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Abstract 

Phylogenetic analysis of gene order data is a developing area, and many ques­

tions on gene orders are still unresolved. In this project, we started from the OGRe 

database, where we obtained the mitochondrial genome information (after some cor­

rections), designed a logarithm correction for breakpoint distance, applied distance 

matrix methods to both breakpoint distance and the logarithm of breakpoint distance 

for gene orders, and then focused on Arthropoda phylogeny We tried many phyloge­

netic methods to infer Arthropod phylogeny; however, no method yielded a satisfying 

result. We constructed an Arthropod phylogenetic tree based on both molecular and 

morphological evidences. After we estimated the phylogenetic tree, we used maximum 

likelihood methods to estimate branch lengths for tRNAs and proteins, calculated the 

breakpoint numbers and inversion numbers for gene orders, and calculated the corre­

lations among these four measures. We found that: when gene order rearrangements 

and mutations on sequences are small, the changes are independent, and, when the 

rearrangements and mutations are large, the changes seem to be correlated. The 

branch lengths in the tRNA and protein trees are highly correlated in low mutation 

situations and less correlated when mutation rates are larger. 
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Chapter 1 

Introduction 

1.1 Introduction 

Although the first complete mitochondrial was only sequenced in 1981 (Anderson 

et al.), as technology develops, automatic genome sequencing is becoming common. 

We are now fortunate to have hundreds of complete mitochondrial genomes. This 

gives a valuable source of information for the research by computational biologists. It 

can help those researchers to potentially reveal the rules and facts about the processes 

that govern genome evolution. From these data, one can study from two different 

aspects: sequence analysis and gene order analysis. 

Protein and nucleotide sequences have been used for phylogenetic inference for 

almost 40 years (Felsenstein 2004). Many researchers from different disciplines have 

dedicated themselves to design more realistic and powerful methods to make use of 

this information. However, some problems are difficult to solve. A purely randomly 

evolving molecule will be ideal for phylogenetic inference. Obviously, molecular se­

quences, either DNA sequences or proteins, are affected by selective pressure, which 

undermines the power of sequence analysis. Methodologically, many other problems 

make inference not as convincing as we have thought, long branch attraction, base 

and codon frequency bias as so on. One may either suffer from the problems or.e'· 

invest huge effort in trying to overcome them. 
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The gene order information can be a useful phylogeny inference resource. Many 

studies demonstrate that gene order can be used to infer phylogenetic questions. Some 

are based on intuitive descriptions and some are based on systematic comparisons. 

(Sankoff et al. 2000; Keogh et al. 1998) However, here are lots of questions that 

remain unanswered. Are gene orders really as useful as we have hoped? Why and 

how do gene orders change? What kind of rules govern their change? Are changes in 

gene orders neutral? If not, does selection pressure only have a limited influence on 

gene order, in which case we might have a better method than sequence analysis. 

In this project, we want to investigate, in a systematic way, the correlation between 

sequence and gene order information. As molecular information has succeeded greatly, 

if gene order information also can be used in phylogenetic inference, we expect a 

positive correlation between results obtained from using these two different data types. 

1.2 Methods to Infer the Phylogeny 

1.2.1 Introduction to Phylogeny 

Phylogeny is a hypothesis showing the evolutionary relationships between species 

with tree-like diagrams. The leaf nodes represent species at the terminals of the 

evolution (current day species and fossil taxa which have no descendants) and the 

inner nodes represent their ancestors. The lengths of the branches separating two 

species denote how distantly these two species are related. Sometimes branch lengths 

are drawn proportional to the time since divergence of the species. In other cases, 

the lengths are proportional to the amount of evolutionary change that has occurred 

on the branches. 

2 
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The phylogenetic tree can be rooted, where there is a common ancestral species 

(or some characteristics of this common ancestor that we can know) for all the other 

species; or be unrooted, where the common ancestral species is unknown and we don't 

know the direction of the evolution either. If we neglect lengths of the branches and 

only consider how those nodes and lines are connected, the tree turns to' a topology 
Pfo 

tree. 

A 

A B 

B 
0 c 

D 
D 

The direction of evolution c 

(A) (B) 

Figure 1.1: Examples of rooted tree (A) and unrooted tree (B) 

The phylogeny tree can be bifurcate, where all leaf nodes are only connected 

by one branch and all inner nodes are connected by exact 3 branches (in rooted 

tree, the common ancestral node may be connected by 2 branches, and this is the 

only exception). For a bifurcate tree with n leafs (rooted or unrooted), the number of 

topology trees is (2n-5)!! and (2n-3)!! for unrooted and rooted trees correspondingly. 

The sign "!!" here is called the double factorial by definition of (2i+ 1)!! = (2i+ 1) x 

(2i -1) x ... x 3 x 1. When the number of leafs is large, the number of topology trees 

is huge. 

3 



MSc Thesis --- Wei Xu --- McMaster University - Physics and Astronomy --- 2005 

A c 

B D 

A 'B 
A c 

c D D B 

Figure 1.2: There are 3 unrooted topologies for 4 species 

1.2.2 Phylogenetic Methods 

Parsimony methods were the earliest developed. Edwards and Cavalli-Sforza 

(1963) stated that the evolutionary tree to be preferred is the one that involves "the 

minimum net amount of evolution". Parsimony methods search the tree space to 

find the tree with minimum number of total changes. There are many discussions 

of parsimony methods on statistics and philosophy levels (Felsenstein 2004). When 

evolutionary events rarely happen, the result from parsimony methods are accurate. 

However, when evolutionary changes are not so rare. Parsimony methods will under­

estimate the total number of changes. Nevertheless, currently, many of the algorithms 

to compare multiple gene orders still use parsimony methods, because in this situation 

the combinations of states for gene order are extreme huge and parsimony methods 

are one of the quick methods. 

Distance matrix methods were introduced by Cavalli-Sforza and Edwards (1967) 

and by Fitch and Margoliash (1967). The main idea is to calculate a certain kind 

of distance measure for pairs of species and find the phylogenetic tree that predicts 

the previously calculated distances as close as possible. By defining different criteria 

4 
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for closeness, we obtain different distance matrix methods. The-least squares and 

Fitch-Margoliash criteria are popular. 

Unlike the other distance matrix methods, Neighbor Joining (Saitou and Nei 1978) 

uses a clustering algorithm to find phylogeny tree. Previously described distance 

matrix methods need to search tree space to find the tree that best meets the criterion, 

however, Neighbor Joining does not need to search the tree space- hence, it has a 

very big speed advantage. The main idea of Neighbor Joining is to join the closest 

nodes sequentially. Suppose Dij is the distance between nodes i and j. The steps of 

the algorithm are: 

1. calculate for each node i, ui = n~2 Ej;#i Dij 

2. find the pair of nodes i and j that have smallest value of Dij - ui - Uj 

3. join node i and j through a new node (ij). Calculate the branch length from 

node i to the new node vi = ! ( ui - Uj + Dij) and the branch length from node 

j to the new node vi= !(u;- ui + Di;) 

4. calculate the branch length from the new node (ij) to any other node k as 

D(ii)k = !(Dik + D;k- Di;) 

5. remove items related to nodes i and j and replace them by the items of node 

(ij) 

6. repeat the first step until only one node is left 

Distance matrix methods only use low order information by pairwise comparison, 

losing the high order information which can be achieved by multiple comparison. 

There are some limitations for the usage of these methods. 

5 
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Maximum likelihood methods (Felsenstein 1981) are more powerful than distance 

matrix methods. Given an evolutionary model, for any topology tree with specified 

branch lengths, we can calculate their likelihood function. This method looks for 

the tree topology, branch lengths and some other parameters which maximize the 

likelihood function. 

Evolution rates can vary among sites in sequences (nucleotides or amino acids 

sequences). A Gamma distribution (Yang 1993) of the rates is used to calculate the 

branch lengths and likelihood function. Due to calculation difficulty, discrete Gamma 

distribution (Yang 1994) is used to approximate the distribution of real rates. This 

approximation improves the speed of calculation without loss of much information. 

Besides the Gamma distribution, the Beta distribution and the invariant model (some 

sites are invariant and the other sites evolve at the same rate) were proposed. 

The Bayesian method also uses a likelihood function. It assumes some prior 

distributions of related parameters, and calculates the posterior distribution of these 

parameters using the information in the data. Recent Bayesian methods have adopted 

Markov Chain Monte Carlo algorithm, which magnifies the usage of Bayesian method 

greatly (Huelsenbeck et al. 2001). 

1.3 The Concept of Gene Order 

When we consider gene order, we are referring to the relative gene positions and 

directions on genomes. To describe gene positions, we need a coordinate system. DNA 

has two strands, and the sequence information can exist on both strands. We need to 

define the direction in which we read the genomes. We use the transcription direction 

of majority of genes as the direction of the genome. For linear chromosomes, it is 

natural to read from one end. For circular genomes, every gene can be the starting 

6 
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point. After setting genome directions and a starting point, we can describe gene 

positions. As genes can be transcribed in two opposite directions, we define the 

direction of a gene as positive if the gene's transcription direction is the same as the 

genome direction; and negative otherwise. 

We can represent gene orders by scale graphs. In scale graphs, each gene is 

represented by a block, whose size is determined by its gene length in the genome. In 

scale graphs, both strands of DNA are drawn. To describe the direction of a gene, we 

just need to draw that gene on its corresponding strand on the scale graph. For linear 

genomes their scale graphs are linear. For circular genomes, their scale graphs can 

be linear or circular. Figure 1.3 shows one example of human mitochondrial genome 

from NCBI website. 

Legend: 

111111111111 - CDS +strand 
Ill -CDS -strand 

111111111111 - RNA +strand 
m -RNA -strand 

Figure 1.3: The scale graph of human mitochondrial genome 
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A gene order can be represented by a string of gene names (or abbreviations) 

separated by commas. A "-" sign can be added for gene on the reverse strand. We 

also can represent gene orders with numbers instead of names. Using numbers, we 

can describe gene orders' mathematical nature better. Mathematically, a gene order 

of N genes can be thought as a signed permutation of the numbers 1 to N. 

For some genomes, we might not know genes directions, because of sequencing 

limitations. Then, these gene orders are called unsigned (or unsigned permutations 

in the number style). We call gene orders with directions as signed. 

+strand 

. strand 

Figure 1.4: An example of gene order 

In Figure 1.4, one artificial example of gene order is given. Suppose, the linear 

genome is composed by 5 genes on 2 strands, beginning from left to right. Gene A is 

on + strand, and we denote it as "A" . Gene D is on - strand, then we denote is as 

"-D". Let's use "," to separate genes. So the gene order for the artificial genome is 

"A,-D,B,E,-C". 

1.4 Animal Mitochondrial Genomes 

The living world may be divided into three domains, Bacteria, Archaea and Eu­

karyotes. Eukaryote species have a nucleus, distinguishing them from the other two 

domains. Another feature for Eukaryote is that almost all Eukaryote species have mi­

tochondria (with the exception of a few single celled organisms reported by Embley 

8 
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~Bi 

Figure 1.5: An example of mitochondria. (A) A cross section, as seen in the electron 
microscope. (B) A drawing of a mitochondrion with part of it cut away to show 
the three-dimensional structure. (C) A schematic eukaryote cell, with the interior 
space of a mitochondrion, containing the mitochondrial DNA and ribosomes, colored. 
Note the smooth outer membrane and the convoluted inner membrane, which houses 
the proteins that generate ATP from the oxidation of food molecules (Alberts et al. 
2002). 
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et al. (1997)). Mitochondria are organelles with two membranes, usually rod-shaped. 

