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ABSTRACT 

This thesis investigates the application of latent variable methods to three combustion 

processes. Multivariate analysis of flame images and process data is performed to predict 

important quality parameters and monitor flame stability. The motivation behind this work 

is to decrease operational costs and greenhouse gases in these energy intensive processes. 

The three combustion processes studied are a lime kiln, a basic oxygen furnace and a coal­

fired boiler. 

In lime kiln operation, the mam goal is to stabilize final product temperature in order 

to reduce fouling and energy costs. Due to long process dynamics, prediction of product 

temperature is required at least one hour in advance for potential use in a control scheme. 

Several methods for extracting features from flame images were investigated for the predic­

tion of the temperature. The best method is then combined with process data in a PLS 

model that also incorporates dynamic information. The analysis revealed that prediction 

one hour into the future is successful using latent variable methods. 

In the basic oxygen furnace analysis, the main goal is to predict end-point carbon of the 

batch process. Termination of the batch as soon as the desired carbon is attained reduces 

oxygen consumption and thus operational cost. Traditional image analysis is used to identify 

a constant field of view in the flame images. Multivariate image feature extraction methods 

were then used in combination with process data to successfully predict the final carbon 

content of the heat. 

The coal-fired boiler analysis focuses on monitoring of flame stability at different production 

and air to fuel levels of the boiler. Prediction of energy efficiency and off-gas chemistry from 

flame images is also investigated. An unexpected result was the ability to use the installed 

cameras for localized fouling monitoring. 

This thesis showed that the use of multivariate analysis of flame images and process data 

in combustion process is very promising. 



ACKNOWLEDGEMENTS 

I wish to express my gratitude to my supervisor, Dr. John MacGregor for his advice and 

support throughout this thesis. I would also like to thank Dr. Chris Swartz, Dr. Prashant 

Mhaskar, and Dr. Simon Haykin for excellent courses. 

I would like to thank my many good friends for their support and encouragement over 

the last two and a half years. Most of you have no idea what this thesis is about, but 

were always encouraging. Thanks to Veronique, Yvonne, Peyvand, Marta, Derek, Laura, 

Kristin, Vicky, Richard, Sarah, Art, Santiago, Bettina, Ryan, Julia, Mark-John, Nanette 

and so many more ... 

I would like to thank my employer, ProSensus Inc., for support throughout this work. To my 

colleagues Mark-John, Zheng, Darryl, and Kevin: thanks for your ideas and encouragement. 

I would also like to thank Dofasco for support during the early stages of this work, namely 

Vicky, Angelo, Bob, Judson and Steve Vlaho. 

For funding of the various projects in this thesis, I would like to thank Ontario Centres of 

Excellence, the Innovation Demonstration Fund, Tenova Goodfellow Inc., and Irving Pulp 

and Paper. Project specific acknowledgements are included in some chapters. 

Thanks to my sisters, Gerda, Mirjam and Priska for everything. I am so lucky to have three 

such wonderful sisters. A big thanks also goes to my grandparents, who I adore. 

My biggest thanks goes out to my husband, Benoit, who has supported and encourged me 

throughout this thesis and a whole lot more over the last 5 + years. 

This thesis is dedicated to my parents, Ruedi and Lydia Stahel, who's hard work, dedication 

and ability to overcome difficult challenges is a constant inspiration in my life. Danke fur 

alles! 



Table of Contents 

1 Introduction 

2 Background and Discussion of Methods 

2.1 

2.2 

2.3 

2.4 

2.5 

Background .......... . 

Multivariate Analysis Methods 

2.2.1 

2.2.2 

2.2.3 

Principal Component Analysis 

Partial Least Squares . 

Handling Missing Data . 

Multivariate Image Analysis .. 

Batch and Continuous Processes 

Programs Used . . . . . . . . . . 

3 Lime Kiln Analysis 

3.1 

3.2 

Introduction . . . 

Data Available and Experiments Performed 

1 

4 

4 

6 

6 

8 

10 

11 

13 

16 

17 

17 

19 



303 

3.4 

305 

306 

30201 

30202 

30203 

Vision System 

Process Data 

Experiments 

Results and Discussion 0 

30301 

30302 

30303 

Residual Calcium Carbonate Prediction 

Process Identification 0 0 0 0 0 0 0 0 0 0 

Firing End Temperature prediction using image features 0 

30304 Firing End Temperature prediction using mask method image fea-

tures and process data 0 0 

30305 Flame Stability Analysis 0 

Online Implementation 0 o 0 0 0 0 

Conclusions and Recommendations 

Acknowledgments 0 0 0 0 0 0 0 0 0 0 

4 Basic Oxygen Furnace Analysis 

4ol Introduction 0 0 0 0 0 0 0 0 0 

401.1 Process Description 

402 Data Available 0 0 0 0 

403 

40201 

40202 

Vision System 

Process Data 0 

Results and Discussion 0 

19 

19 

21 

21 

22 

23 

24 

33 

38 

40 

40 

42 

43 

43 

44 

46 

46 

47 

51 



4.4 

4.5 

4.3.1 

4.3.2 

4.3.3 

4.3.4 

Image Pre-processing . . . . . . . . . . . . . . . . . . 

Multivariate Image Analysis and Feature Extraction 

Results of Image Feature Models . . . . . . 

Combined Process and Image Data Model . 

Online Implementation . . . . . . . 

Conclusions and Recommendations 

4.6 Acknowledgments ......... . 

5 Coal-fired Boiler 

5.1 

5.2 

5.3 

5.4 

Introduction . 

5.1.1 

5.1.2 

5.1.3 

Process Description 

Camera Installation 

Description of Coal-only experiments . 

Results and Discussion . 

5.2.1 

5.2.2 

5.2.3 

Camera Images . 

Build-Up Monitoring . 

Analysis at varying loads 

Conclusions and Future Work 

Acknowledgments ...... . 

6 Conclusions and Recommendations 

51 

52 

58 

66 

69 

69 

70 

71 

71 

72 

72 

74 

76 

76 

78 

80 

87 

88 

89 



References 92 

A NIPALS algorithm 96 

B Coal-Fired Electricity Plant Diagram 99 

C Pulp and Paper Mill Flow Sheet 101 



List of Figures 

2.1 Illustration of PCA (ProSensus Inc. [2007]) 

2.2 Illustration of PLS(ProSensus Inc. [2007]) 

2.3 Image Decomposition 

2.4 

2.5 

Original Image and Score Histogram of a kiln image 

Demonstration of feature extraction using masks on a kiln image 

2.6 Decomposition of batch data (ProSensus Inc. [2007]) . . . . . . . 

3.1 The Irving Pulp and Paper kiln clean and fouled 

3.2 Rotary kiln diagram(Boateng [2008]) . . . . . . . 

3.3 Typical image from Irving Pulp and Paper's kiln camera . 

3.4 Time series plot of manipulated variable during experiments 

3.5 Time series plot of response variable during experiments 

3.6 Correlation between Firing End Temperature and Residual Calcium Carbon-

ate 

3.7 Steps 1-3 of the cumulative histogram feature extraction method 

7 

9 

11 

13 

14 

15 

18 

19 

20 

22 

22 

23 

26 



3.8 A typical score histogram and the 12 Masks applied to score histogram image 27 

3.9 Pixels of a kiln image corresponding to masks 

3.10 Illustration of column range and location feature calculation 

3.11 Average RGB values for 1 day of data and 5-minute filtered values 

3.12 Actual and predicted plots of FET models for mask method 

3.13 PLS Regression Coefficients of Mask 8 for FET prediction 

3.14 Illustration of variable filtering .............. . 

28 

29 

30 

32 

32 

34 

3.15 Actual and predicted plots for 2 hour FET models with and without images 36 

3.16 Actual and predicted plots for 2 hour FET models with and without images 37 

3.17 Corresponding pixels of Mask 6 and 8 in an image . . . . . . . . . . . . . . 39 

3.18 Ratio of Mask 8 pixels to Mask 6 pixels throughout the performed experiments 39 

4.1 Phases of a BOF heat identified on a typical off-gas C02 vs time plot 44 

4.2 Diagram of basic oxygen furnace . . . . . . . . . . . . . 

4.3 Example of image provided by the JM Canty@ camera 

4.4 Carbon and ppm02 relationship . . . . . . . . 

4.5 

4.6 

4.7 

Pre-processing of images: Examples of 3 heats . 

Successive images of heat 479 ........ . 

Corresponding T1 T2 score images of heat 479 

4.8 A typical image, corresponding score histogram and the 10 Masks applied to 

45 

47 

50 

52 

54 

55 

score histogram image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 



4.9 Pixels corresponding to each mask (in green) 120s prior to the end of heat 479 56 

4.10 Pixels corresponding to each mask (in green) 48s prior to the end of heat 479 57 

4.11 Pixels corresponding to each mask (in green) lOs prior to the end of heat 479 57 

4.12 Pixels corresponding to each mask (in green) 48s prior to the end of heat 479 

with identified vessel pixels in black . . . . . . . . . . . . . . . . . . . . . . 57 

4.13 Average image Tl aligned against the last 150 values of cumulative 02 for 

several heats 

4.14 Mask 1 image feature aligned against the last 150 values of cumulative 02 

for several heats 

4.15 Image Feature data decomposition for batch PLS model building 

4.16 Observed vs Prediction plots for all Models ........... . 

58 

59 

60 

64 

4.17 Predicted versus measured plot with a 1/y transformation for Model 2 data 65 

4.18 Predicted versus measured plot for combined process and image data model 67 

4.19 Coefficient plot for combined process and image data model . . . . . . . . . 68 

5.1 Sketch of camera locations and field of view . . . . . . . . . . . . . . . . . . 73 

5.2 Sketch of camera( JM Canty Inc. [2008]) and mounting location at the boiler 7 4 

5.3 

5.4 

5.5 

5.6 

5.7 

Camera Images: demonstration of pitting and build-up over time 

Window technique for excluding build-up pixels ... 

Burner 2 build-up mask and application to an image 

Burner 2 camera build-up during full load experiments 

Feature Extraction: 32x32 masks extracted from a score image 

77 

78 

79 

79 

80 



5.8 Score plots for PCA models for the three cameras for the full load experiments 82 

5.9 Score plot of process data during the full load experiments (analysis by ProS-

ens us Inc.) . . . . . . . . . . . . . . . . . . . . . . 83 

5.10 PLS model predictions at full load for camera 8S 83 

5.11 Score plots for PCA models for the three cameras for the half load experiments 84 

5.12 Score plots for PCA models for the three cameras for the minimum load 

experiments using Burner 1 and 2 85 

5.13 Score plots for PCA models for the three cameras for the minimum load 

experiments using Burner 2 and 3 86 

B.1 Coal-fired generating plant diagram (Atikokan Generating Station [2008]) . 100 

C.1 Kraft Pulp and Paper Mill Flow Sheet . . . . . . . . . . . . . . . . . . . . . 102 



List of Tables 

3.1 Identified Process Parameters . . . . . . . . . . . . . . . . . . . . . 

3.2 Feature Model Results: Sum of squared prediction error I N *100 . 

3.3 Dynamic Model Results 2 hours into the future: SSPE I N *100 

3.4 Combined Model Results, t+ 1 hour: SSPE I N *100 . 

3.5 Combined Model Results, t+2 hours: SSPE IN *100 

4.1 

4.2 

4.3 

4.4 

Repeat bomb measurements for heat 1 

Repeat bomb measurements for heat 2 

Repeat bomb measurements for heat 3 

Average range and standard deviation of the bombs 

4.5 SSPE*lOOO of validation dataset for the batch Tl T2 method on different 

4.6 

4.7 

4.8 

cumulative oxygen ranges . . . . . . . . 

Parameters for evaluating Image models 

Transformations on Carbon Measurement (y) 

Parameters for evaluating combined model . . 

25 

31 

31 

35 

35 

49 

49 

49 

51 

61 

62 

63 

67 



5.1 

5.2 

Boiler experiments performed at full load 

Boiler experiments performed at half load 

75 

75 

5.3 Boiler experiments performed at minimum load with burner 1 and 2 . 75 

5.4 Boiler experiments performed at minimum load with burner 2 and 3, and 

natural gas ignitors for 404-407 . . . . . . . . . . . . . . . . . . . . . . . . . 76 



Chapter 1 

Introduction 

Motivation and Goals 

In recent years, Canada's manufacturing industry has been struggling financially with in­

creased energy costs and a high Canadian dollar. Additionally, more stringent environ­

mental regulations have been enforced to decrease greenhouse gas emissions. Research into 

improving energy efficiency and using alternate fuel sources in combustion processes has 

been sparked by these challenges and motivates the work presented in this thesis. 

