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Abstract  
 
This study investigates the possibility of using a time-resolved Fluorescence and Diffuse 

Reflectance Spectroscopy (tr-FRS) system to define tumour surgical margins of invasive 

ducal carcinoma of breast. UV excitation light was used for the fluorescence component 

and data was collected from the 370-550 nm range. A broadband source was used for 

diffuse reflectance collection and the emitted response was in the 400-800 nm range. 40 

matched pair cases were collected from patients undergoing breast conservation surgeries. 

Histological analysis was performed on each sample to determine the fat and tumour 

content within each normal and tumour sample respectively.  Statistical analysis was 

performed on the optical data to reveal biochemical changes in the endogenous 

fluorophores collagen, reduced nicotinamide adenine dinucleotide (NADH), and flavin 

adenine dinucleotide (FAD) as well as changes in absorption and scattering properties 

attributed to variances in absorber concentrations and cell density respectively. Statistical 

significant differences in collagen, NADH, and FAD lifetimes, collagen, NADH, FAD 

and NADH/FAD intensity, diffuse reflectance and reduced scatter coefficient were 

observed between tumour and normal breast samples. These significant factors were used 

in Principle Component Analysis model construction and a binary classification scheme 

using Soft Independent Modeling of Class Analogy (SIMCA) was used as a classification 

tool to predict unknown breast samples as either normal or tumour with specificity of 

60% and sensitivity slightly over 50%.  
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Chapter 1: Introduction

1.1 Motivation  
According to the 2016 Breast Cancer statistics, 1 in 9 Canadian woman will be diagnosed 

with breast cancer and it is estimated to effect 25,000 women each year. The prevalence 

of breast cancer is more than 100 times lower for men, with about 220 Canadian men 

being diagnosed with the disease. There are many types of breast cancers including 

invasive, non-invasive, recurrent and metastatic breast cancer. Invasive ductal carcinoma 

(IDC) is the most common type accounting for about 80% of all breast cancer incidences 

(Statistics., 2015). This cancer type begins in the milk ducts and makes its way to invade 

other tissues within the breast. If untreated, IDC can spread into the lymph nodes and 

possible other areas of the body. This highlights the importance of early detection of the 

disease, as the chances of recovery improve if tumour size is small. 

Breast cancer diagnosis can be as simple as a physical examination performed to see if 

there is any enlargement of lymph nodes or any swelling or unusual changes in the breast.  

Mammography is a diagnostic tool that uses low-dose x-rays to detect breast cancer in 

woman with reported sensitivity and specificity of around 70% and 75% respectively 

(Kuhl et al., 2005). The main limitation in mammography is the low accuracy of tumour 

detection in woman with denser breasts, as dense breasts present in a similar way to 

breast cancer in a mammogram. This can lead to increases in recall rates, reduces 

specificity and compromises screening benefits for women with denser breasts (Carney et 

al., 2003).  The use of ultrasound as a diagnostic technique for breast cancer is also 

common in conjunction with mammography. Although ultrasound has a slightly higher 

sensitivity than mammography, the combination of both will yield a higher



MSc. Thesis Nourhan Shalaby       McMaster University Radiation Sciences-Medical Physics 

 
 

2 

sensitivity, which is still insufficient for early and accurate diagnosis of breast cancer in 

women (Kuhl et al., 2005). MRI can be used for diagnosis, resulting in the detection of 

intraductal and invasive cancer with significantly higher sensitivity (91%) than 

mammography and ultrasound combined (Kuhl et al., 2005).  

The above screening procedures are the first step in diagnosing breast cancer (Volynskaya 

et al., 2008). However, these procedures do not accurately identify malignant tissue. 

Since these screening procedures have low specificity of tissue diagnosis, where 

approximately 70 to 90% of suspected lesions are found to be benign or normal, the gold 

standard for breast cancer diagnosis remains a tissue biopsy followed by histopathological 

analysis (Tadrous et al., 2003). This invasive procedure results in patient trauma, 

additional medical costs and time delay. 

For the past couple of decades, optical techniques have been used to reduce the number of 

unnecessary biopsies in a minimally invasive manner. This method of using light to 

classify tissue is referred to as “optical biopsy” (Pu et al., 2012). Optical biopsies have 

been used to obtain fundamental information about the molecular level of tissues. 

In this study, tissue was collected (from woman who have undergone lumpectomies and 

mastectomies of invasive ductal carcinoma) at two different regions in the breast; a 

tumour region and a further normal region was collected. Measurements were made on 

each excised sample with an optical spectroscopy system; the time-resolved fluorescence 

and reflectance (tr-FRS) system. 

The (tr-FRS) system used in this study is an incorporation of two modalities in itself, with 

the ability to measure diffuse reflectance as well as fluorescence intensity and lifetime of 

tissues via a fibre optic probe that collects both measurements from the same physical 
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location. The diffuse reflectance component of the optical device uses a light source with 

a broadband UV-VIS wavelength region coupled with detection fibres at various 

distances from the source fibre to collect the diffuse reflectance spectra in the 400-800 nm 

range. Diffuse reflectance can interpret how light is back scattered or absorbed from 

tissue and can be used to estimate optical properties such as the absorption and reduced 

scattering coefficients. The absorption and reduced scatter coefficient can subsequently 

reveal physiological and morphological information respectively of the tissue. The 

absorption coefficient reveals information on tissue absorber such as oxygenated and de-

oxygenated haemoglobin and beta carotene concentration and saturation while the 

reduced scattering coefficient reveals information on the size and density of scattering 

centers in tissue, such as cells and nuclei which have been shown to be significantly 

different between malignant and normal tissue (Zhu et al., 2006).  

The time-resolved fluorescence component includes rapid data acquisition within a broad 

range of emission wavelengths (380 to 550 nm). Excitation light is a very short pulsed-

laser that is coupled to the optical fibre and excites the tissue under examination. Thus, 

the fluorescence emitted from the tissue is collected using the same optical fibre and this 

light is coupled through filters to a fast detector. Fluorescence can be measured in two 

ways; time-resolved or steady state measurements. In time-resolved fluorescence, 

intensity and dynamic decays are measured once the sample is exposed to pulsed light 

which is typically shorter than the decay time of the sample. A high-speed detector will 

then record the intensity decay on the nano-second timescale. In steady state 

measurements, the sample is continuously illuminated with a beam of light and the 

fluorescence intensity is collected. Simply put, steady state measurement is an average of 
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the time-resolved fluorescence over the intensity decay of the sample and does not 

account for all of the molecular information reported by fluorescence (Wehry, 1984). In 

this device, time-resolved fluorescence in the wavelength range of 380 to 550 nm is used. 

The presence of a clear surgical margin is the most important indicator available to ensure 

completeness of surgical excision.  A positive surgical margin is a major predicator of 

local recurrence, independent of tumour factors and adjuvant therapies.  Furthermore, the 

presence of positive margins generally leads to further surgical resections with associated 

morbidity, resource utilization, anxiety and delay. Positive margin rates for breast 

conserving surgery can range from 4-31%, resulting in approximately 25% of breast 

cancer patients requiring repeat surgery (Sun et al., 2010). The current standard relies 

upon permanent histopathology evaluation of margins, which are available 5 to 7 days 

following surgery. Current intra-operative assessments including “frozen section” or 

“touch-prep cytology”, have been shown to decrease the need for re-operation and 

recurrence rates, but remain time consuming and labour intensive and are not readily 

transferable to routine practice.  

A preliminary clinical study was carried out by our team in order to evaluate whether the 

tr-FRS system is capable of differentiating between tumour and normal breast tissue in 

both the freshly excised and pre-frozen samples. The results of this study showed the 

validity of using archived frozen breast tissues from a tissue bank to simulate the 

fluorescence response and optical properties of fresh breast tissue. Therefore we were 

able to conduct the current study using archived pre-frozen tissue to provide an 

immediate intra-operative margin assessment system by developing a mathematical 

model using the data retrieved from the (tr-FRS) system that can define an unknown 
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tissue as either malignant or normal. This (tr-FRS) system will have the advantage of 

being fast, quantitative, and minimally invasive, while having the potential to improve 

breast cancer treatments by assessing surgical margins for residual cancer in vivo during 

surgery.  

1.2 Literature Review 
For the past couple of decades, optical techniques have been used to reduce the number of 

unnecessary biopsies in a minimally invasive manner. A couple of common methods used 

in optical biopsies include single-spectroscopic techniques such as fluorescence and 

diffuse reflectance, which will be discussed below.  

Fluorescence techniques have been widely used in cellular studies to detect biochemical 

composition, reactions and structures. Endogenous fluorophores have the ability to 

monitor cellular environments because of their proportional changes during the transition 

from normal to pathological conditions. Monitoring fluorescence of endogenous 

fluorophores can be achieved by either steady-state fluorescence spectroscopy or time-

resolved fluorescence spectroscopy. Both steady state and time-resolved spectroscopy use 

similar instrumentation. The basic instrumentation of a spectrofluorometer are a light 

source, a monochromater (used to disperse polychromatic light into various wavelengths 

by using prisms or diffraction gratings)  and a detector. Photo-multiplier tubes (PMTs) are 

used in almost all fluorometers as detectors to respond to individual photons as they are 

low-noise amplifiers for low-level light (Wehry, 1984). Typically, an excitation beam 

with a narrow wavelength range is used for illuminating a sample. Fluorescence 

emissions are collected perpendicular from excitation to prevent excitation light from 

interfering with the fluorescence signal.  The weak fluorescence signal collected enters a 
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spectrograph and a detector registers the spectrum. The main difference between the 

instrumentation is that time-resolved uses a pulsed-light source and gated detection of the 

fluorescence emission. In steady-state fluorescence intensity is measured over a 

broadband spectral region while in time resolved, the fluorescence intensity as well as 

dynamic fluorescence decay is measured to obtain fluorescence lifetime. Time-resolved is 

more advantageous as fluorescence lifetime is independent of emission and can be used to 

differentiate between various fluorophores with overlapping emission spectra. Much of 

the time-averaging process in steady state measurements eliminates valuable molecular 

information such as the precise shape of the anisotropy decay, which relays information 

on molecular shape and flexibility. Therefore, time-resolved fluorescence spectroscopy 

delivers additional information compared to steady-state fluorescence techniques (Wehry, 

1984).  

 In 1981, Alfano was first to use light to detect and diagnose teeth decay. He later used 

this approach to illuminate cancerous and normal rat kidney, prostate and bladder tissue 

using an Argon laser with a 488nm excitation beam to reveal that malignant and normal 

tissue have substantially different fluorescence spectra (Alfano et al., 1984).  In 1987, he 

continued his work with steady-state fluorescence on malignant and normal human breast 

and lung tissue and used two excitation wavelengths of 488nm and 458 nm. Alfano’s 

work confirmed a difference in emission characteristics between normal and malignant 

tissues and attributed these differences to endogenous fluorophores within the cell that 

fluoresce in specific spectral regions, providing information about the microenvironment 

of pH, redox potential, bonding sites, polarity and ion concentration (Alfano et al., 1987). 

Since then, several groups continued to investigate fluorescence spectroscopy of ex vivo 
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malignant and normal breast tissue (Yang et al., 1997, Gupta et al., 1997, Alfano et al., 

1987, Ghosh et al., 2001). Gupta et al (1997) used excitation wavelengths of 340 and 488 

nm on ex vivo breast tissue to exhibit significant differences in emission spectra at 390 

and 460 nm with a sensitivity and specificity of 98%, which he attributed to NADH and 

Collagen (Gupta et al., 1997). Yang et al, (1997) used 300 nm excitation to produce 340 

nm emission spectra, where tryptophan is the main fluorophores, to separate tumor from 

normal tissue with 93% sensitivity and 95% specificity rates (Yang et al., 1997). He 

found that the fluorescence emission peak at 340 nm was red-shifted for malignant 

samples relative to that of normal adipose tissues and the fluorescence at around 450-nm 

emission was decreased in malignant relative to fibrous tissue. Despite these promising 

results, these studies had one main limitation; data collection time of 2 – 3 minutes 

(Mourant et al., 1995)). Another limitation was the use of one or several wavelength to 

obtain fluorescence spectra. In addition, the several hundred micrometers of penetration 

depth of the UV light can only read changes on the surface of the tissue, and cannot give 

information on depth. Another limitation is that the algorithms used were not tested to 

classify unknown tissue malignancy status and thus were biased. 

