81
5	82	86	91	90	87	85	86	87	88	89	84
6	76	85	84	89	90	88	91	93	87	92	94
7	72	83	82	85	88	83	86	89	93	88	89
8	85	93	94	93	97	100	100	94	101	101	100
Mean	76	83	87	86	86	88	89	91	92	92	91
SD	10	6	7	7	8	8	8	7	7	6	7
MAP											
SUBJECT	PRF	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	113	116	118	124	124	129	129	131	130	126	128
2	90	105	109	100	108	124	115	124	122	122	118
3	90	112	121	115	114	122	126	130	132	130	131
4	112	107	108	108	105	102	104	107	111	111	111
5	111	116	121	121	118	115	115	118	119	121	113
6	106	115	113	122	121	118	124	124	119	125	125
7	100	115	114	107	109	116	118	113	115	122	122
8	114	120	122	121	125	128	128	124	130	130	129
Mean	104	113	116	115	115	119	120	121	122	123	122
SD	10	5	5	9	8	9	8	8	8	6	8

BENCH PRESS FREE WEIGHT 40%

SUBLECT PRE REP1 REP2 REP3 REP4 REP5 REP6 REP7 REP8 REP9 REP19 1 7294 8435 8820 9409 969 9972 10190 10503 9931 9796 10288 2 7896 9069 10245 13251 11421 13365 12071 12374 12724 13006 4 10797 10149 10278 10193 10077 9778 12581 12300 12361 11909 12588 12406 12078 13026 12886 6 10073 11064 11251 12360 12361 13097 12588 12406 12078 13026 12884 Mean 9470 10542 1337 15584 15843 14840 15865 1592 1717 1795 SUBJECT PRE REP1 REP2 REP3 REP4 1808 11893 11903 12101 12212 12	RPP											
1 7294 8435 8820 9409 9669 9972 10190 10503 9311 9796 10088 2 7896 9065 10245 9524 10752 12701 12274 12568 12704 12568 3 7334 9152 14621 9591 10142 11365 12071 12074 12764 10764 10774 12724 13006 10255 10464 10751 10885 5 11422 12667 13005 12369 11991 10972 10008 10217 11411 11258 7 8366 11024 10542 13691 10972 10008 10217 11411 11258 8 12581 13569 14013 14443 14673 15584 15893 1902 1717 1795 SUBJECT PRE REP1 REP2 REP3 REP4 REP5 REP6 REP7 REP8 REP9 REP1	SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
2 7896 9069 10245 9591 10142 11365 12271 13276 12724 12568 12704 12568 3 7334 9152 14621 9591 10142 1365 10352 10646 10751 10865 5 11422 12567 13005 12659 11951 11542 11465 12238 12406 12077 13026 12858 6 10073 110651 12511 13569 14013 14431 14873 15584 136840 13695 15499 15686 Mean 9470 10634 11597 10339 11172 11698 11899 11903 12101 12312 12229 SD 2022 1791 2052 1947 1815 1847 1808 1685 1922 1717 1795 SUBJECT PRE REP1 REP2 REP3 REP4 REP6 REP6 REP7 REP8 REP8	1	7294	8435	8820	9409	9669	9972	10190	10503	9931	9796	10088
3 7334 9152 14621 9591 10142 11365 12071 12271 13074 12274 13074 12274 13074 12274 13074 12274 13074 12274 13074 12274 13074 12274 13074 12278 13074 12278 13074 12278 13074 12278 13074 12278 13074 12288 12406 12278 13026 1288 12406 12078 13026 1288 1489 19031 12171 11411 11281 12891 13063 12903 12017 11411 12121 12222 1717 1717 12229 12212 12212 12221 12121 12222 1717 12212 12224 12212 12121 12212	2	7896	9069	10245	9524	10752	12701	11845	12604	12568	12704	12580
4 10797 10149 10276 10197 10715 10352 10646 10751 10862 5 11422 12567 13005 12569 11951 11542 12238 12430 12238 12430 12281 12282 12281 12078 13026 12858 7 8366 11024 10542 9337 9549 10731 10972 10008 10217 11411 11258 8 12561 13569 14013 14443 14873 15564 15843 14840 1585 1922 1717 1795 SUBJECT PRE REP1 REP2 REP3 REP4 REP5 REP6 REP7 REP8 REP8 REP9 REP10 1 4400 4105 3362 3463 3265 34149 4106 4105 3961 3293 3351 3365 3763 3365 3276 3185 3293 3351 3306 3376 3990 356	3	7334	9152	14621	9591	10142	11365	12071	12271	13074	12724	13006
5 11422 1267 13005 12659 11951 11462 11465 122481 12982 11281 6 10073 11066 11251 12361 11999 12588 12406 12078 13026 12858 7 8366 11024 10542 9337 9549 10731 10972 10008 10217 11411 11288 8 12581 13569 14013 14443 14873 15584 15843 14840 15859 15499 15864 Mean 9470 10634 11597 10339 11172 11698 11899 1903 12111 12229 1717 1795 DPTI SUBJECT PRE REP1 REP2 REP3 REP4 REP5 REP6 REP7 REP8 REP9 REP10 4041 4041 4041 4041 4041 4041 4041 4053 3365 3365 3365 3365 3365 3365 <t< td=""><td>4</td><td>10797</td><td>10149</td><td>10278</td><td>10193</td><td>10077</td><td>9778</td><td>10215</td><td>10352</td><td>10646</td><td>10751</td><td>10885</td></t<>	4	10797	10149	10278	10193	10077	9778	10215	10352	10646	10751	10885
6 100/3 11106 11251 12360 12361 11909 12568 120/8 13026 1286 7 8366 11024 10542 9337 9549 10731 10972 11011 11111 11258 8 12581 13569 14013 14443 14873 15584 15843 14940 15685 15499 15684 Mean 9470 10634 11597 10939 11172 11698 11899 11903 12101 12312 12222 1717 1795 SUBJECT PRE REP1 REP2 REP3 REP4 REP5 REP6 REP7 REP8 REP9 REP10 1 4440 4145 3662 4077 4234 4296 3908 4438 4419 4401 4064 3445 34419 4401 4064 3445 3463 3466 3366 3251 3185 3223 3351 3293 3351 350 3572 3486 3480 3755 3390 6 3573 3865	5	11422	12567	13005	12659	11951	11542	11465	12238	12430	12582	11291
7 8366 11024 10347 11473 11584 113659 14443 14873 15884 15843 14443 11585 15849 15859 15499 15864 Mean 9470 10634 11597 10939 11172 11698 11899 11903 12101 12312 12229 SD 2022 1791 2052 1947 1815 1847 1808 1585 1922 1717 1795 OPTI SUBJECT PRE REP1 REP2 REP3 REP4 REP5 REP6 REP7 REP8 REP9 REP10 1 4440 4145 3862 4077 4234 4296 3908 4443 4401 4064 3245 3 3132 4211 4870 4324 3243 3351 3361 3242 3351 3309 3351 3390 3351 3390 385 3486 3480 3762 <t< td=""><td>6</td><td>10073</td><td>11106</td><td>11251</td><td>12360</td><td>12361</td><td>11909</td><td>12588</td><td>12406</td><td>12078</td><td>13026</td><td>12858</td></t<>	6	10073	11106	11251	12360	12361	11909	12588	12406	12078	13026	12858
8 12581 13659 14013 14443 14443 15084 15984 19843 14840 15863 15869 11303 12101 12312 12222 SD 2022 1791 2052 1947 1815 1847 1808 1585 1922 1717 1775 DPTI SUBJECT PRE REP1 REP2 REP3 REP4 REP5 REP6 REP7 REP8 REP9 REP10 1 4440 4145 3862 4077 4234 4296 3908 4438 4419 4401 4049 2 2924 3468 3366 3274 3203 3510 3202 3479 3382 3403 3708 3562 3615 3572 3488 3480 3755 3390 351 5 3178 3389 3403 3708 3624 34443 3440 3742 3790 3320 356 6 3353	1	8366	11024	10542	9337	9549	10/31	10972	10008	10217	11411	11258
Mean 94/0 10534 11597 10933 111/2 11696 11899 11903 12101 12312 12229 SD 2022 1791 2052 1947 1815 1847 1808 1585 1922 1717 1795 DPTI SUBJECT PRE REP1 REP2 REP3 REP4 REP5 3908 4438 4419 4401 4049 2 2924 3468 3486 3274 3203 3510 3202 3479 3382 3436 3246 3486 3366 3251 3185 3276 3185 3293 3351 3309 3351 5 33178 3389 3403 3708 3615 3772 3488 3480 3755 3390 6 3353 3656 3578 3810 3624 3444 3840 3742 3790 3233 3706 SUBJECT PRE REP1 REP2 REP3 REP4 REP5 <td>8</td> <td>12581</td> <td>13569</td> <td>14013</td> <td>14443</td> <td>148/3</td> <td>15584</td> <td>15843</td> <td>14840</td> <td>15869</td> <td>15499</td> <td>15864</td>	8	12581	13569	14013	14443	148/3	15584	15843	14840	15869	15499	15864
SD 2022 1791 2052 1947 1815 1847 1808 1585 1922 1717 1795 DPTI SUBJECT PRE REP1 REP2 REP3 REP4 REP5 REP6 REP7 REP8 REP9 REP10 4049 2 2924 3468 3484 3274 3203 3510 3202 3479 3382 3436 3245 3 3132 4211 4870 4272 3808 3991 3555 4149 4106 4105 3961 4 3546 3466 3261 3185 3276 3185 3790 3920 3687 5 3178 3385 3578 3810 3624 3444 3840 3742 3790 3920 3687 7 3377 3820 4148 3959 3918 4139 4355 3899 3961 4288 4161 8 3560	Mean	9470	10634	11597	10939	111/2	11698	11899	11903	12101	12312	12229
DPTI SUBJECT PRE REP1 REP2 REP3 REP4 REP5 REP6 REP7 REP8 REP9 REP10 4440 1 4440 4145 3862 4077 4234 4296 3908 4438 4419 4401 4049 2 2924 3468 3464 3274 3203 3510 3202 3479 3382 3436 3245 3 3132 4211 4870 4272 3808 3991 3565 4149 4105 3961 4 3546 3486 3366 3251 3185 3276 3488 3400 3755 3390 351 5 3178 3890 4148 3959 3918 4139 4355 3989 3961 4288 4161 8 3560 3633 360 391 360 390 383 385 404 346 DPTI/RP 0453<	SD	2022	1/91	2052	1947	1815	1847	1808	1985	1922	1/1/	1795
