
Incremental Computation of Taylor Series and

System Jacobian in DAE solving using Automatic

Differentiation

INCREMENTAL COMPUTATION OF TAYLOR SERIES AND

SYSTEM JACOBIAN IN DAE SOLVING USING AUTOMATIC

DIFFERENTIATION

BY

XIAO (SHAWN) LI

a thesis

submitted to the school of computational science and engineering

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

master of science

c© Copyright by Xiao (Shawn) Li, June 2017

All Rights Reserved

M.Sc. in Computational Science and Engineering (2017) McMaster University

(School of Computational Science and Engineering) Hamilton, Ontario, Canada

TITLE: Incremental Computation of Taylor Series and System

Jacobian in DAE solving using Automatic Differentiation

AUTHOR: Xiao (Shawn) Li

School of Computational Science and Engineering

McMaster University, Hamilton, Ontario, Canada

SUPERVISOR: Nedialko S. Nedialkov

NUMBER OF PAGES: viii, 67

ii

Dedicated to my family and

true friends in my life.

Abstract

We propose two efficient automatic differentiation (AD) schemes to compute incre-

mentally Taylor series and System Jacobian for solving differential-algebraic equations

(DAEs) by Taylor series. Our schemes are based on topological ordering of a DAE’s

computational graph and then partitioning the topologically sorted nodes using struc-

tural information obtained from the DAE. Solving a DAE by Taylor series is carried

out in stages. From one stage to another, partitions of the computational graph are

incrementally activated so that we can reuse Taylor coefficients and gradients com-

puted in previous stages. As a result, the computational complexity of evaluating a

System Jacobian is independent of the number of stages.

We also develop a common subexpression elimination (CSE) method to build a

compact computational graph through operator overloading. The CSE method is of

linear time complexity, which makes it suitable as a preprocessing step for general

operator overloaded computing. By applying CSE, all successive overloaded compu-

tation can save time and memory.

Furthermore, the computational graph of a DAE reveals its internal sparsity struc-

ture. Based on it, we devise an algorithm to propagate gradients in the forward mode

of AD using compressed vectors. This algorithm can save both time and memory

iv

when computing the System Jacobian for sparse DAEs. We have integrated our ap-

proaches into the Daets solver. Computational results show multiple-fold speedups

against two popular AD tools, FADBAD++ and ADOL-C, when solving various sparse

and dense DAEs.

v

Acknowledgements

I thank my supervisor, Professor Ned Nedialkov, for introducing me to the area of

automatic differentiation. Without the opportunity to work on Daets, implementing

an automatic differentiation tool with an incremental computing strategy for a DAE

solver like Daets would have been very difficult. It has been a pleasure to learn and

work with him. I deeply appreciate his kind guidance and support.

I own my gratitude to Dr. Guangning Tan for the wisdom he shared with me both

in academic and personal life. I am also grateful to my loyal friends, Zheng Gu and

Lu Zhu, who gave me a lot of help and provided many needed hours of distraction.

I thank my office mates, Hongsheng Zhong, Reza Zolfaghari, and John Ernsthausen,

for many constructive conversations and happy hours in the graduate office.

Finally, I am in indebted to my family, for their love and support in my life. It is

their encouragement that saw me through my graduate study abroad.

vi

Contents

Abstract iv

Acknowledgements vi

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 3

1.3 Thesis organization . 4

2 Theoretical Background 6

2.1 Outline of DAE solution scheme . 7

2.2 Code list . 10

2.3 Computational graph . 12

3 Common Subexpression Elimination 15

3.1 Framework of CSE . 16

3.2 Algorithms for CSE . 19

4 Computing Taylor Series 24

4.1 Topological ordering . 25

vii

4.2 Reduction for incremental computing 28

5 Evaluating Jacobian 33

5.1 Amortizing overhead across stages . 33

5.2 Exploiting sparsity . 37

6 Computational Results 48

6.1 Case studies of CSE . 48

6.2 Speed test for computing Taylor series 50

6.3 Performance in solving DAEs . 53

6.3.1 DAEs used in the benchmarking 54

6.3.2 Incremental computing . 54

6.3.3 Comparison against other AD tools 55

6.3.4 Scaling of computations: work breakdown 56

7 Conclusions and Future Work 59

7.1 Conclusions . 59

7.2 Future work . 60

Appendix A Proof of Lemma 5.1.1 61

viii

Chapter 1

Introduction

Integrating a system of differential-algebraic equations (DAEs) by Taylor series (TS)

involves multiple stages to solve a sequence of nonlinear/linear systems of equa-

tions [26]. Since solving a nonlinear system requires solving a linear system in each

iteration, the overall performance of a DAE solver based on TS boils down to the

efficiency of two building blocks: (a) computing TS coefficients (right-hand side)

and System Jacobian (left-hand side) via automatic differentiation (AD) to form the

underlying linear system, and (b) dense/sparse linear algebra to solve it.

For part (b), excellent collections of numerical linear algebra routines [14] have

been developed. In the Daets solver [25], we use LAPACK [23] for dense linear

algebra and SuiteSparse [13] for sparse linear algebra. The performance of these

linear solvers has been tuned for decades.

Our goal is to reduce the computing time in (a), which dominates the solution time

by Daets, especially when a DAE is sparse. This thesis tackles part (a) by designing

efficient AD schemes that exploit the overall DAE solution scheme and structure of

the DAE.

1

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

First and foremost, the importance of scalability is well recognized, and it is always

attractive to see a numerical solver capable of solving larger and larger problems. Our

aim is to have the growth rate of computing cost in part (a) as close to that of part

(b) as possible.

Since there are multiple stages in the DAE solution scheme by TS (outlined in

§2.1), there are opportunities to reuse gradients in the System Jacobian (§5.1) and

Taylor series coefficients (TCs, §4) computed in previous stages. Motivated by this

consideration, we study a DAE’s computational graph to derive active partitions of

that graph corresponding to data at different stages. Then, we develop an incremental

computing strategy to recompute only those items that depend on the subset of the

input variables that have changed.

DAEs can be large while sparse. The gradient patterns in the computational

graph of a DAE embody its internal sparsity structure (presented in §5.2). Based on

this structure, it is feasible to compute only nonzero components of gradients, which

can lead to lower computational complexity of computing the System Jacobian when

a DAE is sparse.

Besides scalability, we should also consider the user experience of writing down

the code that describes the equations to be solved. It is possible to rearrange the

code manually to eliminate common subexpressions in the equations. However, doing

it by hand for large and complicated equations is cumbersome and error-prone, if not

infeasible. The users of a DAE solver or AD tool should be free to provide equations in

a way that is natural to them. They should not be worried about introducing duplicate

subexpressions that would impact on performance. This consideration motivates

1.2. CONTRIBUTIONS 3

us to develop a common subexpression elimination (CSE) technique in the context

of operator overloading computing to build automatically a compact computational

graph.

Also, the DAE to be solved can be the result of differentiating another system,

for example, the Euler-Lagrange equation in computer graphics [24] and mechanical

systems [33]. In such scenarios, it may be impossible to eliminate identical subexpres-

sions by hand, if the differentiation is automated (which should be the case in practical

applications). One has to rely on CSE to obtain runtime and memory savings.

There are various state-of-the-art AD tools developed over the past decades [1].

They have their own advantages and disadvantages in terms of performance, ease of

use, and richness of functionalities. The goal of this thesis is not to design a new AD

package with the best performance ever. Rather, we aim to present the design of AD

schemes at the application level, in particular, solving DAEs in this thesis. Instead

of treating an application as a black box and simply using an existing AD package to

compute derivatives, we wish to study the structure of our problem so we can derive

efficient methods.

Finally, we hope that the idea of coupling AD with incremental computing would

be enlightening to other problems involving multiple solving stages.

1.2 Contributions

The main contributions of this thesis are summarized as follows.

1) We propose a CSE method of linear-time computational complexity applied to

a computational graph built via operator overloading. This method eliminates

4 CHAPTER 1. INTRODUCTION

nodes representing the same mathematical expression, leaving only one such node

to be evaluated. This results in savings in both time and memory of successive

AD computations.

2) We design two efficient incremental schemes for evaluating TCs and System Jaco-

bian, respectively, by reusing TCs and gradients derived in previous stages, and

recomputing only those TCs and gradients that have changed. As a result, the

computational complexity of evaluating TCs throughout all stages is reduced from

cubic to quadratic in terms of the required degree of TS, while the complexity of

computing the System Jacobian across all stages is independent of the number of

stages.

3) Based on the internal sparsity structure of the given equations, we devise a sparse

gradient propagation method in the forward mode of AD. This method can lead

to substantial runtime and memory savings in computing a sparse Jacobian.

4) By integrating the above methods into the Daets solver, we have improved sub-

stantially its performance.

We hope that 1) and 3) will be of interest to the AD community, and computing

in general.

1.3 Thesis organization

Chapter 2 reviews the theoretical background underpinning the work developed in

this thesis. First, we give an overview of the solution scheme for solving DAE by TS.

Then, we describe the concepts of code list and computational graph.

1.3. THESIS ORGANIZATION 5

Chapter 3 presents the proposed CSE technique for operator overloading com-

puting by showing the main framework and algorithms, and illustrates it with an

example.

Chapter 4 describes the incremental computing scheme for evaluating TCs based

on topological ordering and partitioning of the computational graph. Following that,

we illustrate a reduction method to reduce the computational complexity with respect

to the required degree of TS.

Chapter 5 derives methods for computing the System Jacobian of a DAE. First, we

design an incremental computing scheme to amortize the overhead in evaluating this

Jacobian across all stages. Then, we derive a sparse gradient propagation algorithm

in the forward mode of AD based on the internal sparsity structure of the equations.

Chapter 6 presents computational results. We show the effectiveness of the pro-

posed methods and report the overall performance of our AD schemes in solving dense

and sparse DAEs

Chapter 7 draws conclusions and suggests directions for future work.

Chapter 2

Theoretical Background

We are interested in solving numerically an initial-value problem in differential-

algebraic equations (DAEs) of the form

fi(t, the xj and derivatives of them) = 0, i = 1 :n, (2.1)

where the xj(t), j = 1 :n, are state variables, and t is the time variable. The fi can be

arbitrary expressions built from the xj and t using +,−, ∗, /, other analytic standard

functions, and the dp/dtp operator. Solving DAE by TS needs to compute deriva-

tives1 of state variables (up to a required order), which involves solving a sequence of

nonlinear/linear systems as presented in the following section.

1By a “derivative” x
(r)
j we shall also mean x

(0)
j = xj , r = 0.

6

2.1. OUTLINE OF DAE SOLUTION SCHEME 7

2.1 Outline of DAE solution scheme

Here we present the solution scheme for solving DAE by TS based on Pryce’s struc-

tural analysis (SA) [32]. This SA prescribes the systems of equations to be solved at

different stages. More details can be found in [26,27,28].

This method constructs an n × n signature matrix Σ = (σij), whose (i, j) entry

is defined as [32]

σij =

 highest order of derivative to which xj occurs in fi; or

−∞ if xj does not occur in fi.