In addition to single point spectroscopy, FLIM (fluorescence lifetime imaging) has been 

used to measure lifetime in clinical applications over a region of interest. Wide-field-

based FLIM uses thousands of optical fibers and a detector in a fiber bundle. This 

technique uses a gated image detector which has low sensitivity and long data acquisition 

times (Requejo-Isidro et al., 2004).  Scanning-based FLIM collects fluorescence decay at 

each pixel by scanning a beam over the tissue and a photo-multiplier tube (PMT), which 

has lower acquisition times in comparison to the gated image detector is used (Shrestha et 
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al., 2010).  Multiple band pass filters have been previously used to retrieve fluorescence 

spectra at specific wavelengths to improve temporal resolution but this results in limited 

fluorescence spectra. In 2007, De Beule et al. designed a hyperspectral FLIM system with 

a PMT that contained 16 channels, where each channel collected fluorescence spectra, to 

reduce collection times (De Beule et al., 2007). To date, there are PMTs commercially 

available with up to 64 channels. This design however, is still relatively time consuming 

and takes about 45 seconds per measurement at each wavelength. Yuan et al (Yuan et al., 

2009) used an Acousto-Optic Tunable Filter to collect dynamic fluorescence decay. The 

AOTF has the ability to switch diffracted wavelengths at a broad spectral range within the 

microsecond timescale. This is achieved by the AOTF’s ability of applying different 

acoustic frequencies on a crystal to filter light during the measurement. Since switching 

between wavelengths can be completed in 20 μs, the fluorescence decay in the 

wavelength range can be collected rapidly in comparison to the previous time-resolved 

fluorescence systems (PMTs).  

The diffuse reflectance spectrum reflects the absorption and scattering properties of the 

tissue. The absorption coefficient is directly related to the concentration of 

physiologically relevant absorbers in the tissue, which include oxygenated and 

deoxygenated hemoglobin and beta-carotene. The reduced scattering coefficient reflects 

the size and density of scattering centers in tissue, such as cells and nuclei. 

Instrumentation for diffuse reflectance requires a light source, a beam splitter (to split the 

incident light into a reference beam and an excitation beam), and spectrometers. Several 

studies used diffuse reflectance spectroscopy as a minimally invasive method to optically 

differentiate between normal and pathological tissue (Bigio et al., 2000) (Mourant et al., 
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1996) (Mourant et al., 1995). Bigio et al. collected diffuse reflectance spectra mediated by 

a fiber optic probe through a core biopsy needle to distinguish differences between in-

vivo and ex-vivo tissue types with a sensitivity of 60%–70% and a specificity of 85%–

95%. The probe incorporated two optical fibers and was designed to come in physical 

contact with the tissue. The first optical fiber had a core diameter of 400 µm and 

illuminated the tissue within the range of 330-750nm. 350 µm away, lies the second 

parallel fiber with a core diameter for 200 µm collects the scattered light from the tissue 

and sends light to the spectrometer to generate the optical spectra in less than 1 second 

(Bigio et al., 2000). Zhu et al. (2006) worked with a different geometry for the optical 

probe with a central illumination fiber surrounded by three concentric rings of collection 

fibers with diameters of 200 µm. Only the diffuse reflectance spectra from most inner 

ring of fibers were analyzed as they provided the highest intensity. Spectra collection time 

was improved to 0.025 seconds (Zhu et al., 2006a). The changes in the diffuse reflectance 

of malignant tissues, was attributed to increased DNA, protein and hemoglobin 

absorption and increased scattering.  

Endogenous fluorophores with the most significant diagnostic importance are excited in 

the 300-800 nm range. Fluorescence spectra recorded from these fluorophores are 

distorted by absorption and scattering, thus limiting the accuracy of the fluorescence 

spectra generated. Since diffuse reflectance has the ability to estimate the absorption and 

scattering coefficients of the tissue, incorporation of diffuse reflectance with fluorescence 

spectroscopy was used by several studies (Volynskaya et al., 2008, Palmer et al., 2003) to 

retrieve more accurate fluorescence spectra. This process is called Intrinsic Fluorescence 

spectroscopy (IFS). Palmer et al (Palmer et al., 2003), combined fluorescence with diffuse 
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reflectance using excitation wavelengths of 300-460 nm and revealed that only 4 

wavelengths (300, 400, 420, 460) were necessary for tissue classification. This is 

clinically beneficial as it decreases data acquisition times and equipment costs as less 

complex instruments can be used to measure fewer wavelengths. Volynskaya et al, used 

the combination of diffuse reflectance and autofluorescence techniques to overcome the 

limitations of fluorescence, using a technique called Diffuse Optical Tomography (DOT) 

(Volynskaya et al., 2008) and obtained sensitivity and specificity of 100 and 96 

respectively. In DOT, light with near-IR wavelength illuminates the tissue and contrast, 

provided by absorption and scattering, measures concentration of oxygenated and 

deoxygenated hemoglobin content. However, this technique has low resolution where 

small lesions (<4mm) go undetected. The DRS spectra in this study were analyzed using 

a mathematical model based on the diffusion approximation of light propagation in tissue 

to determine the values of the absorption and reduced scattering coefficient. The main 

advantage to the diffuse reflectance technique is that output signals are several orders of 

magnitude greater than weak fluorescence signals. However, diffuse reflectance was not 

able to differentiate between malignant and normal tissue with the same accuracy as 

fluorescence spectroscopy alone or the combined technique (Palmer et al., 2003). 

Therefore, it is advantageous to use fluorescence combined with diffuse reflectance due 

to the additional chemical information that arises from the fluorescence of the biological 

fluorophores intrinsically present in tissue. 

Even though a distinction between tumour and normal tissue can be made by each of the 

modalities, neither can be used as a diagnostic tool on its own. The use of optical 

spectroscopy has been used in previous studies to achieve accurate and desirable 
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performance for clinical applications. However, no previous studies have incorporated 

optical data mapped to accurate histological analysis taking into account full chart review 

of patient history. Thus, our work will aim to combine the aforementioned parameters 

collected by the optical device in a mathematical model to achieve classification of an 

unknown tissue as either pathological or healthy which can have future clinical and 

surgical applications. 

1.3 Dissertation Organization 
The first chapter of this dissertation discusses the motivation of this project, the literature 

review for optical spectroscopy and the limitations for previous technologies. This 

chapter also introduces the aim and novelty of our work. Chapter 2 reviews different 

optical biopsies used in the diagnosis of breast cancer. The theory of fluorescence and 

diffuse reflectance spectroscopy is discussed in detail.  Chapter 3 discusses the design of 

the optical fluorescence and reflectance spectroscopy (tr-FRS) system as well as 

examines the methodology of the study including the clinical procedure, sample 

preparation and handling, as well as an organized presentation of sample information. In 

chapter 4 a sub study is conducted where ten matched pair cases are measured directly 

after excision and after being frozen and thawed. This study was conducted to validate the 

use of pre-frozen tissue instead of fresh tissue.  Chapter 5 reveals the results for the 

fluorescence and diffuse reflectance for the 40 matched pairs of breast tissue are 

presented. Histological analysis of tissue is correlated with the mathematical models for a 

more accurate classification of tissue. Different PCA models are examined and the use of 

the models to classify unknown tissue types is performed using SIMCA. Chapter 6 
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discusses and compares previous literature with findings from our study, concludes the 

research and the significance of the work presented as well as discusses future direction.  
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Chapter 2: Background on Optical Biopsies Used in Breast Cancer 
In the last twenty years, there has been an increased focus to differentiate between 

pathological and healthy tissue using non-invasive techniques. However, the gold 

standard for breast cancer diagnosis remains a tissue biopsy followed by histological 

analysis. This method is invasive, time consuming and results in patient trauma. Optical 

biopsy is the use of light in different regions of the electromagnetic spectrum (visible, 

ultra-violet or infrared light) to illuminate a tissue sample and reveal pathological and 

morphological properties to potentially replace the current gold standard. Optical biopsies 

have been widely studied to differentiate between healthy and malignant tissue. Optical 

techniques including Raman spectroscopy, diffuse optical tomography, optical coherence 

tomography (OCT), photoacoustic tomography (PAT), as well as the limitations imposed 

by these techniques will be briefly discussed in the next section, followed by a detailed 

description of fluorescence spectroscopy and diffuse reflectance spectroscopy.  

2.1. Raman Spectroscopy 
The main use of Raman spectroscopy is determining the chemical component of a 

sample. Raman spectroscopy results in fingerprint spectra for each molecule based on 

shifted frequencies of emitted photons from a sample. When monochromatic light shines 

on tissue, the light reflected back from the sample is shifted in frequency, corresponding 

to the vibrational energy levels of the sample.  In other words, upon tissue excitation with 

a laser light, the molecule is excited from the ground state to a virtual state. Relaxation 

from the virtual state to a vibrational state that is either below or above the ground state 

will occur, emitting a photon in the process. Raman stokes scattering is when the emitted 

photon has lower energy, or a longer wavelength than the incident photon whereas in 
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Raman anti-stokes scattering, the emitted photon has higher energy and shorter 

wavelength than the incident photon.  

Raman spectroscopy has been used by several studies (Haka et al., 2005, Kong et al., 

2015, Zhou et al., 2014) to differentiate between tumour and normal tissue based on 

chemical composition of biological molecules within tissue with sensitivity and 

specificity as high as 94% and 96% respectively. 

One of the main limitations of Raman spectroscopy is the relatively low efficiency of the 

inelastic light scattering compared to elastic scattering. This inefficient signal to noise 

ratio limits the speed of the technique and can decrease accuracy when spectra are 

required, compromising the ability to translate the technique into clinical settings (Kong 

et al., 2015).  

2.2 Diffuse Optical Tomography 
 

DOT uses near-infrared (NIR) light to assess optical properties of tissue. Light absorption 

in the wavelength range of ∼700 to 1,000 nm is minimal, allowing for sufficient tissue 

penetration (up to 15 cm) in breast imaging (van de Ven et al., 2009). The technique 

derives unique functional/physiological information such as oxy- and deoxyhemoglobins, 

water and lipid concentrations, tissue scattering and blood flow. Since increased 

angiogenesis and a change in the oxy- and deoxyhemoglobin ratio as well as a change in 

chromophore concentrations are features of malignant tumours, DOT can be used 

complementary to other imaging modalities, such as ultrasound, X-ray mammography, 

and magnetic resonance imaging (MRI) to assist in differentiating between normal and 

tumour breast tissue (Choe and Ieee, 2009). It is not a stand-alone technique since 
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photons undergo multiple random scattering events as they propagate through the highly 

scattering tissue, causing spatial information and imaging resolution to be lost.  Although 

DOT can localize relatively large (∼1 cm) tumours deep in breast tissue, poor resolutions 

on the order of several millimetres does not permit imaging of small early-stage tumours 

and cellular-level resolution is not possible (Boppart et al., 2004).  

2.3 Optical Coherence Tomography (OCT) 
OCT is a high-resolution imaging technique that has been used by several studies to 

intraoperatively detect tumour margins in rat mammary models (Iftimia et al., 2011, 

Nguyen et al., 2009, Boppart et al., 2004). OCT performs analogous to ultrasound except 

for reflection of near infrared radiation as opposed to sound waves are detected. In OCT a 

sample is exposed to low coherence NIR light and the back scatter is detected using a 

coherence gates scheme that allows for depth wise spatial mapping. The reflected light is 

incident upon a photodetector which converts the photons into electrical signal to be 

stored and analysed (Zysk and Boppart, 2006). Although imaging resolution in OCT has 

been measured to be as fine as 1 micron, depth of imaging is limited to only a few 

millimetres in highly-scattering tissue and penetration of OCT remains a limitation 

(Boppart et al., 2004). 

2.4. Photoacoustic Tomography 
Recent studies have used photoacoustic tomography (PAT) to differentiate between 

tumour and healthy breast tissue using the high contrast of hemoglobin to light (Heijblom 

et al., 2015, Li et al., 2015). Since increased vasculature is a feature of diseased state, 

PAT can be used as a promising diagnostic tool in breast cancer detection. The method is 

based on using thermoelastic expansion to convert electromagnetic energy into acoustic 
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pressure waves. In other words, when a tissue is irradiated with pulsed laser light, the 

photon energy is converted by tissue absorbers into heat and generates a rise in 

temperature. This rapid thermoelastic expansion results in the generation of ultrasound 

waves. An ultrasound transducer can detect the pressure waves generated by tissue 

absorbers, such as hemoglobin and melanin, and an image can be formed with the 

primary contrast related to the optical absorption of tissue (Mohammad Mehrmohammadi 

2013). A limitation for PAT is the strong reflection of ultrasounds between two different 

interfaces due to a mismatch in acoustic imdepedance. Therefore high-resolution 

detection requires direct contact of the transducer to the biological tissue. 