They are regarded as the powerhouses of the (eukaryote) cells. Sugars, amino acids 

and fatty acids are oxidized in the mitochondrion, and energy is stored in high energy 

phosphate bonds in adenosine triphosphate (ATP). Other reactions in the cells can 

use ATP as energy source directly. 

In most species, including the Metazoan species we will analyze here, the mito­

chondrial.genomes are circular. However, some linear mtDNA are also found in several 

species (Warrior and Gall1985; Wesolowski and Fukuhara Biol; Kovac et al. 1984; 

Suyama et al. 1985; Grant and Chiang 1980). The size of mitochondrial genomes 

can vary from 14.3 kbp to over 2400 kbp (Gray 1989) The metazoan mitochondrial 

genomes are in the range of 14kbp-20kbp. 

Figure 1.6 shows the comparison among mitochondria from different species, with 

protein-coding and RNA genes only. Only 3 protein genes (COX1, COX3 and CYTB) 

and 2 rRNA genes (rnl and rns) are shared by all mitochondrial genomes. The 

mitochondrial genome of humans is a typical animal mitochondrial genome. Besides 

the 15 protein-coding and rRNA genes shown here, there usually are a considerable 

number of tRNA genes. In the metazoa, the typical number of tRNAs is 22, which is 

sufficient to translate the complete genetic code. Some mitochondrial genomes may 

lack ATP8 or some tRNA genes. Some other mitochondrial genomes may have 2 or 

3 copies of certain genes. Metazoa mitochondrial genome always begins with COX1 

gene. 

Mitochondria are usually inherited through the maternal line. (the exception has 

been found. Lampsilis ornata has both male and female mitotypes. Serb and Lydeard 

(2003).) The genes are linked and should yield the same evolutionary tree upon 

analysis without problems arising from recombination or horizontal gene transfer. 

10 
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Figure 1.6: Comparison of mitochondrial genomes. Less complex mitochondrial 
genomes encode subsets of the proteins and ribosomal RN As that are encoded by 
larger mitochondrial genomes. The five genes present in all known mitochondrial 
genomes encode ribosomal RN As (RNS and RNL), cytochrome b ( CYTB), and two 
cytochrome oxidase subunits (COX1 and COX3) (Alberts et al. 2002). 

11 
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In summary, a typical animal mitochondrial genome contains: 

• 2 rRNA 

large subunit(RNL) and small subunit(RNS) 

• 13 proteins 

- 1 ubiquinol cytochrome c reductase (CYTB) 

- 3 subunits of cytochroome c oxidase(COX1,2,3) 

- 2 subunits of ATP synthase(H+-ATPase)(ATP6,8) 

- 7 subunits of NADH dehydrogenase(ND1,2,3,4,41,5,6) 

• and 22 tRN As 

12 
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Chapter 2 

The OGRe Database 

2.1 The OGRe Database 

OGRe (Organellar Genome Retrieval, http:/ fwww.ogre.mcmaster.ca) is an object 

relational database of complete mitochondrial genome information for over 600 Meta­

zoan species. An object relational database has a predicate logic and set theory based 

model and allows developers to integrate the database with their own custom data 

types and methods (McClure 1997). The OGRe database implements Postgre SQL, 

which is a flexible, powerfully open source object-relational SQL database manage­

ment system. The OGRe gets data from NCBI (http:/ fwww.ncbi.nlm.nih.gov) and 

provides a resource for the comparative analysis of mitochondrial genomes at several 

levels. You can select organelle genomes from any set of species and display or down­

load certain sequences. You also can view the their base frequencies and codon usage 

frequencies. OGRe provides several genome visualization tools. Genome Viewer is 

the tool to display gene orders. Figure 2.1 is one example of Genome Viewer. The 

legend tells us the color schedule for labeling genes: green for protein, red for tRNA 

and blue for rRNA. There are 3 species displayed in Figure 2.1. Although genomes 

are circular, they are represented by linear scale graphs from left to right. The linear 

graphs can start from any gene in the genome. Without losing generality, the COX1 

gene is always chosen as the first. In the graph, each color block represents a gene. 

The blocks above the central line indicate that the genes are translated from the nega-

13 
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tive strand. The ones below the central line indicate they are translated from positive 

strand. Spaces between blocks indicate non-transcribed regions. There actually are 

few non-transcribed regions in animal mitochondria. Below the graph, corresponding 

gene names are presented. The last line is the information line. The group name 

(e.g., classes, orders, families, please see details in OGRe database ) of that species, 

Latin name of that species, number of genes, proteins, tRNAs and rRNAs and the 

length of the genome are displayed from left to right. 

OGRe Genom.e Viewer 

Protein tRNA rRNA 

' .! 3 l \ \ ..., :~ 3 5 ,/ .3 .~~-----·;; ft / .• )~ 
/

1 

,/:, ,/I \ \ . . ' •, . . '',\' I \ . / '\, _./// :#.,,::::.':~;_·.~-.:;~;;!;'~~:;~~~~:~':~ //1 

COX1 -S 0 COX2 K ATP6 ATP6 COX3 G ND3 R I'«J4L ND4 S2 H L I'«J5 -NJ6 -E CYTB T -P F RNS V RN... L2 I'«J1 I -Q M ND2 W -A -N -C -Y 

CROCODYLIDAE Alligator mississippiensis Proteins: 13 tRNAs: 22 rRNAs: 2 Length: 16646 

/ • , ,r _, ,.' 1' i \ \ \ \ ! \ ,./ ,,~"" :,.·":::.:.'::,'.';_;.·;;:~::;::::;'/; :/ i \ '\ .. ·;._::~~-~-:.'~:~·~:~·.::_ .. '".:::·-... . 
COX1 R N04L COX2 K ATP6 ATP6 CDX3 -S 11103 ND4 H S2 ND5 -MJ6 CYTB F RNS E T P -Q N L -A W C -V M -D Y G L2 I'«J1 I NDZ RN... 

ECHINODERMATA Arbacia lixula Proteins: 13 tRNAs: 22 rRNAs: 2 Length: 15719 

/ ; . "'-;/ /// I \ \ \\. \ /? . -' --.~.-~-·::::::;~~~~.~~~?:.~~-;;:~;=~:,~~~~=3~~~~-~··- .~:~~:;.;;::::~::~, i~i 
COX1 R t«l4L COX2 K ATP6 ATP6 COX3 -S ND3 ND4 H S2 ND5 -ND6 CYTB F RNS E T -RilL -ND2 -1 -N01 -L2 -G -Y D -M V -C -W A -L -N Q -P 

ECHINODERMATA Asterina pectinifera Proteins: 13 tRNAs: 22 rRNAs: 2 Length: 16260 

Figure 2.1: OGRe Genome Viewer 

Another tool is Genome Comparison. Genome Comparison is very similar to 

Genome Viewer. It provides an easy and convenient method to compare two genomes 

by labeling conserved gene clusters in one color. Figure 2.2 is one example of Genome 

Comparison output. The left end gray gene cluster and the right end gene cluster are 

actually consecutive, because it's a circular genome. 

Daniel Jameson was the designer of original version of OGRe. In that version 

there were approximated 250 complete mitochondrial genomes. Then, there was an 

14 
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update in 2004 by Bin Tang, and the size of database became 4 73 mitochondrial 

genomes. This is the current public version. Now we are making another update, 

there will be more than 600 complete mitochondrial genomes after this update by 

Wenli Jia. 

In 2004, I also worked on gene order distance matrix part for OGRe, where one can 

get a distance matrix for all gene orders contained in database for either breakpoint 

distance or inversion distance. 

OGRe. Genome Comparison 

, . . ' ' " , , . ' 

COX1 -S D COX2 K ATP8 ATP6 CDX3 G tm R hD4L 1()4 H S2 L ND5 CVTB T -P -PIJ6 -E F RNS V RN... L2 ND1 I -Q M lll2 Ill -A -N -C -V 

NEOGNATHAE Anser albifrons Proteins: 13 tRNAs: 22 rRNAs: 2 Length: 16737 

Number of Break Points: 6 tRNAs included 

Figure 2.2: OGRe Genome Comparison 

2.2 Correcting Information in the OGRe Database 

We can observe errors in the original NCBI data. Several typ~s of errors have 

been found. Some gene starting or ending positions are wrong. Some gene translation 

15 
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directions are wrongly labeled. Some tRNA genes are unlabeled while their sequences 

do exist on the genomes. 

To check starting and ending positions and translation directions, we used BLAST( Altschul 

1991; Altschul et al. 1994). BLAST (standing for Basic Local Alignment Search Tool) 

is quick and powerful alignment tool. When we suspected one gene was wrongly la-

beled either for its position or direction, we tried to find another genome (reference 

genome) which is close phylogenetically to the suspicious genome. Then we ran 

BLAST for those two genomes. The suspicious gene would be aligned with the cor­

responding gene in reference genome. Then, we might detect the right position and 

the direction for that gene. 

Occasionally, when BLAST failed to align the corresponding genes together be­

cause we could not find a genome which was close enough to the suspicious one. 

However, we still could use clustalX (See chapter 4) to check the directions. If we 

suspected the direction of a gene was wrong, we could align that particular gene 

from all its related species. After changing that gene's direction, if the alignment was 

significantly better, it showed the gene's direction was very likely wrongly labeled. 

We have spotted out approximated 100 errors of these two kinds. You can find the 

detailed information of these corrections on OGRe's website. 

To find out the unlabeled genes, there were two applicable methods. The first in­

volved using BLAST. The process was similar to the previous one. The second method 

involved using tRNASCAN (Lowe and Eddy 1997). After running tRNASCAN for 

one suspicious genome, it would give a list of possible sequences that might be tR­

NAs. We first checked the positions of those sequences, if there was one sequence 

which did not overlap any existing genes, then we checked whether we could find the 

right anti-codon and the reasonable secondary structure. If all conditions held true, 

16 
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then we determined that sequence was the missing gene. We have found 10 missing 

tRNAs; this information is listed in Table 2.1. 

gene name species method 
tRNA-Glu ACISTEMIT blast 
tRNA-Ser(AGY) ALEDUGMIT blast 
tRNA-Asp BOSINDMIT blast 
tRNA-Val CAEFULMIT tRNASCAN 
tRNA-Met CAICROMIT blast 
tRN A-Ser(AGY) MELBICMIT blast 
tRNA-Met MUNCRIMIT blast 
tRNA-Val RHYRAPMIT tRNASCAN 
tRNA-Gly TAPTERMIT blast 
tRNA-lle UROTALMIT tRNASCAN 

Table 2.1: The list of 10 unlabeled tRNAs . The first column is the genome code, 
the second column is the name of that tRNA and the last column is the method by 
which the missing tRNA was found 

In general, finding and annotating genes on large genomes is a difficult task in 

bioinformatics. However, for animal mitochondrial genomes, the task is easier as we 

have so many known genomes with which to compare a new sequence, and we have 

a very good idea which genes we expect to find on a new genome. 
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Chapter 3 

Gene Order and Its Application in 

Phylogeny Inference 

3.1 Introduction to Gene Order Analysis 

In this chapter, the interest is not on single gene order itself, but on comparisons 

of two or more gene orders. Let's ignore genes sizes and consider gene orders just 

as assigned permutations. When we compare two permutations, if there is a string 

of genes such that each gene is in the same relative position and direction in both 

permutations, then we call this string of genes a conserved segment. If one conserved 

segment has 6 genes in it, any consecutive 5 or few genes also is a conserved segment. 

Normally, a conserved segment refers to the one with largest number of genes. 

For example, in Figure 3.1 the gene orders of two Echinodermata species are 

compared. This figure was generated by Genome Comparison in OGRe. There are 

two conserved segments, a left one (in light Gray) and a right one (in dark). The 

genes in the right conserved segment have the same order and direction relative to 

the the other segment, which was inverted as a whole. 