SUBJECT PRE REP1 REP2 REP3 REP4 REP5 REP6 REP7 REP8 REP9 REP10 1 4440 4145 3662 4077 4234 4296 3908 4438 4419 4401 4049 2 2924 3468 3484 3274 3203 3510 3202 3479 3382 3436 3245 3 3132 4211 4870 4272 3808 3991 3665 4149 4106 4105 3961 4 3546 3389 3403 3708 3582 3615 3572 3488 3480 3755 3390 6 3353 3356 3743 3711 4145 3842 3853 3750 4046 4247 3804 Mean 3439 751 3807 3758 3712 3764 3852 0.4371 8137 3933 0.4370 0.2760 0.2764 0.2760 <t< td=""><td>DPTI</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	DPTI											
Sobsect File	SUBJECT	DPE	DED1	000	PED3	DEDA	DEDS	DEDA	PED7	DCDS	DEDO	PED10
2 2224 3488 3484 3274 3203 3510 3479 3382 3432 3436 3246 3 3132 4211 4870 4272 3808 3991 3665 4149 4106 4105 3961 4 3546 3486 3366 3251 3185 3276 3185 3293 3351 3309 3351 5 3178 3389 3403 3708 3582 3615 3572 3488 3480 3755 3390 6 3353 3856 3578 3810 3624 3444 3840 3742 3790 3920 3687 7 3377 3820 4148 3959 3918 4139 4353 3750 4046 4247 3804 Mean 3439 3751 3807 3758 3712 3764 3865 0.4225 0.4460 0.4433 0.4014 2 0.3704 0.3824 <td>1</td> <td>4440</td> <td>4145</td> <td>3862</td> <td>4077</td> <td>4234</td> <td>4296</td> <td>3908</td> <td>4438</td> <td>4419</td> <td>4401</td> <td>4049</td>	1	4440	4145	3862	4077	4234	4296	3908	4438	4419	4401	4049
1 1211 4870 4272 3808 3919 3655 4149 4106 4105 3961 3302 3351 3309 3351 3309 3351 3309 3351 3309 3351 3309 3351 3309 3351 3309 3351 3309 3351 3309 3351 3309 3351 3309 3351 3309 3351 3309 3351 3309 3351 3309 3351 3309 3351 3309 3365 3474 3790 3920 3687 3390 361 4328 3480 3755 3390 365 3474 3790 3920 3684 4139 4355 3889 3961 4288 4161 8 3650 3751 3817 3933 3706 SD 458 311 503 360 391 360 390 383 0.4225 0.4450 0.4493 0.4014 2 0.3704 0.3824 0.3431	2	2924	3468	3484	3274	3203	3510	3202	3479	3382	3436	3245
4 3546 3486 3251 3185 3276 3185 3293 3351 3309 3351 5 3178 3389 3403 3708 3582 3615 3572 3488 3480 3755 3390 6 3353 3856 3578 3810 3624 3444 3840 3742 3790 3920 3687 7 3377 3820 4148 3959 3918 4139 4355 3989 3961 4288 4161 8 3560 3635 3743 3711 4145 3842 3853 3750 4046 4247 3804 Mean 3439 3751 3807 3758 3712 3764 3685 3791 3817 3933 3706 SUBJECT PRE REP1 REP2 REP3 REP4 REP5 REP6 REP7 REP8 REP9 REP10 1 0.6088 0.4913 0.4379 <td>3</td> <td>3132</td> <td>4211</td> <td>4870</td> <td>4272</td> <td>3808</td> <td>3991</td> <td>3565</td> <td>4149</td> <td>4106</td> <td>4105</td> <td>3961</td>	3	3132	4211	4870	4272	3808	3991	3565	4149	4106	4105	3961
5 3178 3389 3403 3708 3582 3815 3572 3488 3480 3755 3390 6 3353 3856 3578 3810 3624 3444 3840 3742 3790 3920 3687 7 3377 3820 4148 3959 3918 4139 4355 3989 3961 4288 4161 8 3560 3635 3743 3711 4145 3842 3853 3750 4046 4247 3800 SD 458 311 503 360 391 360 390 383 385 404 346 DPTVRPP SUBJECT PRE REP1 REP2 REP3 REP4 REP5 REP6 REP7 REP8 REP9 REP10 0.4333 0.4379 0.4333 0.4376 0.3520 0.2764 0.2703 0.2760 0.2691 0.2705 0.2529 3 0.4270 0.4601	4	3546	3486	3366	3251	3185	3276	3185	3293	3351	3309	3351
6 3353 3856 3578 3810 3624 3444 3840 3742 3790 3920 3687 7 3377 3820 4148 3959 3918 4139 4355 3889 3961 4288 4161 8 3560 3635 3743 3711 4145 3842 3853 3750 4046 4247 3804 Mean 3439 3751 3807 3758 3712 3764 3685 3791 3817 3933 3706 SUBJECT PRE REP1 REP2 REP3 REP4 REP5 REP6 REP7 REP8 REP9 REP10 1 0.6088 0.4913 0.4379 0.4308 0.3835 0.4225 0.4460 0.4493 0.4014 2 0.3704 0.3824 0.3410 0.3437 0.2980 0.2763 0.3318 0.3108 0.3108 0.3108 0.3140 0.3226 0.3045 4	5	3178	3389	3403	3708	3582	3615	3572	3488	3480	3755	3390
7 3377 3820 4148 3959 3918 4139 4355 3989 3961 4288 4161 8 3660 3635 3743 3711 4145 3842 3853 3750 4046 4247 3804 Mean 3439 3751 3807 3758 3712 3764 3685 3791 3817 3933 3706 SD 458 311 503 360 391 360 390 383 385 404 346 DPTVRPP SUBJECT PRE REP1 REP2 REP3 REP4 REP5 REP6 REP7 REP8 REP9 REP10 1 0.6088 0.4913 0.4379 0.4308 0.3855 0.4225 0.4460 0.4493 0.4014 2 0.3704 0.3824 0.3401 0.3437 0.2980 0.2764 0.2760 0.2691 0.2705 0.2579 3 0.4270	6	3353	3856	3578	3810	3624	3444	3840	3742	3790	3920	3687
8 3560 3635 3743 3711 4145 3842 3853 3750 4046 4247 3804 Mean 3439 3751 3807 3758 3712 3764 3685 3791 3817 3933 3706 SD 458 311 503 360 391 360 390 383 385 404 346 DPTI/RPP SUBJECT PRE REP1 REP2 REP3 REP4 REP5 REP6 REP7 REP8 REP9 REP10 0.4333 0.4379 0.4308 0.3835 0.4225 0.4450 0.4493 0.4014 2 0.3704 0.3824 0.3401 0.3437 0.2980 0.2764 0.2703 0.2760 0.2691 0.2705 0.2579 3 0.4270 0.4601 0.3331 0.4455 0.3754 0.3512 0.2953 0.3381 0.3140 0.3226 0.3078 5 0.2782 0.2697 0.2617	7	3377	3820	4148	3959	3918	4139	4355	3989	3961	4288	4161
Mean 3439 3751 3807 3758 3712 3764 3685 3791 3817 3933 3706 SD 458 311 503 360 391 360 390 383 385 404 346 DPTI/RPP SUBJECT PRE REP1 REP2 REP3 REP4 REP5 REP6 REP7 REP8 REP9 REP10 1 0.6088 0.4913 0.4379 0.4333 0.4379 0.4308 0.3835 0.4225 0.4450 0.4493 0.4014 2 0.3704 0.3824 0.3401 0.3437 0.2980 0.2764 0.2703 0.2691 0.2705 0.2579 3 0.4270 0.4601 0.3331 0.4455 0.3754 0.3512 0.2953 0.3381 0.3148 0.3078 0.3078 5 0.2782 0.2697 0.2617 0.2929 0.2997 0.3132 0.3116 0.3188 0.3078 0.3078 <t< td=""><td>8</td><td>3560</td><td>3635</td><td>3743</td><td>3711</td><td>4145</td><td>3842</td><td>3853</td><td>3750</td><td>4046</td><td>4247</td><td>3804</td></t<>	8	3560	3635	3743	3711	4145	3842	3853	3750	4046	4247	3804
SD 458 311 503 360 391 360 390 383 385 404 346 DPTI/RPP SUBJECT PRE REP1 REP2 REP3 REP4 REP5 REP6 REP7 REP8 REP9 REP10 1 0.6088 0.4913 0.4379 0.4333 0.4379 0.4308 0.3835 0.4225 0.4450 0.4493 0.4014 2 0.3704 0.3824 0.3401 0.3437 0.2980 0.2764 0.2703 0.2760 0.2691 0.2705 0.2579 3 0.4270 0.4601 0.3331 0.4455 0.3754 0.3512 0.2953 0.3381 0.3140 0.3226 0.3078 0.3078 5 0.2782 0.2697 0.2617 0.2929 0.2997 0.3116 0.3181 0.3148 0.3078 0.3078 6 0.3328 0.3472 0.3180 0.3083 0.2922 0.2850 0.3076 0.3860 0.3	Mean	3439	3751	3807	3758	3712	3764	3685	3791	3817	3933	3706
DPTI/RPP SUBJECT PRE REP1 REP2 REP3 REP4 REP5 REP6 REP7 REP8 REP9 REP10 1 0.6088 0.4913 0.4379 0.4333 0.4379 0.4308 0.3835 0.4225 0.4460 0.4493 0.4014 2 0.3704 0.3824 0.3401 0.3437 0.2980 0.2703 0.2760 0.2691 0.2705 0.2579 3 0.4270 0.4601 0.3331 0.4455 0.3512 0.2953 0.3811 0.3140 0.3226 0.3045 4 0.3284 0.3435 0.3275 0.3190 0.3112 0.3116 0.2850 0.2800 0.2984 0.3078 5 0.2782 0.2697 0.2617 0.2929 0.2997 0.3132 0.3116 0.3188 0.3009 0.2867 7 0.4036 0.3465 0.3935 0.4240 0.4103 0.3857 0.3970 0.3986 0.3876 0.3788 0.3678	SD	458	311	503	360	391	360	390	383	385	404	346
DPTURPP SUBJECT PRE REP1 REP2 REP3 REP4 REP5 REP6 REP7 REP8 REP9 REP10 1 0.6088 0.4913 0.4333 0.4379 0.4308 0.3835 0.4225 0.4450 0.4493 0.4014 2 0.3704 0.3824 0.3401 0.3437 0.2980 0.2764 0.2705 0.2651 0.2705 0.2579 3 0.4270 0.4601 0.3331 0.4455 0.3754 0.3512 0.2953 0.3381 0.3140 0.3226 0.3045 4 0.3284 0.3435 0.3275 0.3190 0.3161 0.3350 0.3118 0.3141 0.3148 0.3078 0.3078 5 0.2782 0.2697 0.2617 0.2929 0.2997 0.3132 0.3116 0.3148 0.3078 0.3078 6 0.3328 0.3472 0.3180 0.3083 0.2922 0.2997 0.3970 0.3986 0.3877 0.3758 0.3696												
SUBJECT PRE REP1 REP2 REP3 REP4 REP5 REP6 REP7 REP8 REP9 REP9 REP10 1 0.6088 0.4913 0.4379 0.4333 0.4379 0.4308 0.3835 0.4225 0.4450 0.4493 0.4014 2 0.3704 0.3824 0.3311 0.4455 0.3754 0.2764 0.2703 0.2760 0.2691 0.2726 0.2579 3 0.4270 0.4601 0.3331 0.4455 0.3754 0.3512 0.2953 0.3381 0.3140 0.3226 0.3045 4 0.3284 0.3435 0.3275 0.3190 0.3161 0.3350 0.3118 0.3141 0.3148 0.3078 0.3078 5 0.2782 0.2697 0.2617 0.2929 0.2997 0.3132 0.3116 0.3180 0.3081 0.3009 0.2864 0.3003 6 0.3328 0.3472 0.3180 0.3857 0.3970 0.3986 0.3877	DPTI/RPP											