2.5 Fluorescence Spectroscopy 
Fluorescence techniques have been extensively used in cellular studies to detect 

biochemical composition, reactions and structures. Endogenous fluorophores have the 

ability to monitor cellular environments because of their proportional changes during the 

transition from normal to pathological conditions. 

When a biological molecule is illuminated with a wavelength that matches its absorption 

spectrum, it will be elevated from ground state (S0) to excited state (S1 or S2). The 

molecule can return to ground state either radioactively or non- radioactively. Non-

radiative processes of relaxation include vibrational relaxation and internal conversion. 

Radiative processes include fluorescence emission, where the molecule will releases its 

energy and returns back to ground state. This process occurs in a nanosecond time scale. 

The emitted spectrum of the fluorophore is red-shifted from the excited spectrum.  

Another parameter that characterizes the fluorescence phenomenon of the molecule is 

fluorescence lifetime. Fluorescence lifetime is the average time a biological molecule 



MSc. Thesis Nourhan Shalaby       McMaster University Radiation Sciences-Medical Physics 

 
 

17 

takes to return to ground state from an excited state. The fluorescence decay of a single 

fluorescent molecule (fluorophore) can be described as the exponential function below; 

 

where I0 is the initial intensity at time 0 and  is fluorescence lifetime, calculated from 

the time it takes the intensity to decrease to 1/e of the peak intensity.  The decay of 

multiple fluorophores can be presented as the sum of the exponential components of each 

fluorophore: 

 

where i represents the ith fluorescence component. The average lifetime can then be 

calculated as;     

 

where k is the data length of the decay curve, T is the sampling time interval and h(k) is 

the intrinsic fluorescence decay (Nie et al., 2016). Fluorescence has been widely studied 

in biological tissue to monitor changes in the cellular level. Both endogenous and 

exogenous fluorescence have been used. This work will focus on endogenous 

fluorescence in biological tissue. Endogenous fluorophores include amino acids (tyrosine, 

phenylalanine and tryptophan), structural proteins (collagen and elastin) and enzyme co-

factors NADH and FAD can reveal information about cellular environments, such as 

biochemical composition, cellular structure, red-ox state and cellular metabolic states. 

This information can be beneficial when classifying tissue as malignant, or healthy since 
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tumour states display different cellular environments and metabolic states. For example, 

NADH concentration is found to be higher in cells with higher metabolism. Since NAD+ 

is non fluorescence when excited by a UV laser, and only the reduced counterpart NADH 

will fluorescence in the 450-460 nm range, the NADH emission can serve as an aid in 

tumour detection. Furthermore, NADH displays a short and long lifetime depending on 

the protein-binding status of the coenzyme. This is also beneficial since malignant tissue 

display an altered ratio of bound to free NADH. Figure 1 below shows the different 

fluorescence emission spectra of various molecules within the body after being excited 

with a 366 nm light source.  

 
 

Figure 1: Typical spectral response of autofluorescence emission from single endogenous 

fluorophores from 400-700 nm (Croce and Bottiroli, 2014) with an excitation light of 366 

nm. Spectra were normalized to the maximum emission peak for presentation. 
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Table 1 below summarizes some of the endogenous fluorophores present in breast tissue, 

their excited and emitted wavelength as well as lifetime (Ramanujam, 2000, Chorvat and 

Chorvatova, 2009).  

Endogenous 

Fluorophore 

Excited wavelength (nm) Emitted wavelength (nm) Lifetime (ns) 

Collagen 325, 360 390, 415 2.46-3 

NADH (free state 

and protein-bound) 

290, 351 440, 460 0.4-3.4 

FAD, flavins 450 535 2.3-5 

Table 1: The excited and emitted wavelength, and lifetime of collagen, NADH, and FAD 
(Ramanujam, 2000, Chorvat and Chorvatova, 2009). 

 

Monitoring fluorescence of endogenous fluorophores can be achieved by either steady-

state fluorescence spectroscopy or time-resolved fluorescence spectroscopy. Both steady 

state and time-resolved spectroscopy use similar instrumentation. The basic 

instrumentation of a spectrofluorometer are a light source, a monochromater and a 

detector. The monochromater is used to disperse polychromatic light into various 

wavelengths by using prisms or diffraction gratings. Photo-multiplier tubes (PMTs) are 

used in almost all fluorometers as detectors to respond to individual photons as they are 

low-noise amplifiers for low-level light (Wehry, 1984). Typically, an excitation beam 

with a narrow wavelength range is used for illuminating a sample. Fluorescence 

emissions are collected perpendicular from excitation to prevent excitation light from 

interfering with the fluorescence signal.  The weak fluorescence signal collected enters a 

spectrograph and a detector registers the spectrum. The main difference between the 

instrumentation is that time-resolved uses a pulsed-light source and gated detection of the 

fluorescence emission. In steady-state, fluorescence intensity is measured over a 
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broadband spectral region while in time resolved, fluorescence intensity as well as 

dynamic fluorescence decay is measured to obtain fluorescence lifetime. Time-resolved is 

more advantageous as fluorescence lifetime is independent of emission and can be used to 

differentiate between various fluorophores with overlapped emission spectra. Much of the 

time-averaging process in steady state measurements eliminates valuable molecular 

information such as the precise shape of the anisotropy decay, which relays information 

on molecular shape and flexibility. The intensity decays measured in steady state also 

contain information that is lost in the averaging process. Therefore, time-resolved 

fluorescence spectroscopy delivers additional information compared to steady-state 

fluorescence techniques (Wehry, 1984).  

A limitation for time resolved fluorescence (TRF) technique is the penetration depth of 

the excitation light. A UV light has an excitation source typically has a penetration depth 

of several hundred micrometers. As a result, only the surface of the tissue is measured 

using the TRF and no depth information that is necessary for surgical resection can be 

provided. Another limitation is the alteration of the light passing through the tissue and 

being effected by absorption and scattering of tissue and blood.  This suggests that the 

fluorescence signal may not reflect its real fluorescence properties.  This problem is 

conquered by integrating a method known as diffuse reflectance, which can reveal optical 

properties that can adjust the fluorescence intensity into a more accurate intrinsic 

fluorescence of the fluorophores (Volynskaya et al., 2008, Zhu et al., 2008).  

2.6 Diffuse reflectance Spectroscopy and Optical Properties 
In diffuse reflectance, a broadband light is used to excite tissue using an optical fibre 

probe. Multiple absorption and scattering events will take place and light will be 
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transmitted in different directions. The probe will collect the diffuse reflected light 

coming from the tissue, near the original illuminated location. DRS is used to resolve 

optical properties of biological tissue. The optical properties of tissue can be extracted 

from the diffuse reflectance spectra using diffuse theory or Monte Carlo simulations 

(Cappon et al., 2013). The optical properties recovered include the absorption coefficient, 

µa, and reduced scatter coefficient, µs’.  

When light illuminates tissue, the light will be either scattered or absorbed by the tissue.  

Scattering and absorption events can provide information on tissue heterogeneity. 

Scattering events occur as a result of scattering centers in the cell such as nuclei and 

provide information on molecular size and the structure of tissue. Absorption events can 

relay information on the concentration of absorbers (oxygenated hemoglobin, 

deoxygenated hemoglobin) which is important for cancer diagnosis since increased 

angiogenesis is common in cancer cells.  The scattering phenomenon is a result of a 

mismatch of the refractive index. The scattering coefficient, ( ) is the probability of a 

scattering event per unit distance. There is an angular dependence of scattering 

distribution between the directions of incident and scattered light. This angular 

dependence can be explained by the anisotropy factor,  

 

where forward and back scatter are represented by g=1 and -1 respectively (Jacques, 

2013) and characterizes tissue scattering in terms of the relative forward versus backward 

direction of scatter. 
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The reduced scattering coefficient, ( ) and absorption coefficient properties describe 

diffusion of light in a tissue and reflection of scattered light from biological tissue. These 

optical properties govern the reflectance from a tissue seen by a camera or the lateral 

diffusion of light within a tissue collected by an optical fiber probe. The reduced 

scattering coefficient, ( ) can be calculated as: 

 

The absorption coefficient, ( ) can be calculated as the inverse of the distances between 

two absorption events. The main absorbers in biological tissue include chromophore, 

oxygenated and deoxygenated hemoglobin, carotenes and melanin (Jacques, 2013). The 

optical window refers to the region between 800-1100 nm where low absorption takes 

place. The absorption coefficient,  (cm−1) is defined as : 

 

where T (dimensionless) is the transmitted or surviving fraction of the incident light after 

an incremental path-length ∂L (cm). This fractional change ∂T/T per ∂L yields an 

exponential decrease in the intensity of the light as a function of increasing path length 

L(Jacques, 2013). 
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Chapter 3: Methodology: Integrated time-resolved fluorescence 
and diffuse reflectance spectroscopy system 
 

The TRF spectroscopy measures fluorescence intensity and lifetime of fluorophores, 

providing information on biological composition of tissue (Berezin and Achilefu, 2010, 

Nie et al., 2013, Chorvat and Chorvatova, 2009). DRS reveal optical properties that relay 

information on absorber concentration as well as scattering size, structure and density of 

cells (Zhu et al., 2006a, Jayanthi et al., 2012, Glennie et al., 2014). Although both 

techniques have been used separately to classify tissue types, the integration of both 

modalities allows the yield of higher sensitivity and specificity then each modality alone. 

Figure 2 shows the integration of the two subsystems. 

 

Figure 2: An illustration of the integration of the DRS subsystem (left) and the TRF subsystem 
(right) with data collection occurring through a probe and a central control unit (computer).  
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3.1 TRF Spectroscopy System 
 
The TRF subsystem uses a UV laser Nd:YAG laser (PNV-001525-140, Teem Photonics, 

Meylan, France) source of 355 nm with a pulse width of 300 picoseconds (full width half 

maximum) and a repetition rate of 1kHz. Although the laser energy is 30 µJ, the tip of the 

laser is adjustable and only about 3 µJ is required for biological tissue to avoid 

photobleaching. After the light is attenuated by a neutral density filter [optical density 

(OD):0.3, ND03A, Thorlabs, NJ], it is reflected off a dichroic mirror (CS0238, 

Lightwaves 2020 Inc, Milpitas, CA) with 70% reflection at 45º where a plano convex lens 

(LA1951-A, Thorlabs, Newton, NJ) will focus the laser into an optical fibre with core 

diameter of 400 m and numerical aperture (NA) of 0.12. As shown in figure 3, once the 

laser light illuminates the tissue, the emitted fluorescence is received by the same optical 

fiber. The plano-convex lens then collimates the fluorescence to a 6mm beam and an 

aperture with 6mm diameter following the lens prevents dispersed fluorescence. The 

fluorescence travels through a dichroic mirror that allows for 90% transmission and a 

long-pass filter (OD > 6 at 355 nm LP02-355RU-25, Semrock, Rochester, NY) that 

prevents backscatter of fluorescence. The fluorescence will then be transmitted through 

the Acousto-optic tunable filter (AOTF) where multiple events will occur. The 

fluorescence is separated into ordinary polarized, extra ordinary polarized and 

undiffracted light. The diffracted light will diffract towards two concave mirrors, while 

the undiffracted light passes will hit a beam stop. The AOTF switches between 

wavelengths in less than 20 µs and allows for rapid collection of fluorescence in the range 

of 370-550 nm upon a change in acoustic frequency. The diffracted beams are then 

collected by a fast-gated microchannel-plate-photomultiplier tube (MCP-PMT R5916-50, 
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rise time: 180 ps, Hamamatsu Photonics, Japan). A preamplifier (gain: 63 dBm, 

bandwidth: 50 KHz-1.5 GHz, C5594-12, Hamamatsu Photonics, Japan) amplifies the 

signal from the MCP-PMT and a high speed digitizer (ADQ412, 12 bit, 3.6 GS/s, 1.3 

GHz bandwidth, SP Devices, Sweden) digitizes the signal. A photodiode (jitter of ~100 

ps, DET10A, Thorlabs, Newton, NJ) collects the laser light reflected by the neutral 

density filter and triggers the digitizer.  A pulse generator (QC9512, Quantum Composer, 

Bozeman, MT) is used to allow synchronization of the laser with the MCP-PMT. This 

allows the fluorescence decay to be collected within the gating window of the PMT.  

