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Abstract 

In this work we propose two techniques for symmetric multiple description coding 

with reduced storage space decoder. 

The first technique is multiple description scalar quantizer with linear joint de

coders. We propose an optimal design algorithm similar to Vaishampayan's algo

rithm, to which we add an index assignment optimization step. We also solve an 

additional challenge in the decoder optimization, by proving that the problem is a 

convex quadratic optimization problem with a closed form solution (under some mild 

conditions). Our tests show that the new method has very good performance when 

the probability of description loss is sufficiently low. 

The other technique is an improvement to the traditional multiple description 

coding scheme based on uneven erasure protection. We evaluate the asymptotical 

performance of both schemes for a Gaussian memoryless source. The analysis reveals 

that the improvement reaches over 1 dB for up to ten descriptions and low probability 

of description loss. From our experiments we observe that the improved scheme is 

very competitive comparing to other multiple description techniques as well. 
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Chapter 1 

Introduction 

1.1 Multiple Description Coding 

The advent of modern communications raises new challenges for multimedia trans

mission. One of these challenges, encountered in both wired and wireless networks, 

is the necessity to alleviate the impact of packet loss. Multiple description coding 

(MDC) is an effective way to solve this problem. The basic idea in MDC is to create 

several descriptions of the signal such that it can be reconstructed to a certain fidelity 

from each individual description, and when more descriptions are available, they can 

refine each other, leading to a higher reconstruction fidelity. In transmission over 

packet-switched networks (Fig. 1.1) each packet can be regarded as an individual 

description. The use of MDC ensures that when some packets are lost due to network 

congestions and/or channel errors, the received packets can still be decoded leading to 

1 
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Figure 1.1: Modern packet-switched network. 

a reconstruction quality which degrades gracefully as the number of losses increases. 

Another application of MDC is in diversity-based communications systems. In 

such systems there are several channels (or paths in a network) from a sender (or 

multiple senders) to the destination. Each description is transmitted over a separate 

channel. In this work we only consider the scenario where each channel either trans-

mits without error or it breaks down. If the same data were transmitted over all the 

channels there would not be any advantage when all channels transmit successfully 

versus the case when only one is successful. With MDC, it is guaranteed that when 

only one channel works, enough data arrives at destination to ensure a good signal 

reconstruction, while a consistently higher quality reconstruction is achieved as more 
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Figure 1.2: Multiple description scheme for three descriptions. 

channels are successful. 

In the most general setting, an MDC scheme generating K descriptions can be 

regarded as a system consisting of K encoders (also called side encoders), and 2K - 1 

decoders, one for each subset of descriptions. Fig. 1.2 illustrates the block diagram of 

an MDC scheme for three descriptions. Each encoder generates a bitstream ( descrip-

tion) of the same source and sends it over a separate channel. The sender does not 

know the channels failure pattern, but the receiver has this information. If only a sub-

set of channels are successful, hence only some descriptions arrive at destination, the 
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decoder corresponding to that subset of descriptions is used to jointly decode them. 

The K decoders corresponding to individual descriptions are called side decoders, 

while the others are termed joint decoders. Moreover, the joint decoder correspond

ing to the whole set of descriptions is known as the central decoder. 

1.2 Information Theory Perspective of MDC 

1.2.1 Introduction to Rate Distortion Theory 

There is always a tradeoff between the length of the representation (bit rate) and the 

quality of the reconstruction. In order to achieve a higher quality reconstruction, a 

higher bit rate is needed. Rate distortion theory studies the achievable region of rates 

and distortions. The rate-distortion function is determined asymptotically, i.e., by 

assuming that the block length n tends to infinity, which is not possible in practical 

codes. However, it gives useful intuition on how quality varies with the length of the 

representation. 

Assume that a source produces a sequence of independent, identically distributed 

random variables X 1 , X2 , · · · , Xn, · · ·, over some alphabet X. An n-block source 

code consists of an encoder-decoder pair (f, g). The encoder f maps any source 

sequence x(n) of length n to an index f(x<nl) E {1, 2, · · · , 2nR}, where R is the bit 

rate per symbol. The decoder g maps any index from {1, 2, · · · , 2nR} to a reproduction 

sequence a(n) = g(f(x<nl)) E xn. 

4 
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The distortion measured gives a nonnegative numerical rating d(x, a) to how well 

a source sample x is approximated by a reconstruction value a. The most commonly 

used distortion measure is the squared error measure d(x, a)= (x-a) 2
. The distortion 

between sequences x(n) = (x1, x2, · · · , Xn) and a(n) = (a1, a2, · · · , an) is defined as the 

average distortion per symbol, which is 

(1.1) 

The distortion associated with the source code (f, g) is defined as the expected dis-

tortion between the source and its reproduction: 

( 1.2) 

A rate distortion pair ( R, D) is achievable if there exists a source code (f, g) with 

length n, rate R and distortion D for some positive integer n. The closure of the 

set of achievable rate distortion pairs (R, D) is called the rate distortion region. The 

rate-distortion function R(D) is the minimum of all rates R such that (R, D) is in the 

rate distortion region for a given D. Conversely, the distortion-rate function D(R) is 

the minimum of all distortions D such that (R, D) is in the rate distortion region for 

a given R. 

Generally, the rate distortion region is very hard to determine. However, there 

are some results for a few sources and certain distortion measures. For a Gaussian 

memory less source with variance CJ
2

, the distortion rate function is [38, 1, 8]: 

( 1.3) 

5 
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For a memoryless continuous-valued source with variance rJ2 and differential entropy 

h(p), its distortion rate function with squared error measure is bounded by [38, 1, 8]: 

( 1.4) 

where the differential entropy h(p) is determined by the source probability density 

function p(x), 

h(p) £-J p(x)log2 p(x)dx. (1.5) 

For a memoryless Gaussian source with variance rJ
2

, we have: 

(1.6) 

Relation ( 1.4) implies that the Gaussian source is the most difficult source to 

compress. Among different sources with the same variance, the Gaussian source 

requires the largest number of bits to achieve the same distortion. 

1.2.2 Multiple Description Rate Distortion Region 

In MDC, each description has a rate and each combination of descriptions has a 

distortion (the distortion achieved by the joint decoder). The multiple description 

rate distortion region (MD region) for a particular source and distortion measure, in 

the case of K descriptions, is the closure of the set of simultaneously achievable K 

rates and 2K - 1 distortions in MDC. 

The entire MD region has been known only for Gaussian memoryless sources with 

squared error measure for the case of two descriptions. The region was determined 

6 
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by Ozarow [31] and is referred to as the Ozarow MD regwn. Similarly to single 

description, the MD region for any continuous memoryless source with squared error 

measure can be bounded by the MD region for Gaussian source. In the case of two 

descriptions, the MD region is the closure of the sets of achievable rate distortion 

denote the individual distortions of the two descriptions (also called side distortions), 

and D0 denotes the distortion achieved when the two descriptions are decoded jointly 

(also known as central distortion). 

For a Gaussian memoryless source with unit variance and squared error measure, 

the Ozarow MD region is given by: 

(1. 7) 

D > 2-2Rz 
2- ' (1.8) 

(1.9) 

where 1 is defined as: 

{ 

1, 
,~ 

1 l"f IT A 
l-(vTI-\I'"K)2' > u 

if IT~ L:l 

for 

(1.10) 

(1.11) 

The MD region under the assumptions that R1 = R2 1, D 1 = D 2 is plotted 
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Figure 1.3: The Ozarow MD region for two balanced descriptions. 

in Fig. 1.3. ( 1.9) implies that the central distortion must exceed the distortion rate 

minimum by the factor I· When the side distortions are large, 1 = 1 so the central 

distortion can reach the minimum. Otherwise, we have to compromise the central 

reconstruction for the good side reconstructions. 

For more than two descriptions, an achievable region was provided in [33] for the 

symmetric case, where each description has the same rate, and the distortion con-

straint only depends on the number of descriptions available. Wang and Viswanath 

[51, 50] established a tight sum rate lower bound for certain cases with only two lev-

els of distortion constraints. Tian, Mohajer and Diggavi [42] provided a novel lower 

bound for symmetric scalar Gaussian MDC with K levels of distortion constraints. 
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1.3 MDC Techniques 

The main MD methods investigated in the literature are MD based on uneven era

sure protection, MD quantization, MD correlating transforms, and MD coding with 

frames. This section briefly describes these MD techniques. More detailed informa

tion can be found in [19]. 

MD Based on Uneven Erasure Protection (MD-UEP). A method to 

achieve symmetric multiple descriptions, which has been used in image processing 

applications, is by combining a successively refinable (i. e., progressively refinable or 

scalable, or embedded) source code with uneven erasure protection [29, 34, 14, 40]. 

The scalable code stream is split into consecutive segments of decreasing importance. 

Then the source segments with decreasing importance are encoded with progressively 

weaker erasure protection channel codes. Further, the descriptions are formed across 

the channel codewords. 

Very recently, [42] showed that regardless of the number of descriptions, the gap 

between the MD-UEP coding scheme and the optimal MD coding is less than 1.5 bits 

in individual description rate. This result suggests that MD-UEP is a very competitive 

approach, due to its simplicity and to the fact that the gap can be bounded by a small 

constant value. 

MD Quantization. In MD quantization, the descriptions are generated using 

quantization. Vaishampayan proposed a design algorithm for fixed-rate MD scalar 

quantizer (MDSQ) for two descriptions [45], for the special case called balanced de-

9 
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scriptions. Two descriptions are said to be balanced if they have the same rate, 

and achieve the same distortion when used individually. This algorithm is extended 

to entropy-constrained scalar quantizers in [47]. The design of MD lattice vector 

quantization was also addressed in [37, 48]. 

MD Correlating Transforms. In this framework the descriptions are generated 

by a linear transform with the purpose of correlating signals. Redundancy is added 

through the way transform coefficients are generated [49]. The statistical dependency 

between transform coefficients can be used to improve the estimation of the lost 

coefficients. The general approach is to multiply a transform matrix T to the vector 

of random variables. Let us consider an example as is shown in [49]. Assume X I, 

X 2 are two independent, zero-mean Gaussian random variables with variances CJi, CJ~, 

respectively, CJf =/= CJ~. We can form the descriptions (YI, Y2 ) of (XI, X2 ) by 

lYI] l~ -~ ] [xi] 
Yz v'2 v'2 xz 

(1.12) 

This way, YI = (XI + X2)/ J2, Y2 = (XI - X2)/ J2, and YI, Y2 are correlated with 

correlation coefficient 

(1.13) 

If one description is lost, we can estimate the lost description to better quality than 

if XI and X2 are directly used as descriptions. [20, 21] extend this simple technique 

to more general transforms and longer vectors. 

MD Coding with Frames. The idea of quantized frame expansion [22, 23] is 

10 
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to left-multiply a source vector x(N) with length N by a matrix F E JRMxN, M > N 

to produce a vector of M transform coefficients. These coefficients are scalar quan

tized and partitioned into K sets, K ~ M, to form K descriptions. The quantized 

expansion coefficients are represented by y = Q(Fx). The source vector can be re

constructed by solving a least-squares problem: arg minx IIY - Fxll 2
. Improvement 

can be made by introducing more complicated reconstruction methods [7, 24, 35]. 

1.4 Contribution and Organization of this Thesis 

In the most general setting, the MDC scheme generating K descriptions has 2K - 1 

decoders. If each decoder needs to store some information to enable decoding, then 

the storage space requirement increases significantly with the number of descriptions. 

High storage space needs could be an issue, especially in applications where the 

memory resources are scarce (for example, transmission to mobile devices). Such 

applications motivate the study of MDC with reduced storage space decoder. 

In this thesis we propose two techniques for symmetric MDC with reduced storage 

space decoder. One is MDSQ with linear joint decoders. The other is an improved 

MD-UEP scheme. 

For MDSQ, in order to reduce the storage space at the decoder we need to com

promise the decoding optimality. The traditional MDSQ stores a codebook for each 

decoder. The solution we propose is to store a codebook for each side decoder and 

a few joint decoders, and generate the other codebooks as linear combinations of the 

11 
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side codebooks during decoding. We address the problem of optimal design of such 

systems. The algorithm we propose is a generalized Lloyd algorithm, similar to the 

one introduced by Vaishampayan [45], to which we add an index assignment opti

mization step at each iteration. The challenge is in the step of decoder optimization, 

which is more complex than in the traditional design [45], since the code books can 

no longer be optimized separately. Fortunately, as we will show later, the problem 

turns out to be a convex quadratic optimization problem with a closed form solution 

(under some mild conditions). 