1 0.6088 0.4913 0.4379 0.4333 0.4379 0.43835 0.4225 0.4450 0.4450 0.4493 0.4014 2 0.3704 0.3824 0.3401 0.3437 0.2980 0.2764 0.2703 0.2760 0.2691 0.2705 0.2579 3 0.4270 0.4601 0.3331 0.4345 0.3574 0.3512 0.2953 0.3381 0.3140 0.3226 0.3045 4 0.3284 0.3435 0.3275 0.3190 0.3161 0.3350 0.3118 0.3140 0.3226 0.3045 5 0.2782 0.2697 0.2617 0.2929 0.2997 0.3132 0.3116 0.2850 0.2800 0.2984 0.3003 6 6 0.3328 0.3472 0.3180 0.3083 0.2932 0.2892 0.3050 0.3016 0.3138 0.3009 0.2667 7 0.4036 0.3465 0.3935 0.4240 0.4103 0.3857 0.3147 0.3186 0.3847 0.3758 0.3696 8 0.2679 0.2671 0.2529	SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP/	REP8	REP9	REP10
2 0.3704 0.3824 0.3401 0.3437 0.2960 0.2703 0.2760 0.2951 0.2705 0.2705 0.2705 0.2705 0.2705 0.2705 0.2705 0.2705 0.2705 0.2705 0.3041 0.3440 0.3437 0.2960 0.2705 0.2705 0.2705 0.3041 0.3141 0.3140 0.3226 0.3045 4 0.3284 0.3435 0.3275 0.3190 0.3161 0.3181 0.3148 0.3078 0.3078 5 0.2782 0.2697 0.2617 0.2929 0.2997 0.3132 0.3116 0.2850 0.2800 0.2984 0.3003 6 0.3328 0.3472 0.3180 0.3083 0.2932 0.2892 0.3050 0.3016 0.3138 0.3009 0.2867 7 0.4036 0.3465 0.33935 0.4240 0.4103 0.3857 0.3970 0.3986 0.3877 0.3788 0.3696 8 0.2830 0.2679 0.2671 0.2569	1	0.6088	0.4913	0.43/9	0.4333	0.4379	0.4308	0.3835	0.4225	0.4450	0.4493	0.4014
3 0.4270 0.4001 0.3331 0.4435 0.3344 0.3351 0.4455 0.3344 0.3351 0.3161 0.3350 0.3181 0.3140 0.3226 0.3078 4 0.3284 0.3435 0.3275 0.3190 0.3161 0.3350 0.3118 0.3181 0.3140 0.3078 0.3078 5 0.2782 0.2697 0.2617 0.2992 0.2997 0.3122 0.3116 0.2860 0.2884 0.3003 6 0.3328 0.3472 0.3180 0.3083 0.2932 0.2892 0.3050 0.3016 0.3138 0.3009 0.2867 7 0.4036 0.3465 0.3935 0.4240 0.4103 0.3857 0.3970 0.3986 0.3877 0.3758 0.3696 8 0.2830 0.2679 0.2671 0.2569 0.2787 0.2465 0.2432 0.2527 0.2550 0.2740 0.2398 Mean 0.3790 0.3636 0.3349 0.3529 0.3387 0.3285 0.3147 0.3241 0.3224 0.3249 0.3085	2	0.3/04	0.3824	0.3401	0.3437	0.2980	0.2/64	0.2703	0.2760	0.2691	0.2705	0.2079
4 0.3284 0.3435 0.3275 0.3190 0.3161 0.3180 0.3181 0.3181 0.3181 0.3181 0.3181 0.3181 0.3181 0.3181 0.3181 0.3181 0.3181 0.3181 0.3181 0.3181 0.3181 0.3181 0.3181 0.3181 0.3181 0.3083 0.3076 0.2997 0.3132 0.3116 0.2860 0.2984 0.3003 0.3083 0.2992 0.3050 0.3016 0.3188 0.3009 0.22867 7 0.4036 0.3465 0.3935 0.4240 0.4103 0.3857 0.3970 0.3986 0.3877 0.3758 0.3696 8 0.2830 0.2679 0.2671 0.2569 0.2787 0.2465 0.2432 0.2527 0.2550 0.2740 0.2398 Mean 0.3790 0.3636 0.3349 0.3529 0.3387 0.3285 0.3147 0.3241 0.3224 0.3249 0.3085 SD 0.1068 0.0801 0.0590 0.0718 0.0606 0.0604 0.0522 0.0597 0.0640 0.0600 0.0537	3	0.4270	0.4001	0.3331	0.4400	0.3/04	0.3012	0.2900	0.3301	0.3140	0.3220	0.3045
6 0.3280 0.3472 0.3180 0.3233 0.2932 0.2992 0.3050 0.3036 0.2034 0.3089 0.2267 7 0.4036 0.3465 0.3935 0.4240 0.4103 0.3857 0.3970 0.3986 0.3877 0.3758 0.3696 8 0.2830 0.2679 0.2671 0.2569 0.2787 0.2465 0.2422 0.2527 0.2550 0.2740 0.2398 Mean 0.3790 0.3636 0.3349 0.3529 0.3387 0.3285 0.3147 0.3241 0.3224 0.2399 0.3085 SD 0.1068 0.0801 0.0590 0.0718 0.0606 0.0604 0.0522 0.0597 0.0640 0.0600 0.0537 HR SUBJECT PRE REP1 REP2 REP3 REP4 REP5 REP6 REP7 REP8 REP9 REP10 1 42 50 52 53 54 54 56 57 54 55 56 2 63 64 70 73 76		0.3204	0.3433	0.3273	0.3190	0.3101	0.3330	0.3116	0.3101	0.3140	0.3070	0.3078
0 0.3226 0.3472 0.3050 0.2032 0.3050 0.3070 0.3086 0.3877 0.3758 0.3696 8 0.2830 0.2679 0.2671 0.2569 0.2787 0.2465 0.2432 0.2527 0.2550 0.2740 0.2398 Mean 0.3790 0.3636 0.3349 0.3529 0.3387 0.3285 0.3147 0.3241 0.3224 0.3249 0.3085 SD 0.1068 0.0801 0.0590 0.0718 0.0606 0.0604 0.0522 0.0597 0.0640 0.0600 0.0537 HR SUBJECT PRE REP1 REP2 REP3 REP4 REP5 REP6 REP7 REP8 REP9 REP10 1 42 50 52 53 54 54 56 57 54 55 56 2 63 64 70 73 76 78 80 77 79 78 79 3 56 56 65 69 71 70 74 74 74 74	6	0.2702	0.2037	0.2017	0.2323	0.2007	0.0102	0.3050	0.2000	0.2000	0.2004	0.3003
8 0.2433 0.2465 0.2670 0.2671 0.2527 0.2255 0.2740 0.2398 Mean 0.3790 0.3636 0.3349 0.3529 0.3387 0.3285 0.3147 0.3241 0.3224 0.3249 0.3085 SD 0.1068 0.0801 0.0590 0.0718 0.0606 0.0604 0.0522 0.0597 0.0640 0.0600 0.0537 HR SUBJECT PRE REP1 REP2 REP3 REP4 REP5 REP6 REP7 REP8 REP9 REP10 1 42 50 52 53 54 54 56 57 54 55 56 2 63 64 70 73 76 78 80 77 79 78 79 3 56 56 65 69 71 70 74 72 73 74 74 74 74 75 75 75 75 75 74 74 74 76 78 79 79 75 </td <td>7</td> <td>0.0020</td> <td>0.3465</td> <td>0.3035</td> <td>0.0000</td> <td>0.2002</td> <td>0.2052</td> <td>0.3030</td> <td>0.3986</td> <td>0.3877</td> <td>0.3758</td> <td>0.2007</td>	7	0.0020	0.3465	0.3035	0.0000	0.2002	0.2052	0.3030	0.3986	0.3877	0.3758	0.2007
Mean 0.3790 0.3617 0.3201 0.3224 0.3224 0.3249 0.3085 SD 0.1068 0.0801 0.0590 0.0718 0.0606 0.0604 0.0522 0.0597 0.0640 0.0600 0.0537 HR SUBJECT PRE REP1 REP2 REP3 REP4 REP5 REP6 REP7 REP8 REP9 REP10 1 42 50 52 53 54 54 56 57 54 55 56 2 63 64 70 73 76 78 80 77 79 78 79 3 56 56 65 69 71 70 74 72 73 4 73 72 72 74 74 74 74 74 74 75 5 77 83 80 75 74 74 74 79 79 75 <td>, 8</td> <td>0.2830</td> <td>0.2679</td> <td>0.0000</td> <td>0.2569</td> <td>0.2787</td> <td>0.0007</td> <td>0.2432</td> <td>0.0000</td> <td>0.2550</td> <td>0.2740</td> <td>0.2398</td>	, 8	0.2830	0.2679	0.0000	0.2569	0.2787	0.0007	0.2432	0.0000	0.2550	0.2740	0.2398
SD 0.1068 0.0801 0.0590 0.0718 0.0606 0.0604 0.0522 0.0597 0.0640 0.0600 0.0537 HR SUBJECT PRE REP1 REP2 REP3 REP4 REP5 REP6 REP7 REP8 REP9 REP10 1 42 50 52 53 54 54 56 57 54 55 56 2 63 64 70 73 76 78 80 77 79 78 79 3 56 56 96 56 65 69 71 70 74 72 73 4 73 72 72 71 72 72 74 74 74 75 5 77 83 80 75 74 74 78 79 79 75	Mean	0.3790	0.3636	0.3349	0.3529	0.3387	0.3285	0.3147	0.3241	0.3224	0.3249	0.3085
HR SUBJECT PRE REP1 REP2 REP3 REP4 REP5 REP6 REP7 REP8 REP9 REP10 1 42 50 52 53 54 54 56 57 54 55 56 2 63 64 70 73 76 78 80 77 79 78 79 3 56 56 96 56 65 69 71 70 74 72 73 4 73 72 72 71 72 72 74 74 74 75 5 77 83 80 75 74 74 78 79 73	SD	0.1068	0.0801	0.0590	0.0718	0.0606	0.0604	0.0522	0.0597	0.0640	0.0600	0.0537
HR SUBJECT PRE REP1 REP2 REP3 REP4 REP5 REP6 REP7 REP8 REP9 REP10 1 42 50 52 53 54 54 56 57 54 55 56 2 63 64 70 73 76 78 80 77 79 78 79 3 56 56 65 69 71 70 74 72 73 4 73 72 71 72 72 72 74 74 74 75 5 77 83 80 78 74 74 74 75	••-											
SUBJECT PRE REP1 REP2 REP3 REP4 REP5 REP6 REP7 REP8 REP9 REP10 1 42 50 52 53 54 54 56 57 54 55 56 2 63 64 70 73 76 78 80 77 79 78 79 3 56 56 96 56 65 69 71 70 74 72 73 4 73 72 72 71 72 72 74 74 74 75 5 77 83 80 78 75 74 74 78 79 79 75	HR											
1 42 50 52 53 54 54 56 57 54 55 56 2 63 64 70 73 76 78 80 77 79 78 79 3 56 56 96 56 65 69 71 70 74 72 73 4 73 72 72 71 72 72 74 74 74 75 5 77 83 80 78 74 74 76 79 75	SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
2 63 64 70 73 76 78 80 77 79 78 79 3 56 56 96 56 65 69 71 70 74 72 73 4 73 72 72 71 72 72 74 74 74 75 5 77 83 80 78 75 74 74 75 75	1	42	50	52	53	54	54	56	5/	54	55	56
3 36 36 96 56 65 69 /1 /U /4 /2 /3 4 73 72 72 71 72 72 74 74 74 75 5 77 83 80 78 75 74 74 75	2	63	64	70	/3	/6	/8	80	11	79	78	/9 70
4 73 72 72 71 72 72 72 74 74 74 75 5 77 83 80 78 75 74 74 78 79 79 75	3	56	56	96	56	65	69	/1	70	/4 74	72	13
	4 F	13	/2	12	70	12	12	12 74	74 70	74	74	75
e 71 79 76 79 77 76 77 75 77 70 70	5	71	83 72	80 76	70	73	74	74	/0 75	79 77	79	79
0 11 13 10 10 11 10 11 13 11 19 10 7 63 74 70 65 66 71 71 66 67 70 70	0 7	63	13	70	10	66	70	71	70 66	67	70	70
8 81 86 88 91 92 96 95 92 94 91 94	, 8	81	86	88	Q1	92	96	95	92	94	7∠ 91	94
Mean 66 70 76 71 72 74 75 74 75 75 75	Mean	66	70	76	71	72	74	75	74	75	75	75
SD 13 12 13 12 11 11 11 10 11 10 11	SD	13	12	13	12	11	11	11	10	11	10	11

