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Abstract 

In this thesis, we reexamine the classical problem of video super-resolution, with an 

aim to reproduce fine edge/texture details of acquired digital videos. In general, the 

video super-resolution reconstruction is an ill-posed inverse problem, because of an 

insufficient number of observations from registered low-resolution video frames. To 

stabilize the problem and make its solution more accurate, we develop two video 

super-resolution techniques: 1) a 2D autoregressive modeling and interpolation tech­

nique for video super-resolution reconstruction, with model parameters estimated 

from multiple registered low-resolution frames; 2) the use of image model as a regu­

larization term to improve the performance of the traditional video super-resolution 

algorithm. 

We further investigate the interactions of various unknown variables involved in 

video super-resolution reconstruction, including motion parameters, high-resolution 

pixel intensities and the parameters of the image model used for regularization. We 

succeed in developing a joint estimation technique that infers these unknowns simul­

taneously to achieve statistical consistency among them. 
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Notation and abbreviations 


2D 

AWGN 

AR 

BMA 

CCD 

CMOS 

DCT 

DPI 

HD 

HMRF 

HR 

LR 

LS 

LSI 

Two-dimension 

Additive White Gaussian Noise 

Autoregressive 

Block-Matching Algorithm 

Charge-Coupled Device 

Complementary Metal Oxide Semiconductor 

Discrete Cosine Transform 

Dots Per Inch 

High-definition 

Huber-Markov Random Field 

High-resolution 

Low-resolution 

Least Squares 

Linear Space-Invariant 
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MAP Maximum a posteriori 

ML Maximum Likelihood 

MMSE Minimum Mean Squared Error 

PAR Piecewise Autoregressive 

PDE Partial Differential Equation 

POCS Projection Onto Convex Sets 

PPI Pixels Per Inch 

PSF Point Spread Function 

PSNR Peak Signal-to-Noise Ratio 

SAD Sum of Absolute Differences 

SNR Signal-to-Noise Ratio 

SSD Sum of Squared Differences 

TV Total Variation 

VSR Video Super-Resolution 
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Chapter 1 

Introduction and Problem 

Statement 

1.1 The Problem and Motivation 

In our technology era digital images and videos provide important and ubiquitous 

means of visual communication. As what is said, 'A picture is worth a thousand 

words', digital images, in both still and moving forms, convey knowledge and infor­

mation in a more intuitive and convenient manner than texts. The growth of digital 

visual media has been phenomenal with the rapid development and deployment of 

digital imaging and communication technologies. According to an official announce­

ment from Google in February 2005, the number of still images indexed by Google 

Images search engine amounts to be 1.1 billion [12]. Three years later, Face book 

announces that they host 10 billion images till October 2008 [8]. In addition to the 

steadily growing quantity above, the quest for higher quality of digital images in a 

variety of applications has never abated. 

1 




M.A.Sc. Thesis - Huazhong Wang McMaster - Electrical Engineering 

One of the most important attributes of a digital image/video is its resolution. 

The resolution is often used as a measure of the size and visual quality (e.g., clarity) 

of digital image/video. In general, given a scene, the higher the image resolution, the 

more and finer details an image/video contains. In the past decade, the resolution of 

digital imaging devices has steadily improved thanks to advances in semiconductor 

and sensor technologies. At present even inexpensive mainstream consumer cameras 

can have eight or more millions of pixels. 

However, for many high-end and professional applications, such as those in medicine, 

biology, astronomy, military, visual arts, etc., the resolution of digital image/video 

will never be high enough. Human pursue of knowledge is endless and we always want 

to push the envelop and image ever minuscule structures and details in nature. Since 

many image signals are band unlimited, by Nyquist sampling theorem the sampling 

frequency (i.e., resolution) of digital image/video has to be sufficiently high to com­

pletely recover the underlying continuous light field. Unfortunately, the image/video 

resolution is bounded by some hard physical limits. First, diffraction limit of optical 

lens system prevents the infinite resolving of continuous image signals [4]. Second, the 

inherently finite nature of digital sensor technologies and the imperfection of manufac­

turing process place a cap on the achievable image resolution. Most digital images are 

acquired by an array of semiconductor sensors such as Charge-Coupled Device ( CCD) 

and Complementary Metal Oxide Semiconductor (CMOS). These types of devices are 

fast approaching the density limit in microelectronics. As the image resolution gets 

higher and higher, namely, pixels smaller and smaller, the amount of light intercepted 

by each pixel diminishes, reducing the signal strength. To make the matter worse, 

more densely packed sensors induce a greater amount of electronic inferences between 

2 
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the neighboring pixel sensors. Consequently, the signal-to-noise ratio (SNR) of the 

acquired image decreases in resolution. 

Optical Lens 

Finite Aperture 

Sensor Array 

Figure 1.1: Illustration of the digital optical imaging system 

Due to the aforementioned limits of the digital imaging technologies and systems, 

it is unlikely that newer imaging devices in the future, by themselves, can completely 

meet the resolution and precision requirements of many scientific, medical and mili­

tary applications at present and in the future. In this case, the only alternative is to 

compensate for the inadequacy of sensor resolution via digital image/video process­

ing after the data acquisition. Image interpolation and video super-resolution (VSR) 

techniques are commonly used to improve the native sensor resolution of imaging de­

vices. They aim to recover a high-resolution image or video frame from the observed 
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lower-resolution version. 

VSR techniques are also useful to improve cost effectiveness of video products and 

services. In a large-scale video surveillance system, for example, only low-resolution 

video cameras can be economically deployed because of the sheer number of cameras 

involved. Users can rely on VSR techniques to enhance the video quality and achieve 

a similar system performance as more expensive high-resolution cameras can provide. 

Another important application of VSR techniques is to upconvert existing low­

resolution low-quality video contents to higher resolution and higher quality. The 

needs for video resolution upconversion are increasing and become ever pressing. 

Nowadays high-definition television sets, computer monitors, and blu-ray players are 

commonplace. But many old valuable digital contents are of standard definition, such 

as standard VCD and DVD formats. This quality gap between the input materials 

and output devices can only be bridged by VSR techniques. The market potential 

is huge for VSR products that can rebuild the large connection of old movies and 

television programs for modern high quality output devices. 

1.2 An Introduction to Video Super-Resolution 

As mentioned above, one of the most important quality metrics of digital images is 

the resolution. In image/video processing, the terminology of resolution can refer to 

two different notions namely, pixel resolution and spatial resolution. Pixel resolution, 

in brief, refers to the number of pixels in a digital image. For example, an image that 

is 1000 pixels in width and 800 pixels in height (denoted by 1000 x 800) has a total 

of 0.8 million pixels. However, high pixel resolution does not necessarily correspond 

to high visual quality. Instead, spatial resolution is a measure of image fidelity and 
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quality, in particular for high-frequency features, such as edges and textures. Spatial 

resolution refers to the pixel density of a digital image. It is defined to be the number 

of sampling points per unit length/area of continuous image signals. In this sense, 

spatial resolution is commonly measured in Dots Per Inch (DPI), Pixels Per Inch 

(PPI) or Per Square Inch. Manufacturers of devices such as digital scanners, printers 

and monitors, often take spatial resolution as a measure of the device capability to 

resolve details of optical signals. For example, nowadays, typical office scanners can 

have a resolution of 1200 dpi or higher. For such image acquisition devices, the higher 

the spatial resolution, the finer edge/texture details can be resolved. 

