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ABSTRACT 
Rapid transit projects that increase accessibility should result in a localized land value uplift (LVU) 
benefit for locations near stations. A rich history of research has tested this hypothesis, generally 
operationalizing transit accessibility by proxy through distance from a transit station. However, a 
growing body of research has also demonstrated LVU effects from transit-oriented development 
(TOD) as individuals sort themselves into locations that best match their preferences and 
willingness to pay. Considering the interdependence of transportation and land use in the urban 
system, we argue that these benefits create a spatial bundle of TOD goods around transit stations 
and hypothesize that households are willing to pay a premium for locations in more transit-oriented 
station catchment areas. Utilizing latent class analysis, we quantify station area TOD submarkets. 
Next, interactions between these submarkets and station proximity in spatial hedonic regressions 
reveal that TOD is capitalized into land values in Toronto, though the maximum amount and spatial 
impact area of this capitalization differs by TOD context. 
 
Keywords: Land Value Uplift; Public transport; Hedonic model; Accessibility; Transit-Oriented 
Development
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INTRODUCTION 
Determining the amount of land value uplift (LVU) produced by rapid transit infrastructure is of 
great importance as it provides evidence of a project’s larger benefits to society. While such transit 
projects can be pursued to produce many tangible and intangible benefits (Higgins & Kanaroglou, 
2016c), we focus here on two of the most significant ways they can impact the urban land market: 
through improvements in transportation accessibility and by shaping the built environment around 
transit stations.  

First, accessibility can be defined as the potential for reaching opportunities distributed 
over space from a particular location while considering the cost or difficulty involved in travelling 
between them (Páez et al., 2012). The spatial equilibrium framework of Alonso (1964), Muth 
(1969), and Mills (1972), referred to here as the AMM model, posits that the spatial distribution 
of transportation costs in terms of time, money, or even stress (e.g. Higgins et al. (2017)), are 
primary drivers of differences in land values over space. If a rapid transit facility can offer a 
reduction in transportation costs and an improvement in accessibility, land values around stations 
should increase. Because most transit trips begin and end on foot, the spatial extent of LVU should 
peak at stations and generally dissipate over a short distance, typically operationalized as a 10-
minute walk or about 800 metres (Guerra et al., 2013). However, for a rapid transit project to 
produce LVU from accessibility, it must offer travel benefits relative to other modal options 
(Higgins & Kanaroglou, 2016b). 

Second, the trend towards increasingly coordinated land use and transportation planning 
for many rapid transit projects can result in additional price effects from transit-oriented 
development (TOD), which generally refers to a high-density, mixed-use, amenity-rich, and 
pedestrian-friendly built environment around rapid transit stations. In terms of LVU, the type of 
lifestyle offered through TOD implementations is said to be particularly valued by specific cohorts 
of the population, namely young professionals, empty-nesters, and recent immigrants (Cervero et 
al., 2004; Dittmar et al., 2004), especially in the age of the ‘consumer city’ detailed by Glaeser et 
al. (2001). Indeed, previous literature has demonstrated positive land value changes associated 
with aspects of TOD (Bartholomew & Ewing, 2011; Higgins & Kanaroglou, 2016b). 
 To that end, what does the literature say regarding the LVU impacts of rapid transit? A 
comprehensive review by Higgins and Kanaroglou (2016b) revealed that in North America alone, 
more than 100 studies have sought to capture the relationship between rapid transit and land values, 
and results have been mixed. As the review argues, one reason for this heterogeneity in results is 
that many previous studies have assumed LVU impacts are derived only from accessibility. This 
relationship is typically operationalized by proxy through measures of distance from a transit 
station to capture the peaking in land values the AMM model predicts. From this, studies have 
often estimated models across a group of adjacent transit stations simultaneously to return ‘global’ 
estimates of LVU that are interpreted as evidence of an accessibility benefit.  

Such an approach is potentially problematic. One of the main issues affecting hedonic 
models in general is bias introduced from omitted variables in the estimation of the hedonic price 
function, particularly when such omitted characteristics are correlated with a variable of interest 
(Kuminoff et al., 2010). For the present research area, a focus only on accessibility ignores the 
mutually dependent relationship between transportation and urban form in the urban system, where 
transportation infrastructure affects accessibility, accessibility shapes land use, land use guides 
travel patterns, and travel patterns influence the provision of transportation infrastructure 
(Giuliano, 2004). Such interdependency makes it difficult to analyze only one aspect of the urban 
system in isolation and means measures of proximity to a transit station risk capturing benefits 
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from transit’s regional accessibility, local station area land use and transit-oriented amenities, or a 
combination of both. Following Kuminoff et al., such an approach introduces the potential for 
omitted variables, unobserved relationships, and potentially misvalued results. 

The actual supply of transportation infrastructure and transit-oriented land use 
development is dependent on a host of factors, such as public expenditures on transit, permissive 
zoning, and development incentives. But given their fundamental mutual dependence in the urban 
system, we argue that a rapid transit station area’s accessibility and built environment 
characteristics combine to result in a spatial basket or bundle of TOD goods around transit stations. 
Compared to the AMM model’s focus on land price as an outcome of the tradeoff between 
accessibility and space, our conceptualization of the LVU benefits of rapid transit projects draws 
from Tiebout’s (1956) theory of sorting, wherein individuals self-select their location based on the 
best fit between individual preferences and the characteristics of different areas. 

This is not to say that the spatial equilibrium frameworks of the AMM model and Tiebout 
are incompatible; they are instead complimentary (Epple et al., 2010; Hanushek & Yilmaz, 2007). 
We argue here that the heterogeneous distribution of different bundles of transit accessibility and 
transit-oriented built environments over space results in TOD as a location-specific amenity and 
produces submarkets of TOD characteristics. From this, individuals choose their location based on 
the utility-bearing attributes of these different TOD bundles, which are defined spatially by a 
station’s catchment area. If TOD is valued, individuals should be willing to pay a price premium 
to live in transit-oriented locations. 

Not all previous research in this area has been insensitive to the built environment. Some 
authors control for land use through measures such as population density to better identify 
accessibility benefits (Higgins & Kanaroglou, 2016b). Similarly, a strand of recent research has 
sought to capture heterogeneity in LVU by a station’s built environment context. Atkinson-
Palombo (2010) used a cluster model of several built environment indicators to tease out what 
were hypothesized as accessibility benefits from being proximate to rapid transit in different 
station area contexts. Results show that single detached homes and condominiums were worth 6% 
and 20% more respectively in mixed-use and amenity-rich neighbourhoods while no effect was 
seen in low-density residential neighbourhoods. 

Duncan (2011a; 2011b) opted for an interaction approach to isolate how accessibility as 
proximity changes with measures of the built environment. Duncan (2011a) for example found 
that proximity to the San Diego Trolley is worth more in areas with higher densities, walkability, 
and retail employment. Similarly, Duncan (2011b) found that the value of proximity to Trolley 
stations is conditional on TOD zoning, with higher prices for single-detached homes with larger 
lots in areas zoned for higher densities.  
 The present paper generally continues this line of reasoning but breaks with past studies in 
three ways. First, rather than view the benefits of rapid transit as a product of accessibility alone, 
we re-conceptualize transit accessibility and the built environment around stations as an 
interdependent bundle of TOD goods. Second, instead of the traditional clustering methods utilized 
by Atkinson-Palombo (2010), we employ latent class analysis (LCA) to arrive at a probabilistic 
classification of neighbourhood TOD. Finally, we incorporate this classification in our hedonic 
models and employ interaction terms to isolate the joint effects of TOD and proximity to a station 
area’s TOD centre of gravity on land values in Toronto, Canada. 
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RESEARCH DESIGN 
Study Area 
Toronto has a rich history of using rapid transit to guide growth (Bower, 1979), and the city’s 
experience with what is now commonly known as TOD has been hailed as an example for other 
jurisdictions. Knight and Trygg (1977) and Huang (1996) for example note how Toronto has long 
offered permissive zoning and density bonuses around subway stations, coordinated station design 
efforts with developers, and even aggressively marketed station air rights for development. While 
Toronto’s growth has been imperfect (Filion et al., 2006), its long-standing friendliness to 
coordinated transportation and land use planning presents an ideal opportunity to examine how the 
different bundles of TOD that have emerged over the past several decades are impacting LVU. 

The study area consists of two intersecting Toronto Transit Commission (TTC) heavy rail 
transit (HRT) lines in the City of Toronto (Figure 1). Line 1 runs north-south and travels into the 
heart of the city’s central business district. The seven Line 1 stations within the sample have been 
in service since at least 1974, with Eglinton and Davisville opening in 1954. Line 4 features five 
stops spread over 5.5 kilometres and feeds into Line 1. With service beginning in November of 
2002, it is the city’s most recent HRT line. The study area also includes one commuter rail transit 
(CRT) station on GO Transit’s Richmond Hill Line, which began operation in 1978 and offers 
service to the central business district. The station is about 500 metres from Leslie subway station 
and located beneath regional Highway 401. Very few of the transactions outlined below are within 
walking distance of this station, and zero are within a 10-minute walk of both a TTC and GO 
station. Nevertheless, we include Oriole GO as a control variable.  
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Figure 1. Study Area and Sale Transactions 
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Research Hypotheses 
The present paper seeks to test the following hypotheses:  

• H1: Rapid transit nodal accessibility and the built environment within a rapid transit 
station’s catchment area combine to present a bundle of goods that reflects different TOD 
characteristics, and this bundle is heterogeneous over space.  