BENCH PRESS EQUIPMENT 60%

PSBP											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	162	203	197	198	198	193	203	208	208	207	215
2	130	159	159	164	1/2	182	182	185	203	218	218
3	144	160	10/	1/0	167	1/1	172	1/0	1//	160	182
4	173	147	201	205	206	205	204	204	207	200	215
5	1/3	197	155	203	200	170	176	204	171	209	178
7	144	165	168	100	109	173	180	194	195	196	197
, 8	155	160	160	178	182	181	187	186	198	100	107
Mean	148	103	170	177	177	179	181	185	187	190	193
SD	17	19	19	17	18	15	18	16	19	21	21
00	.,	10	10	••	10	10	10	10	10	2.	21
8080											
	DDE	PCD1	000	DED3	DEDA	DEDS	DEDG	DED7	DEDS	PEDO	
1	74	115	115	112	112	116	110	120	120	122	121
2	64	88	85	02	103	111	109	106	136	1/22	1/3
2	72	92	105	92	90	91	95	98	100	102	140
4	65	79	77	81	78	81	79	80	82	82	85
5	115	127	131	136	135	135	134	134	137	137	142
6	85	96	90	96	95	101	100	107	101	102	98
7	81	97	104	101	103	105	104	111	111	113	111
8	89	100	103	109	110	108	113	110	109	112	116
Mean	81	99	101	103	103	106	107	108	112	114	116
SD	16	15	17	17	17	16	16	16	18	20	21
XSBP											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	162	190	188	186	187	190	193	201	201	202	203
2	129	156	158	156	166	172	173	176	191	199	191
3	142	161	155	168	162	163	168	173	173	176	178
4	120	147	147	151	150	152	147	151	154	152	155
5	173	193	198	203	204	203	201	202	204	208	212
6	151	160	152	161	161	165	165	166	166	165	170
7	144	152	163	167	172	162	173	182	182	180	184
8	151	154	167	176	177	179	184	183	183	186	191
Mean	147	164	166	171	172	173	176	179	182	184	186
SD	17	17	18	17	17	17	17	17	17	19	18
XDBP											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	74	100	104	103	105	109	111	117	117	115	118
2	63	82	83	85	98	104	101	103	116	119	120
3	72	85	96	87	88	89	92	96	97	99	100
4	63	79	11	80	/8	/9	/8	/8	80	87	83
5	113	124	130	134	133	133	132	132	134	13/	140
7	80 77	92	07	92	402	90	103	109	110	90	90
/	11	03	102	109	102	106	103	106	106	100	113
Mean	70	93	07	08	100	100	103	105	107	109	110
SD	16	14	16	17	16	16	16	16	16	17	17
00	10	14	10		10				10	.,	
MAP											
SUBJECT	PRF	REP1	REP2	REPR	REPA	REP5	REPA	REP7	REPR	REPG	REP10
1	108	197	137	138	139	140	145	150	151	152	150
2	90	112	115	119	131	132	134	139	146	154	146
2	102	116	125	120	119	122	125	129	131	133	134
⊿	87	108	109	112	112	114	110	111	114	114	117
5	142	156	163	166	166	165	164	165	166	170	174
6	114	121	117	124	123	127	126	126	129	127	130
7	109	118	124	128	131	125	134	140	141	140	142
8	114	118	130	138	136	138	143	139	140	143	147
Mean	108	123	128	131	132	133	135	137	140	142	142
SD	17	16	17	17	16	15	16	16	16	18	17

BENCH PRESS EQUIPMENT 60%

RPP											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	7380	11214	11919	12290	12346	12836	13291	13835	13793	13731	14092
2	7366	9601	10238	11086	12420	13289	13513	14066	15460	16287	15888
3	8783	9835	15630	11019	11450	11771	12456	12998	13393	13643	13797
4	8075	9963	10334	10788	10814	10931	10613	10922	11326	11264	11625
5	12043	14267	16328	17682	17931	17766	17648	17952	18571	19230	19777
6	11145	11516	12005	13006	12970	13752	13687	13815	14438	13826	14542
7	9395	11366	12280	12949	13254	12667	14104	14689	15004	15075	15584
8	13059	13465	15884	17171	17345	17422	18510	17612	18086	18694	19443
Mean	9656	11403	13077	13249	13566	13804	14228	14486	15009	15219	15593
SD	2180	1702	2498	2721	2636	2498	2617	2323	2401	2715	2797
-											
		0004	0000	0000		DEDE		0507	0000		00040
SUBJECT	PRE	REPT	REP2	REP3	REP4	REPO	REPO	REP/	REPO	KEP9	REPTO
1	3937	4870	4412	45/3	4345	4000	45/8	42/0	4492	4322	46/5
2	3007	3461	3680	36/2	4028	4150	3970	4466	4462	4515	4139
3	3302	4305	3824	4/12	3510	3510	3655	3829	4000	3820	4069
4	2782	3374	3413	3348	3225	3319	3103	3290	3224	3348	3449
5	48/4	5932	4661	4841	4535	4062	4901	4013	4952	40/9	4/62
6	3428	3921	3434	3904	3585	3/86	3/44	3897	3669	3//3	3504
7	3939	3728	3885	41/6	4029	4432	4361	4254	4065	4062	4210
8	3492	4466	3978	4204	3/12	4109	3644	3841	4094	3//6	3959
Mean	3595	4257	3911	4179	3871	4047	4002	4058	4120	4037	4096
SD	655	848	440	521	442	467	572	427	531	444	475
DPTI/RPP											
SUBJECT	PRF	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	0 5334	0 4342	0.3702	0.3721	0.3520	0.3510	0.3444	0.3091	0.3257	0.3147	0.3318
2	0.4082	0.3605	0.3595	0.3312	0.3243	0.3123	0.2937	0.3175	0.2886	0 2772	0 2605
3	0.3759	0 4377	0 2447	0 4276	0.3065	0 2982	0 2935	0 2946	0 2987	0.2800	0 2949
4	0.3445	0.3387	0.3303	0.3103	0.2982	0.3036	0.2981	0.3012	0 2846	0 2972	0 2967
5	0.0440	0.4158	0.2854	0 2738	0 2529	0.2568	0 2777	0.2569	0 2667	0 2433	0.2408
6	0.3076	0.3405	0.2861	0.3002	0 2764	0 2753	0 2735	0.2821	0.2541	0 2729	0 2410
7	0.4192	0.3280	0.3164	0.3225	0.3040	0.3499	0.3092	0.2896	0.2709	0.2695	0.2701
, 8	0.2674	0 3317	0.2504	0.2448	0.2140	0.2359	0 1969	0.2181	0.2264	0.2020	0.2036
Mean	0.3826	0.3734	0.3054	0.3228	0.2910	0 2979	0 2859	0.2836	0 2770	0.2696	0 2674
SD	0.0807	0.0476	0.0468	0.0569	0.0429	0.0411	0.0421	0.0322	0.0299	0.0343	0.0402
HR	005	0504	0500	DEDC		DEDC	0000	0007	0500	0500	
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REPO	REP/	REP8	REP9	REPID
1	45	59	64	66	66	68	69	69	69	68	69
2	57	62	65	71	75	77	78	80	81	82	83
3	62	61	101	65	71	72	74	75	77	78	77
4	67	68	70	71	72	72	72	72	74	74	75
5	70	74	82	87	88	87	88	89	91	92	93
6	74	72	79	81	81	84	83	83	87	84	86
7	65	75	75	77	77	78	81	81	83	84	85
8	87	87	95	97	98	97	101	96	99	100	102
Mean	66	70	79	77	78	79	81	81	82	83	84
SD	12	9	13	11	10	10	10	9	10	10	10

BENCH PRESS FREE WEIGHT 60%

PSBP											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	152	168	174	181	181	186	187	190	190	193	189
,	4 4 4	150	150	157	163	163	175	175	101	403	100
2	191	130	150	157	103	103	175	175	101	100	104
3	139	176	151	159	107	167	174	177	178	173	181
4	144	165	158	165	1/4	176	173	168	164	167	172
5	169	178	184	177	177	176	179	178	183	184	190
6	160	168	160	165	168	170	163	165	171	168	174
7	152	161	161	156	157	162	170	170	174	175	177
, 0	427	167	161	171	174	190	195	100	400	105	404
°	13/	167	101	1/1	174	180	165	102	102	100	101
Mean	149	167	162	166	170	172	176	1/6	178	179	181
SD	11	9	11	9	8	8	8	8	8	9	6
PDBP											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REPS	REPO	REP10
1	76	05	00	102	104	100	110	114	114	111	110
1	70	90	99	102	104	109	110	114	114	100	110
2	12	81	81	92	92	93	102	104	106	109	108
3	69	81	79	84	93	93	97	100	97	97	105
4	73	94	87	87	94	95	91	92	91	91	94
5	103	105	105	105	101	100	103	103	108	108	112
6	87	99	92	94	97	98	92	95	97	94	97
7	87	104	100	07	100	111	07	102	103	105	105
<i>,</i>	0/	104	100	400	100	444	57	102	103	100	100
8	81	100	102	106	111	114	111	114	114	111	109
Mean	81	95	93	96	99	101	100	103	104	103	105
SD	11	9	10	8	6	9	7	8	8	8	6
XSBP											
SUBJECT	DRE	RED1	REP2	RED3	REDA	RED5	REDA	DED7	DEDS	PEDO	PED10
4	454	465	467	474	475	470	404	490	402	ADC.	ARC
-	151	100	107	174	175	179	181	162	183	186	180
2	137	145	145	152	159	162	172	1/4	177	179	181
3	138	160	149	155	159	164	168	171	171	171	176
4	144	154	158	152	167	170	168	166	162	165	167
5	166	172	176	173	173	173	175	175	180	182	184
6	158	167	159	160	166	168	160	164	168	164	170
7	1/0	155	151	146	152	156	163	156	165	170	174
6	424	100	151	140	132	130	103	100	100	400	174
8	134	162	159	165	1/1	1//	183	180	181	180	1/9
Mean	147	160	158	160	165	169	171	171	173	175	177
SD	11	8	10	10	8	8	8	9	8	8	7
XDBP											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	74	63	94	100	103	104	107	108	107	108	106
	70	70	77	00	01	02	100	100	105	100	100
2	70	78	70	00	91	92	100	101	105	107	106
3	68	79	78	83	87	91	95	95	93	93	100
4	73	86	87	83	92	93	90	90	88	89	92
5	103	103	104	102	101	99	103	102	106	107	110
6	87	98	91	92	96	97	91	94	95	92	96
7	83	94	91	90	92	96	93	95	99	99	104
8	78	00	100	104	107	110	109	108	109	108	106
	70	01	00	02	06	00	08	00	100	100	100
Mean	/9	91	90	93	96	98	98	99	100	100	103
SD	12	9	9	8	1	1	/	1	8	8	6
MAP											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	103	123	127	131	133	135	136	138	136	139	138
2	98	107	108	118	121	124	131	134	136	138	139
3	97	111	108	113	119	124	127	126	126	127	132
	102	115	44.4	110	105	100	107	124	100	105	102
4	103	110	400	404	120	120	12/	124	122	120	121
5	131	134	136	134	133	133	130	136	141	142	145
6	119	126	122	123	127	128	122	125	127	124	128
7	115	119	115	114	116	120	125	120	130	132	134
8	101	126	125	130	136	140	142	140	140	140	139
Mean	108	120	119	123	126	129	131	130	132	133	135
SD	12	9	10	8	7	7	7	7	7	7	6
~~		•			•	•	'	•	•		5