Combined with the concept of conserved segment is the concept of breakpoint. 

When two genes are neighbors on the genome, we call this property they have, neigh­

borhood. For signed gene orders, when we say neighborhood of two genes, we should 

consider their directions. Gene Orders like "A,B" and "A,-B" do not have the same 
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ECHINODERMATA Asterina pectinifera Proteins: 13 tRNAs: 22 rRNAs: 2 Length: 

ECHINODERMATA Paracentrotus lividus 

Number of Break Points: 2 tRNAs included 

Figure 3.1: An example of real inversion 

16260 

kind of neighborhood. When the neighborhood of two genes exists in genome I and 

not in genome II, we say there is one breakpoint in genome II. The relationship of 

breakpoint number (bp) and conserved segment number ( cs) is bp = cs for circular 

genomes and bp = cs- 1 for linear genomes. If the two genomes contain · different 

sets of genes, the two genomes will have different breakpoint numbers. We choose 

the larger breakpoint number as the breakpoint distance between these two genomes. 

In Figure 3.1, the breakpoint distance is 2. The concept of breakpoint distance is 

independent of the mechanism that causes the genome rearrangement. It's very easy 

to calculate the breakpoint number. Now, when not much information of genome re-

arrangement mechanisms is known, breakpoint distance is a good an.d relative robust 

measure for the distance of genomes. 
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3.2 Genome Rearrangement Mechanisms 

Here we define the types of genome rearrangement mechanisms that occur in 

mitochondrial genomes and give simple examples. 

3.2.1 Translocation 

During DNA duplication, one segment of genome can be cut off and pasted to 

another position, retaining the same direction; this is called a translocation. In Fig­

ure 3.2, an artificial example is given. Segment A was translocated between segment 

B and segment C. 3 or 2 breakpoints are induced for circular or linear genome corre­

spondingly. In Figure 3.3 shows one real example. Between human and chicken gene 

orders, the difference is caused by a single translocation. 

Befot·e 
translocation 

After 
translocation 

Figure 3.2: An example of artificial translocation 

3.2.2 Inversion 

A string of genes can also be cut off and pasted to the same position but on 

the opposite strand, and this is called a inversion. As demonstrated by Figure 3.4, 

segment B changes its direction but remains in the same location. Figure 3.1 is a real 

example of inversion. The right dark conserved segment was inverted. 

Translocations can only change the locations of genes, but can not change their 

directions. Inversions can change both the locations and directions. What's more, 
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PRIMATES Homo sapiens Proteins: 13 tRNAs: 22 rRNAs: 2 Length: 16569 

Number of Break Points: 3 tRNAs included 

Figure 3.3: An example of real translocation. Between human and chicken gene 
orders, the difference is caused by a single translocation 

Befo1·e 
inversion 

After 
inversion 

Figure 3.4: An example of artificial inversion 
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the effect of any kind of translocation can be achieved by a series of inversions. The 

most simple example is that 3 certain consecutive inversions will have the same effect 

as one translocation, as illustrated by Figure 3.5. 

Before 
inv ersion 

.1\fter one 
inversion 

After tvvo 
inv ersions 

After tlu-ee 
inv ersions 

Figure 3.5: 3 inversions have the same result as one translocation 

3.2.3 Transversion 

A transversion is when, one segment is cut off and pasted to another location and 

inverted at the same time. It also can be achieved by a translocation followed by an 

inversion. 

3.2.4 Duplication and Deletion 

Also, genome rearrangement can be achieved by a series of gene duplications and 

deletions. During evolution of the mitochondrial genome, we know that the genome 

was reduced considerably due to gene deletions. Many of these genes have been 

transferred to the nucleus. However, since the origin of the metazoa, the number of 

genes remains fairly stable. Duplication followed by deletion can lead to gene order 

changes. In Figure 3.7, gene A and gene B are duplicated and then the first copy 
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INSECTA Drosophila yakuba Proteins: 13 tRNAs: 22 rRNAs: 2 Length: 16019 

Number of Break Points: 3 tRNAs included 

Figure 3.6: An example of real transversion. Between Limpulus polyphemus and 
Drosophila yakuba gene orders, the only differece is cause by a single transversion of 
12 gene. 

of gene A and the second copy of gene B are deleted, thus the gene order has been 

changed just as a translocation. 

Before auy 
change 

A and Bare 
duplicated 

Fia·st A and 
second B will 
be deleted 

After 
chru.t.~es 

Figure 3. 7: An example of duplication and deletion also can change the order of genes 
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PRIMATES Homo sapiens Proteins: 13 tRNAs: 22 rRNAs: 2 Length: 16569 

LEPIDOSAURIA Cordylus warreni Proteins: 13 tRNAs: 24 rRNAs: 2 Length: 17184 

Figure 3.8: An example of real duplication. Compared to human mitochondrial gene 
order, there are two duplicated genes in Condylus warreni mitochondrial gene order. 
If the first copy ofT tRNA and the second copy of P tRNA are deleted in future, the 
gene order can be changed. 

3.2.5 Mathematical Background and Some Software 

3. 2. 5.1 Calculation the Inversion Distance 

Calculation of inversion distance has been studied for a long time, and many useful 

results have been reported. To find the inversion numbers for unsigned permutations 

is NP-hard (Caprara 1997). However, to find the inversion numbers for signed per­

mutations can be solved in polynomial time. The algorithm that Hannenhalli and 

Pevzner (1995) have found runs in O(n4) time on average, where n is the number of 

genes. 

3. 2. 5. 2 Underestimation 

The methods mentioned above to find either the minimum number of inversions 

between two gene orders or the breakpoint number, which also means the shortest 
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distance in mathematics. The real rearrangement is a stochastic process. It is very 

possible that the real number of rearrangements is larger than the number we in­

fer. This underestimation will reduce the real distance between genomes and hence, 

influences the phylogeny which is inferred from those distances. 

3.2.5.3 The Correction for Breakpoint Number 

In distance matrix methods, the additive property is very useful in generating 

an accurate phylogenetic tree. The additive property stipulates that the distance 

measures with the additive property should increase linearly with the number of 

changes that have happened along a branch. However, the breakpoint measure is not 

additive. The sum of breakpoint numbers from genome A to B and B to C is not 

always equal to the breakpoint number from genome A to C. We define an additive 

distance measure, the evolutionary distance, as the number of real rearrangements 

happened along that branch. By its definition, this distance is additive. 

Suppose there is one rearrangement, after which the whole genome is broken into 

m segments and m new breakpoints are generated. As we know, one single inversion 

can produce 2 breakpoints and one single translocation or transversion can produce 

3 breakpoints. For a circular genome with n genes, there exist n neighborhoods, and 

after a series of rearrangements, there will exist at most n breakpoints. For each 

rearrangement, the genome will be broken into m segment. The chance to remove 

a breakpoint during one rearrangement is very small (less than ~' where d is the 

edit number); and we assume here, that once a breakpoint is created, it will never be 

removed. Suppose, that before each rearrangement, there are b breakpoints compared 

to the original genome. So, on average, b x r,:: new breakpoints will produced and 

( n- b) x (n-;_m) original neighborhoods remain (compared to the original genome). So 
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Figure 3.9: This figure shows the relationship of average breakpoint number with 
translocation number or inversion number. The curves level off when tranlocation or 
inversion number increases. It shows the possibility of underestimation. 

when we start from the original genome, where b = 0, the number of breakpoints on 

average after d of rearrangements is: 

(3.1) 

Figure 3.9 shows examples when m=2 for inversion and m=3 for translocation or 

transversion. When the number of rearrangements increases, both curves level off 

where the underestimation happens. 

What we can observe directly is breakpoint number. From the observed breakpoint 

number, we can estimate the real evolutionary distanced 

- b 
d = log1_.m(1--) 

n n 
(3.2) 
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Figure 3.10: This figure shows the relationship between observed breakpoint num­
ber and the estimated inversion number. When breakpoint number increases, the 
uncertainty of estimation increases. 

Figure 5.2 shows one example, where the rearrangement are inversions. When 

breakpoint number increases, the standard deviation becomes larger, and there exists 

a region where the true rearrangement number is difficult to infer because of the large 

uncertainty. 

However, the purpose here is not to find the relationship of breakpoint number 

and inversion number but an additive measure for gene orders. We don't know what 

are the real rearrangements, and the value of m remains unknown. The form of the 

previous formula may be changed to 

- b m 
d = ln(1- -)/ln(1- -) 

n n 
(3.3) 
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Here, we define our new measure as dzn = ln(1- ~),when n is large, the term 1- r;: 

will have less influence. I applied this logarithm correction for breakpoint distance to 

all distinct gene orders in OGRe. 

3.2.5.4 Dereange2-The Program to Infer the Path to Change a Gene Order 

Derange2 (Blanchette et al. 1996) is a heuristical program designed to find the 

pathway with the minimum weight between two gene orders with identical gene sets. 

It allows users to assign weights to different mechanisms (inversion, translocation 

and transversion). Deciding what weights should be assigned is a difficulty. First, the 

weights of different mechanisms in reality are unknown and very difficult to estimate. 

Second, even if we know those real weights, this set of parameters may differ from 

the one used for those programs adopting the parsimony method. 

3.3 Phylogenetic Analysis of Gene Order Informa­
tion 

The methods mentioned before compare only two genomes. When we compare 

three genomes at once, we want to know the median genome among those 3 genomes. 

To find the median genome under certain criteria we need to search all possible gene 

orders. This is a huge task, especially when the number of genes is large. To compare 

more than 3 genomes, we need to search all the possible topologies and all the median 

gene orders at same time. Another possible method involves calculating the pairwise 

gene order distances and applying distance matrix methods to them. In this section, 

we will introduce two programs which follow the first method and discuss distance 

matrix methods for gene orders in next section. 
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3.3.1 BPAnanlysis-The First Attempt 

BPanalysis (Sankoff and Blanchette 1998) was the first attempt to infer the phy­

logeny by comparing multiple genomes directly. The program finds the tree such the 

total number of breakpoints summed over all branches of the tree is minimized. This 

is a parsimony criterion. The problem to find the median gene orders can be turned 

into a Traveling Salesman Problem (TSP) (Sankoff and Blanchette 1997). BPAnaly­

sis solves the median problem gradually and repeatly until one stable state has been 

arrived at. Although, overall, the comparison of multiple genomes seems NP-hard (L 

Pei-er and R. Shamir reported for N = 3), it is tractable for moderate genome sizes. 

Sankoff and Blanchette (1998) reported the underestimation phenomenon. The 

underestimation became manifest when the breakpoint number per branch reached 

half of number of genes; and there was 30% underestimation when the breakpoint 

number reached two-thirds of number of genes (Sankoff and Blanchette 1998). Under 

such big underestimation, there is little chance to get the correct phylogeny. 

BPAnalysis has another problem, its speed is too slow. I have tried it for 16 

genomes with 35 genes, on an x86 pc with a 3.0 GHz P4 CPU. It ran about 2 weeks. 

3.3.2 GRAPPA 

GRAPPA (Moret et al. 2001) stands for Genome Rearrangements Analysis un­

der Parsimony and other Phylogenetic Algorithms. The program was written in c 

instead of c++, and many optimizations have been made for its speed and more op­

tions (different approximate algorithms for Traveling Salesman Problem and different 

methods to label the inner gene orders) have been implemented. The authors tried 

some heuristic algorithms to calculate inversion numbers and extend the parsimony 

criteria in BP Analysis to the minimum inversion criterion. 
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In their papers, the authors claimed their program ran one-million times faster 

than BPAnalysis. We wanted to know how does GRAPPA perform in our situation. 

In the following text, we present our test for GRAPPA in a simulated situation which 

is similar to the case of animal mitochondrial genomes. 