The goal of this research it to apply latent variable methods to several combustion processes 

to provide process stability, predict product quality and improve energy efficiency. The 

methodology used combines flame images and process data in a multivariate analysis to 

monitor and control three different processes. A lime kiln in the pulp and paper industry, a 

basic oxygen furnace in the steel industry, and a coal-fired boiler for power generation are 

studied in this work. An overview of the key goals of each analysis is provided. 

Lime Kiln 

A rotary lime kiln is a continuous recycling process used in pulp and paper mills. It 

converts calcium carbonate into lime for reuse in the pulp process. The reaction requires 

high temperatures and long exposure times, leading to slow process dynamics. As a result, 
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operators have difficulty controlling the product temperature. Fouling is increased with 

temperature fluctuations and can lead to unscheduled shutdowns and costly maintenance. 

Temperature fluctuations also lead to suboptimal conversion of calcium carbonate to lime. 

The main goals are to use the data to predict product temperature several hours in advance, 

for potential use in a control scheme. An increase in energy efficiency and reduction in 

fouling will lead to significant cost and greenhouse gas reductions. 

Basic Oxygen Furnace 

A basic oxygen furnace is a batch process used in steel mills to produce refined steel. Oxygen 

is injected into a bath of molten iron and scrap metal to remove carbon and other impurities. 

In this thesis an analysis is performed to predict end-point carbon content, which is the 

main measurements for batch termination. Knowledge of when to terminate the batch is 

key to producing high quality steel with minimum energy and oxygen requirements. 

Coal-fired boiler 

Coal-fired boilers are used to generate superheated steam that is transferred into electric­

ity. However, they are significant greenhouse gas producers and are no longer an attractive 

method for energy production. A combined research team, funded by the Canadian Gov­

ernment, is investigating conversion of a coal-fired boiler to a biomass fed boiler. McMaster 

University's involvement in this team encompasses using flame images and process data for 

monitoring of flame stability, energy efficiency and fuel stability. 

Thesis overview 

Chapter 2 - Literature Review and Discussion of Methods 

A discussion of key latent variable methods (PCA and PLS), handling of missing 

data, and multivariate image analysis is presented. Differences between multivariate 

analysis for batch and continuous processes are explained. 

Chapter 3 - Lime Kiln Analysis 
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This chapter presents the results of the lime kiln data analysis beginning with a 

description of the process and available data. Predicting product temperature using 

several image feature extraction methods is detailed. Incorporating dynamics into 

image only and PLS models combining images and process data is discussed. 

Chapter 4 - Basic Oxygen Furnace Analysis 

The results of the basic oxygen furnace analysis are presented in this chapter. Image 

pre-processing is required in this analysis and is presented as well as the various types 

of image feature extraction methods investigated to predict end-point product quality. 

The preliminary results of a model combining both the images and process data are 

shown. 

Chapter 5 - Coal Fired Boiler Analysis 

This chapter presents the results of the studies performed at the Atikokan power gen­

eration station. A designed experiment of the boiler operating at different production 

rates and air to fuel ratios was completed to determine whether process and image 

data could identify the various operating conditions. The results of the image analysis 

of these coal-only experiments are presented herein. 

Chapter 6 - Conclusions and Recommendations 

Key results obtained in this thesis are summarized in this chapter. Recommendations 

for future work are detailed. 



Chapter 2 

Background and Discussion of 

Methods 

This chapter presents an overview of the methods used in this research. 

2.1 Background 

Statistics have been used in monitoring and process control for several decades, most com­

monly through the use of statistical process control charts (SPC). Increased instrumentation 

and data historizing has led to exponential growth in available data to analyze processes. 

Monitoring and analyzing such a large dataset one variable at a time is time-consuming 

and often ineffective. This has given rise to the use of multivariate statistical methods 

in process troubleshooting, monitoring and control. These methods can effectively handle 

several of the key concerns with process data: high dimension, collinear measurements, 

noise and missing data (Eriksson et al. [2006]). Through the use of principal component 

analysis (PCA) or partial least squares (PLS) a system can be reduced to a few key latent 

variables, that can then be used for troubleshooting, monitoring and control. Industrial use 

and applications of these methods have risen in recent years. For example, ArcelorMittal 
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Dofasco, a steel company located in Hamilton, Ontario, has successfully used these methods 

for several years. Offline data analysis is performed regularly, as well as online control of 

their desulpherization process using a PLS model, and castor breakout monitoring using a 

PCA model (Dudzic and Quinn [2002]:Dudzic et al. [1999]). 

A natural extension of the multivariate data analysis approaches are to colour image anal­

ysis, where the images are large in size and the three colour channels, RGB, are highly 

correlated. Colour cameras are inexpensive sensors that are often installed to aid the op­

erators in monitoring processes from the control room. Information from cameras is rarely 

tied into a database or control system. However, through the use of multivariate statistics, 

it is possible to efficiently extract relevant features from images for online monitoring and 

control. In the snack food industry multivariate colour image analysis is used to predict and 

control seasoning content of chips. (Yu and MacGregor [2003b]). In the lumber industry, a 

similar methodology was used to grade lumber quality, by identifying defects such as knots 

and splits. (Bharati and MacGregor [1998]). 

In combustion processes cameras are commonly installed for operator viewing of the flame 

from inside the control room. Operators mainly use the camera to detect a major process 

instability, such as a complete lack of flame. However, much more information is contained 

within these images, and could be extracted using multivariate methods. A study of a 

waste boiler (Yu and MacGregor [2004]) and rotary ore roasting kiln (Szatvanyi and Duch­

esne [2006]) have already been completed. In the waste boiler analysis, key features were 

extracted from flame images and combined with process measurements to predict impor­

tant process parameters such as off-gas concentrations and energy content of the waste fuel 

stream. These are difficult and expensive to measure, therefor, obtaining accurate predic­

tions from image and process data is a significant achievement. The success of this boiler 

analysis sparked the interest in the rotary ore roasting kiln analysis. This study showed 

promise for prediction of final solids temperature several hours into the future. This predic­

tion into the future is important as the process has long dynamics, and the operators have 

difficulty maintaining a stable temperature. Unfortunately, neither of these two studies led 

to an online implementation, and the area of flame image analysis is currently an active 
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development area. 

2.2 Multivariate Analysis Methods 

Multivariate analysis approaches are successfully used for analysis of process and image 

data because of their ability to handle missing data, noise, collinear measurements and 

large amounts of data. This section presents a description of the multivariate methods used 

in this work, including principal component analysis, partial least squares, and calculation 

with missing data. 

2.2.1 Principal Component Analysis 

Principal component analysis is an important multivariate statistical tool that is utilized 

to determine the directions (latent variables) of largest variability in a given set of mea­

surements. Usually only a few latent variables explain can explain most of the variance 

in a highly correlated data set such as a set of process measurements or images. PCA is 

well documented in many literature sources (MacGregor and Kourti [1999] : Eriksson et al. 

[2006]) thus only a brief description is provided here. The model is in the from of: 

X=TPT +E (2.1) 

where: 

• X is the original data matrix (nxk) 

• T is the latent variable score matrix (nxA) 

• P is the loading matrix (kxA) 

• E is the error matrix, or noise (nxk) 

• A is the number of latent variables (components) in the model 

• n is the number of observations 
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• k is the number of variables in the dataset 

The first column of the loading matrix (1st component, P 1) represents the direction of 

greatest variance of the observation in X. This is calculated as the largest eigenvector of the 

covariance matrix, XTX, and is normalized to unit length. The second loading vector, P 2 , 

represents the second greatest direction of variance in the observations of X, with P 2 being 

orthogonal to P 1 . Figure 2.1, adapted from ProSensus Inc. [2007], shows two components 

of a dataset . The scores (T) are the coordinates of each observation in the coordinates of 

P. 

~ --....... 
1st component 

~ 
2nd component 

Figure 2.1: Illustration of PCA (ProSensus Inc. [2007]) 

The number of components used to fit a dataset should be such that no random noise is 

modeled. A dataset is often split into training and testing data to ensure that the model for 

each dataset performs similarly. Another popular method is cross-validation, discussed in 

[Eriksson et al. [2006]]. The calculation of the components can be performed through the use 

of NIPALS (non-linear iterative partial least squares) algorithm (Kresta et al. [1994]:Geladi 

and Kowalski [1986]:Eriksson et al. [2006]). NIPALS algorithm is readily adapted for missing 

data, which is discussed in Section 2.2.3. Appendix A provides more dE!tail on t he NIPALS 
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algorithm. 

Prior to building a PCA or PLS model, the data are normally mean centered and scaled 

to unit variance. Mean centering prevents the model from having to fit the average of 

each variable. Scaling each variable to unit variance is performed so that each variable 

has the same range. Without this step, a variable with a large range would be given more 

importance in the model since multivariate methods attempt to model the greatest sources 

of variance in a dataset. (Eriksson et al. [2006]) 

2.2.2 Partial Least Squares 

Partial least squares (PLS), is very similar to PCA, however, in this case there exists a 

set of prediction variables (Y) as well as the set of process measurements (X). A model is 

fit so that the maximum variance in both data sets is explained as well as the correlation 

between the two. This represents a large advantage over traditional regression methods, 

because both the X and Y space are modeled. PLS is well documented in literature sources 

(MacGregor and Kourti [1999] : Eriksson et al. [2006]: Kresta et al. [1994]), and will only 

be briefly described here. The model is in the form of: 

X=TPT +E 

Y=UC+F 

T=XW 

where (additional variables not described in PCA): 

• Y is the quality data matrix (nxm) 

• C is the Y loading vector ( mxA) 

• U is the Y space score 

• F is the error matrix of Y ( nxm) 

(2.2) 

(2.3) 

(2.4) 
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The first latent vector , wl , is the largest eigenvector of t he covariance matrix xTyyTx , 

normalized to unit length . For the second latent vector , the X space is deflated so t hat X 

is orthogonal to T 1 , and t he largest normalized eigenvector of t he new covariance matrix 

is W 2. This cont inues unt il all t he desired components are calculated . The X andY space 

are linked by U=T, and the Y loading vector,C, is determined by a least squares projection 

shown in equation 2.3. These steps ensure t hat t he maximum variance of both t he X and 

Y datasets are explained, as well as t he correlation between t he two. An illustration is 

provided in Figure 2.2, adapted from P roSensus Inc. [2007] . 

X- Plane 

2nd 
[camp 
... 

~ 
1st 

component 

Y- Plane 

Figure 2.2: Illustration of PLS (ProSensus Inc. [2007]) 

As with P CA, the loading vectors can be calculated t hrough t he use of NIPALS algorit hm 

(Kresta et al. [1994] :Geladi and Kowalski [1986]:Eriksson et al. [2006]) , shown in Appendix 

A. The number of components that are used are again determined by cross-validation (Eriks­

son et al. [2006]) , to avoid over-fitting of the data . 
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2.2.3 Handling Missing Data 

The ability to handle missing data is essential when dealing with process measurements. 

Data are missing from process historians if sensors fail or if different sampling rates exist 

amongst the measurements. There are various methods described in literature to han­

dle missing data, with varying degrees of complexity and accuracy (Nelson et al. [1996] : 

Arteaga and Ferrer [2002]). Depending on whether or not data are likely to fail in blocks 

(i.e., a whole group of process measurements fails at once) or just one variable at a time, 

different approaches can be used. For the scope of this work, it is anticipated that process 

measurements would not fail in blocks, and that the amount of missing data is minimal. If 

the camera would fail, the entire block of image features would be missing. Since the image 

features are extremely important for accurate prediction, no model calculation would be 

performed if this failure were to occur. The only time a prediction would be required with 

missing data present is when just a few process measurements have failed. The simplest 

method, single component projection (SCP) is used. This approach is based on the NIPALS 

algorithm, where a model is built that ignores any data that is missing(Nelson et al. [1996]). 