BENCH PRESS FREE WEIGHT 60%

RPP											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	7111	10338	11150	11251	11599	12040	12453	12624	11966	12209	12453
2	7956	9640	9835	11107	11989	12431	13394	13783	14003	14306	14521
3	8479	9204	9565	10357	11302	11846	12048	12105	12170	12347	13151
4	10900	11859	12390	12464	13711	14111	14284	14011	13728	14085	14509
5	13372	14536	14786	14150	14139	14415	14882	15315	16319	16679	17144
6	11584	13132	12520	12870	13217	13288	12638	13313	13504	13307	14078
7	10425	10629	10087	10086	10195	10676	11703	10708	12944	12732	12863
8	12058	15097	15457	16283	17421	18059	18446	18629	18330	18243	18092
Mean	10236	11804	11974	12321	12947	13358	13731	13811	14121	14239	14601
SD	2188	2238	2240	2099	2239	2263	2196	2382	2169	2166	2024
DPTI											
SUBJECT	PRE	REP1	REP2	REP3	RFP4	REP5	REP6	REP7	REP8	REP9	REP10
1	3900	4526	4227	4045	4236	4387	4191	4778	4227	4151	4243
2	3103	3439	3362	3332	3504	3429	3628	3629	3683	3924	3870
3	3209	3436	3304	3798	3353	3783	4101	3796	4158	3623	3881
4	3201	3521	3567	3405	3567	3613	3466	3435	3524	3542	3314
5	3917	3885	3821	3845	6337	3931	3823	4036	3874	4000	3857
6	3770	4027	3715	3770	3928	3903	3898	3839	3799	3921	3833
7	4501	4201	4040	4180	3890	4250	4266	4112	4383	4159	4052
8	3269	3669	4045	4090	3621	4243	3971	3794	3780	4728	3973
Mean	3609	3838	3760	3808	4055	3942	3918	3927	3928	4006	3878
SD	493	395	335	308	964	334	275	404	296	367	266
	DDC	DED1	DED2	DED2	DCD4	DEDE	DEDE	DED7		BEDO	
306JEC1	0.5495	0 4378	0 3701	0 3505	0.3652	0.3644	0 3366	0 2795	0 2522	0.3400	0.3409
2	0.3403	0.4578	0.3791	0.3393	0.3032	0.3044	0.3300	0.3783	0.3332	0.3400	0.2665
3	0.3784	0.3733	0.3454	0.3667	0.2022	0.3193	0.3404	0.3136	0.3417	0.2934	0.2000
4	0.2937	0 2969	0 2879	0 2732	0.2602	0 2561	0.2426	0.2451	0.2567	0.2514	0.2284
5	0.2929	0 2673	0 2584	0 2717	0 4482	0 2727	0 2569	0 2635	0 2374	0.2398	0.2250
6	0.3254	0.3066	0.2967	0.2929	0.2972	0.2937	0.3085	0.2884	0.2813	0.2946	0.2723
7	0.4317	0.3953	0.4005	0.4144	0.3816	0.3981	0.3645	0.3840	0.3386	0.3266	0.3150
8	0.2711	0.2430	0.2617	0.2512	0.2079	0.2350	0.2153	0.2037	0.2062	0.2592	0.2196
Mean	0.3665	0.3346	0.3214	0.3162	0.3186	0.3019	0.2919	0.2925	0.2848	0.2849	0.2703
SD	0.0923	0.0670	0.0532	0.0572	0.0758	0.0556	0.0533	0.0633	0.0541	0.0356	0.0447
uo											
SUBJECT	DDE	DED1	0000	DED3	DEDA	DEDS	DEDE	DED7	DEDO	DEDO	
1	A7	63	67	65	66	67	60	60	66	66	67
2	58	67	68	73	75	77	78	79	79	80	80
23	61	57	64	67	71	72	72	71	71	72	75
4	76	77	78	82	82	83	85	85	85	86	87
5	80	85	84	82	82	83	85	87	90	92	93
6	73	79	79	80	79	79	79	81	80	81	83
7	70	68	67	69	67	69	72	69	79	75	74
8	90	93	98	99	102	102	101	104	101	101	101
Mean	70	74	75	77	78	79	80	81	81	82	83
SD	14	12	11	11	11	11	10	12	11	11	11

OVERHEAD PRESS EQUIPMENT 40%

PSBP											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	161	179	179	180	180	183	181	189	192	195	199
2	133	141	141	151	150	155	170	162	159	170	170
3	147	169	168	166	165	168	169	171	173	173	176
4	138	139	142	149	159	166	169	166	177	179	179
5	130	163	163	166	157	155	157	157	159	164	175
6	144	166	165	170	178	180	188	189	193	196	197
7	138	153	145	165	176	171	172	168	178	179	181
8	146	173	176	176	180	185	182	187	189	192	188
Mean	142	160	160	165	168	170	174	174	177	181	183
SD	10	15	15	11	12	12	10	13	13	12	11
PDBP											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	69	100	103	100	98	104	110	107	116	115	121
2	63	69	71	77	80	93	97	85	94	95	93
3	65	85	87	91	91	96	93	96	98	100	102
4	62	/1	70	72	78	83	88	87	92	92	92
5	60	88	89	83	84	86	86	89	88	91	97
6	72	87	88	94	96	98	102	103	103	106	109
/	/5	93	91	96	100	96	100	98	108	109	110
8	85	102	104	107	107	109	109	109	111	111	110
Mean	69	87	88	90	92	96	98	97	101	102	104
50	8	12	13	12	10	9	9	9	10	9	10
XSBP											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	161	176	177	176	176	179	178	182	186	190	193
2	131	137	139	148	148	154	160	156	155	160	159
3	146	165	166	165	164	[°] 166	167	168	170	171	175
4	136	137	142	147	155	164	167	166	170	174	179
5	127	151	160	164	156	153	154	155	156	161	171
6	143	162	161	166	173	174	177	182	183	187	189
7	135	152	137	161	160	165	158	166	174	174	175
8	146	166	172	173	175	178	179	185	185	184	186
Mean	141	156	157	162	163	167	168	170	172	175	178
SD	11	14	15	10	11	10	10	12	12	11	11
XDBP											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	69	94	92	94	93	96	95	99	107	107	109
2	60	66	68	77	78	87	86	83	86	90	90
3	64	85	84	82	87	92	90	94	96	95	97
4	60	68	70	71	76	80	85	87	87	89	92
5	58	80	88	81	80	83	76	85	85	89	97
6	69	84	84	91	93	94	97	98	98	100	101
7	69	88	79	92	94	95	94	96	101	102	105
8	84	98	102	104	105	106	107	108	109	107	107
Mean	67	83	83	86	88	92	91	94	96	97	100
SD	8	12	11	11	10	8	9	8	9	8	7
MAD											
	DPE	DED1	REDO	DED3	PEDA	DEDS	REDE	DED7	DEDO	DEDO	DED10
300JECT	106	120	107	106	107	120	120	124	120	140	144
ו ס	001	06	102	100	127	117	116	104	110	142	144
2	00 05	117	115	116	118	122	123	125	126	107	120
4	01	08	104	107	110	119	120	123	120	120	124
5	87	105	110	116	112	114	116	116	118	120	130
6	102	118	119	124	128	130	132	135	136	140	142
7	902	116	123	123	120	125	110	126	132	133	134
, 8	107	127	132	132	136	137	137	141	142	140	130
Mean	97	113	118	119	120	124	124	127	129	131	134
SD	8	12	11	9	9	8	8	9	9	8	8

OVERHEAD PRESS EQUIPMENT 40%

RPP											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	7196	10780	10920	10984	11214	11756	11712	12553	12438	13405	13847
2	8822	9667	10613	11592	11982	13834	12845	12866	13229	13966	13442
3	7095	9367	9776	10397	10836	11764	11822	12112	12433	12821	13359
4	8944	9108	9608	10309	11121	11902	12704	12715	12853	13559	14436
5	7242	11529	13086	11877	11948	12980	13802	13858	14645	15365	17025
6	10865	12969	13/33	14586	15361	15542	16531	16732	16985	1/624	18158
/	9204	10200	10049	13032	12001	10/10	12082	13290	14242	14040	14835
Moan	12433	11112	11765	12470	10777	13617	10304	14212	1/533	19237	19314
SD	1903	2104	2393	2333	2443	2326	2443	2595	2403	2255	2300
00	1000	2104	2000	2000	2440	2020	2440	2000	2452	2200	2000
SUBJECT	PRF	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REPG	REP10
1	3716	4940	4106	3728	3770	3804	4192	4557	3913	4608	4549
2	2716	2817	2841	3387	3192	2992	2945	3052	3563	2853	3385
3	3517	4373	4598	3682	3975	4119	3945	3927	4268	4086	4194
4	2866	3245	3213	3507	3363	3401	3315	3472	3650	3765	3646
5	3336	3292	3810	3780	3033	3581	3096	3131	3062	3230	3331
6	3075	3569	3371	3426	3580	3775	3865	3591	3697	3787	3847
7	3088	3649	3474	3485	3903	3905	3829	3686	4538	3880	4486
8	3170	3973	3846	3620	3595	4012	3853	3674	3690	3747	3805
Mean	3186	3732	3657	3577	3552	3699	3630	3636	3798	3744	3905
SD	329	679	551	146	335	366	449	472	451	527	465
SUBJECT	DRE	PED1	DEDO	PEDS	DEDA	PEDS	DEDE	DED7	DEDB	PEDO	
1	0.5164	0.4582	0.3760	0 3394	0 3362	0.3236	0 3579	0.3630	0.3146	0 3437	0 3285
2	0 3079	0.2914	0.2677	0.2922	0 2664	0.2163	0 2293	0 2372	0 2693	0 2043	0.0200
3	0.4957	0.4668	0.4703	0.3542	0.3668	0.3501	0.3337	0.3242	0.3433	0.3187	0.3139
4	0.3205	0.3563	0.3344	0.3402	0.3024	0.2857	0.2609	0.2731	0.2840	0.2776	0.2526
5	0.4606	0.2856	0.2912	0.3183	0.2539	0.2759	0.2243	0.2259	0.2091	0.2102	0.1957
6	0.2830	0.2752	0.2455	0.2349	0.2331	0.2429	0.2338	0.2146	0.2177	0.2149	0.2119
7	0.3326	0.3575	0.3457	0.2674	0.3239	0.3070	0.3169	0.2772	0.3187	0.2669	0.3024
8	0.2550	0.2602	0.2354	0.2123	0.2030	0.2178	0.2096	0.1878	0.1898	0.1948	0.1970
Mean	0.3715	0.3439	0.3208	0.2948	0.2857	0.2774	0.2708	0.2629	0.2683	0.2539	0.2567
SD	0.1028	0.0814	0.0782	0.0525	0.0559	0.0491	0.0570	0.0587	0.0570	0.0566	0.0533
цв											
SUBIECT	DRE	RED1	BED3	PEDa	REDA	REDS	REDE	DED7	DEDS	REDO	DED10
1	45	61	62	63	64	66	66	69	67	71	72
2	67	71	76	78	81	90	80	82	85	87	85
3	49	57	59	63	66	71	71	72	73	75	76
4	66	67	68	70	72	73	76	77	76	78	81
5	57	77	82	73	77	85	90	90	94	95	99
6	76	80	85	88	89	89	93	92	93	94	96
7	69	67	73	81	75	77	76	80	82	83	85
8	85	92	95	99	101	104	103	106	105	104	104
Mean	64	71	75	77	78	82	82	84	84	86	87
SD	14	11	12	12	12	12	12	12	12	11	11