A highest-value transversal (HVT) of Σ is a set T of n positions (i, j) with one

entry in each row and each column, such that the sum of these entries is the largest

possible. Then we find two valid offset vectors c = (c1, . . . , cn) and d = (d1, . . . , dn),

such that

ci ≥ 0 for all i; dj − ci ≥ σij for all i, j with equality on an HVT. (2.2)

A pair of c and d satisfying (2.2) is not unique. However, there exists a unique

elementwise smallest pair of c and d for (2.2), which we refer to as the canonical

offset pair [32]. Any valid pair of c and d can be used to prescribe a stage-by-stage

scheme for solving DAEs by TS. The derivatives of state variables, for integrations

by TS, are derived in stages.

Let kd = −maxj dj. According to c and d, at each stage k (for k = kd, kd + 1, . . .)

8 CHAPTER 2. THEORETICAL BACKGROUND

we

solve
{
f
(k+ci)
i = 0 | k + ci ≥ 0

}
(2.3)

for
{
x
(k+dj)
j | k + dj ≥ 0

}
(2.4)

using values for
{
x
(r)
j | 0 ≤ r < k + dj

}
, which are found at stages < k. We refer to

(2.3, 2.4) as our DAE solution scheme.

The system (2.3) is generally nonlinear and underdetermined for k < 0. When

k = 0, (2.3) can be either nonlinear or linear, while for k > 0, (2.3) is always linear.

For k ≥ 0, the number of variables is also equal to the number of equations.

In practice, when solving (2.1) numerically by TS, we compute TCs x
(k+dj)
j /(k +

dj)! directly; that is, we have TCs instead of derivatives in (2.3, 2.4). Since compo-

nents in c are not necessarily equal, TCs of fi’s in (2.3) can be of different orders at

a given stage.

Definition 2.1.1 System Jacobian J is a n× n matrix, defined as

Jij =

∂fi

∂x
(dj−ci)
j

if this derivative is present in fi,

0 otherwise.

(2.5)

Definition 2.1.2 At stage k, Jk is a mk × nk submatrix of J, formed by differenti-

ating (2.3) with respect to (2.4) [27]; that is,

∂f
(k+ci)
i

∂x
(k+dj)
j

=
∂fi

∂x
(dj−ci)
j

, (2.6)

2.1. OUTLINE OF DAE SOLUTION SCHEME 9

where mk is the number of equations in (2.3), and nk is the number of variables

in (2.4).

The “=” in (2.6) is based on Griewank’s Lemma [21] given below.

Lemma 2.1.1 (Griewank’s Lemma) Let v be a function of t, the xj(t), j =

1, . . . , n, and derivatives of them. Denote v(p) = dpv/dtp, where p ≥ 0. If v does

not depend on any derivative of xj higher than the qth, then

∂v

∂x
(q)
j

=
∂v′

∂x
(q+1)
j

= · · · = ∂v(p)

∂x
(q+p)
j

. (2.7)

To solve (2.3) either linearly or nonlinearly (typically via either Gauss-Newton or

Newton’s method), we need to form a system of linear equations. At stage k ≥ 0, the

matrix of this linear system is J [32]. At stage k < 0, the matrix is Jk.

The right-hand side is a vector of TCs obtained by evaluating (2.3) with trial

values for (2.4). They are obtained from previous stages, integration by TS from a

previous time step at the first stage, or the user at the initial integration step. Denote

the right-hand side vector by b, and the vector of trial values and corrected values

for (2.4) by xt and xc, respectively. The underlying linear system at stage k is

Jk(xt − xc) = b.

This thesis will focus on the methods for efficient evaluations of J and TCs in b

using automatic differentiation.

10 CHAPTER 2. THEORETICAL BACKGROUND

Example 2.1.1 The simple pendulum as a DAE is:

0 = f = x′′ + xλ

0 = g = y′′ + yλ−G

0 = h = x2 + y2 − L2,

(2.8)

where L (length) and G (gravity) are constants. The input variables are x, y, and λ;

the output variables are f , g, and h. By Pryce’s SA, we have a canonical offset pair:

c = (0, 0, 2), d = (2, 2, 0), and kd = −2 for this DAE. In Table 2.1, we illustrate the

DAE solution scheme (2.3, 2.4) when applied to (2.8).

Table 2.1: Solution scheme for the simple pendulum DAE.

k solve for Jk

−2 0 = h = x2 + y2 − L2 x, y [2x 2y]

−1 0 = h′ = 2(xx′ + yy′) x′, y′ [2x 2y]

0 0 = f = x′′ + xλ [1 0 x]

0 = g = y′′ + yλ−G x′′, y′′, λ [0 1 y]

0 = h′′ = 2(x′′x+ x′2 + y′′y + y′2) [2x 2y 0]

> 0 0 = f (k), g(k), h(k+2) x(k+2), y(k+2), λ(k) J

2.2 Code list

Each fi in (2.1) is described by an expression containing arithmetic operations, stan-

dard functions, and the dp/dtp operator. Such an expression can be represented by

code list containing input, intermediate, and output variables as follows.

2.2. CODE LIST 11

The input variables are t and xj for j = 1 :n. We rename them as v−n = t and

vj−n = xj. Then each subsequent variable vr for r > 0 is defined as the result of

previous variables that vr directly depends on through an elementary function φr.

Each φr can be an arithmetic operation, a call to standard function, or dp/dtp. That

is, φr represents an operation of either binary or unary form. We write

vr = φr({ vs | s ≺ r }), (2.9)

where the precedence relation s ≺ r means that vr directly depends on vs and also

implies −n ≤ s < r . If i ≺ k ≺ j, then i ≺∗ j, where ≺∗ is the transitive closure of

≺. i ≺∗ j indicates that vj depends on vi either directly or indirectly.

If an operand of a binary operator is a constant number, we refer to that number

directly instead of assigning it to a variable. We refer to the last variable in the code

list of an fi as an output variable. Assuming that we evaluate all the fi’s and that

the last n variables are output variables, we can illustrate the above as

[
v−n︸︷︷︸
t

, v1−n, . . . , v0︸ ︷︷ ︸
xj

, v1, . . . , vq, vq+1, . . . , vq+n︸ ︷︷ ︸
fi

]
, (2.10)

where v1, . . . , vq are intermediate variables.

Example 2.2.1 For the simple pendulum DAE in (2.8), the input variables are x,

y, and λ; the output variables are f , g, and h. Table 2.2 shows a possible code list

for (2.8).

12 CHAPTER 2. THEORETICAL BACKGROUND

Table 2.2: Code list for the simple pendulum

code list expression

x1 = v−2 = x x

x2 = v−1 = y y

x3 = v0 = λ λ

v1 = d2v−2/dt
2 x′′

v2 = v−2 ∗ v0 xλ

v3 = d2v−1/dt
2 y′′

v4 = v−1 ∗ v0 yλ

v5 = v3 + v4 y′′ + yλ

v6 = sqr (v−2) x2

v7 = sqr (v−1) y2

v8 = v6 + v7 x2 + y2

f1 = v9 = v1 + v2 f = x′′ + xλ

f2 = v10 = v5 −G g = y′′ + yλ−G

f3 = v11 = v8 − L2 h = x2 + y2 − L2

2.3 Computational graph

The techniques developed in this work are based on a computational graph [5] repre-

senting a code list.

Definition 2.3.1 For a code list, its computational graph is a directed acyclic graph

(DAG) G = (V,E). We label the vertices with the variable names in the code list:

V = {vs | −n ≤ s ≤ q + n}. There is a directed edge from vertex vs to vertex vr, if

and only if variable vr depends directly on variable vs: E = {(vs, vr) | s ≺ r}.

For an edge (vs, vr) in G, we say vr is the parent of vs, and vs is the child of vr.

2.3. COMPUTATIONAL GRAPH 13

x y

1v 2v

f

3v 4v

5v

g

6v 7v

8v

h

**sqr sqr

2d dt 2d dt

Output

Input

Figure 2.1: Computational graph for the code list in Table 2.2. The “−” at node h
denotes the subtraction by the constant L. Similarly for node g: subtraction by the
constant G.

Example 2.3.1 Figure 2.1 shows the computational graph corresponding to the code

list in Table 2.2.

We denote the number of vertices and the number edges in graph G = (V,E)

by |V | and |E|, respectively. The transpose of a directed graph G, denoted by GT ,

is obtained by reversing the directions of the edges of G. The transpose GT of a

computational graph G is a binary DAG [35]. That is, at most two edges leave each

node in GT .

Figure 2.2 shows a topological ordering of the computational graph from Fig-

ure 2.1. Note that in this ordering, all the descendants of a given node must appear

before the node itself. Thus, if we evaluate nodes vs for s = −n : q + n, in the

computational graph following its topological order, we can obtain the values of all

corresponding expressions. Moreover, for any expression represented by a vs, we can

compute the value of that expression by evaluating all nodes in { vr | r ≺∗ s } and vs

itself with respect to this ordering.

14 CHAPTER 2. THEORETICAL BACKGROUND

x v6 y v7 hv8 v1 λ v2 f v4v3 gv5

Figure 2.2: Topological ordering of the computational graph in Figure 2.1.

Note that the topological ordering of a computational graph is not necessarily

unique. Different orderings may result in different performance, due to data locality

and cache efficiency. However, we do not study the effect of various topological

orderings in this thesis.

Definition 2.3.2 A node is shared in a computational graph G, if this node is reach-

able from more than one node in GT .

It is not unusual for a set of fi’s in (2.1) to have common subexpressions. As

a result, there are shared nodes in a computational graph built by evaluating (2.1).

Accordingly, the evaluations of common subexpressions can be done by evaluating

these shared nodes with respect to the topological ordering of fi’s computational

graph.

To avoid the overhead of repeated dynamic memory allocations and temporary

objects creations (typical in an operator overloaded implementation of AD), we build

the computational graph in advance during a parsing stage, as described in next

chapter.

Chapter 3

Common Subexpression

Elimination

Common subexpression elimination (CSE) is a standard compiler optimization tech-

nique [22]. However, to the best of the author’s knowledge, no compilers perform

CSE when operators in expressions are overloaded. We develop a CSE technique

that applies to a computational graph built through operator overloading. Before we

present our method, we illustrate our idea on the following example.

Example 3.0.1 Suppose we are evaluating two expressions z ∗ (x+ y) and (x+ y) ∗

(x+y+λ). They can be represented by either (a) or (b) in Figure 3.1. In Figure 3.1(a),

the subexpression x+ y would be evaluated three times. In Figure 3.1(b), the nodes

v1, v3, and v4 are merged into node u1. Hence, the subexpression x+ y appears only

once in the computational graph and would be evaluated only once.

