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Abstract 


In this thesis, we consider the joint design of transceivers for a multiple access Mul­

tiple Input and Multiple Output (MIMO) system having Inter-Symbol Interference 

(ISI) channels. The system we consider is equipped with the Minimum Mean Square 

Error (MMSE) D~cision-Feedback (DF) detector. Traditionally, transmitter designs 

for this system have been based on constraints of either the transmission power or the 

signal-to-interfereo.ce-and-noise ratio (SINR) for each user. Here, we explore a novel 

perspective and examine a transceiver design which is under a fixed sum Gaussian 

mutual information constraint and minimizes the arithmetic mean square error of 

the MMSE-decision feedback detection. For this optimization problem, a closed-form 

solution is obtaim:d. We prove that the optimal solution is achieved if and only if the 

sum mutual information is uniformly distributed over each individual user per the 

number of its active subchannels; i.e., user mutual information uniform distribution. 

Meanwhile, the Gaussian mutual information of the current user under perfect feed­

back for all the previous users is uniformly distributed over each individual symbol 

within the block 3ignal of the user; i.e., symbol mutual information uniform distri­

bution. The user mutual information uniform distribution is attained by successively 

solving a series of inverse (dual) problems of maximizing single user throughput, while 

the symbol mutual information uniform distribution is maintained by using the equal 

diagonal QRS de :;omposition. We also show that such uniform decomposition, in 

addition to minimizing the arithmetic MSE of MMSE-decision feedback detection, 

also has another two optimality properties: (a) Both the optimal user-detection order 
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and symbol-detec ;ion order are natural orders in terms of signal to interference and 

noise ratios. (b) The free-distance for the Maximum Likelihood (ML) detector has 

an asymptotic behavior when the sum Gaussian mutual information tends to large. 
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Text Conventions 


Throughout this ~hesis, we use the following notation: Matrices and column vec­


tors are denoted by uppercase boldface characters (e.g., A) and lowercase boldface 


characters (e.g., b), respectively. 
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Chapter 1 

Introduction 

During the past years, wireless communication systems have gained significant im­

portance and atte :.ttion due to the heavy demand of ubiquitous communications in 

society. While thne are only limited resources in a communication system, the in­

creasing amount o · information that has to be handled places higher demands on the 

capacity, reliabilit;r and frequency efficiency of the system. Multiple-input multiple­

output (MIMO) cCtmmunication schemes are momentous breakthroughs of communi­

cation techniques ;o meet these recent challenges due to their numerous advantages 

and potentials including greatly increased channel capacities, as well as diversity and 

spectral efficiencie;. 

1.1 What is MIMO 

Figure 1.1 illustrates different input-output configurations defining space-time com­

munication systems: 1) Single-input single-output (SISO), 2) Multiple-input single­

output (MISO), 3) Single-input multiple-output (SIMO) and 4) Multiple-input multiple­

output (MIMO) s:vstems, depending on the number of inputs and outputs at the 

transmitter and the receiver respectively. MIMO systems, in particular, have at­

tracted much atte 1tion in communications, since they offer significant increases in 
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data throughputs and link ranges without additional bandwidths or transmission 

power. This is acb ieved by higher spectral efficiency (more bits per second per Hertz 

of bandwidth) and link reliability or diversity (reduced fading). For these advantages, 

MIMO is currentl:r a research topic enthusiastically pursued. 

v v 
SISO 8 y_Rx I 

v v 
SIMO [rJJ ~ Rx] 

v v 
MISO 8 q_::= 
MIMO q v v 

E 
Figure 1.1: Multi-antenna types 

To exploit all its advantages, a MIMO system divides its functions into three 

primary parts: 

• 	 Precoding - This function of the tranmitter puts appropriate weights on the sig­

nals to be transmitted in order to achieve different objectives such as maximizing 

the link throughtputs (or sum mutual information) at the receiver output, or 

minimizing ;he mean square error (MSE) of the detection, or minimizing the 

bit error rat~~ (BER), etc. Therefore, with the use of precoding, the system per­

formance caJ. be further improved. It should be noted that optimum precoding 

generally requires full knowledge of the channel state information ( CSI) at the 

transmitter. 

2 
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• 	 Spacial multiplexing - In MIMO systems, this offers a linear increase in the 

transmission rate (or capacity) for the same bandwidth and with no additional 

power exper diture [1]. For spatial multiplexing, a high rate signal stream is 

split into multiple lower rate streams and each of these streams is transmitted 

from one tr2nsmitter antenna in the same frequency channel. If these signals 

arrive at thE receiver with sufficiently different spatial signatures, the receiver 

can separate these streams, i.e., spacial multiplexing can create parallel channels 

with knowledge of CSI. The maximum number of spatial streams is limited by 

the smaller of the numbers of antennas at the transmitter and receiver. In this 

case, channel knowledge is not required at the transmitter. 

• 	 Diversity tee hniques - These are used to increase reliability of transmission es­

pecially under fading conditions. There are three main types of diversity: tem­

poral diversi ;y, frequency diversity and spacial diversity, each of which provides 

replicas of tl.e transmitted signals over time, frequency, and space respectively. 

As a result, at the receiver end, replicas of the transmitted signals are obtained 

which can bE helpful to recover the original signals. If parts of the signals face a 

deep fade in the channel and are distorted badly, there are still other replicas of 

the signals transmitted through different and independent paths or frequencies 

that can be used for detection. In a MIMO system, due to its multiple antenna 

facility, spatial diversity through different transmitter and receiver antennas 

are generally utilized such that the transmitter sends the same signal through 

multiple pat 1s while the receiver receives multiple replicas of the same trans­

mitted signa . Thus, the higher is the diversity, the better we can combat the 

fading of a channel. Diversity is characterized by the number of independent 

fading branches, or paths (routes). These paths are also known as diversity 

order. Full diversity is achieved when the total degree of freedom (the number 

of transmittEr antennas times the number of receiver antennas) offered in the 

multi-antenna system is utilized [1]. 

3 
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From the abO\ e, it can be seen that the use of multiple dimension at both the 

transmitter and tl: e receiver brings significant enhancement in spectral efficiency, link 

reliability as well as a considerable increase of transmission rate. 

1.2 Examples of MIMO Communication System 

MIMO channels arise in many different scenarios and we will give some typical ex­

amples of MIMO applications in this section. 

• 	 A multi-car:ier system in which the available bandwidth is partitioned into 

L subbands and then each subband is independently used for transmission [2, 

3]. Such an approach not only simplifies the communication process but also 

provides a c2pacity-achieving structure for a sufficiently large L [4]. If the signals 

are transmit ted using a block transmission together with a cyclic prefix, the 

corresponding channel model then is represented by a circulant matrix which 

when combined with an inverse/direct discrete Fourier transform (DFT) at 

the transmitter/receiver, is transformed into a diagonal matrix with diagonal 

elements given by DFT coefficients [5]. 

• 	 The multi-a:1tenna wireless channel is a paradigmatic example of a MIMO sys­

tem (shown in Figure 1.2). This particular system can offer all the main advan­

tages of MIMO systems [6, 7, 8]. 

• 	 The wirelinf digital subscriber line (DSL) technology has gained popularity as 

a broadband access technology capable of reliably delivering high data rates 

over telephoae subscriber lines [9]. Modeling a DSL system as a MIMO channel 

presents marry advantages with respect to treating each twisted pair indepen­

dently [10, J 1] which was done three decades ago [12]. The dominant impair­

ment in DSL systems is crosstalk arising from electromagnetic coupling between 

neighboring twisted-pairs. Near-end crosstalk (NEXT) comprises the signals 

4 
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Figure 1.2: Example of a. MIMO channel arising in wireless communications 

originated in the same side of the received signal and far-end crosstalk (FEXT) 

includes the signal originated in the opposite side of the received signal. In DSL 

y(t) 

C~.:.~ntm l 

Offlc~ 

Ccntml j Sing!<: officeFEXT NEXT 
Ofiic,, , building Cabinet 

Figure 1.3: Example of a MIMO channel arising in DSL communications 

system, a bundle of twisted pairs is treated as whole. As shown in Figure 1.3, a 

binder group composed of L users in the same physical location plus some other 

users that possibly belong to a different service provider and use different types 

of DSL systems. The MIMO channel represents the communication of the L 

intended users while the others are treated as interference. DSL channels are 

5 




M.A.Sc: Wenwen Jiang McMaster- Electrical and Computer Engineering 
--~~--------------------------------~------~----~ 

highly frequ,mcy-selective, as a consequence, practical communication systems 

are based on the multicarrier MIMO signal model [8]. 

1.3 Multi-user MIMO System 

Our discussion abJve focuses on MIMO communication systems with a single user. 

However, MIMO transmission can also be used by multiuser systems. For a MIMO 

multi-access cham el (MAC), multiple users communicate with one base station. The 

signals received by the base station is the summation of all the signals from all the 

users. A similar system can be considered as the broadcast channel (BC), i.e., the 

downlink channel of the MAC where a common transmitter sends information to 

distributed receivers. When applying MIMO scheme in a multi-user system, a specific 

model needs to be established. 

A pragmatic a:rproach to deal with multiuser systems consists of employing single­

user designs for the users of the network in an iterative manner [13] or iteratively 

optimizing the rec()ivers and the transmitters [14], but a global optimum may not be 

reached. 

1.4 Motivation and Contribution of the Thesis 

Given the increasing importance of the MIMO technology as well as the importance 

of multi-user communications in practice, a critical issue arises, i.e., the joint design 

of a transceiver for a multi-access MIMO channel. This is the subject of this thesis. 

It should be noted that the optimal design solutions for the single user system cannot 

be directly generalized to a multi-user scenario. The main technical obstacle is, in the 

case of a multi-user system, the transmitter matrix has a block structure such that 

each sub-block is constrained in power individually. Thus far, this difficult problem of 

designing optimal transceiver pairs for a multi-user case has been successfully tackled 

6 
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by minimizing the total MSE in the system employing a linear MMSE receiver [15, 16] 

and optimal power allocation has been developed for OFDM or DMT system in [17, 

18, 19]. Also the capacity in a multi-user system has been maximized in [20, 21] 

Since minimum m~an square error- decision feedback equalization (MMSE-DFE) has 

superior performance to, as well as other advantages over the linear MMSE equalizer, 

we will concentrat'? on the optimum design of a multi-user MIMO transceivers having 

a MMSE-DFE receiver. 

We first consk ered using individual power constraints in a multiple access com­

munication system with MMSE-DFE when minimizing the arithmetic mean square 

error (MSE). However this problem faces two main difficulties. The first one is due 

to the specific blc ck structure for the transmitter matrix. We considered applying 

the trace-determirant inequality to obtain the lower bound of the MSE. However, the 

problem of the bl,)ck structure matrix renders this bound unachievable. The other 

obstacle is that th s optimization problem is not convex and may not be easily solved. 