Figure 3: Collection of time-resolved fluorescence decay. M1: Mirror; PD: Photodiode; NDF: 
Neutral density filter; DM: Dichroic mirror; A: Aperture; PCL: Plano-convex lens; LPF: Long 
pass filter; BS: Beam stop; CM1: Concave mirror 1; CM2: Concave mirror 2 
 

After the collection of fluorescence decay, the set up of the spectrometer is changed, as 

shown in figure 4 below to a non-diffracted wavelength to allow for collection of steady 
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state fluorescence. This results in light passing through the AOTF without any diffracted 

beam. A mirror sitting on a mirror flipper is placed after the AOTF and when in the 

vertical position, reflects the fluorescence beam into a grating-based spectrometer to 

allow for the collection of fluorescence spectra. The pulse generator flips the mirror to 

switch between the different modes of data collection.  

 

Figure 4: Steady-state collection of fluorescence. NDF: Neutral density filter; DM: Dichroic 
mirror; A: Aperture; PCL: Plano-convex lens; LPF: Long pass filter; MF: Mirror flipper. 
 

3.2 DR Spectroscopy System 
 
As shown in figure 5, the excitation source in the DRS subsystem consists of 3 UV LED 

lights (370 nm, 385 nm, and 400 nm, Lumibright, Innovation Optics, Woburn, MA) and a 

150 W tungsten-halogen lamp (MI-150, Edmund Optics, Barrington, NJ) combined and 

collimated by a light coupler to ensure homogenous light. This output light is combined 
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into a beam of 425 nm by a dichroic mirror (DLMP425, Thorlabs, NJ). This light passes 

through a 20/80 beam splitter (FOS-400-0102-80/20-123, Fibersense and Signals, San 

Jose, CA) where light is divided 20% as a reference beam and 80% will be used on the 

sample using a 200 μm core optical fibre. A shutter is placed before the optical fiber 

coupler to control the light. Diffuse reflectance is collected at three different detector-

source distances. Four spectrometers are used to individually collect the light at the 

reference channel as well as at each of the distances.  DR measurements were conducted 

in the dark and background noise was also accounted for and subtracted from the 

measured DR spectra using the following equation: 

 

where R is the measured diffuse reflectance, IBG is the background noise and IREF is the 

intensity from the calibrated reference beam and IM is the measured diffuse reflectance of 

the sample. The spectra are normalized to the reference light to account for variations of 

intensity.  

 

Figure 5: The DRS subsystem components with a broadband source combination of a halogen 
lamp and 3 UV LEDs, a beam splitter and spectrometers.  
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3.3 Fiber Optic Probe 
 

The fiber optic probe shown in figure 6 and 7 allows for the integration of the TRF and 

DRS system to collect both fluorescence and diffuse reflectance. The diameter of the 

probe is 2 mm, which makes it suitable to be used as a hand-held surgical device. The 

probe’s core has an optical fiber with diameter of 400 μm and NA of 0.12, which is used 

for laser excitation in the TRF subsystem. Another optical fiber with a 200 μm diameter 

and an NA of 0.22 is placed on the side of the probe, used for the broadband excitation 

source of the DRS subsystem. Bundles of fibers, with diameter of 0.23 mm, are arranged 

at three different distances (0.23 mm, 0.59 mm, and 1.67 mm) from the optical fibre on 

the side of the probe. This arrangement has been designed using Monte Carlo simulations 

and allows for the extraction of the optical properties and this probe set up to allow for 

better sensitivity in comparison to other probe geometries (Papaioannou et al., 2004, 

Cappon et al., 2013). 

 

Figure 6: BBS: Broadband source; CF: Collection fibres 
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Figure 7: Transverse view of fibre optic probe. All fibres are 0.23 mm, unless indicated otherwise.  

 

3.4 Sample Information 
Table 2 summarizes the fifty breast samples collected in this study in accordance to their 

age, menopausal status, smoking status, tumour type, tumour grade, type of surgery, 

Estrogen receptor status, progesterone receptor status, Her2neu status, chemotherapy 

status and co-morbidities.  

 Selection Prevalence  Percentages (%) 

Age (Range 32-90) 30’s 

40’s 

50’s 

60’s 

70’s 

80’s 

90’s 

1 

9 

13 

13 

7 

6 

1 

2 

18 

26 

26 

14 

12 

2 

Menopausal Status Pre-menopausal 

Peri-menopausal 

Post-menopausal 

12 

1 

37 

24  

2 

74 
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Smoking Status Non-Smoker 

Pre-Smoker  

Smoker 

34 

3 

13 

68 

6 

26 

Tumour Type Ductal 

Lobular 

Mix Lobular and Ductal 

44 

4 

2 

88 

8 

4 

Tumour Grade 1 

2 

3 

4 

3 

22 

10 

18 

6 

44 

20 

36 

Type of Surgery BCS 

Mastectomy 

29 

21 

58 

42 

Estrogen Receptor 
status 

Non-present 

Present 

10 

40 

20 

80 

Progesterone Receptor 
status 

Non-present 

Present 

17 

33 

34 

66 

Her2neu status Non-present 

Present 

40 

10 

80 

20 

Chemotherapy No 

Yes 

50 

0 

100 

0 

Co-morbidities No 

Yes 

12 

38 

24 

76 

Table 2: A summary of patient information including age range, menopausal status, smoking 
status, tumour type, tumour grade, type of surgery, Estrogen receptor status, Progesterone 
receptor status, Her2neu status, use of chemotherapy and co-morbidities.  

 

 Out of the 50 matched pair specimens, over 50% of the women were in the 50-60 age 

range. Only one patient was in their 30’s and one patient in their 90’s, skewing the range 

wider for the data set. 74% of the women from the study were in post-menopausal status, 

which could indicate correlation with disease prevalence. Most of the women from the 
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study are non-smokers. Invasive Ductal Carcinoma accounted for 88% of the breast 

cancers in the total samples, while 4% showed a mixture of lobular and ductal tumour 

cells. Tumour grades 2 and 4 had the highest occurrence with prevalence of 44% and 36% 

respectively amongst the 50 women.  The surgery types were either mastectomies or BCS 

and the prevalence of each is about half. The presence of the Estrogen receptor occurred 

in 4 out of 5 women while the progesterone receptor was present in about 2/3 of the 

women. No patients had undergone chemotherapy and 76% of the women had co-

morbidities. Co-morbidities include hypertension, osteoarthritis, hypercholesterolemia, 

diabetes, obesity, osteoporosis, gastroesophageal reflex disease (GERD), hypothyroidism, 

asthma, depression and anxiety.  

3.5 Tissue preparation 
Specimens were collected directly after surgery within 30 minutes. The specimens were 

transported to the research institution in a Biohazardous Styrofoam container with dry ice 

until stored in a freezer with subzero temperature of -80ºC for a period of time between 4-

6 weeks.  The tissues were then taken back to be measured with the tr-FRS system, after 

they were allowed to fully thaw to room temperature.  A subsample of 10 matched pair 

cases were measured directly after surgical excision prior to the freezing process. These 

ten matched pairs were then re-measured after the 4-6 week period. No external 

interference or further processing was performed on the tissue in the freezing and thawing 

process.  
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3.6 Measurement Procedure 
Figure 8 shows the typical specimen size relative to the petri dish. A small piece of 

tumour tissue was provided from surgery, with a minimum size requirement of 4×3×2 

mm and weighed an average of 20-30 mg. A further small piece of normal tissue with 

equivalent size was taken at a farther distance from the tumour area to avoid any 

boundary effects. 

 

Figure 8: An image of a sample breast tissue in a patri-dish with dimensions 30 mm x 15 mm.  
Blue dots represent the approximate measurement locations, where each location was measured 
three times.   

 

Measurements were performed on three locations on each specimen, as marked in the 

above figure. One central and two peripheral spots were chosen. Measurements were run 

three times on each location.  

3.7 TRF Data Collection 
After system initialization, the fluorescence decay, fluorescence steady-state spectra and 

diffuse reflectance spectra are collected in sequence. Total data acquisition time is about 2 

seconds for both TRF and DRS data collection, making the system suitable for 
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intraoperative purposes.  After data collection, the TRF ad DRS data are saved in separate 

files for subsequent off-line data analysis.  

3.8 DRS Data Collection 
After TRF data collection, the pulse generator is used to switch between data collection 

modes. DRS measurements were conducted in the dark to minimize any interference from 

external photons. DRS system initialization is performed by using the broadband source, 

with its spectrum shown in figure 9, to illuminate a white piece of paper and adjusting the 

response signals from the three fibres correlating to the different detector-source distances 

to be as closely aligned to each other as possible. This ensures the signals coming from 

each fiber are similar to each other.  

 

Figure 9: A plot showing the diffuse reflectance spectra of the broadband source. 

Optical properties were extracted from the diffuse reflectance by an inverse Monte Carlo 

approach, displayed as a look up table in reference (Cappon et al., 2013).  
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Chapter 4: Results Part I; Comparison between fresh and pre-
frozen breast samples 
 

4.1 Introduction 
 
The novelty in this work is the measurement of ex-vivo intact breast tissue using the tr-

FRS system after immediate surgical excision and re-measurement after freezing for 

duration of 4-6 weeks and thawing. This was performed to compare between fresh and 

pre-frozen breast tissue to assess the effects of the freezing and thawing process on the 

fluorescence and diffuse reflectance response and to validate the use of pre-frozen tissue. 

Should there be no significant differences between fluorescence lifetime, fluorescence 

intensity and diffuse reflectance between fresh and pre-frozen breast samples, it can be 

justified using pre-frozen tissue to build classification models using the tr-FRS data and 

to predict unknown freshly excised samples.  

 

4.2 Methodology 
 
Tissue measurement specifications and handling are described in section 3.5 and 3.6.  In 

this comparison study, ten matched pair cases were measured with the tr-FRS system 

twice. The first measurement was conducted directly after surgical excision of the breast 

tissue and will be referred to as “fresh” in the remaining results and discussion.  After 

data collection, the fresh tissues were frozen from room temperature to a freezer with 

subzero temperature of -80ºC for a period of time between 4-6 weeks and remeasured 

after complete thawing of tissue. These tissues will be referred to as “pre-frozen”.  This 

temperature was chosen to avoid mechanical changes proven to cause Collagen damage 

with use of snap freezing using liquid nitrogen (-196ºC) (Szarko et al., 2010). Thawing 



MSc. Thesis Nourhan Shalaby       McMaster University Radiation Sciences-Medical Physics 

 
 

35 

was accomplished by exposing tissue to room temperature for a few minutes. No external 

interference or further processing was done.   

4.3 Results 

4.3.1 Fluorescence Lifetime 
Figure 10 displays the range, median and inter-quartile range (IQR) of the levels for each 

of the lifetimes at 400nm, 460nm and 515nm corresponding to the emission wavelength 

of the endogenous fluorophores Collagen, NADH, and FAD respectively within breast 

tissue.  The boxplots display differences in lifetime at each of these wavelengths between 

tumour and normal breast tissue where lifetime in tumour is significantly higher at 400nm 

and significantly lower at 460 nm and 515 nm than normal in both fresh (a) and pre-

frozen (b) breast tissue.  

 
 
 
 

A 
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Figure 10: Box plot representation of average lifetime of fresh normal and tumour (A) and 
defrosted normal and tumour (B) breast tissue at 400 nm, 460 nm, and 515 nm. Significant 
differences between normal and tumour breast tissue at 400 nm, 460 nm and 515 nm can be seen 
in both the fresh and pre-frozen sets. ºRepresents outliers with values greater than 1.5 times the 
IQR *Represents strikes for values greater than 3 times the IQR. 
 
Table 3 looks at the fluorophore lifetime between normal and tumour breast tissue in both 

fresh and pre-frozen conditions. Significant differences were observed at 400nm, 460nm, 

and 515nm between normal and tumour in both subsets.  

