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Abstract 

EEG is a noninvasive technique useful for the human brain mapping and for the 

estimation of neural electrical activities in human brain. A goal of processing EEG 

signals of a subject is the localization of neural current sources in human brain known 

as dipoles. Although this location estimation problem can be modeled as a particular 

kind of parameter estimation problem as in array signal processing, the nonlinear 

structure of an EEG electrode array, which is much more complicated than a tradi­

tional sensor array, makes the problem more difficult. 

In this thesis, we formulate the inverse problem of the forward model on computing 

the scalp EEG at a finite set of sensors from multiple dipole sources. It is observed 

that the geometric structure of the EEG array plays a crucial role in ensuring a 

unique solution for this problem. We first present a necessary and sufficient condition 

in the model of a single rotating dipole, that guarantees its location to be uniquely 

determined, when the second-order statistic of the EEG observation is available. In 

addition, for a single rotating dipole, a closed-form solution to uniquely determine its 

position is obtained by exploiting the geometrical structure of the EEG array. 

In the case of multiple dipoles, we suggest the use of the Maximum Likelihood 

(ML) estimator, which is often considered optimum in parameter estimation. We 

propose an efficient localization algorithm based on QR decomposition. Depending 

on whether or not the probability density functions of the dipole amplitude and the 

noise are available, we utilize the non-coherent ML or the LS as the criterion to 

develop a unified successive localization algorithm, so that solving the original multi-
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dipole optimization problem can be approximated by successively solving a series of 

single-dipole optimization problems. Numerical simulations show that our methods 

have much smaller estimation errors than the existing RAP-MUSIC method under 

non-ideal situations such as low SNR with small number of EEG sensors. 
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E{ ·} Expectation 

tr[·] Trace 

log Logarithm function with e base 

det Determinant 
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[A]kk the k-th diagonal entry of a matrix A 

IM M x M identity matrix 

arg{·} a scaler, vector or matrix which satisfies the conditions enclosed within 

'V gradient 
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Chapter 1 

Introduction 

1.1 Overview 

EEG stands for electroencephalography which is a safe and quick way of recording 

the electrical activity of the brain. The simultaneous activity of thousands and thou­

sands of neurons in the brain can be detected and recorded with electrodes placed 

at the scalp, which are usually small metal discs. EEG signal was first measured by 

Hans Berger in 1924, and has been used in the study of brain function and diseases 

for several decades. What we are mainly interested in, however, is the evoked po-

Figure 1.1: Multichannel EEG Electrodes and Recordings (Picture taken partly 

from (19] ) 

tential that can be reliably measured using EEG. Evoked potential as distinct from 
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spontaneous potentials, refers to the brain response to an external or internal stimuli, 

such as visual, auditory or somatosensory stimulation. When a particular stimulus is 

applied, some corresponding brain areas are activated, inducing the evoked potential 

that is distinguishable from the background of ongoing EEG. 

One major task of evoked potential or EEG analysis is thus to find out where these 

activated areas are within the human brain [33] [9]. In other words, our goal is to 

localize the "brain sources" that generate EEG signals. Such information is of great 

importance for both clinical and research applications [8] [33]. For example, accurate 

location estimation of an epileptic focus in the brain can be used to plan surgery for 

its removal. Likewise, information about the brain regions that process a particular 

signal (such as an auditory tone) is of great value to brain functioning studies. 

The so called brain sources of EEG are widely accepted as localized current sources 

in the cerebral cortex. In order to localize them, there are two types of source models 

generally used: the Equivalent Current Dipole (ECD) model [32] and the distributed 

source model [7]. The ECD model assumes small numbers of current dipoles to ap­

proximate the flow of electrical current in a small brain area, whereas the distributed 

source model assumes a large number of current dipoles scattered in a limited source 

space. 

A dipole behaves like a vector, and generates electro-magnetic field that gives 

an equivalent description of the compound activity of all neuronal elements in their 

vicinity which are orientated in parallel to the dipole axis. Much of the literature uses 

ECD model to represent neural current sources, since it is simple to apply and many 

dipole fitting algorithms have been developed especially when the spatio-temporal 

EEG information is available. Therefore, we explore dipole localization methods 

based on this model. It is noteworthy that brain activity does not actually consist 

of discrete sets of physical current dipoles, but rather that the dipole is a convenient 

representation for coherent activation of a a large number of neural cells. 

Another consideration in the localization problem is to construct a model of the 
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Figure 1.2: Equivalent Brain Sources (Pictures taken partly from [20] ) 

head. Apparently, the simplest model is a sphere, which contains concentric layers 

with different electrical conductivities, respectively the scalp, skull, cerebrospinal fluid 

and the brain. More sophisticated head models can be created using finite elements 

or boundary elements [6]. 

Once these models are selected, the location of the dipoles can be calculated by 

using nonlinear numerical optimization methods. Attempts to estimate ECDs based 

on EEG measurements dated back to Shaw in 1955 [35]. Scherg and Von Cramon 

[33] push forward the dipole fitting problem a big step, by introducing the spatia­

temporal methods. Later, signal subspace-based methods were developed by Mosher, 

et al. [26] [27] , which aroused great interests due to their ability to accurately locate 

multiple dipole sources. Meanwhile, Bayesian statistic methods were being employed 

[10] [18]. 

1.2 Motivation and Contribution of the Thesis 

Although this location estimation problem can be modeled as a particular kind of 

parameter estimation problem as in array signal processing, the nonlinear structure 

3 
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of an EEG electrode array, which is much more complicated than a traditional sensor 

array, makes the problem more difficult. For example, we cannot directly apply 

the uniqueness condition in determining the direction of arrival (DOA) by a linear 

array, into uniquely determining the location of the dipoles from multichannel EEG 

signals. Nevertheless, unique solutions to the localization problem do exist, at least 

in a mathematical sense, if we adopt a proper mapping model and adequately restrict 

the number of equivalent dipoles. Studies in [2] stated that two distinct dipoles could 

not generate the same potential map on a continuous set of scalp points. However, 

given an EEG array geometry, there has not been much study on the uniqueness of 

localizing the dipole. 

In this thesis, we first consider the uniqueness of localizing a single dipole. We 

propose a geometric structure of an array with the minimum number of sensors to 

assure that a dipole can be uniquely determined based on the second order statistics. 

In addition, for a single dipole, a closed-form solution to uniquely determine its posi­

tion and variances of its moment and noise is obtained by exploiting the geometrical 

structure of the EEG array. 

Once a unique relationship between the scalp-recorded EEG and the dipoles is 

ensured, we put the emphasis of our research on the effective dipole localization 

algorithms. Due to the non-convexity of the dipole localization problem, in order to 

obtain a global solution, it has been suggested [37] [21] that the continuous location 

variables should be quantized, and then an exhaustive search performed over all grid 

points. However, as the number of sources and the number of quantization level 

increase, the searching approach is computationally intractable. 

Other researchers proposed to apply signal subspace-based methods [26] [27], 

which under certain conditions, have demonstrated good and reliable accuracy in 

the localization of a restricted number of independent dipoles. However, the per­

formances of these subspace methods are highly dependent on the sufficiency and 

underlying structure of observed EEG data. If the EEG measurement interval is too 

4 
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short, or if the EEG signals are recorded from only a small number of sensors, an 

accurate estimation of the signal subspace will fail, leading to unacceptable errors in 

localization. 

In this thesis, we suggest the use of the Maximum Likelihood (ML) estimator, 

which is often considered optimum in parameter estimation. We aim at developing 

a computational-efficient ML method for multiple dipole localization. By using the 

maximum likelihood estimator, either in stochastic signal model or in deterministic 

signal model, as a criterion, we formulate the dipole location estimation problem by 

the QR decomposition into an optimization problem, in which the objective function 

has the following two typical features: 

1. The parameter matrix to be estimated can be segmented according to its columns 

into such a block matrix that, any two blocks are uncorrelated with respect to 

the parameters; 

2. The original objective function can be decomposed into a sum of a series of sub­

functions with the present sub-function only involving in the previous blocks. 

These two properties enable us to reduce the original multi-source optimization prob­

lem into a series of single-source optimization problems so that the localization 

of all dipoles can be efficiently implemented. Furthermore, our method is model­

independent, thus can be extended to a specific class of nonlinear optimization prob­

lems with the above two properties. 

1.3 Organization of the Thesis 

The thesis is structured as follows: 

• In Chapter 2, the forward dipole-EEG mapping model is examined based on two 

categories of dipole descriptions (fixed-orientation and rotating orientation). Its 

inverse problem is then formulated; i.e., given the observations of EEG in an 

5 
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array of finite sensors, we want to localize the dipoles. Several classical local­

ization algorithms are introduced to solve the problem and their performance 

are evaluated. 