Therefore, we ~~xplore a novel perspective of the transceiver pair design for block­

by-block intersyrr bol interference (ISI) multiple access MIMO channels with the 

MMSE-DF detect)r such that the arithmetic mean square error for K users is mini­

mized subject to G fixed sum mutual information constraint. By using this criterion, 

we avoid the structural problem of the transmission matrix. Furthermore, by using 

the dual water-filling solution, the transmission power of each user is simultaneousy 

minimized and a dosed form solution is provided. 

To sum up, in this thesis, the optimal design of the transceiver pair for a syn­

chronous multiple access MIMO system in which the K-user data sequences are pre­

coded separately and transmitted block-by-block at full rate over frequency selective 

lSI channels is ta1:en into account. At the receiver end of this multiple access MIMO 

system, the MMS 8-DF detector is employed to detect the signals. The optimization 

problem to minimize the arithmetic MSE in a multi-access MIMO communication 

system subject tc fixed sum mutual information is examined, and the closed-form 

7 
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optimal solution i:; then provided. Simulation results of the performance under this 

design are presented and compared with that of the multi-access with linear equal­

ization and maximum likelihood detection. 

1.5 Organization of the Thesis 

The thesis is structured as follows: 

• 	 In Chapter 2, the background knowledge of the multi-access MIMO commu­

nication sysiem with several detection methods are provided for the reader to 

better understand this work. 

• 	 In Chapter 3, according the system model, we propose a QR interpretation 

of the decision feedback equalization, which successively cancels the previous 

detected symbols. 

• 	 In Chapter Ll, the dual water-filling problem is discussed. In a single user com­

munication Eystem model, an dual water-filling problem is stated and the close­

form optimal solution is provided and proved. 

• 	 In Chapter 1i, the design problem is proposed. By reformulating the objective 

function ancl applying the inverse water-filling solution, the final closed form 

optimal desi~n is obtained. With the aid of QR decomposition, further insight 

of the optimality is obtained. 

• 	 In Chapter E, we simulate a multi-user MIMO communication system equipped 

with the op1;imally designed transceiver. Simulation results are compared to 

those using .:t linear receiver proposed in [16] and those using maximum likeli­

hood detection. 

• 	 In Chapter '', conclusion on this work and suggestion for future work are pre­

sented. 

8 




Chapter 2 

MIMO System 

In this chapter, W<) present the necessary concepts and theories in adequate depth as 

a preliminary to this thesis. The mathematical model of the multiple-input multiple­

output (MIMO) transmission is first presented. We then discuss the various criteria 

to measure how tl: e communication system performs. This is followed by the discus­

sion on different c etection schemes. Finally, the system model of a multiple access 

communication sy3tem is introduced. 

2.1 Syste1n Model 

A MIMO channel is mathematically represented by a matrix which provides a way 

to show channels with different natures. The MIMO communication channel with N 

transmitter and P receiver antennas can be described with the base band model 

y=Hx+e (2.1) 

if the channel is band limited. In this model, x is the N x 1 signal vector to be 

transmitted, H is P x N channel matrix with the component hij of the channel 

matrix is the gair/fading coefficient from the jth transmitter antenna to the ith 

receiver antenna (.1s shown in Figure 2.1). The received signals constitute a P x 1 
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column vector y , where each complex component refers to a receiver antenna. The 

noise is then denoted by ~ . 

X 

1 t 
t 
t.
. 


Figure 2.1: MIMO channel model 

2.2 	 Measures of Communication System Perfor­

mance 

There are various ways to measure and compare the performance of different commu­

nication systems and t ransmission schemes. The three main criteria are bit error rate 

(BER), mean square error (MSE), and channel capacity. Bit error rat e is the ratio 

of the number of incorrect ly received bits to the total number of bits sent during a 

specified time interval. This is a measure of how well the demodulator and encoder 

perform. More precisely, the average probability of a bit-error at the output of the 

decoder is a measure of the performance of the system. In general, the probability of 

error is a function of the code characteristics , the types of waveforms used to t rans­

mit t he information over t he channel, the transmitter power , the characteristics of 

the channel (i.e., the amount of noise, t he nature of the interference, etc.), and the 

method of demodulation and decoding. 

MSE is t he square of the difference between the detected signals and the t rans­

mitted signals. It measures t he average square of t he distance between the received 

and t he transmitted signal vectors. Therefore, the smaller the MSE is, in general, the 

10 
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less probable it is for the detector to make an error. The mean square error remains 

a significant parameter for the assessment of the performance of the communication 

system [22, 23]. 

Channel capac ty is the tightest upper bound on the amount of information that 

can be reliably transmitted over a communications channel. By the noisy-channel 

coding theorem [2,1], the capacity of a given channel is the limiting information rate 

(in units of information per unit time) that can be achieved with arbitrarily small 

error probability. The notion of channel capacity defined by Shannon in information 

theory provides a mathematical quantity by which one can compute it. The key 

result states that the capacity of the channel is given by the maximum of the mutual 

information betwe(m the input and output of the channel, where the maximization is 

with respect to thE~ input distribution [25]. 

When compari~:on of communication systems are made, other factors such as the 

transmission power and complexity of implementation should also be taken into con­

sideration. 

2.3 Detection Methods 

A major problem m data communications arises from the intersymbol interference 

(ISI) created by a frequency selective channel. lSI is a form of distortion of a sig­

nal in which one symbol interferes with subsequent symbols. This is an unwanted 

phenomenon since the previous symbols have similar effect as noise, thus making the 

communication les:; reliable. When the signals are transmitted through a bandlim­

ited channel, wire or wireless, the channel characteristic is usually non-ideal, i.e., the 

amplitude responsE is not constant for the pass band and the phase response is not a 

linear function of fr ~quency. A sequence of the pulses transmitted through the channel 

will then be distorted and may not be clearly distinguishable at the receiver [26]. 

This problem, however, can usually be simplified by transmitting the data in a 

11 
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block-based fashion [27, 28]. In particular, effective detection can be performed on a 

block-by-block bill is if the blocks are designed so that there is no inter-block interfer­

ence (IBI) at the receiver. There are several schemes within this family of block-by­

block data commt: nications, the most commonly used being the multi-carrier modu­

lation based Discr8te Multi-Tone (DMT) [29, 5] and Orthogonal Frequency Division 

Multiplexing (OFDM) schemes [30]. 

To reduce the intersymbol interference(ISI) problem in channels, the signals are 

often put through an equalizer before making the decision. An equalizer is a device 

which compensates for the non-ideal frequency response of the channel. In this sec­

tion, we introduce detection schemes which includes such an equalization process at 

the receiver. 

2.3.1 Maxin1um Likelihood 

From a detection error viewpoint, an optimal transmitter for a single user block­

by-block data communication over an lSI channel with Gaussian noise is one that 

minimizes the detection error probability of the maximum likelihood (ML) detec­

tor [26, 31, 32, 3::.]. If the received signal vector is y = Hx + ewith ebeing the 

Gaussian white noise, then the joint probability density function (PDF) of the ran­

dom variable y co 1ditioned on the transmitted sequence x is 

1 { 1 H -1 }
p(ylx) = ( 27r)N/2 det(~EE)l/2 exp -2(y- Hx) ~EE (y- Hx) 

for real symbols 'Vhere ~EE = E[eeHJ is the noise covariance matrix. Under the 

maximum likeliho)d criterion, we choose :X so that it is the value that most likely 

caused the received value of y to occur. Thus, the maximum-likelihood estimate, 

xML, is the one thht maximizes this joint probality density, i.e., minimizes the distance 

between y and Hx. At high signal-to-noise ratios (SNRs), the average probability of 

error over all bloc{S is dominated by the free distance term [32, 31]. (This suggests 

that maximizing the free distance may be a good transmitter design strategy). In 

12 
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the presence of IS: that spans ( N + 1) symbols ( N interfering components), the ML 

criterion is equiva ent to the problem of estimate a state in the total of MN states 

if the information symbol is M-ary. A famous algorithm, the Viterbi algorithm [26], 

is usually used in finding the optimal solution whose basic idea is to search all the 

possible combination of symbols via the trellis representation of the detection process. 

This shows that if the symbol length N is large the ML detector is, in general, 

very complicated to implement (the computational cost grows exponentially with 

the length of the symbol block) and may not be practical. We will describe two 

suboptimal channd equalization approaches in the following sections. 

2.3.2 Linear Receiver 

One suboptimal equalization is linear equalization (LE) which employs a linear transver­

sal filter. The computational complexity (usually it is the complexity of calculating 

the inverse of the channel matrix) may, in special cases, be as low as a linear function 

of the channel dispersion length [26]. Under such a scheme, decision will be made 

based on x = Jy, where J is the equalizer matrix. This equalized signal vector x is 

then quantized to the nearest symbol to form the estimation such that XLE = Q[x] 

where Q[.] denoteE the quantization process. The detection error can then be written 

as 

e X-X= Jy -X 

J(Hx +e)- X= (JH- I)x + Je (2.2) 

The equalization matrix J can be designed according to different criteria. Two 

popular criteria for this purpose are zero-forcing (ZF) criterion and minimum mean 

square error (MM:3E). In zero-forcing, we force the lSI part of the error to be zero, 

i.e., in Eq. (2.2), we have JH- I= 0, i.e., 

13 
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where (.)t denoteE the Moore-Penrose pseudo-inverse of a matrix. The zero-forcing 

equalizer removes all lSI, and is ideal when the channel is noiseless. However, when 

the channel is noisy, the zero-forcing (ZF) equalizer may amplify the noise power 

greatly. A more balanced linear equalizer is the MMSE equalizer which does not aim 

at eliminating lSI ,::;ompletely, but instead, minimizes the total power of the noise and 

lSI components at the output. According to Eq. (2.2), the MSE can be obtained as 

the trace of the er :or covariance matrix, i.e., 

E 	 tr(E[eeH]) 

tr ((JH- I)(JH- I)H + J:E~~JH] 

and the MMSE lirear equalizer matrix J is the one that minimizes the above MSE, 

and this minimiza1;ion can be realized if E[eyH =OJ. So the equalizer matrix can be 

expressed as 

The advantage of linear equalization is in the simplicity of implementation. However, 

this is achieved at the expense of loss in accuracy in the sense that the performance 

of the linear equal zer is worse than ML detection, and under severe lSI, it may not 

yield acceptable results. 

2.3.3 Decision Feedback Equalization 

Another effective alternative is to employ decision feedback equalization (DFE) at the 

receiver which is a good compromise between implementation complexity and overall 

performance. The DFE is widely used to combats intersymbol interference (ISI) in 

linear dispersion c:1annels. To disentangle the intersymbol interference, each input 

symbol based on the entire received sequence is first decoded, and its effect on the 

remainder of the sequence then subtracted before the decoding of the next symbol 

begins. The canceling of the interference by the DFE can be effected using either the 

14 
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criterion of ZF or that of the MMSE, and are designated ZF-DFE and MMSE-DFE 

respectively. 

The decision fEedback equalizer (DFE) consists of two filters, a feedforward filter 

F and a feedback J.lter B. 