Fresh Pre-Frozen  
Mean (ns) Standard 

Error 
P-value Mean (ns) Standard 

Error 
P-value 

Normal Lifetime 400 nm 3.126 .194 3.391 0.247 
Tumour Lifetime 400 nm 4.381 .179 

 
P<0.01*1 

4.921 0.228 

 
P<0.01*1 

Normal Lifetime 460 nm 6.604 .266 6.711 0.311 
Tumour Lifetime 460 nm 5.334 .340 

 
P=0.01*1 

5.495 0.323 

 
P=0.02*1 

Normal Lifetime 515 nm 8.254 .450 7.830 0.491 
Tumour Lifetime 515 nm 5.818 .508 

 
P=0.01*1 

5.841 0.510 

 
P=0.03*2 

Table 3: Lifetime at 400 nm, 460 nm, 515 nm in freshly excised and pre-frozen normal and tumour breast 
samples (n=10).  
Paired-Samples T Test1  

Wilcoxon Signed Ranks test2  

B 
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*Statistically significant at P<0.05. 
 
 
Table 4 compares fresh with pre-frozen normal and tumour breast tissue at 400nm, 

460nm and 515nm, respectively. No significant difference was observed between the 

normal fresh and pre-frozen samples and between the tumour fresh and pre-frozen 

samples. This suggests that the freezing and thawing process did not yield significant 

changes on the fluorescence lifetime.  

 
Normal Tumour  

Mean (ns) Standard 
Error 

P-value Mean (ns) Standard 
Error 

P-value 

Fresh Lifetime 400 nm 3.126 0.194 4.381 0.179 
Pre-frozen Lifetime 400 nm 3.391 0.247 

P=0.301 
4.921 0.228 

P=0.051 

Fresh Lifetime 460 nm 6.605 0.266 5.334 0.341 
Pre-frozen Lifetime 460 nm 6.711 0.311 

P=0.661 
5.495 0.323 

P=0.882 

Fresh Lifetime 515 nm 8.255 0.451 5.818 0.508 
Pre-frozen Lifetime 515 nm 7.830 0.491 

P=0.251 
5.841 0.510 

P=0.722 

 
Table 4: Lifetime at 400 nm, 460 nm, 515 nm in freshly excised and pre-frozen normal and tumour breast 
samples (n=10).  
Paired-Samples T Test1  

Wilcoxon Signed Ranks test2  
Significance tested at P<0.05. 

 

4.3.2 Fluorescence Intensity 
 
Figure 11 shows fluorescence intensity spectra normalized to the applied voltage and is 

represented as arbitrary units normalized to the maximum NADH peak value of 460nm. 

The spectra were analyzed using Peak Fit software (PeakFit TM v.4.12, Seasolve 

Software Inc.) where the emission peaks of fluorophores (collagen at 400 nm, NADH at 

460 nm and FAD at 515 nm) were smoothed and treated as Gaussian distributions to 

determine the amplitude, FWHM and integral area of each fluorophore and can be used as 

distinguishing parameters in the classification model. For each peak, the integral area was 

determined by PeakFit using the following FWHM and amplitude equation: 
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where a is the amplitude represented in arbitrary units, dx is the half width at 

half maximum (HWHM) and x0 is the maximum position.  

Figure 11 below shows the emission spectra of fluorophore intensity as a function of 

wavelength from 370- 550 nm in (A) fresh normal and tumour breast samples and (B) 

pre-frozen normal and tumour breast samples.  
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Figure 11: Average fluorescence intensity in fresh normal and fresh tumour breast samples (A) 
and pre-frozen normal and tumour breast samples (B). Collagen produces an emission spectrum 
peaking at 390-400 nm, whereas reduced nicotinamide adenine dinucleotide (NADH), and flavin 
adenine dinucleotide (FAD) emit at 450 nm and 510 nm respectively when induced with a UV 
laser source of 355 nm. Errors are SE of the mean. Collagen taken at 400 nm, NADH at 460 nm 
and FAD at 510nm (n=10). 
 
 
Table 5 represents integral area of collagen, FAD and NADH/FAD in freshly excised and 

pre-frozen normal and tumour breast tissue (n=10), respectively.  

 

Fresh Pre-Frozen  
Mean 
(ns) 

Standard 
Error 

P-value Mean (ns) Standard 
Error 

P-value 

Normal Collagen Area 10.227 1.807 10.199 1.702 
Tumour Collagen Area 20.035 2.861 

P=0.02*1 
23.529 3.039 

P<0.01*1 

Normal FAD Area 16.776 .882 17.655 1.379 
Tumour FAD Area 15.207 1.355 

P=0.291 
13.671 1.829 

P=0.02*2 

Normal NADH to FAD Area 3.483 .186 3.432 0.372 
Tumour NADH to FAD Area 3.906 .401 

P=0.291 
4.687 0.497 

P<0.01*1 

 
Table 5: Collagen integral area, FAD integral area, and NADH/FAD integral area in freshly 
excised and pre-frozen normal and tumour breast tissue (n=10).  
Paired-Samples T Test1  

Wilcoxon Signed Ranks test2  
*Statistically significant at P<0.05. 
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A direct comparison between freshly excised and pre-frozen normal breast tissue is 

demonstrated in figure 12A followed by freshly excised and pre-frozen tumour breast 

tissue in figure 12B.  

 

 
 

 
 
Figure 12: Direct comparison of average fluorescence intensity in fresh normal and pre-frozen 
normal breast samples (A) and fresh and pre-frozen tumour breast samples (B). Errors are SE of 
the mean. Collagen taken at 400 nm, NADH at 455nm-460 nm and FAD at 510nm (n=10). 
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Table 6 shows collagen integral area in freshly excised and pre-frozen between normal 

and tumour breast tissue (n=10).  

 

 Mean Std. Error P value 
Fresh Normal Collagen Area 10.227 1.807 

Pre-frozen Normal Collagen Area 10.199 1.702 

 
P=0.991 

Fresh Tumour Collagen Area 20.035 2.862 

Pre-frozen Tumour Collagen Area 23.528 3.038 

 
P=0.281 

 
Table 6: Collagen integral area in freshly excised and pre-frozen normal and tumour breast tissue 
(n=10).  
Paired-Samples T Test1  

Significance tested at P<0.05. 
 
 
Table 7 shows FAD integral area in freshly excised and pre-frozen between normal and 

tumour breast tissue (n=10).  

 

 Mean Std. Error P value 
Fresh Normal FAD Area 16.777 0.882 

Pre-frozen Normal FAD Area 17.655 1.379 

P=0.461 

Fresh Tumour FAD Area 15.208 1.356 

Pre-frozen Tumour FAD Area 13.671 1.829 

P=0.392 

 
Table 7: FAD integral area in freshly excised and pre-frozen normal and tumour breast tissue 
(n=10). 
Paired-Samples T Test1  

Wilcoxon Signed Ranks test2  
Significance tested at P<0.05. 
 
 
Table 8 shows NADH/FAD integral area in freshly excised and pre-frozen between 

normal and tumour breast tissue (n=10).  

 

 

 



MSc. Thesis Nourhan Shalaby       McMaster University Radiation Sciences-Medical Physics 

 
 

42 

 Mean Std. Error P value 
Fresh Normal NADH to FADH Area 3.483 0.187 

Pre-frozen Normal NADH to FADH Area 3.432 0.372 

P=0.881 

Fresh Tumour NADH to FAD Area 3.906 0.401 

Pre-frozen Tumour NADH to FAD Area 4.687 0.497 

P=0.211 

 
Table 8: NADH/FAD integral area in freshly excised and pre-frozen normal and tumour breast 
tissue (n=10). 
Paired-Samples T Test1  

Significance tested at P<0.05. 
 
 
Table 6, 7, and 8 show no significant difference between fresh normal breast tissue and 

pre-frozen normal breast tissue in collagen, FAD and NADH/FAD integral area. There 

was also no significant difference between freshly excised tumour breast tissue and pre-

frozen tumour breast tissue in collagen, FAD and NADH/FAD integral area.  

4.3 Diffuse Reflectance 

4.3.1 Absorption Coefficient 
The absorption coefficient is directly related to tissue absorber concentration and 

saturation such as oxygenated and de-oxygenated hemoglobin and beta carotene. The 

scattering coefficient relies on information on the size and density of scattering centers in 

tissue, such as cells and nuclei which have been shown to be significantly different 

between malignant and normal tissue (Zhu et al., 2006a). The optical properties 

(absorption coefficient and reduced scatter coefficient) of the tissue can be extracted from 

the diffuse reflectance spectra using a lookup table. This method is explained in detail by 

Rajaram (Rajaram et al., 2008). 

 
Table 9 compares the absorption coefficient between fresh and pre-frozen normal and 

tumour breast tissue at 545nm and 575 nm. No significant difference was observed for 

both the normal and tumour subset.   
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Normal Tumour  

Mean 
(mm−1) 

Standard 
Error 

P-Value Mean (mm−1) Standard 
Error 

P-Value 

Fresh Absorption 
coefficient 545 nm 5.735 1.281 5.208 0.624 
Pre-frozen Absorption 
coefficient 545 nm 6.598 1.188 

 
P=0.431 

7.141 1.528 

 
P=0.131 

Fresh Absorption 
coefficient 575 nm 6.033 1.389 5.229 0.623 
Pre-frozen Absorption 
coefficient 575 nm  6.702 1.265 

 
P=0.591 

7.507 1.651 

 
P=0.142 

 
Table 9: Absorption coefficient at 545 nm and 575 nm for fresh and pre-frozen normal and tumour breast 
tissue (n=10).  
Paired-Samples T Test1  

Wilcoxon Signed Ranks test2  
Significance tested at P<0.05. 
 
 

4.3.2 Reduced Scatter Coefficient 
 
Table 10 compares the reduced scatter coefficient between normal and tumour fresh and 

pre-frozen breast tissue at 545nm and 575 nm.  

 

 Normal Tumour 
 Mean 

(mm−1) 
Standard 
Error 

P-Value Mean 
(mm−1) 

Standard 
Error 

P-Value 

Fresh reduced scatter 
coefficient 545 nm 15.814 1.745 17.310 1.415 
Pre-frozen reduced scatter 
coefficient 545 nm 17.756 1.869 

P=0.211 

21.952 1.607 

 
P=0.052 

Fresh reduced scatter 
coefficient 575 nm 15.180 1.675 16.616 1.358 
Pre-frozen reduced scatter 
coefficient 575 nm  17.044 1.794 

P=0.211 

21.072 1.542 

 
P=0.052 

 
Table 10: Reduced scatter coefficient at 545 nm and 575 nm for fresh and pre-frozen normal and tumour 
breast tissue (n=10).  
Paired-Samples T Test1  

Wilcoxon Signed Ranks test2  
Significance tested at P<0.05. 
 
 
No significant differences in absorption coefficient and reduced scatter coefficient were 

observed for both the normal and tumour subset in tables 9 and 10.  This implies that the 

freezing and thawing process did not contribute to significant differences in optical 

properties. 
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4.4 Discussion 
 
This work shows the capability of the tr-FRS system to differentiate between normal and 

tumour breast tissue. Collagen area, lifetime at 400nm, 460nm and 515nm are 

significantly different between tumour and normal in both fresh and pre-frozen breast 

tissue.  FAD integral area was significantly higher in pre-frozen tumour than pre-frozen 

normal breast samples whereas no significant differences were observed between the 

fresh tumour and fresh normal breast samples. NADH/FAD integral area was also 

significantly higher in pre-frozen tumour than pre-frozen normal breast samples. 

However no significant differences were observed in NADH/FAD integral area between 

the fresh tumour and fresh normal breast samples.  These results showed that the process 

of freezing and thawing did not cause any significant differences between normal fresh 

and normal pre-frozen breast tissue or between tumour fresh and tumour pre-frozen breast 

tissue. There were no significant differences in fluorescence lifetime at 400 nm, 460 nm 

and 515 nm as well as collagen area, FAD area, NADH/FAD area, absorption coefficient 

at 545 nm and 575 nm as well as the reduced scatter coefficient at 545 nm and 575 nm 

between fresh and pre-frozen samples. This justifies the suitability of using archived 

frozen tissue bank specimens to increase the data set used for designing the mathematical 

models required to differentiate tumour and normal samples.  