• H2: Compared to locations outside of a rapid transit station catchment area, proximity to 
TOD is associated with an increase in LVU. 

• H3: Different bundles of TOD are associated with differential rates of LVU, with higher 
price premiums for locations that are more reflective of TOD as a concept. 

• H4: Rates of LVU are not time-constant. 
Put another way, through H1-H3 we hypothesize that transit accessibility and the built environment 
are a bundle of goods and that proximity to rapid transit is worth more in areas that are more 
reflective of TOD as a concept. H4 also hypothesizes that rates of LVU change over time, 
potentially a result of unobserved buyer preferences and broader trends in the local real estate 
market. In the Toronto context specifically, changes in the value of TOD between 2001-2003 and 
2010-2014 could be expected based on two local trends. First, station area TOD has changed as 
the city has grown in both population and jobs and the new development required to accommodate 
it. A second factor is that young adults are increasingly moving to higher-density urban locations 
that are amenity-rich and well-served by public transit, a process Moos (2015) refers to as the 
‘youthification’ of Toronto.  
 
Modelling Approach 
To estimate the capitalization of different bundles of TOD in the urban land market we utilize 
hedonic multiple regression with a dataset of transacted house prices in a repeat cross-sectional 
model design. Established by Lancaster (1966) and Rosen (1974), the hedonic method postulates 
that the value of a good is determined by its utility-bearing attributes, and regressing these 
attributes on the price of the good can reveal their implicit value at market equilibrium. Isolating 
the value of land in a cross-sectional model requires the analyst to control for the other 
characteristics that make up the price of a home and to accomplish this we adopt the hierarchical 
model structure depicted in Figure 2. Here, variables reflecting structural, location, and time of 
sale characteristics of the home are regressed on its sale price, which is log-transformed to account 
for any non-linearities in the hedonic price function. 

To reveal the capitalization of TOD into land values, we adopt a two-stage approach with 
three measures. First, like other models in this research area, we measure a parcel’s proximity to a 
transit station access and egress point and capture this main effect directly. However, in contrast 
to other studies, we include a second key variable that controls for the LVU effects of 
heterogeneous station area TOD contexts. Using LCA, we incorporate a measurement sub-model 
that distils several attributes of station area TOD into a latent categorical variable corresponding 
to more homogeneous station types. This categorical variable is used to isolate the value placed on 
different bundles of TOD characteristics.  
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Figure 2. Model Structure 

 
 

Finally, our third key variable consists of an interaction effect between station proximity 
and the station area TOD variable to account for a home’s proximity to the TOD ‘centre of gravity’ 
that rapid transit access and egress points provide. Together the three variables account for basic 
proximity effects common to all station types, a station-type specific TOD effect that should 
represent the more localized value placed on a location within walking distance of different 
bundles of TOD characteristics over and above common proximity, and the interaction effect that 
measures the rate at which the combined common and station-type specific effects decay over 
space as distance from the station increases. 
 
Latent Class TOD Model 
Transit Access and Station Area TOD Context 
For the TOD context sub-model, we adopt the methodology proposed by Higgins and Kanaroglou 
(2016a) for using LCA to distil station area accessibility and built environment characteristics into 
a typology of different TOD bundles. TOD is operationalized by quantifying the five primary ‘D’ 
variables proposed by Ewing and Cervero (2010) according to the following definitions. The first 
‘D’ is distance to transit, which considers how we define a station’s spatial catchment area. This 
catchment area is operationalized in two ways: a circular 800-metre theoretical buffer around 
stations that captures its general built environment context, and the functional spatial area covered 
by a 10-minute walk (at an assumed speed of 1.3 metres per second) that captures how each station 
is used. The input layer for calculating the walk buffers consists of the road network (excluding 
roads that are not pedestrian accessible) and off-street pedestrian paths mapped by the City of 
Toronto. Each definition is used as an input to the different TOD measures below. Buffers are 
unique to each station and not permitted to overlap. Exceptions to this are for adjacent station areas 
across the CRT and HRT networks and for the buffers used as inputs into the Design variable. 

Density consists of population and employment per hectare within each station’s theoretical 
catchment area. Population and employment counts come from the Canadian Census of Population 
and the Toronto Employment Survey respectively, each for the years 2001 and 2011. Diversity is 
measured in two ways. The first reflects the ratio of employment to population and employment 
within 800-metres to gauge the development mix of each station. A second measure of diversity 
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is land use mix, measured as the proportion of residential, commercial, industrial, and mixed-use 
land in each 800 metre station area for each time period.  

Destination accessibility considers a station’s interaction potential as measured by the 
gravity equation:  
 

!"!#$!%&'()* = ,- !./) #0/*
11)*2∀*4)

 (1) 

 
Where !./) is the total population in the labour force in station i within a 10-minute walk of a 
station, #0/* is the total employment in station j within a 10-minute walk, and 11)*  is the travel 
time on transit between stations i and j. The numerator is reversed for stations with a development 
mix greater than 0.5, which signifies a station is more oriented to employment uses.  

Finally, Design considers the overall design of the pedestrian network (streets and off-
street pedestrian paths) measured through street connectivity. A second set of overlapping 
theoretical and functional buffers were created, and Design is the ratio of the area contained within 
a 10-minute walk to that of a circular 800-metre buffer. Such an isochronic measure implicitly 
captures characteristics of the pedestrian shed, such as cul-de-sacs and intersection density. This 
method is similar to the 10-minute ‘ped-shed’ proposed by Porta and Renne (2005), and combined 
with our built environment measures, reflects the ‘walkability index’ employed by Frank et al. 
(2005). While this quantification of the walking environment lacks qualitative indicators, research 
by Manaugh and El-Geneidy (2011) found that the ped-shed and walkability indices performed as 
well as or better than the commonly used Walk Score index as correlates of household non-work 
walking trips. 
 Each of our TOD measures is quantified in ArcGIS. To increase the accuracy of population 
and employment estimates, counts at the dissemination area of geography are intersected with 
population- and employment-oriented parcels of land respectively. Population, employment, and 
land use information is apportioned to each station buffer based on the proportion of a polygon 
intersecting the buffer. Figure 3 offers a visual depiction of this process for land use (Panel A) and 
population and employment data (Panel B), and this process is repeated for each time period. 
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Figure 3. Station Area Detail 

 
 
Latent Class Analysis 
Like Ward’s or k-means clustering, LCA is a technique for the unsupervised classification of 
observations. However, compared to those methods, LCA offers several advantages: it is 
probabilistic and assumes its latent variable is informed by a mixture of underlying probability 
distributions; it does not require variables to be standardized and can handle different scales of 
measurement; it offers the analyst more formal criteria on which to make decisions about the 
number of classes; and it allows for the post-hoc classification of new observations on an existing 
cluster solution, a property we utilize here to maintain compatibility with Higgins and Kanaroglou 
(2016a). 
 Rather than use the LCA sub-model, the measures of neighbourhood TOD characteristics 
above could enter the hedonic model directly to reveal their individual implicit prices. However, 
the mutual dependence of transportation and urban form results in multicollinearity among our 
measures of TOD (Appendix B) that is problematic for multiple regression. On the other hand, 
LCA seeks to represent or explain correlations among observed variables through the latent 
classification so long as model results meet the key assumption of local independence, wherein 
variables are assumed to be independent of one another within-class after estimation. From this, 
we argue the LCA sub-model’s latent variable is an effective way of capturing the TOD context 
of an area to reveal the implicit price of TOD as a spatial bundle of goods. 
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 The two-step estimation of the model depicted in Figure 2 first classifies stations using 
LCA based on the model’s posterior probabilities and incorporates this classification as an input 
variable into the spatial hedonic regression. A single-step estimation of the LCA and regression is 
possible, but per Petras and Masyn (2010), the choice of one- or two-step estimation entails 
different theoretical implications. A one-step model incorporates the regression as an additional 
indicator of latent class membership, which in this case would assume house price is another 
variable characterizing the latent classes. In contrast, the two-stage estimation assumes a 
directional relationship between the latent categorical variable and the exogenous outcome. In our 
case, the two-step method is preferable as it treats house price as an outcome of the latent TOD 
context. 
 Still, while we incorporate LCA to reduce potential bias in the hedonic price function from 
omitted variables and correlations between accessibility and land use in the urban system, treating 
a probabilistic LCA classification as observed in the two-step approach can introduce its own bias 
in the parameters of the second stage regression. There are two potential solutions to this issue. 
The first is the most-likely class method, which classifies stations based on their highest posterior 
classification probability. Per Clark and Muthén (2009), the validity of this approach depends on 
the quality of the LCA classification as measured by the entropy statistic, which ranges from 0 to 
1 with a value of 1 implying a perfect separation of classes. Higher entropies, particularly those 
greater than 0.8, indicate less error in the classification and introduce less potential for bias when 
most likely class membership is treated as observed and used as an input into additional models. 
 The second option is the pseudo-class draws technique. As outlined by Petras and Masyn 
(2010), this method classifies stations based on random samples from their distribution of posterior 
probabilities in the LCA. A series of random draws (Wang et al. (2005) recommend 20) allows 
stations to change their class membership and introduces variability in the estimation of the 
relationship between the latent station type variable and house price in Figure 2. Consistent 
estimates of the relationship between the mixture of latent classes and the dependent variable are 
obtained by averaging estimates over the pseudo-class draws. 
 