A 

X 

Figure 2. 2: A conceptual model for decision feedback equalization 

Figure 2.2 shovrs a conceptual model of the structure of DFE. The input of feed­

forward section is the received signals y from which we obtain the output z = Fy. 

Therefore in this nspect, F plays an identical role as the linear equalizer J in linear 

equalization. The functional form of F depends on if ZF-DFE or MMSE-DFE is 

used. The feedback filter has an input which is the sequence of previously detected 

symbols. These a :e used to remove the intersymbol interference from the present 

symbol estimate. 

Given a block of N transmitted symbols, the detection proceeds sequentially start ­

ing from the Nth symbol by making the decision on XN = zN, and then Xn = 

Zn - L:i':n+l bnixi, where bni is the coefficients in the feedback matrix B. Once this 

block has been estimated, the states of the feedback filter are reset to be zero. Thus 

we have the struct 1re of B as 

0 b12 b13 b1N 

B= 

0 0 b23 b2N 

0 

0 

0 

0 

0 

0 

b(N-l)N 

0 
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which is an upper triangular matrix with diagonal elements being zero. Under the 

assumption that the previous decisions are all correct, the estimated signal vector can 

be written as 

xDFE = Fy- Bx = (FH- B)x+Fe 	 (2.3) 

Then we can further have the error vector as 

e = XDFE -X = (FH- B - I)x +Fe (2.4) 

For the ZF-DFE, we use the ZF criterion such that FzFH = B +I, and then the 

optimal feedforwar d filter is given by 

(2.5) 


For the MMSE-DFE, we apply the MMSE criterion by exploiting the orthogonality 

principle E[eyH] = 0 [26, 34] so that 

FMMS.o: = (B + I)RxyR;y1 = (B + I)HH(HHH + :Eee)-1 (2.6) 

where 

Ryy E[yyH] = E[(Hx + e)(Hx + e)H] 

HHH + :Eee 

is the covariance rr atrix of y, and 

is the cross-correlation matrix of x and y. 

Since the error ,)f the detection is defined in Eq. (2.4) the error covariance matrix 

of DFE can be then written as 

:Eee 	 E[t:,eH] = E {[(FH- B- I)x + Fe][(FH- B- I)x + FeJH} 

(FH- B- I)(FH- B- I)H + F:EeeFH 

FHHHFH- (B + I)HHFH- FH(B + I)H 

+(B + I)(B + I)H + F:EeeFH 	 (2.7) 
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Substituting Eq. (2.6), we can obtain 

FHHHFH + F:EeeFH = F(HHH + :Eee)FH 


(B + I)HH (HHH + :Eee)-1H(B + I)H (2.8) 


and 

(B + I)HH (HHH + :Eee)-1H(B + I)H (2.9) 

FH(B +I)H 

Then substituting Eq. (2.8) and Eq. (2.9) back into Eq. (2.7), the error covariance 

matrix is further written as 

:Eee 	 (B +I) (I- HH (HHH + :Eee)-1H] (B + I)H 

(B + I)(I + HH:E~/H)- 1 (B + I)H (2.10) 

Decision feedba::k equalization offers improved performance over the linear ap­

proach while maintaining reasonable complexity. Under the assumption of no error 

propagation, the MMSE-DFE can achieve the capacity of a Gaussian linear disper­

sion channel [46]. Even for binary input signals, the capacity achieved by the MMSE 

decision feedback dntector is very close to that achieved by the optimal ML detector 

at moderate signal ;o noise ratio region [35]. MMSE equalization has the additional 

advantage that it C)mbines well with lattice-type codes to achieve the capacity of 

additive white Gaussian noise channels [36, 22, 46]. Mathematically, the derivative of 

the mutual information with respect to the signal-to-noise-ratio for an MMSE-DFE 

is equal to half of be MMSE, regardless of the input statistics [37]. In this thesis, 

our receiver focuses on the use of MMSE-DFE. 
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2.4 	 Trans~~eiver Designs for Single-user MIMO Chan­

nels 

The term transceiver here corresponds to the combination of the procoding at the 

transmitter that we discussed before and the equalization parameters at the receiver 

end. The concept l)f MIMO transceiver is a transformation applied on the transmitted 

and received signals to improve the communication performance. Using the channel 

model in the prev ous section, the precoded channel model can be described as 

y = HTx+~ 

where H is the P :< M channel matrix and T is an M x N precoder matrix. The goal 

to design this transmitter (or precoder) matrix T is to enhance the communication 

system in various aspects such as maximizing the channel capacity, minimizing the 

probability of error, or minimizing the mean square error, etc. At the receiver, the 

optimal equalization matrices, J in linear equalization or F and B in DFE, can be 

designed as a function of T. This is the reason why the joint design of transceivers 

is usually considered for improving the overall performance of the communication 

system. 

Research on t~ansceiver designs for a single user system have been successfully 

carried out in the past years. For linear receivers the corresponding optimum trans­

mitters designed under different criteria [27, 38, 28, 39, 30] ranging from maximization 

of mutual information and maximization of SNR to minimization of mean-square er­

ror (MSE) and mnimization of receiver bit-error-rate (BER). However, compared to 

use of a ML detector at the receiver, all these show substantial loss in performance. 

For DFE receivers, the joint design of the transmitter and MMSE-DFE receiver 

using a geometric MSE criterion has been obtained in [40]. However, the result­

ing optimal trammitter does not guarantee to simultaneously minimize the mini­

mized MSE. MorE recently, closed-form optimal transceivers with ZF-DF [41, 42] and 

MMSE-DF [34, 4:3, 44] detectors have been obtained using a newly developed equal 
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diagonal QRS decomposition of a matrix [41]. It has been shown [34] that with the 

use of the respective opt imum transmitters, t he system employing MMSE-DFE is 

superior in performance to that with the ZF-DFE. Indeed, t he MMSE-DFE receiver 

has been analysed [45, 46, 47, 23] and is referred t o as a canonical receiver suggesting 

t hat by using the properly designed codes and under the assumpt ion of having no 

error propagation , reliable communication at rates approaching t he capacity of the 

block transmission syst em can be achieved by using independent inst ances of the same 

(Gaussian) code in each element of block. Thus, for no loss in information and for 

having a low complexity compared to the ML detector , the MMSE-DFE is a desirable 

receiver. For this reason , our focus in this thesis is on MIMO systems employing the 

MMSE-DFE in the receiver. 

2.5 Multi-user System Model 

Before we address the problem of opt imum transceiver design for a multi-user MIMO 

system, we should first establish a model. The mult i-access communication system 

model considered in t his thesis is shown as the following Figure 2.3. 

Figure 2.3: Multi-access system model 

We consider a. block-based synchronous mult iple access frequency selective MIMO 

channel in which the K users' data. sequences are precoded separately and are t rans­

mitted over distinct lSI channels. Denoting the signal vector for the kth user as xk , 
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k = 1, · · · , K, the received signal is given by 

K 

y = LHkTkxk + e (2.11) 
k=l 

where Hk is a P x M block Toeplitz tall channel matrix corresponding to zero-padded 

modulation [27] or 1n M x M square block diagonal channel matrix corresponding to 

DMT modulation [:~9, 5, 10] for the kth user, and Tk is an M x Nk precoder matrix for 

the kth user. xk is ~he block of Nk transmitted symbols for User k, which is assumed 

to be zero-mean, "hite and of identity covariance matrix, and eis an p X 1 white 

Gaussian noise vector with identity covariance matrix and independent of the input 

signal vector Xk. A3sume the channel state information (CSI) is perfectly known for 

both transmitter and receiver. 

Transceiver designs for multi-user system is not an easy extension of those for 

single users and it i 3 a difficult problem which may not even have a closed form solu­

tion. In [16],transcdver optimization for multi-user system using linear equalization 

is discussed. The objective there is to minimize the total MSE under the individ­

ual power constrairt. [16] formulates the original problem and transforms it into a 

convex optimization problem which is then solved by using the numerical method. 

In [48], the transmitter of a multi-user system is optimized by considering the mini­

mization of the transmission power under rate region constraint. The inverse problem 

is also posed and solved. When the rate or power is constrained in certain regions, 

the optimization pr,)blem can be formulated into a convex problem. Only numerical 

algorithm and solut on are provided in the paper. In this thesis, we consider a multi­

access system and Exploit the MMSE-DFE to detect the received signals. Our task 

is to obtain an optimum design for all the K transceivers to minimize the arithmetic 

MSE under a novel constraint of fixed sum Gaussian mutual information. 
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Chapter 3 

QR Interpretation of MMSE 

DecisiorL Feedback Equalization 

As mentioned in Chapter 2, the MMSE-DFE is a desirable receiver reasonable in 

implementation complexity and excellent in performance. Here in this section, we 

provide a new interpretation of MMSE-DF detection from the viewpoint of QR de­

composition in linear algebra. For simplicity in illustration, we examine its operation 

in the case of a general single user. 

Let x = [x1 x2 · · · xNf be an N x 1 vector of symbols to be transmitted over a 

noisy channel. Each symbol xi is chosen from a finite-size alphabet X. Consider a 

general matrix charmel 

y=Hx+~ (3.1) 

where His a P x N channel matrix (known to the receiver), ~ = [6 6 

a noise vector witb a covariance matrix E(~~H) = :E€€' and y = [y1 y2 

the observed recei,red vector. Our task is to detect (estimate) the vector x E XN 

given the noisy observation y = [y1 y2 · · · ypf. We denote the estimate of x by 

:X= [x1 x2 · · · xN]T. The matrix H here can be of a general format. for example, if 

we let H = [H1T1 H2T2 · · · HKTK] and x = [xf xf · · · x~y, the model in (3.1) 

becomes that of the multi-user system in Eq. (2.11). 
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3.1 	 The Feedforward and Feedback Filter Matrix 

in MJ\fSE-DFE 

As we discussed in Section 2.3.3, the DF receiver, assuming perfect feedback, makes 

successive decision on the vector z = Fy - Bx [45, 46, 47, 49, 34], where F and B 

are the feedforward and feedback matrices, respectively. For the MMSE-DF receiver, 

the feedforward m1trix in Eq. (2.6) can be written as 

(3.2) 

For notational convenience, we also denote 

(3.3) 


We will call G 112 the mutual information matrix. Applying the QR decomposition 

to G 112 such that G 112 = QR, then we have 

(3.4) 

where D is a positive diagonal matrix D = diag(d1 , d2 , · · · , dN) whose ith diagonal 

entry is equal to the square of the corresponding diagonal element of the R-factor R, 

i.e., 

(3.5) 


Therefore the matrix n-112R is an upper triangular matrix with unit diagonal entries. 