•

OVERHEAD PRESS FREE WEIGHT 40%

PSBP SUBJECT 1 2 3 4 5 6 7 8 8 Mean SD	PRE 151 144 161 125 150 145 129 147 144 12	REP1 175 164 174 150 143 155 142 166 159 13	REP2 177 165 175 165 147 161 154 171 164 10	REP3 177 162 178 157 149 167 159 171 165 10	REP4 182 160 177 142 152 170 156 179 165 14	REP5 182 160 179 151 150 171 162 185 168 13	REP6 176 161 179 155 155 174 165 185 169 11	REP7 177 168 180 166 163 182 166 189 174 9	REP8 179 168 185 167 163 183 169 197 176 12	REP9 195 169 182 166 167 184 169 193 178 12	REP10 195 169 185 145 167 187 176 203 178 18
PDBP SUBJECT 1 2 3 4 5 6 7 8 Mean SD	PRE 69 68 76 60 79 79 71 85 73 8	REP1 99 92 91 78 86 86 86 84 98 89 7	REP2 99 92 93 84 82 87 93 99 91 6	REP3 100 87 92 82 80 93 97 98 91 7	REP4 109 88 103 74 80 94 92 104 93 12	REP5 109 86 96 76 79 95 99 107 93 12	REP6 103 87 99 79 85 97 103 109 95 10	REP7 108 95 99 85 89 98 99 108 98 8 8	REP8 104 89 104 88 89 100 105 110 98 8	REP9 115 96 110 91 92 98 101 109 102 9	REP10 115 96 112 82 97 105 119 102 13
XSBP SUBJECT 1 2 3 4 5 6 7 8 Mean SD	PRE 151 142 161 121 148 144 125 145 142 13	REP1 160 164 172 147 138 152 141 162 155 12	REP2 168 160 173 157 146 156 154 164 164 160 8	REP3 168 160 176 157 146 163 141 165 159 11	REP4 169 156 176 137 148 164 151 171 159 13	REP5 174 157 176 151 147 167 160 178 164 12	REP6 172 160 176 155 149 170 149 181 164 12	REP7 171 163 178 165 157 174 162 183 169 9	REP8 173 163 182 165 157 179 149 184 169 13	REP9 183 164 181 159 178 165 184 172 10	REP10 185 164 182 162 183 173 188 172 15
XDBP SUBJECT 1 2 3 4 5 6 7 8 Mean SD	PRE 67 66 75 59 78 78 70 82 72 8	REP1 91 87 77 76 83 84 96 85 7	REP2 94 86 88 79 80 85 87 96 87 96 87 6	REP3 95 84 90 82 78 90 96 97 89 7	REP4 97 86 99 74 79 93 87 103 90 10	REP5 101 84 94 76 78 94 97 106 91 11	REP6 95 86 97 79 81 93 93 106 91 91 9	REP7 95 89 96 84 87 97 97 107 94 7	REP8 97 89 101 87 87 97 104 107 96 8	REP9 104 92 106 88 89 96 98 107 98 7	REP10 107 92 106 80 91 97 103 110 98 10
MAP SUBJECT 1 2 3 4 5 6 7 8 Mean SD	PRE 96 98 109 82 107 108 94 108 100 10	REP1 119 120 106 102 114 111 124 114 7	REP2 124 115 123 114 109 117 120 125 118 5	REP3 126 119 128 114 109 122 112 127 119 7	REP4 127 116 129 100 108 125 117 133 119 11	REP5 130 117 129 110 108 126 126 138 123 10	REP6 127 120 128 115 111 127 114 138 123 9	REP7 127 121 122 121 118 131 125 140 127 7	REP8 130 123 136 124 118 133 122 140 128 8	REP9 137 123 136 118 121 132 127 141 129 9	REP10 137 121 136 106 122 136 133 144 129 12

OVERHEAD PRESS FREE WEIGHT 40%

RPP											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	6348	9865	11339	11827	12250	12590	12543	12238	12591	13394	13490
2	8722	10402	10640	11501	11581	11947	12233	12779	13407	13299	12849
3	9671	10524	11244	12135	12350	12775	12869	13365	14020	13945	14311
4	7975	10410	11637	11486	10344	11686	12350	13070	13156	12872	11709
5	11295	11086	12170	12126	11894	11858	12421	13615	13858	14571	15097
6	11055	12698	13379	14306	14554	14977	15347	15985	16371	16358	17022
7	7828	10972	13509	10832	11542	12186	11544	12994	13998	13536	14031
8	12869	15517	16055	16527	17686	18877	19214	19662	19451	19785	20591
Mean	9470	11434	12497	12592	12775	13362	13565	14213	14607	14720	14888
SD	2160	1852	1759	1888	2311	2462	2543	2469	2251	2316	2788
DBTI											
CURIECT	DDC	DED4	DEDO	DED2	DEDA	DEDE	DEDC	DED7	0000	DEDO	DED40
SUBJECT	2747	2691	2975	3009	2007	2705	3746	3600	2727	3609	4015
2	3070	3566	3681	3746	3516	3400	3/40	3185	3572	3425	3311
2	3630	4170	4210	4086	3810	4005	3843	3965	4027	4007	3060
4	2929	3567	3389	3696	3403	3281	3328	3491	3518	3786	3586
5	3240	3496	2900	3134	3200	3130	3465	3241	3366	3307	3142
6	3148	3323	3258	3623	3456	3771	3428	3738	3696	3793	3717
7	3811	4144	4314	3484	4062	4289	3919	4013	4466	4139	4231
8	3664	3976	3722	3726	3685	3739	3456	3635	3651	3629	4249
Mean	3405	3740	3669	3675	3630	3676	3585	3620	3754	3734	3776
SD	345	317	477	284	287	386	219	303	345	291	410
DPTI/RPP				0.500				0			
SOBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP/	REP8	REP9	REP10
1	0.5903	0.3/31	0.341/	0.3304	0.3190	0.3014	0.2986	0.3015	0.2968	0.2761	0.2976
2	0.3520	0.3420	0.3439	0.3237	0.3030	0.2040	0.2000	0.2493	0.2004	0.2076	0.23/7
3	0.3733	0.3902	0.3/44	0.3307	0.3060	0.3133	0.2900	0.2907	0.2072	0.2930	0.2707
5	0.3073	0.3420	0.2313	0.3210	0.3290	0.2000	0.2090	0.2071	0.2074	0.2942	0.3002
6	0.2000	0.3133	0.2303	0.2504	0.2031	0.2040	0.2730	0.2338	0.2428	0.2205	0.2001
7	0.4869	0.3777	0.3194	0.3217	0.3519	0.3520	0.3395	0.2000	0.3190	0.2010	0.3015
8	0 2847	0.2562	0.2318	0.2254	0.2084	0.1981	0.1799	0.1849	0 1877	0 1834	0.2063
Mean	0.3785	0.3332	0.2983	0.2967	0.2909	0.2808	0.2717	0.2600	0.2617	0.2587	0.2591
SD	0.1092	0.0522	0.0554	0.0435	0.0487	0.0456	0.0494	0.0421	0.0420	0.0421	0.0429
	000			DCD2		DED5		0007	000	000	00040
SUBJECT	AD	REPT	REP2	70	72	72	72	74	72	72	72
2	41Z 61	62	67	70	73	72	76	70	13	13	75
2	60	61	65	60	70	70	73	75	02 77	77	70
4	66	71	74	73	76	77	80	79	80	80	82
5	76	80	83	83	81	80	83	87	88	91	93
6	77	84	86	88	89	90	90	92	91	92	93
7	63	78	88	77	76	76	78	80	94	82	81
8	88	96	98	100	104	106	106	107	106	108	109
Mean	67	74	79	79	80	81	82	84	86	86	86
SD	14	12	12	11	11	11	11	11	11	11	12