3.3.2.1 Test of GRAPPA 

r The Inner Branch 

Ancestral Geneorder 
1,2,3,4,5,6, ... ,37 

' 

Figure 3.11: the topology for the simulated data. There are 4 present-day gene orders 
descending from other extinct 2. The right extinct gene orders serves as the ancestral 
one, with identity permutation (1, 2, 3 ... , n) 

Figure 3.11 shows the topology of the simulated data. There are 4 leaf genomes 

(C,D,E,F) and 2 extinct genomes (A,B). Genome A, the ancestor, has an identity 

permutation i.e. (1, 2, ... , n). Genome B descends from A. Genomes C, D and E, F 

descend from B, A correspondingly. The number of genes each genome contains is 37. 

The rearrangement mechanism we used was inversions. The inner branch lengths vary 

from 1 to 11 and 13, 15 inversions and the outer branch lengths vary from 1 to 10 and 
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Figure 3.12: The chance for GRAPPA to retain the correct topology when the inner 
branch length is fixed to 6, while the outer branch lengths vary from 1 to 30 inversions. 

13, 16, 20, 25 and 30 inversions. For each each pair of inner and outer branch lengths, 

we generated 100 random datasets. Then we used GRAPPA to estimate the phylogeny 

using the minimum inversion distance criterion. The parameters for GRAPPA were 

"-T4 -t4 -K2 -1" (for details please see their document files). We collected the results 

and counted how many groups of results retained the correct topology (we use T-rate 

to represent this percentage) and how many groups of results retained the correct 

ancestral gene order (G-rate). 

Figure 3.12 shows the T-rate when the inner branches are fixed at 6 inversions and 

the outer branch length varies. T-rate drops quickly when the outer branch length 

increases to 5 inversions. For four species, there are only 3 unrooted topologies. If 

we choose the topology tree randomly, the average chance to get the correct one is 

33%. Percentages lower than 30% were observed in our test. The test suggested that 

in those low percentage area, GRAPPA does not work at all. Figure 3.13 shows the 

G-rate when the inner branches are fixed at 6 inversions and the outer branch length 
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Figure 3.13: The chance for GRAPPA to retain the correct ancestral gene order when 
the inner branch length is fixed to 6, while the outer branch lengths vary from 1 to 
30 inversions. 

varies. The percentage also drops quickly when the outer branch lengths increase to 

5 inversions. When outer branch length increases to 10 inversions, there is almost no 

chance for GRAPPA to get the correct ancestral gene order. 

Figures 3.14 and 3.15 show the range where the chance for GRAPPA to find the 

correct topology or right ancestral gene order is larger 50% or 80%. Figure 3.14 

suggests that inner branch has less influence on G-rate than the outer branch, except 

when inner branch length is between 8 and 10 inversions, whereupon percentage has 

a suddenly drops. Figure 3.15 suggests that the sum of inner branch length and 2 

times the outer branch length has a large influenced on G-rate. The critical value for 

this sum is approximated 16 inversions, below which GRAPPA has over 50% chance 

to retain the correct ancestral gene order. 

The test results show that GRAPPA has a large chance to find the correct topol­

ogy when the inner branch is within 15 inversions and the outer branch is within 6 
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Figure 3.14: Ranges of inner branch lengths and outer branch lengths where the 
chance for GRAPPA to retain the correct topology (T-rate) is larger than 0.5 and 
0.8. The data below 0.5 are not shown. There is no testing data when inner branch 
length is 12, 14 and 16 inversions or outer branch length is 11, 12 and 14 inversions 
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Figure 3.15: Ranges of inner branch lengths and outer branch lengths where the 
chance for GRAPPA to retain the correct ancestral gene orders (G-rate) is larger 
than 0.5 and 0.8. The data below 0.5 are not shown. There is no testing data when 
inner branch length is 12, 14 and 16 inversions or outer branch length is 11, 12, 14 
and up to 19 inversions 
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inversions in a situation of 4 species and has a large chance to find the correct ances­

tral gene order in a very small range i.e., the outer branch is within 2 inversions and 

the inner branch length is within 6 inversions. When the topology is complex (more 

species), and translocations or transversions are involved in gene order rearrangement, 

the chance to get the right answer will be even smaller. 

3.4 Using Distance Matrix Methods on Gene Orders 

We wanted to apply distance matrix methods to all distinct animal mitochondrial 

gene orders in OGRe. There are 98 distinct gene orders in OGRe with 473 species. 

One can get the list of these distinct gene orders from OGRe website. 

First, we applied neighbor joining method to the breakpoint distance matrix of 

all animal mitochondrial gene orders. The breakpoint distances were normalized by 

dividing the raw breakpoint number by the maximum number of genes contained in 

the two genomes being compared. By normalization, the deviation caused by the 

difference of genome sizes can be eliminated. 

Figure 3.16 shows the result of applying distance matrix methods to normalized 

breakpoint distance. In this figure, the lower part is relatively well defined at the 

phyla level. At the upper part, the tree is scrambled, except for several groups 

(Platyhelminthes, Cnidarians) are well defined. All the species in upper part of the 

tree have a long branch, obviously this could is the case of long branch attraction. 

Even through some phyla form well-defined groups (e.g. vertebrates), the detailed 

phylogeny within these groups is not consistent with known relationships, derived 

from other sources. Chordates are grouped with Echinodermata; a group of Mol­

lusca, Annelids and one Branchiopoda are grouped with Arthropods. Halanych et al. 
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Figure 3.16: The phylogeny tree generated by NJ method with normalized breakpoint 
distance matrix 
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(1995) proposed a new phylogeny where the Bilateria is divided between Deuteros­

tomes and Protostomes. In this phylogeny, Vertebrates, Echinoderms and etc. be­

long to Dueterostomes and Platyhelminthes, Brachiopods, Molluscs, Nematodes and 

Arthropods belong to Protostomes. In traditional classification, the Bilateria is di­

vided into Coelomates (Vertebrates, Echinoderms, Brachiopods, Molluscs, Annelids 

and Arthropods), Pseudo-coelomates (e.g. Nematodes and) and Acoelomates (e.g. 

Platyhelminthes). The Coelomates and Pseudo-coelomates form sister groups and 

Acoelomates is their outgroup. In Figure 3.16, Platyhelminthes are outgroup of Ver­

tebrates, Arthropods and othergroups. This is inconsistent with the new proposed 

phylogeny and it partly agrees with the traditional one. 

Then, we used logarithm correction for breakpoint. Figure 3.17 shows the re­

sulting tree. The shape of the tree seems better than that in Figure 3.16, and the 

groups can be recognized by their branch lengths. The species with long breakpoint 

distances now are in better positions than before. However, Echinoderms are the 

outgroup of Vertebrates now, which might be the result of large uncertainty of break­

point distance correction. In upper part of the tree, Platyhelminthes and Nematodes 

are the outgroup of Vertebrates + Arthropoda + Annelids + Mollusca, which form 

Coelomates. Although Platyhelminthes and Nematode form one group, it might not 

be true. 

None of the results is satisfying. Beside the limitations of distance matrix methods, 

there are two other reasons. Firstly, for such small genomes, the breakpoint distances 

are easily saturated(i.e. the breakpoint numbers are close the their maximum values). 

Secondly, gene orders evolve highly unequally in some groups. When the gene order 

distances are close to their maximum values, the underestimation is very large for 

breakpoint number and the uncertainty becomes very large for the corrected logarithm 

form of breakpoint distance. In this case, any distance matrix method will fail. The 
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Figure 3.17: The phylogeny tree generated by NJ method with logarithm form of 
breakpoint distance matrix 
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fast evolved species have long branches, then due to long branch attraction, the 

distance matrix method sometimes failed to find the correct topology. For the fast 

with a saturated distance, they will lose traces of their ancestral gene orders; then, it 

is impossible to find the their correct phylogeny using gene order information. 
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Chapter 4 

Phylogenetic Analysis of Arthropoda 

Using Mitochondrial Sequences 

4.1 Arthropod Phylogeny 

Although some aspects of arthropod phylogeny are well understood, there are 

some key questions that are not resolved. We, therefore, wished to use the mito­

chondrial sequence data in OGRe to obtain a molecular phylogeny of arthropods. 

An additional motivation for looking at the arthropod phylogeny is that we wish to 

compare information from sequence evolution with information from gene order in 

the same set of species. The set of arthropod species in OGRe is interesting in this 

respect because it contains both very conserved gene orders, thought to be similar to 

those of the ancestral protostome, and highly derived gene orders, almost completely 

scrambled with respect to the ancestral order and to other existing species (see dis­

cussion of the trees derived from breakpoint distances in Chapter 3). The comparison 

of gene order and sequence information will be the subject of Chapter 5. Before we 

can do this, we require a best estimate of the phylogeny of the arthropod species in 

the OGRe data set. The main aim of this chapter is therefore to obtain this best 

estimate tree. 

The species studied here are listed in Table 4.1. Each species belongs to one of four 

principal taxa labeled in bold font in column one. Important lower-level taxa that 
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are relevant to the phylogenetic discussion in this chapter are listed in column one. 

The table also gives reference to the accession numbers of the complete mitochondrial 

genomes. The group Chelicerata contains the horseshoe crab, Limulus polyphemus, 

several spiders (Araneae), and several ticks and mites (Acari), plus many other groups 

whose mitochondrial genomes are not available. The group Myriapoda contains rep­

resentatives of the centipedes (Chilopoda) and millipedes (Diplopoda). The groups 

Crustacea and Hexapoda are both very diverse and contain representatives of many 

different subgroups listed in Table 4.1. 

The relationships among these groups has been debated for a long time, but 

evidence is now mounting to support the arrangement ( ( Chelicerata, Myriapoda), 

(Crustacea, Hexapoda)). The grouping of Crustacea and Hexapoda is known as 

Pancrustacea. This grouping is supported by sequence evidence (Shultz and Regier 

2000; Giribet et al. 2001). It is also supported by gene order evidence. It was shown 

(Boore et al. 1998) that a tRNA-Leu gene has been translocated in the common 

ancestor of Crustacea and Hexapoda. This argument was confirmed by Higgs et al. 

(2003) using a combination of sequence analysis and gene order data. The pairing of 

Chelicerata and Myriapoda is less certain, but is suggested by the most recent results 

using combined 188 and 288 rRNA (Mallatt et al. 2004). An alternative possibility 

is that Myriapoda is a sister group to Pancrustacea and that Chelicerata branches 

prior to this, as found by Giribet et al. (2001) and Pisani (2004). 