• In Chapter 3, we investigate the uniqueness of dipole localization for a single 

dipole. Based on the rotating dipole model and the infinite homogeneous head 

model, we design a geometrical structure of an array with the minimum number 

of sensors to guarantee a unique localization of the dipole and present a closed­

form solution for this localization problem. 

• In Chapter 4, we propose a QR decomposition-based successive searching al­

gorithm to efficiently implement the generalized likelihood ratio test. We also 

propose the non-coherent maximum likelihood estimator for dipole localization. 

The two algorithms are applicable to both dipole models. 

• In Chapter 5, several numerical examples are provided. Given short snapshots 

of simulated EEG from a small number of EEG sensors, our methods have much 

smaller estimation errors than the other classical methods. 

• In Chapter 6, conclusion on this work and suggestion for future work are pre­

sented. 

6 



Chapter 2 

Background and Problem 

Statement 

EEG-dipole model will be considered in detail in this chapter. We first introduce 

the dipole-to-EEG mapping principle, formulate the forward problem respectively 

according to two different dipole models, and then investigate the inverse problem, 

i.e., localization of dipoles from EEG observations, by specifying the assumptions 

throughout the thesis and formulating mathematically the problem. After that, we 

examine some popular dipole localization algorithms. 

2.1 Forward Problem 

In order to estimate the location of a dipole, it is necessary to assume a model of the 

dipole and a model of the head. The forward problem is thus the combination of both 

the dipole and head models, and to calculate the EEG produced by dipole sources 

when all the model parameters are known. We start with a single-dipole-single­

snapshot case, and then extend to the case of multiple-dipole-spatiotemporal-EEG. 
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2.1.1 Physics of EEG 

The scalp EEG signal is transmitted from the dipole sources and received from a 

finite set of electrodes on the surface of human head. Considering the dipole current 

flow is relatively slow in physical terms and the brain is a good conductor, the physics 

of EEG can be described by the quasi-static approximation of Maxwell's equations. 

The magnetic field B(w) at location w can be related to the quasi-static divergence 

free current flow .J(£') at location£' through the well-known Biot-Savart law [4] [17] 

B( ) K, I ( I) w -£1 I 
w = 47r .J l X II w -£1 113 de (2.1) 

where "' is the permittivity of free space. We can partition the total current density 

.J(£1
) in the head volume into two current flows of distinct physiological significance: 

(2.2) 

with .JP(£1
) denoting a primary (driving) current flow related to the original neural 

activity and .Jv (£1
) denoting a volume (passive) current flow that results from the 

effect of the electric field in the volume on extra-cellular charge carriers: 

.Jv (£') = ((l1)e(l1) = -((£1)\l:F(£1
) (2.3) 

where ((£1
) is the conductivity function of the head tissues, and e(£1

) is the electric 

filed, which equals the negative gradient of the electric potential :F(£1
). Therefore, 

we can rewrite the Biot-Savart law above as a sum of contributions from the primary 

and volume current. After some tedious derivations [12] [5], a primary potential at 

location w can be calculated as follows, 

( ) 1 r p( ') w -.e' I 

:F W = 47r( J Head .J £ . II W -f_l 11 3 de (2.4) 

Here, the primary potential :F( w) is the solution for the infinite homogeneous medium 

of unit conductivity ( due to the primary current .JP(£1
). Eq.(2.4) is the essential 

model for the forward problem for EEG. 

8 
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If we assume that the primary current exists only at a specific point, i.e., the 

primary current source is an equivalent current dipole located at .e with moment v, 

its primary current distribution can be represented as 

(2.5) 

where 8 is the Dirac delta function. Then the primary potential for the dipole is 

reduced to a remarkably simple form 

1 (w- £) 
:F(w) = 47r( II w -.e 113v 

2.1.2 Single Dipole Model 

(2.6) 

Consider the EEG measurement taken at M discrete locations on the head surface, 

from an array of M sensors. Assume the EEG data is generated by a single dipole and 

corrupted by noise. Then the general forward model at the tth temporal snapshot 

can be described as 

(2.7) 

in which, 

• ft denotes an M x 1 measurement collection vector from the M sensors at the 

tth time slot; 

• each dipole, as a vector, has two kinds of 3-dimensional parameters to describe 

its activity: location .e = [fx,l!y, fzJT and moment Vt = [vx(t), vy(t), Vz(t)JT, 

representing the strength of neural signals in the three spatial directions in the 

reference coordinates . .e is supposed to be fixed during the observation interval, 

whereas Vt may vary with time. 

• g ( £) denotes an M x 3 gain matrix, relating the dipole source to the EEG 

signals, which depends on the dipole location .e but not on time t; 

9 
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• ~ is an M x 1 measurement noise vector. 

In this thesis, we adopt the simple infinite homogeneous head model. In fact, more 

complicated models can be chosen [27]. However, it does not affect the localization 

algorithm. From Eq.(2.6), the gain matrix g has the following structure: 

W1x-£., Wly-£y Wlz-£z 

dl3 dl 3 dl 3 

1 W2x-£q; W2y-£y W2z--;/z 

Q(£) = 47r( 
d23 d2 3 

d2 (2.8) 

~ Wmy-£y ~ dm3 dm3 dm 

where 

• ( denotes the constant isotropic conductivity of the head; 

• Wi = [wix, wiy, Wiz]T denotes the ith sensor's location vector, known on the 

surface of the head sphere; 

• d._ denotes the distance between the dipole and ith sensor; i.e., 

di = J(wix- fx) 2 + (wiy- fy) 2 + (wiz- fz) 2. 

2.1.3 Multiple dipoles model 

Now, we consider a more complicated model with multiple dipoles. Suppose we still 

have M EEG sensors, each having N snapshot measurements to localize K dipole 

sources. The spatial-temporal EEG measurement matrix F = [fl. f2 , · · · , fN] can be 

expressed by 

F GV+E (2.9) 

Here, 

• G is an M x 3K gain matrix; i.e., G = [Q(£1), Q(£2), · · · , Q(£K)] with each 

matrix Q(£k) fork= 1, 2, · · · , K having the same structure as Eq.(2.8); 

10 



M.A.Sc: Yiming Wang McMaster - Electrical and Computer Engineering 

•V= , where the Vk denotes a 3 x N collection matrix of all the N 

VK 
moment vectors for the kth dipole; i.e., 

= 

• E = [e1, e2 , • · · , eN] denotes an M x N noise matrix. 

Since the moment vector v can be furthermore decomposed into two parts: a 

unit-norm orientation vector p, and a scalar amplitude s, such that Vk = p,ksk 

[JLkx, /1ky, /1kz]T s, there are two typical categories of dipole moment models. 

(1) Fixed-Orientation Moment 

Some researchers [33} argue that, physiologically a dipole's orientation should not 

rotate because the dipole model represents a fixed neuroanatomical structure. There­

fore in this model, p, is supposed to be fixed during the observation interval, and only 

its amplitude varies with time. Therefore, if we let fh denote all the fixed parameters 

for the kth dipole, (Jk = [.er, p,ff, and put all the items bearing these fixed parame­

ters into one matrix, the forward model of fixed-orientation moment can be rewritten 

11 
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from Eq.(2.9) as 

F 

= [a(lh), a(02), · · · , a( OK)] S + E 
A(e1) 

= A(8J)S+E 

(2) Rotating Moment 

sf 
si 

+E 

(2.10) 

Physically, since two nearly collocated dipoles with independent time series are not 

distinguishable, they may be modelled as a single dipole with a rotating orienta­

tion [27]. In this model, both arguments JL and s vary with time, and the forward 

model Eq. (2.9) becomes, 

F = [ g(£1), g(£2), · · · , g(£K), ] +E 

G(9r) 

G(Br)V +E (2.11) 

2.2 Solution to the Inverse Problem 

Once the dipole and head model are selected, we can solve the inverse problem, that 

is, we can determine the dipole parameters from EEG measurements. 

12 
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2.2.1 Assumption and Problem Statement 

Throughout this thesis, we make the following assumptions: 

1. The number of dipoles K is known at the receiver side; 

2. The gain matrix G has full column rank. 

3. Noise matrix E is zero-mean white Gaussian, distributed as N(O, a 21), and it 

is uncorrelated with the dipole activities. 