This is incorporated into the NIPALS algorithm shown in Appendix A for both PLS and 

PCA modeling. With a new observation, the scores are calculated by ignoring missing data, 

one component at a time, by the following set of equations (Nelson et al. [1996]): 

T. = p*T X(a)*jp*T p* a a a a (2.5) 

X( a+ 1)* =X( a)*- TaP~ (2.6) 

where: 

• alpha represents the component being calculated 

• * indicates only the loadings for which the data is present 

The set of equations shown above is for a PCA model. If the model is a PLS model, P* is 

replaced by W*. 
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2.3 Multivariate Image Analysis 

This section presents the steps required for multivariate image analysis (MIA) , model build­

ing and some image feature extraction techniques. Further details can be found in literature 

sources (Bharati and MacGregor [1998] 

Step 1: Image Decomposition 

A colour image consists of a red, green and blue channel. Each channel is an MxN matrix, 

consisting of entries between 0 and 255. Various combinations of t he entries in the three 

channels lead to different visual colours in an image (for example, R=255 , G=255 , and 

B=255 is a white pixel). Therefor , the resulting image matrix has dimension MxNx3, as 

shown in Figure 2.3. In order to perform a PCA on the data, the image must first be 

decomposed to a (mxn) *3 vector, as presented in Figure 2.3 

m 

Figure 2.3: Image Decomposition 

Step 2: Image model calculation 

In order to determine the image model,the overall covariance matrix, XTX, image is calcu­

lated (X being the decomposed image). Where there is more than one image, the sum of the 

XTX matrices for all of the images is used. Singular value decomposition is then performed 

on this matrix to obtain the loading vector,P . A 2 component PCA model is normally used, 

since there are only three variables (red, green, and blue) in an image. The channels are 
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so highly correlated that the first component often explains more than 95 percent of the 

variation in the image matrix. 

Step 3: Calculate scores and show as image 

The scores are calculated by the following formula (Yu and MacGregor [2003a]): 

T=X*PT (2.7) 

In order to view the scores as an image, the scores are scaled and re-folded into a 256 by 256 

histogram image. The scores are scaled using the minimum and maximum score for each 

component, over all of the images in the training set. The scores are then scaled between 0 

and 255 (the range of RGB pixels) by the following formula (Yu and MacGregor [2003a]): 

( 
tk i - tk min ) 

Tscaledk,i =round ' ' * 255 
tk,max - tk,min 

(2.8) 

• k is the component 

• i is the pixel 

• Tscaled is the scaled score value 

• tk,max is maximum score value at component k 

• tk,min is minimum score value at component k 

A histogram image is then created using 256 bins in both the T1 and T2 components. 256 

bins are used because there are 256 possible values that the scaled scores can have (between 

0 and 255). The image is color coded to present bins with high pixel counts as bright spots, 

and bins with low pixel counts as black spots. Figure 2.4 presents an image from the lime 

kiln and the respective score image. 

Step 4: Extracting Features from the score plot 

Extracting features, or characteristics, from the score histogram is the most important step 
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Figure 2.4: Original Image and Score Histogram of a kiln image 

for creating successful models. The reason is that these features are combined with process 

data to create P CA or PLS models for prediction, monitoring and control. If the features are 

inadequate, the model will be less accurate. This extraction step varies from application to 

application as different image features are important for any given model. Two of t he most 

common feature extraction methods include using masks (counting the number of pixels 

falling into a certain area of the score plot) or using all the bins from the score histogram 

in the model. The use of a mask on a lime kiln image is illustrated by Figure 2.5. The 

number of pixels falling under that mask for every image is a new variable. 

2.4 Batch and Continuous Processes 

This thesis involves the study of a batch process and two continuous processes. A batch 

process is operated unt il a certain objective is met, while a continuous process is operated 

ceaselessly. Batch processes require data pre-processing before a multivariate analysis oan be 

performed because process measurements vary wit h time. This creates a three dimensional 

matrix, that must be decomposed as shown in Figure 2.6 (ProSensus Inc. [2007]) . It is 

possible that the data must also be aligned before they are in a form(it with which PCA 
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Figure 2.5: Demonstration of feature extraction using masks on a kiln image 

and PLS models can be created. This step is required if the batches are not of the same 

duration or if an indicator variable is present that better describes the progression of a batch. 

Further reading on batch processes and alignment can be found in [Nomikos and MacGregor 

[1994] :Westerhuis et al. [1999] and Kassidas and MacGregor [1998]). The alignment required 

for the batch process studied in this work will be discussed in greater detail in t he Chapter 

4. 
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Figure 2.6: Decomposition of batch data (ProSensus Inc. [2007]) 
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2.5 Programs Used 

The following is a list of the various programs used in this work: 

• MATLAB R2007b : for data pre-processing, analysis and model building 

• Umetrics Simca-P+ 11.5 : for multivariate model building 

• MACCMIA : for preliminary multivariate image analysis 



Chapter 3 

Lime Kiln Analysis 

3.1 Introduction 

Rotary kilns were first introduced in the late 1800's to be used as reactors or driers for several 

different types of raw materials. Although they are most commonly used for cement and 

lime production, ore roasting and refractory production is also preformed in kilns. (Boateng 

[2008] : Szatvanyi and Duchesne [2006]). Regardless of the purpose of a rotary kiln, they 

face similar operational challenges including fouling, inefficient operation, greenhouse gas 

emissions and high energy costs. Inefficient operation and fouling is mainly caused by 

inadequate temperature control, which occurs due to long process dynamics and variations 

in raw material quality. Fouling leads to expensive, unplanned maintenance outages for 

cleaning. Inefficient operation results in higher energy use, higher greenhouse gas emissions, 

and poor product quality. Recently, the use of alternative fuels in kilns has become attractive 

for green house gas and energy cost reduction. Unfotunatley, their use is often prevented 

by the inability to control temperature and stabilize kiln flames. This chapter addresses 

these challenges using multivariate analysis of flame images and process data of a lime kiln. 

The rotary lime kiln studied in this chapter is a brand new installation at Irving Pulp and 

Paper (IPP) 's Saint John, New Brunswick. This unit is required for conversion of CaC03 

17 
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(called mud) to CaO (lime) for reuse in t he paper making process. This kiln was built 

to replace two older , small kilns and the entire plant is now shutdown when an outage is 

required to clean the fouled kiln. Operators have difficulty manually controlling this new, 

larger kiln, which has resulted in several process upsets over the first 8 months of operation. 

Figure 3.1 shows t he clean and t he fouled kiln t hat occurred after only a few mont hs of 

operation. For obvious reasons, the fouling is often referred to as ringing. Reducing and 

controlling fouling, product temperature and product chemistry are critical and will be t he 

main focus of this work. Refer to Appendix C for a flow sheet of a kraft pulp and paper 

mill such as this one. 

Figure 3.1: The Irving Pulp and Paper kiln clean and fouled 

Rotary kilns are all of similar design . As shown in Figure 3.2, material and gas flows are 

counter-current , and t he kiln is on an angle to gradually allow the raw material to pass 

t hrough the kiln. The kiln is rotated to improve mixing and increase t hroughput (Boateng 

[2008]) . The IPP lime kiln studied in t his work uses oil as the fuel source. Manual control 

of the exit gas temperature, product chemistry and product temperature is performed by 

manipulating air and fuel flows. The incoming material, mud , is varied based on upstream 

demand for lime. Figure 3.2 also depicts some of t hese important temperature and flows 

(described in more detail in Section 3.2.2). 
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Figure 3.2: Rotary kiln diagram(Boateng [2008]) 

3.2 Data Available and Experiments Performed 

Now that the main process has been explained, this section will provide an overview of 

the process and image data available at the IPP kiln, as well as the experiments that were 

performed on site. 

3.2.1 Vision System 

High temperature cameras are implemented at some kilns for operator flame monitoring. 

Being brand new, the IPP kiln was outfitted with a cutting edge, air cooled, digital camera 

with seamless recording capability. The camera is a Quadtek Spyrometer3 M554 (Quadtek 

Mirion [2008]) . As can be seen in Figure 3.3, the camera is located at the firing end of 

the kiln, with a clear view of the flame. This ready availability of good quality image data 

greatly facilitated the project. 

3.2.2 Process Data 

There are various process measurements available on a modern kiln. For this analysis, the 

measurements are divided into manipulated variables, response (controlled) variables and 
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Figure 3.3: Typical image from Irving Pulp and Paper's kiln camera 

other process measurements. 

Manipulated Variables: 

• Mud flow , oil flow and air flow 

Response Variables: 

• Firing end temperature (FET): the final product temperature 

• Cyclone exit temperature (CET): the temperature of the air exiting the cyclone (at 

the back end of the kiln) 

• Residual CaC0 3 : a lab measurement of the amount of CaC03 remaining in the 

produced lime 

Other process measurements 

• Off-gas chemistry (oxygen, carbon monoxide, hydrogen sulfide, etc) 
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• Back-end temperature and pressure 

• Kiln rotational speed, voltages and motor amps 

• Surrounding equipment(precipitator, filters, vacuum) temperature and pressures 

3.2.3 Experiments 

Experiments were performed over a four day period in order to gather data at various 

operating conditions. With the completion of experiments, a rich dataset is generated in a 

short amount of time. This is beneficial because image data are computationally intensive 

to analyze. Having 4 days of data from a designed test as opposed to several months of 

historical data reduces analysis time and provides more process information. 

Detailed experiments were planned in a 23 design to manipulate air, mud and oil flow. The 

manipulated variable set points were carefully selected to keep the firing end temperature 

within quality specifications. Upon discussion with operating personnel some experiments 

were removed because the cyclone exit temperature would have exceeded safe operating 

conditions. Nonetheless, a large range of process conditions were operated and excellent 

data were obtained. Figures 3.4 and 3.5 present the manipulated and controlled variable 

values throughout the experiments. Note that the data were mean centered and scaled to 

unit variance for easy visualization. The images and process data were recorded every 10 

seconds. Residual CaC03 lab tests were performed at 20 minute intervals instead of 2-3 

hours intervals during regular operation. 

3.3 Results and Discussion 

The dataset obtained during process experiments was used for residual calcium carbonate 

prediction, process identification, temperature prediction using images and process data 

and a preliminary analysis of flame stability. 
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3.3.1 R esidua l C alcium Ca rbona t e P rediction 

The measure of the amount of CaC03 remaining in the lime is the main measure of product 

quality in the kiln. High CaC03 content indicates that the process was run inefficiently 

and the final lime contains significant impurity. The procedure to obtain this measurement 

contains several steps including taking a product sample, grinding sample, adding chemicals, 

taking a reading from a graduate cylinder , then reading the corresponding value of residual 

calcium carbonate off a graph. As a result , this measurement is t ime consuming and contains 

several sources of variation. One goal of this work is to create an accurate, online soft sensor 

to predict residual CaC03. 
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Throughout the experiments it was noted that firing end temperature (FET) and residual 

calcium carbonate are highly correlated , as shown in Figure 3.6. A linear correlation between 

t he two measurements explains 68 percent of the variation in residual CaC03 . Given the 

amount of variation in the quality measurement , it is unlikely that a more in depth analysis 

would provide an improvement in prediction. Since the residual calcium carbonate can 

be inferred from the firing end temperature, FET prediction several hours into the future 

becomes the main focus of this work. With a successful prediction of FET, control moves 

could be made to ensure stable FET, which would also stabilize and improve residual calcium 

carbonate. 
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Figure 3.6: Correlation between Firing End Temperature and Residual Calcium Carbonate 

3.3.2 Process Identification 

It is important to characterize the dynamics between t he manipulated and response variables 

for process understanding and for use in control algorithms . First-order with dead-time 

models were used to fit the data, which take the form: (Marlin [2000]) 

~y = ~MV * KpMv * (1- exp( -(t- eMv )/T)) . (3.1) 
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where: 

• Y is the response variable 

• MV is the manipulated variable 

• Kp is the gain 

• e is the dead-time 

• T is the time constant 

The three parameters of equation 3.1; Kp, 8 and Tare calculated using the process reaction 

curve method described in [Marlin [2000]]. During the experiments, there was individual 

step changes made to one manipulated variables where the others were left constant, and 

from there, the parameters could be calculated. This occured around hour 49 for oil, hour 

60 for air, and hour 63 for mud. The results of the identification for the three manipulated 

variables and two response variables are shown in Table 3.1. These parameters were verified 

with knowledge from process engineers to ensure they were accurate. Increasing air flow 

draws heat from the firing end of the kiln to the back end, thus cooling FET and increasing 

CET. Air also has a short time delay and the shortest time constant. An increase in the 

mud flow cools both temperatures, and has a faster impact on CET than the FET as it is 

charged at the back end of the kiln. An increase in oil flow increases energy to the process, 

thus increasing both temperatures. 