In [35, §19.5], Sedgewick discusses how to convert the DAG in Figure 3.1(a) to

the DAG in Figure 3.1(b). Our goal is, however, to build a computational graph like

15

16 CHAPTER 3. COMMON SUBEXPRESSION ELIMINATION

z

v4

x y

λ

v5v3

x y

v6

v1

x y

v2

+ ++

**

(a)

u4u2

u3z

u1

x y

λ
+

+

**

(b)

Figure 3.1: Computational graphs of expressions z∗(x+y) and (x+y)∗(x+y+λ). (a) A
DAG consists of two binary trees representing z ∗(x+y) (left) and (x+y)∗(x+y+λ)
(right), respectively. (b) A more compact DAG with common subexpression x + y
appearing only once.

the compact one in Figure 3.1(b) directly from the code list without constructing the

one in Figure 3.1(a) first.

3.1 Framework of CSE

We show the flow digram of our CSE method in Figure 3.2. While processing the

code list of expressions through operator overloading, we build a computational graph,

G = (V,E), by inserting nodes into V and edges into E as the operators are evaluated.

3.1. FRAMEWORK OF CSE 17

Is index > |V |

Obtain a
unique index

for vj

Create a
unique
symbol

Ternary
search trie

Indexing

For each
variable vj

Input
code list

Add edge(s)
leaving this
node to E

Create a
new node and
add it to V

vj represents

an identical
subexpression

YesNo

Figure 3.2: Flow diagram of the proposed CSE method. A ternary search trie is a
data structure that implements a symbol table (see Definition 3.1.1).

Definition 3.1.1 A symbol table is a collection of key-value mappings, where there

are no duplicate keys, and each key maps to a unique value.

We build a symbol table, where keys are string literal representations of symbols,

while values are consecutive integer numbers starting from one. Such a symbol table

can be implemented by the ternary search trie [34, §15].

We denote a query on table T with key e by T.map(e). If T contains a mapping

18 CHAPTER 3. COMMON SUBEXPRESSION ELIMINATION

for e, T.map(e) returns the mapped value of e. Otherwise, T.map(e) inserts a new

mapping of e in T and then returns the current number of mappings in T , denoted

by |T |; the mapped value of e is |T |.

We associate a symbol with each variable vj (input, intermediate, or output), for

j = −n : q + n. Then each vj’s symbol s is mapped to a unique integer by T.map(s).

We refer to this integer as the index of vj and denote this index by vj.index. It starts

from one and increases by one when a new symbol appears. Variables that represent

same subexpressions must carry the same symbol, which maps to the same index

value. This is how we recognize common subexpressions.

We process one variable at a time. For each variable vj, if vj.index > |V |, then

no variables representing the same subexpression appear before vj. Accordingly, we

should create a new node for vj. If vj.index ≤ |V |, then a variable representing the

same subexpression has appeared before vj. At the end of this process, variables

representing the same subexpression are associated with a single node (e.g., u1 in

Figure 3.1(b)) in the resulting computational graph.

To make the above scheme work, we need to associate with each variable a symbol

such that it characterizes a subexpression uniquely. Specifically, the variables rep-

resenting the same subexpression should be associated with the same symbol, while

those representing different subexpressions should be associated with different sym-

bols.

For each input variable vj−n = xj, for j = 1 :n, we set the symbol associated with

xj to be "j". For a non-input variable, we use either of the two routines in Figure 3.3

to create a unique string literal for such a variable, depending on whether its associ-

ated operator is binary or unary. These two routines rely on two subroutines, denoted

3.2. ALGORITHMS FOR CSE 19

by enc(·) and name(·), which encode the operand and the operator, respectively. By

encoding via enc(v), we mean

(a) the decimal literal representing the value of v.index, if v is a variable; or

(b) concatenating the decimal literal representing v’s value with "c", if v is a constant.

For instance, if v.index = 10, then enc(v) = "10" according to (a); if v = 1.23e-5,

then enc(v) = "1.23e-5c" according to (b). By name(op), we mean the string

encoding of an operator op, e.g., "+", "-", "*", "/", "sin", "cos", "exp", etc.

1. BinaryMap(op, l, r)

op is a binary operator, l is the left operand, and r is the right operand. l and

r can be variables in the code list or numeric constants. BinaryMap returns a

string literal by concatenation: enc(l) + name(op) + enc(r).

2. UnaryMap(op, g)

op is a unary operator, and g is the operand; g can be a variable in the code

list or a constant number. UnaryMap returns a string literal by concatenation:

enc(g) + name(op).

Figure 3.3: Two routines that create string literal representations of symbols for
variables: the first one for variables with binary operators and the second one for
variables with unary operators.

3.2 Algorithms for CSE

Algorithm 3.2.1 describes how to index a variable in the code list and add new node

to the computational graph accordingly. This algorithm returns true if and only if vj

represents a subexpression appearing before vj.

20 CHAPTER 3. COMMON SUBEXPRESSION ELIMINATION

Algorithm 3.2.1 Indexing(vj, T, V)

Input

variable vj in a code list

symbol table T mapping symbols to unique indices

Output

vertex set V of computational graph G(V,E)

Compute

% Create symbol s (string literal) for vj

if vj is an input variable (j ≤ 0)

s = "j"

else

if vj ≡ op(l, r)

s = BinaryMap(op, l, r)

elseif vj ≡ op(g)

s = UnaryMap(op, g)

% Setup index for vj

vj.index = T.map(s)

% Determine whether vj represents a subexpression appearing before

if vj.index > |V |

create a node nvj .index and add it to V

return FALSE

else

return TRUE

3.2. ALGORITHMS FOR CSE 21

The required time of T.map(s) implemented by a ternary search trie is linearly

proportional to the number of characters in a given symbol s. As every symbol consists

of constant number of characters, mapping such symbol to an index by T.map(s) runs

in O(1) time and so does Algorithm 3.2.1.

Algorithm 3.2.2 presents the whole common subexpression elimination method.

Since each variable directly depends on at most two variables, and |T | is of O(N),

where N denotes the number of variables in the input code list, both the time com-

plexity and space complexity of Algorithm 3.2.2 are O(N).

Algorithm 3.2.2 Common Subexpression Elimination

Input

code list of given expressions

symbol table T mapping symbols to unique indices

Output

computational graph G(V,E) with common subexpressions eliminated

Compute

for each variable vj in the code list

if Indexing(vj, T, V) 6= TRUE

for each i ≺ j

add edge (nvi.index, nvj .index) to E

22 CHAPTER 3. COMMON SUBEXPRESSION ELIMINATION

T
ab

le
3.1:

P
ro

cess
of

b
u
ild

in
g

com
p
u
tation

al
grap

h
G

(V
,E

)
for

th
e

ex
p
ression

s
in

E
x
am

p
le

3.0.1
u
sin

g
A

lgo-
rith

m
3.2.2.

T
h
e

colu
m

n
|V
|

rep
resen

ts
th

e
cu

rren
t

size
of
V

.
T

h
e

last
tw

o
colu

m
n
s

stan
d

for
th

e
n
o
d
es

an
d

ed
ges

b
ein

g
ad

d
ed

to
G

(V
,E

),
resp

ectively
;

“−
”

d
en

otes
th

at
n
o

n
o
d
es

or
ed

ges
are

created
.

In
d
ices

m
arked

b
y

in
d
icate

w
h
ere

th
e

algorith
m

id
en

tifi
es

a
com

m
on

su
b

ex
p
ression

.

co
d
e

list
ex

p
ression

sy
m

b
ol

in
d
ex

|V
|

n
o
d
e

ed
ge(s)

v
−
3

=
x

x
"
-
3
"

1
>

0
n
1

−

v
−
2

=
y

y
"
-
2
"

2
>

1
n
2

−

v
−
1

=
z

z
"
-
1
"

3
>

2
n
3

−

v
0

=
λ

λ
"
0
"

4
>

3
n
4

−

v
1

=
v
−
3

+
v
−
2

x
+
y

"
1
+
2
"

5
>

4
n
5

(n
1 ,n

5),
(n

2 ,n
5)

v
2

=
v
−
1 ∗

v
1

z∗
(x

+
y
)

"
3
*
5
"

6
>

5
n
6

(n
3 ,n

6),
(n

5 ,n
6)

v
3

=
v
−
3

+
v
−
2

x
+
y

"
1
+
2
"

5
<

6
−

−

v
4

=
v
−
3

+
v
−
2

x
+
y

"
1
+
2
"

5
<

6
−

−

v
5

=
v
4

+
v
0

x
+
y

+
λ

"
5
+
4
"

7
>

6
n
7

(n
5 ,n

7),
(n

4 .n
7)

v
6

=
v
3 ∗

v
5

(x
+
y
)∗

(x
+
y

+
λ

)
"
5
*
7
"

8
>

7
n
8

(n
5 ,n

8),
(n

7 ,n
8)

3.2. ALGORITHMS FOR CSE 23

Example 3.2.1 Using Algorithm 3.2.2 to build the computational graph for expres-

sions in Example 3.0.1, we illustrate in Table 3.1 the process of this common subex-

pression elimination algorithm. At termination, it constructs a computational graph

that is the same as the one in Figure 3.1(b).

It is important to point out that the proposed CSE technique is different from

symbolic simplification. We do not consider whether they are symbolically equivalent

such as (a − b)2 = a2 + b2 − 2ab. However, we do recognize the commutativity

of multiplication and addition in CSE by always putting the operand with smaller

indices or constant number in the first place for the string concatenation in Figure 3.3.

Unlike symbolic simplifications, CSE is only of linear time complexity, which

makes CSE more suitable as a preprocessing step before computing. All successive

overloaded computing including automatic differentiation using either the forward

mode or the reverse mode can save time and memory by processing a compact com-

putational graph with fewer nodes.

As we shall see in Chapter 4 and Chapter 5, with CSE and topological ordering, we

not only remove duplicate storage of nodes that represent same common subexpres-

sions, but we also eliminate duplicate evaluations or visits of common subexpressions

during automatic differentiation. For all the examples in Chapter 4 and Chapter 5,

we assume CSE has been applied in the first place.

Chapter 4

Computing Taylor Series

Denote the pth Taylor series coefficient (TC) of a function u(t) at some point t∗ by

(u)p = u(p)/p!

Based on Taylor arithmetic [10], TCs of any variable in a code list (where all vari-

ables are differentiable) can be computed through a propagation of formal power se-

ries over the variables that this variable depends on (both directly and indirectly) [21,

§13.2]. For example, if TCs of x and y are known to order p, the pth TCs for x + y,

x ∗ y and x/y can be computed by

(x+ y)p = xp + yp,

(x ∗ y)p =

p∑
r=0

(x)r(y)p−r, and

(x/y)p =
1

(y)0

(
xp −

p−1∑
r=0

(y)p−r(x/y)r

)
.

24

4.1. TOPOLOGICAL ORDERING 25

Similar formulas can be established for every elementary function φr in (2.9)

(see [21, §13.2]). There are existing AD packages, for example, TADIFF1 [8] and

ADOL-C [19], that implement these Taylor rules for computing TCs. The goal of

this Chapter is to derive a scheme to compute incrementally TCs by using such for-

mulas across all stages of the DAE solution scheme outlined in §2.1.