MD-UEP is also an MD strategy of reduced storage space at the decoder. The 

second technique we propose is an improvement to the traditional MD-UEP. The 

main idea is to partition the set of samples into equal-sized subsets, and encode each 

subset separately using a successively refinable quantizer. Further, interleaved erasure 

protection codes of decreasing strength are applied across the sub-streams. We show 

that the proposed MD-UEP framework strictly outperforms the previous one. We 

evaluate the asymptotical performance using the expected distortion at the decoder 

as the performance measure, and compare it with the traditional MD-UEP. For a 

Gaussian memoryless source, the asymptotic improvement in performance can attain 

as much as 1.68 dB (for 3 descriptions and very low probability of description loss), 

with a tendency to decrease as the number of descriptions and the probability of 

description loss increase. This new MD-UEP technique was first presented in [15]. 

We also perform an experimental study of the proposed MDC techniques and 

12 
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compare them with traditional MDSQ and MD-UEP. Our tests show that the new 

MD-UEP technique is competitive to MDSQ. 

The thesis is structured as follows. Chapter 2 presents the notations and def

initions for scalar quantization and MDSQ, and introduces the generalized Lloyd 

algorithm for optimal design of MDSQ with more than two descriptions. Chapter 

3 introduces the MDSQ with linear joint decoders and proposes an optimal design 

algorithm. Chapter 4 presents the improved MD-UEP scheme and its asymptotical 

performance analysis. We show the experimental results and the comparison between 

the two techniques (also with the traditional MDC schemes) in Chapter 5. Chapter 

6 concludes the thesis. 

13 
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Chapter 2 

Definition and Optimal Design of 

MDSQ 

In this chapter, we present the notations and definitions for scalar quantization and 

MDSQ, as well as the generalized Lloyd algorithm for optimal design of MDSQ with 

more than two descriptions. Since this algorithm can only guarantee a locally opti

mal solution, the choice of the initial encoder, which includes an index assignment, 

influences its performance. Therefore, we reserve the last section to the discussion of 

the index assignment. 

2.1 Scalar Quantization 

A scalar quantizer (SQ) consists of an encoder-decoder pair (f, g). Given a continuous 

random variable X, with the probability density function (pdf) fx(x), the encoder f 

14 
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maps any sample x to an index i in the set {1, 2, · · · , N}, and the decoder g maps 

any index i E {1, 2, · · · , N}, to a reconstruction value (or reproduction value) ai E JR. 

The set of all reconstruction values is called the codebook. The quantizer cells are 

the sets A1 ,A2 , ... ,AN, where Ai = {x: f(x) = i}, i = 1,2, ... ,N. They form a 

partition of IR, in other words, they satisfy 

N 

UA = IR., (2.1) 
i=l 

Ai n Ai = 0 for i =/= j. (2.2) 

Such a quantizer is called an N-level SQ. The rate R of a quantizer is defined as 

the average number of bits used to represent the indices i E { 1, 2, · · · , N}. SQ 's 

can be divided into two classes: fixed-rate SQ and entropy-constrained SQ. In fixed-

rate SQ, the same number of bits is used to represent all indices, hence the rate is 

1 = flog 2 Nl. On the other hand, in entropy-constrained SQ the indices are entropy-

coded, therefore the number of bits used to represent each index depends on the 

entropy of the corresponding cell. The rate of entropy-constrained SQ is the sum 

of entropies of all cells, i.e., 1 = 2::1 -Pi log2 Pi, where Pi = JAi fx(x)dx. In this 

work, only fixed-rate SQ is considered, therefore, the specification of fixed-rate will 

be omitted. 

The performance of an SQ is measured by the distortion between the input signal 

and its reconstruction. In this work, we use the squared error distortion measure, 

15 
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hence, the expected distortion of the source reconstruction is 

(2.3) 

The objective of optimal SQ design is to find an encoder-decoder pair (f, g) which 

minimizes the expected distortion E( d). 

A popular method for optimal SQ design is the Lloyd algorithm [27, 28]. This is 

an iterative algorithm which optimizes the encoder and the decoder one at a time. It 

begins with an initial encoder, and proceeds iteratively, each iteration consisting of 

the following two steps: (1) fix the encoder and optimize the decoder, and (2) fix the 

decoder and optimize the encoder. The value of E(d) decreases at each iteration, and 

since it is bounded below by zero, the sequence of expected distortions is guaranteed 

to converge to a local minimum. 

Decoder Optimization. At this step the encoder is fixed and the decoder is op-

timized. The optimal codebook must satisfy the centroid condition [18]. In other 

words, the optimal reconstruction value a;, for the ith cell, 1 ::::; i ::::; N, has to be the 

center of mass (centroid) of the region A;, i.e., 

1 JA;xfx(x)dx 
a;= E[XIX E A;]= xfxiAJx)dx = f . ( ) · 

A; A,fx X dx 
(2.4) 

Encoder Optimization. In this step the decoder is fixed and the encoder is opti-

mized. The encoder which minimizes (2.3) can be obtained by mapping any input 

sample x to the reproduction value which incurs the minimum distortion, in other 

words, to the closest reproduction value. This condition is known as the nearest 

16 
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neighbor condition [18]. Formally, it requires that Ai consists of all input samples 

which are closer to ai than to any other aj, j #- i, i.e., 

f(x) = i only if (x- ai) 2 ~ (x- aj)2 for all j #- i. (2.5) 

The above condition implies that all quantizer cells are intervals, hence the encoder 

partition is specified by the boundaries (thresholds) between consecutive intervals. 

Lett= (to, t1, · · · , tN ), denote the vector of thresholds, such that Ai = {xlti-l ~ x < 

ti}, for 2 ~ i ~ N, and A1 = {xlto < x < t1}, with to = -oo, tN = oo. Then the 

nearest neighbor condition implies that 

(2.6) 

for all 1 ~ i ~ N - 1. 

Lloyd's algorithm for optimal SQ design converges to a locally optimal solution, in 

general. The globally optimal solution is guaranteed only for some classes of pdf's, for 

example, log-concave pdf's [17, 43, 26, 44]. Globally optimal SQ design algorithms for 

discrete distributions, which run in polynomial time in the size of the input alphabet, 

have also been proposed [5, 39, 53, 52]. 

2.2 MDSQ 

2.2.1 Definition and Notations 

A K-description MDSQ consists of K side encoders /I,··· , fK, and 2K -1 decoders, 

each decoder 9c corresponding to a non-empty subset .C of descriptions, £ ~ K = 
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{1, · · · , K}. Recall that we use the term central decoder to describe the decoder 

corresponding to the whole set of descriptions K, and use the term side decoders to 

describe the decoders corresponding to the sets which have only one description. The 

decoders other than the side decoders are referred to as joint decoders. Therefore, 

among the 2K- 1 component decoders of an MDSQ, there are K side decoders, one 

central decoder, and 2K- 1 - K joint decoders. Note that the central decoder is a 

special case of a joint decoder. 

Given a source sample x, first the side encoders map x into some K -tuple ( i 1 , · · · , i K) E 

IK, where ik is generated by the kth encoder, 1 ::::;; k ::::;; K, and IK denotes the set 

of all K-tuples generated by all side encoders. Formally, the encoder fk is a function 

fk : IR----+ {1, · · · , J\!h}, where Mk is some positive integer, and defines the number of 

cells in the kth side encoder. The K side encoders generate a partition A of IR, A = 

{Ai1 , ... ,iK[(ii, ··· ,iK) E IK}, where Ai1 , ... ,iK = {x[JI(x) = i1,· · · ,JK(x) = iK}· The 

partition A is called the central partition. 

Each index ik is transmitted over the kth channel. Each channel has some prob

ability of breaking down, so at the receiver, there are two kinds of situations with 

respect to each description: either the channel works properly and the received index 

is correct, or the channel breaks down and nothing is received. 

Let .C = {11 , · · ·, lk, · · · , ls} ~ K denote a subset of descriptions, where 1::::;; k::::;; s, 

and 1 ::::;; s ::::;; K. Assume only those descriptions in the subset .C are received at 

the decoder. Then the decoder gc corresponding to the arrived descriptions is used 
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to reconstruct the source sample. The decoder 9£. maps each s-tuple ( ih, · · · , i1J to 

some reconstruction level af1 ... iz E IR., where 1 ~ izk ~ Mko for all 1 ~ k ~ s. 
1' ' s 

The set of K side encoders (it, · · · , f K) is denoted by f and is called the encoder 

of the MDSQ. The set of decoders (gc.)c.o::. is denoted by g and is called the decoder 

of the MDSQ. An MDSQ is completely determined by the encoder f and the decoder 

g. Note that f is completely specified by the central partition A and the assignment 

of K- tuples to the set of cells in the central partition, which is called the index 

assignment (IA). In this work, we are only interested in the case of fixed-rate MDSQ, 

where the rate of each side encoder, rk, 1 ~ k ~ K, is the number of bits used to 

represent any index generated by the kth side encoder. Hence rk = flog 2 Mk l-

The expected distortion of the source reconstruction when only a subset .C of 

descriptions are received at the decoder is 

(2.7) 

where f1:
1(izk) denotes the set of values which are mapped by fzk to the index izk. 

Here Ic. denotes the set of all possible s-tuples of indices corresponding to .C. The 

problem of optimal MDSQ design could be formulated as the problem of minimiz-

ing the central distortion dK. with constraints imposed on the rates and the other 
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component distortions: 

m1mm1ze dK (2.8) 

subject to d£ ::; D£, for all .C c K, 

Tk = Rk, k = 1, 2, ... 'K. 

where D£, .C ~ K, and Rk, 1 ::; k ::; K, are some fixed values. For fixed-rate MDSQ, 

the constraints on the rates can be satisfied by fixing the values of 1\![1 , · · · , MK, such 

The constraints on distortions can be eliminated by using the Lagrangian relax-

ation method. Precisely, the Lagrangian functional is defined as 

.C(f,g, {>-£}£) = L A£d£, (2.9) 
£~!( 

where A£ ~ 0, .C ~ K, are the Lagrangian multipliers, and AK; = 1. Then the problem 

is converted to the unconstrained optimization problem: 

minimizer,g .C(f, g, {A£}£). (2.10) 

If there are Lagrangian multipliers such that the solution (r(>.£), g*(>.£)) to the 

problem (2.10) satisfies the constraints in (2.8) with equality, then (r(>.£), g*(>.£)) 

is a solution to (2.8). It is guaranteed that such Lagrangian multipliers exist only if 

( { Rk h, { D d £) is on the lower convex hull of the operational MD region. Therefore 

this conversion is able to solve optimally only some instances of the problem, while 

for the others it provides a good approximation. 
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Another variant for formulating the problem of optimal MDSQ design is as the 

minimization of the overall expected distortion at the receiver with constraints im-

posed on rates: 

mm1m1ze L p .cd.c 
.C~K 

subject to rk = Rk, k = 1, 2, · · · , K, 

(2.11) 

where p.c is defined as the probability that only those descriptions in subset £ are 

received. If we set the Lagrangian multipliers in (2.9) to the values of p.c's in (2.11), 

then problem (2.11) becomes equivalent to (2.10). 

In the special case of symmetric descriptions, the rates of all descriptions are 

the same, i.e., r 1 = · · · = rk = r, and P.c only varies with the number of received 

descriptions. In other words, P.ci = P.c
1 

= p(s) if 1£il = 1£jl = s. 

The first algorithm to solve problem (2.10) was proposed by Vaishampayan [45]. 

He considered the case of two descriptions, and his approach is a generalization of 

Lloyd algorithm for SQ design. This algorithm begins with an initial encoder, and 

proceeds iteratively, each iteration consisting of the following two steps: (1) fix the 

encoder and optimize the decoder, and (2) fix the decoder and optimize the encoder. 

The value of the Lagrangian decreases at each iteration, and since it is bounded 

below by zero, the sequence of Lagrangians is guaranteed to converge to a local 

minimum. In general, the globally optimal solution is not guaranteed but for some 

special cases (e.g., convex cells and log-concave pdfs [12]). In [30, 11, 13] globally 

optimal algorithms for MDSQ design are proposed for discrete distributions, under 
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the assumption that all cells are convex. 