From the perspective of signal processing, the problem of upconverting the reso­

lution of an acquired digital image can be interpreted as re-sampling of the original 

continuous two-dimensional (2D) image signal at a higher spatial sampling frequency. 

It is equivalent to the problem of reconstructing the continuous image signal from 

a set of observed (measured) discrete samples (pixels). According to the Nyquist­

Shannon sampling theorem, those signal components that have frequency lower than 

the Nyquist frequency can be exactly reproduced. It indicates that, low-frequency 

image signal which in general manifests as smooth area or large-scale edge/texture, 

can be reconstructed easily. In other words, the challenge of image resolution upcon­

version lies in reproducing the high-frequency components of the image signal that 

exceed the Nyquist limit. Reproduction of these high-frequency components namely, 

edge details and fine textures, provides the possibility to improve the visual quality of 

acquired images. As a matter of fact, due to the point spread function (PSF) of pho­

toelectric sensors that plays a role of low-pass filtering, many of the high-frequency 
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components are attenuated to avoid aliasing[!]. In practice, any attempts to repro­

duce these high-frequency components are prone to artifacts. The most common 

artifacts due to reconstruction error, are visually noticeable blur, jaggies and alias­

ing. Human vision system is highly sensitive to such artifacts that arise in the areas 

of edges/textures. These arfacts degrade the fidelity and quality of images, and hence 

should be avoided in image resolution upconversion. 

In the past decade, intensive research efforts have been devoted to developing 

resolution upconversion techniques that can reproduce the high-frequency image sig­

nals free of artifacts. In terms of image form, all published techniques to date can 

be categorized into two classes namely, single-image based methods and multi-image 

based methods. The former refers to those methods that upconvert image resolution 

from a single still image of lower resolution. As most of them improve the image res­

olution by interpolating, they are also known as still image interpolation techniques. 

Among these techniques in the literature are Bicubic interpolation[18], directional 

interpolation[43] and soft-decision adaptive interpolation[44]. Due to high efficiency 

and low computational cost, image interpolation techniques are widely used to resize 

digital images and video frames. The multi-image based methods are commonly re­

ferred as the aforementioned VSR techniques. In general, these methods involve the 

state-of-the-art image registration, and are used to deal with video frames. They take 

advantage of pixel information from multiple video frames, and hence can achieve su­

perior performance against still image interpolation methods. However, compared 

with still image interpolation counterparts, VSR techniques are much more compli­

cated and often undergo high computational cost. In this thesis, our study is focused 

on developing VSR methods for the purpose of image resolution upconversion. 

6 
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(a) (b) (c) 

Figure 1.2: An example of video super-resolution results from [9]. (a) one of ob­
served low-resolution frames; (b) a high-resolution frame reconstructed from multiple 
observed low-resolution frames; (c) a deblurred high-resolution frame from (b). 
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As discussed above, VSR is a technology of reconstructing one or more high­

resolution (HR) video frames from a sequence of degraded low-resolution (LR) video 

frames. It has a widespread application in areas such as medical imaging (i.e., CAT, 

MRI, etc.), satellite imaging, enlarging consumer photographs, video surveillance, 

etc. Fig. 1.2(c) shows an example of VSR produced high-resolution video frame, in 

contrast with one of the observed low-resolution frames as shown in (a). The frame 

shown in (b) is an intermediate result in which the PSF effect of photoelectric sensors 

has not been eliminated. In the literature, the process of eliminating the PSF effect 

is also known as deblurring or deconvolution. 

The basic idea behind the VSR technique is the fusing of multiple low-resolution 

frames with subpixel shifts to reconstruct high-resolution video frame(s)[35]. In the 

scenario of a digital video camera system, a video sequence is produced by sampling 

the continuous image signal of a scene at a constant frame rate, e.g., 24 or 30 frames 

per second (fps). The acquired adjacent video frames are naturally shifted at sub­
; 

pixel displacements, given that the scene does not change and objects in the scene 

move with subpixel increments with respect to the video camera. Consequently, by 

registering these adjacent frames, VSR techniques can substantially increase the pixel 

density i.e., spatial resolution of these acquired video frames. Fig. 1.3 illustrates the 

fusion of multiple frames at subpixel displacements to produce an HR frame. The 

observed low-resolution frames are first registered against a reference frame. This 

procedure employs image registration to form a high-resolution grid, and therefore it 

is also known as motion-based image interpolation. Due to arbitrary motions of the 

moving objects, registered pixels on the high-resolution grid may not be distributed 

at regular pixel sites. Then, they are mapped onto another high-resolution grid where 
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pixels are distributed at regular pixel sites. This mapping is also known as grid-based 

image interpolation, for these resulting pixels are interpolated from the prior regis­

tered pixels. In addition to the direct (i.e., one-pass) mapping, this step can also be 

an iterative procedure that projects the interpolated pixels back to the registered grid 

and checks the validity of the grid-based interpolation iteratively. At each iteration, 

the interpolated pixels on the high-resolution grid are updated. The iterative proce­

dure converges when meeting a required threshold for the back projection error. The 

next operation on the reconstructed high-resolution frame is deblurring that elimi­

nates the PSF effect of photoelectric sensors. It should be pointed out that, in the 

case of a scene moving with integer pixel units, VSR techniques can not help improve 

the spatial resolution of video frames, for the adjacent frames contain the same pixel 

information. 

In addition to upconverting image resolution of an acquired video sequence, an­

other capability of the VSR technique is to alleviate image noise. The most common 

image noise originates in image acquisition devices. It can significantly degrade the 

image quality. Moreover, this type of image noise is independent of image signals, 

and can be modeled as additive white Gaussian noise (AWGN). By fusing together 

multiple adjacent frames, the VSR technique is capable of effectively suppressing the 

additive image noise in video frames. 

1.3 Review of Video Super-Resolution 

In the early 1980s, Tsai and Huang proposed a frequency domain approach in employ­

ing multiple noiseless down-sampled frame to enhance the resolution of a frame[40]. 

This method, distinguished from conventional counterparts that use a still image for 

9 




M.A.Sc. Thesis- Huazhong Wang McMaster- Electrical Engineering 

Subpixel shift Integer pixel shift 
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00 
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Figure 1.3: Illustration of reconstructing a high-resolution video frame from multiple 
observed low-resolution video frames. 
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resolution upconversion, is the pioneering work on VSR reconstruction. Since then, 

VSR as a research topic has been receiving so much attention. Currently, the VSR 

problem is generalized as reconstructing an image (frame) of higher resolution from 

several down-sampled and degraded images (frames). Up to now, all published VSR 

algorithms can be categorized into two classes namely, frequency domain methods 

and spatial domain methods(3]. 