For Assumption 1, the number of dipoles K can be estimated from the effective 

rank of the data matrix or using information-theoretic criteria [3]. In practice, expert 

data analysts often run several model orders and select results based on physiological 

plausibility. Since the determination of the number of dipoles is well researched, 

this issue is excluded in our research interests, and Assumption 1 is taken to be 

valid. Assumption 2 implies that the dipoles' activities are not correlated, which 

enable us to uniquely identify the dipole locations if the number of sensors is large 

enough. In addition, noise comes mainly from the background activity in neurons. 

Therefore, Assumption 3 can be justified by the large number of neurons normally 

active throughout the brain and has been validated in [13]. 

Our goal in this thesis is to solve the inverse problem of the forward model de­

scribed by Eq. (2.9), i.e., we intend to solve the following problem: 

Problem 2.1. Given the observations of EEG F from sensors corrupted with noises, 

we want to develop an efficient algorithm to uniquely estimate the locations R.k of all 

the dipoles in Eq.(2.9). 

2.2.2 Overview of Localization Methods 

In this overview, we only focus on two classes of localization methods currently used 

among researches. This is because these two classes of methods have greater stability 

and superior performance to all other methods. 

13 
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MAXIMUM LIKELlliOOD 

The principle of Maximum Likelihood (ML) parameter estimation is to find the pa­

rameter values that make the observed data most likely. It is intuitively appealing 

and has remained one of the most powerful methods in estimation theory. In fact, 

the method of maximum likelihood may be applied to any estimation problems, pr<r 

vided that we formulate the joint probability density function of the available set of 

observed data as a function of parameters of interest. It was first used by Fisher. For 

detailed discussion of this technique, see [30] [36]. Recall the general dipole model 

f = G(£)v+e 

The method of maximum likelihood is based on the principle that we should estimate 

the parameter £ by its most plausible values, given the observed sample vector f. In 

other words, the maximum-likelihood estimator of£ is the value for which the con­

ditional joint probability density function p (f\£) is maximized, i.e., the ML estimate 

of £ is given by 

lmz = arg max p (f\£) 
R. 

(2.12) 

For dipole localization, we can adopt the ML method in [?] in which some of the 

irrelevant parameters in the likelihood function are removed, arriving at a concen­

trated maximum likelihood problem, i.e., p (f\£) is replaced by a concentrated func­

tion Tr[(I- G(GTG)-1GT)'k.r], where Rt is the estimated covariance matrix of the 

observation vector, obtained by 

N 

*' = ~ Lfn~ 
n=l 

(2.13) 

The ML estimate of the dipole moment can then be derived by a simple least-square 

fit, v = (GTG)-1GTf, where G is used instead of G(l) for notational convenience. 

Since the mathematical models in dipole localization are highly nonlinear, the 

multi-variant nonlinear optimization process makes the ML estimation computation­

ally intractable. As the number of sources and the number of quantization levels 

14 
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increase, the optimization objective function results in increasing chances of trapping 

in the local minima. The author in [10] proposed maximum likelihood methods for 

localization of fixed dipoles by modeling the dipole moments as a linear combination 

of parametric or non-parametric basis functions, and further developed ML-based 

methods under spatially correlated noise with unknown covariance [11]. The disad­

vantage of these methods is that the basis functions should be known a priori, and 

that they are not universal to all dipoles. 

SUBSPACE-BASED METHODS 

In principle, the subspace-based methods, which operate on the second order statis­

tics, find optimum peaks of their objective function by employing certain projections 

on the estimated signal subspace, or alternatively on the estimated noise subspace. 

Mosher and Leahy [26] [27] applied Multiple Signal Classification (MUSIC) [34] into 

estimating the location of the dipoles. 

A. MUSIC Consider the EEG observation model in Eq.(2.10), 

F=A(E>)S+E 

Since we assume the dipole activities are linearly independent among each other, 

both matrix A and S are of full rank K. We also observe that each column of the 

data matrix F is formed as a linear combination of the manifold vectors from each of 

the dipole sources. Therefore, an eigen-decomposition performing to the correlation 

matrix of the noiseless data yields orthogonal basis that span the same subspace, 

referred to as the signal subspace, as the manifold vectors a(.ek), k = 1, 2, · · · , K with 

true dipole parameters. This is the fundamental of the MUSIC algorithm. The best 

we can do is to search for the gain vectors which are closest to being orthogonal to 

the noise subspace. Accordingly, we form an orthogonal projector [29] such that 

(2.14) 

where On denotes the noise subspace given by the eigen-decomposition of the signal 

15 
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covariance matrix, 

(2.15) 

with 0 8 denoting the signal subspace and A denoting the diagonal matrix of corre­

sponding eigenvalues. In practice, the true value of 'R.1 is seldom known. Therefore, 

an estimate 'k-1 is obtained by averaging the outer products of the data over the total 

number of snapshots N such that 

(2.16) 

We can now use P n to project the gain vectors a( fh) onto the estimated noise 

subspace spanned by the column vectors of On. The values of fh, k = 1, · · · , K, 

which give the K highest peaks of the quantity 1/ II Pna(Bk) 11
2 are the estimated 

parameters of the K dipole sources, i.e., 

(2.17) 

Alternatively, a metric to describe the closeness between the column vectors 

a(Ok), k = 1, 2, · · · , K and the estimated signal subspace 0 8 , defined by 

C { (O ) n } = a( Ok)Tfl8 fl; a( Ok) 
8 a k ' 8 a(Ok)Ta(Ok) (2.18) 

can be employed resultingly in a modified MUSIC [26], i.e., 

(2.19) 

In applying MUSIC for dipole localization, errors in estimating the signal subspace 

can lead to errors in the location of the peaks in the MUSIC metric. In addition, 

as the dimension of the signal subspace increases, automatically finding several local 

maxima in the MUSIC metric become more complex. 

B. RAP-MUSIC Mosher and Leahy [28] therefore proposed the Recursively 

Applied and Projected (RAP) MUSIC by using a recursive procedure in which each 

16 
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dipole is found as the global maximizer of a recursively modified cost function. By 

doing so, a framework for the RAP-MUSIC was established based on the theory 

of principal angles [14], which then aroused great interests due to their ability to 

accurately locate multiple dipoles. In RAP-MUSIC, the successively localized dipole 

sources form an intermediate projection matrix first, and then by searching over a 

reduced subspace obtained from the projection's orthogonal subspace complement, 

the next dipole is found. For the estimation of each dipole, the RAP-MUSIC method 

utilizes a modified criteria to find each global maxima, 

(2.20) 

where nt_1 is the projector onto the previous (k- 1) signal subspaces 

with Ak-1 formed from the manifold estimates of the previous k - 1 recursions, 

Ak-1 = [a(01), · · · , a(Ok-1)]. 

However, the subspace methods have their own drawbacks. They are highly de­

pendent on the sufficiency and underlying structure of observed data. When either 

the number of sensors or the number of snapshots is not very large, or the signal to 

noise ratio is low, the error resulting from estimating signal subspace basis leads to a 

significant estimation error of the dipole locations. 

17 



Chapter 3 

Uniqueness of the Determination 

of A Single Dipole Location 

Prior to developing any new localization algorithm, we must ensure that there is a 

unique relationship between the scalp-recorded EEG and the dipoles. Studies in [2] 

stated that two distinct dipoles could not generate the same potential map on a 

continuous set of scalp points. However, since EEG data are recorded only on a few 

discrete sensor locations, we do not know if a unique inverse mapping exists. Given 

an EEG array geometry, the uniqueness of the localization has to be addressed. 

In this chapter, given the observations of EEG in an array of finite sensors from 

a single rotating dipole, we want to uniquely localize the dipole. We design a geo­

metrical structure of an array with the minimum number of sensors to guarantee a 

unique localization of the dipole. In addition, we present a closed-form solution for 

this localization problem. 

3.1 Array Geometrical Structure 

Unlike a uniform linear array, the EEG array has no fixed manifold structure such as 

shift invariance or Vandermonde [34], but the gain matrix has the following geomet-
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rical property. 

Proposition 1. The gain matrix Q defined by Eq. ( 2. 8) satisfies 

T ( 1 2 1 
[QQ ]ii = 47f() d{ i = 1,2·· · ,M 

where di denotes the distance between the dipole and i th sensor; i.e., 

di = J(wix- Rx)2 + (wiy- fy) 2 + (wiz- Rz)2 • This property holds universally for any 

gain matrix in an infinite homogenous model and it is independent of the array struc­

ture. 

Proposition 1, which can be verified by a direct calculation, plays a key role in 

uniquely determining the location for a single rotating dipole when the second-order 

statistic of observations is available. Consider the rotating dipole model with only 

one dipole. Since the moment is independent in each dimension { x, y, z} and in time, 

we have 

where O"v denotes the variance of the intensity. Therefore, the covariance matrix of 

the measurement vector f is given by 

(3.1) 

Now, a natural question is 

Problem 3.1. what is the minimum number of sensors and how these senors are po­

sitioned on the head surface to uniquely determine the above five unknown parameters, 

O"v, O", Rx, fy and fz if 'R-t is given? 