3.3.3 Firing End Temperature prediction using image features 

This section presents how FET is predicted using three methods of image feature selection. 

The method that generates the best results will be combined with process data to obtain a 

final model (Section 3.3.4). PLS models are created where the image features are used to 

predict temperature at the current time, 1 hour in advance and 2 hours in advance. The 

three methods of image feature selection studied are: 
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Table 3 1· Identified Process Parameters 

Parameter Unit FET CET 

Gain,air ~ o Fj ~RPM -1.67 0.93 

Gain,mud ~ o Fj ~ USGPM -5.00 -1.55 

Gain,oil ~°F/~USGPM 700 150 

Time constant,air minutes 22.60 5.8 

Time constant,mud minutes 67.85 10.73 

Time constant,oil minutes 62.50 50.00 

Time delay,air minutes 4.02 3.06 

Time delay,mud minutes 86.91 0.00 

Time delay,oil minutes 83.33 141.6 

1. Average RGB Method 

2. Cumulative Histogram Method 

3. Mask Method 

Average RGB Method 

In combustion processes, production rates and temperatures are highly correlated to the 

image brightness. From each image, the average red, green and blue value is calculated 

as well as the difference between the colour channels (average red-average blue, average 

green-average blue, and average red-average green). A total of six features are obtained 

from each image and can be used to predict FET. The advantage of this method is that 

it is computationally simple and does not involve multivariate image analysis methods. 

However, it is likely that there are other features in the images that are not captured with 

the average colour that could enhance the FET prediction. 
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Cumulative Histogram Method 

The cumulative histogram method involves calculating the score histograms over all of the 

images in the training set (as described in Section 2.3). Using this information the steps 

below are followed to obtain features from the images: 

1. Reduction of the score histograms from 256 x 256 matrices to 32 x 32 matrices 

2. Unfolding of the 32 x 32 score histograms to 1x 1024 vectors 

3. Calculation of the cumulative sum vector of each 1 x 1024 vector 

4. Combining t he cumalitive sum vectors of all N training images into an N x 1024 matrix 

5. Fitting an 8-component PCA model to t he N x 1024 matrix 

6. Use of the 8 scores of the PCA model as features of each image 

Steps 1-3 are illustrated for one process image in Figure 3.7. This method captures more 

image characteristics than the RGB method, however , it is very difficult to relate the features 

back to the image for interpretation of results. 

9J 1111 19J 2!ll 2511 10 15 211 ~ :II 
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05 

Figure 3.7: Steps 1-3 of the cumulative histogram feature extraction method 
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Mask Method 

This method also requires t he score histograms of all the images . 12 masks are applied 

to t he score histograms and t he number of pixels belonging to each mask are t he features 

extracted from this method . A score histogram wit h the 12 masks applied to each histogram 

are shown in Figure 3.8. Figure 3.9 presents t he regions of a kiln image to which each mask 

corresponds to. In this part icular image t here were no pixels t hat belonged to Mask 1 and 

12. Mask 1 corresponds to bright (almost saturated) pixels, located at the center of the 

flame. Image pixels rarely belong to mask 12, usually only when a few outliers are present. 

The key advantage of this method is t hat it is simple to relate t he features to the original 

image, helping t he interpretation of results. 

Figure 3.8: A typical score histogram and the 12 Masks applied to score histogram image 

The masks only isolate a region of t he score histogram. It is possible for the entire histogram 

to shift up or down t he column length , while falling into t he same masks. To capt ure t his 

information , t he median pixel location in each column was calculated. The range of each 

score histogram column t hat contain image pixels is also calculated . This is illustrated in 

Figure 3.10. Although t here are 256 columns in a score histogram, the median location and 

range was only calculated for columns 25, 50, 75, 100, 125, 150, 175, 200, 225, and 250 since 

t he values from column to column are highly correlat ed . Including the range and median 

location information adds 20 features to t he 12 mask features. These 32 features are t hen 
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Figure 3.9: Pixels of a kiln image corresponding to masks 

correlated to firing end temperature in a PLS model. 

Results of PLS models 

Separate PLS models were built to predict the firing end temperature using five minute 

averages of the features calculated in the three methods described previously. The features 

were used to predict FET at the current time, 1 hour and 2 hours into the future . These 

models were built using a training set and two validation sets. In order to determine the 

optimal number of PLS model components, the sum of the squared prediction error divided 

by the number of observations in each dataset is calculated after a model is built. The 

number of components that minimizes the error on all three datasets is selected. This 

method ensures that over-fitting of the training data is avoided. 

The training and validation data used consisted of five minute averages of the image features. 

These were used in the models to increase the signal to noise ratio as noise from image to 

image is introduced when the kiln rotates. Figure 3.11 presents the average RGB values of 

one day of images taken every 10 seconds as well as the 5 minute average values. It is clear 

from this figure that filtering the data using 5 minutes creates a smoother signal. 
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Figure 3.10: Illustration of column range and location feature calculation 

The PLS model results are shown in Table 3.2. The mask method provides the best pre­

diction, independent of the time horizon. This means that the features extracted in this 

method are most relevant to temperature prediction. Figure 3.12 presents these time-series 

plots for each data set of the mask method. These plots show that the models can predict 

steady-state values well, but prediction of transitions in the process are poor, especially 

when predicting 2 hours in advance. These models do not include any dynamic data which 

may explain the poor prediction during process transitions. 

Incorporation of Dynamic data 

The goal of including dynamic information in the PLS models is to improve prediction during 

process transitions, especially for prediction 2 hours into the future. These models were built 

using the mask image features and past values of FET and dynamics were incorporated as 

shown in Equation 3.2 The prediction error results of the 2 hour models with and without 

dynamic information are presented in Table 3.3. The prediction does not improve. Model 

coefficients B and C from equation 3.2 were zero, meaning that image information from 

more than 2 hours in the past does not provide any information for FET prediction. 
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FETt = A*Mask(t-z) +B*Maskt-z- lh+C*Maskt- z-2h+D*FET(t-z) +E*FETt-z- lh+F*FETt- z-2h 

(3.2) 

where 

• A-Fare model parameters calculated by PLS 

• z is the number of hours into the future the model predicts (either 0, 1 or 2) 

• tis time 

To understand the information contained in the images further, a model was built to predict 

FET using mask image features every 20 minutes starting at t-20 minutes to t-4 hours. The 

PLS coefficients for Mask 8 are shown in Figure 3.13. It is clear that images greater than 

2 hours and 20 minutes no longer provide information for FET prediction. Thus, images 

alone cannot be used to provide an accurate prediction 2 hours into the future. In Section 

3.3.4 process data and mask images will be combined to predict FET 1 and 2 hours into 

the future. Dynamics are also incorporated in the models in that section by using first 
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Table 3.2: Feature Model Results: Sum of squared prediction error I N *100 

Model Training Set Testing Set 1 Testing Set 2 Average 

t + 0 hours: RGB 0.30 1.51 2.11 1.31 

t + 0 hours: Hist 0.13 0.25 0.70 0.36 

t + 0 hours: Mask 0.08 0.54 0.21 0.27 

t + 1 hour: RGB 0.32 1.13 2.04 1.16 

t + 1 hour: Hist 0.20 0.15 0.91 0.42 

t + 1 hour: Mask 0.18 0.08 0.69 0.23 

t + 2 hours: RGB 0.50 0.42 2.44 1.10 

t + 2 hours: Hist 0.25 0.16 1.49 0.65 

t + 2 hours: Mask 0.13 0.31 1.45 0.63 

order plus deadtime models of both process and image data. Using the method described 

in Section 3.3.2, the average time constant and deadtime of the mask image features were 

calculated from the model shown in Figure 3.13. The deadtime is 0 minutes and the time 

constant is 45 minutes. 

Table 3.3: Dynamic Model Results 2 hours into the future: SSPE I N *100 

Model Training Set Testing Set 1 Testing Set 2 Average 

Mask Method 0.13 0.31 1.45 0.63 

Mask Method and Dynamics 0.13 0.33 1.47 0.65 
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3.3.4 Firing End Temperature prediction using mask method image fea­

tures and process data 

The previous section (3.3.3) showed that the mask method provided the best fit for FET 

prediction using images. The mask method features will now be combined with process 

data to provide a model that predicts FET 1 and 2 hours in advance. 

The process data that are available for this model were presented in Section 3.2.2. Many 

of these measurements frequently spike (due to instrument plugging), contain drift and are 

generally noisy. Preliminary models were built after outliers were removed from the data 

set. However, performance was poor on test-sets due to drift in the variables. Using these 

variables in an online model would require advanced filtering to remove spikes and account 

for drift. To avoid the need for online filtering, only the manipulated variables (mud, air 

and oil flow) are used as process measurements. These variables contain little noise and 

would only require minimal supervision in an online system. 

In order to provide an accurate prediction of FET some time into the future, the model 

must account for the long process dynamic seen in the kiln. The first-order dead time and 

time-constant model parameters identified in Section 3.3.2 for the manipulated variables 

and Section 3.3.3 for the image features are applied to each variable to create a dynamically 

reconciled value for the variable. Equation 3.3 presents the performed calculation and 

Figure 3.14 presents the first-order plus dead time model being applied to a change in oil 

flow. These new parameters (one for each manipulated variable and each image feature) 

are used to create a PLS model for FET prediction. During model building it is assumed 

that no change in manipulated variables are made between the current time and prediction 

horizon (1 or 2 hours). 

Pdr,t = exp(-T/TMv) * Pdr,t-l + (1- exp(-T/TMv) * Pt-l-8Mv (3.3) 

where: 

• MV is the manipulated variable or image feature 
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• P dr is the new dynamically reconciled parameter calculated for each MV or image 

feature 

• e is the dead-time 

• T is the time constant 

• T is the time step 
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Figure 3.14: Illustration of variable filtering 

To build the model that combines manipulated variable information and mask image fea­

tures, a training dataset was used for model building and two test sets were used for vali­

dation. The datasets are all composed of t ime series data sampled at 20 minute intervals 

and are identical to the datasets used for the image feature models in Section 3.3.3. During 

model building, the number of PLS components are again selected such that the sum of 

squared prediction error is minimized for all t hree datasets. The following PLS models are 

built and compared to image only models (with no dynamic reconciliation): 

• t+ 1 hour: Dynamically reconciled image features 

• t+ 1 hour: Dynamically reconciled image features and process data 
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• t+2 hours: Dynamically reconciled image features and process data 

The results of the PLS models are presented in observed vs predicted plots (Figures 3.15 

and 3.16) and sum of squared prediction error tables (Table 3.4 and 3.5). The one hour 

models are very successful, tracking transitions very well. The inclusion of the process data 

provided little prediction improvement in these models. However, process data provides 

significant improvement for the two hour models. Some delay in capturing the dynamics 

is still present in this model. Despite this, the industrial sponsor, Irving Pulp and Paper, 

was pleased by the results of these models and will proceed with online implementation 

of both the one hour and two hour dynamically reconciled process and image data models 

(discussed in Section 3.4). The performance of both models will be studied to determine 

how best to use this new information. 

Table 3.4: Combined Model Results, t+ 1 hour: SSPE I N *100 

Model Training Set Test Set 1 Test Set 2 Average 

Images Only 0.061 0.179 0.690 0.310 

Filtered Images 0.057 0.212 0.495 0.254 

Filtered Images and Process Data 0.055 0.20 0.479 0.244 

Table 3.5: Combined Model Results, t+2 hours: SSPE I N *100 

Model Training Set Test Set 1 Test Set 2 Average 

Images Only 0.13 0.31 1.45 0.63 

Filtered Images and Process Data 0.088 0.319 0.692 0.366 
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Figure 3.15: Actual and predicted plots for 2 hour FET models with and without images 
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3.3.5 Flame Stability Analysis 

Sections 3.3.4 and 3.3.3 show that camera images can be used successfully for firing end 

temperature prediction. The images also contain additional information that can be used 

to improve lime kiln operation. The length and stability of the kiln flame is of critical 

importance for prevention of ring formation along kiln walls. Ring formation results in 

decreased productivity and expensive plant-wide shutdowns for maintenance. As alternative 

and cheaper fuel source are considered for use, a method to monitor and control flame length 

and stability is essential to reduce capacity losses and stabilize kiln operation. 