Hedonic Multiple Regression 
Real Estate Transaction Data 
The sample consists of single-detached homes located within 1 kilometre of the selected TTC 
lines. Transaction data have been obtained over two time periods: 2001 to 2003, and 2010 to 2014. 
For the latter period, this includes records of roughly 2,000 transactions. In the earlier period, we 
utilize a larger dataset from Farber and Páez (2007) and Páez et al. (2008), but extract only 
transactions that occurred within the same geographic study area for a total of roughly 3,000. In 
both cases, data were obtained from the Municipal Property Assessment Corporation, which 
maintains a database of all properties in Ontario with information on their structural characteristics 
and assessed and transacted value. The database is linked to Ontario’s geographic parcel fabric 
and was pre-screened for any sales that were not determined to constitute an open-market 
transaction. 
 
Structural, Parcel, and Neighbourhood Characteristics 
Each transaction record contains several key structural and parcel characteristics associated with 
the home. Median household income at the dissemination area level of geography is used to act as 
a proxy for overall neighbourhood characteristics and we also measure a home’s proximity to its 
nearest park and school. To control for household access to regional job markets on the road 
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network, we employ a second gravity measure of regional interaction potential. The equation is 
the same as the right-hand side of equation 1, but here the input !./) is the total population in the 
dissemination area i in which each household is located; #0/* is the total employment in regional 
census tract j, and 11)*  is the total travel time between i and j at peak period levels of congestion. 
Travel time estimates utilize speed readings for commercial vehicles obtained from INRIX, Inc., 
and trips were assumed to start at 8AM on a typical Monday in 2012. Travel times are capped at a 
maximum of 45 minutes. Congested travel times were not available prior to 2012, so models using 
the earlier transaction data adopt the same travel times. 
 
Temporal Effects 
To control for any temporal effects in the real estate market such as seasonal trends, inflation, sales 
volume, or other factors, we incorporate a series of quarterly dummy variables in the models. 
Beyond inflation, we hypothesized earlier that LVU associated with TOD is not time-constant, and 
if any differences over time exist, they should be revealed through changes between time periods 
in our repeat cross-sectional model design. 
 
Spatial Effects 
Model diagnostics for aspatial hedonic regressions revealed the existence of spatial 
autocorrelation. In response, Thiessen polygons for each sale were created, a spatial weights matrix 
based on a ‘queen’ system of spatial contiguity was calculated, and models were re-run with spatial 
lag and spatial error terms with heteroskedastic error correction (Kelejian & Prucha, 1998; 1999; 
2010) as implemented in the program GeoDa Space. Equations (2) and (3) describe the general 
form of the spatial lag and error model: 
 

! = 	6 + 	89! + 	:; + 	< (2) 

<	 = 	=9< + 	> (3) 

where ! is an -	×	1 vector of log transformed sale prices for single-detached homes; 6 is the 
constant term; 8  and =  are scalar autoregressive parameters; 9  is the row standardized -	×	- 
spatial weighting matrix with zero diagonal terms; 9! is the spatially-lagged dependent variable; 
;  is the -	×	A  matrix of observations on A  exogenous variables; :  is the A	×	1  vector of 
regression parameters; <  is an -	×	1 vector of the spatial autoregressive error term; 9<  is the 
spatially-lagged error term; and >  is the independent and heteroskedastically distributed error 
term. 
 
Descriptive Statistics 
Table 1 displays basic descriptive statistics for the variables included in the hedonic model. 
Comparing average prices across time periods gives an indication of the price appreciation that 
has occurred in the region over the past number of years. Table 1 also includes descriptive statistics 
for the different station types, which are defined and calculated based on a station’s most likely 
class membership from the LCA model results presented in the next section.  
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Table 1. Descriptive Statistics: Transaction Data 

 Sample A: 2001-2003 Sample B: 2010-2014 

Variable 
Mean 

(Prop.) 
Std. Dev. Mean 

(Prop.) 
Std. Dev. 

Sale Price ($CAD, thousands) 570.89 306.39 1,229.68 625.46 
Transit Proximity and TOD     
Station Distance (metres) 705.14 254.92 772.75 253.82 
10-Minute Walk (0-1) (0.37)  (0.38)  
10-Min. Walk * Station Dist. 444.75 146.60 440.57 148.91 
Urban Mixed-Use Core (0-1) -  (0.05)  
Urban Mixed-Use Core * Station Dist. - - 417.19 110.99 
Inner Urban Nhbd. (0-1) (0.08)  (0.15)  
Inner Urban Nhbd. * Station Dist. 430.28 132.74 452.38 148.58 
Urban Nhbd. (0-1) (0.26)  (0.16)  
Urban Nhbd. * Station Dist. 443.05 150.50 428.68 155.26 
Suburban Nhbd. (0-1) (0.03)  (0.02)  
Suburban Nhbd. * Station Dist. 496.85 134.18 503.46 157.25 
GO Suburban Nhbd. (0-1) (0.01)  (0.00)  
GO Suburban Nhbd. * Station Dist. 459.18 86.90 477.51 93.69 

Structural Characteristics     
Structure Age (years) 51.92 25.61 57.52 29.55 
Lot Area (metres2) 513.63 265.26 516.10 408.62 
Floor Area (feet2) 1,887.80 894.99 2,035.82 990.29 
Finished Basement Area (feet2) 454.86 437.46 544.67 471.48 
No. Bedrooms 3.32 0.88 3.40 0.88 
No. Full Baths 1.94 1.04 2.22 1.19 
No. Half Baths 0.63 0.61 0.69 0.63 
Attached Garage (0-1) (0.34)  (0.33)  
Detached Garage (0-1) (0.33)  (0.29)  
Heat – Forced Air (0-1) (0.70)  (0.73)  
Pool (0-1) (0.06)  (0.05)  
Neighbourhood Characteristics     
Median Household Income ($CAD, thou.) 97.59 43.74 129.65 72.96 
Distance to nearest School (metres) 490.01 222.69 460.02 211.96 
Distance to nearest Park (metres) 215.07 137.13 211.80 132.82 
Within 100m Hwy. (0-1) (0.01)  (0.01)  
Regional Accessibility     
Emp. Interaction Potential 15.90 1.15 15.96 1.32 

Quarter of Sale     
Omitted for Brevity (0-1)     
N  2,938  1,982 

 
MODEL RESULTS 
Latent Class Analysis 
Using MPLUS 7.2, the latent class model classified each station’s TOD context based on their 
built environment and transit accessibility characteristics. A typology of station area TOD 
estimated in Higgins and Kanaroglou (2016a) revealed a best fit with 9 distinct types of stations 
in the Toronto region, with a tenth Airport-type station qualitatively determined. As initial model 
diagnostics indicated moderate in-class residual covariance between density and accessibility, a 
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covariate relationship between these variables was ultimately specified. The resulting entropy of 
this classification solution is 0.89, a high value that indicates a clear separation of classes. To keep 
the station typologies directly comparable, station type membership for the present paper is 
predicted from this model solution. 

The result is a set of four station types within the study area: Urban Mixed-Use Core, Inner 
Urban Neighbourhood, Urban Neighbourhood, and Suburban Neighbourhood. Table 2 displays 
latent class model results for each station type compared to averages for all stations in Higgins and 
Kanaroglou (2016a). Here coefficients correspond to each station type’s mean for a given measure 
of TOD and the significance corresponds to whether this parameter is estimated to be statistically 
different from zero. Numbers in parenthesis reflect the deviation in percentage terms of this value 
from the sample mean reported in the right-hand column. Also in this column are within-class 
variances for each class mean. The latent class model assumes variances are constant across classes 
to ensure the resulting typology of station-area TOD is maximally homogeneous within-class and 
heterogeneous across classes. 