A study by Palmer, et al. reported that freezing and thawing of tissues lead to a decrease 

in the diffuse reflectance signal compared with the freshly excised breast tissue. This 

lower diffuse reflectance signal suggests an increase in tissue absorption most likely due 

to an increase in the effect of hemoglobin absorption. This might also be the effect of cell 

lysing brought by the freezing and thawing process. However, our study showed no 
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significant differences between normal and tumour absorption coefficient in both the 

fresh and pre-frozen samples. Therefore no significant difference between the fresh and 

pre-frozen normal as well as the fresh and pre-frozen tumour does not reveal any useful 

information on whether the absorption coefficient is altered by the freezing and thawing 

process.  

 

4.5 Conclusion 
 
Based on our pilot clinic results, limited by the small sample size (n=10), we aim to 

obtain more cases to increase our data set to validate the above results. The results of this 

study show the validity of using archived frozen breast tissues from a tissue bank to 

simulate the fluorescence response and optical properties of fresh breast tissue. This 

allows for the development of classification models using pre-frozen breast tissue that 

could be used in-vivo real time at the time of surgery to differentiate tumour from normal 

tissue. 
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Chapter 5: Results Part II; Comparison between normal and 
tumour breast samples 
 

5.1 Histology 
 
After data has been collected, the tissue sample is fixed in 10% buffered formalin for at 

least 24 hours and returned to the hospital for histological analysis and processed using a 

vacuum infiltration tissue processor (VIP) overnight. The tissue is then embedded in 

paraffin and cut into 4 microns thick slices with a microtome. The sections are stained 

with Hematoxylin and Eosin (H&E) and analyzed under the microscope.  A first scan is 

made with a low power for an overview and then analyzed under high power. The uneven 

distribution of the tumor allows for a 400 magnification scan of the area to be made in 

order to be able to measure the amount of tumour with a micrometer and calculate a 

percentage of tumour. The amount of tumour cells, surrounding connective tissue and fat 

was evaluated using this semi-quantitative technique.   

Figure 13 below display the histological images of a (A) normal breast sample mostly 

consisting of adipose tissue, a normal more dense tissue (B) with higher fibrous content 

and a tumourous breast (C) displaying increased cell density marked by darker nuclei in 

comparison to the normal tissue.  
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Figure 13: Breast samples stained with H&E showing A) normal breast with high adipose tissue, 
B) normal breast with high fibrous tissue content and C) tumour breast samples showing 
increased nuclei and cell density. 
 

 

B 

C 
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Table 11 below lists the histological results for all samples collected for this study from 

patients undergoing BCS.  

CASE 
NUMBER 

Normal/Fat 
Content 

(%) 
Tumour 

Content (%) 
CASE 

NUMBER 

Normal/Fat 
Content 

(%) 

Tumour 
Content 

(%) 
IMA 3 90 70 IMA 38 90 80 
IMA 4 Cancer 10 IMA 39 20 50 
IMA 6 30 80 IMA 41 95 No Cancer 
IMA 7 50 90 IMA 42 20 90 
IMA 13 90 50 IMA 44 90 85 
IMA 14 20 80 IMA 45 95 50 
IMA 15 40 50 IMA 46 50 80 
IMA 16 20 40 IMA 47 95 90 
IMA 18 60 60 IMA 49 50 50 
IMA 19 30 10 IMA 50 60 60 
IMA 20 40 15 IMA 52 80 90 
IMA 21 80 60 IMA 54 80 80 

IMA 22 80 75 IMA 55 
Cancer 
(60%) 10 

IMA 24 90 90 IMA 56 40 80 
IMA 25 10 90 IMA 57 80 40 
IMA 26 60 90 IMA 58 80 80 
IMA 28 80 60 IMA 59 50 60 
IMA 30 90 90 IMA 60 20 80 
IMA 31 99 95 IMA 61 20 100 
IMA 32 90 60 IMA 62 95 60 
IMA 33 80 90 IMA 63 90 90 

IMA 34 80 80 IMA 65 
Cancer 
(90%) 70 

IMA 35 20 90 IMA 66 90 90 
IMA 36 60 80 IMA 67 50 50 

Table 11: Histological analysis on 48 matched pair cases showing the fat content in the normal 
samples and the tumour content in the tumour samples.  
 

Although 50 matched pair cases were collected and measured, histological analysis was 

conducted on 48 samples and revealed inconclusive results on an additional 8 matched 

pair cases where 3 normal samples (IMA 4, 55, 65) contained tumour, one tumour sample 

(IMA 41) was in fact normal and contained 0% tumour and 4 cases (IMA 14, 49, 60, 63) 

contained high density of necrotic cells. These 8 matched pair cases were omitted and all 

statistical and mathematical modeling results were based on the 40 matched pair cases.  
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5.2 Statistical Analysis 
 
All statistical analysis was performed using IBM SPSS Statistics Version 22. The P value 

has been reported for each variable as P<0.05 being significant. The Shapiro-test was 

used for each category to test if the data set was consistent with a Gaussian distribution 

function. Wilcoxon Signed Ranks Test was used for comparing the difference of the 

parameters for non-normally distributed data while a Paired-Sample T Test was used with 

a 95% confidence level in order to investigate the significant parameters for normally 

distributed data.  

 

5.2.1 Fluorescence Lifetime 
 
In figure 14 below boxplots are displayed showing, the range, median and inter-quartile 

range (IQR) of the levels for each of the lifetimes at 400nm, 460nm and 515nm 

corresponding to the emission wavelength of the endogenous fluorophores collagen, 

NADH, and FAD respectively within breast tissue.  The boxplots display differences in 

lifetime at each of these wavelengths between tumour and normal breast tissue.  

Fluorescence lifetime in tumour is significantly higher at 400nm (p<0.01) and 

significantly lower (p<0.01) at 460 nm and 515 nm than normal. 
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Figure 14: Box plot representation of average lifetime of normal and tumour breast tissue at 400 
nm, 460 nm, and 515 nm. ºRepresents outliers with values greater than 1.5 times the IQR 
*Represents strikes for values greater than 3 times the IQR. 
 
Table 12 shows the lifetime values at 400, 460 and 515 nm, the wavelength 

corresponding to collagen, NADH and FAD emissions respectively. 

 
 Mean (ns) Std. Error P-value 

Normal Lifetime 400 nm 3.567 0.138 
Tumour Lifetime 400 nm 4.318 0.205 

P<0.01*2 

Normal Lifetime 460 nm 6.342 0.172 
Tumour Lifetime 460 nm 5.141 0.097 

P<0.01*1 

Normal Lifetime 515 nm 7.411 0.238 
Tumour Lifetime 515 nm 5.261 0.138 

P<0.01*1 

Table 12: Lifetime at 400 nm, 460 nm, 515 nm in pre-frozen normal and tumour breast samples 
(n=40).  
Paired-Samples T Test1  

Wilcoxon Signed Ranks test2  
*Statistically significant at P<0.05. 
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5.2.2 Fluorescence Intensity	
 
Please refer to section 4.3.2 for the normalization and fitting of the fluorescence intensity.  

 

Figure 15: Average fluorescence intensity in normal tumour breast samples (n=40). Collagen 
produces an emission spectrum peaking at 390-400 nm, whereas reduced nicotinamide adenine 
dinucleotide (NADH), and flavin adenine dinucleotide (FAD) emit at 460 nm and 510 nm 
respectively when induced with a UV laser source of 355 nm. Errors are SE of the 
mean. Emission peaks of collagen, NADH and FAD were taken at 400, 460 and at 510 nm, 
respectively.  
 
Table 13 shows the collagen amplitude and integral area between normal and tumour 

breast samples. 

 Mean (a.u.) Std. Error P-value 
Normal Collagen Amplitude 0.368 0.022 
Tumour Collagen Amplitude 0.572 0.030 P<0.01*1 

Normal Collagen Area 9.746 0.661 
Tumour Collagen Area 15.778 0.899 P<0.01*1 

Table 13: Collagen amplitude, FWHM, and integral area of Collagen in normal and normal breast 
tissue taken at 400 nm (n=40). 
Wilcoxon Signed Ranks test1  
*Statistically significant at P<0.05. 
Table 14 shows the NADH amplitude and integral area between normal and tumour 

breast samples taken at 460 nm. 
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 Mean (a.u.) Std. Error P-value 
Normal NADH Amplitude 0.971 0.002 
Tumour NADH Amplitude 0.986 0.029 P<0.01*1 

Normal NADH Area 60.720 0.718 
Tumour NADH Area 62.517 0.849 P=0.03*1 

Table 14: NADH amplitude, FWHM, and integral area of NADH in normal and normal breast 
tissue taken at 460 nm (n=40). 
Paired-Samples T Test1  

*Statistically significant at P<0.05. 
 
Table 15 shows the FAD amplitude and integral area between normal and tumour breast 

samples taken at 510 nm.  

 
 Mean (a.u.) Std. Error P-value 

Normal FAD Amplitude 0.332 0.011 
Tumour FAD Amplitude 0.258 0.008 P<0.01*1 

Normal FAD Area 13.659 0.609 
Tumour FAD Area 9.935 0.429 P<0.01*1 

Table 15: FAD amplitude, FWHM, and integral area of FAD in normal and normal breast tissue 
taken at 510 nm (n=40). 
Paired-Samples T Test1  

*Statistically significant at P<0.05. 
 
Table 16 shows the NADH/FAD amplitude and integral area between normal and tumour 

breast samples.  

 
 Mean (a.u.) Std. Error P-value 

Normal NADH to FAD Amplitude 3.07 0.118 
Tumour NADH to FAD Amplitude 3.978 0.131 P<0.01*1 

Normal NADH to FAD Area 4.88 0.276 
Tumour NADH to FAD Area 6.854 0.362 P<0.01*1 

Table 16: NADH to FAD amplitude, FWHM, and integral area in normal and normal breast tissue 
(n=40). 
Wilcoxon Signed Ranks test1  
*Statistically significant at P<0.05. 
 

Figure 16 displays the average diffuse reflectance spectra from fibre 1 between normal 

and tumour breast samples from the 420-670 nm range.  
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5.2.3 Diffuse Reflectance 

 

 
Figure 16: Diffuse reflectance (DR) spectra of tumour and normal breast tissue from fibre 1 

(n=40). Tumour samples showing significantly higher DR than normal samples. Errors are SE of 

the mean.  

 
In table 17 below, the average diffuse reflectance from fibre 1 at 545 and 575 nm, the 

wavelengths corresponding to the absorption of hemoglobin, is shown.  

 Mean (a.u.) Std. Error P-value 
Normal diffuse reflectance 545 nm 0.312 0.018 
Tumour diffuse reflectance 545 nm 0.409 0.024 P<0.01*2 

Normal diffuse reflectance 575 nm 0.306 0.018 
Tumour diffuse reflectance 575 nm 0.395 0.023 P<0.01*1 

Table 17: Diffuse reflectance in normal and tumour breast samples at 545 nm and 575 nm (n=40).  
Paired-Samples T Test1  

Wilcoxon Signed Ranks test2  
*Statistically significant at P<0.05. 
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5.2.4 Optical Properties 

5.2.4.1 Absorption Coefficient  

 
Figure 17 below displays the average absorption coefficient from 480 to 620 nm between 

normal and tumour breast samples.  

 
Figure 17: The average absorption coefficient in normal and tumour breast samples (n=40). Errors 
are SE of the mean.  

 
Table 18 represents the average absorption coefficient in normal and tumour breast 

samples at 545 and 575 nm.  

 Mean (cm-1) Std. Error P-value 
Normal absorption coefficient 545 nm 6.282 0.500 
Tumour absorption coefficient 545 nm 6.431 0.436 P=0.781 

Normal absorption coefficient 575 nm 6.484 0.531 
Tumour absorption coefficient 575 nm 6.654 0.472 P=0.812 

Table 18: Average absorption coefficient at 545 and 575 nm of normal and tumour breast tissue 
(n=40).  
Paired-Samples T Test1  

Wilcoxon Signed Ranks test2  
*Statistically significant at P<0.05. 
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5.2.4.2 Reduced Scatter Coefficient  

 
Figure 18 displays the average reduced scatter coefficient from 480 to 620 nm between 

normal and tumour breast samples.  

 

 
Figure 18: The average reduced scatter coefficient in tumour and normal breast samples (n=40). 
Errors are SE of the mean.  
 
Table 19 presents the reduced scatter coefficient in normal and tumour breast samples at 

545 and 575 nm. 