At this point, any inference of flame length from the kiln images cannot be verified with 

physical or theoretical measure of flame length is available. Collaboration with the Univer­

sity of Toronto to relate image flame length to a theoretical flame length will be completed 

beyond the scope of this thesis. There is strong evidence that features can be extracted 

from the images that relate to flame length. For example, the masks that were identified 

in Section 3.3.3 identify pixels in rings around the flame (refer to Figure 3.9). Figure 3.17 

presents a larger view of the corresponding pixels of Masks 6 and 8 in an image. It is 

possible that these masks can be used to determine flame length. The ratio of the number 

of pixels in Mask 8 to Mask 6 (shown in Figure 3.18) may be a good indication of flame 

length. 

This work focuses on reducing the variance in firing end temperature, which would help 

stabilize the flame and its length. It may be necessary to incorporate mask ratios into an 

online implementation if kiln ringing issues are not resolved by controlling only FET. 
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Figure 3.17: Corresponding pixels of Mask 6 and 8 in an image 

Figure 3.18: Ratio of Mask 8 pixels to Mask 6 pixels t hroughout the performed experiments 
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3.4 Online Implementation 

The main goal of this study was to place the firing end prediction model developed in 

Section 3.3.4 online. A successful prediction of FET 1 hour or 2 hours in advance could be 

used in either a monitoring system or for closed-loop control. In the supervisory system, the 

operator would be able to see how a change in manipulated variables is expected to impact 

FET in 1 and 2 hours time. This could prevent the operator from making control removes 

that are too aggressive, which is currently a problem. A model predictive control system 

is also a possibility. Such a system would control the firing end temperature and exit gas 

temperature and composition. The firing end temperature set point would be varied based 

on the desired residual calcium carbonate value. 

There are several challenges before online commissioning of this model, the main one being 

the availability of stable images over time. Online implementation was delayed by operations 

increasing camera brightness settings between the time that the experiments were performed 

and the commencement of online implementation. This required re-tuning of the model. A 

major process upset also occurred that resulted in dust generation inside the kiln, which 

completely alterers image quality. Following this, the camera failed and was replaced. It is 

now believed that the camera settings are stable and new models are being tuned. Once the 

models are placed online, the need for bias correction and / or adaptive modeling will be 

assessed. It is anticipated that adaptive modeling will be required as the images and process 

data may drift over time. Missing data will be implemented as discussed in Section 2.2.3. 

This remaining work will be completed outside this thesis, through the author's employer, 

ProSensus Inc. 

3.5 Conclusions and Recommendations 

In this chapter multivariate analysis of images and process data were applied to a rotary 

lime kiln process. Challenges of rotary kiln operation include poor process control due to 

long dynamics and frequent fouling (ringing) of the kiln walls. With increased energy costs 
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and environmental concerns, the use of alternate fuels such as biomass is of interest to these 

plants. Without adequate control of kiln product temperature and flame stability, the use 

of alternate fuels is expected to increase the existing operational challenges. The analysis of 

the Irving Pulp and Paper lime kiln demonstrates that multivariate image and data analysis 

can be used to address these issues. 

Prediction of kiln product temperature (firing end temperature) and kiln product quality 

(residual calcium carbonate) was achieved through the use of images and process data. 

A four-day experiment was first performed to collect data from the process by varying 

production levels, air and fuel flows. With this data, residual calcium carbonate and firing 

end temperature were predicted and an analysis of flame stability was performed. 

Residual calcium carbonate can be predicted using a simple linear relationship between it 

and firing end temperature. This important quality measurement is noisy and thus a more 

sophisticated analysis is not expected to improve predictability significantly. Instead, the 

focus was on predicting FET in advance, which can then be used to provide an accurate 

prediction of residual calcium carbonate. 

Firing end temperature was successfully predicted 1 and 2 hours in advance by a multivariate 

analysis of both images and process data. Several approaches for extracting characteristics 

(features) of the images were first studied. Of the three methods studied: average RGB 

method, cumulative histogram method, and the mask method, it was found that the mask 

technique identified the best image characteristics for FET prediction. Additionally, it is 

simple to relate model results back to the original kiln images when using this method. This 

is helpful for model interpretation, both for operators and engineers. Dynamic information 

was incorporated in combined image and process data models by use of first-order models 

that identified the time constant and time-delay. A model one hour into the future predicts 

transitions in the firing end temperature better than a 2 hour model. 

Online implementation of the one and two hour firing end temperature models is desired to 

evaluate performance. This was hampered by unstable camera images and will be completed 

outside the scope of this thesis. Once an online model successfully predicts FET, a closed 
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loop control or operator advisory system can be implemented to improve process control. 

Many of the features identified with the mask method could also be used to monitor and 

control flame length and stability. A stable flame could help reduce kiln ringing and assist 

in achieving successful operation while using alternate fuel sources. 

Finally, it was demonstrated that multivariate image and process data analysis is a promis­

ing technology for rotary kiln processes and can lead to significant operating expense re­

duction. 
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Chapter 4 

Basic Oxygen Furnace Analysis 

4.1 Introduction 

A basic oxygen furnace (BOF) is a unit in the steelmaking process where molten iron 

and scrap metal are converted into refined steel. Oxygen is injected into a mixture of 

iron, scrap and fluxes to reduce carbon content (decarburization) and other impurities, 

and to increase product temperature. The high cost of oxygen makes this batch process 

expensive to operate. In order to minimize oxygen consumption, the batch should be 

completed as soon as the desired composition and temperature are reached. However, 

temperature and composition are not measured until oxygen flow is ceased. In many batches 

the process is ended after the desired end-point has been reached, which uses excess oxygen 

and longer processing time. Stopping the oxygen flow several times to measure composition 

and temperature is time-consuming and inefficient. An online soft sensor that predicts 

end-point properties would be a valuable tool for operations to determine when to end the 

batch. In this chapter, multivariate image and process data analysis are studied to predict 

final carbon content (the main controlled variable) of the batch. 

43 
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4.1.1 Process Description 

At t he beginning of a batch (also called a heat), scrap from a storage yard and melted 

iron from an upstream blast furnace is loaded into t he BOF vessel. Fluxes are also added 

to the vessel in t he beginning st ages of the heat. The types and amounts charged are 

determined by a charge model that accounts for t he initial iron propert ies and final desired 

heat composit ion. An oxygen lance is then lowered into the vessel and the heat is begun . 

During the heat , there are three phases: pre-ignition, mixing cont rolled decarburization 

phase, and diffusion controlled decarburization phase. They are labeled on a plot of off­

gas C02 concentration versus time (Figure 4. 1). The end of the heat is where t he carbon 

composition of t he metal changes most drastically, as shown by t he rapid decline in off-gas 
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Figure 4. 1: Phases of a BOF heat identified on a typical off-gas C0 2 vs t ime plot 

Throughout a heat the height of t he oxygen lance and oxygen flow are controlled by op­

erations. Normally t hese parameters are set by the charge model but at times ma,terial 

may splash (slop) over the top of the vessel if there is too much energy in the vessel. The 

operator must reduce oxygen flow and increase t he lance height to bring the process under 

control. A BOF is a unique combustion process because there is a gap between the vessel 

and gas collection system (refer to Figure 4.2) , allowing operators to closely monitor for slop 
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conditions from the control room. The flame visible at the gap is also used to determine 

carbon in the heat. The flame get s darker towards the end of the heat , which signifies a 

decrease in carbon. This information along with the amount of oxygen that has been in­

jected into the vessel and the cooling system steam flow helps the operator determine when 

to end the heat. Once the end-point properties have been achieved , the vessel is tipped and 

the contents are emptied into ladles for further processing. 

The work in t his chapter is being performed in collaboration with Tenova Goodfellow Inc., 

ProSensus Inc, and U.S . Steel Hamilton Works. Process dat a analysis has already been 

completed and preliminary models are online to predict end-point carbon and t emperature. 

Though some success has been achieved (within the desired error for approximately 80% 

of the heats) the inclusion of image analysis is being studied to improve the carbon model. 

Prediction wit hin 0.01 % of the measured carbon content is desired . 
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Figure 4.2: Diagram of basic oxygen furnace 



46 

4.2 Data Available 

This section will provide an overview of the process and image data available. Measurement 

noise and instrumentation challenges are also addressed here. 

4.2.1 Vision System 

Cameras are not generally installed at a basic oxygen furnace because the gap flame is 

clearly visible from the control room. However, in order to perform this study a camera 

was required and therefor installed. An advantage of the gap flame being visible from a 

distance is that a camera does not require contact with the flame. Such a camera needs 

less cooling, less maintenance and is cheaper than a camera that is installed directly into a 

furnace wall. The camera installed for this study is a high-temperature surveillance camera 

manufactured by JM Canty@ [JM Canty Inc. [2008]]. This camera was selected due to its 

low cost, low maintenance requirements and ease of installation. 

The camera provides good quality digital images as shown in Figure 4.3. However, selecting 

the optimal camera settings (gain and exposure time) is difficult. At the beginning and end 

of the heat the flame is quite dark and during the middle of the heat (mixing controlled 

decarburization phase) it is extremely bright. The ideal camera settings would prevent 

saturation in the middle of the heat while also avoiding a completely dark image at the 

beginning and end of the heat. Such a setting was not possible in this process. Instead, the 

focus was placed on obtaining ideal images during the diffusion controlled decarburization 

phase, as it provides the most information about carbon content. 

There are further challenges that exist with the imaging set-up that will be addressed in 

Section 4.3.1. These are: 

• Changing field of view: results from vessel not always returning to the same position 

and build-up on top of the vessel over the course of a heat. 

• Build up on furnace ceiling over the course of the heat 
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\-vall 

flame 

vessel 

Figure 4.3: Example of image provided by the JM Canty@ camera 

4.2.2 Process Data 

There are various process measurements available on a basic oxygen furnace. For this 

analysis, t he measurements are divided into initial condit ions (Z), t rajectory variables (X), 

final quality variables (Y). 

Initial Conditions: 

• raw material amounts (scrap, hot metal, fl uxes) 

• hot metal chemistry and temperature 

• ignit ion t ime 

Trajectory Variables: 

• steam flow 
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• oxygen flow 

• off-gas chemistry 

• exhaust draft 

• lance height 

Final Quality Variables: 

• metal temperature 

• metal carbon or oxygen content 

The final metal chemistry and temperature are measured by dropping a 'bomb' into the 

bath after the oxygen lance is removed. These are manufactured by Heraeus Electro-Nite 

(Heraeus Electro Nite [2009]). Signals from this sensor for temperature and oxygen content 

are sent to the control system before the it is consumed by the bath. The carbon content of 

the bath is calculated from the oxygen content using the non-linear relationship presented 

in Figure 4.4. This method of measuring the final quality is relatively new at this plant. 