4.1 Topological ordering

Applying rules of Taylor arithmetic to expressions represented by nodes in the com-

putational graph, TCs can be obtained through a graph traversal in topological order

(see §2.3).

At a given stage, each f
(k+ci)
i in (2.3) may be evaluated up to different order due to

components in c are not necessarily equal in DAE solution scheme (see Example 2.1.1).

Also, at negative stages, only a subset of equations is activated, cf. (2.3). Hence,

shared nodes (see Definition 2.3.2) should be evaluated up to the maximum possible

order at a given stage. That is, for a shared node reachable from multiple output

nodes representing fi’s in the transpose of the computational graph of (2.3), this node

should be evaluated up to the maximum order required among all these fi’s at a given

stage. In contrast to the top-down traversal from each output node, i.e., the TADIFF

way [8], topological ordering guarantees all shared nodes are visited exactly once.

Definition 4.1.1 At stage k, the active nodes in the computational graph G for com-

puting TCs are those nodes reachable from the nodes representing the output variables

fi’s, where k + ci ≥ 0, in GT .

1By TADIFF, we refer to the Taylor series implementation in FADBAD++ [7], which is derived
from its predecessor with the same name TADIFF [8].

26 CHAPTER 4. COMPUTING TAYLOR SERIES

Algorithm 4.1.1 Topological ordering of computational graph

Input

computational graph G(V,E)

equation sets Fk =
{
fi | k + ci = 0

}
for all k = kd, . . . , 0

Output

array A[0, . . . , |V | − 1] of references to nodes in topological order

array B[0, . . . ,−kd], where B[−k] records a position in A such that

A[0, . . . , B[−k]− 1] stores references to nodes activated at stage k ≤ 0

Compute

for stages k = kd, . . . , 0

for each node vi ∈ V corresponding to f ∈ Fk
DFS-Visit(GT , vi, A)

B[−k] = current size of A

DFS-Visit(G, vi, A)

mark node vi visited

for each vj s.t. (vi, vj) ∈ E

if node vj is not visited

DFS-Visit(G, vj, A)

append the reference to node vi at the end of array A

Algorithm 4.1.1 depicts the method to sort the nodes of a DAE’s computational

graph G in topological order using depth-first search (DFS). This algorithm puts

4.1. TOPOLOGICAL ORDERING 27

references (addresses in memory) to nodes of G into an output array A. Postorder

numbering in DFS on GT sorts the nodes into reverse topological order with respect

to GT [35]. Since the edges in GT are in opposite directions to those in G, the nodes

in A are in topological order with respect to G.

At stage k, we refer to an fi with k + ci ≥ 0 as an active equation and an fi with

k + ci = 0 as an immediately active equation, respectively. Equation set Fk contains

immediately active equations at stage k such that Fk =
{
fi | k + ci = 0

}
. We obtain

Fk by Pryce’s SA of a DAE [32] (see also §2.1).

In addition, Algorithm 4.1.1 forms a partition of G separated by B[−k] for k =

kd : 0 (see Example 4.1.1). References to active nodes at stage k ≤ 0 are stored in

A[0] through A[B[−k] − 1]. These nodes constitute a complete set of nodes needed

to compute required TCs of active equations in (2.3) at stage k ≤ 0. For positive

stages, all the nodes in array A are activated and hence required for computing TCs.

Algorithm 4.1.1 also organizes the nodes with respect to an increasing order of

stages where they are activated. Thus, the TCs of nodes computed at earlier stages

can be reused for computing TCs of higher orders at later stages. This is because the

required order of TCs for a node in the computational graph increases as the stage

increases. Based on this fact, we can incrementally compute TCs from lower order to

higher order across all the stages. Details are derived in the next section.

Example 4.1.1 Consider the simple pendulum DAE in Example 2.1.1. There are

3 non-positive stages staring from kd = −2 with F−2 =
{
h
}

, F−1 =
{

Ø
}

, and

F0 =
{
f, g
}

. Applying Algorithm 4.1.1 to this DAE’s computational graph generates

the array of node references in Figure 4.1. The first six nodes in array A are active

through all stages, but the TCs of them are evaluated up to an increasing order as

28 CHAPTER 4. COMPUTING TAYLOR SERIES

x 6v y
7v 8v h f 4v 5v g1v 2v 3varray A

 0 14B 2 1 6B B

active nodes at stages 2, 1k

active nodes at stage 0k

Figure 4.1: An array of node references in topological order as the result of apply-
ing Algorithm 4.1.1 to the computational graph of the simple pendulum DAE in
Example 2.1.1. B[−k] records the ending position of active nodes at a stage k ≤ 0.

the stage increases. At stage k = −2, TCs of order 0 are computed, then order 1 at

stage k = −1, order 2 at stage k = 0, etc. As we will see in the next section, the TCs

of these nodes computed at previous stages can be reused to compute TCs of higher

orders in the next stages.

4.2 Reduction for incremental computing

In the DAE solution scheme presented in §2.1, TCs are generated from lower order

to higher order. That is we generate TCs of a variable in the code list following

(vj)0 → (vj)1 → · · · → (vj)p. (4.1)

As addressed in [20] and [21, §13.5], if the (vj)s for s ≤ p are reevaluated from

scratch every time, the cost of computing TCs for each variable will end up with O(p3)

floating point operations for every Taylor arithmetic of φr that involves a convolution.

In [20], Griewank points out two ways to reduce the computational cost to O(p2). One

approach is to use the so called coefficient doubling [21, §13.5]. Another approach

4.2. REDUCTION FOR INCREMENTAL COMPUTING 29

is to store and reuse TCs of each vj already computed before in a code list. This

approach is adopted, e.g., by ATOMFT [11] and TADIFF [8].

Definition 4.2.1 The Taylor expansion point of each variable vj in the code list is

constituted by the input variables v−n = t and vj−n = xj, for j = 1 :n.

Observe that any (vj)p computed through a convolution is determined uniquely by

all TCs { (vi)s | i ≺ j and s ≤ p }. Thus, if TCs in (4.1) are expanded at same point,

they can be computed in a batch with O(p2) floating point operations by reusing the

TCs already calculated along the way.

In TADIFF, a variable called length is also used to record how many TCs of a

variable vj have already been computed. When computing higher order TCs from

successive propagations, these lower order TCs will be retrieved directly without

recalculating. However, this storing approach works only if TCs are expanded at the

same point, which is not always the case in our DAE solution scheme. This is because

when solving (2.3) from stage to stage, we derive new TCs in (2.4). That is, TCs

of input variables,
{

(xj)k+dj | 0 ≤ j ≤ n
}

, have changed from trial values for (2.3)

to its solution, the length of each intermediate/output variable has to be reset to

zero. Then, TCs of intermediate/output variables are calculated from scratch again.

Therefore, O(p3) floating point operations are still required due to this resetting of

length.

Since we store the computational graph in memory, it is natural to use the second

approach. Here we introduce a new technique, which we name reduction, based on

the storing approach. We formulate it in a way such that lower order TCs can be

reused to compute higher order TCs even across stages of the DAE solution scheme,

where the Taylor expansion point changes from stage to stage and from iteration

30 CHAPTER 4. COMPUTING TAYLOR SERIES

0v 1pv pv 1pv

0x 1px px 1px

0y 1py py 1py

0f 1pf pf 1pf

1pf pf 1pf

1pv pv 1pv

1px px 1px

1px px 1px

1py py 1py

1py py 1py

1pf pf 1pf

1pv pv 1pv

0v

0x 0y

0f

0v

0x 0y

0f

Figure 4.2: Computing Taylor series by reduction (TCs are written without paren-
theses for brevity). The top left graph presents the progress in propagating TCs at
beginning of current stage with trial values trying to equate (f)p to zero; The top
right graph reaches to the moment that we plug the solution back. After reduction,
a new propagation of TCs in next stage leads to the bottom graph.

to iteration in solving (2.3). An illustration of this reduction method is shown in

Figure 4.2. For the sake of brevity, we describe our method based on a simple code

list [
x, y, v, f]

with only one intermediate variable v, two input variables x and y, and one output

variable f , where f = v = x× y. To keep track of the progress in propagating TCs,

we color each square representing a TC dark gray, light gray, or white. A TC in

dark gray already satisfies (2.3) for stages solved so far. A square in light gray means

the corresponding TC is a trial value or an intermediate value just computed in an

iteration for solving (2.3) at current stage. A TC corresponding to a square in white

stands for the TC to be solved in next stage.

4.2. REDUCTION FOR INCREMENTAL COMPUTING 31

In Figure 4.2, the graph at top left shows TCs of x, y, v, and f at the beginning

of a stage in solving (2.3) with trial values. At end of this stage, new TCs (x)p and

(y)p equating (f)p to zero are obtained. Accordingly, we plug these TCs back so their

colors become dark gray, which corresponds to the graph at top right in Figure 4.2.

Now, as (x)p and (y)p have been updated, the expansion point (x, y) of (f)p has

changed but the squares corresponding to (v)p and (f)p are still in light gray. This

is because (v)p and (f)p have not been updated yet. In next stage, if we apply the

storing approach directly for computing (f)p+1, we end up using wrong (v)p and (f)p

that are not updated.

To fix this problem, we need to reduce by one the length recording how many TCs

have been computed for v and f so far (hence the name reduction). We reduce the

length by one since only the last computed TC of each variable has changed in current

stage, while the TCs up to length−1 stay unchanged. After a new propagation of TCs

from x and y in next stage, we compute two new TCs for v and f , respectively. This

computation runs in O(p). At termination, (v)p and (f)p become dark gray while

(v)p+1 and (f)p+1 become light gray, which leads to the bottom graph in Figure 4.2.

This reduction strategy also applies from iteration to iteration, where only the last

computed TC of each variable is changing. To extend the above method to a code list

in general form, we should reduce by one the length of computed TCs corresponding

to each vj with j > 0 in a code list at end of every stage and each iteration in

solving (2.3). Then, the TCs staying unchanged (in dark gray) can always be reused

to compute higher order TCs in linear time without recalculating from order 0, which

maintains the time of computing (4.1) being quadratic in p even across stages and

iterations.

32 CHAPTER 4. COMPUTING TAYLOR SERIES

Assume that at each stage k ≤ 0, w iterations are required to solve (2.3) (non-

linearly). Suppose a node representing vj is activated at stage −cj, and p is the

maximum required order of input variables’ TCs. Then, the time complexity of com-

puting TCs for each node in a DAE’s computational graph is O(wc2j) through stages

k ≤ 0, and O(p2) through stages k > 0.

Chapter 5

Evaluating Jacobian

The definition of the System Jacobian J is given in §2.1. The goal of this Chapter

is to derive methods for computing J efficiently. In the first section, we derive an

incremental computing scheme to amortize the overhead in evaluating this Jacobian

across all stages. In the second section, we derive a sparse gradient propagation

algorithm in the forward mode of AD based on the sparsity structure of the given

equations.

5.1 Amortizing overhead across stages

An important feature of the System Jacobian J is that its symbolic form is unchanged

through all stages of the DAE solution scheme [27] presented in §2.1. At stage k of

this scheme, denote by Jk the matrix of the linear system to be solved at this stage.