From Eq. (2.10) :tnd Eq. (3.4), the error covariance matrix of MMSE-DFE can be 

written as 

:E,e 	 (B + 1)(1 + HH:E(/Ht1(B + I)H 

(B + I)G- 1 (B + I)H 

(B +I) [(D-112R)HD(D-112R)r
1 (B + I)H (3.6) 

Since (D-112R)H is then a lower triangular matrix, (D-112R)HD(D- 112R) is the 

Cholesky decomr:osition of G. Denote L = (D-112R)H, then we can have Eq. (3.6) 
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as 

~ee 	 [(B + I)L-H]D-1 [L- 1 (B + I)HJ 

zn-1zH (3.7) 

where Z = (B + I)L -H. Since both B +I and L -H = R-1D 112 are upper triangular 

matrices with unit ::liagonal entries, Z is an upper triangular matrix with unit diagonal 

entries. The mean square error is defined as 

(3.8) 


where Z= zn-11~:. From the definition of trace, Eq. (3.8) can be written as 

tr(~ee) tr(zzH) 
N 

L:zn.[zH]·n 
n=1 
N 

I:zn.[Z~Y (3.9) 
n=1 

Therefore, the M~lE is the summation of the inner product of the columns of Z and 

their conjugate. Eince Z has unit diagonal entries, we can rewrite Eq. (3.9) as 

tr(~ee) = L
N 

Zn.[Z~f 
n=1 

where 8 is a non-aegative number. Then we can have 

tr(~ee) 2: L
N 

d-;;1 

n=1 

where equality h1)lds if and only if 8 = 0, i.e, Z is an identity matrix. Therefore, to 

minimize mean square error of DFE, we obtain that the feedback matrix must satisfy 

(B + I)L-H = (B + I)(D-112R)-1 =I 	 (3.10) 
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i.e, 

B +I= D-1/ 2R (3.11) 

Therefore the feedforward matrix can be re-written as 

n-1/2RG-1HH"E-1ee 
n-1/2R-HHH"E-1ee 
n-1(B + I)-H ("E~~1/2H)H"E~//2 (3.12) 

Examining the feedforward filter matrix in Eq. (3.12), we see that the architecture 

of the feed-forward matrix F consists of four parts: 

1. 	 Whitening filter "E~~112 - This process matches the noise covariance and whitens 

the spatiaLy correlated noise. 

2. 	 Matched filter ("E~t2H)H - This process matches the channel and noise and 

thus functions as a matched filter. 

3. 	 De-correlating filter (B + I)-H - The purpose is to de-correlate the detection 

error so that the resulting error covariance matrix is diagonal. 

4. 	 Scaling process n-1 
- Here, different subchannels are scaled by different coee­

ficients. 

3.2 The Error Covariance Matrix in MMSE-DFE 

Using Eqs. (3.11) and (3.7), the error covariance matrix ofMMSE-DFE in Eq. (2.10),can 

be written as 

"Eee n-1/2RG-1RHD-1/2 

n-1/2RR-1 R -HRHn-112 

n-1 (3.13) 
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where we can see that after MMSE-DF equalization, the error vector is uncorrelated 

but not white. From Eq. (3.5) , the error covariance matrix in Eq. (3.13) can be 

rewritten in terms of the diagonal entries in the R-factor such that 

(3.14) 


and thus, the arithmetic MSE of MMSE-DF detection can be expressed in terms of 

the diagonal entries of the R-factor of the mutual information matrix G 112 as 

N 

£ = ~ I)RJ;;:2 (3.15) 
n=l 

3.3 QR Decomposition and MMSE-DFE 

Returning to the QR decomposition of the mutual information matrix G 112 such that 

G 112 = QR, where Q denotes a N x N orthonormal matrix and R denotes an N x N 

upper triangular matrix, we have 

, rkk > 0 fork= 1, 2, · · · , NR = 

0 0 TNN 

In addition, we notice that 

(3. 16) 


Applying the feedforward filter matrix FMMS E in Eq. (3.12) to the received signal 

vector y and using Eqs. (3. 11) and (3.16) yields 

(3.17) 

Therefore , after having been processed by F MMSE, the original channel in Eq. (3.1) 

is transformed into the following channel model, 

(3 .18a) 
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where 

y (3.18b) 

Interference 

R u-112(R- diag([R]!\· · ·, [R]J\/)) 	 (3.18d) 

Notice that the reason that we subtract the diagonal elements of R-H from R in 

Eq. (3.18d) is thht we want to obtain an unbiased estimation of x (see more details 

in [45]). So the covariance matrix of~ is determined by 

Thus, [:EEZ]k = [R];;2 (1- [R];;2
). This shows that the signal to interference and noise 

ratio for the k-th symbol xk is 

(3.20) 


which is consistert with the result given in [45, 47]. 

The above diHcussion establishes the equivalence between the MMSE-DFE de­

tection and the QR decomposition. Thus, the following Algorithm 1 provides an 

interpretation of MMSE-DF detection for the equivalent channel model in Eq. (3.18). 

Algorithm 1 (QR interpretation of MMSE-DFE): 

1. 	 QR-decomp,Jsition. Perform the QR-decomposition of the mutual informa­

G 112tion matrix = QR to form the upper triangular matrix R defined by 

Eq. (3.18d). We have 

.11 rn r12 r1N xl 6 
:/2 0 r22 r2N X2 

+ 
6 

(3.21) 

l'N 0 0 TNN XL f,N 
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Equation (3.21) is equivalently written as 

N 

f)k = [R ]kxk + L TkmXm + ~k 
m=k+l 

2. 	Hard decision. From the last row in Eq. (3.21) we first estimat e the symbol XN 

by making the minimum-error-probability hard decision XN = Q [YN/[R ]NJ. 
The Q[.:r] operation here is defined as choosing the closest symbol to .:r to be 

the estimation x. 

3. 	 Cancelation. Substitute the estimated symbol XN back into the (N- 1)-th row 

in Eq. (3.21) so as to remove the interference term in YN- 1 and then estimate 

XN_ 1 . Continue this procedure until we obtain the estimate of the first symbol 

x1 . The above procedure is described by the following recursive algorit hm, 

for k = N - 1, N - 2, · · · , 1 
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Chapter 4 

The Dual water-filling Solution 

The theme of this thesis is on multi-access MIMO communication systems and the 

goal is to obtain an opt imum transceiver design for the system. The water-filling 

solution has been derived as the optimum solution for such designs for single-user 

cases, especially when the channel capacity is to be maximized subject to a power 

constraint . In this chapter , we examine the water-filling problem from a different 

perspective by considering its inverse problem. In other words, we seek a transmitter 

design that minimizes the total transmission power of the input signal subject to 

a fixed Gaussian mutual information constraint. A closed-form optimal solution is 

obtained by allotting the total information to each eigen-subchannel according to 

water-filling. This information loading scheme also provides a. novel interpretation to 

the water-filling solution of the original problem of maximizing the Gaussian mutual 

information. 

4.1 The Water-filling Solution 

The basic model for a MIMO system is given by Eq. (2.1). We now employ a precoder 

T at the transmission end to process the data before sending out . Thus, t he discrete­
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time baseband model for the received signal is given by 

y = HTx + e (4.1) 

where H is an P x M complex matrix t hat models the channel, T is an M x N 

linear precoding matrix (M ~ N) , xis the block of N transmitted symbols, which is 

assumed to be zero-mean, white and of identity covariance matrix, and eis an p X 1 

white Gaussian noise vector with identity covariance matrix and independent of the 

input signal vector x. It is well known that if the channel matrix H is known at both 

the transmitter and receiver , the Gaussian mutual information of model ( 4.1) is given 

by [25] 

(4 .2) 


Hence , for a given transmission power constraint tr(THT) ~ p, the Gaussian mutual 

information IH is maximized when the transmitter T is the water-filling solution [50, 

51]. Therefore, t he capacity-achieving input for t he channel model ( 4.1) is obtained 

by solving the following optimization problem: 

Problem 4.1. (Water-filling problem) Find a transmitter T such that the Gaus­

sian mutual information IH is maximized, i.e., 

subject to a total transmission power constraint, 

If the eigenvalue decomposition of H HH is UAUH with eigenvalues Am form= 

1, · · · , M arranged in a non-increasing order , then, t he optimal transmitter is obtained 

according to the water-filling principal over the eigenvalues . More specifically, the 
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solution selects the largest integer k not exceeding M such that 

Therefore, the optimal T is given by T = Uk~S, where S is an arbitrary unitary 

matrix, U k consists of the first k columns of the unitary matrix U, and ~ is a diagonal 

matrix with diagonal entries being 

Thus, the maximum Gaussian mutual information; i.e., channel capacity, is given by 

Note that the channel capacity is not affected by the unitary matrix S. Therefore, 

we have an extra degree of freedom provided by the unitary matrix S within the 

water-filling solutio:1 family which can be designed so as to improve other aspects of 

system performancE [41, 43, 34]. 

4.2 	 The Dual water-filling Problem and its Solu­

tion 

After reviewing the classic water-filling principle, we now consider the dual of the 

problem of maximizing the throughput. 

4.2.1 	 Problen1 Statement and Necessary Lemmas 

Our inverse problem of the capacity-achieving input can now be formally stated as 

Problem 4.2. (Dual water-filling problem) Find a transmitter T such that the 

total transmitted pm;er is minimized subject to a fixed Gaussian mutual information, 
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z. e., 

min tr(THT)
T 

subject to the Jolla '1Jing Gaussian mutual information constraint: 

It is clear that i: IH = 0, then, T = 0 is one of the optimal solution to Problem 4.2. 

Therefore, in the following we only need to consider the case where IH # 0. 

In order to soh e this optimization problem, we first establish the following three 

lemmas, the proofE of which are given in Appendices A. 

Lemma 4.1. For IH > 0, let {ak}k=1 be a positive decreasing sequence, z.e., a1 > 

a2 2: · · · 2: an, and r a be the largest positive integer not exceeding n such that 

. ) 1/ra
i-1 a, 

<Lk > (ITT a 
fork= 1,2, ... ,ra_.,. (4.3)

2-'-H 

Let the positive se~uence {bk}k= 1 satisfy the following two conditions, 

2. Let rb be the maximal positive integer such that 

for k = 1, 2, · · · , rb. (4.4) 

Then, we have 

where r = min{ra, rb}, and the equality holds when bi = ai fori= 1, 2, · · · , r. 
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Lemma 4.2. Let c1 2:: c2 2:: · · · 2:: Cq > 0 and rc be the greatest integer not exceeding 

q such that 

for k = 1, 2, · · · , rc. 

Then, the sequenoo 

fork= 1, 2, · · · , r, is strictly decreasing. 

Lemma 4.3. For any complex matrix T and Hermitian matrices A and B, we can 

obtain the followir . .g derivative 

(4.5) 

We also need the following lemma, the proof of which is given in [52] 

Lemma 4.4. Let J\1 be an M x N matrix and Mn be the remaining matrix by deleting 

the nth column frc m M. If we let {O'i} and {O'i} denote the singular value sequences 

of M and Mn, rerpectively, both arranged in nonincreasing order, then, we have the 

following two statements: 

1. If M 2:: N, t~en, 

2. If M < N, t.~en, 
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4.2.2 The Optimal Solution 

Now, we are in a position to formally state our main result. 