After Tsai and Huang(40], Kim et al. proposed a recursive frequency domain al­

gorithm to reproduce HR frames from a noisy and down-sampled image sequence(20, 

21, 19]. The authors first took into account noise and spatial blurring and utilized the 

Tikhonov regularization for the image reconstruction problem. Meanwhile, Srinivas 

and Srinath proposed an algorithm based on a minimum mean squared error (MMSE) 

approach for the multi-image restoration problem(38]. Later, Rhee and Kang de­

veloped a discrete cosine transform (DCT) based frequency method(31]. The above 

algorithms are capable of dealing with linear space-invariant (LSI) blur, as well as ho­

mogeneous additive noise. Moreover, they can achieve high computational efficiency. 

Nevertheless, pixel displacements within frames are restricted to global uniform trans­

lation motion. Furthermore, they are not able to exploit a priori knowledge of spatial 

domain pixel structures and make the reconstruction of high-resolution image (frame) 

adapt to local image waveform. 

The first spatial domain algorithm based on the iterative back projection (IBP) 

was proposed by Irani and Peleg for the VSR reconstruction problem[16, 17, 28]. They 

initialize the iterative process with a guess of the missing high-resolution image. At 

each iteration, the algorithm projects the temporary results to the observed LR im­

ages. By computing the projection error, the algorithm updates the guessed image 
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iteratively and makes it approach the optimal result. The highlight of this algorithm 

lies in its capacity in dealing with affine geometric warps. Tekalp and Sezan proposed 

the concept of convex sets that can be used efficiently as a constraint for the ill-posed 

VSR problem[27, 39]. This approach makes it possible to combine the nonlinear con­

straint to VSR reconstruction and to apply the projection onto convex sets (POCS) 

method in VSR. However, POCS method has the disadvantage of high computational 

cost and slow convergence. Later, another algorithm for VSR reconstruction problem 

was proposed by Cheeseman et al., by using maximum a posteriori (MAP) based 

on a Gaussian smoothness prior[6]. Schultz and Stevenson suggested an approach by 

using a MAP estimator with the Huber-Markov Random Field (HMRF) prior[34, 35]. 

This approach works based on the assumption of averaging box point spread func­

tion (PSF) and the additive noise which is assumed to be independent and identical 

distributed (i.i.d.) Gaussian random variable. All these VSR algorithms have their 

advantages in different aspects. In 1997, Elad and Feuer proposed a new unified 

framework for VSR reconstruction by reconstructing from multiple blurred, noisy, 

and down-sampled observed images. The authors proposed to formulate the VSR 

reconstruction problem by using sparse matrices from the perspective of maximum 

likelihood (ML), MAP, and POCS. 

The VSR algorithms can also be categorized in some other criteria, other than 

the domain. For example, there are deterministic and non-deterministic (stochastic) 

variants of VSR methods. The deterministic methods employ some a priori knowl­

edge of the observed image, such as smoothness, to regularize the solution space of 

the ill-posed VSR problem. Some other VSR algorithms that use the MAP methods 

12 
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treat the VSR reconstruction as a probability estimation problem[13, 36]. They be­

long to the non-deterministic class. Moreover, VSR methods can also be classified 

into iterative and non-iterative categories. 

1.4 Contributions 

My research work, as presented in this thesis, targets at developing image resolu­

tion upconversion methods to reproduce fine edge/texture details of acquired digital 

videos. Our design principle is inspired and motivated by the ability of a piecewise 

autoregressive (PAR) image model in modeling digital image signals and preserving 

spatial structure of pixels in still image interpolation. In the proceeding chapters, 

we present two new VSR methods that provide effective solutions for the VSR recon­

struction problem. Both the two VSR methods take advantage of the PAR model, but 

perform image resolution upconversion in different ways. Simulation results demon­

strate that both achieve competitive performance in terms of perceptual quality. The 

contributions of this thesis are summarized as follows: 

• We extend 	the PAR model to solve the VSR problem. In still image inter­

polation, PAR model parameters are estimated from a local window of ob­

served low-resolution still image, but applied to reconstruct the underlying 

high-resolution image. Considering a potential mismatch of the PAR model, 

we propose to estimate PAR model parameters from observed data of multiple 

registered low-resolution video frames. Compared with that in still image in­

terpolation, learning of PAR models by the new scheme is much more accurate, 

and hence significantly reduces the likelihood of model mismatch between the 

13 
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observed low-resolution frame and the underlying high-resolution frame. Then 

VSR reconstruction is simplified as a still image interpolation problem, and the 

underlying high-resolution video frames are reconstructed by using the above 

estimated PAR model parameters. In this case, image registration is implicitly 

incorporated into the reconstruction of high-resolution video frames. It makes 

the solution for this problem more robust to motion estimation errors. The new 

method gains superior performance against its counterpart in terms of both 

visual quality and peak signal-to-noise ratio(PSNR) measurement. 

• 	 We propose to incorporate the PAR model into a regularization term for the 

inverse VSR problem. The VSR reconstruction problem is formulated via a well­

known multi-frame observation model which combines explicit motion estima­

tion. Due to the lack of constraints, the VSR problem is ill posed. Historically, 

total variation (TV) methods are most commonly used to impose constraints on 

the solution space of the ill-posed VSR problem. However, TV methods ignore 

the second and higher order derivatives of image signals, and further can not 

adapt to local image waveforms. Consequently, VSR methods that employ TV 

for regularization can not preserve image details but force the smoothness of 

image signals. By contrast, the PAR model based regularization method can, 

by spatially varing its parameters, adapt the reconstruction of HR frames to the 

local image waveforms. As a result, it can effectively regularize solutions for 

the ill-posed VSR problem and reproduce high-frequency components of image 

signals. 
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• 	 An iterative scheme for joint estimation of motion parameters, the underly­

ing HR pixel intensities as well as the parameters of the PAR model is pro­

posed. In the second of our new VSR methods, estimating three groups of the 

above-mentioned unknown variables is a problem with a chicken-and-egg flavor. 

Therefore, the goal of the joint scheme is to achieve best statistical consistency 

among the PAR model parameters, motion parameters and the second-order 

statistics of reconstructed HR frames. In addition, this method estimates PAR 

model parameters iteratively from the reconstructed HR frames and hence over­

comes the problem of PAR model mismatch. Also, it holds the possibility of 

mitigating motion estimation errors when using image interpolation to compute 

subpixel motion parameters. 

1.5 Organization 

The remaining of this thesis is structured into four chapters. In Chapter 2, we for­

mulate the VSR reconstruction problem and outline the key related issues on this 

topic. In Chapter 3, we present a model-based interpolation scheme that learns the 

PAR model from observed data of multiple registered low-resolution video frames. In 

Chapter 4, we present a VSR method which combines the multi-frame observation 

model with the PAR model, where the PAR model plays a role of a regularization 

term. In this chapter, we also propose an iterative scheme for joint estimation of PAR 

model parameters, motion parameters as well as underlying high-resolution pixel in­

tensities. In the end, we conclude this thesis with remaining challenges and future 

work for video super-resolution. 
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Chapter 2 

Formulation of the VSR Problem 

In this chapter, we investigate the VSR Problem and build a multi-frame observation 

model. With the observation model, VSR reconstruction is formulated as a least­

squares problem. However, due to the lack of constraints, this least-squares problem 

is ill posed and consequently needs constraints to regularize its solution space. Then, 

we discuss the regularization issue for the ill-posed VSR problem. It is followed by 

a brief review of existing regularization methods. Next, we introduce a piecewise 