 
Table 2. Station Area TOD Characteristics by Station Type 
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Accessibility           
Interaction 
Potential 

19.55  *** 17.61 *** 16.48 *** 14.94 *** 15.67  
(25%)  (12%)  (5%)  (-5%)  (1.54)  *** 

Land Use           
Normalized 
Density 

370 *** 112 *** 68 *** 41 *** 88  
(318%)  (27%)  (-23%)  (-53%)  (1.34)   *** 

Development 
Mix 

0.49 *** 0.34 *** 0.18 *** 0.28 *** 0.39  
(27%)  (-13%)  (-54%)  (-28%)  (0.03) *** 

Walk 
Connectivity 

0.59 *** 0.56 *** 0.55 *** 0.45 *** 0.48  
(25%)  (18%)  (15%)  (-5%)  (0.01) *** 

Land Use Mix           

Residential 0.29        *** 0.49  *** 0.67 *** 0.44   *** 0.41  
(-30%)  (16%)  (63%)  (7%)  (0.01) *** 

Commercial/ 
Institutional 

0.30 *** 0.19 *** 0.12 *** 0.15       *** 0.18  
(63%)  (5%)  (-34%)  (-16%)  (0.01) *** 

Mixed-Use 0.17 *** 0.06 *** 0.02 *** 0.01 *** 0.02  
(631%)  (139%)  (-3%)  (-44%)  (0.00) *** 

Industrial 
0.02  0.04 *** 0.02 *** 0.06 *** 0.11  

(-86%)  (-64%)  (-80%)  (-54%)  (0.01) *** 

Land Use Overview        

     

  

Notes: * indicates statistical significance at the .05% level, ** at the .01% level, and *** at the .001% level or 
smaller 
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Greater discussion of latent class modelling and TOD classification results can be found in 
Higgins and Kanaroglou (2016a). For the present analysis, results from the typology suggest that 
Urban Mixed-Use Core and Inner Urban Neighbourhood stations are most reflective of TOD as a 
concept, offering the highest levels of transit accessibility and high-density, mixed-use, and 
pedestrian friendly development around rapid transit. This generally decreases as stations move 
from urban to suburban, with Suburban Neighbourhoods featuring more homogeneous land uses 
and lower levels of development intensity, transit accessibility, and pedestrian-friendliness. 
However, compared to the 10 station types in Higgins and Kanaroglou (2016a), all station types 
in the present study area exhibit of some elements of TOD.  

Posterior probabilities for the individual stations are shown in Table 3. Across both time 
periods, Finch and Lawrence stations for example are clearly classified as an Inner Urban 
Neighbourhood and Urban Neighbourhood respectively. However, although the overall entropy 
for the LCA is high, several stations show variability in their classification and can be characterized 
by a mixture of station types. The posterior probabilities for Don Mills are roughly split between 
being an Inner Urban Neighbourhood and Urban Neighbourhood in the early time period, and 
other stations show moderate mixing across both periods. In response, we adopt the pseudo-class 
draws technique to minimize potential bias in the second stage of our model. 

 
Table 3. Sample Station Posterior Probabilities 
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A B A B A B A B 
Finch 0.000 0.000 0.847 0.978 0.147 0.022 0.006 0.000 
North York Centre 0.000 0.000 0.285 0.636 0.579 0.343 0.136 0.020 
Sheppard-Yonge 0.000 0.000 0.373 0.618 0.620 0.381 0.008 0.001 
York Mills 0.000 0.000 0.026 0.024 0.195 0.310 0.778 0.667 
Lawrence 0.000 0.000 0.001 0.001 0.998 0.999 0.000 0.000 
Eglinton 0.003 0.567 0.997 0.433 0.000 0.000 0.000 0.000 
Davisville 0.000 0.000 0.237 0.197 0.703 0.749 0.060 0.054 
Bayview 0.000 0.000 0.000 0.000 0.733 0.924 0.267 0.076 
Bessarion 0.000 0.000 0.011 0.016 0.933 0.968 0.056 0.016 
Leslie 0.000 0.000 0.008 0.015 0.015 0.025 0.977 0.960 
Don Mills 0.000 0.000 0.472 0.842 0.494 0.146 0.034 0.013 
Time Period: A) 2001-2003; B) 2010-2014. Most likely class for each time period in 
bolded type. 

 
It is also interesting to note that the probabilities for some stations have shifted over time, 

demonstrating the model’s sensitivity to changes in station area TOD. Eglinton station for example 
evolved from being primarily an Inner Urban Neighbourhood to a mix between that station type 
and an Urban Mixed-Use Core as station area population and employment densities, mixed-use 
land, and accessibility increased. North York Centre, Sheppard-Yonge, and Don Mills stations 
went from being characterized primarily as Urban Neighbourhoods to Inner Urban 
Neighbourhoods. In the case of North York Centre, population increased by 61% from nearly 
9,400 within 800-metres in 2001 to more than 15,000 in 2011. For Sheppard-Yonge, population 
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more than doubled to nearly 17,000 while employment totals in both station areas increased by 
30%. 
 
Hedonic Multiple Regression 
Results are reported in Table 4 for three sets of models. The first model adopts a traditional 
structure where the only variable of interest with respect to LVU is a home’s distance from a transit 
station. The second model advances this specification by considering a separate interacted effect 
for properties within a 10-minute walk of any station, where a peaking of land values should be 
more pronounced. In contrast, the third model in each cross section adopts the full interaction 
approach, where different bundles of TOD are assumed to constitute spatial submarkets that are 
valued differently by homeowners. 
 Model results for the structural, neighbourhood, regional accessibility, and quarterly time 
of sale control variables generally perform as expected, but for the sake of brevity we omit greater 
discussion of these impacts. Focusing on the key variables of interest in the Transit Proximity and 
TOD group for Model 1, the lack of statistical significance on the Station Distance variable 
suggests that a home’s proximity to its nearest TTC rapid transit access and egress point is not 
implicitly priced into the value of land in either cross section.  
 However, re-estimation with an interaction specification to capture more localized LVU 
among properties within a 10-minute walk of a station in Model 2 reveals a strong and significant 
relationship between price and proximity across both time periods. The reference group consists 
of homes outside this 10-minute walk buffer. Results indicate that compared to the reference 
group, a location within a 10-minute walk is associated with a price increase of up to 18% in the 
early cross section and 17% in the later cross section.1 This effect decreases at a rate of roughly 
3% every 100 metres farther a home is from a station. Compared to Model 1, such results suggest 
that proximity to the TTC is indeed being priced into the land market and decays in a non-linear 
fashion as distance from a station increases. However, this global estimate hides any variability by 
station area TOD context, which the latent class model has shown to be heterogeneous across the 
study area. 
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Table 4. Spatial Hedonic Model Results 

 Model 1a:  
2001-2003 

Model 1b:  
2010-2014 

Model 2a:   
2001-2003 

Model 2b:    
2010-2014 

Model 3a:  
2001-2003 

Model 3b:   
2010-2014 

Transit Proximity and TOD             
Station Distance (metres) -0.000001  0.000018  0.000111 ** 0.000115 ** 0.000114 ** 0.000120 ** 
         (0.000004)  (0.000014)  
10-Minute Walk (0-1) -  -  0.167173 *** 0.160321 *** -  -  
             
10-Min. Walk * Station Dist. -  -  -0.000253 *** -0.000268 *** -  -  
             
Urban Mixed-Use Core (0-1) -  -  -  -  -  0.098064  
           (0.003589)  
Urb Mix-Use Core * Stn Dist. -  -  -  -  -  -0.000028  
           (0.000006)  
Inner Urban Nhbd. (0-1) -  -  -  -  0.180214 ** 0.141528 * 
         (0.041083)  (0.039504)  
Inner Urban * Station Dist. -  -  -  -  -0.000280 * -0.000262 * 
         (0.000081)  (0.000071)  
Urban Nhbd. (0-1) -  -  -  -  0.169141 *** 0.182305 ** 
         (0.023114)  (0.023396)  
Urban Nhbd. * Station Dist. -  -  -  -  -0.000234 ** -0.000277 * 
         (0.000032)  (0.000032)  
Suburban Nhbd. (0-1) -  -  -  -  0.206252 * 0.206259 * 
         (0.075332)  (0.025728)  
Suburb. Nhbd. * Station Dist. -  -  -  -  -0.000417 * -0.000420 * 
         (0.000122)  (0.000030)  
Oriole GO (0-1) -  -  -  -  0.133456  -0.511145  
         (0.007337)  (0.007860)  
Oriole GO * Stn. Dist. -  -  -  -  -0.000364  0.000741  
         (0.000013)  (0.000019)  