Theorem 4.1. Let the Gaussian mutual information IH for the channel model (4.1} 

be given by Eq. (4.2} and the eigen-value decomposition ofHHH be 

where U is an M x M (M 2: 1} unitary matrix and A = diag(..\1, ..\2, · · · , .AM) with 

..\1 2: ..\2 2: · · · 2: \'vi > 0. If we let r be the maximal positive integer not exceeding M 

such that 

for m = 1, 2, · · · , r (4.6) 

then, the optimal i>olution, Topt, of Problem 4.2 is an M X r tall matrix, given by 

(4.7) 


where Ur is an M x r matrix consisting of the first r columns of the unitary matrix 

U, Vis an arbitrarily r x r unitary matrix and r = diag('y1 , 12 , · · · , lr) with each lm 

determined by 

(4.8) 


The minimum po'UJer is determined by 

(4.9) 


Proof: Introducing the Lagrangian function, .C(T), of the original Problem 4.2 

where pis the Lagrange multiplier, and requiring that the gradient of .C(T) vanishes, 

using Lemma 4.3 ~ve have 
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i.e., 

(4.10) 

Left-multiplying b)th sides of Eq. (4.10) by TH yields 

(4.11) 

Let the singular vclue decomposition of T be 

T=WrVH 

where W is an M x N column-wise orthonormal matrix, V is an N x N matrix 

and r is a diagonHl matrix r = diag(l'l' /2' ... 'rN) with Tl ~ /2 ~ ... ~ rN > 0. 

Substituting this decomposition into Eq.(4.11) results in 

(4.12) 

Since Tis required to be of full column rank, r must be invertible. From Eq. (4.12), 

since all the other matrices are diagonal WHHHHW must be diagonal. Let WHHHHW = 

e = diag(BI, 612, ... 'eN) with each ek being non-negative. Then, Eq. (4.12) can be 

rewritten as 

Since both r and El are diagonal matrices, we can easily equate the diagonal elements 

resulting in 

(4.13) 

In this case, the G1ussian mutual information constraint can be expressed in terms 

of rn and Bn as 

N 

det(I + rHer) = II(1 + ~~Bn) = 2IH 
n=l 
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Combining this with Eq. ( 4.13) yields 

l/NI2 H 

( )
p= n:=l en 

and as a result, th~ power in the mth subchannel is given by 

I ) l/N 
2 - 2 " - e-r (4.14)'Ym- ( TIN e m 

n=l n 

Therefore, the resdting total power, F(e1,e2 , ···,eN), is given by 

where e1 , e2 , · · · , ev must satisfy the following two constraints: 

1. Positivity of the power of each subchannel: 

for n = 1, 2, · · · , N 

Thus, the proof of Theorem 4.1 is reduced to finding an optimal () that minimizes 

F(e1,e2 , ···,eN) s1bject to the above two constraints. Now, from Lemma 4.1, for r>. 

to be the largest irteger that satisfies 

for n = 1, 2, · · · , r>. 

we can obtain F(l~r,e2 ,··· ,er) 2:: F(-\1 ,-\2 ,··· ,-Ar), where r = min{N, r>.} and 

where equality holds when Am= em, fori= 1, 2, · · · , r. Then applying Lemma 4.2, 

we can obtain the last integer variable N by observing that the total power P is a 

decreasing functior with respect to r, P is minimized when N = r>.. This completes 

the proof of Theornm 4.1. 
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4.2.3 FurthEr Discussion 

While providing a ~lased form solution of the optimum transmitter and the minimum 

transmission powe: for the dual water-filling Problem, Theorem 4.1 also provides us 

with a novel outloc k of the water-filling solution. Suppose the power is constrained on 

the transmitter matrix T, i.e., tr(THT) ::; p. We attempt to maximize the Gaussian 

mutual information IH. From Eq. (4.9), the power constraint on the transmitter can 

be changed to 

which leads to 

(4.15) 


Therefore, the Gaussian mutual information IH is maximized when equality holds in 

Eq. (4.15). In otht~r words, the channel capacity is achieved and equal to 

( 
+ Lr;=1 ;.-1) r 

C = rlog p n + ~ log An (4.16) 

Substituting this maximum information into the power loading solution in Eq. ( 4.8) 

yields 

which is exactly the water-filling solution. 

4.3 Why ·use the Inverse Problem? 

The maximum Gaussian mutual information, i.e., channel capacity is the fundamen­

tal limit for reliable data communications [24, 25, 53]. From an information theoretic 

viewpoint, maxim zing throughput is a major concern and is thus an important de­

sign criterion for i he transmitter. Therefore, this criterion has been used by many 
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researchers to desi sn capacity-achieving transmitters not only for a variety of single 

user and deterministic channel models [54, 37, 55], but for different kinds of mul­

tiple users [56, 21], multiple input and multiple output random channel models as 

well [57, 58, 6, 7, E9]. 

From the invene perspective, if we fix the mutual information of the communi­

cation system, we are proposing a requirement of the channel capacity. Since the 

objective is for the total transmission power, this design solves the problem of: "what 

is the minimum power needed to guarantee such amount of information transmitted 

reliably through tbe channel". From the results, we find that, the optimal solution of 

the dual water-filling solution performs in a similar way to the famous water-filling so­

lution. However, in the inverse problem, it is the mutual information that is allocated 

to the different subchannels. 

It should be noted that similar research work to Problem 4.2 can be found in [60] 

where the delay-li nited capacity (DLC) for the general class of fading channel in 

MISO, SIMO and MIMO was derived, and the impact of the mean component and 

spatial correlation on the bounds of DLC was characterized. Also, in [48], the power 

region and capacit:r region are characterized under rate and power constraints for the 

fading multi-accesE channels and fading broadcast channels with multiple transmitter 

and receiver anten 1as. In general, there is no closed-form analytic solution for these 

optimal power and rate allocation problems. Therefore, efficient numerical methods 

have been developt~d and provided in [48]. 
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Chapter 5 

Joint Design of 'Transceivers for 

Multiple Access Channel 

With the dual water-filling solution in mind, we now consider the joint design of the 

transceivers for a multiple access lSI MIMO system equipped with the MMSE-DFE. 

The goal of our de3ign is to minimize the arithmetic MSE for the K users subject to 

a fixed sum Gauss an mutual information constraint. 

5.1 Problem Statement 

Since the design O-)jective is to minimize the arithmetic MSE of the K users, let us 

first form our design problem into a certain optimization problem. 

5.1.1 Arithn1etic MSE and the Original Problem 

The multi-user MIMO system model is shown in Eq.(2.11) of Section 2.5 such that 

K 

y = LHkTkxk + e (5.1) 
k=l 

In general, for a DF receiver, signals are detected in the reverse order of the symbol 

index. Here, we fellow this reverse order for user detection, i.e., we first detect the 

http:Eq.(2.11
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signal from User K, then User K -1, and so on under the assumption the base station 

has the signals of all the K users at all time. Based on this detection order, we thus 

re-write the receivnd signal in Eq. (5.1) as 

K k-1 

y- LHiTixi = HkTkxk +2::.:HcTcxc +e 
...._______.,i=k+1 £=1 

'k 
for k = K, 2, · · · , 1 (5.2) 

where (k is the ktb. interference-plus-noise vector. In Eq. (5.2), the MMSE-DFE is 

used to detect Xk from the received signal y by successively canceling the previously 

detected user signals. Therefore, the resulting error vector for the kth user of the 

MMSE successive cancelation detection is defined as ek = xk - xk. Then, ek = 

xk - xk = (FkHk -I- Bk)xk + Fkek, where Fk and Bk are the feedforward and 

feedback matrices 'or the kth user respectively. With the results in Chapter 3, using 

the matrix inversion lemma [61] leads to the following error covariance matrix for 

User k [34, 45, 46, 49]: 

(Bk + I)(Gk)-1 (Bk + I)H 

diag([Rk]12
, [Rk]22

, •.. , [Rk]N-~) (5.3) 

where 

and :Ek is the co-variance of the interference and noise. Since the independence 

of signals from diflerent users and noise, and the assumption about the noise, i.e. 

E[xixk] = 0, E[xkekl = 0 and E[eeHJ = I, we can obtain that 

k-1 

:Ek E[(k(f] =I+ L HcTc(HcTc)H 
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for k = 1, 2, · · · , K. Rk is the upper triangular matrix in the QR-decompostion of 

G~12 . If we definE, the average MSE of the K users of the successive cancellation 

detector as 

L>1K H 1K 
E = N L tr (E[ekek l) = N L tr (~eek) (5.4) 

k=l k=l 

where N ~~=l Nk, then, our optimization problem can be formally stated as 

follows: 

Problem 5.1. Let rank(Hk) = Lk, k = 1, 2, · · · , K. Then, given K non-negative 

integers N1, N2, · · · , NK with Nk :S Lk, where Nk is the length of the transmitted 

signal vector Xk, find the matrix sequence {Tk}f=1 such that 

1. 	 the MMSE fc r the K users of the MMSE-DF detection is first minimized, subject 

to a fixed sum mutual information constraint, i.e., 

s. t. 

(5.5) 


(5.6) 


2. 	 then, with n:spect to all the remaining free parameters, the transmission power 

for each use1· is minimized sucessively. 

5.1.2 	 ProhlE,m Reformulation 

In order to solve Problem 5.1, we employ the inequality relationship between the 

trace and determhant of a square matrix: for any positive semi-definite matrix M, 

we have the relationship that tr(M) ~ det(M), so that the total system error of the 

MMSE-DFE in Eq. (5.4) is lower-bounded by 
K 

E > ~	L Nk det ( c;t!Nk) (5.7a) 
k=l 

(5. 7b) 

40 




M.A.Sc: Wenwen Jiang McMaster - Electrical and Computer Engineering 

For matrices A a 1d B of compatible dimensions, we have the Sylvester's deter­

minant theorem d~t(I + AB) = det(I + BA) and property such that det(AB) 

det(A) det(B) [52]. for each det(Gk) in Eq. (5.7a), we have 

det (I+ TfHf(:Ek)-1HkTk) 

det (I+ Hk Tk TfHf(:Ek)- 1 
) 

det (:Ek + HkTkTfHf) det(:Ek)- 1 

det(:Ek+I) 
(5.8)

det(:Ek) 

Also, we apply the [nequality relationship between the geometric and arithmetic mean 

SUCh that -b L::::=l Y:n ~ ( rr:=l XN) l/N where the equality holds if and only if X1 = 

x2 = · · · = XN. Thus, the following inequality applies to the right-hand side of Eq. 