On one hand, there are totally five parameters in Eq.(3.1) to be determined. On 

the other hand, 'Rt is a symmetric matrix and has (1 + M)M/2 non-redundant 

elements. Hence, it seems that an immediate answer to the above problem is to 

choose the number of sensors M such that 

(1+M)M > 
5 2 -

19 
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However, this is far from sufficient. Take 3 sensors for instance. It is the minimum 

number of sensors to satisfy the condition. Since any 3 arbitrary sensors can be 

viewed as being placed in a circle around the surface of spherical head, this two 

dimensional planar structure is not able to identify the parameter information in a 

three dimensional environment. For example, we cannot discriminate two dipoles 

if they are symmetrically distributed to the array plane. Therefore, three coplanar 

sensors lead to an ambiguity of location estimation. In fact, such argument on three 

coplanar sensors can be extended to a general situation. Therefore, we have 

Proposition 2. An array of sensors positioned on the same plane cannot provide a 

unique localization of the dipole. 

Proposition 2 tells us that we need at least four sensors not belonging to a plane 

to uniquely localize a dipole. To keep the array geometry structure as simple as 

possible, we employ four sensors placed at the following positions as showed in Fig. 3.1: 

WI = [-,8, 0, O]T, w2 = [,8, 0, o]T, W3 = [0, ,8, o]T, and w4 = [0, 0, .BJT, where .8 is the 

head radius. 

3.2 Closed-form Solution 

Our purpose in this section is to obtain a closed-form solution which uniquely de­

termine the variances of the intensity and the noise, and the position of the dipole. 

Utilizing Eq.(3.1) with 4 sensors, we can have a system of 10 equations, among which 

we carefully select 5 equations to sufficiently determine the 5 unknown variables. 

20 
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z 

G 
W1(-P.O.O) 

w3(0,P,O) 

y 

+ dipole ® electrode 

Figure 3.1: Illustration of 4 electrodes in a particular structure 

Employing Proposition 1 and equating the diagonal elements of Eq.(3.1) yield 

21 

(3.2a) 

(3.2b) 

(3.2c) 

(3.2d) 



M.A.Sc: Yiming Wang McMaster - Electrical and Computer Engineering 

where we denote p2 = .e;+.e;+.e~. In addition, comparing some off-diagonal elements 

of Eq.(3.1), we can also obtain 

O"v 2P2 - /32 
['R-th2 = (47r() (d

1
d
2
)3 (3.3a) 

['R- ] = ( O"v ? p2 + (3(fx - fy) (3.3b) 
f 

13 
47r( ( d1 d3)3 

['R- ] = ( O"v )2P2 + (3(fx- fz) (3.3c) 
f 

14 
47r( ( d1 d4)3 

['R- ] = ( O"v )2P2- (3(fx + fy) (3.3d) 
f 23 47r( (~d3)3 

['R- ] = ( O"v )2P
2

- f3(fx + fz) (3.3e) 
f 

24 
47r( ( d2d4)3 

['R- ] = ( O"v ?p2- (3(fy + fz) (3.3f) 
f 

34 47r( ( d3d4)3 

Hence, solving the original Problem 3.1 is equivalent to uniquely solving Eqs.(3.2) and 

(3.3). Note that in all these equations, the covariance matrix 'R-t is of true value. In 

other words, we assume 'R-t is exactly known. If an estimate 'kt is used, then none of 

these equations hold. Then by carefully selecting 5 equations out of Eqs.(3.2)- (3.3), 

we can derive unique solution for the 5 unknowns, which is necessarily consistent with 

the solution of the other equations. In fact, we choose Eqs.(3.2) and Eq.(3.3a) for the 

sake of the simplest solving procedure, which is given in detail as follows. 

First of all, it is straightforward to solve for O". Let the eigen-decomposition of 

covariance 'R-t be 

n-1 ~ nAnT ~ n [ A. >.. ] nT 

where Av denotes the diagonal matrix containing the 3 largest eigenvalues of the 

covariance matrix 'R-1 and Ae is the smallest eigenvalue. Since ggT is a 4 x 4 matrix 

with rank 3, combining this with Eq.(3.1), we see that Ae = 0"2 • Thereafter, the 

other four parameters can be obtained by solving Eqs(3.2) and (3.3a). On one hand, 

substituting Eq.(3.2a) and Eq.(3.2b) into Eq.(3.3a) results in 

p2 = ['R-th2 (J + (32 
47r( {(['R-J]ll - (J2)(['R-th2- 0"2)}3/4 v 

(3.4) 

22 
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On the other hand, adding Eq.(3.2a) and Eq.(3.2b) leads to 

2 1 [ 1 1 ] {32 p = - + CYv-
S7r( vf['R-J]ll - CY2 vf['R-Jh2- CY2 

Combining Eq.(3.8) and Eq.(3.9) yields, 

where Q1 and Q2 are defined as 

Q1 - 4~(['R-Jh2{(['R.J]ll- a-2)(['R-Jh2- a-2)}-314 

1 
Q2 = 87r( {(['R-J]ll- a-2)-1/2 + (['R-Jh2- a-2)-1/2} 

(3.5) 

(3.6a) 

(3.6b) 

So far, a-, a-v and p2 have been obtained. Substituting these terms back into Eq.(3.2), 

we come up with the immediately solutions for the dipole location as follows: 

fx 1 ( 2 {32 CYv ) (3.7a) = -p + -
2{3 47r( vf['R-Jh2- a-2 

fy 1 ( 2 {32 CYv ) -p + -
2{3 47r( vf['R-J]33- a-2 (3.7b) 

fz 1 ( 2 {32 CYv ) (3.7c) = -p + -
2{3 47r( vf['R-J]44- a-2 

In fact, without using eigen value decomposition, we can also uniquely determine 

a-2. This is shown in Section 3.3. As a conclusion, we state the following property. 

Proposition 3. For a rotating single dipole model, the variances of intensity and 

the noise and the position of the dipole can be uniquely determined using the second 

order statistics if and only if an EEG array has at least four sensors not belonging 

to one plane. Moreover, under this sufficient condition with four sensors, closed­

form solutions uniquely determining the variances of intensity and the noise and the 

position of the dipole are given by Eq. {3.1}. 

23 
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3.3 Uniqueness Validation 

In this section, a complementary proof is presented, without using eigen-decomposition, 

that a2 exists necessarily and uniquely. As a result, all the subsequent solutions are 

unique. For convenience, av = 1 is assumed. On one hand, substituting Eq.(3.2a) 

and Eq.(3.2b) into Eq.(3.3a) results in 

p2 = [RJh2 av + [32 
47r({([R1]11 - a2)([R1]22 - a2)}3/4 

(3.8) 

On the other hand, adding Eq.(3.2a) and Eq.(3.2b) leads to 

2 1 [ 1 1 ] [32 p = - + av-
81f( J[RJ]n - a2 J[RJh2 - a2 (3.9) 

Subtracting Eq.(3.9) from Eq.(3.8), we can write 

If we define the left hand side to be f(a2), obviously, the domain of a2 is 0 < a2 < 

0 

/~ 
i 
i 

Figure 3.2: Illustration of monotone f(a2) 
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min{['R.J]u, ['R-1]22}. Moreover, the following properties about function f(u2
), 

f(O) < 0 

f(min{['R.J]u, ['R-1h2}) = +oo 

can be easily verified by 

and 

(3.11) 

(3.12) 

In addition, f(u2 ) is a monotonically increasing function within the valid region of 

u2. This is because 

J'(u2) = ~(['R.J]u _ u2)-3/2 + ~(['R-1]22 _ u2)-3/2 
2 2 

-
3[~Jh2 [(['R-J]u- u2)(['R-Jh2- u2)t714(['R-J]u + ['R-1h2- 2u2) > 0 

Consequently, a rough illustration of function f(u2 ) can be shown in Fig. 3.2, 

from which we deduce that there exists one and only solution for Eq.(3.10) such that 

f(u2 ) = 0. Then a unique solution of u2 > 0 is ensured. 
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Chapter 4 

Successive Estimation Methods 

based on QR Decomposition 

In this chapter, using the non-coherent Maximum Likelihood (ML) estimator or the 

Least Square (LS) estimator as a criterion, the multiple dipole localization is formu­

lated as a nonconvex optimization problem. Then, exploiting the QR decomposition, 

we propose a unified recursive algorithm to approximately calculate the optimal so­

lution by successively and efficiently solving a series of optimization sub-problems. 