If k < 0, Jk is a submatrix of J by keeping only rows where k + ci ≥ 0 and columns

where k+dj ≥ 0; If k ≥ 0, Jk = J. In addition, Jk is a submatrix of Jk+1 for k < 0 as

well. The purpose of this section is to derive a method for computing Jk incrementally

33

34 CHAPTER 5. EVALUATING JACOBIAN

from stage to stage, such that the overhead in computing J is amortized across all

stages.

Denote

∇k =

(
∂

∂x
(k+d1)
1

, . . . ,
∂

∂x
(k+dn)
n

)
. (5.1)

If k + dj < 0, the jth component of ∇k is zero due to absence of xj in (2.3) at

stage k.

Lemma 5.1.1 For computing J across all sages, the following holds.

(i) For any k > k∗, ∇k

(
fi

(k+ci)
)

= ∇k∗

(
fi

(k∗+ci)
)

.

(ii) ∇k

(
fi

(k+ci)
)

is the ith row of J for all k + ci ≥ 0 and its components with

k + dj ≥ 0 form that row of Jk.

Proof for Lemma 5.1.1 is given in Appendix A. Based on Lemma 5.1.1, once the

non-zero components of a row in J are found at a previous stage, we do not need

to recompute them, as their numerical values are fixed after the last iteration of the

(nonlinear) solving for (2.3) at the previous stage. That is, we only need to evaluate

∇k

(
fi

(k+ci)
)

at stage k∗ where k∗ + ci = 0 and then reuse the non-zero components

of this gradient in following stages k > k∗.

Definition 5.1.1 At stage k, the active nodes in the computational graph G for com-

puting Jk are those nodes reachable from the nodes representing the output variables

fi’s, where k+ci = 0, in GT , excluding the nodes already activated at previous stages.

We can partition G according to the active nodes at different stages k ≤ 0. The

gradients of nodes activated at earlier stages are fixed once we pass the stage where

5.1. AMORTIZING OVERHEAD ACROSS STAGES 35

they are activated. This is because a gradient’s symbolic form is consistent though

all stages as the result of Lemma 5.1.1. It is important to exclude nodes activated at

previous stages, when forming a partition, such that partitions will not overlap with

each other. This indicates no shared nodes are visited more than once even they may

be reachable from nodes activated at different stages in GT .

From stage k to stage k+ 1, a traversal in topological order over the active nodes

at stage k + 1 computes the new rows in Jk+1 that are different from Jk. Combining

these new rows and the same rows in Jk, we obtain Jk+1. Repeating this process

across all stages forms an incremental computing scheme. In this process, we only

compute the gradients corresponding to newly active nodes at a stage, and hence the

overhead of computing J is amortized across all stages k ≤ 0. Figure 5.1 shows the

partitioning of the computational graph of the DAE in Example 2.1.1.

x y

1v 2v

f

3v 4v

5v

g

6v 7v

8v

h

**sqr sqr

2d dt 2d dt

Figure 5.1: A partitioned computational graph of the simple pendulum DAE. The
nodes in the gray region are active at stage k = −2, while the rest are active at stage
k = 0. At stage k = −1, no nodes are active; hence no computations are required.
Even though node f depends on node x, and node g depends on node y at stage
k = 0, nodes x and y are visited only at stage k = −2 according to this partitioning.

36 CHAPTER 5. EVALUATING JACOBIAN

Algorithm 5.1.1 Partitioning of Computational Graph

Input

computational graph G(V,E)

equation sets Fk =
{
fi | k + ci = 0

}
for all k = kd, . . . , 0

Output

array A[0, . . . , |V | − 1] of references to nodes in topological order

array P [0, . . . ,−kd + 1] such that A[P [−k + 1]] through A[P [−k]− 1] stores

references to nodes activated at stage k ≤ 0

Compute

P [−kd + 1] = 0

for stages k = kd, . . . , 0

for each node vi ∈ V corresponding to f ∈ Fk
DFS-Visit(GT , vi, A)

P [−k] = current size of A

Algorithm 5.1.1 depicts the method to partition the computational graph of a DAE

for computing J. Similar to Algorithm 4.1.1, Algorithm 5.1.1 uses DFS to sort the

references to nodes in G topologically into an array A. In addition, Algorithm 5.1.1

forms partitions of G for stages k ≤ 0. References to nodes in the partition for stage

k are stored in A[P [−k+1]] through A[P [−k]−1] with respect to a topological order.

Using the chain rule for gradient calculation [21], a loop over A[P [−k+1], . . . , P [−k]−

1] can compute the gradients required at stage k in the forward mode. Provided that

5.2. EXPLOITING SPARSITY 37

CSE has been applied to G, there are no references to duplicate nodes in array A.

As a result, Algorithm 5.1.1 guarantees the gradients of common subexpression are

evaluated exactly once in every gradient propagation in the forward mode.

Denote the cost of evaluating (2.1) by cost(F), and assume that at each stage, w

iterations are required to solve (2.3) nonlinearly. Usually, w = 1 or 2. The partitions

at all stages k ≤ 0 cover all the nodes in a DAE’s computational graph exactly once.

Therefore, the cost of traversing active nodes through all stages k ≤ 0 in each iteration

is O(cost(F)). Then the overall time complexity for computing all Jk’s (k ≤ 0) in

the forward mode of AD is O(nw · cost(F)), where n is the number of equations,

independent of the number of stages. This complexity is achieved by the proposed

incremental computing scheme that amortizes the overhead across stages.

5.2 Exploiting sparsity

As for computing the Jacobian using the forward mode or reverse mode, there are

generally three approaches to exploiting sparsity [21].

• Static approach detects and exploits sparsity at compile time. For example,

this approach has been implemented in the source-to-source transformation tool

TAF [18].

• Pseudo-static approach relies on a priori analysis of the sparsity structure of

a Jacobian or functions. Leveraging the structural information from a priori

analysis, successive evaluations of Jacobian can be done efficiently. Curtis-

Powell-Reid seeding [12] and Newsam-Ramsdell seeding [29] are two classical

examples exploiting the sparsity structure of a Jacobian to compress it into an

38 CHAPTER 5. EVALUATING JACOBIAN

equivalent one with fewer dimensions.

• Dynamic approach uses dynamically allocated data structure at runtime to

store gradients and process only the nonzero components of gradients. The

implementation of this idea in the context of AD was introduced by [16] followed

by [4] and [9]. It has been shown in [21] that, in theory, the dynamic approaches

have lower time complexity than the aforementioned compression approaches.

However, a dynamic approach may render a high overhead in processing the

dynamically allocated structure at runtime [21].

To avoid the runtime penalty of the dynamic approach, we devise a new data rep-

resentation called compressed vector to store gradients. Like the dynamic approach,

our method computes only nonzero components in the gradient. Hence, our method

has the same time complexity (see Algorithm 5.2.1) as the dynamic approach using

the forward mode. However, by learning the structure of a given function, we derive

the sizes and index mappings of all compressed vectors before gradient propagations.

We use sparsity analysis of gradients to gather such information based on a given

function’s computational graph. This preprocessing step sets up all necessary infor-

mation for all successive gradient propagations using the forward mode. Based on

the sparsity analysis of gradients, we can allocate memory for all compressed vectors

at the beginning and free their memory after all successive gradient propagations

are finished. Hence, the overhead of repeated memory allocations are circumvented.

Since the preprocessing step needs to be done only once at beginning, we identify our

method as a pseudo-static approach.

First, to help us learn the structure of a given vector function F (t,xxx) ∈ Rn, we

define the following two index sets: index domain (Definition 5.2.1) [21], and index

5.2. EXPLOITING SPARSITY 39

span (Definition 5.2.2). The length of F ’s code list is N = 2n+ q, cf. (2.10).

Definition 5.2.1 The index domain Xk of a variable vk in F ’s code list (except for

t) is the set of indices of input variables on which vk depends [21]. That is,

Xk ≡
{

0 ≤ j ≤ n : j − n ≺∗ k
}

for k = 1− n : q + n .

By definition, the index domain Xk contains all the indices of ∇vk’s components

that can be nonzeros. In F ’s computational graph, Xk can be computed by taking

the union of the index domains of vk’s children:

Xk =
⋃
j≺k

Xj from Xj−n =
{
j
}

for 1 ≤ j ≤ n [21]. (5.2)

We can use the index domain size |Xk| to quantify the sparsity of ∇vk (the number

of nonzero components in ∇vk). We call

n̄ ≡

q+n∑
k=1

|Xk|

q + n

the average domain size of F . We say F is sparse if n̄ is small relative to n.

Definition 5.2.2 The index span Sk of a variable vk in F ’s code list (except for t)

is the union of index domains of vk’s parents in F ’s computational graph. That is,

Sk ≡

⋃
i�k Xi for k = 1− n : q (non-output variables),

Xk for k = q + 1 : q + n (output variables).
(5.3)

After Xk of all variables in F ’s code list are obtained, Sk can be collected in F ’s

40 CHAPTER 5. EVALUATING JACOBIAN

computational graph by applying the above definition formula in reverse topological

order. We call

s̄ ≡

q+n∑
k=1−n

|Sk|

N − 1

the average span size of F .

Definition 5.2.3 A jth component in ∇vk is a placeholder in ∇vk, if j is in Sk but

not in Xk.

By Definition 5.2.1 and Definition 5.2.2, we have Xk ⊆ Sk. The trivial case

is Sk = Xk. In this case, Sk is the set of indices of nonzero components in ∇vk.

Otherwise, the nonempty set Sk \Xk contains the indices of placeholders in ∇vk. The

components corresponding to these placeholders are always zeros. Their purpose is

to pad the sparse gradient so their entries are aligned in the vector form. This idea

is illustrated on the following example.

Example 5.2.1 Consider the following two possible scenarios when Sk 6= Xk.

1. Assume that vk has a single parent vg and vg has another child vh in F ’s compu-

tational graph and Xk 6= Xh. Then Xk ⊂ Sk = Xg and Xh ⊂ Sh = Xg. Both hold

since Xk 6= Xh. The indices of placeholders in ∇vk are all in Sk \ Xk = Xg \ Xk.

The indices of placeholders in ∇vh are all in Sh \ Xh = Xg \ Xh. These place-

holders must exist when carrying out

∇vg =
∂vg
∂vk
∇vk +

∂vg
∂vh
∇vh

in the vector form as illustrated by the following example

5.2. EXPLOITING SPARSITY 41

×

×

×

=

×

×

©

+

©

×

×

,

where× represents a nonzero entry and© represents a placeholder, respectively,

while other zero entries are left blank. Here, Sk = Sh = Xg = { 1, 3, 5 },

Xk = { 1, 3 }, and Xh = { 3, 5 }.

2. If vk has multiple parents in F ’s computational graph, then

Sk \ Xk =
⋃
p�k

Xp \ Xk .