OVERHEAD PRESS EQUIPMENT 60%

PSBP											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	164	244	182	190	190	186	191	235	199	198	193
2	138	157	152	155	158	162	169	169	173	177	177
3	144	164	170	169	169	168	169	174	177	178	181
4	126	141	146	131	146	153	156	184	187	191	190
5	165	176	200	209	206	202	200	207	220	225	230
6	141	164	176	182	184	185	195	196	203	204	207
7	134	154	149	165	166	162	175	176	176	178	194
8	165	185	176	181	184	187	192	195	198	199	206
Mean	147	173	169	173	175	176	181	192	192	194	197
SD	16	32	19	24	19	17	16	22	16	17	17
PDBP											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	76	114	106	110	110	104	149	114	126	109	110
2	61	73	72	77	86	87	93	91	102	104	100
3	63	90	98	93	98	93	102	104	107	111	114
4	68	81	78	82	79	96	99	107	114	116	113
5	98	109	122	132	132	129	129	135	137	143	150
6	77	102	110	107	110	118	114	116	116	117	121
7	68	111	89	102	102	109	109	113	108	110	120
8	84	103	100	104	109	111	113	116	121	120	124
Mean	74	98	97	101	103	106	113	112	116	116	119
SD	12	15	17	17	16	14	18	13	11	12	15
XSBP											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	163	200	176	179	185	183	185	196	185	188	191
2	135	146	147	151	154	159	161	161	164	168	167
3	144	162	164	166	167	166	167	170	172	174	176
4	126	139	143	118	146	153	154	177	184	185	178
5	165	170	194	206	200	199	198	201	209	215	225
6	140	157	169	173	177	179	186	190	193	196	198
7	134	137	145	158	162	160	169	173	173	176	192
8	162	178	172	176	180	184	186	191	194	196	199
Mean	146	161	164	166	171	173	176	182	185	187	191
SD	15	21	18	25	18	16	15	14	15	15	18
XDBP											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	74	104	96	95	104	99	113	108	106	103	105
2	60	69	71	74	81	84	87	87	92	94	95
3	62	88	88	91	90	88	97	101	101	105	110
4	68	77	75	73	79	96	91	101	105	108	101
5	98	103	120	125	124	123	123	127	133	137	145
6	77	90	98	97	102	104	108	108	108	108	109
7	68	92	86	95	100	101	102	103	96	101	113
8	82	101	96	102	107	108	110	113	117	116	120
Mean	74	91	91	94	98	100	104	106	107	109	112
SD	12	12	15	16	15	12	12	11	13	13	15
MAP	DRE	DED4	0000	DED2	DEDA	PEDS	DEDÉ	DED7		BEDO	
1	106	NEFI	104	120	133	126	1/0	120	NEF0	NEFS	126
' 2	Q1	104	105	100	113	117	110	100	- 125	120	100
2	03	115	120	120	172	100	178	124	120	127	120
3	30 00	104	120	01	143	122	140	125	1.04	1.07	130
+ 5	92 120	104	100	31 161	159	157	156	161	169	172	100
S E	104	100	100	101	135	137	1/2	1/10	1.49	1/3	101
7	04	106	110	102	106	100	120	125	120	122	150
, В	32 114	122	178	123	130	142	143	148	150	150	152
Mean	103	117	120	105	130	130	125	120	1/2	145	1/7
SD	1/1	13	16	20	15	13	13	109	15	140	147
00		10	10	20		10	10	• 4		10	17

OVERHEAD PRESS EQUIPMENT 60%

RPP											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	7198	12105	10964	11388	11934	13409	12576	12880	12399	11958	13019
2	8549	9557	10187	10817	11353	11929	12618	12710	13523	14253	14169
3	6975	9636	11311	11423	12063	12331	13169	13724	14003	14848	14877
4	8215	9886	10602	8996	11631	12222	13287	15338	16437	16994	16625
5	12177	13592	18185	19018	18860	19237	19224	20472	21818	23706	25317
6	10358	12728	15095	15811	16361	16947	18158	19026	19520	20115	20637
7	7071	9983	12070	12854	13592	14189	14335	16054	14999	13056	18365
. 8	12360	15180	15896	17080	18352	19464	19777	20794	21383	21746	22441
Mean	9113	11583	13039	13423	14268	14966	15393	163/5	16/60	17084	18181
SD	2237	2134	2956	3489	3125	3142	3109	3321	3682	4314	4330
DPTI											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	411/	4288	3739	3887	4406	5004	4159	4088	4146	3661	3/29
2	2793	2798	2893	3179	3128	3110	2982	34/4	3198	3868	3424
3	3308	3904	4247	3657	24103	3001	3610	3760	4032	3610	4400
4	3320	3440	3290	3765	3752	3770	4047	3702	4294 3070	3000	3801
5	3635	J47 (1708	3037	4204	3732 ⊿319	3010	4047	3872	4052	4107	3514
7	3374	4020	3470	4222	3828	4004	3883	3717	3597	3226	3074
Ŕ	2678	4580	3845	4050	3950	3956	4124	3763	3692	4044	3998
Mean	3296	3923	3586	3811	3880	3942	3858	3826	3873	3783	3873
SD	456	659	437	356	434	518	395	212	355	293	332
DPTI/RPP											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	0.5720	0.3542	0.3411	0.3413	0.3692	0.3732	0.3307	0.3174	0.3344	0.3062	0.2864
2	0.3267	0.2927	0.2839	0.2939	0.2755	0.2607	0.2363	0.2733	0.2365	0.2714	0.2417
3	0.4744	0.4134	0.3755	0.3172	0.3468	0.3083	0.3023	0.3018	0.2880	0.2566	0.2996
4	0.4049	0.3485	0.3104	0.3954	0.2987	0.3251	0.2717	0.2452	0.2612	0.2095	0.2459
5	0.2573	0.2554	0.1795	0.1980	0.1989	0.1960	0.2105	0.1852	0.1820	0.1683	0.1501
6	0.3509	0.3770	0.2608	0.2659	0.2640	0.2312	0.2248	0.2035	0.2076	0.2042	0.1703
7	0.4772	0.4027	0.2875	0.3285	0.2817	0.2822	0.2709	0.2315	0.2398	0.2471	0.2164
8	0.2167	0.3017	0.2419	0.2371	0.2153	0.2033	0.2085	0.1810	0.1726	0.1860	0.1781
Mean	0.3850	0.3432	0.2851	0.2972	0.2813	0.2725	0.2570	0.2424	0.2403	0.2311	0.2236
SD	0.1201	0.0557	0.0604	0.0626	0.0583	0.0618	0.0445	0.0518	0.0543	0.0468	0.0547
цр											
		DED1	DEDO	DED2	DEDA	DEDE	DEDA	PED7		DEDO	RED10
SUBJECT	PRE AA	61	62	REP3	REP4 65	73	68	66	67	64	68
2	63	66	69	71	74	75	79	79	82	85	85
3	49	59	69	69	72	74	79	81	81	85	85
4	65	71	74	76	80	80	87	87	89	92	94
5	74	80	94	92	94	97	97	102	104	110	113
6	74	81	90	91	92	95	98	100	101	103	104
7	53	73	83	81	84	89	85	93	86	74	95
8	76	85	92	97	102	106	106	109	110	111	113
Mean	62	72	79	80	83	86	87	89	90	90	95
~~	40	10	12	12	13	12	13	14	14	17	15

OVERHEAD PRESS FREE WEIGHT 60%

PSRP											
SUBJECT	DRE	RED1	RED2	REP3	REP4	RED5	REPA	RED7	PEPS	REDO	RED10
1	168	200	186	187	189	194	198	199	197	201	209
2	149	187	175	162	128	167	163	178	178	178	168
3	173	187	180	179	182	178	181	182	185	189	190
4	122	144	139	143	159	161	161	172	177	188	179
5	180	184	182	188	192	190	189	195	198	206	211
6	151	165	168	171	179	186	189	193	199	202	203
7	145	175	170	170	170	171	175	184	187	187	184
8	155	173	177	186	192	197	200	205	209	209	209
Mean	155	177	172	173	174	181	182	189	191	195	194
SD	18	17	15	15	22	13	15	11	11	11	16
PDBP											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	/5	116	106	106	109	113	119	122	122	121	131
2	75	109	109	90	/5	85	97	98	98	98	94
3	89	109	105	105	108	102	102	107	114	121	124
4	29	8/	80	/9	8/	89	92	95	100	103	98
5	70	102	104	112	114	112	114	120	120	127	131
5	79	91	90	94	100	103	100	107	111	117	110
2	/O 01	90	100	99 110	112	102	104	10	107	120	113
Moon	01	104	109	00	101	102	123	120	12/	130	120
Mean	45	102	101	99	101	103	107	110	314	110	117
30	15	10	10	11	14	12			11		14
XSBP											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	165	187	179	179	183	186	190	191	190	193	196
2	146	174	169	157	127	155	156	165	166	170	163
3	173	183	178	177	181	175	176	180	184	188	188
4	122	143	139	137	155	161	159	168	177	184	171
5	179	181	181	185	190	186	187	192	197	203	210
6	149	163	165	169	176	182	187	188	195	199	201
7	140	166	168	169	168	166	172	181	180	185	182
8	151	172	175	181	187	192	196	201	207	205	205
Mean	153	171	169	169	171	175	178	183	187	191	190
SD	19	14	13	16	21	13	15	12	13	12	1/
XDBP											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	75	104	98	100	102	106	109	112	111	113	117
2	71	102	99	87	71	82	92	96	95	97	93
3	88	102	102	103	107	100	100	105	112	115	114
4	59	83	80	79	87	89	80	93	100	102	95
5	110	100	103	109	112	110	111	117	122	124	129
6	79	89	93	93	98	102	104	105	108	111	112
7	75	90	98	98	99	97	101	108	108	111	112
8	80	101	106	107	111	118	119	122	126	124	124
Mean	80	96	97	97	98	101	102	107	110	112	112
50	15	8	8	10	14	11	12	10	10	9	13
MAP											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	106	136	131	133	135	139	143	146	145	148	150
2	103	131	126	119	96	110	120	126	129	130	123
3	122	137	136	137	140	133	136	139	143	149	147
4	85	111	108	107	117	124	120	129	135	142	130
5	141	135	139	144	147	145	146	152	156	161	167
6	109	122	124	126	133	137	141	143	148	151	153
7	105	128	127	127	127	126	132	139	139	143	142
8	108	132	135	139	146	146	155	159	163	161	161
Mean	110	129	128	129	130	132	137	142	145	148	147
SD	16	9	10	12	1/	12	12	11	11	10	75

OVERHEAD PRESS FREE WEIGHT 60%

RPP											
SUBJECT	PRE	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	7287	11232	11592	12165	12341	12637	13453	13783	13896	14407	14568
2	9740	13099	13216	12535	10798	11963	14271	14237	14928	15506	14971
3	11435	13352	13433	14130	14655	14595	14712	15203	15828	16263	16592
4	8893	11006	10984	11043	12823	13975	13678	15137	16190	17092	15997
5	1613/	14334	15/43	1/091	17/24	17678	178/2	19233	20322	21106	22495
6	11045	12906	13807	14524	10066	100/5	1/484	18362	19298	20193	20893
/	9/03	12088	13424	133/4	12900	12941	14240	15416	15645	10400	16413
Maan	10911	121/2	12700	14120	19030	20100	21000	22403	47472	23400	40005
Mean SD	2647	13143	2072	2425	2016	10079	10920	2001	2214	2450	16200
30	2047	1701	2012	2423	3010	2000	2000	2331	3314	3152	3392
ודפת											
SUBJECT	PRF	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REPG	REP10
1	3726	4611	4009	4026	3979	4128	4246	4399	3988	4168	4144
2	3212	4032	3591	3514	3143	2415	2932	2847	3112	3520	3193
3	3761	5131	4194	4118	4353	4006	3989	3720	4041	4297	4517
4	2817	3479	3556	3551	3345	3545	3109	3238	3462	3729	3592
5	4019	4811	4270	3733	6247	4139	3987	3711	3757	3994	4111
6	3547	3864	3734	3656	3758	3731	3840	3667	3666	3664	3707
7	3825	3651	4120	4231	4404	4014	4390	4321	4333	4344	4377
8	3560	4101	3594	3535	3833	4236	3966	3943	3875	3817	4105
Mean	3558	4210	3883	3796	4133	3777	3807	3731	3779	3942	3968
SD	382	583	297	287	960	596	518	517	375	307	439
SUBJECT	DDE	DED4	DEDO	DED2	DED4	DEDE	DEDE	DED7		BEDO	05040
306JEC1	0.5113	0.4106	0.3460	03310	0 2224	0.3267	0.2156	NEP/ 0.3102		0.2802	0.0044
2	0.3798	0.4100	0.3439	0.3310	0.3224	0.3207	0.3130	0.3192	0.2070	0.2093	0.2044
3	0.3289	0.3070	0.2/17	0.2003	0.2970	0.2019	0.2000	0.2000	0.2004	0.2270	0.2133
4	0.3168	0.3161	0.3237	0.3216	0.2608	0.2740	0.2773	0.2447	0.2000	0.2042	0.2722
5	0 2490	0.3356	0 2712	0 2184	0.3524	0 2341	0 2231	0 1930	0 1849	0 1892	0 1827
6	0.3212	0.2994	0.2705	0.2517	0.2399	0.2238	0.2196	0.1997	0.1900	0.1814	0.1774
7	0.3918	0.2901	0,3069	0.3164	0.3397	0.3102	0.3081	0.2803	0.2769	0.2640	0.2667
8	0.2920	0.2466	0.2065	0.1953	0.1932	0.2101	0.1829	0.1760	0.1637	0.1627	0.1731
Mean	0.3426	0.3238	0.2886	0.2758	0.2871	0.2544	0.2441	0.2283	0.2225	0.2245	0.2243
SD	0.0790	0.0525	0.0432	0.0499	0.0536	0.0460	0.0486	0.0493	0.0454	0.0452	0.0453
SUB IECT	DDE	DED4	DEDO	DED2	DEDA	DEDE	DEDE	DED7		DEDO	DED40
SUBJECT	PRE 44	60	65	REP3	67	EPU EPU	71	70	72	75	74
2	67	75	78	80	85	77	01	86	00 00	01	02
3	66	73	75	80	81	83	83	85	86	87	92 88
4	73	77	79	81	83	87	86	90	91	93	94
5	90	79	87	92	93	95	96	100	103	104	107
6	74	79	84	86	89	92	94	98	99	102	104
7	70	76	80	79	77	78	83	85	87	89	90
8	81	97	100	100	106	105	110	111	114	114	115
Mean	71	77	81	83	85	86	89	91	93	94	96
SD	13	10	10	10	11	12	12	12	12	12	13