To facilitate the discussion, we will first introduce the concept of QR decomposition, 

with a focus on the matrix version of the Gram-Schmidt orthogonal process. 

4.1 QR Decomposition 

In linear algebra, the QR decomposition (also called the QR factorization) of a matrix 

is a decomposition of the matrix into an orthogonal and a triangular matrix. Given 
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a full rank M x K matrix A, its QR-decomposition is of the form 

A = QR 

CIK] 

0 0 · · · TKK 

where R is a K x K upper triangular matrix, and Q is an M x K matrix with 

orthonormal columns, i.e., 

There are several methods for computing the QR-decomposition. Here we intro­

duce the Gram-Schmidt process. In this procedure, we successively form orthonor­

mal columns of Q from the columns of A, beginning at the first column. Since each 

qi is a vector of unit norm, the first column q1 is defined as 

Then since each column vector ak, for k = 1, 2, · · · , K, is in the space spanned by 

{ q1, q1, · · · , ClK}, we can write ak as a linear combination of the orthonormal basis 

q1, q1, · · · , CIK in the following manner: 

a1 = (a1, q1)q1 

a2 = (a2, q1)q1 + (a2, ~)~ 

(4.1a) 

(4.1b) 

(4.1c) 

where notation (ak, ~) = ar ~ denotes the inner product of these two vectors. As a 

result, ~ can be represented in terms of a1 and a 2 by 

II(l)a2 

II II(l)a2 II (4.2) 
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where IJ(l) is the projection matrix formed by the first column vector q 1. To gen­

eralize, for k = 1, 2, · · · , K, the kth column vector <lk can be written in terms of 

a1, · · · , ak as follows: 

(I- Qk-1 QLl)ak _ IJ(k-l)ak 

II (I- Qk-1 QLl)ak II - II rr<k-l)ak II 

where 

Here, IJ(k) is a projection matrix with the following properties, 

IJ(k)T = IJ(k) 

IJ(k)IJ(k) = IJ(k) 

In addition, the matrix R can be obtained directly by Eq.(4.1), 

R = 

(all q1) (a2, q1) 

0 (a2,~) 

so that the kth diagonal element of R can be expressed by 

k= 1,2,··· ,K 

(4.3) 

(4.4) 

We would like to emphasize the following two points on the QR decomposition, 

which play an important role in developing our recursive algorithms. 

• IJ(k) depends only on the first k column vectors of A, all a2, · · · , ak. 

• The kth diagonal entry [R]kk also depends only on the first k column vectors of 

28 
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4.2 Successive-ML Localization Methods based on 

QR Decomposition 

In this section, assuming some stochastic properties of the dipoles are known a priori, 

we develop a computationally efficient localization method on the basis of the non­

coherent ML criterion. We will focus on the fixed-orientation dipole model. Then a 

modified algorithm is developed for the model of rotating dipoles. 

4.2.1 Fixed-orientation Dipole Model 

Under the observation model described by Eq.(2.10), we assume that the dipole ampli­

tudeS and the noise E are independent and are zero-mean Gaussian distributed with 

covariance matrices IN 0 :E8 and IN 0 a21M respectively, where :E8 is a K x K matrix. 

With this assumption, the nth column fn of the observation matrix F in Eq.(2.10) 

is zero-mean Gaussian random vector with covariance matrix :EF = A:EsAT + a 21. 

Therefore, the likelihood function, i.e., the conditional probability density function of 

fn can be expressed as 

P (fniA) = exp{ -~f~~:plfn} 
(21r)¥ det2 :EF 

(4.5) 

Since we have assumed the dipole activities as well as noise are temporally inde-

pendent, the columns of F are statistically independent. Then, the covariance matrix 

ofF is IN 0 :EF. As a result, the probability density function of the whole observation 

matrix F conditioned on A can be derived by: 

p (F I A) p (vEc[F] I A) 
exp{ -~VEC[F]T(JN 0 :EF )-1VEC[F]} 

= MN 1 
(21r)-2 det2 (IN 0 :EF) 

exp{ -~ L::=l r;:E:p1fn} 
= MN N 

(21r)-2 det2 (:EF) 
(4.6) 

where VEC[F] denotes the vectorization ofF, i.e., VEc[F] = [f[, · · · , fhJT· Because 

Eq.(4.6) can be written in terms of matrix trace, we come up with the likelihood 
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function 

( I ) _ exp{ -~tr[FT(A~8AT + a 2I)-1F]} 
p F A - MN N 

(21r)-2 det2(A~8AT +a2I) 
(4.7) 

According to the ML principle, we aim to maximize the likelihood function. To 

further simplify the objective function in Eq.(4.7), we need the following two lemmas. 

Lemma 4.1. (Generalized Matrix Inverse Lemma [23}) Let an M x M matrix A be 

A= D + BCBH, where D is an M x M positive-definite matrix, B is an M x N 

matrix and C is an N x N positive-definite matrix. Then the inverse of A is 

Lemma 4.2. (Matrix Determinant Lemma [1}) For an M x N matrix A, and an 

N x M matrix B, we have 

det(IM + AB) = det(IN + BA) 

By Lemmas 4.1 and 4.2, the log likelihood function of Eq.(4.7) can be simplified as 

1 
Jm1(8) = 2tr[(a2~81 +AT A)-1 ATFFT A]- Nlogdet(AT A+ a2~81 )(4.8) 

a 

Therefore, the optimal ML estimate Bmz can be obtained by solving the following 

optimization problem: 

(4.9) 

Notice that 

(4.10) 

1 

For notational simplicity, let C = [H A]T with H = a~;2 . Performing the QR-

decomposition to C yields 

(4.11) 
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where Qc is an ( M + K) x K column-orthonormal matrix and Rc is an ( M + K) x 

(M + K) upper triangular matrix with positive diagonal entries. The matrices QH 

and Q~ml) are the upper K x K and lower M x K block matrices of Qc respectively. 

Substituting Eq.(4.11) into Eq.(4.8), we obtain 

Jm~(E>) = 1
2 tr[Q~ml)TFFTQ~ml)]- Nlogdet(R~Rc) a 

K 

"( 1 (ml)TFFT (ml) N l [Rc]2 ) - L...., a2 qAk qAk - og kk 
k=1 
K 

= LJkml)(9~,··· ,9k) 
k=1 

where each Jiml)(81, · · · , 9k) is defined by 

..fml)(9 9 ) 1 (ml)TF T (ml) Nl [Rc]2 Jk; 1, · · · , k = 2 qAk F qAk - og kk 
a 

with q~l) denoting the kth column vector of Q~ml). 

(4.12) 

(4.13) 

This optimization problem maxe Jml(E>) is non-convex, so that the methods such 

as gradient-based optimization often become trapped in local minima, resulting in 

significant localization errors. Moreover, since we totally have 5K unknown continu­

ous parameters, when K is greater than one, performing quantization to search over 

all grids in the feasible domain is prohibitive. In the following, we will develop a 

recursive algorithm to efficiently obtain a suboptimal solution of Eq.(4.9). 

Now, by the Gram-Schmidt procedure, we can clearly see how .Jkml)(9~, · · · , 9k) is 

associated only with the first k columns of the matrix A: Fork= 1, we have 

c1 
qc1=~ 

(ml\9 ) _ ~ _ g(£1)p,1 
qA1 1 

- II C1 II - y'hfh1 + p,fgT(£1)g(.e1)P.1 

[Rc]n =II c1 II= Vhfh1 + p,fgT(£1)g(£1)P.1 
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and for k = 2, · · · , K, 

(4.14d) 

( 4.14e) 

(4.14f) 

where qck denotes the kth column vector of Qc, ft<k-1) =I- Qc(k-1)Q~(k-1) is the 

estimated projection matrix generated by the (k -1) column vectors of Qc(k-1), with 

Qc(k-1) = [qc~,qc2,· · · ,qqk-1)], and Lis a "scissor'' matrix L = [OMxK,IMxM]· 

Considering that both the column vector q~) and [Rc]kk are only dependent on the 

first k dipole parameters (f]r, · · · , Ok), and every parameter Ok is independent of each 

other, then the optimization sub-function ./,.ml) is only dependent on the first k dipole 

parameters (91, · · · , Ok)· Therefore, we propose the following recursive schemes to 

approach Eq. ( 4.12), which can be expressed in terms of ./,.ml), i.e., 

by successively optimizing a series of sub-problems: 

where the notation J:Z) is equivalently defined as }fFl) (8~, ... , 8K-b OK)· The above 

procedure can be summarized as follows: 

1. Initialization: The estimate of 91 = [.ef, p.f]T is obtained by maximizing A_ml) ( 91) 

2. Recursion: Suppose that the previous (k- 1) estimates 81, • • · , 8k_1 are all correct. 

Then, the estimate of Ok is obtained by maximizing .Jiml)(Okj81 · · · 8k-1) 
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4.2.2 Rotating-orientation Dipole Model 

The same optimization strategy can be applied into the rotating dipole model as 

well. From Eq.(2.11), we intend to estimate 8 = {.ek, k = 1 2 · · · K} which 
' ' ' 

involves in G, given observed data F. With the alternative assumptions that the 

dipole moment V is zero-mean Gaussian distributed with covariance matrices :Ev, 

the spatia-temporal observation matrix F can be also described by the Gaussian 

distribution N(O, G:EvGT + a 21). 