2D autoregressive image model that plays a prominent role in our new algorithms in 

solving the ill-posed VSR problem. At the end of this chapter, we have an introduction 

to the issue of motion estimation in the VSR problem. It includes a brief review of 

most common motion estimation techniques, and a discussion on a variety of factors 

that decrease the accuracy of motion estimation. 
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2.1 	 Multi-frame Observation Model for Video Super­

Resolution 

The image resolution upconversion, namely the restoration of a single HR image from 

an observed (measured) LR version is a classic inverse problem. It can be linearly 

modeled as acquiring the LR image from the underlying clean HR image namely, 

g=DHz+n 	 (2.1) 

where z is the underlying clean HR image of size L1N1 x L2N2 , and g is the observed 

degraded LR image of size N1 x N2 . Both vectors z and g denote the 2D images in 

a lexicographical (scanning) order. L1 and L2 are the down-sampling factors in hori­

zontal and vertical directions respectively. Matrix H of size L1N 1L2N2 x L1N 1L2N2 

represents a low-pass filtering (i.e., blurring) operation which accounts for the opti­

cal point spread function (PSF) effects of the digital imaging system. Matrix D of 

size N1N2 x L1N1L2N2 stands for the operation of decimation (or down-sampling). 

n is system random noise that normally is additive white Gaussian noise (AWGN). 

Specifically, H, D and n are inherent to the camera system and independent of image 

signals. 

In the scenario of reconstructing a video sequence of higher resolution, the linear 

image formation model in Eq. 2.1 is applicable to each of the underlying HR frames 

{zk} and the associated observed LR frames {gk}· Here, symbol k denotes the time 

index of each frame. In addition, due to the temporal correlation of video frames, 

every two of the HR frame{zk} and the LR frame {g1} can be modeled as a sequence 
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of geometry warping, blurring, decimation and corruption of additive noise namely, 

g1	=DHzG(vz)zk + n(k, l) (2.2) 

=F(l, Vz)Zk + n(k, l) 

where matrix G(vz) of size L1N1L2N2 x L1N1L2N2 denotes the geometry warping 

operation which is a function of motion parameter vz between frame Zk and zz. Terms 

H, D and n are the same as described above. In this formulation, the concatenation 

of DHG is simplified as matrix F of size N1N2 x L1N1L2N2 . 

In consideration of temporal correlations between current frame Zk and its mul­

tiple neighbors, we can formulate the VSR problem by constructing a multi-frame 

observation model. As depicted in Fig. 2.1, the observation model represents a video 

frame formation process, namely that the underlying HR frame Zk yields multiple 

observed LR frames g 0, · · ·, gN, via geometry warping, blurring, down-sampling and 

corruption of additive noise. Based on Eq. 2.2, the multi-frame observation model 

can be described by the following expression in a matrix-vector form. 

F(O, v 0 ) n(k, 0) 

F(1, v 1) n(k, 1) 
(2.3) 

n(k, N) 

where there are N (N 2:: 1) observed LR frames, each of which probably consists of 

one or multiple local motions depending on the moving objects of the scene. Vector 

v 1 (l = 0, 1, ... , N) denotes one or a concatenation of multiple motion parameters 
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between frame Zk and frame z 1. Specifically, l = 0 refers to the current frame, i.e, 

vector zk, and thus v 0 is a zero vector. Hereafter, we simplify the notations by 

defining the following expressions. 

[ T T T]T9 = 9o , Y1 , · · · '9N 

F(v) =[FT(O, v 0 ), FT(1, vi),··· ,FT(N, VN)f (2.4) 

T T]Tv = [vT 
0 , v 1 , · · · , v N 

Then, the multi-frame observation model in Eq. 2.3 can be simplified into a linear 

form as 

g=F(v)z+n (2.5) 

2.2 Regularization for Video Super-Resolution 

As addressed in the preceding section, the reconstruction of high-resolution image(s) 

from a single or collection of observed images is an inverse problem. With the image 

formation model in Eq. 2.1, solving this restoration problem can be formulated as 

minimizing the effects of system noise n. It assures certain fidelity of the final solution 

to the observed data on condition that the system matrix H and D namely, the PSF 

function of the imaging system and the upconversion factor are known. From a 

statistical perspective, the optimal solution in least-squares (LS) sense is attained by 
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Geometry Warping Blurring Down-sampling Noise 

Figure 2.1: Illustration of the multi-frame observation model 
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minimizing the £ 2 norm of noise n namely, 

(2.6) 


When image resolution is upconverted by a factor of""(""> 1), the size of vector z is 

"" times larger than that of vector g. As such the number of observations is smaller 

than that of the unknowns, which indicates that estimating z is always an ill-posed 

problem. 

In the VSR problem, the number of observations is increased thanks to the avail­

ability of multiple low-resolution frames. Based on the multi-frame observation model 

in Eq. 2.5, the restoration of HR frame(s) from observed LR frames can be formulated 

as solving the following optimization problem. 

(2.7) 


This optimization process attempts to minimize the effects of system noise n in terms 

of L2 norm. The solution z is the maximum likelihood (ML) estimate of z if noise n 

is zero-mean AWGN(7]. 

Algebraically, the optimal solution in least-squares sense for the optimization prob­

lem in Eq. 2.7 can be written as 

(2.8) 

on the condition that matrix F is known and matrix pTF is non-singular. Therefore, 

computing the solution z requires inverting square matrix pTF. This makes the 

21 




M.A.Sc. Thesis- Huazhong Wang McMaster - Electrical Engineering 

solution z highly sensitive to the condition number of matrix FTF. If matrix FTF 

is well conditioned, solution z can be directly computed. However, more often than 

not, matrix FT F is ill conditioned. 

As presented in Section 2.1, matrix F concatenates geometric warping operation 

G, blurring operation Hand down-sampling operation D. Among these operations, 

the blurring operation H can be estimated from the digital imaging system[l]. In 

practice, it is more common to determinate H by assuming a linear space-invariant 

PSF function for the imaging system. The down-sampling operation D solely depends 

on the upconversion factor ""· Matrix G involves geometry warps of temporally corre­

lated pixels. Therefore, matrix F relies on the registration of observed low-resolution 

video frames. Historically, most VSR algorithms solve the optimization problem in 

Eq. 2.7 in two steps[3]: 

1. motion estimation (or image registration) to determinate matrix F; 

2. solving an inverse problem based on the first step. 

Motion estimation performed in the first step simplifies the optimization problem as 

a linear least-squares problem with only the underlying high-resolution pixel intensity 

z unknown. 

Even though matrix F can be determined through explicit motion estimation, it is 

in fact spare and sensitive to the adopted motion estimator (namely its accuracy). In 

this case, if matrix FTF is ill conditioned, inverting matrix FTF would amplify the 

effects of motion estimation error and consequently lead to significant reduction in 

the performance of the final solution. Moreover, invertibility of matrix FTF depends 

on the number of available LR frames(i.e, independent observed pixels). If matrix 
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FTF is not invertible (i.e., singular), the optimization problem would become worse, 

as it is underdetermined (i.e., ill posed). 