APPENDIX C

ANALYSIS OF VARIANCE SUMMARY TABLES

MEAN SYSTOLIC BLOOD PRESSURE

1=EXERCISE 2=MODE 3=INTENSITY 4=REPETITIONS

Source of Variation	df Effect	MS Effect	df Error	MS Error	F Ratio	p value
1	1	3733.1	7	659.9	5.66	0.049
2	1	876.4	7	729.9	1.20	0.309
3	1	19513.5	7	2253.2	8.66	0.022
4	10	5779.5	70	57.8	99.95	0.000
12	1	1377.3	7	431.4	3.19	0.117
13	1	63.7	7	606.8	0.10	0.755
23	1	52.2	7	349.9	0.15	0.711
14	10	129.6	70	101.8	1.27	0.262
24	10	79.4	70	41.6	1.91	0.058
34	10	163.9	70	28.8	5.69	0.000
123	1	847.4	7	92.9	9.12	0.019
124	10	26.5	70	40.7	0.65	0.765
134	10	22.1	70	30.8	0.72	0.705
234	10	11.2	70	28.5	0.39	0.946
1234	10	11.3	70	19.4	0.58	0.824
PEAK SYSTOLIC BLOOD PRESSURE

Source of Variation	df Effect	MS Effect	df Error	MS Error	F Ratio	p value
1	1	4284.1	7	557.5	7.69	0.028
2	1	1248.4	7	739.7	1.69	0.235
3	1	22288.8	7	2205.1	10.11	0.016
4	10	6847.6	70	77.5	88.33	0.000
12	1	1241.3	7	534.9	2.32	0.171
13	1	28.8	7	648.6	0.04	0.839
23	1	28.9	7	402.1	0.07	0.796
14	10	165.5	70	120.7	1.37	0.212
24	10	84.8	70	63.3	1.34	0.227
34	10	172.6	70	40.6	4.25	0.000
123	1	561.9	7	51.4	10.92	0.013
124	10	17.8	70	42.1	0.42	0.931
134	10	46.8	70	47.5	0.99	0.464
234	10	30.5	70	40.9	0.75	0.679
1234	10	17.5	70	28.7	0.61	0.801

MEAN DIASTOLIC BLOOD PRESSURE

Source of Variation	df Effect	MS Effect	df Error	MS Error	F Ratio	p value
1	1	589.1	7	370.7	1.59	0.248
2	1	97.3	7	538.4	0.18	0.684
3	1	18079.8	7	1647.3	10.98	0.013
4	10	3882.5	70	40.0	97.14	0.000
12	1	1153.2	7	300.2	3.84	0.091
13	1	25.2	7	234.2	0.11	0.752
23	1	54.0	7	182.6	0.30	0.603
14	10	134.7	70	40.9	3.29	0.002
24	10	46.4	70	25.7	1.81	0.075
34	10	79.5	70	14.6	5.46	0.000
123	1	229.3	7	39.6	5.80	0.047
124	10	14.3	70	20.5	0.70	0.724
134	10	12.1	70	17.0	0.71	0.709
234	10	4.6	70	13.4	0.34	0.966
1234	10	7.8	70	10.3	0.76	0.664

PEAK DIASTOLIC BLOOD PRESSURE

Source of Variation	df Effect	MS Effect	df Error	MS Error	F Ratio	p value
1	1	1634.2	7	404.7	4.04	0.084
2	1	752.4	7	557.2	1.35	0.283
3	1	22498.5	7	1543.9	14.57	0.007
4	10	4621.8	70	61.2	75.55	0.000
12	1	710.9	7	407.4	1.75	0.228
13	1	28.2	7	322.1	0.09	0.776
23	1	304.0	7	209.1	1.45	0.267
14	10	183.7	70	53.5	3.44	0.001
24	10	79.6	70	48.4	1.64	0.112
34	10	112.9	70	22.3	5.05	0.000
123	1	167.8	7	87.7	1.91	0.209
124	10	29.0	70	28.0	1.04	0.422
134	10	14.2	70	24.6	0.58	0.825
234	10	13.3	70	24.1	0.55	0.847
1234	10	9.7	70	17.3	0.56	0.843

MEAN ARTERIAL PRESSURE

Source of Variation	df Effect	MS Effect	df Error	MS Error	F Ratio	p value
1	1	1285.2	7	523.4	2.46	0.161
2	1	184.0	7	613.3	0.30	0.601
3	1	18924.2	7	2066.5	9.16	0.019
4	10	5054.2	70	37.7	134.13	0.000
12	1	1723.5	7	389.4	4.43	0.073
13	1	1.4	7	352.6	0.00	0.952
23	1	50.6	7	255.3	0.20	0.670
14	10	167.2	70	60.9	2.74	0.007
24	10	66.1	70	25.5	2.59	0.010
34	10	132.2	70	24.6	5.37	0.000
123	1	816.3	7	84.7	9.64	0.017
124	10	30.3	70	31.9	0.95	0.495
134	10	15.0	70	25.4	0.59	0.817
234	10	15.1	70	23.6	0.64	0.774
1234	10	22.7	70	13.5	1.69	0.101

RATE-PRESSURE PRODUCT

Source of Variation	df Effect	MS Effect	df Error	MS Error	F Ratio	p value
1	1	4.26E+08	7	1.58E+07	27.01	0.001
2	1	1.75E+05	7	1.24E+07	0.01	0.909
3	1	5.45E+08	7	3.73E+07	14.59	0.007
4	10	1.80E+08	70	1.31E+06	137.57	0.000
12	1	2.71E+07	7	8.52E+06	3.19	0.117
13	1	6.79E+05	7	5.51E+06	0.12	0.736
23	1	1.76E+06	7	3.66E+06	0.48	0.511
14	10	1.26E+07	70	1.59E+06	7.94	0.000
24	10	2.49E+06	70	8.01E+05	3.11	0.002
34	10	6.51E+06	70	5.82E+05	11.19	0.000
123	1	9.68E+06	7	2.50E+06	3.88	0.090
124	10	3.56E+05	70	4.98E+05	0.71	0.708
134	10	4.23E+05	70	4.65E+05	0.91	0.529
234	10	6.61E+05	70	4.94E+05	1.34	0.228
1234	10	1.36E+05	70	3.63E+05	0.38	0.953

DIASTOLIC PRESSURE TIME INDEX

Source of Variation	df Effect	MS Effect	df Error	MS Error	F Ratio	p value
1	1	1.99E+06	7	1.01E+06	1.98	0.203
2	1	2.79E+04	7	2.77E+05	0.10	0.760
3	1	6.17E+06	7	1.28E+06	4.84	0.064
4	10	9.88E+05	70	1.11E+05	8.89	0.000
12	1	6.71E+05	7	7.99E+05	0.84	0.390
13	1	2.54E+04	7	4.22E+05	0.06	0.813
23	1	3.12E+04	7	2.61E+05	0.12	0.740
14	10	6.27E+04	70	4.56E+04	1.38	0.209
24	10	1.25E+05	70	8.23E+04	1.52	0.151
34	10	8.84E+04	70	1.01E+05	0.88	0.560
123	1	4.22E+05	7	2.92E+05	1.44	0.268
124	10	7.38E+04	70	7.82E+04	0.94	0.500
134	10	3.39E+04	70	5.58E+04	0.61	0.803
234	10	5.23E+04	70	1.05E+05	0.50	0.885
1234	10	5.87E+04	70	4.72E+04	1.24	0.280

DIASTOLIC PRESSURE TIME INDEX TO RATE-PRESSURE PRODUCT RATIO 1=EXERCISE 2=MODE 3=INTENSITY 4=REPETITIONS

Source of Variation df Effect MS Effect MS Error F Ratio p value df Error 0.2546 7 0.0043 59.32 0.000 1 1 7 2 1 0.0002 0.880 0.0100 0.02 3 0.0883 7 0.0049 0.004 1 18.16 4 10 0.0788 70 0.0027 29.58 0.000 7 0.352 12 1 0.0065 0.0065 1.00 7 13 1 0.0018 0.0024 0.76 0.412 23 1 0.0029 7 0.0050 0.58 0.470 10 0.0028 70 0.0008 3.44 0.001 14 70 24 10 0.0016 0.0009 1.68 0.102 34 10 0.0011 70 0.0007 1.49 0.162 7 123 0.0005 0.0019 0.25 1 0.636 124 10 0.0005 70 0.0005 1.00 0.454 134 10 0.0003 70 0.0004 0.73 0.693 234 10 0.0008 70 0.0009 0.88 0.555 1234 70 10 0.0003 0.0004 0.68 0.736

HEART RATE

Source of Variation	df Effect	MS Effect	df Error	MS Error	F Ratio	p value
1	1	7928.5	7	171.5	46.23	0.000
2	1	187.4	7	144.1	1.30	0.292
3	1	4580.6	7	207.4	22.09	0.002
4	10	2081.0	70	32.1	64.83	0.000
12	1	190.0	7	101.9	1.86	0.214
13	1	14.6	7	98.0	0.15	0.711
23	1	20.8	7	86.3	0.24	0.639
14	10	202.7	70	17.8	11.40	0.000
24	10	35.8	70	13.3	2.69	0.008
34	10	54.1	70	7.1	7.66	0.000
123	1	28.8	7	92.7	0.31	0.595
124	10	6.6	70	7.0	0.93	0.511
134	10	4.4	70	6.0	0.74	0.682
234	10	22.3	70	15.7	1.42	0.190
1234	10	4.0	70	10.9	0.37	0.955