Structural Characteristics             
Structure Age -0.003213 ** -0.008959 *** -0.003181 ** -0.008847 *** -0.003126 ** -0.008626 *** 
         (0.000077)  (0.000111)  
Structure Age2 0.000048 *** 0.000086 *** 0.000047 *** 0.000084 *** 0.000045 *** 0.000081 *** 
         (0.000001)  (0.000002)  
Lot Area (10m2) 0.001237 *** 0.001048 *** 0.001309 *** 0.001085 *** 0.001349 *** 0.001108 *** 
         (0.000041)  (0.000017)  
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Floor Area (10ft2) 0.001832 *** 0.001383 *** 0.001820 *** 0.001380 *** 0.001817 *** 0.001379 *** 
         (0.000008)  (0.000007)  
Finished Basement Area (10ft2) -0.000296  0.000563 *** -0.000296  0.000554 *** -0.000302  0.000556 *** 
         (0.000002)  (0.000011)  
No. Bedrooms 0.006083  -0.011284  0.007774  -0.010750  0.008198  -0.010607  
         (0.000293)  (0.000281)  
No. Full Baths 0.053044 *** 0.014729  0.052848 *** 0.014344  0.052011 *** 0.013611  
         (0.000645)  (0.000754)  
No. Half Baths 0.061154 *** 0.036073 *** 0.060463 *** 0.036318 *** 0.060183 *** 0.036379 *** 
         (0.000340)  (0.000450)  
Attached Garage (0-1) -0.014845  0.011545  -0.012465  0.013137  -0.011861  0.016727  
         (0.000988)  (0.001008)  
Detached Garage (0-1) 0.016619  0.035756 ** 0.016544  0.034782 ** 0.015873  0.035025 ** 
         (0.000549)  (0.000594)  
Heat – Forced Air (0-1) -0.024011 * -0.015543  -0.021598 * -0.015241  -0.020803 * -0.015640  
         (0.001569)  (0.001237)  
Pool (0-1) 0.036304 * 0.079620 ** 0.036513 * 0.082510 *** 0.037435 * 0.082755 *** 
         (0.000704)  (0.000602)  
Neighbourhood Characteristics             
Median Hhld. Income ($1,000) 0.001224 *** 0.000480 *** 0.001282 *** 0.000495 *** 0.001280 *** 0.000502 *** 
         (0.000014)  (0.000006)  
Dist. to nearest School (100m) 0.003830  0.000000  0.000049 * -0.000001  0.000054 * 0.000015  
         (0.000005)  (0.000013)  
Dist. to nearest Park (100m) 0.009370 * -0.000017  0.000083 * -0.000025  0.000079 * -0.000030  
         (0.000002)  (0.000006)  
Within 100m Hwy. (0-1) -0.206094 *** -0.228364 *** -0.200579 *** -0.221650 *** -0.190866 *** -0.196474 *** 
         (0.001395)  (0.001545)  
Regional Accessibility             
Emp. Interaction Potential 0.007845  0.006529  0.009119 * 0.007683  0.009057 * 0.007180  
         (0.000691)  (0.001029)  

Time of Sale             
Year 1 Quarter 1 (Reference) (Reference) (Reference) (Reference) (Reference) (Reference) 
       
Year 1 Quarter 2 -0.002572  -0.029234  -0.002122  -0.029455  -0.001341  -0.029842  
         (0.000794)  (0.001397)  
Year 1 Quarter 3 -0.022544  -0.126008  -0.019435  -0.124074  -0.019111  -0.118342  
         (0.000657)  (0.002244)  
Year 1 Quarter 4 -0.044904 * -0.081811  -0.042482 * -0.081633  -0.041736  -0.084959  
         (0.000731)  (0.002557)  
Year 2 Quarter 1 -0.037915 * -0.113477 * -0.039061 * -0.112358 * -0.038152 * -0.113263 * 
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         (0.000864)  (0.001593)  
Year 2 Quarter 2 -0.043605 * -0.138763 ** -0.042542 * -0.138933 ** -0.041749 * -0.142403 ** 
         (0.000760)  (0.001977)  
Year 2 Quarter 3 -0.121258 *** -0.252652 *** -0.119108 *** -0.253140 *** -0.118412 *** -0.255394 *** 
         (0.000500)  (0.002723)  
Year 2 Quarter 4 -0.156359 *** -0.218364 *** -0.155626 *** -0.220244 *** -0.155094 *** -0.225451 *** 
         (0.000934)  (0.003086)  
Year 3 Quarter 1 -0.181854 *** -0.210956 *** -0.179722 *** -0.210881 *** -0.179738 *** -0.212133 *** 
         (0.000677)  (0.001875)  
Year 3 Quarter 2 -0.177554 *** -0.211354 *** -0.176303 *** -0.214058 *** -0.175931 *** -0.214364 *** 
         (0.000878)  (0.002499)  
Year 3 Quarter 3 -0.200207 *** -0.247694 *** -0.198950 *** -0.247692 *** -0.198624 *** -0.249255 *** 
         (0.000909)  (0.001961)  
Year 3 Quarter 4 -0.216903 *** -0.295739 *** -0.216269 *** -0.296621 *** -0.216445 *** -0.299997 *** 
         (0.001098)  (0.002120)  
Year 4 Quarter 1 -  -0.319175 *** -  -0.318901 *** -  -0.321629 *** 
           (0.001815)  
Year 4 Quarter 2 -  -0.357991 *** -  -0.359122 *** -  -0.360295 *** 
           (0.002091)  
Year 4 Quarter 3 -  -0.446182 *** -  -0.451494 *** -  -0.452632 *** 
           (0.002162)  
Year 4 Quarter 4 -  -0.446092 *** -  -0.447005 *** -  -0.449761 *** 
           (0.002280)  
Year 5 Quarter 1 -  -0.409703 *** -  -0.408530 *** -  -0.413540 *** 
           (0.003147)  
Year 5 Quarter 2 -  -0.416492 *** -  -0.416615 *** -  -0.418374 *** 
           (0.001803)  
Year 5 Quarter 3 -  -0.472941 *** -  -0.474375 *** -  -0.475757 *** 
           (0.001581)  
! 7.084261 ** 7.464294 *** 7.053069 *** 7.398615 *** 7.007258 *** 7.501697 *** 
         (0.053164)  (0.080122)  
" 0.405934 ** 0.455129 *** 0.397994 *** 0.452508 *** 0.401181 *** 0.445026 *** 
         (0.004738)  (0.005468)  
# 0.155041 ** 0.006238  0.160212 *** 0.012037  0.157582 *** 0.017611  
         (0.005524)  (0.006937)  
N 2,938  1,982  2,938  1,982  2,938  1,982  
Pseudo-R2 0.756  0.724  0.758  0.726  0.759  0.727  
Notes: * indicates statistical significance at the .05% level, ** at the .01% level, and *** at the .001% level or smaller; - indicates parameter not 
estimated; pseudo-class draws standard deviation in parenthesis. Model results with standard errors can be found as supplementary material online. 
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To test whether these LVU amounts are consistent across all station types, Model 3 adopts 
the pseudo-class draws technique to estimate LVU by station area TOD context. Coefficients 
reflect the mean value across the 20 draws with standard deviations in parenthesis. Although the 
standard deviations of the Transit Proximity and TOD group suggest that different mixes of the 
stations result in varied estimates of LVU from TOD, the use of the pseudo-class draws method 
produces consistent estimates of these parameters. 

For the earlier time period (Model 3a), compared to the reference group of homes outside 
a 10-minute walk, a location within an Inner Urban Neighbourhood station exhibits LVU of up to 
20%, decreasing at a rate of 2.8% every hundred metres farther a home is located from this type 
of station. For Urban Neighbourhood stations, homes are valued up to 18% more than those 
outside walking distance, decreasing 2.3% every hundred metres. Finally, the model estimates that 
homes located next to Suburban Neighbourhood stations are valued at approximately 23% more 
than the reference group, decreasing rapidly by 4.2% every hundred metres farther a home is from 
the station access point. This maximum uplift is 5% greater than the average for all stations in 
Model 2b. 

In the later time period, changes in the character of LVU by station area TOD can be seen. 
Compared to uplift of up to 20% in the earlier period, the value of living within walking distance 
of Inner Urban Neighbourhood stations has dropped to 15%, decreasing by 2.6% every 100 metres 
from a station access/egress point. In contrast, the maximum uplift for Urban Neighbourhoods 
increased to 20%, decaying by 2.7% every 100 metres. The premium for Suburban 
Neighbourhoods stayed constant at 23%, again decreasing by 4.2% every 100 metres. 
Interestingly, no statistically significant effect was found for the Urban Mixed-Use Core station 
type. Similarly, no effect was seen for homes within walking distance of the Oriole GO Suburban 
Neighbourhood station across both time periods. 
 What about the LVU main effects of proximity to rapid transit? Because of the interaction 
effects, this coefficient is interpreted differently for homes within and beyond walking distance of 
a station. For those beyond, it is interpreted as the change in sale price as distance from a station 
increases. As the results of Models 2 and 3 demonstrate, basic proximity to any type of station is 
positive, meaning land values for homes beyond walking distance increase as distance from a 
station increases. However, for homes within walking distance, this coefficient reflects the value 
of proximity to TOD common to all station types. 
 
Total and Net Land Value Uplift 
Taken together, the combined effects from the station-type specific TOD, global TOD proximity, 
and interacted variables capture differential rates of LVU around the sample stations (Figure 4). 
The panels plot the marginal implicit price derived from Model 3, showing the LVU benefits of 
TOD as proximity to station access/egress points changes. Panel 1 for example corresponds to 
Inner Urban Neighbourhood stations with 1a representing the early time period and 1b the later 
time period. Using a station’s most likely class membership, we also plot the location of individual 
sales in the sample to illustrate the distribution of observations informing each curve in the model. 
 For 1a, total uplift for land within an Inner Urban Neighbourhood station type is the sum 
of the three LVU measures. The first is the station-specific TOD effect, which produces a 
maximum uplift of 20%. Second, the station-specific TOD distance interaction causes this effect 
to dissipate to zero at 640 metres from the station. After this, the global TOD effect common to all 
station types is estimated to reach zero at 1,120 metres from Inner Urban Neighbourhood stations.  
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Figure 4. Net Land Value Uplift by Station Type 

1a) Inner Urban Neighbourhood (Sample A); 1b) Inner Urban Neighbourhood (Sample B); 2a) Urban 
Neighbourhood (Sample A); 2b) Urban Neighbourhood (Sample B); 3a) Suburban Neighbourhood (Sample A); 3b) 

Suburban Neighbourhood (Sample B) 

 

 

 
 

However, in terms of net LVU in the urban land market, the global TOD effect is cancelled 
out by the proximity curve estimated for the reference group of properties beyond walking distance 
of any station, which begins at 0% and increases to 15% at 1,200 metres. From this, the three 
measures of total LVU from TOD and the reference group proximity effect come together to reveal 
an inflection point in the distribution of land values over space around this type of station. 