2.2.2 Generalized Lloyd Algorithm for Optimal MDSQ De-

s1gn 

Vaishampayan's algorithm [45] can be extended in a straightforward manner to the 

general K -description case, K 2: 2 [9]. In this section we describe this extension. Here 

we use the second approach (2.11) for formulating the problem of optimal MDSQ 

design. By substituting (2.7) in (2.11) the optimization problem becomes 

(2.12) 

Decoder optimization. When the encoder is fixed, the decoder can be optimized 

by separately minimizing each term in the summation in (2.12). This turns into a 

simpler problem of separately minimizing each integral, leading to the solution: 

(2.13) 

Encoder Optimization. At this step the decoder is fixed and the encoder is opti-

mized. Here it is useful to rewrite the expression in (2.12) into the equivalent form: 

(2.14) 

where h, · · · , ls, denote the elements of .C. The purpose of this step is to design the 

sets Ai1 ,.. ,iK for all ( i 1 , · · · , ix) E IJC, such that they form a partition of lR and (2.14) 
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is minimized. A sufficient condition for minimizing (2.14) is 

Ai~,-··,iK = {x E IRI Lp.c(x- afz~,.··,i~J2::::; Lpc(x- a~~,-··,i/)2, 

Further, by denoting 

L~K L~K 

f3i1, ·,iK = LPdafz1, ... ,i1J2, 
L~K 

we can write (2.15) into another form which is similar to the one given in [45]: 

A- · - {x E IRI2o:· · x- /3· · > 2o:·' ., x- /3·, ., tt,···,tK- tt,···,tK q,···,tK- t 1 ,···,tK t 1,···,tK' 

(2.15) 

(2.16) 

(2.17) 

It is clear that Ai 1 , ... ,iK is either an interval or an empty set. Let us order the 

elements of IK in increasing order of o:i1,. h. If for two distinct K-tuples ( i 1 , · · · , iK) 

empty, hence the K-tuple ( i~, · · · , i~) should be eliminated from IK. Conversely, if 

/3i 1 , .. ·,iK > f3i~,···,i~, then (i1, · · · ,iK) should be eliminated from IK. We can conclude 

that for the first case, one K-tuple has to be eliminated from the index set IK. For 

the second case, we have A; 1 ... iK = Ai' ... i' , hence one of the two K-tuples can also 
' ' 1' 'K 

be eliminated from IK. Therefore after removing from IK the K-tuples with identical 

O:i1 , ... ,iK's, IK has the property that for any two distinct K-tuples in IK, we have 
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Let us order the K-tuples in IK in increasing order of ai 1 ,. .. ,iK. Now consider the 

mapping 1T: IK---> {1, 2, · · · , N} which maps each K-tuple (i1 , · · · , iK) to an integer 

representing its position in this ordering. Hence 1T is characterized by the property 

use the notation at,f3t and Ae, respectively, as short forms for ai1 , ·,iK,/3i1, .. ,iK and 

A 1, .. ,iK' respectively, where£.= 1r((i1 , · · · ,iK)). Also, form< n, denote 

(2.18) 

Then we obtain 

AN= [max Xt N, oo), and 
l"!oi<N ' 

A= [maxxei, min Xin], for 1 < i < N, 
l"!oi<i ' i<n"!oN ' 

(2.19) 

with the convention that [b, a] = 0 if b > a. 

The cells in the optimal central partition can be formed directly by solving (2.19) 

in O(N2
) time. Vaishampayan uses a more ingenious method to identify the empty 

sets, thus being able to decrease the amount of computations for some inputs. Very 

recently, a more efficient algorithm which runs in O(N) time has been proposed in 

[9]. 
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2.3 Index Assignment 

Because Vaishampayan's algorithm can only guarantee a locally optimal solution, the 

choice of the initial encoder influences its performance. The problem of finding a 

good initial encoder is strongly related to the problem of finding a good IA. 

It was shown in [45] that for an optimal MDSQ, the cells in the central partition 

must be convex in the case of squared error distortion measure. Therefore, the cells 

in the central partition are intervals, while those in the side partitions are unions of 

possibly disconnected intervals. The central partition can be described by a vector 

of thresholds t = (t0, t1 , · · · , tN ), where t0 = -oo, tN = oo and each interval (te_1 , te] 

is a cell in the central partition. The lA can be formally defined as an one-to-one 

mapping h from the set of indices £ of each interval ( te_ 1 , te], 1 ~ £ ~ N, to the set 

I;.:: of K-tuples (i1,··· ,iK), hence h: {1,··· ,N} --+I;.::, where I;.:: s;;; {1,··· ,M1 } x 

· · · x {1, · · · , Mk}. Precisely, h(£) = (i1, · · · , iK) means that (te-l, te] = Ai1 , ,iK· The 

vector of thresholds t and the lA together fully describe the encoder. 

Note that when designing the lA, there are two aspects to be taken into consider

ation: 1) the choice of the subset I;.:: s;;; {1, · · · , Mr} x · · · x {1, · · · , Mk}, and 2) the 

mapping h. In [45], good lA's are proposed for the case of two balanced descriptions. 

In order to shed some light on the importance of the lA, we give an example to 

show how the central and side distortions can be influenced by IA in the case of two 

descriptions. Assume the source samples are uniformly distributed over the interval 
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I 
11 

I 
12 1 21 I 22 I 

-3 -1.5 0 1.5 3 
(a) 

L11 I 
12 L 22 I 21 

-3 -1.5 0 1.5 3 

(b) 

11 12 22 
-3 -1 1 3 

(c) 

Figure 2.1: Three MDSQ's for a uniformly distributed source. 

[ -3, 3] and that r 1 = r 2 = 1 bit per source sample. Consider the three MDSQ's 

illustrated in Fig. 2.1 with different central partition and IA. The two-digit number 

in each central cell denotes this cell's index pair: the first digit is the index generated 

by side encoder f 1 , and the second digit is the index generated by side encoder h. 

Table 2.1 gives the central and side distortions of the three quantizers in Fig. 2.1. 

Table 2.1: Central and Side Distortions 

E( d12) E(d1) E(d2) 

(a) 0.1876 0.75 2.4376 

(b) 0.1876 0.75 3 

(c) 0.3333 1 1 
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Both (a) and (b) have the same central partition, hence their central distortions 

are the same. However, case (a) is superior to (b) because it has lower side distortion, 

which suggests that for the same set of index pairs, different mapping may result in 

different distortions. Then let us compare (a) with (c). (c) has 1 less central cell than 

(a), hence higher central distortion, but (c) has much lower average side distortion 

than (a). This example suggests that the number of cells (N) in the central partition 

induces the trade-off between the central and side distortions: as the number of central 

cells decreases, the central distortion will increase, and the average of side distortions 

will decrease. 

The design of IA for the case of two balanced descriptions, proposed by Vaisham-

payan [45], includes two parts: the selection of the set of index pairs and the mapping 

of those pairs to the central cells. Assume the rate for each description is r = flog 2 Ml, 

and the number of central cells is N(N::; M 2
). Let £minp(n),p = 1, 2, be the mini-

mum value of the interval index £ that is mapped to an index pair whose pth element 

is equal to n. Let £ maxp( n), p = 1, 2 be the maximum value of the interval index £ 

that is mapped to an index pair whose pth element is equal to n. Then we define the 

spread of the nth cell of the pth side encoder 

sp(n) = £max(n)- £min(n) + 1, p = 1, 2. 
p p 

(2.20) 

It has been proposed in [45] that to design a good IA, the spread sp(n) needs to be 

minimized, assuming that it is constant with respect to n and p. The set of index 

pairs TK. can be identified with the elements of an M x M matrix (the pair ( i 1 , i 2) 
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corresponds to the element on the i 1th row and i 2th column). Then, the choice of LJC 

can be regarded as selecting a set of elements of the matrix. Let us assume that the 

index pairs (1, 1), (2, 2), · · · , (M, M) are always in the set, and they are assigned to 

central cells from left to right. This way, the index pairs (1, 1), (2, 2), · · · , (M, M) form 

the main diagonal of the M x M matrix. To minimize the spread, we would exhaust 

all elements on a diagonal which lies closer to the main diagonal before moving to a 

diagonal which lies further away from the main diagonal. Hence we select a set of 

index pairs which lie on the main diagonal and on the 2k diagonals closest to the main 

diagonal. The mapping of the selected set of index pairs to the central cells could 

be interpreted as deciding a scanning sequence of this set to minimize the spread. 

Two families of IA 's are presented in [45] for the case of two balanced descriptions: 

modified nested IA and modified linear IA. Fig. 2.2 shows examples proposed in [45] 

of these two IA families with k = 3, M = 8. 

For the case of more descriptions, there is not a well-developed methodology for 

constructing good IA's. The work [2] presents an IA for MDSQ with more descrip

tions, but only when the side and central distortions are of interest (no other joint 

quantizers' distortions). [41] introduced a new method for MDSQ design, called the 

sequential design of MDSQ. However, good IA's for more than two descriptions are 

not yet well understood. 
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1 3 5 7 1 2 4 7 

2 8 10 12 14 3 5 8 11 14 

4 9 15 17 19 21 6 9 12 15 18 

6 11 16 22 2:J 25 27 10 13 16 19 21 2,1 28 

13 18 2<1 29 30 32 3·1 17 20 23 27 31 35 

20 26 31 36 37 39 22 26 30 34 38 

28 J;J 38 41 4:J 25 29 3:1 3i 40 

:35 40 4"2 44 32 36 39 41 

(a) Modified nested IA (b) Modified linear IA 

Figure 2.2: IA examples for k=3, M=8 [45]. 
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Chapter 3 

Symmetric MDSQ with Linear 

Joint Decoders 

In this chapter, we first introduce the motivation of MDSQ with linear joint decoders 

and present the overview of the proposed optimal design algorithm. Next the step of 

decoder optimization is detailed in Section 3.3, and the complexity reduction in the 

encoder optimization step is analyzed in Section 3.4. In the last section, we describe 

the step of IA optimization. 

3.1 Motivation 

An MDSQ with K descriptions has 2K - 1 decoders, each with its own codebook. 

Moreover, the size of each code book increases exponentially with the number of cor

responding descriptions. For example, if the rate of each side quantizer is R, then 

30 



3.1 Motivation M.A.Sc. - T. Zheng - McMaster - ECE 

the number of cells in a joint quantizer of s, 2 ~ s ~ K, descriptions is at most 2sR. 

Thus, the total number of reconstruction values can amount to 

(3.1) 

As the number K of descriptions increases, storing all these values becomes an issue, 

especially in applications where the memory resources are scarce (for example, mobile 

devices). 

In order to reduce the storage space at the decoder we need to compromise the 

decoding optimality. The solution we propose is to store a codebook for each side 

decoder and a few joint decoders, and generate the other codebooks as linear com-

binations of the side codebooks. Precisely, if .C = {l1 , · · · , lk, · · · , ls} is a subset of 

descriptions for which the codebook is not stored, then its reconstruction values are 

computed according to 

(3.2) 

for any ( i 1 , · · · , iK) E IK. We call such an MDSQ, MDSQ with linear joint decoders, 

and use the acronym L-MDSQ. We refer to the MDSQ with all codebooks stored 

as Opt-MDSQ. As it will become apparent shortly, for L-MDSQ the joint decoders 

whose codebooks are stored can be individually optimized as in the Opt-MDSQ, while 

each of the other joint decoders will be individually suboptimal. Therefore, in order 

to increase the performance of the L-MDSQ, the stored codebooks should correspond 

to the subsets of descriptions with the highest probabilities of being received. In the 

case of symmetric, independent channels with probability of channel failure q < 0.5, 
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the probability of receiving a particular set of descriptions increases with the set size. 

Therefore, guided by the principle outlined above we will store the codebooks of all 

subsets of at least K 0 + 1 descriptions, for a fixed value K 0 , 1 :::;; K 0 :::;; K, and will use 

the linear rule (3.2) to generate the codebooks for subsets of 2 up to K 0 descriptions. 

The choice of the value K 0 should be done such that to strike a balance between the 

codebook storage needs and the MDSQ performance. 

In the rest of this chapter we address the design of optimal symmetric L-MDSQ. 