According to the ML principle, we aim to maximize the conditional probability 

density function p (FjV). After some straightforward manipulations, we come up 

with the log likelihood function, which is similar to Eq.(4.8), as 

Ymt(S) = ~tr[(a2:Ev1 + GTG)-1GTFFTG]- Nlogdet(GTG + a 2:Evt)l.15) 
lT 

1 

In this case, we define the matrix C by [H GJT instead, with H = a:E~2 . Performing 

QR-decomposition to C yields, 

C= (4.16) 

where Q~ml) is an M x 3K column-orthonormal matrix and Rc is an ( M + 3K) x 

(M + 3K) upper triangular matrix with positive diagonal entries. Then by substi­

tuting Eq.(4.16) into the ML criterion and ignoring the irrelevant terms, we come up 

with the QR decomposition-based ML objective function, 

(4.17) 

which is similar to Eq.(4.12). Then, the optimal ML estimate Smt in the case of 

rotating dipoles can be obtained by solving the following optimization problem: 

Smt = arg max Ymt(S) 
E> 

(4.18) 

We again intend to solve this problem by a recursive procedure as in the case of 

fixed-orientation dipoles. However, the trace here cannot be expressed by separable 
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columns. Recall that 

then the structure of Qgnl) can be written as, 

Q(ml) -
G - [ 

qGl (£1), qa2(£1), qaa(£1), qa4(£1, £2), qas(lb £2), qa6(.e1, £2), 

QGl(.el) Qa2(.el,.e2) 

= [ QGl(£1), Qa2(£1,£2), · · ·, QaK(.el, · · · ,.eK) ] 

(4.19) 

(4.20) 

where Q~l) denotes the kth M x 3 block matrix of Qgnz), which is only dependent on 

the first k dipole parameters (£1, · · · , .ek), i.e., every 3 column vectors of Qgnz) bear a 

set of common parameter. Therefore, utilizing a "Grouping" policy instead Eq.(4.18) 

can be expressed in the following format, 

K 3k 

'"""( 1 [ (ml)T T (ml)l '""" [ ]2) Y ml ( 8) = L....J CT2 tr Q0 k FF Q0 k - N L....J log Rc ii 
k=l i=k 
K 

L Ykml) ( £1, · .. 'fk) (4.21) 
k=l 

where each Ykml)(.eb · · · ,.ek) is defined by 

Then in order to optimize the original nonconvex objective function in Eq.(4.21), we 

propose the following recursive schemes of successively optimizing a series of sub-

problems: 

.e1 = arg max J-iml)(£1) 
.el 

.e2 = arg max J1ml) (£2Jf1) 
.e2 

fK ~ml) ~ ~ arg max K (fKJ£1···£K-1) .eK 
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To sum up, the successive ML localization algorithm for rotating dipoles based on 

QR decomposition is described as follows 

1. Initialization: The estimate of 1.1 is obtained by maximizing r1_ml) (f. I) 

2. Recursion: Suppose that the previous (k- 1) estimates l1, · · · .lk-1 are all correct. 

Then, the estimate of R.k is obtained by maximizing Ykml)(R.kll1 • • ·lk-1) 

4.3 Successive LS Localization Method based on 

QR Decomposition 

So far we have assumed the dipole activities are stochastically known. But what if the 

statistics of the dipole amplitudeS (refer to the fixed-orientation model Eq.(2.10)) is 

not known? In this section, with the assumption that Sis an unknown but determin­

istic variable, we apply the ML estimator in stochastic signal model, which is finalized 

by a Least Square (LS) successive localization algorithm based on QR decomposition. 

4.3.1 Fixed-orientation Dipole Model 

Assuming the noise matrix E is zero-mean Gaussian distributed with the covariance 

matrix a21, the conditional probability density function of F can be written as 

( I ) 
_ expg - tr[(F- ASf(a21)-1(F -AS)]} 

p F A,S - MN N 

21r-2 det2(a2I) 
( 4.23) 

where p (FIA, S) denotes the probability density function of F conditioned on A 

and S. From Eq.(4.23) it is quite straightforward to see that the ML estimator is 

equivalent to the following Least Square (LS) estimator for jointly estimating the 

location and the amplitude of the dipole: 

arg min tr[(F- ASl(F- AS)] 
A,S 

arg min II F-AS II~ 
A,S 

(4.24) 
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Assuming A(8) is known and has a full column rank, a solution for the matrix S 

that minimizes Eq.(4.24) has the form of 

which can be substituted back into Eq.(4.24). As a result, the LS optimization 

problem ( 4.24) is equivalent to the following optimization problem, 

els = arg min II F- A(AtF) II~ 
A 

= arg max II AAtF 1111~ e 
arg maxtr[FT A(AT A)-1ATF] 

e 
(4.25) 

This optimization problem is highly non-convex. Fortunately, the similar strategy 

that has successfully dealt with the ML estimator in Section 4.2, can be applied to 

the LS estimator. Applying the QR-decomposition to matrix A yields 

(4.26) 

where Q~s) is an M x K column orthonormal matrix and RA is a K x Kupper 

triangular matrix with positive diagonal entries, so that the objective function in 

Eq.(4.25) can be rewritten as follows. For simplicity, let 

Then, we have 

K 

Jis(S) = L q~~TFFT q~ 
k=l 

K 

= L:Ji:s)(81,··· ,8k) 
k=l 

Jls) (8 8 ) _ (ls)TFFT (ls) Jk 1. . . . ' k - qAk qAk 
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Since the kth column of the matrix A involves only Ok, for k = 1, 2, · · · , K, 

according to the Gram-Schmidt process, we can clearly see that the kth column 

vector of Q~s) depends only on the first k location vectors 91, · · • , (Jk· The detailed 

structure of Q~s) and RA can be expressed as, fork= 1, 

(ls) a1 
qA1 =~ 

[RA]n =II a1 II 

and fork= 2, · · · , K, we have 

(ls) _ fl(k-1)ak fl<k-1)Q(ik)J.l.k 

qAk - II ft<k-1)ak II - II fl<k-1)Q(ik)J.l.k II 

(4.30a) 

(4.30b) 

(4.30c) 

(4.30d) 

where q~~ denotes the kth column vector of QA and ft<k-1) = I- QA(k-1)Q~(k- 1) 
with QA(k-1) = [Cui. Cu.2, · · · , Cu(k-1)]· In other words, the original objective func­

tion lt8 (8) can be decomposed into a sum of K sub-functions, in which the kth 

sub-function .1/.s) relies only on the parameters of the first k dipoles 91, · • · , (Jk· It 

is this property that allows us to successfully utilize a similar recursive scheme as 

in Section 4.2 again to approximate the LS estimator. Therefore, we propose the 

following recursive schemes to approach Eq.(4.24), which can be expressed in terms 

f .,(ls) . 
o J'k , 1.e., 

by successively optimizing a series of sub-problems: 

iJ1 = argmax 4ls)(91) 
lh 

iJ2 argmax ~s)(02IB1) 
92 
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Jls) A A Jls) A A 

where notation Jk (8k/81···8k-I) is equivalent to notation Jk (fh, ... , 8k-I, 8k)· 

Actually, we are able to further simply the above problem. Substituting ~k Eq.( 4.30c) 

into Eq.(4.29) results in 

by defining 

= 
P,r gT ( lk)fi(k-l)FFTfi(k-l)g ( lk) l'k 

p,r gT (lk)IT(k-l)g( lk) l'k 

~trw kl'k 
~'r if! kl'k 

gT(lk)fi(k-l)FFTfi(k-1)g(£k) 

gT (£k)fi(k-I)g(£k) 

( 4.32) 

(4.33) 

(4.34) 

Lemma 4.3. Given an N x N symmetric matrix A and an N x N positive definite 

matrix B, Z~~z is called a generalized Rayleigh quotient, which has the following 

property, 

where .X(A, B) is the generalized eigenvalue, which is defined by 

.X( A, B) = {A/ det (A- .XB) = 0}, p, is the corresponding generalized eigenvector and 

Amax(A, B) denotes the largest generalized eigenvalue. 