For Inner Urban Neighbourhoods in the later cross section, Panel 1b shows that net LVU 
decreases in magnitude and spatial extent, with the TOD effect dissipating to zero at 530 metres. 
A different trend can be seen for Urban Neighbourhoods in panels 2a and 2b, the latter of which 
shows that LVU for this station type became more peaked over time. Although the maximum uplift 
increased from 18% to 20% over cross sections, the net LVU impact area from station-type specific 
TOD decreased from within 720 metres in the early time period to 650 metres in the later time 
period. Finally, net uplift for Suburban Neighbourhoods starts higher than the other station types 
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at 23% in 3a, but the LVU from station-type specific TOD dissipates by 490 metres. In contrast to 
the other station types, net uplift for Suburban Neighbourhoods remains unchanged over time 
periods. 

Considering these results, it is interesting to note that the net uplift impact area for land 
proximate to each of the station types is less than the 800 metre/10-minute walk catchment area 
specified. Similarly, a lack of observations in close proximity to station access and egress points, 
particularly for Suburban Neighbourhoods, means the model is predicting LVU for locations in 
the immediate vicinity of stations. 
 Moreover, it should also be noted that the figures above reflect only the direct LVU effects 
derived from the station distance and station-type variables. In a spatial lag model specification, 
any amenity benefits at one location exert additional spillover effects on neighbouring properties, 
which in turn yield added effects on the first property (Kim et al., 2003; Small & Steimetz, 2012). 
From this, the spatial multiplier approach utilizes the model’s spatial lag coefficient to capture any 
additional indirect spillover effects, and the total value of an amenity is the sum of these direct and 
indirect effects.  

In the present case, the spatial multiplier would increase our estimates of LVU by 
approximately 67% in the early time period and 80% in the later time period. However, as Small 
and Steimetz (2012) argue, the use of the spatial multiplier approach is only appropriate if the 
benefits of an amenity are technological (e.g. a homeowner’s utility increases from their 
neighbour’s higher property values that result from the amenity) rather than pecuniary in nature. 
In the present case, any spillover value added by a neighbour’s house being proximate to TOD 
should not increase a homeowner’s utility above and beyond their own proximity. From this, we 
conceptualize LVU from TOD as pecuniary and welfare-neutral and focus on only the direct 
effects. 
 
DISCUSSION AND CONCLUSIONS 
TOD Bundles and LVU Submarkets 
The results confirm several of our hypotheses as they relate to LVU from TOD in the Toronto 
region. First, latent class model results reveal that station area TOD characteristics vary within the 
study area, confirming H1. Incorporating the latent TOD classes into the hedonic regression in 
Model 3 suggests that land in transit-oriented locations is valued higher than land outside station 
catchment areas, supporting H2. Furthermore, different bundles of TOD are priced into single-
detached homes at different rates. This partially confirms H3 that LVU effects are heterogeneous 
and vary by station context. Finally, the changes for Inner Urban and Urban Neighbourhoods over 
cross sections plotted in Figure 4 partially confirm H4 that there are differences in the capitalization 
of TOD over time. From this, we can conclude that TOD matters and different bundles of each are 
priced into the value of land around rapid transit stations in Toronto.  

Nevertheless, the results raise important questions as the directionality of the relationship 
between TOD and land values in hypothesis H3, where we posited that a greater premium should 
be found for locations higher in TOD, is not confirmed. Compared to more Urban-type stations, 
Suburban Neighbourhoods are lower in our measured TOD attributes but were found to have 
consistently higher rates of maximum LVU. That no statistically significant LVU was detected for 
the Urban Mixed-Use Core station type in Model 3b also appears counter-intuitive as this type of 
station best represents TOD as a concept in the study area. Furthermore, Inner Urban 
Neighbourhoods saw a decrease in maximum LVU over the time periods while Urban 
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Neighbourhoods saw an increase and Suburban Neighbourhoods stayed constant. Such findings 
appear to suggest that high-intensity TOD is a disamenity to buyers of single-detached homes. 

On the other hand, the net spatial LVU impact from TOD varied by station type with the 
largest uplift areas for the more transit-oriented Inner Urban and Urban Neighbourhoods, which 
suggests that the amenities offered by station areas higher in TOD cast a longer LVU “shadow”. 
That said, in all cases, the net LVU catchment area implied by the models is smaller than our 
specification of a catchment area as the distance covered by a 10-minute walk. 
 What might explain these trends? One factor limiting the robustness of the results for the 
Urban Mixed-Use Core station type in particular is sample size. With only one, it may be that the 
idiosyncrasies of Eglinton station beyond its measured TOD characteristics are affecting the 
significance of the station-type specific TOD effects measured by the LCA model.  

Related to this, a second likely factor impacting the relationship between TOD and land 
values is unobserved heterogeneity in individual preferences, which can inform the sorting process 
into different housing types and TOD submarkets. For Eglinton, the intense development seen 
around the station over the study period is likely associated with increasing noise, construction, or 
building shadows, which could in turn be viewed negatively among single-detached homebuyers. 
Similar development trends are behind the shift in class probabilities for three other stations that 
switched from being primarily Urban to Inner Urban Neighbourhoods, which may explain the 
drop in LVU seen for this station type across time periods. 

As in other papers, different results could be found for additional property types, such as 
condominiums. However, such reasoning assumes property type is a proxy through which 
significant differences in underlying preferences for TOD among homebuyers are implicitly 
operationalized. This exposes a fundamental limitation of transaction data; although factors like a 
preference for more environmentally-friendly lifestyles or the ‘youthification’ of Toronto outlined 
by Moos (2015) may be impacting real estate values in the study area, transactions alone cannot 
reveal how the characteristics of the people buying the homes are affecting the observed LVU 
trends. 
 
Conclusion 
With the shift towards integrated transportation and land use planning for rapid transit, it seems 
plausible that both rapid transit and associated TOD can result in significant price premiums for 
locations around stations. But previous research into rapid transit’s LVU effects has generally 
worked from the lens of the AMM model, often estimating models across several stations 
simultaneously and interpreting any proximity effects as evidence of the capitalization of 
accessibility into land. This approach risks leaving information on how LVU varies by station area 
TOD context unobserved. It also introduces the potential for omitted variable bias in the estimation 
of the hedonic price function as built environment characteristics can be correlated with proximity 
to rapid transit. 
 In response, we explicitly recognize the potential for LVU effects from both transit 
accessibility and transit-oriented built environments and conceptualize these effects as a bundle of 
TOD goods spatially defined by the area within a 10-minute walk of a station. Results from the 
latent class model show that station areas are indeed heterogeneous with respect to TOD. From 
this, hedonic model results confirm that there are submarkets of LVU effects from TOD in the 
study area, and that land values decrease as distance from the TOD centre of gravity increases.  

Still, although the hedonic model can theoretically isolate the value of land at a certain 
location, what this land is used for and the preferences of the user affect this value. Our results 
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raise questions related to how different levels of TOD are valued by buyers of single-detached 
homes: uplift around suburban implementations of TOD is more peaked and decreases rapidly, 
uplift for stations higher in TOD is flatter with a larger spatial impact area, and there is no effect 
for the highest intensity TOD. This suggests a complex relationship between TOD and single-
detached home values, one where TOD is valued but only up to a point. 
 Such results offer some direction for research, planning, and policy. First, the finding that 
TOD is valued in the urban land market shows that households are willing to pay for more 
sustainable patterns of development, reinforcing Duncan’s (2011a) conclusion that planners 
should seek to remove supply constraints on TOD. However, like the work of Atkinson-Palombo 
(2010), our results also suggest that TOD planning and policy may have differential impacts for 
different housing types proximate to stations. Second, the spatial capitalization of TOD varies by 
station type, and in all cases the net uplift area is smaller than the 800 metres or 10-minute walk 
typically used to define a station catchment area. Finally, the contextual sensitivity of LVU means 
that both transit access and built environment factors should be considered when estimating uplift 
for existing transit infrastructure, and forecasting uplift for the purposes of land value capture. 

However, to offer better guidance on these issues, further study is required.  A larger 
sample of stations and station types would help to increase the robustness of these results, 
particularly as they relate to our findings for the Urban Mixed-Use Core station type. Researchers 
should also perform a sensitivity analysis on the assumed spatial extent of a station’s LVU impact 
area. Moreover, other housing types should be considered, as such buyers may on average place a 
higher value on TOD, which could in turn result in differences in the magnitude and extent of 
LVU. 