(5.7b) 

(5.9) 

Equality in Eq. (5.~'a) holds if and only if matrices G~/2 have equal diagonal R-factors, 

i.e., 

(5.10) 


Hence [ reaches it3 minimum value when the condition in Eq. (5.10) holds. These 

equal diagonal entries, in the DF receiver, mean that the mutual information of the 

currently detected user is uniformly distributed over each individual symbol within 

the block signal of the user when all the previous user signals have been perfectly 

detected. Equality in Eq. (5.9) holds if and only if det(:Ek) constitutes a geometrical 

sequence, i.e., 

(5.11) 


which means the a\ eraged sum mutual information is uniformly distributed over each 

individual user if the mutual information of each user is defined as ~k logdet(Gk) and 
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is equivalent to 

(5.12) 

Therefore, solving Problem 5.1 is finally reduced to solving the following optimization 

problem: 

Problem 5.2. Fo·• any given K non-negative integers N 1 , N2 , · · · , Nx with Nk::; Lk, 

find a sequence of matrices {Tk}f=1 such that 

1. 	 the total pou er for the kth user is minimized subject to the constraints that the 

mutual information for User k is 'Ik = logdet(Gk) =~'I. 

2. 	 within the srace of the remaining parameters, Condition in Eq. (5.1 0) is satis­

fied. 

5.2 The C•ptimal Solution 

Examining the reformulated problem stated in the foregoing section, the first require­

ment in Problem !i.2 can be satisfied by using the result in the dual water-filling for 

the single-user system in Chapter 4. After this, the lower bound of the average MSE 

is fixed, i.e., the mequality in Eq. (5.9) holds with equality. To meet the second 

requirement, we n~ed to exploit a property of the optimal solution. If we modify the 

matrix Gk in Eq. (5.7b) by attaching a unitary matrix Sk to Tk such that Tk = TkSk, 

then, we have 

det(I + (TkSk)HHf~; 1HkTkSk)-1 

det (Sf(I +TfHf~;1HkTk)skr 1 

det(I +TfHf~;1HkTk)-1 = det(Gk)- 1 
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Therefore, attachi:lg a unitary matrix to Tk does not affect the value of the lower 

bound of the average MSE, but the trace of the error covariance matrix would change 

with different choi:.:es of the unitary matrix. Applying the QRS decomposition [41] 

to the mutual information matrix Gk yields G!12Sk = QkRk with Rk having equal 

diagonal elements. Thus, the condition of Eq. (5.10) is met. 

Therefore, the above development for finding the optimal solution of Problem 5.1 

can be summarized to form the following theorem: 

Theorem 5.1. Oven any K non-negative integers N1 , N2, · · · , NK with Nk ::; Lk, 

let 

for k = 1, 2, · · · , K 

and let the eigen-dt:composition of Ak beAk= VkAk(Vk)H with the diagonal elements 

in Ak arrange in r, on-increasing order. Then, the optimal solution to Problem 5.1 is 

given by 

k=1,2,···,K (5.13) 

where uNk>k is the first Nk columns of uk, sk is an Nk X Nk unitary matrix denoting 

the S-factors of tht QRS decomposition of G!12 , and Nk is a pre-assigned subchannel 

number for the kth user. For the k-th user, let rk be the maximal positive integers 

such that 

1or n = 1 2 · · · rk (5.14)
jl ' ' ' 

If Nk ::; rk, the diagonal entries of rk are determined by 

1/Nk
2Ik 

- - ). -1 (5.15)/n,k - ITNk ). ( n,k)( )
z=1 z,k 

for n = 1, 2, · · · , N,. If Nk > rk, the diagonal entries of rk are assigned by 

( 0;I\_k)1/rk -(An,k)-1 n=1,··· ,rk 
/n,k = t=l '• 

{ 0 n = rk + 1, · · · , Nk 
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Theorem 5.1 tElls us that the optimal solution of Problem 5.1 is achieved if and 

only if 

1. 	 the mutual information of each user per active subchannel is uniformly dis­

tributed among all users, i.e., user mutual information uniform distribution 

2. 	 the mutual i 1formation of each user under perfect feedback is uniformly dis­

tributed amcng individual symbols within the signal block of the user trans­

mitted over ;he active subchannels; i.e., symbol mutual information uniform 

distribution. 

A more detail Explanation on this is given in ensuing section. 

5.3 Optimality Discussion 

In this section, we will further explain the two optimality conditions stated above. 

Then, we will show that such uniform distribution of the sum mutual information has 

two optimality pro )erties. 

5.3.1 Decomposition of Sum Gaussian Mutual Information 

To decompose the sum Gaussian mutual information, we need to first establish the 

following lemma. 

Lemma 5.1. Let H = [H1 H2 · · · HK]· Then, the sum mutual information matrix 

G 112 = 	(I+ HHH) l/2 of H can be decomposed as 

Gl/2 = QR 	 ( 5.16) 

where R is an uppt r triangular matrix with the (i, j) th block matrix being 

ifi = j 
(5.17) 

if i 	< j 
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The proof of Lt~mma 5.1 is in Appendix B.l. Although it is a specific application 

of a block QR or tl:e block Cholesky decomposition, Lemma 5.1 gives us a closed-form 

block R-factor for the sum mutual information matrix and provides a simple and clear 

relationship betwetm the sum mutual information and the mutual information of each 

individual user wich the MMSE-DF detector. This will help us easily understand 

the optimal solution of Problem 5.1 given in Theorem 5.1 from the viewpoint of 

information theory. 

Under the assumption that the channel matrix H is known to both the receiver 

and the transmittEr, the Gaussian sum mutual information for the precoded channel 

model in Eq. (2.11) is given by [25], 

K 
Ic(x; y) =log det(I +L HkTk(HkTk)H) (5.18) 

k=l 

In order to give interpretation of the optimal transmitter pairs derived in Section 5.2 

from an information theoretic viewpoint, we rewrite channel model in Eq. (2.11) as 

y = Hx+e (5.19) 

where H = [H1T. H2T 2 · · · HKTK] represents the precoded channel. Therefore 

the original chann,~l model, Eq. (2.11), can be mathematically treated as the virtual 

MIMO channel model Eq. (5.19). Correspondingly, the Gaussian sum mutual infor­

mation expressed :n Eq. (5.18) can be regarded as the Gaussian mutual information 

of Eq. (5.19) with a white Gaussian input signal vector x. Therefore, we can employ 

the results in [62] :ts the following lemma. 

Lemma 5.2. Let R denote the R-factor of H. Then, under an assumption of error­

free feedback, the mutual information between the (N- i) th symbol (or user) x N -i and 

y conditional on x~-i+1 = [xN,XN_ 1, · · · ,XN-i+I] for the model in Eq. (2.11) can be 

expressed as [62] 

(5.20) 


fori= 0, 1, · · · , N- 1. 
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Therefore, by lemma 5.1 we have 

N-1 

Ic(x; y) L I(xN-i; ylx~-i+ 1 ) 
i=O 

K Nk-1

L L I(xN-i; ylx~-i+ 1 ) (5.21) 
k=1 i=Nk-1 

K Nk-1

L L log([R2]N-i) 
k= 1 i=Nk-1 

- "'K-.o+ 1 N d i\T S R bl k 1where Nk = LA=K c an Ho = 0. ince is a oc upper triangu ar matrix 

with the diagonal matrix being the R-factor of the QR decomposition of Gk, we can 

obtain that 

Nk-1

L log([R2]N-i) =log det(Gk) 
i=Nk-1 

which indicates each user's mutual information can be decomposed into the summa­

tion of each subchLnnel's mutual information without any loss, and further 

This shows that tl: e sum mutual information is decomposed into the summation of 

each user's mutual information. For a given matrix H, its singular values are fixed 

under any unitary transformation and hence, its eigen-subchannel mutual information 

does not change. However, the R-factor diagonal values of the mutual information 

matrix change with the unitary transformation. As a result, the capacity of each R­

factor-value subchc.nnel in Eq. (3.18) for the MMSE-DF detector will change too. In 

other words, diffennt unitary transmitters lead to different R-factors and hence, dif­

ferent R-factor value subchannel capacities and different detection error performances 

for the MMSE-DF detector. 
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5.3.2 Even Distribution of Mutual Information 

From the above di:;cussion, a natural question arises: What is the optimal (in terms 

of minimizing the mean square error) distribution of mutual information among the 

R-factor value subchannels in Eq. (3.18) for the MMSE-DF detector? The answer is: 

from both the infc rmation theoretic viewpoint and the signal detection error view­

point, the condition of uniformly distributed mutual information is optimal. This 

uniformity of distr bution is effected by applying the S-factor of the QRS decomposi­

tion to the mutual information matrix. Therefore, we have the following statement. 

Property 5.1. (Uniform decomposition of mutual information for the MMSE-DF de­

tector) Under the zssumption of error-free feedback, the sum Gaussian mutual infor­

mation for a block· by-block precoded multiple access MIMO channel in Eq. {2.11} can 

be uniformly decomposed into the sum of each R-factor value subchannel in Eq. (3.18} 

with H = H for the MMSE-DF detector by rotating the input signal vector with the 

S-factor of each wer's mutual information matrix Gk12 . 

Uniform decorr position of the sum Gaussian mutual information, in addition to 

minimizing the M~ E of MMSE-decision feedback detection described by Theorem 5.1, 

also has the following two optimality properties. Suppose we wish to use the VBLAST 

detector [63] based on the MMSE-DF detector for the optimal system designed in the 

previous section. 1~ natural question is: What is the optimal detection order? 

Property 5.2. If the mutual information matrix of a channel matrix has an equal­

diagonal R-factor, the optimal detection order (that ensures that the high SINR com­

ponents are detected first} is the natural order, i.e., x N --+ x N -1 --+ · · · --+ Xt, in other 

words, the i-th syr.~bol to be detected is the symbol XN+l-i· 

Proof: Let thE QR decomposition of G 112 be G 112 = QR. Then, according to 

the QR interpretation of MMSE-DF detection given in Chapter 3, we know that the 

SINRk of k-th symbol is SINRk = [Rj% - 1. In addition, the QR interpretation of 

the optimally ordEred successive cancelation detection in Section 3.3 tells us that to 
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prove Property 1, 'Ve only need to prove that if we permute the last column with any 

other column of G1 12 , the corresponding diagonal entries of the resulting R-factors 

do not increase. T 1e detail of this proof can be found in [43]. 

Definition 5.1. Define the minimum distance of a finite constellation X as 

dmin(X) = min lx- x'l = min llx- x'll 2 (5.22)
xf=x' ,x ,x'EX x,x' EX N ,xf=x' 

Definition 5.2. Define the free distance of an M X N channel matrix H as 

dfree(H) = min (x- x')HHHH(x- x') (5.23)
x,x'EXN ,x,Px' 

The following pmperty, whose proof is given in Appendix B.2 shows the asymptotic 

behavior of the free distance for a channel with an equal-diagonal R-factor mutual 

information matrix. 

Property 5.3. If the mutual information matrix G 112 of H have an equal-diagonal 

R-factor, then, 

. dfree(H) _ d . (X)11m - mm (5.24)
I-.oo 21 - 1 
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Chapter 6 

Simulat:ion Results 

In this chapter, wt~ verify the performance of our optimal transceiver design using 

computer simulations. Here, we present four examples in which each element of 

the transmitted si~;nal vectors is independently and equally likely selected from the 

4-quadrature ampl tude modulation constellation. 