Under this circumstance, it is necessary to impose a regularization term p(z) 

as a constraint on the solution space of the ill-posed inverse problem. As such the 

constraint can stabilize this ill-posed problem and make its solution more accurate 

by solving the following Lagrangian[3]. 

Z = arg m,in { 119- F(v)zll: + Ap(z)} (2.9) 

where Lagrange Multiplier >. adjustes the strength of the regularization term p(z), 

and hence provides a balance between the fidelity term llg- F(v)zll: and the reg­

ularization term. In practice, the value of >. is commonly chosen based on visual 

quality of the VSR reconstructed results. 

In general, regularization term p(z) incorporates some prior knowledge extracted 

from the observed low-resolution image(or video frame). This knowledge can be 

local pixel structures of the image, such as edge gradient, smoothness, etc. By us­

ing the prior knowledge, the regularization term p(z) preserves certain coherence 

of pixel structures between the observed low-resolution image and the underlying 

high-resolution image. The most common regularization method used in VSR is to­

tal variation (TV) [7, 9, 14, 30]. In general, it can be described by the following 

expression. 

p(z) = TV(z) = t t alml+\llllz- s;s:zll (2.10) 
l=-p m=O 1....____....., 
l+m~O 

where operator s; and s: represent shifts of image pixel z by l and m pixel units 
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in horizontal and vertical directions respectively. Term a (0 < a < 1) is a con­

stant which spatially adjusts the effects of differentials. TV-based image restoration 

methods use L1 norm of the magnitude of image gradient to regularize deblurring. 

They reconstruct the underlying high-resolution image by solving nonlinear partial 

differential equations (PDE) with the gradient constraints. Even though TV methods 

have been shown to be effective in reproducing large-scale edges[32], there are two 

drawbacks that make TV incapable of preserving small image details. First, proper 

norm of TV in image restoration is L1 [32]. It works based on an idealistic assumption 

that the first-order derivative of the image signal keeps constant in a small-scale area, 

and the higher order derivatives are all zero valued. As a matter of fact, for both nat­

ural images and computer synthesized images, there is a great high-order (especially 

second-order) statistical abundance of image signal waveform that accounts for subtle 

image details. Second, the lack of adaptivity in adjusting its own parameters makes 

TV incapable of spatially varying in multi-scale image features e.g., large-scale edges, 

and fine texture details[15]. In other words, it does not distinguish small details from 

large-scale edges/textures over an image. Due to these properties, TV-based image 

restoration methods can not preserve image details but force piecewise smoothness of 

image signals especially in the presence of image noise[5]. 

Instead of utilizing TV methods, we propose model-based approaches to regularize 

the solutions for the ill-posed inverse problem in this thesis. Compared with TV meth­

ods, our approaches are based on a piecewise 2D autoregressive image model, and are 

more capable of representing image waveforms ranging from smooth shades, periodic 

textures to transients like edges. Furthermore, they can adapt the reconstruction of 

high-resolution images to local varying image waveforms. Therefore, our model-based 
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approaches can gain superior performance against TV-based counterparts for VSR 

reconstruction. 

2.3 	 An Introduction to Piecewise 2D Autoregres­

sive Image Model 

During the past decade, image modeling has been a challenging research topic in 

imaging processing areas, such as image compression, image restoration etc. For 

both natural and computer synthesized images, the structure of local image waveform 

varies spatially over the image, which results in the non-stationarity of the second­

order statistics of image signal. Therefore, modeling of the non-stationary image 

waveform needs to be highly adaptive to the varying local pixel structures. In the 

end of 1990s, Wu et al. had a measured success in a research on predictive lossless 

image compression[41, 42]. In that work, image signal is modeled as a piecewise 2D 

autoregressive (PAR) process on the assumption of piecewise stationarity of image 

signals. The model parameters are adaptively estimated from pixel samples of a 

moving local window on a pixel-by-pixel basis across the image. In light of the 

predictive coding of pixels in that work, the autoregressive model is designed to be 

causal to the current pixel. Later, Wu and Zhang proposed to apply the PAR model 

to still image interpolation[44]. They assume that image signal preserves the spatial 

coherence of pixel structures regardless the change of image resolution. Thus, PAR 

model parameters are estimated for each pixel of the observed low-resolution image 

and then applied to fit the underlying high-resolution image. Additionally, the PAR 

model in still image interpolation is not causal. Compared with the causal PAR 
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counterpart, it takes more advantage of sample statistics of the local window. 

The advantage of the PAR model lies in two aspects when applied to still image 

interpolation. First, the adaptive learning of local pixel structures from low-resolution 

image is performed by taking into consideration the statistics of a local window (or 

a block) instead of pixels in isolation. Second, rather than individual estimation 

of each missing high-resolution pixel, a block of missing pixels in relation to the 

nearby known pixels are simultaneously estimated by fitting them to the learnt PAR 

model. Therefore, the blockwise estimation of missing pixels ensures certain spatial 

coherence of the reconstructed image. Due to the advantages above, the PAR model 

provides competitive solutions for adaptive still image interpolation(44] and some 

related applications(45]. 

Despite these advantages, the PAR model suffers two shortcomings. First, the 

model parameters are estimated from the low-resolution still image (or video frame) 

but applied to reconstruct the high-resolution image in still image interpolation. With 

the change of image resolution, the spatial correlation of pixels varies for different 

scaling (i.e, pixel distance). This potentially leads to an inconsistency of the second­

order statistics of image signals, and consequently incurs a mismatch of the PAR 

model between the low-resolution and high-resolution image. Second, it is likely that 

the blockwise estimation of missing high-resolution pixels encounters a dilemma of 

model overfitting. Mathematically, to solve an array of equations, the number of 

independent observations is required to meet the number of unknown variables. In 

other words, the number of observed pixels needs to be large enough for a robust 

estimate of the PAR model. However, owing to the piecewise stationary nature of 

image signals, a 2D AR model holds only within a small local window and therefore 
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insufficient observation data can be provided. In [44], the limitation of piecewise 

stationarity of image signals against the minimum required number of observations 

is well balanced by choosing a low-order PAR model and a moderate-sized window. 

In this thesis, we advocate the use of the PAR model to regularize the underdeter­

mined high-resolution image signals in the VSR problem. In details, two new meth­

ods are proposed in the coming two chapters to solve the above-analyzed dilemma of 

learning PAR models from observed low-resolution images. 

2.4 Motion Estimation in Video Super-Resolution 

In VSR reconstruction, it is necessary to register pixels of observed LR frames onto an 

HR image grid at subpixel accuracy, such that each of the LR frames can contribute 

substantial pixel information to the reconstruction of an HR frame. In general, the 

frame whose HR version is to be reconstructed is known as a current frame. The 

observed neighboring frames are registered against the current frame. As illustrated 

in Fig. 1.3, this image registration procedure, in essence, is estimating the subpixel 

displacements between the LR frames. In this sense, image registration and the dis­

placements are also known as motion estimation and motion parameters( or motion 

vectors) respectively. The accuracy of estimated motion parameters is critical to 

the performance of observation model based VSR algorithms[33]. In practice, inac­

curate or incorrect motion parameters can result in visually noticeable artifacts on 

the reconstructed high-resolution frame, and hence have a disastrous influence over 

the performance of super-resolution algorithms. While, the accurate estimation of 

arbitrary motions in a natural video sequence is an extremely difficult task, and the 

performance of estimators can not be guaranteed. For a scene in the video sequence, 
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it may contain a global or multiple local motions, and these motions can be trans­

lational, rotational, zooming or even a combination of the above all. In light of the 

above, motion models and estimation methods in VSR should be appropriately chosen 

in accordance with the a priori knowledge of motions in the video sequence. 