To that end, while our observed LVU estimates reflect the underlying transportation, land 
use, economic, social, and institutional conditions of the Toronto market, the methods utilized in 
this paper are generalizable. This includes conceptualizing TOD as a bundle of goods, capturing 
variations in TOD through LCA, and incorporating these measures into spatial hedonic models 
through the pseudo-class draws approach. The results of the station typology in Higgins and 
Kanaroglou (2016a) in particular can be utilized within LCA to construct station classifications in 
other study areas that are directly comparable with the present work. 

That said, transaction data alone cannot reveal how implicit homebuyer preferences and 
broader societal trends are informing the identified LVU curves from TOD. Considering this, 
future research should seek to analyze the relationship between heterogeneous individual and 
household preferences, their spatial and household-type sorting decisions, and TOD. Only then 
can we begin to truly isolate the contextual sensitivity inherent in the relationship between TOD 
and LVU. 
 
NOTES 

1. Because the dependent variable is log-transformed, coefficients can be interpreted as the 
percentage change in Y per unit change in X using the formula 100[exp ' − 1], where 
' is the coefficient in question 
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APPENDIX A 
 
Table A1. Correlation Matrix of TOD Measures (Earlier Time Period) 
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1. Density 1.000  0.166  0.719 *** 0.848 *** 0.111  0.546 *** 0.628 *** -0.307 *** 

2. Development 
Mix 0.166  1.000  -0.089  -0.072  -0.756 *** 0.584 *** 0.119  0.432 *** 

3. Street 
Connectivity 0.719 *** -0.089  1.000  0.804 *** 0.423 *** 0.306 *** 0.516 *** -0.533 *** 

4. Interaction 
Potential 0.848 *** -0.072  0.804 *** 1.000  0.301 ** 0.324 *** 0.539 *** -0.383 *** 

5a. Residential 0.111  -0.756 *** 0.423 *** 0.301 ** 1.000  -0.459 *** -0.027  -0.500 *** 

5b. Commercial/ 
Institutional 0.546 *** 0.584 *** 0.306 *** 0.324 *** -0.459 *** 1.000  0.374 *** -0.164  

5c. Mixed-Use 0.628 *** 0.119  0.516 *** 0.539 *** -0.027  0.374 *** 1.000  -0.322 *** 

5d. Industrial -0.307 *** 0.432 *** -0.533 *** -0.383 *** -0.500 *** -0.164  -0.322 *** 1.000  

Notes: * indicates statistical significance (Pearson, 2-tailed) at the .05% level, ** at the .01% level, and *** 
at the .001% level or smaller 

 
Table A2. Correlation Matrix of TOD Measures (Later Time Period) 
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1. Density 1.000  0.191 * 0.723 *** 0.851 *** 0.100  0.553 *** 0.640 *** -0.322 *** 

2. Development 
Mix 0.191 * 1.000  -0.072  -0.015  -0.740 *** 0.596 *** 0.130  0.437 *** 

3. Street 
Connectivity 0.723 *** -0.072  1.000  0.816 *** 0.422 *** 0.306 *** 0.523 *** -0.533 *** 

4. Interaction 
Potential 0.851 *** -0.015  0.816 *** 1.000  0.279 ** 0.348 *** 0.545 *** -0.398 *** 

5a. Residential 0.100  -0.740 *** 0.422 *** 0.279 ** 1.000  -0.461 *** -0.019  -0.504 *** 

5b. Commercial/ 
Institutional 0.553 *** 0.596 *** 0.306 *** 0.348 *** -0.461 *** 1.000  0.369 *** -0.160  
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5c. Mixed-Use 0.640 *** 0.130  0.523 *** 0.545 *** -0.019  0.369 *** 1.000  -0.322 *** 

5d. Industrial -0.322 *** 0.437 *** -0.533 *** -0.398 *** -0.504 *** -0.160  -0.322 *** 1.000  

Notes: * indicates statistical significance (Pearson, 2-tailed) at the .05% level, ** at the .01% level, and *** 
at the .001% level or smaller 
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APPENDIX B. Spatial Hedonic Model Results with Standard Errors 
 

 
Model 1a:  2001-

2003 
Model 1b:  2010-

2014 
Model 2a:   2001-

2003 
Model 2b:    
2010-2014 Model 3a:  2001-2003 Model 3b:   2010-2014 

Variable 
Coefficient 
(Std. Err)  

Coefficient 
(Std. Err)  

Coefficient 
(Std. Err)  

Coefficient 
(Std. Err)  

Mean 
Coefficient 
(Std. Err) Std. Dev  

Mean 
Coefficient 
(Std. Err) Std. Dev  

Transit Proximity and TOD               
Station Distance (metres) -0.000001  0.000018  0.000111 ** 0.000115 ** 0.000114 0.000004 ** 0.000120 0.000014 ** 
 (0.000020)  (0.000024)  (0.000035)  (0.000043)  (0.000035) 0.000000  (0.000044) 0.000002  
10-Minute Walk (0-1) -  -  0.167173 *** 0.160321 *** -   -   
     (0.039542)  (0.045991)        
10-Min. Walk * Station Dist. -  -  -0.000253 *** -0.000268 *** -   -   
     (0.000063)  (0.000074)        
Urban Mixed-Use Core (0-1) -  -  -  -  -   0.098064 0.003589  
            (0.080549) 0.000197  
Urb Mix-Use Core * Stn Dist. -  -  -  -  -   -0.000028 0.000006  
            (0.000176) 0.000000  
Inner Urban Nhbd. (0-1) -  -  -  -  0.180214 0.041083 ** 0.141528 0.039504 * 
         (0.057243) 0.004053  (0.056354) 0.004290  
Inner Urban * Station Dist. -  -  -  -  -0.000280 0.000081 * -0.000262 0.000071 * 
         (0.000109) 0.000010  (0.000103) 0.000014  
Urban Nhbd. (0-1) -  -  -  -  0.169141 0.023114 *** 0.182305 0.023396 ** 
         (0.044640) 0.002657  (0.059145) 0.004428  
Urban Nhbd. * Station Dist. -  -  -  -  -0.000234 0.000032 ** -0.000277 0.000032 * 
         (0.000075) 0.000006  (0.000105) 0.000011  
Suburban Nhbd. (0-1) -  -  -  -  0.206252 0.075332 * 0.206259 0.025728 * 
         (0.094826) 0.022273  (0.089238) 0.007943  
Suburb. Nhbd. * Station Dist. -  -  -  -  -0.000417 0.000122 * -0.000420 0.000030 * 
         (0.000175) 0.000036  (0.000162) 0.000023  
GO Suburb. Nhbd. (0-1) -  -  -  -  0.133456 0.007337  -0.511145 0.007860  
         (0.102821) 0.000441  (0.695486) 0.001845  
GO Sub. Nhbd. * Stn. Dist. -  -  -  -  -0.000364 0.000013  0.000741 0.000019  
         (0.000222) 0.000001  (0.001205) 0.000002  