6.1 Example 1: A Two-user Scenario 

In this example, w~ consider the scenario of a two-user system. Two users commu­

nicate with a base station independently, and each user employs a DMT modulation 

having 32 available subcarriers. The number of subchannels Nk allocated to each of 

the users is predetermined. The channel is modeled as an FIR filter with 10 taps and 

the tap coefficients are generated independently from a zero-mean circular complex 

Gaussian distributi·)n. The signals are selected with equal probabilities from a 4-QAM 

constellation. All the three cases use the designed decision feedback equalization. If 

a subchannel is used by both of the users, then it is called a shared subchannel. Let 

Nk indicates the number of subchannels User k will uses. Since there are, in total, 32 

subchannels in this system, if N1 + N2 ::; 32, then each of the two users can use sepa­

rate subchannels without sharing. However, if some subchannels are of bad condition, 
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they may not be u:;ed by any of the users, in which case, the better subchannels may 

have to be shared. If N1 +N2 > 32, then there must be some subchannels which have 

to be shared by the two users. Figure 6.1 shows the BER against the sum Gaussian 

mutual information averaged over 1000 channel realizations. For each realization, the 

additive Gaussian noise is also generated independently from a zero-mean circular 

complex Gaussian distribution, and is normalized to unit energy. Three cases are 

simulated: 

• 	 The number )f subcarriers assigned to User 1 and User 2 is 16 each (N1 = 16 and 

N2 = 16), if all the subchannels are good, then there is no shared subcarriers 

between the two users; 

• 	 N1 = 16 and N2 = 17, i.e., there is at least one shared subchannel; 

• 	 N1 = 17 and N2 = 17, i.e., there are at least two subchannels shared by these 

two users. 

From Figure 6 1, it is observed that the BER decreases with the amount of sum 

Gaussian mutual information. In general, we find that when the number of shared sub­

channels grows, fo:~ the same mutual information, the average bit error rate increases, 

and this phenomenon is more obvious in the high sum Gaussian mutual information 

part. On the othm hand, for the same BER, the amount of sum Gaussian mutual 

information increases with the number of subchannels shared. 

6.2 Example 2: A Three-user Scenario 

A three-user scenario is modeled and simulated. Again, each user employs a DMT 

modulation havin;~ 32 subcarriers. Here, the environment and the system are the 

same as those in Example 1. Figure 6.2 shows the BER against the sum mutual 

information averaged over 1000 channel realizations. Three cases are studied: 
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Sum Gaussian mutual information[bits/Hz] 

Figure 6.1: l3ER vs the sum Gaussian information in two-user scenario 

• 	 N1 = 11, Nz = 11, and N3 = 10, again, if all the channels are good, there will 

be no shared subcarriers among the three users; 

• N1 = 11, Nz = 11, and N3 = 11, i.e., at least one subchannel is shared; 

• N1 = 12, Nz = 11, and N3 = 11, i.e., at least two subchannels are shared. 

In Figure 6.2, w~ obtain similar results as those shown in Figure 6.1. This confirms 

the expectation that when the signals from more users are transmitted through the 

same subchannel, the more errors will occur. 
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Figure 6.2: BER vs the sum Gaussian information in three-user scenario 

6.3 	 Example 3: Comparison with Linear Equaliza­

tion 

In this example, ue compare the performance of the transceiver design proposed in 

this paper with tbe linear transceiver design proposed in [16]. The simulation envi­

ronment is the sane as in Example 1. To ensure a fair comparison, the sum Gaussian 

mutual informaticn I and numbers of subcarriers N1 and N2 assigned to each user 

in our design are calculated from the algorithm in [16] with a fixed power constraint. 

Then with these sum Gaussian mutual information and block length for each user, our 

proposed solution in Chapter 5 is run to design the transceiver in DFE system, after 

which the transm[ssion power is calculated. 200 channel realizations are simulated 

and taken averagE over the sum Gaussian mutual information. Figure 6.3 shows the 
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average bit error 1ate against the averaged sum Gaussian mutual information, Fig­

ure 6.4 shows the average bit error rate against the averaged signal to noise ratio, 

and Figure 6.5 shows SNR vs the amount of sum Gaussian mutual information. In 

Figure 6.5, the vertical axis label SNR means the transmitted signal power to noise 

power ratio. 
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Figure 6.3: BER vs the sum Gaussian information: compared with linear MMSE 

detection 

It can be obsErved from Figure 6.3 and Figure 6.4 that a significant gain over 

the linear receiver is obtained when the sum Gaussian mutual information is greater 

than 90 bits per Bz. However, it is also observed that the performance of our DFE is 

worse than that o: the linear receiver when the sum Gaussian mutual information is 

less than 90 bits per Hz. A reasonable cause is that propagation of errors occurs in 

the successive cancelation detection. It can also be observed that in the Figure 6.5 

53 




M.A.Sc: Wenwen Jiang McMaster- Electrical and Computer Engineering 

5 10 

· ~··>'-·-- Designed DFE 

--0- Linear Transceive 

15 20 25 
Average SNR [dB/user] 

Figure 6.4: HER vs average SNR: compared with linear MMSE detection 

when the sum Gaussian mutual information is low, the SNR (at a fixed noise power) 

for MMSE-DFE i3 about 2dB lower for each user than that of linear transceiver. 

This shows that our systems requires lower power to achieve the same amount of sum 

Gaussian mutual :nformation. 

6.4 Example 4: Comparison with ML Detection 

In this example, we compare our designed MMSE-DFE transceiver with both the 

maximum likelihood detector (MLD) and MMSE linear equalization in [16]. Again, 

we consider a twc user case. However, different from the previous example, a DMT 

modulation havim; only 4 available subcarriers is employed. 

Figure 6.6 and Figure 6.7 show the average bit error rates at different sum Gaus­

sian mutual information and average SNRs respectively. The sum Gaussian mutual 
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Figure 6.5: SNR YS the sum Gaussian information: compared with linear MMSE 

detection 

information in the case of the linear receiver is calculated at each SNR from 0 to 

20dB. The number of sub channels assigned to each user, Nk is also calculated. For 

the MMSE-DFE system, at each value of sum Gaussian mutual information and noise 

power, we obtain our optimal transceiver design for a particular channel realization. 

The SNR for each ,3hannel realization is then calculated. The mean SNR is then ob­

tained by averagin§: the SNR over 100 channel realizations. For the case of MLD, two 

scenarios are examined: the first one applies the optimum transmitter from our design 

and uses ML for d ~tection; the other does not use any precoder at the transmitter 

but only ML detection at the receiver. From Figures 6.6 and 6.7, we can see that 

the performance of our optimum transceiver approaches that of the precoder-MLD 

combination. It can be observed that there is only a small gap between these two 
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Figure 6.6: BER vs the sum Gaussian mutual information: compared with linear 

MMSE and MLD 

performance curves. However, the MLD without precoder performs very poorly. The 

reason is in DMT nodulation the channel matrix is diagonal, so there is less diversity 

in transmission if no precoding is used. For a specific channel realization, if the chan­

nel coefficients arE small compared with noise coefficients, the channel is dominated 

by the noise. ML detection can be impaired badly due to the diagonal structure of 

the channel. As a result, the overall average of the bit error rate of the ML detection 

without precoder is dominated by these several bad cases. Also we find that the 

cross-over point among the BER curves moves to a much lower SNR compared to 

that in the previot.s example, which probably is due to the shorter transmission block 

and less error propagation. This makes the interpretation of error propagation more 

reasonable. 
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Figure 6.7: BER vs average SNR: compared with linear MMSE and MLD 

For a further comparison, we examine the SNR of the fours cases. To ensure a fair 

comparison betwef~n MLD and our DFE, transmission power of the case of MLD with 

no precoder is made the same with that of DFE system and the number of transmitted 

symbols within a Hock is the same in these four schemes. The noise power is also the 

same in DFE and VILD. Therefore the transmitted signal power to noise power ratio 

of the ML detecticn is the same as that of the designed DFE transmitter. Figure 6.8 

indicates the SNR in linear, DFE and ML systems. The vertical axis label SNR means 

the transmitted signal power to noise power ratio. It can be noticed that the SNR is 

almost the same in the communication system with designed MMSE-DFE transceiver 

as that in the system equipped with linear transceiver. 
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Figure 6.8: SNR vs the sum Gaussian mutual information: compared with linear 

MMSE and ML detection 
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Chapter 7 

Conclusion and Future Work 

7.1 Conclusion 

In this thesis, we h<cve jointly designed the precoder, the feedforward and the feedback 

matrix of a block-by-block transmission scheme for an lSI multiple-access MIMO 

communication system equipped with the MMSE-DF receiver. The design minimizes 

the average MSE 11nder a fixed sum Gaussian mutual information. Through the 

development, we af:sumed that channel state information is perfectly known at both 

the transmitters ar.d receivers. The optimal closed-form solution is obtained by the 

following two steps: 

1. 	 Find an optimal transmitter that minimizes the total power for a single user 

case subject io a fixed Gaussian mutual information, i.e, solve a dual problem 

of maximizing single user throughput. Therefore, by successively solving these 

dual problems user after user, the total Gaussian mutual information can be 

uniformly dis;ributed over each user with the MMSE-DF detector. 

2. 	 Properly choose unitary matrices within the dual water-filling solution family 

using the equal diagonal QRS decomposition, so that the Gaussian mutual in­

formation of Each user can be uniformly distributed into each active sub channels 
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of the user. 

In addition to mi:limizing the arithmetic MSE of MMSE-decision feedback detec­

tion, the optimal systems are further revealed to possess the following two optimality 

properties in the r;recoded MAC MIMO detection theory: 

1. 	 Both the optimal user-detection order and symbol-detection order are natural 

orders in terns of signal to interference and noise ratios. 

2. 	 The free-distance for the ML detector has an asymptotic behavior when the 

sum Gaussian mutual information tends to large. 

On the other hand, despite the fact that our attention here was restricted on a specific 

design of minimizing the arithmetic MSE of MMSE-decision feedback detection for 

an MAC, the metl odology developed in this paper can be extended into the following 

fairly general optimization problem. Given are a matrix H = [H1 H2 · · · HK], a 

non-negative consuant I, and K non-negative integers N1 , N2 , · • · , NK. Subject a 

constraint logdet(I + L,~1 HkT~TkHk) =I, we need to find each matrix Tk that 

achieves the minirmm 

with [Rk]n being the nth diagonal entry of the R-factor of QR decomposition of the 

matrix G~12 , wher1~ Gk = I+(HkTk)H (:Ek)-1HkTk and :Ek =I+L,~~i HtTt(HtTt)H. 