As for general MDSQ, an L-MDSQ is called symmetric if the rates of all side encoders 

are equal and for any two sets with the same number of descriptions, the probability 

of being received is the same. We will denote by M the number of cells of each 

side encoder, and by p(s) the probability of receiving some set of s descriptions, 

0 :::;; s :::;; K. For example, when the descriptions are transmitted over independent 

channels with the same failure rate q, we have p(s) = (1- q)sqK-s_ 

3.2 Optimal Design Algorithm for Symmetric L-

MDSQ 

We formulate the problem of optimal symmetric L-MDSQ design as the problem of 

minimizing its expected distortion E( d). The expected distortion can be written as 

K 

E(d)=Lp(s)x L L is _
1

_ (x-at
1

,. .. ,i
1
)

2 fx(x)dx. (3.3) 
s=O .CEK,I.CI=s (ill,··· ,ils )Eic nk=l Ilk (tlk) 

The design algorithm we propose is a generalized Lloyd algorithm to which we 
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add an IA optimization step at each iteration. Precisely, the algorithm starts from an 

initial encoder and then proceeds to iterate over the following three steps: ( 1) decoder 

optimization, (2) encoder optimization, (3) IA optimization. After each iteration the 

cost function decreases, and since the value of the cost function is bounded below by 

zero, the sequence of the values is guaranteed to converge to a local minimum. 

Encoder optimization step. At this step the decoder is fixed and the central 

partition is optimized. In principle, the same approach as in Opt-MDSQ design 

(described in Section 2.2.2) can be used here as well. However, we can reduce the 

computational cost by exploiting the fact that some joint codebooks are formed using 

linear combinations of the side codebooks. A detailed discussion of the complexity 

reduction is addressed in Section 3.4. 

Decoder optimization step. Here the encoder is kept fixed and the stored code

books are optimized. This step is more complex than in the design of Opt-MDSQ 

since some joint codebooks can no longer be optimized separately. Fortunately, as 

we show in Section 3.3, the problem turns out to be a convex quadratic optimization 

problem with a closed form solution (under certain conditions). 

lA optimization step. At this step the decoder and the sets in the central partition 

are kept fixed, while the IA is optimized. We add this new step after the encoder 

optimization, to overcome the problem that good IA's for more than two descriptions 

are yet to be found. This step can be applied to both 1-MDSQ and Opt-MDSQ. The 

detailed treatment of this step follows in Section 3.5. 
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3.3 Decoder Optimization Step 

At this step the central partition and the lA are fixed, and the MDSQ codebook 

is optimized. In other words, the goal at this step is to choose the reconstruction 

values for the side codebooks and for the joint codebooks corresponding to at least 

K 0 + 1 descriptions, such that-the expected distortion to be minimized. To this end, 

it is useful to write the expected distortion as follows E( d) = E 1 + E 2 where E 1 is 

the contribution due to decoding subsets of at most K 0 descriptions, while E2 is the 

contribution due to decoding subsets of at least K 0 + 1 descriptions. Using (3.3) and 

(3.2) we obtain 

(3.4) 

K 

E2 = ~ p(s) X ~ ~ r (x- at ... it )
2 fx(x)dx. L L L Jr 1 1', s 

s=Ko+l .CEK,I.CI=s (it
1 

,. .. ,its )Eic. nL1 !1~ (itk) 

(3.5) 

Note that here we ignore the term corresponding to no description received because 

this is a constant for the optimization problem. It is clear that E 1 and E2 can be 

optimized separately. Moreover, E2 can be optimized by independently minimizing 

each integral in the summation, which leads to 

(3.6) 

We are left now with the greater challenge of finding the side codebooks which mini-

mize the expression E 1. Fortunately, as we will show next, this is a convex quadratic 

optimization problem. Precisely, we will prove that, if y denotes theM K dimensional 
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vector which consists of all reconstruction values of the side codebooks: 

then E 1 can be written as 

(3.8) 

where r is a real value, u is a constant K M dimensional vector and B is a constant 

K M x K M positive semi-definite matrix. 

In order to prove this claim we first expand each integral in (3.4) as the summation 

of integrals over cells in the central partition. Recall that the sets in the central 

the sequel we will use the notation i for a K- tuple ( i 1 , · · · , i K). Thus, we have 

(3.9) 

Next we will rewrite conveniently each of the above integrals. For this we make first 

the following notations 

and 

Ci = r xfx(x)dx 
}A; 

pi= r fx(x)dx. 
}A; 
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Then we have 

(3.12) 

(3.13) 

Denote further 

(3.14) 

Then E 1 becomes 

~ (K) ~ 1 s 
E 1 = LP(s) x 

5 
M- 2 LP(s) L L ~ L a~~:)Ci 

s=l s=l .CEK,I.CI=s iEix:; k=l 

Ko s 

+ LP(s) L L(~ L:a;~:)) 2 Pi 
s=l .CEK,I.CI=s iEix:; k=l 

Ko (K) Ko 1 s 

= LP(s) x 
5 

M- 2 LP(s) L ci L ~ L:ai::) 
s=l s=l iEix:; .CEK,I.CI=s k=l 

(3.15) 

Ko s 

+ LP(s) L 11 L (~ L a;::)) 2
• 

s=l iEix:; .CEK,I.CI=s k=l 

We have used the fact that the number of subsets of s descriptions equals e). Now 

note that the values M, Ci and Pi depend only on the encoder, hence they are con-

stants for our optimization problem. Therefore, from the above equality it is already 
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clear that E1 is a quadratic function of y, in other words, that there exist the scalar 

r, the vector u and the matrix B such that (3.8) to hold. Precisely, 

Ko (K) 
r = ~ p( s) x 

8 
M, (3.16) 

and u and B are chosen such that the following equalities to be satisfied 

Ko s 
uTy = -2 LP(s) L Cj L l La~~:), 

s=1 iEIJC £EK,i.CI=s k=l 

(3.17) 

Ko s 

yTBy = LP(s) L pi L (l I:a~~:))2. 
s=1 iEIJC £EK,I£1=s k=1 

(3.18) 

T2(s) 

In order to derive u and B we need first to write T1 and T2 (s) in a simpler form. 

Notice that by expanding Tl' each aW' 1 :::;; j :::;; K' appears e.=-n = R e) times 

in the summation. We found this value by counting the total number of subsets .C 

which contain description j and other s - 1 descriptions. Hence, 

(3.19) 

In order to simplify T2(s) we have to treat separately the cases s > 1 and s = 1. 

When s = 1, we have clearly 

K 

T2 (1) = 2)aW)2
. (3.20) 

j=1 

When s > 1, notice that after expanding the summations, T2 ( s) contains terms of 

the form (a(j)) 2 and 2a(J)a(j') 1 < J. < J., < K. Each (a(j)) 2 appears (K-1) = ..§_(K) 
t1 t1 ty ' - - t 1 s-1 K s 

times and each 2a(J)a(J') occurs (K-2) = ( 8
) (K)/(K) times. The latter quantity was 

' t1 tJ' s-2 2 s 2 
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computed by counting the total number of subsets £ which contain descriptions j, j' 

and other s - 2 descriptions. Then 

(3.21) 

Relation (3.20) implies that the above simplified expression of T2 (s) for s > 1, also 

holds for s = 1. Therefore, in the sequel we will use (3.21) as an equivalent form for 

T2 ( s) , for all s. 

Define a function w(z), such that 

w( 
2

) = { z mod M, z mod M =/= 0 

M, z mod 1\II = 0 

Additionally, we denote by c~l the sum of ci's for all central cells Ai such that the 

jth component of the K-tuple i equals n, i.e., 

c;p = L Cj (3.22) 
iEIK,ij=n 

Now we can proceed to the construction of u. Substituting (3.19) into (3.17), we have 

(3.23) 

Now we are able to generate vector u's components ut, 1 ::::; z::::; K Mas follows 

u = -2 ""'p(s)- C(ft/Ml) Ko 1 (K) 
t ~ K 5 w(t) ' 

s=l 

(3.24) 
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Further, we denote by P~j) the sum of probabilities of all central cells Ai such that 

the jth component of the K-tuple i equals n. Similarly, we denote by P~~~') the 

probability of the intersection of the cell in the side description j corresponding to 

index n, and the cell in the side description j' corresponding to index n'. Formally, 

p~j) = 2.::: pi (3.25) 
iETJC,ij=n 

p~:~,'> = 2.::: pi. (3.26) 
iETJC 

ij =n,i1, =n' 

Now we can proceed to the construction of matrix B. Substituting (3.20) and 

(3.21) into (3.18), we have 

yr By=~ p(s) ""Pi(-1 (K) ~(a(j))2 + 2(s- 1) (K) ~ ~ a(j)a(j'J). 
~ ~ K s s ~ '1 K s(K - 1) s ~ ~ '1 '1' 
s=1 iETJC j=1 j=1 j'=j+1 

(3.27) 

Let b,1 , 1 :::; ~, J :::; K M, denote the element on the ~th row and Jth column of matrix 

B. Then we can obtain b,1 by 

"'Ko p(s)(K)...Lp(f,/Ml) 
Ds=1 s Ks w(') ' Z=J 

"'Ko p(s) (K) (s-1) p(fJ/MlJ,/Ml) z > J 
Ds=1 s Ks(K-1) w(J),w(') ' ' 

Matrix B is said to be positive semi-definite if and only if 

(3.28) 
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for any K M dimensional vector y [3]. It is clear from (3.18) that the above inequality 

is satisfied since p(s), R and (~ 2::.:~= 1 a~~:)) 2 are all non-negative values. It follows 

that the problem of minimizing E 1 is an unconstrained convex quadratic problem, for 

which efficient solvers are known [4]. 

Additionally, if matrix B is nonsingular, a closed form of the solution could be 

derived by taking the derivative of yT By + uT y + r and setting it to zero, which 

implies 

2By + u = 0, 

because B is a symmetric matrix, and further 

1 -1 
y = --B u 2 . 

(3.29) 

(3.30) 

Next we show that if there is some s0 , 1 ~ s0 ~ K 0 - 1 such that p(s0 ) =f. 0, then 

matrix B is nonsingular. For this purpose, it is sufficient to prove that under the 

above condition, yT By = 0 implies y = 0, in other words that matrix B is positive 

definite [3]. 

Assume that yTBy = 0. Since p(s0 ) =f. 0 and R =f. 0, (3.18) implies that 

(3.31) 

for all i E LJC. The above equality further implies that 

(3.32) 
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for any i E IK and£ E K with 1£1 =sa. 

Consider now an arbitrary i E IK and two arbitrary distinct descriptions u =I v, 

1 :::; u, v :::; K. Pick a description set £ 1 such that it contains the uth description 

but not the vth description. Also pick a description set £ 2 such that £ 2 = £ 1 \ u U 

v. Subtracting the equation (3.32) corresponding to £ 1 and the equation (3.32) 

corresponding to £ 2 , we obtain 

(3.33) 

Since (3.33) holds for any u and v, it follows that 

(3.34) 

Further, since (3.34) is valid for all i E IK, it follows that y = 0.0 

3.4 Encoder Optimization Step. Complexity Re-

duction. 

At this step the decoder is fixed and the encoder is optimized. We can handle this 

optimization step by computing first the reconstruction values for all decoders gc 

corresponding to at most K 0 descriptions, i.e. 1£1 :::; K 0 , by using 

(3.35) 

for all i E IK, and then proceeding as in the encoder optimization step for Opt-MDSQ 

described in Section 2.2.2. In other words, the values O:i and f3i, for all i E IK are 
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computed next by applying 

P(I.CI)af1 ... it 
1 J ' s 

L={lt,-·· ,ls}<;;;K 
(3.36) 

f3i = L P(I.CI)(at
1
,-··,it)

2
, 

L={lt,-·· ,ls}<;;;K 

and further (2.19) is solved. 

An alternative method for calculating the quantities ai and f3i, of lower compu-

tational cost, is by deriving simplified expressions for ai and !3i based only on the 

reconstruction values in the stored codebooks. 

In order to highlight the reduction in complexity incurred by the second approach 

we will first evaluate the number of operations needed when the first approach is used. 

To compute the value of each ai, since there are 2K -1 terms in the summation, 2K -1 

multiplications and 2K - 2 additions are needed, hence 2K+l - 3 operations overall. 

To compute the value of each f3i, since there are 2K - 1 terms in the summation, 

2(2K- 1) multiplications and 2K- 2 additions are needed, hence 3 · 2K- 4 operations 

overall. 