To further simplify Eq.(4.32), we need the above Lemma 4.3, whose proof is 

given in Appendix [14]. As a result, the optimum value of Eq.(4.32) is equal to the 

maximized largest generalized eigenvalue, i.e., 

(4.35) 

Note that Akmax is only dependent on the first k dipole parameters (8 1, • · · , 8k) as 

}~s) is. The optimization algorithm described by Eq.(4.31) is thus can be reduced to 

the following procedure: 
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1. To localize the first dipole, we search for the optimum location that yields the 

maximum generalized eigenvalue, 

l1 = arg max>.1(l1) 

Meanwhile, the corresponding eigenvector jJ,1 can be obtained, which is equal 

to the estimated dipole orientation. 

2. To localize the second dipole, we first form the projection matrix nCo) based on 

01 = (l1,jJ,1), and then search for its optimum location that yields the maximum 

generalized eigenvalue, 

3. Iteratively, the next dipole locations can be obtained by 

where the notation Ak(lk/lr. · · · ,f.k-1) is equivalent to Amax('llk, q,k)· Note that in 

this thesis, we are only interested in the dipole location lk such that the term ILk has 

been omitted. The above procedure can be summarized as follows, 

1. Initialization: The estimate of 91 = [if, JL[JT is obtained by maximizing >.1 ( 91) 

2. Recursion: Suppose that the previous (k- 1) estimates Or,··· , iJk-1 are all correct. 

Then, the estimate of (}k is obtained by maximizing >.k(Ok/01 · · · iJk-1) 

4.3.2 Rotating-orientation Model 

Under the rotating dipole model, we assume that the dipole moment V is unknown 

but deterministic, and the noise matrix Vis zero-mean Gaussian distributed. Using 

the same strategy to obtain the LS estimate as in Section 4.3.1, we come up with the 

following optimization problem: 

(4.36) 
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Applying the QR-decomposition to matrix G yields 

(4.37) 

where Qgs) is an M x 3K column orthonormal matrix and Ra is a 3K x 3K upper 

triangular matrix with positive diagonal entries. Then LS estimate of 8 in the case 

of rotating dipoles can be written as 

with 

Szs = arg max Yis(E>) e (4.38) 

(4.39) 

We again intend to approximately solve this non-linear optimization problem by a 

recursive procedure. As in Section 4.2.2, the linear independence among columns of 

Qgs) is not available. Therefore, we need to utilize the "Grouping" strategy to rewrite 

Qgs) in the following formation 

(4.40) 

where Qgf denotes the kth M x 3 block matrix of Qgs), which is only dependent on 

the first k dipole parameters (£~, · · · , ik), i.e., every 3 column vectors of Qgs) bear a 

common set of parameters. As a result, Eq.(4.39) can be expressed as 

K 

Yis(E>) = I:tr[Qg~rFFrQg~J 
k=l 
K 

= L Yfs)(£1, · · • ,ik) 
k=l 

where each addend function is defined by 

,,(ls)(n . n ) _ t [Q(ls)TppTQ(ls)J r k .£.I, • • , -Lk - r Gk Gk 

(4.41) 

(4.42) 

In order to maximize Eq.(4.41), we need to simultaneously search over the whole 

parameters range, which is computationally prohibitive. As an approximation, we 
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propose the following recursive schemes by successively optimizing a series of sub­

problems: 

arg max Ylls)(£1) 
.el 

arg max J1s)(£2jl1) 
£2 

We summarize the successive LS algorithm based on QR decomposition for rotating 

dipole as follows: 

1. Initialization: The estimate of £1 is obtained by maximizing Ylls) (£1) 

2. Recursion: Suppose that the previous (k- I) estimates £1. · · · ,£k_1 are all correct. 

Then, the estimate of lk is obtained by maximizing y<~s)(ikjl1 · · ·lk-1) 
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Chapter 5 

Experimental Results and 

Discussions 

In this chapter, we provide several numerical examples to show the performance of our 

closed-form solution and the QR decomposition-based methods for dipole localization. 

We also compare our methods with other algorithms, such as RAP-MUSIC, which is 

known to have good performance. 

5.1 Experiment Set-up 

Our experiments are carried out on simulated EEG data. In all simulations we use the 

infinite homogeneous head model (see page 10). Similar to the experiments in [26], 

we choose the head sphere radius {3 = IOcm centered at the origin with conductivity 

( = 0.33sjm. The simulated EEG is measured by M number of sensors, positioned 

upon guideline as shown in Fig. 3.1. In addition, every channel of the EEG observation 

is composed of N samples. According to each experiment, M and N will be assigned 

different values. 

Assume the added noise is uncorrelated white Gaussian with the variance a 2 . ,, 

I 
I~ 
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Then the Signal to Noise Ratio (SNR) is defined by 

SNR 
= 

101 
SignalPower 

101 
tr(GVVTGT) 

og1o · = og1o N msePower M (72 

where G is the gain matrix and V is the matrix describing the dipole moments as 

defined by Eq.(2.9). Given an SNR, the experiment is repeated P = 500 trials with 

independent noise realizations. At each time, we set the dipole parameter randomly 

so that an average result is calculated over all P trials. To examine the performance 

of each localization method, we define the dipole localization error as the average root 

mean squared error between its ideal and the estimated locations, i.e., 

(5.1) 

Then, the localization error (decimeter) will be evaluated at different SNRs(dB). 

5.2 Closed-form Solution for A Single Rotating 

Dipole 

Example 1. In the first simulation, for a single rotating dipole, we compare the 

performance of our Unique Closed-form (UC) localization method with those of the 

ML, LS and MUSIC algorithms. As suggested in Proposition 3 (see page 23), at 

least M = 4 sensors are needed. Then we set the sample length to be N = 50. 

The simulation result is shown in Fig. 5.1, from which we can see that our UC 

algorithm achieves a much smaller estimation error than MUSIC or LS for all SNRs. 

We also observe that although our UC method is inferior to ML at low SNRs, it 

gradually gains better performance that is very close to the ML method when SNR is 

increasing. Moreover, the ML algorithm, as well as the MUSIC and the LS method, 

need an exhaustive 3-dimensional search over all possible locations in the head sphere 

(the number of all possible grid points that need to be searched is proportional to 
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M=4N=50 
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0 2 4 10 12 14 16 18 20 
SNR(dB) 

Figure 5.1: Performance of the unique closed-form solution for 1 rotating dipole 

D3 with D denoting the grid density in each dimension), thus it is quite a time­

consuming scanning process for localizing a dipole. On the other hand, for our UC 

method, which has instantaneous closed form solutions, the computational complexity 

is much smaller. 

5.3 Successive-ML and Successive-LS Algorithm 

5.3.1 Fixed-orientation Model 

In this section, we compare the performance of our successive-ML and successive-LS 

algorithms based on QR decomposition with that of the well-established RAP-MUSIC 

method (refer to Section 2.3) for the fixed-orientation dipole model. In this case, 

since each dipole orientation ILk = [Jtkx, f.lky• f.lkzJT for k = 1, · · · , K is a unit norm 

vector, it can be clearly represented in spherical coordinates, shown in Fig.(5.2) as 

[sin ¢k cos 'Pk, sin ¢k sin 'Pk• cos ¢kjT by only two parameters, the polar angle ¢k and 

the azimuthal angle 'Pk· 
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Figure 5.2: Spherical Coordinate 

Example 2. Consider the fixed-orientation model with two dipoles. There are totally 

10 parameters to be estimated; i.e., {Ok = [.er, ¢k, rpk]T, k = 1, 2}. According to [26], 

the necessary number of sensors that provides sufficient observations to guarantee a 

valid localization is greater than 10. More generally, the number of sensors M should 

be greater than the number of unknown parameters 5K in the fixed-orientation case. 

Based on this statement, we first choose M = 11 and set the sample numbers to be 

N = 50. As can be seen in Fig. 5.3, RAP-MUSIC almost fails due to insufficient num­

ber of sensors to accurately estimate the signal subspace, while our methods can still 

work. In addition, since we take advantage of extra information on the dipole moment 

and on the noise distributions, we observe that the performance of our successive-ML 

algorithm achieves better performance than that of the successive-LS algorithm. 