The Hexapoda group, as usually defined, contains the insects and also the spring­

tails (Collembola). There has been recent debate regarding the position of Collem­

bola, with some authors arguing they are not a sister group to insects. In this case 

Hexapoda would not be monophyletic. It may also be that the Crustacea are poly­

phyletic within the Pancrustacea group. We will discuss these issues after presenting 

our own results. 
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Group name latin name common name NC number 
Chelicerata 
Acari Amblyomma triguttatum ornate kangaroo tick NC_005963 
Acari Carios capensis soft backed tick NC_005291 
Acari Haemaphysalis flava hardbacked tick NC_QQ5292 
Acari Ixodes hexagonus hedgehog tick NC_002010 
Acari Ixodes holocyclus paralysis tick NC_005293 
Acari Ixodes persulcatus taiga tick NC_004370 
Acari Ornithodoros moubata soft tick NC_004357 
Acari Ornithodoros porcinus soft tick NC_005820 
Acari Rhlpicephalus sanguineus brown dog tick NC_OQ2074 
Acari V arroa destructor honeybee mite NC_004454 
Araneae Habronattus oregonensis spider NC_005942 
Araneae Heptathela hangzhouensis spider NC_005924 
Araneae Ornithoctonus huwena Chinese earth tiger NC_005925 
Xiphosura Limulus polyphemus Atlantic horseshoe crab NC_003057 
Crustacea 
Branchiopoda Artemia franciscana brine shrimp NC_001620 
Branchiopoda Daphnia pulex water flea NC_000844 
Branchiopoda Triops cancriformis tadpole shrimp NC_004465 
Branchiura Argulus americanus fish louse NC_005935 
Cephalocarida Hutchinsoniella macracantha cephalocarid crustacean NC_005937 
Cirripedia Pollicipes polymerus goose barnacle NC_005936 
Cirripedia Tetraclita japonica Japanese acorn barnacle NC_008974 
Copepoda Tigriopus japonicus Tigriopus japonicus NC_003979 
Malacostraca Cherax destructor Australian freshwater crayfish NC_Ol1243 
Malacostraca Pagurus longicarpus long-clawed hermit crab NC_003058 
Malacostraca Panulirus japonicus Japanese spiny lobster NC_004251 
Malacostraca Penaeus monodon black tiger shrimp NC_OQ2184 
Malacostraca Portunus trituberculatus Japanese blue crab NC_005037 
Ostracoda V argula hilgendorfii sea firefly NC_005306 
Pentastomida Armillifer armillatus tongue worm NC_005934 
Remipedia Speleonectes tulumensis remipede NC_QQ5938 
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Group name latin name common name NC number 
Hexapoda 
Coleoptera Crioceris duodecimpunctata spotted asparagus beetle NC_003372 
Coleoptera Pyrocoelia rufa firefly NC_003970 
Coleoptera Tribolium castaneum red flour beetle NC_003081 
Diptera Anopheles gambiae African malaria mosquito NC_002084 
Diptera Chrysomya putoria blow fly NC_002697 
Diptera Drosophila melanogaster fruit fly NC_001709 
Hymenoptera Apis mellifera ligustica common honeybee NC_001566 
Hymenoptera Melipona bicolor stingless bee NC_004529 
Lepidoptera Antheraea pernyi Chinese oak silkmoth NC_004622 
Lepidoptera Bombyx mori domestic silkworm NC_002355 
Lepidoptera Ostrinia furnacalis Asian corn borer NC_003368 
Orthoptera Locusta migratoria migratory locust NC_001712 
Paraneoptera Aleurodicus dugesii Doogie Howzer whitefly NC_005939 
Paraneoptera Heterodoxus macropus wallaby louse NC_002651 
Paraneoptera Lepidopsocid RS-2001 scaly-winged barklouse NC_004816 
Paraneoptera Philaenus spumarius meadow spittlebug NC_005944 
Paraneoptera Thrips imaginis plague thrips NC_004371 
Paraneoptera Triatoma dimidiata kissing bug NC_002609 
Thysanura Tricholepidion gertschi bristletail NC_005437 
Collembola Gomphiocephalus hodgsoni springtail NC_005438 
Collembola Tetrodontophora bielanensis giant springtail NC_002735 
Myriapoda 
Chilopoda Lithobius forficatus centipede NC_002629 
Chilopoda Scutigera coleoptrata house centipede NC_005870 
Diplopoda N arceus annularus millipede NC_003343 
Diplopoda Thyropygus sp. millipede NC_003344 
Out groups 
Mollusca Katharina tunicata black chiton NC_001636 
Brachiopoda Terebratulina retusa TerebratuliDa retusa NC_000941 

Table 4.1: 55 species were selected from 65 Arthropoda species in OGRe 
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4.2 Models 

We have introduced the commonly used phylogenetic methods in Chapter 1. Now 

we continue to introduce all kinds of models which describe the mutation rates of 

nucleotides or amino acids in the sequences .. 

4.2.1 DNA Models 

The earliest DNA model is Jukes-Cantor model (Jukes and Cantor 1969). This 

model simply assumes all 4 nucleotides evolve at the same rate. The Kimura two­

parameter model (Figure 4.1) assumes the rates for transition and transversion are 

not equal, but the ratio of transition/transversion remains constant. 

a 
A..- •a 

c ~~~·--------------·~· 1L 
a 

Figure 4.1: Kimura two-parameter DNA model. The transition (between C,T or 
A,G) rate is a, the transversion rate is {3. 

If we apply time reversibility restriction (the number of transitions from the first 

nucleotide to the second one is the same as the number from the second to the first) 

to the model and relax other restrictions, it will lead to a more flexible model that 
I 

remains mathematically tractable .. 
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The HKY model (Hasegawa et al. 1985) is one of these models. Table 4.2 shows 

the HKY model. The probability for a nucleotide A changes to another nucleotide G 

is a1ra x 7rA, i.e. the rate of A toG (a1ra) x the frequency of A nucleotide (7rA)· The 

probability for a G to change to A is a7rA x 7rG· And the two probabilities are equal. 

HKY model is very successful for its relatively simple mathematical abstraction and 

good approximation of real situations. It has been well accepted. 

The GTR model is the general time-reversible model. Mutation rates between 

different pairs of nucleotides are different, hence there are 6 free parameters. It's the 

most flexible model under the time reversibility restriction. 

To 
A G c T 

From 

A - 0!1fG {37rc {31fT 
G 0!1l"A - {37rc {31fT 
c {37rA {37ra - 0!1fT 
T {37rA {37ra a7rc -

Table 4.2: HKY model. It's a time reversible model with transition rate a and 
transversion rate {3. 

4.2.2 tRNA Models 

For maximum likelihood and Bayesian methods it is possible to use mixed infor­

mation to infer phylogeny at once. Several genes can be put together while each gene 

is assigned with a different mutation rate; or some nucleotide or amino acid sequences 

can be put together; or sequences and secondary structure are considered together. 

RNA sequence with secondary structure is another application. Figure 4.2 is a 

typical tRNA secondary structure. There are 4 stems (receptor stem, D-stem, TWO­

stem and anti-codon stem) and 3 loops (D-loop, TWC-loop and anti-codon loop.) 

The anti-codon is located on anti-codon loop. Most tRNAs have the same structure 
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as illustrated by this figure, except a few tRNAs may lack aD-stem or TwC stem. 

In the stem area, in addition to traditional Watson-Crick pairs, there exist another 

G-T pairs, although the interaction is much weaker. For the pairs, the change of one 

nucleotide can induce the change of the other one (compensatory substitution). For 

these area, different models should be applied. 

Anticodon 
arm aD.d 

loop 

3' 
Acceptor 

arm 

Figure 4.2: A typical tRNA structure. 

The 6 states model (Tillier 1994) for paired area proposes that there are 6 states for 

paired nucleotides. The rate of change from one state to another via two transitions 

is 1; the rate of change via one transition is a 1 and the rate of change via two 

transversion is a 2• The 7 states model (Tillier and Collins 1998) is similar to the 6 

states model, except one mismatch state is added and the rate related to mismatch 

state is a3. 

However, beside compensatory mutations, a slide of several nucleotides in a stem 

area due to insertions or deletions also can change the composition of stems, which 

we observed when we performed the alignment. 
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4.2.3 Protein Models 

In contrast to the nucleotide models, most protein models are empirical. As 

different phylogenetic criteria are applied to different sets of data, different kinds of 

mutation probability matrices are obtained. 

Dayhoff and Eck (1968) used parsimony criteria for a set of closely related se­

quences, and obtained the Dayhoff model. Later on, this model was updated by 

using 71 sets of closely related proteins in 1979 (Felsenstein 2004). In 1992, Jones, 

Taylor, and Thornton got their mutation probability matrix by using data containing 

not so closely related sequences. There are some specific models for mitochondrial 

and plasmid proteins. Adachi and Hasegawa used the maximum likelihood method 

and mitochondrial proteins from mammals, chicken, frog, fish, and lamprey and ob­

tained the mtREV24 model in 1996. Then Yang, Nielsen, and Hasegawa, in 1998, 

used the maximum likelihood method, with variable rates in sites and proteins from 

20 mammalian species, which became the mtman model (Yang 2004). These two 

models are time-reversible. 

4.3 Software Packages 

4.3.1 PHYLIP 

PHYLIP (Felsenstein) is one of the earliest packages for constructing phylogenies, 

dating back to 1980. It is a powerful and comprehensive package, which can deal 

with many different types of molecular data, such as DNA, protein, restriction sites 

and gene frequencies, with different kinds of method, parsimony, distance matrix, 

maximum likelihood. Phylogeny trees also can be edited or drawn in PHYLIP. 
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We are interested in the maximum likelihood method in PHYLIP package. There 

are two main maximum likelihood programs in Phylip, dnaml for DNA sequences and 

proml for proteins. Both programs support the approximation of Gamma distribution 

for rates. dnaml supports HKY model but not the GTR model; proml supports Day­

hoff and Jones-Taylor-Thornton model but without mitochondrial models (mtREV, 

mtman), which we are mostly interested in. 

The proml program in PHYLIP implements maximum likelihood methods for 

proteins. It supports similar options as dnaml. However, it only supports Dayhoff 

and Jones-Taylor-Thornton mutation probability models. As we are interested in 

mitochondrial proteins, we prefer to use mtREV24 model or mtman model or even 

the general time reversible model. 

4.3.2 PHASE 

PHASE ( Jow et al. 2002; Hudelot et al. 2003) is a MCMC Bayesian method 

package for analysis RNA sequences. It uses the secondary structure information 

for tRNAs and rRNAs. As explained before, in the paired areas, the mutation may 

behave like compensatory mutations and different mutation models must be applied. 

For compensatory mutations, there are 6-states, 7-states and more general16-states 

models available. 

4.3.3 Mr. Bayes 

Mr. Bayes is another software that utilizes a Bayesian inference method. It has 

many similar properties to PHASE, however it is more general in some sense. We used 

it to analysis our data, and the results it retained are almost the same to PHASE. 
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4.3.4 PAML 

PAML (Yang 1994) implements maximum likelihood methods. Compared to 

PHYLIP, it supports more mutation models (mtREV, mtman, GTR for DNA and pro­

tein) and options. One can specify the general time reversible model for amino acids 

and estimate the mutation probability matrix from the data. In this package, Yang 

utilized the discrete Gamma distributed heterogeneous mutation rates but also con­

sidered the correlation of rates at adjacent sites. This package provides many methods 

to investigate synonymous and non-synonymous substitution rates and methods to 

deal with codons. 

The algorithm to find the maximum likelihood phylogeny runs slowly in PAML. 

The feasible method is to research the trees around the user specified tree or optimize 

the parameter according to user defined tree. 

4.4 Analysis of the Data 

4.4.1 Data Preparation 

As we know, the number of unrooted trees for n species is ( 2n - 5)!!. Closely 

related species may share the same gene order and have very little difference either 

in protein or DNA sequences. We pick only some species from such closely related 

groups, to decrease the tree space. Not much information will be lost by doing 

this. In the group Diptera, we only selected Anopheles gambiae, Chrysomya putoria 

and Drosophila melanogaster and deleted the other 8 species that were available. 

Antheraea pernyi, Ostrinia furnacalis and Bombyx mori were selected and another 

2 were deleted in the group Lepidoptera. Two non-arthropod species (Terebratalia 

transversa and K atharina tunicata) are added as out groups. The total number of 
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species is 57. We picked out all the tRNA genes in these 57 species; the number of 

tRNAs was slightly smaller than 22 x 57, because several species lack some tNRAs. 

(Melipona bicolor lacks tRNA-Cys and tRNA-Gln; Aleurodicus dugesii lacks tRNA­

Gln.) Duplicated or pseudo-genes are not considered. For proteins, we used the 4 

largest genes, which are COXl, COX2, COX3 and CYTB. All 57 species contain 

these four genes. 