In addition, funct:on F(2t) with respect to t is assumed to be convex. This class of 

optimization problems has a closed-from solution, which can be attained from our 

presented technique in this paper. Thus, the solution strategy depends only on the 

features of the MMSE-DF receiver, but does not depend on the specific structure 

of the objective function F(-). As a result, a single user case where an asymptotic 

bit error rate of the MMSE-DF detector was minimized [34] can be generalized in 

straightforward way to the multiple users scenario. 
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However, we rrust point out here that although the power of each user can be 

explicitly obtained by separately and efficiently solving the individual dual water­

filling problem, the resulting optimal solution is not optimal in the sense of total 

power minimizatioa of all users. That is to say, we still have freedom of optimally 

allocating the pow•)r of each user such that the total power of all users is minimized 

while maintaining ;he optimum value of the original objective. 

7.2 Future Work 

Following this thes s, we can extend the work along several directions. We give a few 

examples for potential future research as follows: 

• 	 As we said in the above conclusion, in this work, the transmission power is min­

imized individually for each user, which does not indicate the total transmission 

power is minimized. Therefore, minimizing the total transmission power can be 

considered in the future development. 

• 	 People may cuestion what the practical meaning for using the sum Gaussian 

mutual information as a constrain is. In this thesis, especially in the simulation 

part in Chapter 6, we fix the signal constellation, which means the transmission 

rate is fixed. Therefore the sum mutual information can reflect the total SNR 

to some exter1t. Then an interesting extension of this work is to minimize the 

arithmetic M~)E subject to individual user power constraint. 

• 	 Even though the mean square error is a good criterion to design the transceivers, 

the bit error rate is more accurately to reflect the communication system's per­

formance. Unfortunately, for block based MSE-DFE there is not a closed-form 

solution for be probability of error, we can not find an exact expression for 

the BER. Houever, an approximation of the BER for DFE detection has been 

given in [64, (15, 45, 38, 34]. We can further use Jensen's inequality to obtain 
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some lower h)und of the approximation and find ways to minimize it. Similarly 

the optimization constraints can be the sum Gaussian mutual information, sin­

gle user's mu~ual information, individual user's transmission power or the total 

transmission power. 
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Appendix A 

Proof of Lemmas in Chapter 4 

A.l Proof of Lemma 4.1 

We consider the blowing two cases. 

Case 1: r = 1. In this case, we only need to prove 

Since IH > 0, thP above inequality is always true, and the equality holds when 

a1 = b1. 

Case 2: r > 1. For the given c > 0, let fc(t) = crt-tr. Since the first derivative of 

fc(t) with respect tot is given by f~(t) = r(c- tr-1), f~(t) > 0 when 0:::; t < c1/(r- 1) 

and hence, fc(t) i:o increasing. On the other hand, notice that condition (4.4) is 

equivalent to 

for m = 1, 2, · · · , rb 

which, in turn, is equivalent to 

(rrm-1 b ) 1/(m-1) 

b > •=1 ' form= 1,2,··· ,rb (A.1)m 2IH 
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Let 

r-1 

fc(tr) - L bi1 

i=1 

irH ) 
1
/r - · { } d - b-1/r Fr d (A ) fwhere c = ( n~:{b; ' r- mm ra, rb an tr - r . om con ition .1 ' i 

w:::fb;)1/(r-1) . . -1/r ( 2IH )1/r(r-1) 
m = r, we have br > ( ~ . Th1s results m br < m:! bi , and 

thus, 0 :::; t < c1/(r- 1). Since ar 2: br, we can obtain 

I ) 1/r(r-1) 
a-1/r < b-1/r < 2 H 

r r ( rrr-1 b· 
i=1 ' 

Using the monotoricity of fc(t), we have 

Continuing this pr )cess until we obtain 

(A.2) 

with the equality holding when bi = ai fori = 1, 2, · · · , r. This completes the proof 

of Lemma 4.1. 

A.2 Proof of Lemma 4.2 

For any positive integer k with k + 1 :::; rc, we have 

64 




M.A.Sc: Wenwen Jiang McMaster - Electrical and Computer Engineering 
~~--------------------------------~----~----~ 

Since the first term can be rewritten as 

(A.4) 

and the second ter .n can be represented by 

(A.5) 

For simplicity, let 
1 

a = ( ;IH ) k(k+1) 

I1n=1 Cn 

Then, from Eqs.(J • .4) and (A.5) we have 

(A.6) 

1 
nk+1 en) k+1Since ck+1 satisfiE:s the following inequality, ck+l > ;x~ . H -1 

( ence, ck+l < 
1 


2rH ) k+1 

;::::;nr- This is equivalent to( Tin~~ Cn • 

As a consequence, we obtain ak > bk and hence, a > b. Combing this with Eq.(A.6) 

yields 

pk+l- pk 

(a- b)(ak- 1b + ak-2b2 + · · · + abk-1 + bk - kak) 

< (a- b)(ak + · · · + ak- kak) = 0 

This completes t b.e proof of Lemma 4.2. 
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A.3 Proof of Lemma 4.3 

The derivative of a complex matrix T is defined as 

af(T) = ~ (af(T) _ .af(X)) (A.7)
aT 2 aRT J aS'T 

Here in our problen, f(T) = logdet(A + THBT) where Tis an M x N matrix, B 

is an M x M Hermitian matrix, and A is an N x N Hermitian matrix. Applying 

the formula of der vative of scalar functions of a matrix with respect to the matrix 

defined in [66], we can first obtain 

alog det(A + THBT) 
aRT 

1 adet(A + THBT) 
det(A + THBT) aRT 

1 "E adet(A+THBT) 
(A.8)

det(A + THBT) LJ ij aRtij 
2] 

where Eij denotes ·;he N x M elementary matrix which has a unity in the ijth position 

and all the other dements are zero. By using the general form of the derivative of 

a determinant wib respect to a scalar that is stated in [67], we can further expand 

Eq. (A.8) into 

Let Y = (A+ THBT). Then the above equation can be written as 

L.=Ei1tr [(A+THBT)_1 a(~;:T)] 
2] 

L EiJtr [Y- 1 (E~BT + THBEi1)] (A.9) 
ij 
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If A and B are bo1;h Hermitian , then Y is also a Hermitian matrix, i.e., yH = Y. 


If we denote C = E~BT, then THBEij = cH. Hence Eq. (A.9) can be rewritten as 


ij 

ij 

LEij [tr(CY-1) +tr(Y-1CH)] 
ij 

According to the definition of trace, we have 

N 

L(Ck.Y~//) 
k=1 

N 

tr(Y-1CH) = L(Yk.1(C.k)H) 
k=1 

with Ck. and Yk.1 denotes the kth row of the matrix C and y- 1
, Y~// and Cf£ denotes 

the kth column of the matrix y- 1 and CH, respectively. Since 

0 

C E~BT = (BT)i. 

0 

cH = THBEij = [o ... (THB).i .. · o] (A.lO) 

the only non-zero row in matrix C is the jth row which is the ith row of matrix BT 

and the only non-z:ero column in CH is the jth column which is nothing but the ith 

column in THB . Thus Ck.Y.// and Yk.1C.k are not zero when k = j, and 

ij 

ij ij 
BTY-1 + [Y- 1THB]T 


BT(A + THBT)-1 +[(A+ THBT)- 1THB]T (A.ll) 
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That is to say, 

Similarly, we can find 

Substituting Eq. ( 1\.12) and Eq. (A.13) into equation (A.7), we can obtain that 

alog det(A + THBT) 
aT 

[(A+ THBT)-lTHB]T 


[BT(A + THBT)-1)* (A.l4) 
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Appendix B 

Proof of Lemmas and Properties in 

Chapter 5 

B.l Proof of Lemma 5.1 

We know from [68] that there exists a unitary matrix Q such that matrix G 112 can 

be decomposed into G 112 = QR, where R is a block triangular matrix; i.e., 

R= 

0 0 

Therefore, the (i,j)th block matrix (i ::; j) of RHR is I::~=l RERkj· On the other 

hand, the (i,j)th block matrix (i ::; j) of G is HfH1 for i < j and I+ HfHi for 

i = j. Hence, we hare 

(B.l) 
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Now, we use math1~matical induction on the row number of R to prove Eq. (5.17). 

Therefore, R~R11 =I+ H{IH1 , from which we get 

H ) 1/2R 11 = (I + H 1 H1 . (B.2) 

As a result, we ha-ve 

for j = 2, 3, · · · , N (B.3) 

Therefore, for the first row, Statement in Eq. (5.17) is true. We now assume that 

Statement in Eq. (5.17) is true fori< L; i.e., 

if i = j 
(B.4) 

if i < j 

In the following, we are going to prove that this statement is also true for i = L. 

From Eq. (B.1) with i = j =Land using the induction assumption in Eq. (B.4) we 

have 

L-1 
I+ HfHL - L R{fRiL 

i=1 

(B.5) 

we have 

:E-:-1/2H, (I+ HH:E-:-1H,)-1 HH:E-:-1/2 
1, " 1, 'l ., 'l, 1, 

I- (I+ :E;1/2HiHf:E;1/2) -1 (B.6) 

Substituting Eq. :B.6) into Eq. (B.5) yields 

L-1 

I+ HfHL- Hf L(:Ei1 - :Ei+\)HL 


i=1 

(B.7) 
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Similarly, from Ec. (B.1) with i = L < j and using the induction assumption in 

Eq. (B.4) we have 

L-1 

HfHj - L RfLRkj 
k=l 

k=l 

(B.S) 


Combining Eq. (B.3) with Eq. (B.7), we have shown that Statement in Eq. (5.17) is 

true for i = L. 

B.2 Proof of Property 5.3 

We first note that 

Now consider two diferent signal vectors: x = [x1 , x2 , · · · , xNJT and x' = [x~, x~, · · · , x~]T. 

If Xk = x~ for k = 2 · · · , N, but x 1 -::/= x~. Then 

((x- x')HG(x- x') - /x1 - x~ /2) 

([RJi- 1)/xl- x~/ 2 (B.9) 

Hence, by taking the minima of both sides of Eq. (B.9), we obtain 

which leads to 

(B.10) 

On the other hand, we note that 

(B.ll) 
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Assume xi- x'. Ld k be an integer such that xi = x~, fori > k, but xk i- x~. Then, 

from Eq. (B.ll), using the upper triangularity of R, we have 

2 

(x- x')HirT'H(x- x') ( t t[R[,1(x;- xj) - llx- x'[[') 

> (([R]i- l)lxk- x~l 2 -llx- x'll 2 
) 

> ((21
- 1) · d~;n(X)- llx- x'll 2) (B.l2) 

Taking the minimL of both sides of Eq. (B.12) yields 

alree(H) ~ ((21 
- 1) · dmin(X) -llx- x'll~ax) (B.13) 

Since constellation X is finite, quantity llxll~ax is bounded and as a result, we can 

obtain from Eq. (E.13) that 

r dfree(H) > d . (X) (B.14)1.:..~ 21 - 1 - mm 

Combining (B.lO) with (B.l4), we complete the proof of (5.24). Moreover, we know 

from [45] that 

(B.15) 
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