Thus, Sk \ Xk contains all the indices of those placeholders in ∇vk that must

exist to carry out ∇vp for any p � k in the vector form.

As illustrated in Example 5.2.1, the index span Sk contains all the indices of ∇vk’s

components that must exist as either nonzero or placeholder to carry out propagation

of gradients in the vector form using the forward mode. Thus, the index span size

|Sk| is the least number of components in ∇vk that are needed to propagate gradients

in our method.

Observe that |Xk| ≤ |Sk| ≤ n. For propagating ∇vk’s nonzero components using

the forward mode, |Xk| is a measure of computational effort, while |Sk| is a measure of

storage requirements. Both n̄ and s̄ would be much smaller than n if F is very sparse.

42 CHAPTER 5. EVALUATING JACOBIAN

The objective is to exploit these structure properties of F to save both time and

memory when computing gradients in the forward mode, when F is of considerable

sparsity.

Denote by (∇vk)j the jth component of ∇vk. Algorithm 5.2.1 describes how to

derive ∇vk’s nonzero components for all variables in F ’s code list using each variable’s

Xk. The ith row of F ’s Jacobian J is ∇vq+i.

Algorithm 5.2.1 Basic Sparse Gradient Propagation

Input

F ’s code list
[
v−n, v1−n, . . . , v0, v1, . . . , vq, vq+1, . . . , vq+n

]
index span Xk of each variable vk in F ’s code list

Output

∇vq+i for i = 1 :n

Compute

for k = 1− n to 0

(∇vk)n+k = 1

for k = 1 to q + n

for each j ∈ Xk
(∇vk)j =

∑
i≺k

∂vk
∂vi
× (∇vi)j

In Algorithm 5.2.1, the data representation for each ∇vk is a vector of size n.

Hence, (∇vk)j is the jth element of that vector. The gradient calculation in the

last line runs in O(1) as vk directly depends on at most two variables. This line is

5.2. EXPLOITING SPARSITY 43

executed
q+n∑
k=1

|Xk| = n̄ ·(n+q) times, where n+q is the number of non-input variables.

Denote the cost of evaluating F by cost(F), which is of O(n+ q). Therefore, the time

complexity of Algorithm 5.2.1 is O(n̄ · cost(F)), while the space complexity of this

algorithm is O(nN) due to storing each variable’s gradient in a vector of size n.

If F is sparse, then n̄ is small relative to n, which leads to a lower time complexity

than O(n · cost(F)) of finite differences and the dense gradient propagation in the

forward mode. The space complexity is, however, the same as that of the dense

gradient propagation in the forward mode. This preliminary data presentation not

only wastes memory when F is sparse, it also fails to preserve data locality, especially

when ∇vk’s nonzero components are scattered throughout the size n vector. In such

scenario, cache efficiency is downgraded.

We can overcome the foregoing disadvantages of Algorithm 5.2.1 and reduce its

space complexity by further utilizing each variable’s Sk. Recall that |Sk| is the least

number of components in ∇vk required to propagate gradients of the vector form (cf.,

Example 5.2.1) in the forward mode. Based on this property, we propose a new data

representation which we call compressed vector Gk[1 . . . |Sk|] to store only necessary

components (nonzero components and placeholders) of∇vk for gradient propagations.

For a variable vk, consider Sk as an ordered set of indicies in an increasing order. Then

we can build the mapping

γk : Sk 7−→ { 1 . . . |Sk| } (5.4)

such that γk(Sk,j) = j, where Sk,j denotes the jth element in Sk. Like Xk and

44 CHAPTER 5. EVALUATING JACOBIAN

Sk, γk for each variable can be constructed in advance through a traversal on F ’s

computational graph before the gradient propagation.

We summarize our method to set up Xk, Sk, and γk based on F ’s computational

graph in Algorithm 5.2.2. We refer to it as sparsity analysis for gradient propaga-

tions. Since Xk, Sk, and γk will not change throughout all successive propagations,

this sparsity analysis needs to be done only once as a preprocessing step. More-

over, Algorithm 5.2.2 does not require the user to specify the sparsity pattern, hence

exploiting the sparsity transparently.

Algorithm 5.2.2 Sparsity Analysis

Input

F ’s computational graph G

Output

Xk, Sk, and γk, for k = 1− n : q + n

Compute

1. Visit each node vk in G in topological order to compute Xk by (5.2).

2. Visit each node vk in G in reverse topological order to compute Sk by (5.3).

3. Traverse each node vk in G (by either DFS or BFS) to compute γk by (5.4).

For j ∈ Sk, we store the component (∇vk)j in Gk[γk(j)]. Recall that Xk ⊆

Sk. Also, for i ≺ k, Xk ⊆ Si by Definition 5.2.2. Accordingly, we have (∇vk)j =

Gk[γk(j)] and (∇vi)j = Gi[γi(j)] for any j ∈ Xk and i ≺ k. Based on this, we derive

Algorithm 5.2.3 using compressed vectors to store gradients. The nonzero components

in ith row of J are all in vector Gq+i.

5.2. EXPLOITING SPARSITY 45

Algorithm 5.2.3 Improved Sparse Gradient Propagation

Input

F ’s code list
[
v−n, v1−n, . . . , v0, v1, . . . , vq, vq+1, . . . , vq+n

]
index span Xk of each variable vk in F ’s code list

mapping γk for each variable vk in F ’s code list

Output

Gq+i for i = 1 :n

Compute

for k = 1− n to 0

Gk[γk(n+ k)] = 1

for k = 1 to q + n

for each j ∈ Xk
Gk[γk(j)] =

∑
i≺k

∂vk
∂vi
×Gi[γi(j)]

Like Algorithm 5.2.1, Algorithm 5.2.3 also executes the gradient calculation in the

last line for
q+n∑
k=1

|Xk| = n̄ · (n+ q) times. So these two algorithms have the same time

complexity O(n̄ · cost(F)). However, since algorithm 5.2.3 uses compressed vectors

to store gradients, these vectors hold
q+n∑

k=1−n
|Sk| = s̄ · (N − 1) elements instead of

n(N − 1). The space complexity is reduced to O(s̄N). Contrary to the size n vector,

the nonzero components in the compressed vector try to stay close to each other as it

has smaller size in general. Thus, the gradient calculations in Algorithm 5.2.3 have a

better data locality than that of Algorithm 5.2.1.

It is expected that n̄ and s̄ are small relative to n when F is sparse. In such

46 CHAPTER 5. EVALUATING JACOBIAN

a scenario, Algorithm 5.2.3 saves both time and memory in contrast to the dense

gradient propagation method.

Definition 5.2.4 The offset of a variable v in F ’s code list is defined [27] as

α(v) = min
j

(
dj − σj(v)

)
,

where

σj(v) =

the highest order derivative of xj on which v formally depends, or

−∞ if v does not depend on xj.

To extend Algorithm 5.2.3 for computing System Jacobian instead of general Ja-

cobian, we need to incorporate offsets of variables [27]. Using Algorithm 5.1 in [27],

we can obtain the offset of each variable in F ’s code list. Carrying these offsets, we

derive Algorithm 5.2.4 to compute System Jacobian through sparse gradient propa-

gation in the forward mode of AD. The nonzero components in ith row of System

Jacobian are all in vector Gq+i.

Algorithm 5.2.4 Compute Sparse System Jacobian

Input

F ’s code list
[
v−n, v1−n, . . . , v0, v1, . . . , vq, vq+1, . . . , vq+n

]
index span Xk of each variable vk in F ’s code list

mapping γk for each variable vk in F ’s code list

offset α(vk) of each variable vk in F ’s code list

5.2. EXPLOITING SPARSITY 47

Output

Gq+i for i = 1 :n

Compute

for k = 1− n to 0

Gk[γk(n+ k)] = 1

for k = 1 to q + n

if vk ≡ dup/dtp for a u ≺ vk

for each j ∈ Xk
Gk[γk(j)] = Gu[γu(j)]

else

for each j ∈ Xk
Gk[γk(j)] =

∑
i≺k

α(vk)=α(vi)

∂vk
∂vi
×Gi[γi(j)]

Chapter 6

Computational Results

In this chapter, we assess the proposed AD techniques and the overall performance

of our AD schemes in solving several dense and sparse DAEs. All tests are conducted

on a 2016 MacBook Pro laptop with a 2.9 GHz Intel Core i5 processor and 8 GB

RAM, running macOS Sierra 10.12. The C++ compiler is GCC 5.4.0.

6.1 Case studies of CSE

In this section, we apply the proposed CSE techniques on equations of six practical

problems. The first three problems are drawn from the Minpack-2 test suite [3]. The

last three problems are: the Spring-Mass-Pendulum (with 30 pendulum), which is

a mechanics modeling system taken from [38], the Distillation Column, which is an

chemical engineering problem presented in [36], and the Simulated Moving Bed, which

is a dynamic optimization problem developed in [15]. For the Spring-Mass-Pendulum,

CSE is performed when differentiating the original system by AD in the backward

mode [33].

48

6.1. CASE STUDIES OF CSE 49

Table 6.1: Effect of CSE on equations of six practical problems. n → m denotes n
input variables and m output variables. “#operators w/o CSE” and “#operators w/
CSE” stand for the number of operators required for AD without and with applying
CSE, respectively.

Case n→ m
#operators #operators Elimination

w/o CSE w/ CSE Ratio

Elastic-Plastic Torsion 2, 500→ 1 63,043 46,581 .26

Driven Cavity 14, 400→ 14, 400 1,024,567 420,154 .59

2-D Ginzburg-Landau 3, 600→ 1 52,930 24,748 .53

Spring-Mass-Pendulum 90→ 90 16,038 5,211 .68

Distillation Column 207→ 207 10,799 6,216 .42

Simulated Moving Bed 8, 580→ 8, 570 107,936 49,456 .54

In the equations of these problems, the operators are overloaded for AD. By CSE,

we eliminate the variables standing for duplicate subexpressions in the computational

graph, thereby reducing the operators needed to carry out AD. We assess the effect

of CSE by the elimination ratio, which is defined as the number of operators reduced

by CSE divided by the number of operators required without applying CSE. The

higher the eliminations ratio is, the less the time and memory are required to carry

out successive operator overloading computations.

The results are given in Table 6.1. The elimination ratio ranges from 26% to 68%.

This indicates that a good portion of common subexpressions can be eliminated when

we have nontrivial modeling equations. The CSE technique handles the elimination

automatically instead of requiring manually rearranging the code of modeling equa-

tions, which can be cumbersome and error-prone when the complexity of equations is

50 CHAPTER 6. COMPUTATIONAL RESULTS

high. It also supports the case when the system of equations is the result of differen-

tiating another system (see details in [33]), for example, the Spring-Mass-Pendulum

system used here.

6.2 Speed test for computing Taylor series

In this section, we compare the speed of computing Taylor series by our AD with the

speed of that by other operator overloading AD tools including CppAD [6], ADOL-

C [19], Sacado [31], and FADBAD++ [7]. We build the speed tests based on the poly

speed benchmark in CppAD [6]. The speed comparisons are assessed by the rates of

computing 2rd order TCs of polynomials in two forms:

1. nested form (also known as Horner scheme [30])

p(x) = a0 + x(a1 + x(a2 + · · ·+ x(an−1 + x(an)) · · ·)),

2. simplified form

p(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1 + anx
n.