The most popular motion estimators in the literature can be classified into two 

categories: feature-based and area-based motion estimation. Feature-based methods 

take the advantage of image features such as edges, points, and line intersections etc. 

Compared with area-based methods, feature-based methods are much more robust 

against image noise and image degradation. But the disadvantages are manifest. As 

image features are sparsely distributed, not all of pixels in an image can be registered. 

In contrast to feature-based methods, area-based methods take into consideration all 

pixels aside from feature pixels over the image. For this reason, the computational 

cost of these methods is prohibitively high. 

In terms of camera motion, motion estimators can be categorized into two classes: 

parametric and nonparametric methods. The parametric methods include 4 or 6­

parameter affine model, and 8-parameter projection model[25] etc. They take advan­

tage of 2D parametric transformations (e.g., 2D affine, 2D quadratic and 2D projec­

tive), and attempt to assign a parametric motion model to each group of pixels that 

have an identical camera motion. Thus, they can achieve high computational effi­

ciency when dealing with global motions. If multiple local motions exist in a scene, 

parametric methods first need to isolate each of the local moving objects. After­

wards, one parametric model for each object is computed through what often is an 

iterative minimizing process. In contrast to parametric motion estimators, nonpara­

metric methods estimate motions on a pixel-by-pixel or block-by-block basis. They 
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do not group pixels in terms of identical camera motions. Therefore, nonparametric 

methods can achieve high computational efficiency when dealing with a scene with 

multiple local motions. 

Among the nonparametric motion estimators, Block Matching Algorithm (BMA) 

is a block-based method for locating matched blocks or identifying motion parameters 

between two images/frames[26]. It searches within a local window under an idealistic 

assumption that motion field within a block is uniform. Due to its simplicity in 

implementation, BMA has been widely used in visual tracking, video surveillance 

and video compression standards, e.g., MPEG-1, MPEG-2, MPEG-4, H.263, H.264 

etc. 

In a general situation, objects within adjacent frames move at certain finite dis­

placements, which results in pixel correlation between the adjacent frames. The pixel 

correlation is also known as temporal correlation of video frames. In this case, a block 

in a current frame can be highly temporally correlated with its peers in an adjacent 

(or neighboring) frame. Among these temporally correlated blocks, the two that carry 

the minimum difference are known as the best matched blocks. Correspondingly, the 

displacement between them is referred as motion parameter ( dx, dy), where dx and dy 

are horizontal and vertical displacements respectively. In practice, BMA can be used 

to identify motion parameters for a single pixel, or non-overlapping blocks in which 

all pixels presumptively have identical motion parameters. 

On the quest to attain subpixellevel motion parameters, motion estimators always 

take advantage of an image interpolation technique, such as bilinear, bicubic inter­

polation method[18) etc. However, the computation of such motion parameters (e.g., 

half-pixel, quarter-pixel, and 1/8-pixel) using an exhaustive search (or full search) 

29 




M.A.8c. Thesis- Huazhong Wang McMaster - Electrical Engineering 

strategy is very intensive. During the past decade, much research attention has been 

paid in this regard to improve the efficiency of BMA. Among the fast BMA methods 

are three-step search (388)[22], cross-search [11], diamond search[46], new three-step 

search (NT88) [23], four-step search( 488) [29], block-based gradient descent search 

(BBGD8)[24]. These fast BMA algorithms save the computational cost by means of 

certain search patterns and the reduced number of searching points. However, the 

computational efficiency is achieved at the cost of lower accuracy. 

Aside from reducing the number of searching points, there are still some other 

factors that decrease the accuracy of BMA algorithms. For example, image noise 

and image degradation is inevitable for images acquired through image acquisition 

devices. It lowers the accuracy of motion estimation by contaminating the true values 

of pixel intensities. In addition, interpolation errors are unavoidable either. As image 

interpolation is an ill-posed inverse problem, it can make the interpolation value 

approach the true pixel intensity, but can hardly guarantee a result that is free of 

interpolation errors. 
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Chapter 3 

Multi-frame based PAR Model for 

Video Super-Resolution 

As mentioned in Section 2.3, the PAR model faces a dilemma when applied to image 

interpolation. On one hand, correct reproduction of missing high-resolution pixels 

relies on a valid model of the underlying image signal; On the other hand, model 

of the image signal can be built only if the image signal is available. In still image 

interpolation, the PAR model is learned from an observed LR image and applied 

to reconstruct the underlying HR image[44]. However, if a mismatch between the 

second-order statistics of the LR and HR image occurs, the PAR model learned 

from the LR image would not fit the underlying HR image, which potentially leads 

to poor interpolation performance. One way to resolve this dilemma is to increase 

pixel density (i.e., spatial resolution) of the observed pixel samples, such that the 

mismatch of the second-order statistics can be mitigated. In still image interpolation, 

this approach can not be easily applied due to an insufficient number of observed 

pixel samples. By contrast, the abundance of temporal correlations of video frames 
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provides the possibility to resolve this dilemma. 

As analyzed in Section 2.4, pixels of multiple observed low-resolution video frames 

at subpixel displacements can be registered onto a high-resolution grid. These pixels 

are true samples that originate in the underlying high-resolution image. Therefore, 

if registered pixels on the high-resolution grid are distributed at regular pixel sites 

as illustrated in Fig. 1.3, then they can be treated as good estimates of the underly­

ing high-resolution pixels. In this case, the PAR model learned from the registered 

pixel samples on the high-resolution grid would be much more accurate than that 

learned from the low-resolution pixel samples, which reduces the likelihood of model 

mismatch. In addition, since the number of observations in a local window increases 

without violating the piecewise stationary nature of image signals, this method re­

duces the possibility of model overfitting (as analyzed in Section 2.3). 

In addition to the problem of PAR model learning, another problem addressed in 

this chapter is motion estimation and the synthesis of high-resolution blocks (i.e., lo­

cal windows). The role of motion estimation is to register observed pixels of multiple 

neighboring low-resolution video frames, such that high-resolution local windows can 

be built for PAR model learning. Many available motion estimators used in VSR, for 

example the one in [37], try to describe a global or local motion via a 4-parameter 

or 6-parameter affine motion model at subpixel precision. Computing the affine mo­

tion is prohibitively expensive, as it often involves an iterative procedure to solve a 

minimization problem[3]. In the case of a scene with multiple local motions, motion 

estimators in the literature often try to perform motion segmentation before comput­

ing each of them. This operation makes the motion estimation problem even more 

complicated[36]. 
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Another advantage of our new VSR method is the use of the simplest Block­

Matching Algorithm (BMA) for motion estimation. As reported in the literature, 

BMA is computationally much less intensive than parametric motion estimators. In 

addition, both BMA and the PAR model are block-based methods. The natural 

integration of BMA and the PAR model makes the block-based approaches capable 

of dealing with both global and local motions. Simulations have been conducted 

on natural video sequences and the results convincingly demonstrate the improved 

performance of the PAR model in spatial resolution upconversion. 