Next we will derive simpler expressions for ai and f3i· Equality (3.36) implies that 

Ko K 

00 i = L L p(s)a~1 ,-··,its + L L p(s)a~1 ,-··,it.· 
s=l LEK,ILI=s s=Ko+l LEK,ILI=s 

(3.37) 

Using (3.35) and (3.19), T3 can be written as follows 

(3.38) 
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Substituting further in (3.37) we obtain 

(3.39) 

Since the quantity 2:::~1 p( s) -k ( ~) can be pre-computed, rather than evaluated 

for each i, the number of operations in the first term equals K - 1 additions plus 

1 multiplication. Hence K operations are needed for the first term. The number 

of operations in the second term is 2 L::=Ko+l (~) - 1, since there are L::=Ko+l (~) 

terms in the summation. Therefore, K + 2 l":~Ko+l (~)- 1 operations are needed to 

compute each O:j. When K 0 = K, the number of operations is K. When K 0 = K -1, 

the number of operations is K + 1. 

To simplify the expression of f3i note first that 

f3i = L p£(at
1

,. ,iz) 2 

C.={ it,·· ,ls}~K 

Ko K 

= L L p(s)(at
1
,.··,iz) 2 + L L p(s)(afz

1
,.··,iz)2

, 

(3.40) 

s=l C.EK,JC.J=s s=Ko+l C.EK,JC.J=s 

Using (3.35) and (3.21), T4 can be written as 

Ko ( ) K ( ) ( ) K-1 K = """p(s) (-1 K ""'(a~j)) 2 + 2 s- 1 K """ """ a(j)a(j')) 
~ K s s ~ 1 K s(K - 1) s ~ ~ l1 t1' 
s=l j=l j=l j'=j+l 

(3.41) 

Ko ( ) K Ko ( ) ( ) K-1 K = """p(s)-1 K ""'(a(j))2 + """p(s) 2 s- 1 K """ """ a(j)a(j'). 
~ K s s ~ t 1 ~ K s(K - 1) s ~ ~ l; l1' 
s=l j=l s=l j=l j'=j+l 
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Substituting further in (3.40) we obtain 

~~ = ~p(s) ~s (~) t(a);l)
2 

~ ( ) 2(s- 1) (K) ~ ~ a(j)a(j') 
+ LP s Ks(K- 1) s L L 'j 'j' 

s=l j=l j 1=j+l 

K 

+ L L p(s)(a~~,.· ,i1)2
, 

s=Ko+l .ca:,I.CI=s 

(3.42) 

Since the quantities 2:::~~1 p( s) is ( ~) and 2:::~~1 p( s) x28~8;;~1 ) ( ~) can be pre-computed, 

rather than evaluated for each i, the number of operations in the first term equals K -1 

additions plus K + 1 multiplications, hence 2K operations are needed. The number 

of operations in the second term equals ~(K2 - K)- 1 additions plus ~(K2 - K) + 1 

multiplications, hence (K2 - K) operations are needed. The number of operations in 

the third term is 3 L:~=Ko+ 1 ( ~) - 1, since there are L:~=Ko+ 1 ( ~) terms in the sum-

mation. Therefore, K 2 + K + 3 I:~=Ko+ 1 (~) - 1 operations are needed to compute 

each /3i. When K 0 = K, the number of operations is K 2 + K. When K 0 = K- 1, 

the number of operations is K 2 + K + 2. 

In conclusion, in MDSQ with linear joint decoders, the number of operations to 

obtain the ai's and /3i's, for all i E IK, will be reduced. This reduction in computa-

tional cost becomes more significant as K 0 gets larger. 

3.5 IA Optimization Step 

Since the generalized Lloyd algorithm for MDSQ design is only guaranteed to converge 

to a locally optimum, the selection of the initial encoder is very important. Recall 
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that an encoder is fully represented by the sets in the central partition and the IA, 

i.e., the assignment of K-tuples (i1, · · · ,iK) to these sets. Unfortunately, the process 

of developing good IA's for more than two descriptions is not yet well understood. To 

overcome this disadvantage, we introduce in each iteration a step for IA optimization, 

immediately after the encoder optimization step. 

At this step the reconstruction values af ... i are fixed. The sets in the central 
l11 ' l 8 

partition are fixed as well, but they are not associated with K-tuples (i1 , · · · ,iK)· 

The goal is to choose the IA such that the expected distortion is minimized. 

Let A1 , · · ·AN denote the cells in the central partition. Then an IA can be defined 

as a mapping h : {1, 2, · · · , N} ~ SK, such that for R =/= R' we have h(R) =/= h(R'), 

where SK denotes the set of all possible K-tuples, i.e., SK = {1, · · · , M}K. In order 

to formulate the optimization problem we assign a cost c( R, ( i 1, · · · , iK)) to each pair 

(R,h,··· ,iK)), where£ E {1,2,··· ,N} and (i1,· · · ,iK) E SK, defined as follows 

We formulate the optimization problem as follows 

N 

minimizeh L c(R, h(R)), (3.43) 
l=l 

where the minimization is carried on over all mappings h defined as above. Note that 

(3.43) is a problem of minimum weight bipartite graph matching, which can be solved 

in polynomial time, precisely, O(n3 ) time, where n = ISKI [32]. 
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The cost function in (3.43) for the case K0 = K corresponds to the expected 

distortion of the MDSQ, while for K0 < K, it corresponds to the expected distortion 

from which the contribution due to the central distortion (when all descriptions are 

received) is excluded. The reason for this is that in the latter case the optimal 

reconstruction values can be used for the central decoder. These values depend only 

on the central partition cells and not on the IA. Therefore the central distortion is 

a constant in the optimization problem, hence it can be safely excluded from the 

cost function. The above considerations imply that after solving problem (3.43) the 

expected distortion of the MDSQ does not increase. 

Note that the IA optimization step can as well be added to the generalized Lloyd 

algorithm for the design of Opt-MDSQ. In this case, the cost c(f,(ii,··· ,iK)) is 

defined as in the case K0 < K. 

Note that when s ~ K 0 + 1, not all reconstruction values used in the cost function 

already exist in the current stored codebooks. This is because the codebooks are 

constructed using the current IA set IJC, while the cost function considers the set SIC 

of all possible K-tuples. To solve this problem, we set the non-existing reconstruction 

values to some very large constant values (compared to the existing reconstruction 

values), so that they always produce a much higher cost than the existing reconstruc

tion values, hence they will never be assigned to any central cell. 
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Chapter 4 

Improved MD-UEP Framework 

MD-UEP is a simple method to obtain symmetric multiple descriptions, by combining 

a successively refinable (i. e., progressively refinable or scalable, or embedded) source 

code with uneven erasure protection [34, 29]. One way to obtain a progressive code 

is through successively refinable quantization (SRQ). In this thesis we consider only 

MD-UEP based on SRQ. Such MD-UEP has been discussed in [19, 41]. MD-UEP is 

also a coding scheme with reduced storage space decoder. A detailed discussion of 

the storage space need of MD-UEP is presented at the end of Section 4.2. 

We propose an improvement to the MD-UEP system. The main idea is to split 

first the source samples into K subsets and to code each subset separately using 

the SRQ. Then correlation is introduced between descriptions by applying uneven 

erasure protection with interleaved systematic Reed Solomon codes of length K across 

descriptions. We will show that the proposed MD-UEP strictly outperforms the old 
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0 

00 01 10 11 

000 001 010 011 100 101 110 111 

2 3 4 5 6 7 8 

Figure 4.1: An SRQ of three refinement stages. 

one. We will also assess the asymptotical improvement as the quantization block 

length and rate approach oo. 

In order to introduce the new MD-UEP we first need to present briefly the SRQ 

coding scheme and the traditional MD-UEP technique. Then we detail the novel 

MD-UEP framework followed by the asymptotical analysis of performance. 

4.1 Successively Refinable Quantizer 

An SRQ of K refinement stages consists of a sequence of K embedded quantizers, 

QK = ( Q1 , Q2 , · · · , Q K). The term embedded is used here to characterize the fact 

that the encoder partition of each Qi is a refinement of the encoder partition of Qi-l· 

The bitstream output by the SRQ is a concatenation of K layers, where the kth 

layer is output at the kth refinement stage. The source description provided by the 

first k layers is equivalent to the description provided by quantizer Qk. Therefore, if 
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Cell# 2 6 5 

Index 0 0 1 1 0 1 1 0 0 

l~ 
.. I' I I 

' ·._,; 
·'·J. ·, 

' + ~ ., ·~~,. ' 
Sequence 0 1 1 0 0 0 1 1 0 

Figure 4.2: Output sequence of the SRQ. 

R( Qk), denotes the rate of Qk, then the aggregate rate of the first k refinement stages, 

equals R( Qk). The bitstream produced by the SRQ is progressively decodable and 

the distortion achieved after decoding the first k layers equals the distortion D( Qk) of 

quantizer Qk· Fig. 4.1 shows an example of a three-stage SRQ designed for uniformly 

distributed source. Assume there are three source samples to be quantized, and they 

are in the second, sixth, and fifth cell in the partition of Q3 , respectively. The indices 

of those cells are 001, 101, and 110, respectively. Then the output sequence can be 

formed by first taking the most significant bit of the three indices, then the second 

significant bit, and finally, the least significant bit. Fig. 4.2 shows how the output 

sequence is formed. 

4.2 Traditional MD-UEP 

In the traditional MD-UEP scheme, for each k, 1 :::; k :::; K, the kth layer of the 

bitstream output by the SRQ is partitioned into groups of k consecutive symbols 

which are further encoded by a strict systematic (K, k) Reed Solomon (RS) code 
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[36]. We use the term strict systematic code in order to enforce the fact that the 

information symbols are placed at the beginning of the channel codeword. The effect 

of a ( K, k) RS code is that, when at least k out of K descriptions are received, all 

K bits can be recovered correctly. Conversely, if k' > k descriptions are lost, it is 

impossible to recover any information contained in the lost descriptions. 

The K descriptions are formed across the channel codewords, such that for each 

j, the jth description contains the jth symbol of each channel codeword. Fig. 4.3( a) 

illustrates the previous MD-UEP scheme. Each row represents an RS codeword. Each 

column represents a description. 

Note that the rate of each description equals 

This system ensures that when only k, 1 ~ k ~ K, descriptions are available at 

the decoder, the first k layers of the source bitstream can be completely recovered. 

The missing source symbols from the rest of the layers will prevent the decoding of 

any available symbols from these layers. Therefore, only the first k layers can be 

decoded leading to the source reconstruction with distortion D(Qk). 

To measure the performance of the MD-UEP, we use the expected distortion of 

the source reconstruction at the decoder when at least one description is received. 

We use this expected distortion instead of the expected distortion over all possibili-

ties, in order to eliminate the term corresponding to no description received, which 

complicates the performance analysis. Assuming that U(k) denotes the conditional 
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probability that only k descriptions are available given that at least one is received, 

we obtain the following expression of the expected distortion: 

K 

DMD-UEP = L U(k)D(Qk)· ( 4.1) 
k=l 

The problem of optimal design of a symmetric multiple description system can be 

formulated as the problem of minimizing the expected distortion at the decoder under 

a constraint on the rate of a description. In the case of MD-UEP, this translates to 

designing an SRQ which minimizes the expected distortion ( 4.1) under the constraint 

(4.2) 

where R is the target rate per description. Moreover, there is an additional constraint 

due to finite block size of the quantizer used. Precisely, if a fixed-rate vector quantizer 

of block length m is used, then mR( Qi) have to be positive integers. Hence, when 

the SRQ is formed of scalar quantizers (m = 1) the rates R(Qi) have to be positive 

integers. 

Note that the solution to the optimization problem might require that R( Qi) = 

R(Qi+l) for some i, which implies that layer i + 1 is empty. In this case the SRQ 

contains less than K distinct refinement stages. 

It has been mentioned at the beginning of this chapter that, MD-UEP is also 

a coding scheme with reduced storage space decoder. Here we present a detailed 

analysis of the storage space need at the decoder. To decode the RS code, K matrices 

need to be stored, for there are K different RS codes used, hence K different generator 
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Layer 1 Layer1 

Layer 3 Layer3 

(a) Previous MD-UEP (b) New MD-UEP 

Figure 4.3: Illustration of MD-UEP frameworks forK= 4. The shadowed rectangles 

represent source symbols, while white rectangles represent redundancy symbols. Each 

row symbolizes an RS codeword. Each column symbolizes a description. The portion 

marked as "Layer i" represents the ( 4, i) RS codewords. 

matrices. The total number of elements is 2::::=1 sK = ~K2(K + 1). Also needed 

to be stored at the decoder are the K sets of codebooks, one for each quantizer 

Qk? 1 ~ k ~ K. Then the total size can amount to K · 2R(QK). Therefore, there are in 

total at most K · 2R(QK) + ~K2 (K + 1) elements needed to be stored at the decoder. 