The rates are the number of times per second that the TCs of the corresponding

polynomials are computed. The original poly benchmark from CppAD uses the

nested form, while we add the second form to test the effect of CSE. Observe that

every power term in a polynomial of simplified form is a subexpression of all the

following power terms. Thus, if a AD tool can recognize the common subexpressions,

by evaluating only the last power term, the AD also obtains TCs of all the power

terms before the last power term.

6.2. SPEED TEST FOR COMPUTING TAYLOR SERIES 51

Table 6.2: Comparison of setup time with other AD tools. Since CPU time less than
one microsecond is not very accurate for being recorded and not of much interest, we
use “−” to denote it instead of recording it.

Polynomial (simplified) Setup Time (CPU second)

degree #operators Our AD CppAD ADOL-C Sacado FADBAD++

1 1 - - - - -

10 55 - - - - -

100 5, 050 4× 10−3 - - - -

1,000 500, 500 0.4 5.2× 10−2 4× 10−3 - 1.6× 10−2

10,000 50, 005, 000 45.1 6.5 0.4 - 2.0

In these speed tests, we do the setup work only once before computing TCs. That

is, at the beginning of these tests, we record tapes for CppAD and ADOL-C, or build

computational graphs for our AD and FADBAD++. For Sacado, no setup work other

than copying coefficients of polynomials is required. Also, in the case of CppAD,

the optimize option is used to optimize the operation sequence before performing

computations [6].

For polynomials in the nested form, the setup time for all used AD tools is negli-

gible (within tens of microseconds); for polynomials in the simplified forms, the setup

time of the used AD tools is given in Table 6.2. Since the setup work is done only

once, we do not take the setup time into account when calculating the rates for all the

AD tools. This is reasonable as in the practical applications, the setup work (record-

ing tapes or building computational graphs) is needed only once before computations

as long as the equations do not change, while the computations of TCs are carried

out repeatedly during the whole process.

52 CHAPTER 6. COMPUTATIONAL RESULTS

102

103

104

105

106

107

108

 1 10 100 1000 10000

Ra
te
/s
ec

Degree

Our AD
CppAD

ADOL-C
Sacado
FADBAD

(a) Nested Polynomials

10-2
10-1
100
101
102
103
104
105
106
107
108

 1 10 100 1000 10000

Ra
te
/s
ec

Degree

Our AD
CppAD

ADOL-C
Sacado
FADBAD

(b) Simplified Polynomials

Figure 6.1: Speed tests of computing Taylor series. (a) Evaluating 2nd order TCs of
polynomials in the nested forms. (b) Evaluating 2nd order TCs of polynomials in the
simplified forms.

6.3. PERFORMANCE IN SOLVING DAES 53

The major portion of setup time in our AD tool comes from CSE, of which the

cost grows linearly as the number of overloaded operators increases (see the time com-

plexity in §3.2). Nevertheless, CSE manages to process around 50 million operators

within one minute as shown in the last row of Table 6.2.

In Figure 6.1, we illustrate the rates for polynomials of degree 1 up to degree

10, 000. Judging from these rates, our AD has the best performance overall among all

the AD tools used here in the speed test for computing Taylor series. The advantage

of CSE is revealed when considering polynomials in the simplified form. As shown

in Figure 6.1(b), only our AD manages to maintain the rate of computing TCs of

the simplified polynomials at the same magnitudes as that of computing TCs of the

nested polynomials. This is because the CSE technique in our AD eliminates all

the common power terms in the simplified polynomials. The CppAD also uses the

optimize option to optimize the operation sequence. However, as shown in the red

slope between degree 1,000 and 10,000 in Figure 6.1(b), the rate decreases sheer when

the operations count reaches 50 millions (at degree 10,000).

6.3 Performance in solving DAEs

We have integrated all the proposed methods into the Daets solver. In this section,

we evaluate the overall performance of our AD methods in solving DAEs. In the

following assessments, sparse gradient propagation (for computing System Jacobian,

see §5.2) and sparse linear algebra are used for sparse DAE, while dense gradient

propagation and dense linear algebra are used for dense DAE. In the Daets solver,

tolerance and the Taylor series order are set to 10−8 and 15, respectively.

54 CHAPTER 6. COMPUTATIONAL RESULTS

6.3.1 DAEs used in the benchmarking

Dense DAE

The Layne Watson [37] (LW for short) is an index-1 DAE of 60 equations.

sparse DAEs

The distillation column [36] (DC for short) is an index-2 DAE of 189 equations.

The Spring-Mass-Pendulum [38] with 30 pendulum (SMP-30 for short) is converted

to an index-3 DAE of 90 equations by differentiating the Euler Lagrange equation in

the backward mode of AD.

Except for profiling in §6.3.4, we integrate LW until Daets find the solution to

the problem, and we integrate DC and SMP-30 over the interval [0, 100].

6.3.2 Incremental computing

Here, we show the performance improvement gained from the incremental computing

schemes alone. For this purpose, we have set an option in the Daets solver to

disable/enable the incremental computing in AD, while all other components are the

same. Table 6.3 presents the results.

Table 6.3: Comparison of CPU time spent in the DAE solving with the incremental
computing disabled/enabled in the Daets solver.

DAE
CPU Time (seconds)

INRC disabled INRC enabled Time saved

LW 45.3 11.2 75.3%

DC 47.7 13.6 71.5%

SMP-30 203.4 68.7 66.2%

6.3. PERFORMANCE IN SOLVING DAES 55

6.3.3 Comparison against other AD tools

FADBAD++ was the AD package used by the Daets solver. We also have built in-

terfaces for Daets to use ADOL-C. Since ADOL-C does not support dp/dtp operator

for dependent variables in the equations, we cannot use ADOL-C to solve SMP-30.

Table 6.4 shows that our AD methods achieve multiple-fold speedups over these two

popular AD packages in solving DAEs.

Table 6.4: Comparison of CPU time in solving DAEs using our AD methods against
using FADBAD++ and ADOL-C, where “−” denotes that ADOL-C does not support
solving that DAE for the reason explained above.

DAE
CPU Time (seconds) Speedup Over (times)

FADBAD++ ADOL-C Ours FADBAD++ ADOL-C

LW 138.0 24.2 11.2 12.3 2.2

DC 135.1 93.8 13.6 9.9 6.9

SMP-30 1041.0 - 68.7 15.2 -

Besides the incremental computing strategy, our AD schemes have other two ad-

vantages over FADBAD++ and ADOL-C. That is, we exploit sparsity in computing

System Jacobian and we use CSE to build compact computational graphs leading

to fewer required operations in successive AD computations (see §6.1 and §6.2). Al-

though ADOL-C exploits sparsity in computing general Jacobians by compression and

coloring [17], it does not have the sparsity support for computing System Jacobian

to date that this thesis is being written.

56 CHAPTER 6. COMPUTATIONAL RESULTS

6.3.4 Scaling of computations: work breakdown

To compare the cost of AD computations and linear algebra for solving the underlying

linear systems as the size of DAE increases, we use profiling results from Intel VTune

Amplifier [2] to generate the work breakdown in Figure 6.2 and Figure 6.3 for LW

(dense DAE) and DC (sparse DAE), respectively. We integrate each DAE of a specific

size for at least one minute so the profiler gathers enough information for analysis.

It is well known that the factorization of unsymmetric matrices in dense linear

algebra grows approximately O(n3), where n is the number of equations. Even so,

if Daets uses FADBAD++ to compute TCs and System Jacobian, the computing

time is dominated by AD computations as shown in Figure 6.2(a). However, after

incorporating our AD schemes into Daets, dense linear algebra dominates the CPU

time very soon as n increases as shown in Figure 6.2(b). This in return proves that

our AD methods have much slower growth rates than that of dense algebra for solving

linear systems (see time complexity bounds of our AD methods in §4.2 and §5.1).

For solving a sparse DAE like DC, we observe that almost all computing time is

spent in AD, if using FADBAD++ to compute TCs and System Jacobian in Daets

as shown in Figure 6.3(a). The situation has been much improved after substituting

our AD schemes for FADBAD++, especially for computing System Jacobian as shown

in Figure 6.3(b). We note that computing TCs now takes the major portion of the

solution time. This is because both linear algebra and computing System Jacobian

(see §5.2) can take advantage of sparsity to gain efficiency while computing TCs

cannot. Nevertheless, our AD methods have comparable growth rates as that of

sparse linear algebra for solving linear systems, as evidenced by the similar CPU time

breakdowns as the size of DAE increases in Figure 6.3(b).

6.3. PERFORMANCE IN SOLVING DAES 57

30 100 200 600 1000
NEQ

0.0

0.2

0.4

0.6

0.8

1.0
%

 C
PU

 ti
m

e

LW
LA
JAC
TCs
rest

(a) Scaling of Daets with FADBAD++

30 100 200 600 1000
NEQ

0.0

0.2

0.4

0.6

0.8

1.0

%
 C

PU
 ti

m
e

LW
LA
JAC
TCs
rest

(b) Scaling of Daets with our AD schemes

Figure 6.2: Proportions of computations by Daets solver (with dense linear algebra)
in solving a dense DAE, LW, as its size grows. The fractions of CPU time are denoted
by LA for linear algebra, JAC for computing System Jacobian, TCs for computing
Taylor series coefficients, and rest for all other computations involved.

58 CHAPTER 6. COMPUTATIONAL RESULTS

189 549 1089 2169 3609
NEQ

0.0

0.2

0.4

0.6

0.8

1.0
%

 C
PU

 ti
m

e

DC
LA
JAC
TCs
rest

(a) Scaling of Daets with FADBAD++

189 549 1089 2169 3609
NEQ

0.0

0.2

0.4

0.6

0.8

1.0

%
 C

PU
 ti

m
e

DC
LA
JAC
TCs
rest

(b) Scaling of Daets with our AD schemes

Figure 6.3: Proportions of computations by Daets solver (with sparse linear algebra)
in solving a sparse DAE, DC, as its size grows. The fractions of CPU time are denoted
by LA for linear algebra, JAC for computing System Jacobian, TCs for computing
Taylor series coefficients, and rest for all other computations involved.

Chapter 7

Conclusions and Future Work

7.1 Conclusions

We have developed a common subexpression elimination (CSE) method in §3 to

build a compact computational graph through the operator overloading approach.

CSE is of linear complexity both in time and space. Given a DAE function described

by a computer program, CSE eliminates repeated subexpressions behind the scenes,

leading to fewer required operations in successive AD computations.

In the context of solving DAE by Taylor series, we have derived two efficient AD

schemes to compute incrementally Taylor series in §4 and System Jacobian in §5,

respectively. For computing System Jacobian, we have also exploited the sparsity

structure of equations to devise a sparse gradient propagation method in the forward

mode of AD.