Previously, the vessel was tipped and temperature was measured and a sample of the metal 

was sent to a lab for chemical analysis. The same Heraeus sensor is used, but instead of 

being dropped into the bath it is attached to a long sampling pole. This method is being 

phased out as it was time consuming. Though the bomb measurement is much quicker, 

it contains high error due to bath mixing and improper penetration of the slag layer. To 

quantify this error, three repeats were performed for three different heats shortly after the 

lance was pulled. The results are shown in Tables 4.1 to 4.4. The standard deviation of 

the carbon measurement is 0.0034%, which is high. The 95% confidence interval on this 

measurement is+/- 0.0068%. The goal of this project is to predict carbon within 0.01%, 

and the measurement error takes up 68% of this range. These large errors clearly make 

accurate prediction difficult, though every effort is being made by operations to improve 

this measurement. 
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Table 4.1: Repeat bomb measurements for heat 1 

Bomb Time ppm 02 Carbon Temp 

1 Os 687.1 0.046 2977 

2 +30s 687.8 0.046 2949 

3 +1m25s 581.7 0.052 2963 

Standard deviation 61.1 0.003 14.2 

Range 106.1 0.006 28.3 

Table 4.2: Repeat bomb measurements for heat 2 

Bomb Time ppm02 Carbon Temp 

1 Os 923.7 0.037 3060 

2 +1m 1166 0.031 3082 

3 +2m 1020 0.034 3069 

Standard deviation 122 0.003 10.6 

Range 242.3 0.006 21.0 

Table 4.3: Repeat bomb measurements for heat 3 

Bomb Time ppm 02 Carbon Temp 

1 Os 888.7 0.038 3015 

2 +45s 713.8 0.044 3010 

3 +1ms 3018 

4 +1m30s 892.5 0.038 2998 

Standard deviation 102.6 0.004 8.7 

Range 179.5 0.007 19.7 
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Figure 4.4: Carbon and ppm02 relationship 
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Table 4.4: Average range and standard deviation of the bombs 

Parameter ppm 02 Carbon Temp 

Average Range 176 0.0062 23 

Average Standard Deviation 95.2 0.0034 11 

4.3 Results and Discussion 

Image and process data for a total of 50 heats were collected during two time periods. This 

section presents the various steps that were required to create a successful carbon prediction 

model. Image pre-processing, image feature extraction, image only PLS models for carbon 

prediction and combined process data and image feature models are discussed. 

4.3.1 Image Pre-processing 

As mentioned in Section 4.2.1, the camera's field of view changes throughout the heat as 

well as between successive heats. When the vessel is tipped to empty the contents at the 

end of the heat, it is not always replaced to the exact same location. Additionally, buildup 

can occur at the top of the vessel during a heat, either if slopping occurs or if material 

that has built up on the furnace ceiling deposits onto the vessel. The buildup on the top of 

the furnace can also obstruct the camera's view. These concerns are depicted by images of 

three separate heats in Figure 4.5. 

To address the changing field of view, the top of the vessel was first identified with traditional 

image analysis. There is a large difference in colour between the flame and the vessel during 

the second phase, facilitating edge detection. A canny edge detector (Glasbey and Horgan 

[1995]), available in MATLAB @, was successfully employed for this purpose. The edge is 

identified once per heat, as close to the end of the heat as possible. This ensures that the 

identified edge will be as accurate as possible throughout the end of the heat since buildup 

on the vessel can still occur then. As the images begin to darken due to significant carbon 

depletion, edge detection is more difficult. The edge is thus identified for the last image in 
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the heat where the average red colour channel value of the entire frame is greater than 150. 

50 rows below and 150 rows above the edge are utilized to create a windowed image used 

for further analysis, as shown in Figure 4.5. A similar field of view is therefor created for 

all of the heats studied. 

l(JJ ;m :m l(JJ 5IIl 6IIJ 1\lJ 

Figure 4.5: Pre-processing of images: Examples of 3 heats 

4.3.2 Multivariate Image Analysis and Feature Extraction 

Multivariate image analysis is performed on the windowed images by the steps described in 

Chapter 2. An image every 2 seconds is used for the last 120 seconds of each heat for MIA 

model identification. Figure 4.6 presents six images from the last two minutes of heat# 479 

and Figure 4.7 presents the corresponding score histogram plots. The bright sparks in the 

last image are caused by the oxygen lance being removed from the bath at the end of the 

heat. The figures show that as the heat gets closer to completion significant darkening is 

observed with corresponding changes in the score plot. Extracting features from the score 

plots is anticipated to accurate carbon prediction since changes in the images are clearly 

seen in the score plots. 

Image Feature Extraction 

Two approaches were studied to extract features from the score histogram plots. The first 

method is the use of the average of the two score values, T1 and T2 of all the pixels in 

each image. This method is expected to be successful because the score histogram plots 

vary significantly as the image changes (shown in Figure 4.7). The main disadvantage of 
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the method is that vessel pixels are not removed from the analysis. As carbon depletion 

occurs, the vessel pixels also darken, which impacts the T1 and T2 plot. A second method, 

using score histogram masks, accounts for this change in vessel brightness. 

In the mast method, 10 masks are applied to the score histograms, as presented in Figure 

4.8. These 10 masks identify pixels in the image that go from the brightest (Mask 1) to 

the darkest (Mask 10). Figures 4.9 to 4.11 show the pixels corresponding to the 10 masks 

of three different images in heat 479. The first image (Figure 4.9) presents the image 120 

seconds before the end of the heat, the second image is 48 seconds from the end of the 

heat, and the third image is 10 seconds from the end of the heat. Since the overall image 

darkens closer to the end of the heat, the vessel pixels always fall into a different mask. To 

address this, the vessel pixels need to be identified and removed from the analysis using the 

masks. Prior to carbon depletion, when the image is very bright, all of the pixels except 

for the vessel pixels belong to Mask 1. This can be observed in Figure 4.9. The average 

value of the red channel of all the pixels in the image is greater than 245 prior to carbon 

depletion. Thus, for each heat, the last image in the heat for which the average red channel 

is greater than 245 is first identified to be used for vessel removal. The masks are applied 

to the score histogram of the image, and only the pixels falling into Mask 1 are used for 

feature extraction for the remaining images in the heat. Since not all heats will have the 

same number of vessel pixels, the number of pixels falling into each mask are divided by 

the number of non-vessel pixels in the heat. The features can thus take on values between 

0 and 1. 

In addition to the mask method and T1 and T2 method, the average value of the red, green 

and blue channels of vessel pixels are also identified. The pixels located in rows 500 to 576 

and columns 500 to 768 always belong to the furnace vessel for all of the heats. The average 

red, green and blue value is calculated for this region and will be incorporated into some of 

the PLS models. 
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Figure 4.6: Successive images of heat 479 
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Figure 4.7: Corresponding T1T2 score images of heat 479 
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Figure 4.8: A typical image, corresponding score histogram and the 10 Masks applied to 

score histogram image 
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Figure 4.9: Pixels corresponding to each mask (in green) 120s prior to the end of heat 479 
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Figure 4.10: Pixels corresponding to each mask (in green) 48s prior to the end of heat 479 
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Figure 4.11: Pixels corresponding to each mask (in green) lOs prior to the end of heat 479 
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Figure 4.12: Pixels corresponding to each mask (in green) 48s prior to the end of heat 479 

with identified vessel pixels in black 
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4.3.3 Results of Image Feature Models 

Several PLS models are built to predict t he end-point carbon using t he features extracted 

from the score histogram plots. However, since this is a batch process, the feature data 

must first be aligned for all of the batches. None of the heats are of the same duration 

or have the same amount of oxygen injected over the course of t he heat. As a result , the 

extracted image features were aligned against the last 200 units of cumulative oxygen in 

each heat. This is approximately 2 minutes of data, depending on the 0 2 flow rate. Figure 

4. 13 presents the aligned average T1 feature over the last 150 units of cumulative 0 2 and 

Figure 4.14 presents the aligned Mask 1 image feature over t he same range of cumulative 
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Figure 4.13: Average image T1 aligned against t he last 150 values of cumulative 0 2 for 

several heats 

The extracted features are then used to build PLS models t hat predict carbon content. A 

total of 4 7 heats are available, with 34 being used for model training and 13 for model 

validation. 

Two methods are used to build the models; a tradit ional batch or a data characteristic 

method . In t he tradit ional batch approach , all of the aligned features must be decomposed 
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Figure 4.14: Mask 1 image feature aligned against the last 150 values of cumulative 0 2 for 

several heats 

as shown in Figure 4.15. Further details can be found in Section 2.4_ For the second 

approach , the characteristic method, features from the aligned data are extracted instead of 

using all of the dat a. The features can include averages over a range of cumulative 0 2 values, 

slopes, et c .. Both traditional bat ch methods and average values and slope characteristics 

are studied in this work. The PLS models that are built are: 

• Modell: Averages of the average Tl and T2 image features 

• Model 2: Averages of the average Tl and T2 and slopes of average Tl and T2 

• Model 3: Averages of the average Tl and T2, slopes of average Tl and T2, and 

average vessel RGB 

• Model 4: Batch method using average Tl and T2 features 

• Model 5: Average mask feature values 

• Model 6: Batch method using mask feature values 

For each model, the characteristics were calculat ed over various cumulative 0 2 value ranges 
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as shown in Table 4.5. The characteristics were then used to build a PLS model on the 

training data. The model's performance on the validation dataset is evaluated by the sum 

of the squared prediction error (SSPE) over all of the heats. For all of the models built, the 

best prediction was found to be on models built between 150 and 5 units of cumulative 02 

from the end of the heat. For each data range, the number of PLS components was varied 

to determine the optimal amount of components to use. Table 4.5 presents the prediction 

error on several cumulative oxygen ranges and PLS components for Model 4 (batch method 

using average T1 and T2 features). 
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Figure 4.15: Image Feature data decomposition for batch PLS model building 

The results of the 6 PLS models are evaluated in three different ways: by the sum of 

squared prediction error on the validation data set, the number of heats that were not 

predicted within the desired range of+/- 0.01%, and the observed versus predicted plots. 

These results are shown in Table 4.6 and Figure 4.16. Using average T1 and T2 values 

performs better than the mask method, which is a result of the high carbon measurement 

error. The mask method characterizes more features of the flame, but since the carbon 

measurement is erratic, it does not aid the prediction. It is likely for the same reason that 

a data characteristic method performs better than a batch method. Overall, Model 2, the 

average of the average T1 and T2 and slope method performs the best. 

Examination of the predicted versus measured plots (Figure 4.16) reveals that the two 

heats with high values of carbon ( 0.07%) are not predicted well in either the training or 
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Table 4.5: SSPE*1000 of validation dataset for the batch T1 T2 method on different cumu­

lative oxygen ranges 

Start Cum02 End Cum02 1 Comp. 2 Comp. 3 Comp. 

-50 -5 0.966 0.987 1.17 

-50 -40 1.095 1.132 1.437 

-100 -5 0.987 1.017 1.486 

-100 -40 1.030 1.058 1.896 

-100 -75 1.154 1.166 1.494 

-150 -5 0.910 0.908 1.103 

-150 -40 0.934 0.927 1.121 

-150 -75 0.991 0.982 1.267 

-150 -110 1.008 0.987 1.013 

-150 -145 1.051 1.033 0.989 

-200 -5 0.946 0.912 0.986 

-200 -40 0.979 0.932 1.002 

-200 -75 1.037 0.988 1.053 

-200 -110 1.065 1.003 0.993 

-200 -145 1.117 1.062 1.062 
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Table 4.6: Parameters for evaluating Image models 

Model No. PLS Valid Valid Training Total 

Comp. SSPE >0.01 >0.01 >0.01 

Modell 1 0.918 1/13 3/34 4/47 

Model 2 1 0.873 1/13 3/34 4/47 

Model3 4 0.955 2/13 3/34 5/47 

Model4 2 0.908 1/13 3/34 4/47 

Model 5 1 1.029 2/13 2/34 4/47 

Model6 1 0.966 2/13 3/34 5/47 

validation dataset. The models may be improved by use of a non-linear transformation on 

the carbon measurement. The data from Model 2 were used to build several PLS models 

using different transformations on the carbon measurement (shown in Table 4.7). The 

models were built on the combined training and validation datasets to increase the amount 

of data available. The measure of the prediction error used is the square root of the average 

prediction error (RMSE). The results are presented in Table 4.7. Unfortunatley, the largest 

improvement seen with a 1/y transformation is only 1.17%. This is not a statistically 

significant improvement. The predicted versus measured plot is shown in Figure 4.17. It 

could be that these two heats are outliers, however, more data is required at higher carbon 

levels to make definite conclusions. Model 2 will be combined with process data to build 

the overall model. 
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Table 4.7: Transformations on Carbon Measurement (y) 

Transformation RMSE Improvement in RMSEE 

None 0.007004 NjA 

log(y) 0.006932 1.03% 

1/y2 0.006927 1.11% 

1/y 0.006922 1.17% 

1/y0.5 0.006923 1.17% 

1/y0.25 0.006926 1.12% 

y0.25 0.006942 0.89% 

y0.5 0.006957 0.68% 

y2 0.007212 -2.96% 
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Figure 4.17: Predicted versus measured plot with a 1/y transformation for Model 2 data 
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4.3.4 Combined Process and Image Data Model 

The available process measurements were combined with the image features from Model 2 

(the average of the average T1 and T2 and slope) to create a model to predict end-point 

carbon. The process data included are: 

• averages and standard deviations of off-gas chemistry, steam flow, exhaust draft, hood 

temperature and oxygen flow during the second phase 

• values of off-gas chemistry, steam flow, exhaust draft, hood temperature and oxygen 

flow at the end of the heat 

• cumulative sums of off-gas chemistry, steam flow, exhaust draft, hood temperature 

and oxygen flow for the entire heat 

• raw material amounts, chemistry and temperature 

• total time of the heat, total heat oxygen, time spent in various parts of the heat 

A PLS model was built on the same training and validation datasets used in the previous 

section. All of the variables described above were incorporated, however, not all of them 

contributed significantly to the model. All variables where the linear regression coefficient of 

the PLS model was not statistically different from zero were excluded. This is determined 

in the Umetrics Simca-P@ software, where a 95% confidence interval on the coefficents 

is calculated. When the confidence interval includes zero, the variable is excluded. The 

predicted versus measured plot after all variables were excluded is presented in Figure 4.18. 