 
 Mean (cm-1) Std. Error P-value 

Normal reduced scatter coefficient 545 nm 18.571 0.790 
Tumour reduced scatter coefficient 545 nm 22.162 0.721 P<0.01*1 

Normal reduced scatter coefficient 575 nm 17.826 0.789 
Tumour reduced scatter coefficient 575 nm 21.273 0.692 P<0.01*1 

Table 19: Average reduced scatter coefficient at 545 and 575 nm of normal and tumour breast 
tissue (n=40). 
Paired-Samples T Test1  

*Statistically significant at P<0.05. 
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5.3 Classifications and Prediction 
 

Multivariate data analysis is used for data description (Explorative data structure 

modeling), discrimination and classification, as well as for regression and prediction.  The 

purpose of all multivariate data analysis is to decompose the data in order to determine 

and model any hidden phenomena or trends within the data. The revealing of any 

underlying covariance structure is the backbone of Principle Component Analysis (PCA).  

PCA is a method used for data description and explorative data structure modeling of any 

generic dimensional data matrix. PCA can also assign, or classify new objects (in this 

case; breast tissue) into their respective classes (normal vs tumour) based on measured 

variables. 

The first principle component (PC1) is the central axis that lies along the direction of 

maximum variance in the data set while Principle Component 2 (PC2) will lie along a 

direction orthogonal to PC1 and in the direction of the second largest variance, as shown 

in figure 19 below.  PC3 will lie orthogonal to PC1 and PC2 and in the direction of the 

third largest variance, and so on for PC4 and PC5 etc. All PCs are orthogonal to each 

other with a common axis and represent successively smaller and smaller spreads of the 

object (breast samples) data. Thus, the last PC will lie along the directions where there is 

very little spread in the object and there are no longer any underlying phenomena to 

stretch out the spread of the data, perhaps representing “noise”. It is important to optimize 

the number of PCs used by keeping the low-order PCs with the highest contributions 

while removing the noisy high-order PCs.  
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Figure 19: An illustration of the data points (orange) in variable space where x1, x2 and x3 
represent different variables. PC1 shows the direction of the maximum variance or spread in the 
data set. PC2 shows the direction of the second largest variance in the data set.  

 

Since determining the number of optimal PCs is essential in creating an non-noisy but 

accurate model, the scree plot below in figure 20 can be used to determine how much of 

the data is accounted for by a certain number of PCs. Scree plots can assist in determining 

the optimal number of principle components for modeling.  Four PC’s were used in the 

construction of the models as well as for tissue classification as that was determined to 

estimate about 90% of the data while reducing noise within the models.  

 

 



MSc. Thesis Nourhan Shalaby       McMaster University Radiation Sciences-Medical Physics 

 
 

58 

Figure 20: A scree plot showing the calibration and validation of the PCs and the X-variance of 
the data. Four PCs accounts for about 90% of the data and were used for PC model construction 
and classification of unknown samples.  

 

PC1 and PC2 can then be plotted on a separate graph as the x and y-axis to show 

clustering between sets in the data in a comprehendible figure. Figure 21 shows PC1 and 

PC2 of 40 samples where the normal clusters more to the left and tumour to the right.  

 

Figure 21: An initial plot of all 40 samples classified as either normal (red) or tumour (blue) 
plotted in PC space based on histological analysis. Numbers represent case numbers. 
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Although there is clear clustering of normal samples to the left and tumour samples to the 

right, and the majority of the data (76%) can be represented by PC1 and PC2, central 

region around the origin of PC1 and PC2 which displays a sizeable overlap between some 

tumour and normal breast samples. 

Variables that were found to be statistically significant using previous tests were used in 

the construction of the PC normal and tumour models used in classification. Variables 

further away from the PC1 axis or PC2 axis are considered strong variables in 

differentiating between tumour and normal breast samples, whereas variables closer to the 

origin provide a weaker PCA model. Variables that were insignificant in the statistical 

analysis were excluded from the construction of the normal and tumour models, as they 

were also located centrally in the PC plots. Since PCA is a method based on finding 

directions of maximum variation, it depends on the relative variance of the variables. 

Weighting of the variables is performed to assign a lighter or heavier importance to each 

variable along the same scale in a group. The variables used in the model construction 

were weighed by a factor of 1/SDev. 1/SDev is called standardization and is used to give 

all variables the same variance. This gives all variables the same chance to influence the 

estimation of the components. Standardization is often used if the variables are measured 

with different units; have different ranges; or are of different types. 

In figure 22, the statistically significant variables that were used to construct the normal 

and tumour PCA and their location relative to PC1 and PC2, are shown.  
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Figure 22: Plot of the statistically significant variables in PC space used to build normal and 
tumour PCA models. PC1 represents 62% of the data and PC2 represents 14% of the data. A total 
of 4 PCs were used.  

 

Full chart information including age, smoking status, menopausal status, tumour type and 

grade, surgery type, estrogen receptor status, progesterone receptor status, were also 

included in the PC models to investigate whether they provided any beneficial addition to 

the classification, and were found to be centrally located in the above plot, hence 

removed.  

After construction of the PCA models for both normal and tumour, tissue classification 

was conducted using Soft Independent Modeling of Class Analogy (SIMCA). SIMCA is 

a tool that has the potential to classify based on similarity and pattern recognition. It can 

be used to identify or quantitatively characterize subgroups within a set of samples, and to 

assess whether a new sample is similar to other samples, or to which group it belongs.  
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Essentially SIMCA is a classification tool composed of several PC models, one for each 

individual class identified (i.e normal and tumour). A residual is calculated as the sum of 

the distance between the sample variable value and the predicted value for each PC. 

Comparing this test sample variable error with the class membership limit (confidence 

level) determines whether a test sample may belong to a particular class or not. Each 

unknown test sample is tested against the individual PCA model. The ability of the 

system to predict unknown sample membership accurately is dependent on how far apart 

each of the PCA models appears in PC space. The further apart the component models 

are, the greater the ability to distinguish between samples. Ideally no membership limits 

should overlap, as this results in samples belonging to more than one class. The result of 

SIMCA classification in this study for a test sample could be: 1) normal tissue is correctly 

predicted as normal, meaning that it fits one model only within the given limits, and also 

the distance to the next closest group is much larger than the accepted distance of this 

group, 2) normal tissue is incorrectly predicted as tumour, 3) tumour tissue is correctly 

predicted as tumour, 4) tumour tissue is incorrectly predicted as normal, 5) The sample 

may fit both normal and tumour group, meaning that it has a distance that is within the 

critical limits of both groups simultaneously, recorded as “both” or 6) The sample fits 

neither normal or tumour group and the result would be recorded as “none”. 

Table 20 below shows the SIMCA classification results with 5% confidence level from 

40 matched pair samples. The jack-knifing technique was used in the prediction of tissue 

classification; where one sample was randomly removed and a normal and tumour PCA 

model were build using every sample except the randomly removed sample. The models 

were then used to classify the randomly removed sample as either belonging to the 
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normal PCA model, tumour PCA model, both normal and tumour PCA or neither. This 

technique was conducted on each sample.   

 

  
Classified as 
normal 

Classified as 
tumour 

Classified as 
both  

Classified as 
None 

Normal (40) 20 0 18 2 
Tumour (40) 1 13 22 4 

Table 20: Jack-knifing technique results of SIMCA where 40 matched pair cases were classified 
as normal, tumour, both normal and tumour, or neither.  

 

The jack-knifing technique showed weak results, with specificity and sensitivity of 50% 

and about 33% respectively. 45% of normal cases and 55% of tumour cases were 

classified under both normal and tumour PCA models due to the overlap between normal 

and tumour. 2 normal and 4 tumour cases were classified as neither normal nor tumour.  

Jack-knifing was then repeated on all samples using a model of only 29 samples. The 

selection of these samples was based on excluding the samples clustering in the central 

region from the models. Figure 23 below shows the model that has been used in the 

prediction of samples as described in table 13 and 14.  
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Figure 23: PCA model of 29 normal and 29 tumour samples used in the classification.  

This classification also used the same statistically significant variables as discussed 

above. The models were then used to predict the tissue classification of all 40 samples. 

Table 21 displays classification results using this technique.  

  
Classified as 
normal 

Classified as 
tumour 

Classified as 
both  

Classified as 
None 

Normal (40) 24 3 10 3 
Tumour (40) 1 21 14 4 

Table 21: Results from classification technique where 29 samples were used for model 
construction to predict all 40 samples. Samples were classified as normal, tumour, both or neither.  

 

This technique resulted in stronger predictive results where specificity was 60% and 

sensitivity was just above 50%. This showed slight improvement from the above results 

of specificity of 50% and sensitivity of about 33% respectively, as shown in table 20.   

The above model was used to predict only the 29 samples. The results are summarized 

below in table 22. 
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Classified as 
normal 

Classified as 
tumour 

Classified as 
both  

Classified as 
None 

Normal (29) 24 0 3 2 
Tumour (29) 1 20 5 3 

Table 22: Results from classification technique where 29 samples were used in construction of the 
PCA models. Samples were classified as normal, tumour, both or neither.  

 

This technique resulted in more promising results where specificity was over 80% and 

sensitivity was about 70%. Only 3 normal and 5 tumours were classified as both and 2 

normal and 3 tumours were classified as neither normal nor tumour.  

One of the major limitations of the modeling is that the histological analysis was 

conducted on the entire sample, whereas the optical measurements were only performed 

on a tissue size of 2 mm, limited by the probe diameter. Therefore the histological 

analysis provided fat and tumour content on the entire sample, whereas only a small 

section of the sample was measured. A more accurate technique would be to perform 

histological analysis only on the measured area of the tissue by cutting or excising out the 

area measured. This would refine the fat and tumour content to the actual measured area.  
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Chapter 6: Discussion and Conclusion 
 

6.1 Fluorescence Lifetime 
 
Numerous studies (Kauppila et al., 1998, Deak et al., 1991) have reported that collagen 

type I has a significantly higher lifetime (3.2 ns) than collagen type III, and IV. However, 

collagen type II has been reported to have lifetime of 10 ns at 355 nm excitation (Coda et 

al., 2014).  There has been a range of values for collagen fluorescence and lifetime in the 

literature. However, the complexity of collagen fluorescence makes it harder to 

differentiate between collagen types I, II, and III in the 390-410 nm range. Although 

classification of different collagen types is difficult, most studies have reported higher 

collagen fibrils and thus longer collagen lifetimes in diseased states in comparison to 

healthy states, verifying our results of significantly higher tumour lifetime (4.3 ns) 

compared to normal collagen at (3.5 ns) at the wavelength of 400 nm corresponding to 

collagen emission, as shown in table 12 and figure 14. 

NADH has a peak emission wavelength of 460 nm upon 355 nm excitation and a mean 

fluorescence lifetime ranging from 0.2-0.4 ns in its free state.  However, when NADH is 

protein bound, it will exhibit longer lifetimes typically in the ~2.5-3.4 ns range. Our 

measured response at 460 nm was 6.3 and 5.1 nm for normal and tumour breast tissue 

respectively, higher than the reported protein bound NADH lifetime. One study compared 

free state and protein bound NADH content and reported significantly decreased (p<0.05) 

protein-bound NADH in tumourous tissue compared to normal tissue. This change was 

attributed to a shift in metabolic conditions from oxidative phosphorylation to glycolysis, 

which is consistent with the predictions of tumour metabolism (Skala et al., 2007). Less 
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protein-bound NADH results in an overall quicker lifetime for the diseased state as 

observed in our results in table 12 and figure 14. 

Our results showed lower FAD lifetime in tumour of 5.2 ns compared to the normal 7.1 

ns breast samples, which falls within the range of published data as free state FAD has 

been reported to have a decay time of 5 ns, with a faster lifetime of about 1 ns in the 

bound form (Pires et al., 2014). Any changes in the NADH/FAD and their relative 

amounts of free and protein-bound states depend on the glycolysis and oxidative 

phosphorylation ratio. Since tumour progression results in a shift from oxidative 

phosphorylation to glycolysis, comparing short and long lifetime fluorescence decays of 

NADH and FAD can be used to discriminate between different metabolic conditions. 

Hence, NADH and FAD are biological molecules that could be used as biomarkers to 

reveal information on tumour metabolism (Pires et al., 2014).  