We have implemented the proposed methods in the Daets solver. Computational

results in §6 have shown the effectiveness of our methods and substantial performance

improvement in solving sparse and dense DAEs.

59

60 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.2 Future work

As shown in the last section of §6, the computation of Taylor series is dominating

the solving time when the DAE is sparse. This is because no sparsity is known for

computing Taylor series, as opposed to linear algebra and gradient propagations. This

observation suggests a possible direction is to improve the performance of computing

Taylor series by exploiting parallelism or combining other strategy, for example, the

coefficient doubling in [21].

The methods developed in this thesis benefit from careful study of the underlying

computational graph of given equations. By the time this thesis is written, the

author is developing an interactive web-based computational graph viewer. It reads

the output from the Daets solver and visualizes graph information on a website

canvas. We hope to gain insights from the visualization for systems at scale in order

to further improve our AD schemes in the future.

Appendix A

Proof of Lemma 5.1.1

Let the notation be as at the start of §5.1.

Proof. We show the proof for two items of Lemma 5.1.1 as follows.

(i) The jth components of ∇k

(
fi

(k+ci)
)

and ∇k∗

(
fi

(k∗+ci)
)

are ∂f
(k+ci)
i /∂x

(k+dj)
j

and ∂f
(k∗+ci)
i /∂x

(k∗+dj)
j , respectively. Since ∂f

(k+ci)
i /∂x

(k+dj)
j = ∂fi/∂x

(dj−ci)
j =

∂f
(k∗+ci)
i /∂x

(k∗+dj)
j by (2.6) for j = 1 :n, where dj and ci are constants through-

out all stages, we have ∇k

(
fi

(k+ci)
)

= ∇k∗

(
fi

(k∗+ci)
)

for any stage k > k∗.

(ii) Recall from §2.1 that the jth component in the ith row of System Jacobian J is

defined as Jij = ∂fi/∂x
(dj−ci), if this derivative is present in fi and 0 otherwise.

Thus, for dj − ci > 0, we have Jij = ∂fi/∂x
(dj−ci)
j = ∂f

(k+ci)
i /∂x

(k+dj)
j by (2.6),

and ∂f
(k+ci)
i /∂x

(k+dj)
j is also the jth component of∇k

(
fi

(k+ci)
)

, where k+ci ≥ 0,

by (5.1); For dj − ci ≤ 0, both Jij and the jth component of ∇k

(
fi

(k+ci)
)

are

zeros. Hence, we conclude that ∇k(fi
(k+ci)) is the ith row of J at stages where

k + ci ≥ 0. Further, since the ith row of Jk consists of components in the ith

61

62 APPENDIX A. PROOF OF LEMMA 5.1.1

row of J where k + dj ≥ 0, these components are the same as the components

in ∇k

(
fi

(k+ci)
)

where k + dj ≥ 0.

Bibliography

[1] The Community Portal for Automatic Differentiation: autodiff web page. http:

//www.autodiff.org

[2] Intel VTune Amplifier: VTune 2017 web page. https://software.intel.com/

en-us/intel-vtune-amplifier-xe

[3] Averick, B., Carter, R., Moré, J., Xue, G.: The MINPACK-2 test problem

collection. Mathematics and Computer Science Division, Argonne National Lab-

oratory. Preprint MCS-P153-0692 (1992)

[4] Bartholomew-Biggs, M.C., Bartholomew-Biggs, L., Christianson, B.: Optimiza-

tion & automatic differentiation in Ada: some practical experience. Optimization

Methods and Software 4(1), 47–73 (1994)

[5] Bauer, F.L.: Computational graphs and rounding error. SIAM Journal on Nu-

merical Analysis 11(1), 87–96 (1974)

[6] Bell, B.M.: CppAD: a package for C++ algorithmic differentiation. Computa-

tional Infrastructure for Operations Research (2012)

[7] Bendsten, C., Stauning, O.: FADBAD++, version 2.1 (2007) http://www.

fadbad.com

63

http://www.autodiff.org
http://www.autodiff.org
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe
http://www.fadbad.com
http://www.fadbad.com

64 BIBLIOGRAPHY

[8] Bendsten, C., Stauning, O.: TADIFF, a flexible C++ package for automatic

differentiation using Taylor series. Tech. Rep. 1997-x5-94, Department of Math-

ematical Modelling, Technical University of Denmark, DK-2800, Lyngby, Den-

mark (1997)

[9] Bischof, C.H., Khademi, P.M., Buaricha, A., Alan, C.: Efficient computation

of gradients and Jacobians by dynamic exploitation of sparsity in automatic

differentiation. Optimization Methods and Software 7(1), 1–39 (1996)

[10] Brent, R.P., Kung, H.T.: Fast algorithms for manipulating formal power series.

Journal of the ACM (JACM) 25(4), 581–595 (1978)

[11] Chang, Y., Corliss, G.: ATOMFT: solving ODEs and DAEs using Taylor series.

Computers & Mathematics with Applications 28(10-12), 209–233 (1994)

[12] Curtis, A., Powell, M.J., Reid, J.K.: On the estimation of sparse Jacobian ma-

trices. IMA Journal of Applied Mathematics 13(1), 117–119 (1974)

[13] Davis, T.A., et al.: SuiteSparse: a suite of sparse matrix software. http://

faculty.cse.tamu.edu/davis/suitesparse.html

[14] Demmel, J.W.: Applied Numerical Linear Algebra. SIAM (1997)

[15] Diehl, M., Walther, A.: A test problem for periodic optimal control algorithms.

Tech. rep., MATH-WR-01-2006, TU Dresden (2006)

[16] Dixon, L.C., Maany, Z., Mohseninia, M.: Automatic differentiation of large

sparse systems. Journal of Economic Dynamics and Control 14(2), 299–311

(1990)

http://faculty.cse.tamu.edu/davis/suitesparse.html
http://faculty.cse.tamu.edu/davis/suitesparse.html

BIBLIOGRAPHY 65

[17] Gebremedhin, A.H., Pothen, A., Walther, A.: Exploiting sparsity in Jacobian

computation via coloring and automatic differentiation: a case study in a sim-

ulated moving bed process. In: Advances in Automatic Differentiation, pp.

327–338. Springer (2008)

[18] Giering, R., Kaminski, T.: Automatic sparsity detection implemented as a

source-to-source transformation. In: International Conference on Computational

Science, pp. 591–598. Springer (2006)

[19] Griewank, A., Juedes, D., Utke, J.: Algorithm 755: ADOL-C: a package for the

automatic differentiation of algorithms written in C/C++. ACM Transactions

on Mathematical Software (TOMS) 22(2), 131–167 (1996)

[20] Griewank, A., Walther, A.: On the efficient generation of Taylor expansions for

DAE solutions by automatic differentiation 3732, 1103–1111 (2006)

[21] Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques

of Algorithmic Differentiation–Second Edition. SIAM, Philadelphia, PA, USA

(2008)

[22] Lam, M., Sethi, R., Ullman, J.D., Aho, A.: Compilers: Principles, Techniques,

and Tools. Addison-Wesley (2006)

[23] LAPACK Project: LAPACK — Linear Algebra PACKage. http://www.netlib.

org/lapack/

[24] Liu, T., Bargteil, A.W., O’Brien, J.F., Kavan, L.: Fast simulation of mass-spring

systems. ACM Transactions on Graphics (TOG) 32(6), 214 (2013)

http://www.netlib.org/lapack/
http://www.netlib.org/lapack/

66 BIBLIOGRAPHY

[25] Nedialkov, N., Pryce, J.: DAETS — Differential-Algebraic Equations by Taylor

Series. http://www.cas.mcmaster.ca/~nedialk/daets

[26] Nedialkov, N.S., Pryce, J.D.: Solving differential-algebraic equations by Taylor

series (I): Computing Taylor coefficients. BIT Numerical Mathematics 45(3),

561–591 (2005)

[27] Nedialkov, N.S., Pryce, J.D.: Solving differential-algebraic equations by Taylor

series (II): Computing the System Jacobian. BIT Numerical Mathematics 47(1),

121–135 (2007)

[28] Nedialkov, N.S., Pryce, J.D.: Solving differential-algebraic equations by Taylor

series (III): the DAETS code. JNAIAM J. Numer. Anal. Indust. Appl. Math 3,

61–80 (2008)

[29] Newsam, G.N., Ramsdell, J.D.: Estimation of sparse Jacobian matrices. SIAM

Journal on Algebraic Discrete Methods 4(3), 404–418 (1983)

[30] Pankiewicz, W.: Algorithms: Algorithm 337: calculation of a polynomial and

its derivative values by horner scheme. Communications of the ACM 11(9), 633

(1968)

[31] Phipps, E., Pawlowski, R.: Efficient expression templates for operator

overloading-based automatic differentiation. In: Recent Advances in Algorithmic

Differentiation, pp. 309–319. Springer (2012)

[32] Pryce, J.D.: A simple structural analysis method for DAEs. BIT Numerical

Mathematics 41(2), 364–394 (2001)

http://www.cas.mcmaster.ca/~nedialk/daets

BIBLIOGRAPHY 67

[33] Pryce, J.D., Nedialkov, N.S., Tan, G., Li, X.: How AD can help solve differential-

algebraic equations. arXiv preprint arXiv:1703.08914 (2017)

[34] Sedgewick, R.: Algorithms in C++, Parts 1-4: Fundamentals, Data Structures,

Sorting, Searching–Third Edition. Addison Wesley Longman (1998)

[35] Sedgewick, R.: Algorithms in C++, Part 5: Graph Algorithms–Third Edition.

Addison Wesley Longman (2002)

[36] Washington, I., Swartz, C.: On the numerical robustness of differential-algebraic

distillation models. In: 61st Canadian Chemical Engineering Conference. Lon-

don, Ontario, Canada (2011)

[37] Watson, L.T.: A globally convergent algorithm for computing fixed points of C2

maps. Appl. Math. Comput. 5, 297–311 (1979)

[38] Zhu, Y., Westbrook, E., Inoue, J., Chapoutot, A., Salama, C., Peralta, M.,

Martin, T., Taha, W., O’Malley, M., Cartwright, R., et al.: Mathematical

equations as executable models of mechanical systems. In: Proceedings of the

1st ACM/IEEE International Conference on Cyber-Physical Systems, pp. 1–11.

ACM (2010)

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Contributions
	Thesis organization

	Theoretical Background
	Outline of DAE solution scheme
	Code list
	Computational graph

	Common Subexpression Elimination
	Framework of CSE
	Algorithms for CSE

	Computing Taylor Series
	Topological ordering
	Reduction for incremental computing

	Evaluating Jacobian
	Amortizing overhead across stages
	Exploiting sparsity

	Computational Results
	Case studies of CSE
	Speed test for computing Taylor series
	Performance in solving DAEs
	DAEs used in the benchmarking
	Incremental computing
	Comparison against other AD tools
	Scaling of computations: work breakdown

	Conclusions and Future Work
	Conclusions
	Future work

	Appendix Proof of Lemma 5.1.1