Structural Characteristics               
Structure Age -0.003213 ** -0.008959 *** -0.003181 ** -0.008847 *** -0.003126 0.000077 ** -0.008626 0.000111 *** 
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 (0.001076)  (0.000898)  (0.001076)  (0.000898)  (0.001079) 0.000001  (0.000903) 0.000003  
Structure Age2 0.000048 *** 0.000086 *** 0.000047 *** 0.000084 *** 0.000045 0.000001 *** 0.000081 0.000002 *** 
 (0.000011)  (0.000009)  (0.000011)  (0.000009)  (0.000011) 0.000000  (0.000009) 0.000000  
Lot Area (10m2) 0.001237 *** 0.001048 *** 0.001309 *** 0.001085 *** 0.001349 0.000041 *** 0.001108 0.000017 *** 
 (0.000349)  (0.000239)  (0.000350)  (0.000251)  (0.000350) 0.000002  (0.000264) 0.000007  
Floor Area (10ft2) 0.001832 *** 0.001383 *** 0.001820 *** 0.001380 *** 0.001817 0.000008 *** 0.001379 0.000007 *** 
 (0.000136)  (0.000127)  (0.000136)  (0.000126)  (0.000136) 0.000000  (0.000127) 0.000000  
Finished Basement Area (10ft2) -0.000296  0.000563 *** -0.000296  0.000554 *** -0.000302 0.000002  0.000556 0.000011 *** 
 (0.000160)  (0.000166)  (0.000160)  (0.000165)  (0.000160) 0.000000  (0.000166) 0.000000  
No. Bedrooms 0.006083  -0.011284  0.007774  -0.010750  0.008198 0.000293  -0.010607 0.000281  
 (0.006972)  (0.009128)  (0.006952)  (0.009119)  (0.006946) 0.000009  (0.009112) 0.000020  
No. Full Baths 0.053044 *** 0.014729  0.052848 *** 0.014344  0.052011 0.000645 *** 0.013611 0.000754  
 (0.008265)  (0.008314)  (0.008244)  (0.008345)  (0.008260) 0.000022  (0.008390) 0.000034  
No. Half Baths 0.061154 *** 0.036073 *** 0.060463 *** 0.036318 *** 0.060183 0.000340 *** 0.036379 0.000450 *** 
 (0.007917)  (0.010127)  (0.007923)  (0.010089)  (0.007912) 0.000030  (0.010162) 0.000024  
Attached Garage (0-1) -0.014845  0.011545  -0.012465  0.013137  -0.011861 0.000988  0.016727 0.001008  
 (0.012387)  (0.014631)  (0.012406)  (0.014571)  (0.012467) 0.000014  (0.014539) 0.000034  
Detached Garage (0-1) 0.016619  0.035756 ** 0.016544  0.034782 ** 0.015873 0.000549  0.035025 0.000594 ** 
 (0.009572)  (0.013484)  (0.009552)  (0.013490)  (0.009565) 0.000021  (0.013524) 0.000036  
Heat – Forced Air (0-1) -0.024011 * -0.015543  -0.021598 * -0.015241  -0.020803 0.001569 * -0.015640 0.001237  
 (0.010105)  (0.014568)  (0.010051)  (0.014535)  (0.010043) 0.000044  (0.014656) 0.000071  
Pool (0-1) 0.036304 * 0.079620 ** 0.036513 * 0.082510 *** 0.037435 0.000704 * 0.082755 0.000602 *** 
 (0.018139)  (0.024326)  (0.018226)  (0.024085)  (0.018188) 0.000051  (0.024273) 0.000049  
Neighbourhood Characteristics        
Median Hhld. Income ($1,000) 0.001224 *** 0.000480 *** 0.001282 *** 0.000495 *** 0.001280 0.000014 *** 0.000502 0.000006 *** 
 (0.000166)  (0.000106)  (0.000166)  (0.000106)  (0.000167) 0.000001  (0.000107) 0.000001  
Dist. to nearest School (100m) 0.003830  0.000000  0.000049 * -0.000001  0.000054 0.000005 * 0.000015 0.000013  
 (0.000024)  (0.000025)  (0.000024)  (0.000025)  (0.000024) 0.000000  (0.000027) 0.000001  
Dist. to nearest Park (100m) 0.009370 * -0.000017  0.000083 * -0.000025  0.000079 0.000002 * -0.000030 0.000006  
 (0.000038)  (0.000043)  (0.000038)  (0.000044)  (0.000038) 0.000000  (0.000044) 0.000000  
Within 100m Hwy. (0-1) -0.206094 *** -0.228364 *** -0.200579 *** -0.221650 *** -0.190866 0.001395 *** -0.196474 0.001545 *** 
 (0.053116)  (0.047303)  (0.052610)  (0.045421)  (0.056285) 0.000295  (0.055746) 0.000403  
Regional Accessibility               
Emp. Interaction Potential 0.007845  0.006529  0.009119 * 0.007683  0.009057 0.000691 * 0.007180 0.001029  
 (0.004023)  (0.004087)  (0.004012)  (0.004008)  (0.004074) 0.000057  (0.004111) 0.000093  

Time of Sale               
Year 1 Quarter 1 (Reference) (Reference) (Reference) (Reference) (Reference) (Reference) 
         
Year 1 Quarter 2 -0.002572  -0.029234  -0.002122  -0.029455  -0.001341 0.000794  -0.029842 0.001397  
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 (0.017348)  (0.052238)  (0.017309)  (0.052591)  (0.017307) 0.000040  (0.052711) 0.000156  
Year 1 Quarter 3 -0.022544  -0.126008  -0.019435  -0.124074  -0.019111 0.000657  -0.118342 0.002244  
 (0.018226)  (0.071362)  (0.018153)  (0.071277)  (0.018171) 0.000018  (0.073574) 0.000444  
Year 1 Quarter 4 -0.044904 * -0.081811  -0.042482 * -0.081633  -0.041736 0.000731  -0.084959 0.002557  
 (0.021277)  (0.068039)  (0.021251)  (0.067934)  (0.021291) 0.000033  (0.067779) 0.000116  
Year 2 Quarter 1 -0.037915 * -0.113477 * -0.039061 * -0.112358 * -0.038152 0.000864 * -0.113263 0.001593 * 
 (0.018242)  (0.046187)  (0.018215)  (0.046457)  (0.018177) 0.000036  (0.046804) 0.000180  
Year 2 Quarter 2 -0.043605 * -0.138763 ** -0.042542 * -0.138933 ** -0.041749 0.000760 * -0.142403 0.001977 ** 
 (0.017398)  (0.047819)  (0.017405)  (0.047135)  (0.017434) 0.000020  (0.046925) 0.000196  
Year 2 Quarter 3 -0.121258 *** -0.252652 *** -0.119108 *** -0.253140 *** -0.118412 0.000500 *** -0.255394 0.002723 *** 
 (0.018310)  (0.055874)  (0.018290)  (0.056508)  (0.018343) 0.000016  (0.056523) 0.000149  
Year 2 Quarter 4 -0.156359 *** -0.218364 *** -0.155626 *** -0.220244 *** -0.155094 0.000934 *** -0.225451 0.003086 *** 
 (0.020745)  (0.037257)  (0.020756)  (0.037296)  (0.020736) 0.000052  (0.037387) 0.000094  
Year 3 Quarter 1 -0.181854 *** -0.210956 *** -0.179722 *** -0.210881 *** -0.179738 0.000677 *** -0.212133 0.001875 *** 
 (0.022494)  (0.035377)  (0.022421)  (0.035471)  (0.022366) 0.000031  (0.035503) 0.000094  
Year 3 Quarter 2 -0.177554 *** -0.211354 *** -0.176303 *** -0.214058 *** -0.175931 0.000878 *** -0.214364 0.002499 *** 
 (0.017982)  (0.035876)  (0.018000)  (0.035917)  (0.018004) 0.000018  (0.036149) 0.000070  
Year 3 Quarter 3 -0.200207 *** -0.247694 *** -0.198950 *** -0.247692 *** -0.198624 0.000909 *** -0.249255 0.001961 *** 
 (0.020145)  (0.041969)  (0.020130)  (0.041888)  (0.020151) 0.000018  (0.041932) 0.000153  
Year 3 Quarter 4 -0.216903 *** -0.295739 *** -0.216269 *** -0.296621 *** -0.216445 0.001098 *** -0.299997 0.002120 *** 
 (0.026673)  (0.037660)  (0.026647)  (0.037652)  (0.026636) 0.000054  (0.037630) 0.000089  
Year 4 Quarter 1 -  -0.319175 *** -  -0.318901 *** -   -0.321629 0.001815 *** 
   (0.035180)    (0.035223)     (0.035180) 0.000077  
Year 4 Quarter 2 -  -0.357991 *** -  -0.359122 *** -   -0.360295 0.002091 *** 
   (0.038229)    (0.038230)     (0.037760) 0.000081  
Year 4 Quarter 3 -  -0.446182 *** -  -0.451494 *** -   -0.452632 0.002162 *** 
   (0.039637)    (0.039730)     (0.039730) 0.000099  
Year 4 Quarter 4 -  -0.446092 *** -  -0.447005 *** -   -0.449761 0.002280 *** 
   (0.040093)    (0.040233)     (0.040342) 0.000122  
Year 5 Quarter 1 -  -0.409703 *** -  -0.408530 *** -   -0.413540 0.003147 *** 
   (0.036347)    (0.036480)     (0.036541) 0.000098  
Year 5 Quarter 2 -  -0.416492 *** -  -0.416615 *** -   -0.418374 0.001803 *** 
   (0.036269)    (0.036252)     (0.036218) 0.000087  
Year 5 Quarter 3 -  -0.472941 *** -  -0.474375 *** -   -0.475757 0.001581 *** 
   (0.040917)    (0.040853)     (0.040971) 0.000093  
! 7.084261 ** 7.464294 *** 7.053069 *** 7.398615 *** 7.007258 0.053164 *** 7.501697 0.080122 *** 
 (0.333625)  (0.375564)  (0.333373)  (0.373449)  (0.336796) 0.002817  (0.383563) 0.005474  
" 0.405934 ** 0.455129 *** 0.397994 *** 0.452508 *** 0.401181 0.004738 *** 0.445026 0.005468 *** 
 (0.026982)  (0.028560)  (0.027077)  (0.028624)  (0.027398) 0.000276  (0.029392) 0.000407  
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# 0.155041 ** 0.006238  0.160212 *** 0.012037  0.157582 0.005524 *** 0.017611 0.006937  
 (0.040023)  (0.049015)  (0.039802)  (0.048774)  (0.039961) 0.000133  (0.049440) 0.000146  
N 2,938  1,982  2,938  1,982  2,938   1,982   
Pseudo-R2 0.756  0.724  0.758  0.726  0.759   0.727   
Notes: * indicates statistical significance at the .05% level, ** at the .01% level, and *** at the .001% level or smaller; - indicates parameter not estimated; standard errors in 
parenthesis 

 