4.4.2 Alignment 

Alignment is a basic and important procedure in phylogeny. ClustalW ( ClustalX 

for Windows) (Higgins and Gibson 1994) and T-coffee (Notredame et al. 2000) are 

two very important alignment programs. Their essential procedure is to align the 

most closely related sequences first and the most divergent ones last according to a 

guide tree generated by some easy method. T-coffee is an improvement of ClustalW. 

It builds a library to weight different sequence patterns automatically, then uses this 

library to finish the rest of procedures. The result ofT-coffee is better than ClustalW; 

however, there is a big cost of speed. 

We used ClustalX (the windows version of ClustalW) to align our tRNA sequences 

and used some already-aligned sequences (for which the secondary structure has been 

considered) from Jameson (2004) as a profile. Although T-Coffee is more powerful 

than ClustalW, it can not take full use of profiles, as does ClustalW. Nevertheless, 

our tRNA sequences are more divergent than the sequences Jameson (2004) has used. 

Except a few tRN As, the anticodon area was aligned well by ClustalX, for those 

were not, manual adjustments were needed. The nucleotides in the D-stem area is the 

second well-aligned area. The alignments for most of the sequences are clear, except 

several ones which have more extra nucleotides, possibly due to short duplication or 
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insertion. The number of pairs in the D-stem changed slightly. The nucleotides in the 

TWC-stem area were aligned badly. Many tRNAs lack this stem and the number of 

pairs in this stem changes greatly, from 2 to 5 or more, in addition, the nucleotides in 

well recognized pairs change greatly, which means these TwC-stems may not evolve 

from single ancestral TwC-stem, and, as mentioned before, there exits evidence that 

slides of several nucleotides can change the structure (number of pairs) and the content 

(the nucleotide composition) of TwC-stem so the compensatory mutation model fails 

here. The nucleotides in the loop areas diverge a lot. After figuring out the nucleotides 

in the stem areas, I identified the nucleotides in loop areas and ran ClustalX then 

pasted the results back to the sequences. Because of the shortness and divergence 

of the nucleotides in loop areas, the second alignments were not very good either. I 

also adjusted them manually. When we are not sure about the structures of tRNAs, 

we refer to papers reporting sequencing of individual genomes, since there often give 

tables of tRNA structures. (Crozier and Crozier 1993; Spanos et al. 2000; Miller et al. 

2004; Lessinger et al. 2000; Stewarta and Beckenbachb 2003; Creas 1999; Ishiwa and 

Chigusa 1987; O.Clary and R.Wolstenholm 1983; Nardi et al. 2003; Masta1 and 

Boore 2004; Lavrov et al. 2000; Yamauchi et al. 2002; Yamauchi et al. 2004; Stewart 

and Beckenbach 2005; Bae et al. 2004; Machida et al. 2002; Umetsu et al. 2002; 

Friedrich and Muqim 2003; Navajas et al. 2002; Ogoh and Ohmiya 2004) 

The alignment of the protein sequences were simple. We aligned them using 

ClustalW and T-Coffee. The result from T-Coffee was slightly better than were those 

obtained from ClustalW. Unlike DNAs or tRNAs, the alignment of proteins is much 

less complex. The amino acids sequences were not as divergent as were the tRNAs. 

The similarities were really high. We used the alignment result from T -Coffee, after 

deleting the sites with lots of gaps, as the final alignment. 
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4.5 Discussion of the Protein and tRNA Trees 

The consensus tree from the MCMC analysis of the protein sequences is shown 

in Figure 4.3. Most parts of this tree are well resolved, and many parts make sense 

according to our expectations from previous studies. There are, nevertheless, several 

aspects of this tree that are definitely inconsistent with what we observe from other 

data, and thus it is clear that systematic biases are affecting the position of several 

species in this tree. From the figure, we see that the two outgroup species fall together 

and therefore the arthropods are monophyletic, as expected. There is a split between 

Myriapoda + Chelicerata at the top of the figure and the Crustacea + Hexapoda at 

the bottom. This agrees with the evidence for the relationship between these four 

groups, as discussed in section 4.1. 

There is however, a group of 7 crustacean and hexapod species running from 

Speleonectes to Apis that apparently fall within the chelicerates. This is biologically 

untenable, and must be due to phylogenetic artifacts such as long branch attraction 

and bias due to variation in base frequencies. This group of 7 contains rather diverse 

species that are probably not all related. The two Hymenoptera (Apis and Melipona) 

belong with the other holometabolous insects at the bottom of the figure (Diptera, 

Lepidoptera and Coleoptera). The other three insects in this group (Heterodoxus, 

Aleurodicus and Thrips) belong with the rest of the Paraneoptera. Armillifer and 

Speleonectes are crustaceans of uncertain taxonomic position. It is unlikely that 

either of these latter two species is closely related to the other species in this group 

of 7. Another problematic point in Figure 4.3 is the position of Tricholepidion, which 

appears in the middle of the insect group. This is a wingless insect that is almost 

certainly basal to all the other insects in this study (which are winged) Nardi et al. 

(2003). 
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Figure 4.3: The result tree of proteins using PHASE. The number labeled along the 
branch is the posterior frequency for that branch appearing in all the sampling trees. 
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Figure 4.4: The result tree of tRNA using PHASE. The number labeled along the 
branch is the posterior frequency for that branch appearing in all the sampling trees. 
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In contrast to these misplaced species, there are also large parts of the tree that 

appear correct. For example, the myriapods are monophyletic, with the expected 

split between centipedes and millipedes. Were it not for the group of 7 misplaced 

species, the phylogeny of the chelicerates would also make sense: Limulus is basal, 

and Araneae and Acari are monophyletic. Several other groups of crustaceans and 

hexapods are also monophyletic: Collembola, Branchiopoda, Malacostraca, Lepi­

doptera, Coleoptera and Diptera. 

It is useful to compare the protein tree with the tree derived from the concatenated 

tRNAs see Figure 4.4. The first observation is that the root is among a group of 

crustaceans. This seems a clear case of long branch attraction between some of the 

more divergent crustacean sequences (like Speleonectes) and the outgroups. If the 

out groups are ignored, however, it is possible to reroot this tree so that there is a 

split between myriapods+chelicerates and crustaceans+hexapods, as in the protein 

tree. In fact there are some parts of the tRN A tree that appear more reliable than 

the protein tree. The group of 7 problematic species that were in the middle of the 

chelicerates in Figure 4.3 are no longer there. The Hymenoptera are with the other 

holometabolous insects. All six Paraneoptera are monophyletic. 

Armillifer is now paired with the crustacean Argulus. In fact, Armillifer is a 

member of a highly derived parasitic group known as Pentastomida, whose taxo­

nomic position was very uncertain from morphology. Molecular phylogeny has placed 

Pentastomids with Argulus, both using nuclear 188 rRNA (Abele et al. 1989) and 

mitochondrial protein sequences (Lavrov et al. 2004). Our tRN A analysis is further 

confirmation of this result. However, the mitochondrial protein result is obviously 

sensitive to the set of species included, since we observed above that Armillifer was 

attracted to the group of 7 misplaced species in our own protein tree. We repeated 

the protein analysis using only the pancrustacean species in our data set. In this 
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case, Armillifer and Aryulus were again paired. We, therefore, consider this issue to 

be settled. 

One further positive point regarding our tRN A tree is that Tricholepidion is basal 

to the winged insects, whereas this was not true with the protein tree. On the 

other hand, there are also some points that appear worse in the tRN A tree than the 

protein tree. The myriapods are no longer monophyletic, and only one of the three 

spiders (Heptathela) remains with the chelicerates. The other two ( Ornithoctonus and 

Habronattus) have jumped to an evidently false position within Crustacea. These two 

species have very unusual tRNAs that appear to be incomplete at the DNA level and 

are formed into functional tRNA molecules only by RNA editing (Masta and Boore 

2004). It is, therefore, not surprising that these species are out of place in the tRN A 

phylogeny. There appears to be a long branch attraction between these sequences 

from two spiders and the very divergent sequences of Tigriopus. 

The above discussion compares the ability of the tRNA and protein phylogenies 

to recover groups for which we already have good evidence. This may give the false 

impression that the correct tree is known in its entirety. In fact, there are many 

unresolved issues about which we would like to have more information on, the most 

important being the relative branching order of the subgroups of crustaceans, and 

the relationship of these groups to Collembola and the insects. These trees make 

predictions on these questions; however, our ability to draw conclusions is undermined 

by the presence of certain species that are clearly misplaced due to bias. We do not 

know whether to trust the parts of the tree where we have no firm prior expectations. 

We have only presented one tree for each of the proteins and tRNAs. In fact, we 

have carried out many different phylogenetic methods on these data sets. For the 

tRNAs, we tried using a combination of 7-state models for the paired regions and 

4-state models for the unpaired regions. This allows the model to account explicitly 
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for the occurrence of compensatory substitutions in the RNA helices. Although this 

method has proved useful in several other problems we have studied in our group, 

it did not resolve the problems seen in the tRNA tree shown (which uses the 4-

state model for all sites and ignores secondary structure). We also tried using a 

two-state model (that accounts for purines and pyrimidines only) with no noticeable 

improvement over the four state model. In the case of the proteins, in addition 

to the MCMC analysis with PHASE shown in Figure 4.3, we also tried maximum 

likelihood methods with PHYLIP package, the quartet-puzzling methods with Tree­

puzzle program. These methods produced trees differing in small respects from those 

shown, but none was clearly more reliable than the two examples shown in the figures. 

Our conclusion is that none of the available methods is able to deal reliably with 

the problematic features of this data set. The data include species that are very 

divergent, which make the results prone to long branch attraction, and also contain 

species with widely varying base compositions. 

4.6 A Best Estimated Tree for the Arthropods 

In the following chapter, we wish to compare several different measures of evolu­

tionary rates for different species, and we require a best estimate of the arthropod tree 

on which to carry out this analysis. In this section, we will combine the evidence from 

our own phylogenetic studies discussed in this chapter with other published evidence 

to produce our best estimate of the tree. There is reliable evidence to support the 

majority of nodes in this tree, but, in a few cases where there is conflicting evidence, 

we have left multifurcations remaining in the tree. The resulting best estimate tree 

is shown in Figure 4.5. We will now summarize our reasons for selecting this tree. 
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Figure 4.5: The phylogeny of Arthropoda 
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The relationship of the four principle groups is taken to be ( ( Chelicerata, Myri­

apoda), (Crustacea, Hexapoda)). The best evidence for this is the combined 188 and 

298 rRNA study of Mallatt et al. (2004). Our own protein results support this (Fig­

ure 4.3) although our tRNA results are equivocal due to a problem with the position 

of the root of the arthropods (Figure 4.4). We note that the alternative (Chelicerata, 

(Myriapoda, (Crustacea, Hexapoda))) also remains a possibility that cannot be ruled 

out (Giribet et al. 2001; Pisani 2004). 

Although the traditional view is that myriapods are monophyletic, there has been 

some molecular evidence to the contrary. We will take the myriapods to be mono­

phyletic. This agrees with our protein tree, and with the conclusions of Mallatt et al. 

(2004). Our tRNA tree would suggest parphyly of the myriapods, but, in our opinion, 

this is an artifact. Given the monophyly of Myriapoda, the split between Chilopoda 

and Diplopoda is not controversial. 

Within the chelicerates, the positioning of Limulus at the base is also non-controversial, 

and is supported by both tRNA and protein analysis given here. The remaining 

chelicerates are arachnids, and of the many orders of arachnids only the Acari and 

Araneae are represented among the complete genomes available. This split is there­

fore not controversial. We take the detailed phylogeny of the species within these two 

groups to be as obtained from the protein tree in Figure 4.3. This tree is consistent 

with classification of these species in the NCBI taxonomy. The tRNA tree appears 

less reliable here due to the problem mentioned above with Habronattus and Or­

nithoctonus, and also because of the slight rearrangement of the three Ixodes species, 

which we assume should really be monophyletic, as in the protein tree. 