 

6.2 Fluorescence Intensity 
  
The increase of collagen deposition in malignant breast tissue has been observed in many 

previous studies (Kauppila et al., 1998, Fang et al., 2014, Provenzano et al., 2008, Haka et 

al., 2005, Zhu et al., 2008, Luparello et al., 1988). Collagen type I is a major constituent 

of the dermis and is found to reside primarily in the fibrous stroma of breast tissue 

whereas breast tissue high in adipose levels were found to have significantly lower 

collagen composition (Zhu et al., 2008). Other ex-vivo studies reported an over-

deposition of collagen bundles of type I and III fibrils at tumour sites (Fang et al., 2014).  

Collagen type V was also present in about 10% of total collagen in tumourous breasts, 

whereas only 1% of total collagen in normal breast is type V collagen (Luparello et al., 

1988).  In normal breast tissue, collagen surrounding epithelial structures is smooth and 
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curly in structure, however, with tumour progression, the collagen thickens, linearizes and 

stiffens, promoting metastasis and promoting cells migration into the extra cellular matrix 

(ECM). Many studies have confirmed that increased density in breast correlates to higher 

incidences of breast cancers. This increase in breast density can be attributed to increased 

fibril collagen deposition and thus collagen can be hypothesized to promote 

tumorigenesis.  Provenzano et al. (2008) demonstrated that tumour formation, invasion 

and metastasis in breast tissue are enhanced in collagen-dense stroma (Provenzano et al., 

2008). Haka et al. concluded increased collagen in both benign and cancerous breast 

tissue relative to normal breast tissue using Raman spectroscopy (Haka et al., 2006). All 

previous literature matches our results of significantly increased collagen content 

(amplitude of 0.572 a.u. and integral area of 15.778 a.u.) at 400 nm in tumour compared 

to the normal (amplitude of 0.368 a.u. and integral area of 9.746 a.u.) breast samples as 

per figure 15 and table 13.  

Another major fluorescence component displaying significant differences between 

tumour and normal breast tissue at 460 nm is the emission of NADH. Like collagen, 

NADH is also found to be significantly higher in tumour compared to the normal breast 

samples.  NADH is one of the main coenzymes responsible for metabolic activities and 

the relative concentration of this coenzyme changes according to the status of oxidative 

metabolism of the cells.  NADH concentration can be monitored as the shift from 

oxidative phosphorylation to aerobic glycolysis is observed in the progression from 

normal to malignant state. In glycolysis, glucose is converted to two pyruvate molecules 

that are subsequently converted into lactate, resulting in a net production of 2 ATP and 2 

NADH molecules whereas in oxidative phosphorylation, glucose results in 36 ATP 
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molecules and 10 NADH that are then oxidized to NAD+ molecules. Thus, the shift to 

glycolysis results in an increase in NADH (Ostrander et al., 2010). (Zhu et al., 2008, Xu 

et al., 2015, Skala et al., 2007, Uppal and Gupta, 2003, Pires et al., 2014) also found 

significantly higher NADH levels in malignant breast tissue and attributed the higher 

NADH levels to an imbalance in metabolic activity associated with increased 

proliferation of ducts and lobular secretion, compared to normal breast tissue where 

adipose tissue have a more stable metabolic rate (Zhu et al., 2008).  Increased NADH in 

tumour compared to normal has also been noted by our study where tumour displayed 

higher NADH amplitude (0.986 a.u.) and integral area (62.517 a.u.) in comparison to 

normal NADH amplitude (0.971 a.u.) and integral area of (60.720 a.u.) as shown in table 

14 and figure 15 which agrees with the above literature.  

The third constituent of the emission spectra peaking at 510 nm in figure 15 is attributed 

to FAD. Like NADH, FAD is another coenzyme responsible for cellular metabolism. The 

high-energy demands and biomass cell production in breast cancer results in major 

metabolic reprogramming in tumour state, affecting the levels of FAD present within the 

cell.  In normal conditions, NADH, acting as an electron donor, reduces FAD to FADH2. 

After a series of intermediate reactions, FADH2 then binds to molecular oxygen to 

become oxidized to FAD. However, in tumour development, the low oxygen 

concentrations prevent the conversion of FADH2 to FAD, thereby resulting in lower 

levels of FAD in tumour breast compared to normal breast samples (Wojcieszynska et al., 

2012). This explains the lower FAD content (amplitude of 0.258 a.u. and integral area of 

9.935 a.u.) observed in the tumour breast tissue samples compared to the normal FAD 
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content (amplitude of 0.332 a.u. and integral area of 13.659 a.u.) reported in our study 

(table 15).  

Although NADH and FAD values provide information on the metabolic state of the 

tissue, the ratio of NADH to FAD is a more accurate measurement as it provides a control 

for cell density and accounts for metabolic variation between a healthy and diseased 

cellular status. Since NADH is one of the main electron donors while FAD is an electron 

acceptor in cellular metabolism, the oxidation-reduction (red-ox) ratio is a more robust 

measure of cellular metabolism and can be determined by the ratio of NADH to FAD 

(Ostrander et al., 2010). This red-ox ratio is important to monitor, as it is sensitive to 

cellular metabolic changes and oxygen depletion occurring during the progression of 

healthy to malignant state. As discussed above, there is a shift in metabolic process from 

oxidative phosphorylation to glycolysis. In oxidative phosphorylation, NADH is oxidized 

to its NAD+ form. However, due to depletion of oxygen levels in the tumour state, there 

is a decrease in the oxidation of NADH to NAD+ resulting in an accumulation of NADH 

(Alhallak et al., 2016).  In oxidative phosphorylation, there is also an increase in FADH 

conversion to FAD, resulting in increased FAD levels in normal cellular conditions. 

However, the lower oxygen concentrations result in lower FAD levels in diseased 

conditions. As observed in this study, the increased NADH and decreased FAD levels 

observed in tumour tissue results in significantly increased NADH/FAD (amplitude of 

3.978 a.u. and integral area of 6.854 a.u.) red-ox levels compared to the normal 

NADH/FAD content (amplitude of 3.07 a.u. and integral area of 4.88 a.u.) as shown in 

table 16. 
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6.3 Diffuse Reflectance 
 
Diffuse reflectance is used to reveal information on the absorption and scattering of the 

biological tissue. The absorption coefficient provides information on the main absorbers 

present such as oxygenated and de-oxygenated hemoglobin while the reduced scattering 

coefficient provides information on the scattering bodies within the tissue. In tumour 

tissue, increased cell nuclei, collagen fibers, cross-links in the stroma as well as 

organelles, results in increased backscatter, or diffuse reflectance output (Yu et al., 2014). 

This allows the use of diffuse reflectance as a quantitative tool that can exhibit changes in 

physiological and morphological changes in tumour tissue.  Numerous studies have used 

diffuse reflectance as an individual modality to discriminate between diseased and 

healthy tissue (Bigio et al., 2000, Zhu et al., 2006b, Palmer et al., 2002, Volynskaya et al., 

2008, Evers et al., 2013) and observed higher diffuse reflectance in tumour compared to 

normal breast tissue. Bigio et al., (2000) reported sensitivity of 69% and specificity of 85 

% in an in-vivo study to differentiate between malignant and non malignant breast tissue, 

while Zhu et al., reported 83 % and 76% sensitivity and specificity respectively. 

However, Palmer et al., (2002) conducted ex-vivo studies on breast tissue and observed a 

lower sensitivity of 30% and 78% specificity using diffuse reflectance alone. This was 

consistent with our findings as shown in table 17 and figure 16 in section 5.2.3 where 

higher DR was noted for tumour samples (0.409 a.u at 545 nm and 0.395 a.u. at 575 nm) 

when compared to normal breast samples (0.312 a.u at 545 nm and 0.306 a.u. at 575 nm).  

6.3.1 Absorption coefficient 
 
Although no significant differences were observed between the average absorption 

coefficient in tumour and normal samples in our study as shown in section 5.2.4.1 (figure 
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17 and table 18), other studies found significantly higher absorption in normal compared 

to tumour tissue, especially at 545 and 575 nm, wavelengths corresponding to oxygenated 

hemoglobin, the main absorber present in breast tissue. Zhu et al., (2008) attributed the 

decrease in hemoglobin saturation in malignant breast tissue to the limited oxygen supply 

in the rapidly proliferating tumour cells. Zhu also noted significantly higher hemoglobin 

saturation in normal and benign tissue compared to malignant tumour. 

6.3.2 Reduced scattering coefficient 
 
The reduced scattering coefficient provides information on the scattering centers present 

in the biological tissue, such as the nuclei. Since increases in cellular proliferation and 

cell density is a hallmark of tumour progression, an increase in the reduced scattering 

coefficient is anticipated in tumour tissue. The reduced scattering coefficient was also 

shown to increase as a result of increased nuclear size, DNA content and hyperchromasia 

(Yu et al., 2014).  Significantly higher reduced scattering coefficient was observed in 

tumour (22.162 cm-1 at 545 nm and 21.273 cm-1 at 575 nm) compared to the normal breast 

tissue (18.571 cm-1 at 545 nm and 17.826 cm-1 at 575 nm) as per table 19 and figure 18, 

which was consistent with findings from previous studies (Ghosh et al., 2001, Breslin et 

al., 2004, Glennie et al., 2014, Vishwanath et al., 2011). Zhu et al., (2008) noted that the 

reduced scatter coefficient was inversely correlated to the amount of adipose tissue 

present as well as the patient body mass index (BMI). The observed increase in the 

reduced scatter coefficient observed in this study could be linked to increased fibro-

connective and glandular tissue content and thus cancer development. The reduced 

scattering coefficient was also found to be significantly higher in benign tumours when 

compared to normal tissue and significantly higher in malignant tumours compared to 
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benign tumour, showing the potential of the reduced scattering coefficient to not only 

differentiate between tumour and normal state, but a more refined classification of tumour 

class and the ability to use the reduced scattering coefficient as a valuable parameter in 

tissue classification.  

6.4 Classifications and Prediction 
 
PCA models were built and tested using SIMCA to predict the unknown samples. A 

normal and tumour model was constructed using 29 cases that yielded specificity of over 

80% and sensitivity of about 70%. These models were used to predict all forty samples 

using the jack-knifing technique and yielded results of 60% specificity and sensitivity just 

above 50%. The constraints of the modeling outcomes are described in the following 

chapter.  

6.5 Conclusion 
 

The time-resolved fluorescence and diffuse reflectance spectroscopy system was used to 

discriminate between normal and tumour breast samples in 40 matches pair cases. The 

fluorescence intensity was used to provide information on the endogenous fluorophores 

collagen, NADH and FAD. The diffuse reflectance was used to reveal tissue optical 

properties; the absorption and reduced scatter coefficient. Histological analysis was 

performed on all tissues to specify the fat and tumour content within each of the normal 

and tumour samples respectively. Statistical significant variables (collagen, NADH, FAD, 

and NADH/FAD amplitude and integral area, as well as the diffuse reflectance spectra 

and the reduced scattering coefficient) were used along with histological tissue 

classifications in constructing the normal and tumour principle component models. 

SIMCA was used as a binary classification tool to predict tissue as either normal or 
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tumour using PC models and achieved sensitivity of 60% and specificity slightly above 

50%.  

6.6 Future work 
 

Although the sensitivity and specificity were lower than expected, the accuracy of the 

models can be significantly improved with modifications applied to methodology, 

modeling and data analysis. This study looked at fluorescence and diffuse reflectance 

independently. However, since fluorescence spectroscopy is affected by absorption and 

scattering events in the biological tissue, future work can aim to look at the integration of 

the diffuse reflectance data to adjust and modify the fluorescence data for scattering and 

absorption events. This retrieval of the intrinsic fluorescence can significantly improve 

the accuracy of the tr-FRS system. Another adjustment is to accurately label or cut out the 

breast tissue after optical measurements at the exact measurement location to ensure 

histological analysis is being performed on the area of interest to reveal more precise 

tumour and fat content evaluation. Another technique to resolve this issue could be to 

conduct more repeat measurements on a single specimen, so that the average fluorescence 

lifetime, fluorescence intensity, and diffuse reflectance would better represent the whole 

tissue. Our current histological analysis was conducted on bulk tissue and any tissue 

inhomogenieties may have resulted in imprecise quantification of tissue fat and tumour 

content. Furthermore, previous work has looked at calculating ß-carotene and hemoglobin 

concentration calculations to assist in differentiating between normal and malignant 

breast tissue. An addition to our modeling would be including ß-carotene and hemoglobin 

concentration calculations extracted from the optical properties using Monte Carlo 
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simulations and could display significant differences between tumour and normal breast 

samples as well as potentially strengthening modeling, prediction and classification.  
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