4.3 Novel MD-UEP 

An obvious drawback of the old MD-UEP framework is the waste of information 

symbols of the decoder. As explained previously, when only k < K descriptions are 

received any received source symbols belonging to layers k + 1 through K, is not useful 
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for decoding and therefore discarded. We propose a new MD-UEP which overcomes 

this drawback. 

First the set of source samples is split into subsets S1 , S2 , · · ·, SK, where each Si 

contains the samples at time instants i, K + i, 2K + i, · · ·. If the source has memory, 

and a vector SRQ with block length m is used, then Si should contain the ith, 

(K + i)th, (2K + i)th, etc., blocks of consecutive m samples. 

Further, each subset of samples is separately encoded using the SRQ. Thus K 

independently decodable and progressively refinable source sub-streams are produced. 

Further, for each k, the source symbols belonging to the kth layer (from all sub

streams) are partitioned into groups of k, such that any two symbols in a group come 

from different sub-streams. It is easy to see that the kth layers of different sub-streams 

will have the same length, therefore such a partitioning is possible. Each such group 

is encoded by an (K, k) interleaved systematic RS code. We use the term interleaved 

systematic code in order to emphasize that the source symbols are not necessarily 

placed at the beginning of the codeword, but are interleaved with the parity symbols. 

Precisely, the RS channel codeword encoding a group sil, si2 , • • • sik, where sij belongs 

to sub-stream ij, will have its ijth channel symbol equal to sir 

The descriptions are then formed across the channel codewords, such that for each 

j, the jth description contains the jth symbol of each channel codeword. Fig. 4.3(b) 

depicts the proposed MD-UEP. 

To summarize, each description i contains the source symbols of sub-stream i 
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(i.e. the most refined descriptions provided by the SRQ for the source samples in set 

Si) and additionally RS redundancy symbols which introduce correlation between de

scriptions. Since each sub-stream is independently decodable, no information symbols 

received at the decoder will be discarded .. The rate of each description is the same 

as in the previous MD-UEP. To see this note that when the number of the source 

samples is large enough, the total number of source symbols in the kth layer over all 

sub-streams, is the same as the size of the kth layer if all samples were encoded by 

the SRQ, together. Therefore, the same number of (K, k) RS codewords will be used 

to encode these source symbols, hence the same number of generator matrices will be 

stored at the decoder. Additionally, since the sequence of rates (R(Q1),· ·· ,R(QK)) 

of the SRQ used in the novel framework is the same as of the SRQ used in the tra

ditional framework, we can conclude that the novel framework has the same decoder 

storage space need as the traditional framework. 

When only k < K descriptions are received at the decoder, all the source symbols 

in the first k layers, from all sub-streams can be recovered, their decoding leading to a 

source reconstruction with average distortion D( Qk)· Moreover, the source symbols in 

layers k+ 1 through K, from the received descriptions can also be decoded. Therefore 

the samples encoded by these descriptions will be reconstructed to the highest quality. 

In conclusion, a fraction of ~ of the source samples are reconstructed with average 

distortion D(QK), while the rest are reconstructed with average distortion D(Qk)· 
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We conclude that the expected distortion at the decoder becomes 

DnewMD-UEP 

K K-k k L U(k)( ---y-D(Qk) + KD(QK)) 
k=l 
K-l K- k K k L U(k)---y-D(Qk) + L KU(k)D(QK)· (4.3) 
k=l k=l 

It is clear that the proposed system provides a net improvement over the previous 

MD-UEP when using the same SRQ. Moreover, to maximize its performance an 

optimized SRQ can be used, which minimizes the expected distortion ( 4.3) under the 

constraint (4.2). 

4.4 Asymptotical Analysis of Performance of MD-

UEP 

In this section we evaluate the improvement in performance assuming a vector SRQ 

with block length approaching oo, for a memory less Gaussian source with variance e72
• 

We assume the descriptions are sent over independent channels with the same break-

ing down probability q. Therefore the conditional probability of only k descriptions 

being received, given that at least one is received is 

( 4.4) 

1 :::; k :::; K. We consider the squared distance as distortion measure. Since the 

distortion-rate function of a memoryless Gaussian source is D(R) = r722-2R and 

since such a source is successively refinable [6], it follows that, given an increasing 
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sequence of target rates R1 ::::; R2 ::::; · · · ::::; RK, there is a sequence of vector SRQ's 

of K refinement stages, with block-length approaching oo, such that for each stage 

k, the aggregate rate approaches Rk. and the distortion approaches 0'
22-2

Rk. There-

fore, the expected distortion of the MD-UEP under the old framework approaches 

0'2 ~~=1 U(k)2- 2Rk. The value Dald of the optimal expected distortion of the old MD-

UEP, achievable asymptotically in the quantizer block-length, can be found by solving 

the following convex optimization problem 

K 

mllllmlze ()'2 L U(k)2-2Rk (4.5) 
k=1 

subject to 0 ::::; R1 ::::; R2 ::::; ... ::::; RK 

K-1 1 1 
L k( k + 1) Rk + K RK = R, 
k=1 

where R is the rate of each description. Consider the set P of planar points P0 = (0, 0), 

H = (1 - 1/(k + 1), ~7=1 U(i)), where 1 ::::; k ::::; K- 1, and PK = (1, 1). The 

extreme points situated on the lower convex hull of this set are important for this 

optimization problem. This is because it can be shown along the lines of [34], that 

for any k such that Pk is not an extreme point, the solution has to satisfy Rk = Rt, 

where C is the smallest index larger than k, such that Pt is an extreme point. This 

allows for all variables Rk for which Pk is not an extreme point, to be eliminated. 

The new problem can be solved by taking into account only the equality constraint 

and its solution will satisfy the inequality constraints as well. Based on this idea we 

derive the solution for values of R high enough. In order to give the expression of 
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the solution let us define first k0 as the largest integer between 1 and K such that 

U(k0 - 1)(k0 - 1) ~ U(k0 ) + U(k0 + 1) + · · · + U(K). Denote further 

ko-1 
1 1 

K 

A= L k(k + 1) 1og2(U(k)k(k + 1)) + ko (Iog2 (k0 L U(k)). 
k=l k=~ 

It can be shown that for R 2: 1/2A- 1/2log2 U(1) -1/2 (derived from the constraint 

R1 2: 0), we have Datd = o-22A2-2R. A detailed discussion of the derivation procedure 

is included in Appendix. 

Denote now 

V(k) = K;; k U(k) 

1 K- k K! k (K-k) 

1 - qK K k! ( K - k)! ( 1 - q) q 

=1-\K (K; 1)(1- q)kq(K-k), 

for 1 ~ k ~ K - 1, and 

K 

V(K) = L ;u(k) 
k=l 

K 
-""' 1 k K! k (K-k) 
- ~ 1- qK K k!(K- k)! (1 - q) q 

k=l 

1-q 
1- qK' 

(4.6) 

(4.7) 

Then the optimal expected distortion Dnew, achievable asymptotically in the quantizer 

block length, by the proposed MD-UEP with rate R per description, can be found by 

solving the optimization problem 

K 

minimize o-2 L V(k)2-2Rk (4.8) 
k=l 
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subject to the two constraints in problem ( 4.5). Observing that for K ::: 3 and 

q-:::; 1/ K, the set of planar points P corresponding to the optimization problem (4.8) 

is convex, and letting 

K-1 1 1 
B = t; k(k + 1) log2 (V(k)k(k + 1)) + K (log2 (KV(K)), 

we derive the solution when K ::: 3, q -:::; 1/ K and R::: 1/2B- 1/2log2 V(1) - 1/2, 

For clarity of the performance comparison between the two systems, we use the 

difference in dB defined as b.newfold = 10 log10 DDold • Using the above formulae we 
new 

obtain that forK::: 3, p-:::; 1/ K and R sufficiently high 

b.newjold =lO(A- B) log10 2 

ko-1 1 K 1 K 

=10[2:: k(k + 1) log10 K _ k + ko log 10 (ko L U(k)) (4.9) 
k=1 k=ko 

1 1 - q K-
1 1 

- Klog10 (
1

_ KK)- L k(k 1) log10 (V(k)k(k+ 1))]. 
q k=ko + 

Note that when q < 1 j K 2
, we have k0 = K. It follows that, as q --+ 0 and R --+ oo, 

the following holds 

K-1 1 K 
b.newjold --+ 10 L k(k + 1) loglO K _ k · 

k=1 

(4.10) 

Fig. 4.4(a) plots the difference in performance, in dB, between the two MD-UEP 

frameworks, for R--+ oo, q E (0, 0.1], and K ranging from 3 to 10, using (4.9). We see 

that the highest improvement is 1.68 dB, achieved for K = 3 and q --+ 0, while the 

lowest is 0.93 dB, achieved when K = 10 and q = 0.1. Interestingly, for each value of 
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Probability of description loss 
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Figure 4.4: Asymptotical improvement in performance, of new MD-UEP vs. old 

MD-UEP. 
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q, the improvement is highest when K = 3 and decreases asK increases. Moreover, 

for each K the improvement in performance becomes smaller as q increases. The 

decreasing trend as the number of descriptions increases, is preserved for q ---+ 0 and 

R---+ oo, as it can be seen from Fig. 4.4(b), which plots the quantity (4.10). 

For the case of two descriptions, problems ( 4.5) and ( 4.8) are easier to solve, 

without needing the assumption of high rate or the restriction on the probability of 

description loss q. Thus we obtain the following expressions of Dald and Dnew when 

D _ 2 (.'!:!L ~2-4R) c (0 1 ) 
old - (J l+q + l+q !Or q E ' 1+21+4R 0 

A detailed derivation is included in Appendix. 

In Fig. 4.5 we plot the difference in performance between the new versus the old 

MD-UEP, in the case of two descriptions and small rates, R = 0.5, 1, 2. For each R, 

t1new/old is a unimodal function of q. For R = 0.5 its peak is ~ 1 dB, achieved for 

q ~ 0.2. As R increases, its peak increases approaching 1.5 dB, and the probability 

where it is achieved approaches 0. Note that the performance of the two systems is 

identical when q = 0 and q = 1, as expected. 
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Figure 4.5: Asymptotical difference in performance, between the new and old MD-

UEP, forK= 2, and R = 0.5, 1, 2. 
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Chapter 5 

Experiments and Discussions 

The purpose of this chapter is to assess the performance in practice of the proposed 

MDC techniques in comparison with the traditional schemes. Our tests are performed 

on a. zero mean, unit variance, memoryless Gaussian source. The number K of de

scriptions considered in our experiments is between 2 and 4. Although the motivation 

given in this thesis for the proposed techniques is valid for higher number of descrip

tions, the experimental results for smaller K can be used to predict the behavior as 

K increases. In all cases we consider transmission over independent channels with 

the same probability q of failure. Consequently, the probability p( s) of receiving a 

particular set of s descriptions is 

(5.1) 

where 0 ~ s ~ K is the number of descriptions received at the decoder. The range 

of channel failure probabilities considered in our experiments is q E [0.001, 0.3]. The 
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performance of each MDC technique is measured in using the expected distortion in 

dB, i.e., 10log10(Expected Distortion). 

This chapter contains two sections. The experimental results in the first section 

highlight the impact of the IA optimization step in the design of 1-MDSQ and Opt

MDSQ. The second section performs a comparison between, 1-MDSQ, Opt-MDSQ, 

traditional MD-UEP and proposed MD-UEP. In the implementation of the MD-UEP 

schemes a scalar SRQ was used for fairness of comparison with the MDSQ. 

5.1 Impact of lA Optimization 

We have introduced the IA optimization step in the design of the proposed MDSQ's 

in order to overcome a possibly bad choice of initial IA. As we have pointed out in 

Section 3.2, this step can be used in the Opt-MDSQ design as well. 

Fig. 5.1-5.4 plot the performance of Opt-MDSQ with and without IA optimization 

in the design algorithm, versus q. Each figure illustrates one of the following cases 1) 

K = 2 and R = 2, 2) K = 2 and R = 3, 3) K = 3 and R = 2, 4) K = 4 and R = 1. 

In the case of two descriptions, we use the modified linear IA proposed in [45], Fig. 

2.2 shows the IA when rate is 3 bits/description. As it can be seen from Fig. 5.1 

and Fig. 5.2, although the modified linear IA is very good already, there is still some 

room for improvement. The use of the IA optimization provides an improvement of 

up to 0.82 dB. 