The coefficient plot, which presents the direction and degree in which a variable impacts 

carbon, is shown in Figure 4.19. The sum of squared prediction error and number of heats 

where the predicted carbon is outside the +/- 0.01 range are shown in Table 4.8. The 

parameters show that the process data provides additional information that enhances the 

carbon prediction, with the value of exhaust draft and hood temperature providing the best 

information. It is not surprising that most of the process variables that were significant are 

from the end of the heat, where the largest carbon depletion occurs. Since the carbon 



67 

Table 4.8: P arameters for evaluating combined model 

Model No. PLS Valid Valid Training Total 

Comp. SSE > 0.01 > 0.01 > 0.01 

Image Model No.2 1 0.873 1/13 3/34 4/47 

Combined Model 2 0.696 1/ 13 1/34 2/47 

content did not vary significantly compared to the high error in the measurement, many 

of the variables were not significant. It is expected t hat intial chemistry and raw material 

quantit ie would be important variables if t he BOF was operated to produce steel with a 

larger range in carbon content . 
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Figure 4.18: Predicted versus measured plot for combined process and image data model 
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4.4 Online Implementation 

Online implementation of the combined image and process data model may be desired. A 

continuous prediction of carbon can be provided during the last phase of the heat (carbon 

depletion). This phase would be identified, and then the images for the last 150 values of 

cumulative oxygen would be used to provide a prediction every 5 values of cumulative oxy­

gen. Process data would also be updated every time a prediction is made. Implementation 

with missing data would be required and would be completed as discussed in Section 2.2.3. 

With an online prediction of carbon during the last phase of the heat, the operators would 

be able to end the heat as soon as the desired end-point is reached. 

4.5 Conclusions and Recommendations 

The main purpose of a basic oxygen furnace is to reduce the carbon content of hot iron and 

scrap by injection of oxygen. Lower operational cost is achieved when a heat is terminated 

just as the carbon content reaches the desired value. In practice, the heat is stopped and 

a measurement of carbon is taken. An online soft sensor that accurately predicts carbon 

would save time, oxygen and carbon measurement cost. This chapter was devoted to carbon 

content prediction using flame images and process data. 

A camera was installed to obtain flame images. Although the camera provided excellent 

images, no camera settings were found that prevented saturation during the middle of the 

heat and visible images at the end of the heat. Since the most significant carbon depletion 

occurs at the end of the heat, the camera was configured to obtain the best images at the 

end of a heat. 

Image pre-processing was performed to address the changing field of view of the camera. 

Build-up on the top of the vessel and furnace as well as slightly different angle vessels 

resulted in the different field of view. Standard edge detection techniques were used to 

identify the vessel edge to obtain windowed images with similar number of vessel and flame 
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pixels within a heat and between subsequent heats. 

Features were extracted from the images of the last 120 seconds of a heat. The average 

T1 and T2 approach as well as the mask method were used to extract features from the 

images. Several PLS models were built with the features to predict the final carbon content, 

with both traditional batch and data characterization methods. The model with the best 

prediction capability uses the average value of T1 and T2 and the slope of T1 and T2 

from 5 to 150 units of cumulative oxygen from the end of the heat. Several non-linear 

transformations were also applied to the carbon measurement in an attempt to improve 

prediction for high carbon heats, with significant improvement. 

Image data features and process data were then combined in another PLS model. This 

model presented excellent prediction with only 2 of the 47 heats ( 4.3%) not being predicted 

within the desired range of+/- 0.01% carbon. 

Online implementation of the combined image and process data model for carbon prediction 

will be investigated once the plant resumes operation from an extended inventory outage. 

Another possibility is to analyze the use of flame images to predict the final temperature. 

4.6 Acknowledgments 

The author would like to thank Bernie Goldberg and Joe Maiolo from Tenova Goodfel­

low Inc. for making this work possible. The employees of US Steel Hamilton Works are 

thanked for camera installation, their time spent explaining the process and for running 

experiments. Tenova Goodfellow Inc., the Innovation Demonstration Fund, and ProSensus 

Inc. are thanked for funding. 



Chapter 5 

Coal-fired Boiler 

This chapter provides details on the experiments and results obtained to date at the OPG­

Atikokan coal-fired power generation plant. 

5.1 Introduction 

Coal is used for approximately 40 percent of the world's electricity generation, due to it's 

abundancy in nature and high energy content (World Coal Institute [2007]). However, 

burning coal also releases harmful greenhouse gases. Growing concerns over global warm­

ing have led to research for alternate fuel sources in developed countries. Many types of 

biomass (wood, straw, sewage) have been studied for cofiring with coal as a means to reduce 

emissions, with over 100 trials in 16 different countries having been performed in recent years 

(Baxter [2005]). There are important considerations that need to be assessed to convert 

to a full-biomass or cofired energy production scheme such as the boiler efficiency, boiler 

stability, the amount and chemistry of the produced ash, boiler fouling, capital cost required 

and cost of the biomass (Pronobis [2006]). A Canadian study funded by the Ministry of 

Environment through Ontario Centres of Excellence aims to look into the conversion of 

Ontario Power Generation's Atikokan boiler from coal to biomass. McMaster University's 
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involvement encompasses the use of images and process data to study boiler stability and 

energy efficiency. 

As of October 2008, analysis of experiments performed to establish a coal-only baseline have 

been completed. Progress on biomass trials has been hampered by a 6-month maintenance 

outage experienced by the plant. These trials are planned for the last week of November 

2008, and the analysis will be completed outside this thesis. Coal-only imaging results are 

provided in this chapter. 

5.1.1 Process Description 

A coal-fired boiler crushed coal is burned and water is converted to steam in tube banks 

situated in the boiler walls. The generated steam is sent to a steam turbine to produce 

electricity. A plant diagram is shown in Appendix B. The particular boiler studied in this 

work has 5 burner banks, located at different heights and faces of the boiler, where coal 

and air are injected. Each burner bank has 3 individual burners, and the air to fuel ratio 

for the entire bank is controlled. A varying number of burners banks and combinations are 

engaged depending on the energy requirements. (Atikokan Generating Station [2008]) 

5.1.2 Camera Installation 

As part of this project,three new cameras were installed at various locations in the boiler. 

This was required as the current cameras installed were analogue and of poor quality. 

Operators use these cameras only to ensure a flame is present. The cameras have automatic 

gain adjustment, making the images brighter when the load is lower. It would be difficult 

to perform a multivariate analysis using these images. 

Three exiting view ports were selected for camera installation. Figure 5.1 presents a sketch 

of these locations and their view of the burners banks. The two top cameras (8S and 

8N), contain the burners on the opposite wall in their field of view. The camera directly 

above burner bank 2 has a view of burner levels 2 and 3. This camera was installed to 
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have a b tter view of a specific burner level, as other partners involved in this project have 

instrumentation installed on this burner bank. An analysis combining various partner 's 

measurements is to be completed outside this the i . 

South North 

Camera 8N 

.... .. 

··· :· .... ... . 
\ . 
: · ..... 

Figure 5.1 : Sketch of camera locations and field of view 

JM Canty@ high temperature cameras (JM Canty Inc. [2008]) were selected for this project 

b cause t hey have several advantages over competitors including: 

• Lower cost 

• Air cooling instead of water cooling: 

Decreases maintenance 

Safer in case of a leak in combustion processes 

• Protection of electronics with fused glass, most competitors have limited protection 

• Digital, with easy to use software for video /frame recording 
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Figure 5.2 presents a sketch of t he camera and mounting locations prepared at the plant . 

The plate is removable and the camera is inserted into place. 

Insertion Tube 

Figure 5.2: Sketch of camera(JM Canty Inc. [2008]) and mounting location at the boiler 

5.1.3 Description of Coal-only experiments 

In order to establish a coal-only baseline, a two-day experiment was performed at the plant. 

Various air to fuel ratios and load experiments (energy production) were completed. The 

air to fuel ratios were selected based on plant safety restrictions and by keeping all partners 

of the project in mind. Some partners were interested in monitoring the whole boiler, while 

other partners had equipment installed on just one burner bank (burner 1 vel 2). The air 

to fuel ratios were thus varied for t he boiler as a whole and also just for burner 2. Tables 

5.1 t hrough 5.4 present the 1 hour experiments operated at the various loads. A + sign 

indicates a higher than optimal air to fuel ratio, a - sign indicates a lower than optimal air 

to fuel ratio, and 0 represents the optimal air to fuel ratio. 
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Table 5.1: Boiler experiments performed at full load 

TestiD Ll L2 L3 L4 L5 

101-7:00 0 0 0 off 0 

102-8:00 + + + off + 
103-9:00 0 0 0 off 0 

104-10:00 ++ ++ ++ off ++ 
105-11:00 0 0 0 off 0 

106-12:00 0 - + off 0 

107-13:00 0 + - off 0 

Table 5.2: Boiler experiments performed at half load 

TestiD Ll L2 L3 L4 L5 

201-15:00 0 0 0 off off 

202-16:00 + + + off off 

203-17:00 0 0 0 off off 

204-18:00 - - - off off 

205-19:00 0 0 0 off off 

206-20:00 0 - + off off 

207-21:00 0 + - off off 

Table 5.3: Boiler experiments performed at minimum load with burner 1 and 2 

TestiD Ll L2 L3 L4 L5 

301-7:00 0 0 off off off 

302-8:00 + + off off off 

303-9:00 0 0 off off off 

304-10:00 - - off off off 

305-11:00 0 0 off off off 

306-12:00 + - off off off 

307-13:00 - + off off off 
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Table 5.4: Boiler experiments performed at minimum load with burner 2 and 3, and natural 

gas ignitors for 404-407 

TestiD Ll L2 L3 L4 L5 

401-14:00 off 0 0 off off 

402-15:00 off - + off off 

403-16:00 off + - off off 

404-17:00 off 0 0 off off 

405-18:00 off - + off off 

406-19:00 off + - off off 

407-20:00 off 0 0 off off 

5.2 Results and Discussion 

5.2.1 Camera Images 

Several challenges associated with the installed cameras were experienced throughout the 

experiments. The two top cameras (88 and 8N) experienced some pitting in the protective 

quartz shield (shown in the camera diagram, Figure 5.2) of the camera. This occurred 

between the the time of the camera installation and the time when the experiments were 

preformed. During soot-blowing, which is when steam is blown at the walls to remove any 

build-up that may have accumulated, portions of the build-up hit the camera shield and 

cause the pitting. No increase in pitting occurred over the 2-day experiment, thus the pits 

did not impact the analysis. A solution to prevent further pitting is being developed by the 

manufacturer. 

The camera field of view becomes obstructed by build-up on the walls surrounding the 

camera insertion. This, as well as the pitting can be seen in Figure 5.3. The changing field 

of view introduces complexity as there is no physical hardware solution for this, and must 

be dealt with in the analysis. There are several methods that could be employed to handle 

this, including masking the build-up and only utilizing the remaining pixels for the analysis. 
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However, this introduces non-linearities as there would be a varying amount of edge pixels 

depending on the shape of the build-up. A simple window technique was employed, where 

only the camera pixels that were never covered by build-up are used for analysis. This is 

shown in Figure 5.4. 