Although the Pancrustacea group as a whole is well supported, the arrangement 

of the early branching groups within it is very unclear. In our own studies, the 

relationships of these groups are not consistent in the tRN A and protein trees, and 

58 



MSc Thesis ---Wei Xu --- McMaster University - Physics and Astronomy --- 2005 

they are sensitive to the evolutionary model use and to the set of species included. 

Several papers that include crustacean phylogenies are: Regier and Shultz (1997); 

Shultz and Regier (2000); Wilson et al. (2000); Richter (2002); Mallatt et al. 

(2004); Regier et al. (2005); However there is no consensus of these results and we 

do consider any of these to be definitive. We have, therefore, left a large number 

of groups branching simultaneously at this point. The subgroups of Pancrustacea 

that are well supported by our own data and consistent with previous papers are 

shown in Figure 4.5. These are the Armillifer / Argulus pair, Cirripedia, Malacostraca, 

Branchiopoda, Collembola and Insecta. The relationship of Collembola and Insecta 

has been debated in recent papers(Nardi et al. 2003; Delsuc et al. 2003). If these 

two groups are not sisters, the Hexapoda, as usually defined, is paraphyletic. We do 

not consider this matter resolved, and we do not believe the available mitochondrial 

sequence data is sufficient to resolve this large multifurcation. 

There are five representatives of Malacostraca in our data. The detailed phylogeny 

of these species is not quite the same in our protein and tRN A trees. A more detailed 

study of this group has been given by Morrison et al. (2002). Based on their evidence 

we take the relationship between these five species to be that shown in Figure 4.5. 

The relationship between Artemia, Daphnia and 'Priops is consistent in our protein 

and tRNA trees, and also agrees with the results of Spears and Abele (2000). 

The relationship of the orders within the insects has been widely studied. One 

of the most complete papers on this is that of Wheeler et al. (2001), and we have 

followed this. Extracting the relevant groups for our data set from the summary 

figure 20 of Wheeler et al. (2001) gives: (Thysanura, (Orthoptera, (Paraneoptera, 

(Coleoptera, (Hymenoptera, (Lepidoptera, Diptera)))))). 

The last four listed orders are holometabolous (insects that go through a full 

metamorphosis). The relationship between these orders is quite hard to reslove, in 
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particular because of the unusual base composition of the Hymenoptera (A pis and 

Melipona). This problem was noted above in our own protein phylogenies. Castro 

and Dowton (2005) have also addressed this problem with a new genome from the 

Hymenoptera, Perga condei, not contained in our data set. The relationship between 

the orders depends on the evolutionary model used, but they conclude that when the 

most realistic models were used, Hymenoptera is a sister to (Lepidoptera + Diptera), 

as above. 

The detailed phylogeny of species within the insect orders is largely non-controversial, 

with the exception of the six species listed as Paraneoptera (which is a higher level 

taxon, not a single order). The species in our study are representatives of four different 

orders: Hemiptera ( Aleurodicus, Triatoma, Philaenus), Thysanoptera (Thrips), Pso­

coptera (Lepidosocid) and Phthiraptera (Heterodoxus). These include long-branch 

species that are problematic in our protein tree. In our tRN A tree, although the six 

species are monophyletic, the three Hemiptera are not monophyletic. We have again 

decided to go with the relationships between these orders given by Wheeler et al. 

(2001), as the sequence-based evidence does not seem very reliable in this group. 
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Chapter 5 

Calculating the Correlation of Gene Order 

and Sequence Information 

The goal of our project is to find the correlation coefficient between sequence 

information and gene order information. To calculate the correlation of two kinds 

of molecular information, we have thought about two methods. The first method is 

to build up a topology tree for the Arthropoda group; then, based on that tree, we 

use gene orders and sequence information to construct phylogenetic trees with branch 

lengths. As the trees from different sources have the same topology, we can calculate 

the correlation of pairwise branch lengths. The second method is to use a distances 

matrix. The distance matrix contains pairwise distances between all species. We can 

compare the distances for different kinds of information for the same species pairs. 

This method does not require any phylogenetic tree. 

Figure 5.1 demonstrates the two methods. In figure A, there is a phylogenetic tree 

on which two different distance measures are shown (the second type of distances are 

either shown below the branches or in parentheses). The distances are measured from 

the common ancestor 0 to the tips. The correlation should be calculated from pairs 

of distances. In figure B, no phylogenetic tree is required. 

If we think abstractly, for one kind of information, there are a set of distances, 

and we can denote them as a distance vector. For two kinds of information, there 

are 2 distance vectors. There are two kinds of different correlation questions: self-
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Figure 5.1: Two methods to calculate the correlation: A uses a phylogenetic tree; B 
uses a distance matrix 

correlation and cross correlation. Self-correlation means that changing one element 

in one distance vector will affect other elements in the same vector. Cross-correlation 

means changing the value of one distance vector will affect the value of the other 

vector. Cross-correlation is what we want to calculate and self-correlation is what we 

want to avoid. 

However in both methods, self-correlation is difficult to avoid. In Method One, 

distances OA and OB both contain distance OE and distances OC and OD both 

contain distance OF. In Method Two, given n species, there are 2n- 3 number of 

independent variables. However, in distance matrix there are n(n
2
-l) distances, which 

are highly correlated. 

From the above discussion we can see that Method One has less self-correlation 

than Method Two, especially when inner branch lengths like OE and OF are small. 
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Hence, we prefer Method One, though this method depends the predefined topology 

tree. 

There is a modified method from Method One. We can compare each branch 

length (OE,EA,EB, etc.) instead of branch lengths like OA, OB. However, this 

method has a strong dependence on tree topology, and this method is not applicable 

for gene order information. Another reason is we do not have a reliable estimate 

of the gene order of every internal node of the tree. To get a phylogenetic tree with 

each median gene order labeled for Arthropoda species may require more than several 

years' computation time. 

5.1 Method 

The ancestral gene order for Arthropods is assumed to be that of Limulus polyphe­

mus (Lavrov et al. 2002). Figure 5.2 shows that the gene order of Limulus polyphemus 

is closest to the ones of non-Arthropod in Arthropod. The gene order of Drosophila 

which is regarded as the ancestral gene order of insects is nearly identical to Limulus 

polyphemus, except that there is a translation of one Lys tRNA(L2). Compared with 

other gene orders in Arthropod, like Narceus annularus and Pagurus longicarpus, the 

gene order of Limulus polyphemus is closer to gene orders of K athrina tunicata and 

Homo sapiens. We calculated breakpoint distance and inversion distance (number of 

duplicated and deleted should be considered before calculation). The cases where the 

two gene orders have different set of genes should be paid attention. For breakpoint 

calculation, we took the distance to be the number of breakpoints in the larger of the 

two genomes. This includes the breakpoints caused by the duplication or deletion. 

However, for the calculation of inversion, the two gene orders should have same set 

of genes. In unidentical situation, our method is first to calculate how many genes 
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Figure 5.2: The ancestral gene order of Arthropod. The gene order of Limulus 
polyphemus is closest to the ones of non-Arthropod among Arthropod and its gene 
order is regarded as the ancestral gene order of Arthropod. 

64 



MSc Thesis ---Wei Xu --- McMaster University - Physics and Astronomy --- 2005 

involved duplication and deletion. After deleting those genes, the two gene orders 

have identical gene set. And we report the inversion distance together with the num­

ber of duplications and deletions ( dd number). The calculation of breakpoint number 

is straight forward. For the inversion number calculation, we used the GRAPPA 

program. 

Using the best estimate of the Arthropod tree derived in Chapter 4, we calculated 

branch lengths with Yang's PAML package, because of its flexibility and power. The 

tree space searching algorithm is not very efficient, however, in our case; we need 

to optimize the other parameters for a given guide tree. In both protein and tRNA 

cases, we choose the hierarchical model of mutation rates approximated by a discrete 

Gamma distributions with 8 categories. 

For the tRN A sequences, we did not consider the secondary structure information, 

because the branch lengths have a more straightforward interpretation when the single 

site model is used. From our several trials with second structure information, we 

should admit that the secondary structure information does not help us at all. 

5.2 Results 

For a given data, there might be several models applicable. The model with more 

free parameters will lead to a better performance (for maximum likelihood method, it 

will have a higher likelihood value). The question is whether the better performance 

of parameter-rich model is because of its ability to capture more characteristics of 

reality or just because of overestimation. Goldman (1993) established the likelihood 

ratio test (LRT) for phylogeny methods adopting likelihood functions. Given two 

models, model A and model B, and model A has n more number of free parameters 

than model B, and the pivotal quantity a is defined as two times of ratio of likelihood 
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functions of model A and B, ie. u = 2/times([likelihoodof A/likelihoodof B]) or 

sigma = 2 x ( [logarithmlikelihoodo fA - logarithmlikelihoodo f B]). The pivotal 

quantity is x2 distributed with n number of freedom where n is the difference of the 

numbers of free parameters in two models. So, the question about the significance of 

parameter-rich model turns into a likelihood ratio test. 

For tRNA, we tested both HKY model and the general time-reversible model 

(REV). In HKY model, there are 3 parameters for base frequencies and 2 parameters 

for mutation rates (a and {3) and In REV model, there are 3 parameters for base 

frequencies and 6 parameters of mutation rates. So the number of degrees of free­

dom for u is 4. After running PAML package, the logarithm likelihood value (for a 

problem with lots data, the likelihood is very small, the logarithm form is convenient 

despite its negative sign) for HKY model is -43882.128102 and -43802.215971, sou 

is 159.8243. For x2 distribution with 4 degrees of freedom, the 95% confidence, the 

value is 9.487729. And u value is dramatic larger than the 95% confident value. The 

conclusion is that REV model is significant better than HKY model for Arthropoda 

tRNA data. 

For proteins, we tested both the mtREV model and the general time-reversible 

model (labeled as REVaa in PAML package). REVaa model has 189 free parameters, 

and the optimization requires a very long computation time. So, we followed the 

suggestion given by Yang (Yang 2005). Firstly, we used the mtREV model with 8-

categories of Gamma distribution rate to estimate initial branch length and a (the 

only parameter for Gamma distribution model). Secondly, we fixed the branch lengths 

and a (the Gamma distribution model was switched off) value estimated in step one 

and used the REVaa model to estimate an initial value for the amino acid mutation 

matrix. Thirdly, we continued to use REVaa model and switched Gamma distribution 
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model on and started from the branch lengths, a value and mutation matrix estimated 

previously. 

In both the mtREV and REVaa models, the frequencies of amino acid are not 

parameters. They can be either calculated from the distribution in the original data 

or copied from the specific models. Here, we chose to calculate frequencies from 

the data. For the mtREV model, all data were previously calculated, there is no 

free parameter. For the REVaa model, there are 189 free parameters. So the num­

ber of degrees of freedom for u is 189. From the final result, the logarithm likeli­

hood value is -68844.805733 and the logarithm likelihood value for REVaa model is 

-67728.187511, sou is 2233.236. The 95%-confi.dence value for chi2 distribution with 

189 degrees of freedom is 222.0756. So, the conclusion is that we should have used 

the REVaa model instead of mtREV model for Arthropoda proteins. 

tRNA HKY REV #of freedom 95% value for X2 (J 

-43882.128102 -43802.215971 4 9.487729 159.8243 
protein mtREV REVaa #of freedom 95% value for x2 (J 

-68844.805 733 -67728.187511 189 222.0756 2233.236 

Table 5.1: Likelihood ratio tests for models of tRNA and protein 

Figure 5.3 and Figure 5.4 are the results ofPAML for tRNA sequences and protein 

sequences. Despite the same topology, the trees vary in branch lengths. The values 

of the distances for each species are shown in Table 5.2. The correlation coefficients 

for all the different distance measures are shown in Table 5.3. 