This rest of this chapter is organized as follows. Section 3.1 briefly describes 

the piecewise autoregressive image model. Section 3.2 discusses the block-based mo­

tion estimation with an aim to register pixels of multiple observed low-resolution 

frames onto a high-resolution image grid. Section 3.4 presents a model-learning 

scheme such that PAR model parameters can be estimated from pixel samples on 

the high-resolution grid. This section also discusses the reconstruction of missing 

high-resolution pixels. Simulation results and discussion are presented in Section 3.5. 

3.1 Learning of Piecewise 2D Autoregressive Model 

It is observed that pixels in a local window can be modeled by a piecewise 2D au­

toregressive process. This process can be described by the following expression[44]: 

I(i,j) 2:: O:m,ni(i + m,j + n) + 1/i,j (3.1) 
(m,n)EW 

where pixel J(i,j) is predicted by its neighbors I(i + m,j + n) in a local window 

W. Term 1/i,j is a random perturbation independent of pixel site ( i, j) and pixel 
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intensity J(i,j). It accounts for both the fine-scale randomness of image signal and 

measurement noise. 

Model parameter am,n specifies the structure, namely the direction and amplitude 

of features within the local window Wi,j· In fact, edge directions of natural images are 

randomly distributed. Therefore, the order of the PAR model should be appropriately 

chosen to achieve the best model fitting[2]. In this thesis, we build two separate 4­

parameter PAR models considering general cases. These two PAR models fit two sets 

of pixel samples, namely 8-connected neighborhood and 4-connected neighborhood 

of pixel intensity xi E W. As depicted in Fig. 3.1, the two models are specified by 

two groups of autoregressive coefficients a= (a0 , a 1 , a 2 , a 3) and (3 = ((30 ,/31 , (32 , (33 ). 

They characterize the axial and diagonal correlation respectively. More details about 

the PAR model can be referred from [44]. 

Natural image signal may not be stationary in a large scale due to its spatially 

inconsistent second-order statistics. Nevertheless, edges and textures in forms of con­

tiguous pixels tend to manifest consistent spatial characteristics in a small scale. It 

suggests that PAR model parameters in the locality remain constant or near con­

stant. Therefore, it is reasonable and acceptable to assume the piecewise stationarity 

of image signal. This forms the fundamental assumption on which the autoregressive 

image model works. Mathematically, the structure of image signals within the local 

window can be learnt by fitting the autoregressive model to pixels in the local win­

dow W. This fitting process is formulated as solving the following two least-squares 
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problems: 

& = arg mln {L(Yi- L aky:,k?} 
iEW o::o;k9 

(3.2) 

/3 = arg min {~)Yi- L f3kYtk) 2 
} 

{3 iEW o::o;k9 

where PAR parameter & and /3 in least-squares sense account for an optimal solution 

for the corresponding PAR model within local window W. 

To distinguish pixels of a low-resolution frame and a high-resolution frame, here­

after we have y and x denote pixel intensities in the observed low-resolution frame 

and the underlying high-resolution frame respectively. 

0 0 0 0 0 0 0 0 0 0 

Y;,o Y~; Y;o 
0 0 0 0 0 

0 0 0 0 
a2x 

Y1.2 
0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

(a) (b) 

Figure 3.1: PAR model: (a) diagonal mode, (b) axial mode. 

3.2 Block Matching 

As analyzed at the beginning of this chapter, the possibility of PAR model mismatch 

between the LR video frame and the underlying HR video frame can be reduced by 
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increasing pixel density of local windows in the observed video frame. In practice, the 

pixel density can be increased by registering pixel samples from multiple LR reference 

frames. In this thesis, the registration or motion estimation, is performed by means 

0 0 0 0 0 
c
IQ··• 0 • 0 • 0 • 0 

0··· • • • • • • • 
0 0 0 • o.t• o •X o • 0 

0 0 0 0 • 0. • 0 
• • •'·*'·'• •• • 0 x.~ X 

Y;,z • • •x;:3 • x;:2• • • 
0 0 0 • 0 • 0• 0 • 0 

0 0 0 0 0 0 • 0 • 0 • 0 • 0 

(a) (b) 

Figure 3.2: Comparison of Learning PAR model from a LR image (a) with from an 
HR image (b). White dots represent observed pixels; black dots represent interpolated 
pixels. 

of block matching (BMA). This method finds the best matched block within a local 

search window W8 , using a matching criterion of Euclidean norm: 

M N 

Dn(dx, dy) = LLIIc(i,j)- Ir(i + dx,j + dy)\n (3.3) 
j 

where M, N are the height and width of a registration block. Ic(-, ·) and Ir(·, ·) 

represent pixels in current frame and reference frame respectively. Term n is a positive 

integer. In practice, the 1-norm of the matching error D1(dx, dy) is commonly used. 

Vector ( dx, dy) defines the translational displacement between the current block and 

the reference block. Then the displacement of the best matched block with respect 
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to the current block is given by 

(d'X, iy) = arg min D1(dx, dy) (3.4)
(dx,dy)EWs 

In the VSR problem, the image resolution upconversion factor /"i, can be an arbi­

trary positive fractional number larger than one. In the proceeding discussion, we 

restrict factor /"i, to be a power of two to simplify the motion estimation problem. 

Then for an integer /"i, e.g., 2, 4, etc., block matching is performed at 1/J<i, precision 

e.g., half-pixel or quarter-pixel precision etc. For the clarity of our presentation and 

without loss of generality, we develop our VSR method for upconversion factor of 

/"i, = 2. In this case, half-pixel precision BMA is needed. 

By performing a half-pixel precision BMA on the current low-resolution frame 

and its neighbors, multiple registered low-resolution blocks can form a new block 

whose resolution is twice that of the low-resolution frame. In the resulting high-

resolution block, current low-resolution block and multiple registered reference blocks 

have integral displacements (ix, dy). In terms of parity, the displacements (dx, dy) 

fall into four classes: (0, 0), (0, £), ( £, 0) and (£, £). Here, the decorated letters 

0 and£ denote an odd-valued and even-valued displacement value respectively. The 

four classes are illustrated in Fig. 3.3. In the following section, we will discuss on 

synthesis of multiple registered low-resolution blocks to form a high-resolution block. 

3.3 Synthesis of Multiple Low-resolution Blocks 

First of all, let us consider the case as depicted in Fig. 3.3( a). Two blocks of low-

resolution pixels denoted by black dots from reference frame and white dots from 
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current frame respectively, are registered onto a high-resolution grid. The block of 

black dots (denoted by Br) have an integral spatial shift ( 0, 0) to the block of white 

dots (denoted by Be)· In this case, a new high-resolution block Bh can be synthesized 

by multiplexing the two blocks. In view of block-matching error, the synthesis is 

performed by using a weighted fusing scheme instead of simple multiplexing. 

Since the two blocks Be and Br at an integral displacement ( 0, 0) are spatially 

interleaved, one can be estimated from anther through image interpolation. Suppose 

that a pixel Yi in block Br corresponds to a pixel Yi in the high-resolution block Bh, 

i.e., the black dots. Its another estimate Yi is interpolated from current block Be. 