Sth South 

Stn North 

Burner 2 

7:30 9:30 noon 9pm 

Figure 5.3: Camera Images: demonstration of pitting and build-up over time 
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Original Window Used image 

ner 2 

South 

North 

Figure 5.4: Window technique for excluding build-up pixels 

5.2.2 Build-Up Monitoring 

The challenge of the changing field of view discu ed in Section 5.2.1 also presents an 

opportunity to monitor build-up in the sections of the boiler where the cameras are installed. 

Build-up is a large problem in these boilers, and is of special concern when using biomass, 

which is expected to lead to more fouling (Pronobis [2006]). The ability to identify fouling 

rates is critical. 

To determine the amount of build-up in the field of view of a specific camera, a mask is 

identified in the Tl T2 score image that encompasses the build-up pixels. Figure 5.5 presents 

this method for the burner 2 camera. The mask is applied to all of the images, and the 
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Ongmal :t-.Ia~k on Tl T2 score tmage :t-.Ia!'ked Image 

Figure 5.5: Burner 2 build-up mask and application to an image 
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Figure 5.6: Burner 2 camera build-up during full load experiments 

number of pixels falling under the mask are used as a measure of fouling. Figure 5.6 shows 

this measurement over time for the burner 2 camera during the full load experiments . The 

fouling was cleared away using soot-blowing and then built up again over t ime. The speed 

at which fouling occurs at different loads could be an interesting parameter to monitor and 

compare between coal and biomass operation. 
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5.2.3 Analysis at varying loads 

This section presents the analysis performed for the various experiments. It is trivial to 

distinguish between the four different groups of experiments, as the glow inside the boiler is 

much brighter for higher loads. The goal is to be able to distinguish between the different 

air to fuel ratio experiments performed at each load. 

Six images every hour are used from each camera for the duration of a set of experiments. 

A model was built using t he method described in Section 2.3, where the overall xrx matrix 

for all of the images from one camera (windowed to remove build-up) was calculated and 

a PCA model was built. Score images are produced by scaling with the minimum and 

maximum of the scores over all the images (also described in Section 2.3) and features are 

then extracted from the score images. In this case, the features used were 32x32 masks from 

the score image (size is 256 by 256) , as illustrated in Figure 5.7. Thus, from each image, 64 

features are extracted. 

50 100 150 :;:{10 250 

Figure 5.7: Feature Extraction: 32x32 masks extracted from a score image 

The extracted features are used for model building for each group of experiments. A PCA 
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model is created to determine whether the different air to fuel ratio experiments can be 

distinguished by the camera. PLS models are also built in an attempt to predict energy 

efficiency and total air to fuel ratio. 

Full Load Experiments (from Table 5.1) 

The results of the PCA model for each camera are shown in the score plots in Figure 5.8. 

Repeat experiments are expected to have similar features and thus be located in a similar 

location on the score plot. However, this did not occur, as seen in Figure 5.8. Only burner 2 

showed some of the expected clustering. A PCA model finds the directions of most variance 

in a dataset, and these results clearly show that there are other sources of variation in the 

process that are unrelated to the experiments performed. As highlighted in Figure 5.8, it 

is likely that time is this source of variation. An analysis on the process data completed 

by ProSensus Inc. also showed that the main source of variation was time (see Figure 5.9). 

The process probably never reached steady state during the experiments. 

A PLS model was created for each camera to try and relate the image features to energy 

efficiency (EE) and total air to fuel ratio (TAF). These models could find features of the 

image that relate to these two important parameters, even if they aren't the greatest source 

of variation in the data. However, as can be seen in Figure 5.10, the prediction is poor 

(low R2 and Q2 ) for camera 88. R 2 is a measure of how much of the variation in theY 

variable is modeled, and Q2 is the expected performance on a testing dataset, determined 

by cross-validation. The results of the other two cameras are similar. 

The results for the remaining groups of experiments are equally poor. Figures 5.11,5.12, 

and 5.13 show the score plots for each camera at these loads. PLS models are not presented 

as they are not able to predict energy efficiency or total air to fuel ratio. 
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Figure 5.8: Score plots for PCA models for t he three cameras for the full load experiments 
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Figure 5.10: PLS model predictions at full load for camera 8S 
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5.3 Conclusions and Future Work 

Conclusions 

Three cameras were successfully installed to have a view of all burner banks, with one 

camera having a concentrated view on burner bank level 3. Pitting of the protective quartz 

shields of the cameras did occur but did not impact the experimental analysis. A mechanical 

fix will be implemented. 

Several coal-only experiments were performed over a two day period. Energy production 

levels and air to fuel ratios were varied in 1 hour experiments. The goal was to be able 

to distinguish between the various air to fuel ratios at each production level. Operating a 

burner at the optimal air to fuel ratio results in the most efficient combustion. An online 

prediction of this metric from the cameras would be ideal. 

It was found that the images did not contain sufficient information to be able to predict air 

to fuel ratio. Repeat experiments did not show similar image characteristics, and images 

within a specific experiment often contained very different features. It may be that the 

process was never at steady-state throughout the experiments. Although a change in air-to 

fuel ratio impacts off-gas chemistry within five minutes, it may be that major production 

level changes do not settle so quickly. Signal to noise ratio may be another reason for these 

suboptimal results. The air to fuel ratio may not have been varied enough. In any future 

experiments, such as the biomass experiments, less load changes will be made with more 

significant variations in the air to fuel ratios in hopes of obtaining better results. 

An important finding is that fouling at the camera locations can be determined from the 

images through a simple masking technique. This is significant because fouling is of major 

concern when charging biomass, and the ability to have some monitoring points is key. 

Future Work 

There is significant future work that exists in this project that will be performed beyond 

the completion of this thesis. This includes analyzing several months of coal-only process 

data and completion of biomass trials. 
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Chapter 6 

Conclusions and Recommendations 

High energy costs, stricter environmental regulations and a high Canadian dollar have led 

Canadian manufacturers to find new ways to improve energy efficiency in their processes. 

Combustion processes, which are especially hard hit by these changes, were studied in 

this work. Multivariate image and process data analysis was applied to three combustion 

processes: a lime kiln, a basic oxygen furnace, and a coal-fired boiler. The conclusions and 

recommendations are summarized for each case study separately. 

Lime-Kiln Analysis 

The primary goal for this analysis was to create a multivariate model to predict final product 

temperature several hours into the future for possible use in a supervisory system or closed­

loop control system. To build a successful model, both images and process data were 

required. 12 masks were identified from the images that provided important information 

for temperature prediction up to 2 hours into the future. However, transition periods 

(when the process was between steady-state values) were not well captured by an image 

only model, thus process data were also incorporated into the model. Dynamic information 

was captured using first-order plus deadtime filters of both the images and the process data 

to project process conditions at a current time into the future. These new parameters were 
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then used to build PLS models 1 hour and 2 hours into the future to predict final product 

temperature. The 1 hour model provides very good prediction results, while the 2 hour 

model provided reasonable results with some delay during transition periods. Future work 

includes placing both the 1 hour and 2 hour models online and potential use for online 

control. 

Basic Oxygen Furnace 

The goal of the basic oxygen furnace analysis was to predict end-point carbon of the batch 

process. An online prediction of carbon could help the operators end the batch as soon 

as the desired carbon is reached, limiting oxygen consumption and reducing operational 

costs. To adequately use the images of a newly installed camera, traditional image analysis 

was used to stabilize the field of view throughout a heat and between all heats. Features 

were extracted from the new flame images and used for carbon prediction. The best image 

features were found to be average score values of the images. A successful carbon prediction 

model was then built by combining these image features and available process data. Future 

work includes placing the model online and improvement of the model for high carbon heats. 

Coal-Fired Boiler 

The goal of this work was to use image analysis to study flame stability and energy efficiency 

under various loads and air to fuel ratios. Three cameras were installed and the flame 

images for a set of designed experiments were studied. It was difficult to predict energy 

efficiency and monitor flame stability as the process never reached steady state during the 

experiments. An unexpected result was that the cameras can be used to monitor localized 

fouling, which could be very important as the plant moves towards co-fired steam production 

using both coal and biomass. Future work will include performing biomass experiments 

and analyzing these results, as well as studying several months of coal-only operation to 

determine areas of improvement. 
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This thesis has shown that the use of multivariate analysis of flame images and process data 

in combustion process is very promising. A high-temperature manufacturing unit should 

benefit from such an analysis if stable flame images can be obtained. 
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Appendix A 

NIP ALS algorithm 

This Appendix provides the NIPALS algorithm for PCA, and PLS and a discussion on 

incorporating missing data. More information can be found in the following references: 

Kresta et al. [1994] and Geladi and Kowalski [1986] and Eriksson et al. [2006]. 

NIPALS for PCA 

1. Select a non-zero column of X and set this equal to t 

2. Project X onto t to find the loading p: p = XTt I tTt 

3. Normalize p (loading vector) to unit length: p =p I IIPII 
4. Calculate the score vector: t=Xp I p T p 

5. Check for convergence : if t from step 1 and t from step 4 are different by more than a 

defined threshold, return to step 2 

6. Once convergence has been reached, calculate the error: E = X-tpT 

7. If another component is required start at step 1, with X = E (the deflated matrix) 

Incorporating missing data into PCA Algorithm 

To incorporate missing data into the NIPALS algorithm, the following changes are made to 

the steps above: 
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1. Select a non-zero column of X and set this equal to t. The column should contain no 

missing data. 

2. To find the loading vector p, each entry of the vector is calculated separatley. X obser­

vations in each column that are missing are ignored. 3. Normalize p (loading vector) to 

unit length. Use only the number of non-missing observations in each column for this step. 

4. Calculate the score vector one observation at a time, excluding columns where there is 

missing data. 5. No change to this step. 6. Once convergence has been reached, calculate 

the error: E = X-tpT. Missing data entries will continue to be missing. 

7. If another component is required start at step 1, with X = E (the deflated matrix) 

NIPALS for PLS 

1. Select a non-zero column of X and set this equal tow. Normailize to length 1. 

2. Calculate the score vector t: t = Xw 

3. Calculate the Y loading vector q: q= yT t 

4. Calculate new weight vector w: w = XT t 

5. Check for conergence: if w from step 1 and w from step 4 are different by more than a 

defined threshold, return to step 2 

6. Once convergence has been reached, calculate the loading vector p: p = XT t I t T t 

7. Calculate the error on X: Ex = X-tpT 

8. Compute the regression of Y onto t: c= yT t I t T t 

9. Calculate the error on Y: Ey = Y-t*cT 

10. If another component is required start at step 1, with X= Ex and Y=Ey (the deflated 

matrices) 

Incorporating missing data into PLS Algorithm 

To incorporate missing data into the PLS NIPALS algorithm, the following changes are 

made to the steps above: 

1. Select a non-zero column of X and set this equal to w. Normailize to length 1. The 
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column should contain no missing data. 

2. Calculate the score vector t: t = Xw one observation at a time, excluding columns where 

the data are missing. 

3. Calculate the Y loading vector q: q= yT t 

4. Calculate new weight vector w one column at a time, excluding rows where data are 

missing 

5. Check for convergence: if w from step 1 and w from step 4 are different by more than a 

defined threshold, return to step 2 

6. Once convergence has been reached, calculate the loading vector pone column at a time, 

excluding rows with missing data 7. Calculate the error on X: Ex = X-tpT 

8. Compute the regression of Y onto t: c= yT t / t T t 

9. Calculate the error on Y: Ey = Y-t*cT 

10. If another component is required start at step 1, with X= Ex and Y=Ey (the deflated 

matrices) 

Glossary 

X: the data matrix 

Y: the response data matrix 

t: the score vector 

p: the loading vector 

Ex: the deflated X matrix 

Ey: the deflated Y matrix 

q: the Y loading vector for PLS 

w: PLS X loading vector 

c: regression coefficient of Y on t 



Appendix B 

Coal-Fired Electricity Plant 

Diagram 

This Appendix provides a diagram of a coal-fired generating plant : Ontario Power Gener­

ation's Atikokan Plant. 
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Figure B.l: Coal-fired generating plant diagram (At ikokan Generating Station [2008]) 



Appendix C 

Pulp and Paper Mill Flow Sheet 

This Appendix provides a flow sheet of a pulp and paper mill : created with the guidance 

of Don McCabe at Irving Pulp and Paper, Saint John, New Brunswick. 
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