It's not surprising that the correlation coefficient for breakpoint distance and in­

version distance is as high as 0.99, because they are just different methods to describe 

the same information. The correlation coefficient for breakpoint distance and pro­

tein distance when breakpoint distance is no larger than 10 breakpoint numbers is 

-0.004184711 which is almost zero. The correlation coefficient when breakpoint dis­

tance is no larger than 22 breakpoint numbers is 0.3438061. The overall coefficient 
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Figure 5.3: Phylogeny tree for tRNA sequence using PAML with predefined topology 
tree 

68 



MSc Thesis ----Wei Xu ---- McMaster University- Physics and Astronomy ---- 2005 

- 0.1 

TerebratuBna. N 
Katharina N 

I..inm1us c 
lleptatluala c 

L------{=========--- ~omw C Babronattus C 
Varroa C 

Carlos C 
Qmitbmlaros moubata C 
Omitbodaros pardn:as C 

B.blpkepba1us c 
Amblymnma c 

Haemapbysalis C 
bodes• bo1m:ydus C 

boiles be:xaganas C 
bodes persuk:atus C 

Scutigera M 
~---------- ~bbm M 

Thy:rop!I'PS M 
Nar.::eas M 

Spelean.edes 0 

Tetradita 0 
PoDi.dpes 0 

Penaeus 0 
r------- ~ax 0 

Partanus 0 
Pmadirus 0 

Paguras 0 
r---------- Artmnia 0 

Triops 0 
Daplm:ia 0 

L_-----1======-- Tettoamd~ X I Gom;pbio.::epbalus X 
'l'rldu:dspiili X 

Loc:usta X 

Tr.iatmna X 
PJrila"""S X 

Ostrinia. ~alis X 
.Aulberaea X 
Baniby.x marl X 

A:nopbeles gamldae X 
Drosopbila melanogaster X 
Chrysomya X 

Vargu'la 0 

Thrips X 

AEmillifer 0 

Heterodoxus X 

Figure 5.4: Phylogeny tree for protein sequence using PAML with predefined topology 
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species break point inversion dup. and del .trna dist .prot dist 
Carios 0 0 0 0.700731 0.792694 
Heptathela 0 0 0 0.757864 0.870215 
Ixodes hexagonus 0 0 0 0.736344 0.902641 
Ixodes holocyclus 0 0 0 0.759042 0.827223 
Ixodes persulcatus 0 0 0 0.719300 0.821178 
Limulus 0 0 0 0.357568 0.401047 
Ornithodoros moubata 0 0 0 0.684852 0.876607 
Ornithodoros porcinus 0 0 0 0.674827 0.856152 
Crioceris 3 2 0 0.554557 0.5765967 
Daphnia 3 2 0 0.618057 0.507806 
Drosophila melanogaster 3 2 0 0.367311 0.4165657 
Gomphiocephalus 3 2 0 0.691279 0.618784 
Lithobius 3 3 0 1.134174 0.611561 
Panulirus 3 2 0 0.577519 0.528212 
Penaeus 3 2 0 0.340374 0.320218 
Philaenus 3 2 0 0.689365 0.5816597 
Pyrocoelia 3 2 0 0.520205 0.7702787 
Triops 3 2 0 0.419714 0.400225 
Triatoma 3 2 0 0.589781 0.5025457 
Tricholepidion 3 2 0 0.442811 0.393071 
Chrysomya 4 2 1 0.355802 0.4214487 
Antheraea 6 5 0 0.499159 0.5401667 
Bombyx mori 6 5 0 0.511159 0.5435397 
Locusta 6 5 0 0.384352 0.516007 
Ostrinia furnacalis 6 5 0 0.494786 0.4758177 
Portunus 6 5 0 0.506570 0.436482 
Tribolium 6 5 0 0.545168 0.5288597 
Amblyomma 7 6 0 0.878069 1.004787 
Artemia 7 5 0 0.627421 0.637585 
Haemaphysalis 7 6 0 0.818724 0.956307 
Rhipicephalus 7 6 0 0.820515 0.964293 
Aleurodicus 8 5 1 1.036355 1.5439677 
Anopheles gambiae 8 6 0 0.412557 0.4694067 
Tetrodontophora 8 6 0 0.770472 0.696898 
Narceus 9 9 0 0.631712 0.579376 
Thyropygus 9 9 0 0.493063 0.460492 
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species break point inversion dup. and del .trna dist .prot dist 
Armillifer 13 12 0 0.845627 1.733262 
Melipona 14 8 2 0.932018 1.6587887 
Varroa 14 12 0 0.827968 1.088804 
Omithoctonus 15 13 0 1.945021 1.226922 
Scutigera 15 15 0 0.478776 0.441778 
Habronattus 16 14 0 1.481066 1.091262 
Lepidopsocid 17 16 0 0.604475 0.5873057 
Vargula 17 15 0 0.786276 1.412554 
Hutchinsoniella 18 16 0 0.860096 0.870521 
Pagurus 18 12 0 0.645712 0.447337 
A pis 19 16 0 0.839289 1.5046777 
Speleonectes 19 16 1 0.834380 0.925381 
Argulus 20 18 0 0.715587 1.124494 
Cherax 20 16 0 0.542760 0.574595 
Tetraclita 20 16 0 0.664085 0.574807 
Pollicipes 22 16 2 0.685345 0.590624 
Thrips 32 29 1 1.337410 1.3197147 
Heterodoxus 35 32 0 1.390795 1.8337367 
Tigriopus 35 32 0 2.146046 1.344014 

Table 5.2: Branch lengths for 57 Arthropoda species using 4 different measures 

35 I I I I I J 

' 
30 X -

25 -
inversion 
number 20 -

+ X X 
dd 15 x *x*x -X 

number XXX X 
10 X X -

5r- x*x -
*X 

0 J I I 

0 5 10 15 20 25 30 35 
break point number 

Figure 5.5: The correlation of breakpoint number and inversion number 
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Figure 5.6: The correlation of protein distance and tRNA distance 
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Figure 5.7: The correlation of breakpoint number and tRNA distance 
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Figure 5.8: The correlation of breakpoint number and protein distance 

bp inv trna prot 
bp 1.0000000 0.9934813 0.5870733 0.5259077 
mv 0.9934813 1.0000000 0.6025158 0.5352147 
trna 0.5870733 0.6025158 1.0000000 0.6858336 
prot 0.5259077 0.5352147 0.6858336 1.0000000 

correlation bp<= 10 bp<= 22 overall 
bp VS protein -0.004184711 0.3438061 0.5259077 

correlation prot. dist.<= 1.1 overall 
protein VS tRNA 0.7685729 0.6858336 

Table 5.3: The correlation tables 
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is 0.5259077. The correlation coefficient for protein distance and tRNA distance 

when protein distance is no larger than 1.1 is 0.7685729 and the overall coefficient is 

0.6858336. 

5.3 Discussion and Conclusions 

The main points in this chapter are that all 4 distances are positively correlated 

with one another as shown in Table 5.3. The high correlation between breakpoint 

distance and inversion distance suggests that it doesn't matter too much which gene 

order rearrangement measure we use when we calculate the correlations between 

sequences and gene orders. Also the protein and tRNA distances are also strongly 

correlated which means generally that mutation influences protein and tRNA in a 

similar way. It won't make big difference whether we use protein or tRNA distance 

to discuss the correlation of gene orders with sequences. 

The overall correlation of breakpoint distance with protein distance is high. In 

Figure 5.2, the species with long branch lengths always tend to be long in protein 

distances. From closer inspection of Figure 5.2, one can see that there is more ran­

domness when mutation rate is low, and the correlation coefficient for species where 

the breakpoint distance is no larger than 10 is almost 0. It suggests that low mu­

tation situations, the evolution of gene order and the evolution of sequence seem to 

be independent or very weakly correlated. Since gene orders and sequences evolve 

by different mechanisms it is not difficult to understand the very weak correlation. 

While on the other hand, under high mutation situations, large amounts of gene order 

rearrangements are always accompanied with large amounts of point mutations on 

sequences. This suggests that, when phylogeny analysis fails for sequences due to 
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long branch problems, the phylogeny analysis for gene orders also has little chance to 

succeed. 

However, it is interesting to investigate the reason of high correlation of gene or­

ders and protein distances under high mutation situations. Basically, gene orders 

and protein sequences evolve in differently. This high correlation can be the result 

of some factor which increases both the rate of sequence mutations and gene order 

rearrangements. One possible case is that when the accuracy of DNA replication 

enzyme reduces then the sequence mutation rate and the genome rearrangement rate 

increase simultaneously. The possible cause and effect relationship, between gene 

order and sequence evolution can cause a high correlation. Since recombination of 

genomes can change the gene order, if there exist large number of repeated sequences 

on genome, there will be a large chance for recombination to happen. Normally if 

the genome is at a stable state (not many genome rearrangement), there won't be 

many repeated sequences. If for some reason the point mutation rate on sequences 

becomes high, and by chance many new repeated sequences appear, the chance for 

genome recombination will be high, and hence there will be more gene order rear­

rangements. So it is possible that the unusual mutation rate on sequences can cause 

a large number of gene order rearrangements. Then one would like to ask, in the 

other direction, can the unusual change of gene order cause the high mutation rate of 

sequences? If one gene is changed to a different location or direction, and it becomes 

silent or the expression level becomes significantly lowered, it will be lethal to that 

species. However, if this gene belongs a gene family, the dysfunction of that gene 

may not influence the survivability of that species. Then this gene can evolve only 

under pure mutation without any selective force opposing it. Hence the substitution 

rate will increase because the usual rearrangements of gene orders. However, for mi­

tochondria, this can not happen because there are no gene families in mitochondria 
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genomes. There is another possible way that the change of gene orders can change 

the subsitution rate of sequences. There are strong asymmetric mutation rates and 

different biases on codon usage between the two strands of DNA. H a gene changes 

its strand, it will find itself in a new mutation environment. Hence its substitution 

rate changes. 

Taking a further look at Figure 5.2, we see that although generally the proteins and 

tRN As are highly correlated, there are some differences for the correlations between 

high mutation and low mutation situations. Under low mutation situations, the 

correlation is stronger; while under high mutation situations the correlation is weaker. 

Both proteins and tRN As genes are all sequences on a genomes. High correlation 

tells us that there is no obvious bias for genome evolution under low mutation rate. 

However, the weaker correlation under high mutation situations suggests that there 

should be some factors which have bias on either protein or tRNA genes during 

evolution. The selective pressure may influence the substitution rates of protein and 

tRNA genes, because selective pressure always acts on only one or several genes. 

However, we also note that when sequences are very divergent there is a large error in 

the estimate of evolutionary distances. So we would expect the scatter in the points 

on Figure 5.2 to be larger for high-distance points. 

5.4 Future Work 

Evolution and phylogeny analysis are interesting to me. From now-day informa­

tion we can infer the history of life and by understanding the the history, we can 

know better about our human beings. What's more, this is an area that researchers 

from different disciplines can work through together. Personal speaking, I would like 

study this area from a mathematical and statistical view. This is a new, developing 
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and challenging area. There are many important questions have not been solved yet. 

About the gene orders, there is no statistical distance measure and the maximum like­

lihood methods haven't been applied to them. I am happy to continue the researches 

on this area and try to contribute as much as I can. 
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