When it comes to the case of three or four descriptions, since good IA's are not 
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Figure 5.1: Improvement by IA optimization for Opt-MDSQ, K=2, R=2. 
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Figure 5.7: Improvement by IA optimization for L-MDSQ, K=4, K0=4, R=l. 

yet known, we use a method inspired by [41]. Consider the K-tuples whose indices 

in all K dimensions are the same. We call these K-tuples the diagonal elements. If 

the rate for each description is R, then there are 2R such elements. For two K-tuples 

( i1, .. · , i K) and (j1, .. · , j K), we denote by l the distance between them defined as: 

l = L,~=l \ik - Jki· Further, for each K-tuple, we denote by lmin the minimum of 

the distances to every diagonal elements. We only select the K-tuples whose lmin is 

less than or equal to some threshold. For instance, if K = 3 and R = 2, there are 

2RK = 26 = 64 K-tuples, and the diagonal elements are (1, 1, 1), (2, 2, 2), (3, 3, 3) and 

(4,4,4). If we set the threshold of lmin to be 2, then the K-tuple (1, 1,4) will not 

be included in the set IK, for its lmin is 3. Next we partition the set IK into 2R sets 
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in such a way that, the kth set contains the K-tuples whose lmin is associated with 

the diagonal element (k, · · · , k). We begin with the first set, in which every K-tuple 

is closer (measured by l) to (1, · · · , 1) than to any other diagonal element. Then we 

proceed to the second, third, ... , 2Kth set. In each set, the K-tuples are randomly 

arranged. 

Fig. 5.1-5.4 show that the improvement due to the use of IA optimization step 

increases with K, reaching up to 1.29 dB in the case of 3 descriptions, and 2.92 dB 

in the case of 4 descriptions, respectively. This observation is in accordance with the 

intuition that, asK increases it is more difficult to construct a good IA. 

Fig. 5.5-5.6 illustrate the improvement in performance when IA optimization 

is applied to 1-MDSQ with K 0 = K- 1, in other words, with an optimal central 

codebook. The number of descriptions considered are K = 3 and K = 4, and the 

rates are R = 2 when K = 3, and R = 1 when K = 4. Considerable gain is achieved 

here as well, reaching up to 1.42 dB for 3 descriptions, and 1.81 dB for 4 descriptions, 

respectively. 

However, in the case of 1-MDSQ with K0 = K (only side codebooks are stored), 

the IA optimization step does not make a significant difference. We have tested 

several cases: R = 2 and R = 3 when K = 2, R = 1 and R = 2 when K = 3, R = 1 

when K = 4, and observed that the impact of IA optimization is not significant in 

all the cases. Here we only present the effect of IA optimization when it is applied to 

the case of 4 descriptions, R = 1 in Fig. 5. 7. It can be seen that the improvement is 
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less than 0.5 dB. 

In conclusion, our tests show that the impact of IA optimization step in L-MDSQ 

design increases as the number of stored joint codebooks increases, culminating in 

the case of Opt-MDSQ (where all codebooks are stored). 

5.2 Performance Evaluation of the New Techniques 

In this section we present the experimental comparison between the proposed MDC 

techniques and two existing ones (Opt-MDSQ and previous MD-UEP). 

As it was discussed in Section 3.1, L-MDSQ has lower decoding storage needs 

than Opt-MDSQ, but at the cost of decrease in performance. One purpose of the 

experiments presented here is to assess how significant this loss is in performance. 

As justified in Section 4.4, the new MD-UEP always outperforms the traditional 

MD-UEP theoretically. Another goal of our experiments is to validate this conclusion 

and to assess the magnitude of this improvement. 

Intuitively MD-UEP (both schemes) does not perform as well as MDSQ, since 

the former has a higher amount of redundancy. Therefore, another objective of our 

tests is to compare the practical performance of (traditional/new) MD-UEP with 

the MDSQ, and ultimately compare the proposed L-MDSQ with the new MD-UEP 

scheme. 

In our tests we have used optimized MD-UEP based on scalar SRQ. Before present

ing the tests results we first briefly describe our method for MD-UEP optimization. 
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5.2.1 Optimization of MD-UEP 

First note that the only difference between the optimization problems for new and old 

MD-UEP consists in the different weights assigned to the component distortions of 

the SRQ in the cost function. Therefore, the same method can be used to design the 

optimal solution in both cases, with the appropriate choice of the weights. Therefore, 

in the sequel we specifically address the design of previous MD-UEP technique. 

As discussed in Section 4.2, the problem of optimal MD-UEP design can be for

mulated as the problem of constructing an SRQ which minimizes the cost function 

(4.1) under the constraint (4.2). Since a scalar SRQ is under consideration, there is 

the additional constraint that each R( Q;), 1 :::; i :::; K, in ( 4.2) is an integer. Note that 

the number of K-tuples of rates (R( QI), R( Q2), · · · , R( QK)) which satisfy the above 

mentioned constraints is finite. We call any such K-tuple a qualifying K-stage rate 

allocation. We emphasize the requirement that R( Q;) :::; R( Qi+I) imposed by the def

inition of the SRQ. Also note that we allow equality between the rates of consecutive 

stages. 

Our strategy in solving the MD-UEP optimization problem consists of three steps: 

1) list all qualifying K -stage rate allocations; 2) for each K -stage rate allocation, de

sign a K -stage scalar SRQ achieving these rates, of minimal expected distortion ( 4.1), 

by using the algorithm proposed in [6]; 3) select the SRQ which has the minimum 

expected distortion. 

The major challenge is that as the rate, or the number of descriptions increases, the 
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Figure 5.8: All possible frameworks for K =4, R=2. The shaded area represents the 

source symbols, the white area represents the protection symbols. 

number of qualifying K -stage rate allocations becomes very large, hence our method 

will become very time-consuming. Here we only consider 2, 3 and 4 descriptions, with 

rates 2 and 3 for 2 descriptions, and rate 1 and 2 for 3 and 4 descriptions. Among all 

these cases, 4 descriptions with rate 2 has the largest number of qualifying K -stage 

rate allocations. Fig. 5.8 illustrates the MD-UEP rate allocation for all fourteen 

possibilities for this case. The shaded area represents the source symbols, the white 

area represents the protection symbols. There are only fourteen possible frameworks, 

hence the optimization is still tructable. 
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5.2.2 Experimental Results 

In this part we present the comparison between, 1-MDSQ (two variants: K 0 = K 

and K 0 = K- 1), Opt-MDSQ, traditional MD-UEP, and new MD-UEP, for 2 to 4 

descriptions, and the following rates: R = 2 and R = 3 when K = 2, R = 1 and 

R = 2 when K = 3, R = 1 and R = 2 when K = 4. 

Fig. 5.9,5.10 illustrate the performance of 1-MDSQ (K0 = K), Opt-MDSQ, old 

MD-UEP and new MD-UEP with 2 descriptions, rate 2 and rate 3, respectively, 

versus q, the probability of description loss. Fig. 5.11-5.14 illustrate the performance 

of 1-MDSQ (K0 = K, K 0 = K- 1), Opt-MDSQ, old MD-UEP and new MD-UEP 

with 3 and 4 descriptions, rate 1 and rate 2, respectively, versus q. The performance 

is measured by expected distortion in dB. IA optimization is applied to all MDSQ 

frameworks, except for the case of 4 descriptions, rate 2 (Fig. 5.14). 

We will structure our analysis by discussing the comparison between the following 

pairs of MDC schemes: 1) 1-MDSQ versus Opt-MDSQ; 2) traditional MD-UEP versus 

proposed MD-UEP; 3) MDSQ versus proposed MD-UEP. 

L-MDSQ versus Opt-MDSQ. Most of the time the performance of 1-MDSQ 

is worse than Opt-MDSQ. When K0 = K, the performance gap between 1-MDSQ 

and Opt-MDSQ becomes smaller as the probability q of description loss gets larger. 

This is in accordance with the 

intuition that, as q increases, the central codebook becomes less important, hence 

the degradation in performance is not as significant as when q is very small. 1-MDSQ 
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Figure 5.11: Comparison between MDSQ and MD-UEP, K =3, R=l. 

with K 0 = K- 1 always performs better than L-MDSQ with K 0 = K, and worse 

than Opt-MDSQ. Note that this relationship in performance is just the reverse order 

of the relationship of the size of storage space needed at the decoder. When q is very 

small (q = 0.001), under most cases the performance of L-MDSQ with K 0 = K -1 is 

very close to Opt-MDSQ. This can be justified by the fact that when q is very small, 

the central codebook becomes very important, and both schemes have an optimal 

central codebook stored. 

Traditional MD-UEP versus new MD-UEP. The experimental results vali-

date our conclusion that new MD-UEP strictly outperforms the traditional MD-UEP. 
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Figure 5.12: Comparison between MDSQ and MD-UEP, K=3, R=2. 

The maximum difference is 2.1 dB for 2 descriptions, 2.7 dB for 3 descriptions, and 

3.05 dB for 4 descriptions. 

MDSQ versus new MD-UEP. For the case of 2 descriptions, the performances 

of Opt-MDSQ and new MD-UEP are quite close, and when q is more than 0.1, the 

performances of L-MDSQ (Ko = K), Opt-MDSQ and new MD-UEP are very close. 

For the case of 3 and 4 descriptions, most of the times new MD-UEP outperforms 

L-MDSQ (both K0 = K and K0 = K -1) and Opt-MDSQ. Only when q is very high, 

L-MDSQ performs slightly better than new MD-UEP. Note that our tests show that 

the new MD-UEP could outperform Opt-MDSQ. This is contrary to the intuition that 
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Figure 5.13: Comparison between MDSQ and MD-UEP, K =4, R= 1. 

MD-UEP should be worse than Opt-MDSQ (since the former has a higher amount 

of redundancy). We attribute this result to the sub-optimality of the design of Opt-

MDSQ, which is due to the imperfection of the IA: we have already known good 

IA's for the case of 2 descriptions, hence the performance of Opt-MDSQ is good and 

sometimes is better than new MD-UEP; good IA's are not yet known for 3 and 4 

descriptions, this could justify why most of the time the performance of Opt-MDSQ 

is worse than new MD-UEP. This is more obvious in Fig. 5.14. In this case IA 
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Figure 5.14: Comparison between MDSQ and MD-UEP, K =4, R=2. 

optimization is not applied, and the gap between Opt-MDSQ and new MD-UEP 

reaches as much as 3.81 dB, which is bigger than in any other case. 

Conclusion. When the probability of description loss is small, L-MDSQ with 

several joint codebooks stored is very competitive with Opt-MDSQ. New MD-UEP, 

surprisingly, performs very well, not only under the aspect of reducing the storage 

space, but also under the aspect of producing low reconstruction distortion. Its 

performance is close to Opt-MDSQ in general. 
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Chapter 6 

Conclusion 

High storage space needs of an MDC scheme could be an issue, especially in applica

tions where the memory resources are scarce. Such applications motivate the study of 

MDC with reduced storage space decoder. In this work we proposed two techniques 

for symmetric MDC with reduced storage space decoder. 

One of the two techniques is MDSQ with linear joint decoders. For such an MDSQ, 

we store all side codebooks and a few joint codebooks, and generate the other joint 

codebooks as linear combinations of the side codebooks. This way, the storage space 

is reduced, but under the cost of decreased performance. We addressed the problem 

of optimal design of such systems. The algorithm we proposed is a generalized Lloyd 

algorithm, similar to the one introduced by Vaishampayan [45], to which we added 

an IA optimization step at each iteration, to overcome the problem that good IA's 

for more than two descriptions are yet to be found. We also solved an additional 
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challenge in the decoder optimization by proving that the problem is a convex op

timization problem with a closed form solution (under some mild conditions). Our 

experimental results reveal that the impact of IA optimization step increases as more 

joint codebooks are stored at the decoder. Additionally, we observe that when the 

probability of description loss is very small, the performance of such MDSQ with 

side codebooks and a central codebook stored is very close to the performance of 

traditional MDSQ with all codebooks stored. 

The other technique we proposed is an improvement to the traditional MD-UEP 

scheme. MD-UEP is also an MDC method of reduced storage space decoder. The 

new scheme strictly outperforms the traditional one. We evaluated and compared 

the asymptotical performance of both schemes for a Gaussian memoryless source. 

Our analysis shows that the improvement can reach up to 1.68 dB in the case of 

three descriptions and is over 1 dB for up to 10 descriptions and low probability of 

description loss. 