Example 3. We then examine how their performances vary as we change the number 

of sensors, by increasing the number of sensors to be M = 20, which is adequately 

large, but keeping the sample length to be still the same. From Fig. 5.4 we can 
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M=11 N=50 

- Successlve-Ml 

0.9 --e----. SucceslVe-LS 
----'0'-- RAP-MUSIC 

0.8 

0.7 

0oL--L2--~4--~--~~~o--~12---1L4--~16--J18--~~ 
SNR(dB) 

Figure 5.3: Performance comparison of Successive-ML, Successive-LS and RAP­

MUSIC for 2 fixed-orientation dipoles using M=ll sensors 

observe that the performance of RAP-MUSIC is much better than that with M = 11 

sensors. But, it is still worse than our two algorithms especially for low SNRs. This is 

what we have expected: although the RAP-MUSIC has a similar structure to that of 

our successive algorithms, when the number of snapshots is not sufficiently large, the 

error resulting from estimating the signal-subspace basis would lead to a significant 

estimation error of dipole locations. 

Example 4. We now examine how the localization performance of our methods and 

the RAP-MUSIC method change with the different number of samples. We fix the 

sensor number to be M = 20 and reduce the sample number to N = 20. The 

simulation result is shown in Fig. 5.5, from which we can conclude that when the 

number of sensors M is large enough, the sample number N does not cause much 

performance difference except under low SNR for the three recursive algorithms. This 

suggests that when designing an EEG array, we should utilize as many sensors as we 
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M=20N=50 
0.5 

- Successlvo-ML 
-tr--- Succeslve-LS 
~· ~· RAP-MUSIC 

0.45 
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0.35 

0.1 

0.05 

0o~~2--J4---6~-L--~10--~12~~1~4--1~6--J18--~~ 
SNR(dB) 

Figure 5.4: Performance comparison of Successive-ML, Successive-LS and RAP­

MUSIC for 2 fixed-orientation dipoles using M=20 sensors (N=50) 

can, particularly for the localization of multiple dipoles. However, our successive 

methods require the minimum number of sensors for an effective dipole localization, 

compared to the subspace methods. 

5.3.2 Rotating-orientation Model 

Example 5. For further illustration, we present the performance in the case of two 

rotating dipoles. Theoretically [26], in order to sufficiently estimate the 6 location 

parameters {lk, k = 1, 2}, the MUSIC requires at least M = 7 sensors. Let there 

be still N = 50 snapshots. Fig. 5.6 shows the performance comparison between the 

successive-ML, successive-LS and the MUSIC method. It is apparently that MUSIC 

is inferior to our successive methods due to insufficient sensors. Both of our methods 

can achieve efficient and acceptable estimation results, and the performance of the 

successive-ML is superior to that of the successive-LS method, as a result of using 

the a priori knowledge on the dipole and noise statistics. 
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Figure 5.5: Performance comparison of Successive-ML, Successive-LS and RAP­

MUSIC for 2 fixed-orientation dipoles using M=20 sensors (N=20) 
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Figure 5.6: Performance comparison of Successive-ML,Successive-LS and MUSIC for 

2 rotating dipoles 
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Chapter 6 

Conclusion and Future Work 

6.1 Conclusion 

In this thesis, we have considered the inverse problem of the forward model on com­

puting the scalp EEG at a finite set of sensors from multiple dipole sources, which is 

known as the dipole localization problem. It is observed that the geometric structure 

of the EEG array plays a crucial role in ensuring a unique solution for this problem. 

When the second-order statistic of the EEG observation is available, we first 

present a necessary and sufficient condition in the model of a single rotating dipole, 

that guarantees its location to be uniquely determined. In addition, a geometrical 

structure of an array with minimum number of sensors is designed to efficiently de­

rive a closed-form solution for the dipole's location. Although the analysis on a single 

dipole has not been generalized into multiple dipoles, the result obtained provides 

us a guideline on how to set up an EEG sensor array for the localization of multiple 

dipoles. 

In the case of multiple dipoles, we propose an efficient localization algorithm based 

on QR decomposition. Depending on whether or not the probability density functions 

of the dipole amplitude and the noise are available, we utilize the ML or the LS as 

the criterion to develop a unified successive localization algorithm, so that solving 



M.A.Sc: Yiming Wang McMaster - Electrical and Computer Engineering 

the original multi-dipole optimization problem can be approximated by successively 

solving a series of single-dipole optimization problems. Numerical simulations show 

that our methods have much smaller estimation errors than the existing RAP-MUSIC 

method under non-ideal situations such as low SNR with small number of EEG sen­

sors. Although the whole thesis focused on the dipole-localization problems, the 

strategy we have developed can be applied into a more general family of nonlinear 

optimization problems, in which the objective function has the following two key 

properties: 

1. It can be formulated into a function with respect to some variable matrix A; 

i.e., F(A), where A can be written as a block matrix, A = [All A2, · · · , Ap] 

with Ai and Ai (for i,j = 1, 2, · · · , P, and i =I= j) being independent. In other 

words, the parameters included in Ai do not overlap with those contained in 

Ai. 

2. The function F(A) can be decomposed into a sum of a series of sub-functions; 

i.e., 

F(A) = Fl(Al)+F2(A1,A2)+···+Fp(A1,··· ,Ap) 
p 

= L Fp(Ab . .. 'Ap) 
p=l 

(6.1) 

where the QR decomposition is a very useful tool for fulfilling this procedure. 

Then, solving the original optimization problem 

A = arg min (or max) F(A) 
A 

(6.2) 

can be approximated by successively solving a series of the following sub-optimization 
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problems: 

.Al - argmin (or max) :Fi(AI) 
A1 

.A2 = argmin (or max) F2(A2!A1) 
A2 

.Ap = argmin (or max) Fp(Apj.A1,··· ,.Ap_I) 
Ap 

6.2 Future Work 

The usefulness of our inverse method depends on how accurately the estimated dipole 

locations approximate to those of actual sources. The main factors that affect local­

ization accuracy are: head-modeling errors, measurement-location errors and noise­

modeling errors. Accordingly, some future work can be addressed in the following 

areas: 

1. Solutions for multiple dipole locations are very sensitive to the above factors. 

Therefore a sensitivity analysis is needed on how the variation of the localization 

error can be apportioned, quantitatively to different modeling variations. 

2. More complicated head model need to be adopted to accurately portray various 

structures inside the brain. It is even possible to develop an individual realistic 

head model for each patient or subject. Therefore, corresponding localization 

algorithms can be developed for the modified forward model. 

3. The model established in this thesis assume the background noise to be white. 

However, the more realistic case is for noise to be spatially and temporally 

correlated. Therefore, development of an effective localization algorithm in 

complicated noise environment is another future target to be fulfilled. 
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Appendix A 

A.l Proof of Lemma 4.3 

Given anN x N symmetric matrix A and anN x N positive definite matrix B, the 

generalized Rayleigh quotient is defined as 

R(p,) = J.tr Ap, 
p,TBp, (A.l) 

Note that if the direction of vector J.t is fixed, its amplitude does not affect the value of 

R(p,). Without loss of generality, let's consider the property of R(p,) on the ellipsoid 

p,TBp, = 1. Firstly, rewrite Eq.(A.l) as 

Then the gradient of both sides can be obtained, 

'V(p,TBp,)R(p,) + (p,TBp,)'VR(p,) = 'V(p,T Ap,) 

(2Bp,)R(p,) + (p,rBp,)'VR(p,) = 2Ap, 

Substituting p,TBp, = 1 yields 

'VR(p,) = 2[Ap,-R(p,)Bp,] 

(A.2) 

(A.3) 

(A.4) 

In the following, we will show that p, being the stationary point of R(p,) is the 

necessary and sufficient condition of p, being the eigenvector of Ap, = >.Bp, corre­

sponding to ). . 
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(1) sufficiency: Because J-t is the stationary point of R(J-t), \1 R(J-t) = 0. According 

to Eq.(A.4), 

A~t - R(J-t )BJ-t (A.5) 

which shows that J-t is the eigenvector of A~t = .ABJ-t, and its corresponding eigenvalue 

is equal to R(J-t). 

(2) necessity: Left-handed multiplying A~t = .AB~t by J-tT results in J-tT A~t = AJ-tTBJ-t, 

A= ItT A~t = R(J-t) 
J-tTBJ-t 

(A.6) 

which is to say A~t = R(~t)BJ-t. Combining Eq.(A.4), we see that \1 R(J-t) = 0. 

Therefore, Lemma 4.3 holds 

Here, we introduce the computation of the "Generalized Eigenvalue" A. A is 

defined by 

.A( A, B) = PI det (A- .AB) = 0} 

and can be computed as 

det (A - .AB) = 0 

det (B-~AB-~- .AI)= 0 

.A= eig(B-~AB-~) 
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