We also performed an experimental study of the proposed MDC techniques and 

compared them with traditional MDSQ and MD-UEP. We observed that the new 

MD-UEP, surprisingly, performs very well, not only under the aspect of reducing the 

storage space, but also under the aspect of producing low reconstruction distortion. 

Traditional MDSQ and new MD-UEP have close performance in general. This is 

contrary to the intuition that MD-UEP should be worse than Opt-MDSQ, since the 

former has a higher amount of redundancy. We attribute this result to the sub-
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optimality of the design of the traditional MDSQ, which is due to the imperfection 

of the IA. 
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Appendix A 

Derivation of Asymptotical 

Performance Analysis of MD-UEP 

A.l General Case 

Here we present some details of the derivation of the asymptotical analysis of Section 

4.4. This derivation is inspired by the work of Puri et al. [34]. 

Let k0 be the largest integer such that 

(A.1) 

In other words, ko is the largest integer between 1 and K such that U ( k0 - 1) ( k0 - 1) :::; 

U(ko) + U(ko + 1) + · · · + U(K). Then we show that the extreme points of the curve 
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Proof. 

(A.2) 

is equivalent to 

U(k+1) U(k+2) 

(1- k!2)- (1- k!I) ~ (1- k!3)- (1- k!2)' 
(A.3) 

where 0 ~ k ~ K- 3. By substituting (4.4) into the above inequality and after some 

math manipulations, we obtain 

k+1 k+3 
K- k- 1 q- k + 2 (1 - q) ~ O. (A.4) 

Define 

1 4- K 3- 3K 
f(k) = -k2 + (K- 1 + --)k + 3K- 1 + , (A.5) 

q q q 

where 0 ~ k ~ K - 3. Then (A.4) is equivalent to 

f(k) ~ 0. (A.6) 

f(k) is a quadratic function, and since ~ > 0, the parabola opens upward, and 

il =(qK + 4- K- q) 2
- 4(3 + 3qK- 3K- q) 

=(q- 1)2 K 2 + ( -2q2
- 2q + 4)K + (q- 2) 2 > 0. 

To ensure f(O) ~ 0, K must satisfy the constraint K ~ t:3~. When q ~ ~ and any 

K ~ 2, f(O) ~ 0. If f(K- 3) ~ 0, K must satisfy the constraint 

K 2 + q + J -7 q2 + 4q + 4 
~ 2q . 
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When k = K- 2, (A.2) becomes 

(A.7) 

To satisfy this condition, it is needed that 

K 
q + j- 3q2 + 4q < . - 2q 

Therefore, when q S ~ and 

K [2 
. ( 2 + q + j -7 q2 + 4q + 4 q + j -3q2 + 4q )] 

E ,mm 2q , 2q , (A.8) 

we have f(k) S 0 for all k, hence the curve is convex, which implies that all points are 

extreme points. According to the definition of k0 , k0 = K and the claim is proved. If 

(A.8) is not satisfied, it follows that the quadratic function f(k) has a zero value x 0 

in the interval [0, K- 2). It follows that for all 0 S k S lx0J, f(k) S 0, and for all 

lx0J < k S K- 2, f(k) > 0. This implies that there is some k1 S lxoJ such that all 

points ? 1, · · · , Pk1 are extreme points and all points Pk1+1 , · · • , PK-l are not. Since 

follows that k1 = k0 - 1 and the claim is proved. 0 

According to the observation of [34] (Page 345), when R1 2: 0 is satisfied, the 

problem ( 4.5) is equivalent to the following 

ko-l 
m1mm1ze r72 L U'(k)2-2Rk + r72U'(ko)2-2Rko (A.9) 

k=l 
ko-l 

subject to L M'(k)Rk + M'(ko)Rko = R, (A.lO) 
k=l 
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where Rka = Rka+I = · · · = RK; U'(k) = U(k) for 1 ::::; k ::::; ko - 1 and U'(ko) = 

~:ko U(i); and M'(k) = k(k~l) for 1 ::::; k ::::; ko- 1 and M'(ko) = ~:k~ i(i~l) + -f<. 

The above problem is a convex problem with one equality constraint 1
. To solve this 

problem, we introduce the Lagrangian 

ko ko 
£(RI, ... 'Rk, >-.) = 0"2 L U'(k)2- 2

Rk + >-.(L M'(k)Rk- R), (A.ll) 
k=l k=l 

where ).. is some nonnegative value. By setting all partial derivatives of the Lagrangian 

function with respect to R 1, · · · , Rka to zero, we obtain 

-2ln 20"2U'(k)2- 2
Rk + )..M'(k) = 0, k = 1, · · · , k0 . (A.12) 

Then we can get the values of R1 , · · · , Rko by solving the above equation: 

R - -~ lo >-.M'(k) 
k- 2 g2 2ln20"2 U'(k)' k = 1, · · · , ko. (A.13) 

Because ( ~;~~~)) l5ok9o, is an increasing sequence, it follows that R1 ::::; R2 ::::; · · · ::::; Rka. 

Next we substitute (A.13) into (A.lO), to get the value of -X: 

ko-l 1 1 A 

~ k(k+ 1)(-2)log2 2ln20"2k(k+ 1)U(k) 

1 1 ).. 
+-(--)log - R 

ko 2 
2 

2ln 20"2ko ~f=ko U(k) - ' 

it follows that 

(A.14) 

where 

ko-1 
1 1 

K 

A= L k(k + 1) log2 (k(k + 1)U(k)) + ko log2(k0 L U(k)). 
k=l k=ko 

(A.15) 

1 As proved in [34] the solution satisfies the inequality constraints of ( 4.5). 
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Finally, we obtain the expression of Dald by substituting (A.13) and (A.14) into (A.9): 

ko-1 

Dald =0"2 L U(k)2- 2
Rk + 0"

2U'(k0 )T2
Rko 

k=1 

ko-1 

=0"
2 L U(k)2ln20"2k(~ + 1)U(k) 

k=1 

K A 

+ 0"
2 
( ~ U ( k)) 2ln 20"2 ko ~f=ko U ( k) 

ko-1 A A 

= L 2ln2k(k+1) + 2ln2k0 k=1 

A 

2ln 2 

(A.16) 

For the new framework, we will prove that when K :2: 3 and q :;: f<, all points are 

extreme points. 

Proof. 

(A.17) 

is equivalent to 

V(k + 1) V(k + 2) 
(1- k!2)- (1 - k!1) :;: (1 - k!3)- (1 - k!2), 

(A.18) 

where 0 :::; k :::; K - 3. By substituting ( 4.6) and ( 4. 7) into the above inequality and 

after some math manipulations, we obtain 

(k + 1)(k + 2)q:::; (k + 3)K- k- 2(1- q). (A.19) 

Define 

f(k) = k2 + (qK + 5- K- 2q)k + 3Kq + 6- 3K- 4q, (A.20) 
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where 0::::; k ::::; K- 3. Then (A.19) is equivalent to 

f(k) ::::; 0. (A.21) 

f(k) is a quadratic function, with the parabola opening upward, and 

~ =(qK + 5- K- 2q)2
- 4(6 + 3qK- 3K- 4q) 

=(q- 1)2 K 2
- 2(2q2

- q- 1)K + (2q- 1)2 > 0. 

To ensure f(O) ::::; 0, K must satisfy the constraint K 2 ~=~~· When q < ~ and 

K 2 3, f(O) ::::; 0. If q::::; -f<, we have j(K- 3) ::::; 0. 

When k = K- 2, (A.2) becomes 

(A.22) 

By substituting ( 4.6) and ( 4. 7) into the above inequality and after some math rna-

nipulations, we obtain 

(K- 1)(1- q)K-zq :S; 1. (A.23) 

It is straightforward that if q ::::; -k, the above inequality is true. Therefore, if K 2 3 

and q::::; -f<, f(k) ::::; 0 for all k, hence the curve is convex, which implies that all points 

are extreme points, hence the claim is proved. 0 

Now we proceed to compute the value of Dnew· When K 2 3 and q ::::; -f<, the 

problem (4.8) is equivalent to the following (according to [34]). 

K 

mm1m1ze az L V(k)2-2Rk (A.24) 
k=l 

K 

subject to LM(k)Rk = R, (A.25) 
k=l 
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where V(k) = Ki(kU(k) for 1::; k::; K -1 and V(K) = L~J?; and M(k) = k(k~ 1 ) for 

1 ::; k ::; K- 1 and M(K) = -}. The above problem is a convex problem with one 

equality constraint. To solve this problem, we introduce the Lagrangian 

K K 

C(R1, ... 'Rk, ,\) = 0"2 L V(k)2-2
Rk + ,\(L M(k)Rk- R), (A.26) 

k=1 k=1 

where ,\ is some nonnegative value. By setting all partial derivatives of the Lagrangian 

function with respect to R1 , · · · , RK to zero, we obtain 

-2ln 20"2V(k)2-2
Rk + ,\M(k) = 0, k = 1, · · · , K. (A.27) 

Then we can get the values of R1 , · · · , RK by solving the above equation: 

1 -\M(k) 
Rk = - 2 log2 2ln 20"2 V ( k) ' k = 1' . . . ' K. (A.28) 

Next we substitute (A.28) into (A.25), to get the value of,\: 

K -1 1 1 ,\ 

L k(k + 1) ( -2) log2 2ln 20"2k(k + 1)V(k) 
k=1 

1 1 ,\ 
+ K (- 2) log2 2ln 20" 2 KV ( K) = R, 

it follows that 

(A.29) 

where 

K-1 1 1 
B = L k(k + 1) log2 (k(k + 1)V(k)) + K log2 (KV(K)). 

k=1 

(A.30) 

Finally, we obtain the expression of Dnew by substituting (A.28) and (A.29) into 
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(A.24): 

K 

Dnew =CJ2 L V(k)2- 2
Rk 

k=l 

2 K )..M(k) 
=CJ LV(k)2ln2CJ2V(k) 

k=l 

K 

=CJ2 2ln)..2CJ2 L M(k) 
k=l 

).. 

2ln 2 

A.2 Two-Description UEP 

For the case of two descriptions, problem ( 4.5) can be written as 

minimize 
2q 1- q 2 2-2RI + 2 2-2R2 (J -- (J --

1+q 1+q 

subject to 

1 1 
-Rr + -R2 = R. 
2 2 

(A.31) 

(A.32) 

(A.33) 

(A.34) 

We first simplify the problem by eliminating the variable R2. Note that (A.34) implies 

R2 = 2R- R1 . By replacing R2 in (A.32) and (A.33), the optimization problem 

becomes 

minimize (A.35) 

subject to (A.36) 
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Further, by performing the change of variable y 22R 1 , we obtain the following 

equivalent optimization problem: 

minimize J(y) 

subject to 

where 

f( ) - 2 2q 1 + 21 - q2-4R y - (} --- (} -- y. 
1+qy 1+q 

By taking the derivative of J(y) and setting it to zero, we obtain 

and 

*= Mq 22R y 1 , -q 

J(y*) = (}2-1 2 V2q(1- q)T2R. 
+q 

(A.37) 

(A.38) 

(A.39) 

When q E [1+2}R+l, ~], the value of y* satisfies the constraint (A.38), so the optimal 

solution is y*, and the optimal value is f(y*). When q E (0, 1+2~HR), j(y) is mono-

tonically increasing in [1, 22R], so the optimal value is j(1). When q E (~, 1], J(y) is 

monotonically decreasing in [1, 22RJ, so the optimal value is f(22R). Hence, it follows 

that 

D _ 2(~ l=_q2-4R) £ (0 1 ) 
old - (} l+q + l+q or q E ' 1+2H4R . 

98 



A.2 Two-Description UEP M.A.Sc. - T. Zheng- McMaster- ECE 

For the new framework, the same idea can be applied. First we write the optimization 

problem as 

minimize 2 q 2-2R1 + 2 1 2-2R2 
(J -- (J --

1+q 1+q 
(A.40) 

subject to (A.41) 

1 1 
-R1 + -R2 = R. 
2 2 

(A.42) 

Let y = 22R 1 , and form a function f(y) of y 

q 1 1 j(y) = CJ2 ___ + CJ2--2-4Ry. 
1+qy 1+q 

(A.43) 

By taking the derivative of f(y) and setting it to zero, we obtain 

and 

Note that from the constraint (A.41), y has to be inside the region [1, 22R]. When 

q E [2-4R, 1], y* E [1,22R], hence is the optimal solution, and the optimal value is 

f(y*). When q is less than 2-4R, J(y) is monotonically increasing in [1, 22R], so the 

optimal value is f ( 1). Hence, it follows that 
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