Then, the fusing of Yi and Yi yields a more robust estimate of yi: 

Yi = WYi + ( 1 - w )yi (3.5) 

where w (0 S w S 1) is a context-based weight determined by the matching degree 

di = !Yi- 'Yil at each pixel site within the block. 

w1 if diS 2 

w = w2 if 2 < di S T (3.6) 

W3 if T S di 

where T is a threshold optimized through simulations. 

As for the registration cases with displacements (0, £) and (£, 0), the principle 

of synthesizing a high-resolution block is fundamentally the same as the case (0, 0) 

discussed above. The only difference lies in the pixels modified in block Bh, namely 

the black dots shown in Fig. 3.3(b)(c). One thing worth noting is that pixels (i.e, 
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0 0 0 0 0 0 0 0 0 0 

• • • • • • • • • 
0 0 0 0 0 0 0 0 0 0 

• • • • • • • • • 
0 0 0 0 0 0 0 0 0 0 

• • • • • • • • • 
0 0 0 0 0 0 0 0 0 0 

• • • • • • • • • 
0 0 0 0 0 0 0 0 0 0 

(a) (b) 

0 • 0 • 0 • 0 • 0 • 
0 • 0 • 0 • 0 • 0 

0 • 0 • 0 • 0 • 0 

0 • 0 • 0 • 0 • 0 • 
0 • 0 • 0 • 0 • 0 • • • 

(c) (d) 

Figure 3.3: Synthesis of two low-resolution blocks at displacement: (a) (0, 0); (b) 
(£, 0); (c) (0, £); (d) (£, £). Black dots represent registered pixels from a reference 
frame; white dots represent pixels registered from the current frame. 
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white dots) in block Bh corresponding to those in block Be originate in the underlying 

high-resolution current frame. Therefore, they are never altered in light of their 

reliability. For the case with displacement (£, £), registered pixels from neighboring 

frames contain the same pixel information as those from the current frame. Therefore, 

they can not help increase pixel density of the high-resolution grid (i.e., block) and 

hence are discarded. 

The goal of image registration in this method is to increase the density of observed 

pixel samples such that it can approach that of the underlying high-resolution pixels. 

In the case of up converting video frames of size N 1 x N2 by a factor of "" ("" > 1), 

there are K-2 N1N2 pixel sites on the high-resolution image grid. Since the pixels of 

the current frame (as denoted by white dots in Fig. 3.2) occupy N1N2 of those sites, 

there are still (K-2 
- 1)N1N2 remaining pixel sites to be filled by multiple neighboring 

LR frames. In the case of K- = 2 as shown by a dashed rectangle in Fig. 3.2, there are 

K-2 -1 = 3 unoccupied sites (denoted by black dots) around each white dot to be filled 

by pixels of neighboring LR frames. In what follows, we will study the probability 

that all the unoccupied pixel sites are filled by pixels of r registered neighboring LR 

frames (r > 1). 

The problem of filling pixel sites as stated above can be formulated as using r 

pixels to fill n sites (n = K-2 ), one of which (denoted as cl) has already been filled 

by a pixel of the current frame. Due to arbitrary motions of moving objects or/and 

cameras, a registered pixel of a reference frame has equal probability ~ to fill one of 

then pixel sites. First, let us consider the event Am that r pixels fill n-m unoccupied 
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sites, leaving m sites unfilled. The probability of event Am is given by [10], 

(n) n-m (n -m) ( m+i) r
Pm(r,n) = m t;(-1)i i 1- -n- (3.7) 

However, if pixel site c1 has already been filled beforehand, then the m ultimately 

unfilled sites should only be from the remaining n- 1 ones. Let B be the event that 

there are r - i pixels ( i = 0, 1, ... , r) falling into the remaining n- 1 sites. These r - i 

pixels can be chosen in ( r .) different ways, and for the given r -i pixels, they can 
r-2 

fill the n - 1 sites in ( n - 1)(r-i) different ways. Thus, there are ( r .) (n - 1)(r-i) 
r-2 

ways of choosing r- i pixels from r ones to fill n- 1 sites. Since the total number of 

possible arrangements in filling n sites with r pixels is nr, the probability of event B 

therefore is ( r .) (n-1)(r-i) jnr. Then the probability of event Am namely that the 
r-2 

r-i pixels leave m of the n-1 sites unfilled is ( r .) (n-1)(r-i) jnr ·Pm(r-i, n-1). 
r-2 

Accordingly, the total probability of event Am is the summation of those for all i's 

namely, 

In our case, we use m = 0 to get all pixel sites filled and the corresponding prob­

ability is P~(r, n). Moreover, we also have the probability distributions for cases that 

there are 1, 2, 3 pixel sites unfilled, namely P~ (r, n), P~(r, n) and P~(r, n). Fig. 3.4 
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illustrates n = 4, 9 and corresponding probability P:n(r, n) versus the number of reg­

istered neighboring frames r. From this figure, we can find that probability P~(r, n) 

approaches to 1, while the other probabilities decline to zeros as the number of neigh­

boring frames r increases. Therefore, in the case of upconversion factor K, = 2 (i.e., 

n = 4), it is confident to conclude that the unoccupied pixel sites can be fully filled 

at probability higher than 0.8 when the number of neighboring frames is larger than 

10. 

With the registration of multiple low-resolution blocks, a high-resolution block can 

be produced at relatively high probability (i.e., larger than 0.8) that all pixel sites are 

occupied. Estimating of PAR model parameters in the high-resolution block(i.e., local 

window) is performed by following the model-learning scheme stated in Section 3.1. 

However, it is possible to encounter the cases that pixel sites on the high-resolution 

block are not fully filled, such as those illustrated in Fig. 3.3(a)(b)(c). In these 

cases, pixel distances within the PAR model are inconsistent in various directions. 

In our method, we do not fill the unoccupied pixel sites via image interpolation, 

for interpolated pixels at low accuracy can not improve estimates of PAR model 

parameters. Instead, we use low-resolution blocks of the current frame for model 

learning. 

3.4 	 Reconstruction of High-Resolution Pixels via 

PAR model 

On the basis of the PAR model learned in a high-resolution local window, the recon­

struction of the underlying high-resolution pixel intensity values x can be formulated 

42 




0.4 

0.3 

0.2 

0.1 

M.A.Sc. Thesis - Huazhong Wang McMaster - Electrical Engineering 

the number of pixel sites n==4 

0.7 

'2 
..s 0.6

E 
0. 

~ 0.5 

j 
e o.4 
a. 

0.3 

0.1 

5 10 15 20 

-B-P~(r,n) 

P~(r,n) 

-a- P~(r,n) 

~P~(r,n) 

25 30 
the number of neighboring frames r 

(a) 

the number of pixel sites n=9 

0.9 

0.8 

, 

0.9 

0.8 

0.7 

'2 
..: 
~E 0.6 

' 0. 

~ 0.5
:a 
jg 
e a. 

--&--- P~(r,n) 

P~(r,n) 
-a- P~(r,n) 

~P~(r,n) 

.. 

.. 

the number of neighboring frames r 

(b) 

Figure 3.4: Probability distributions for up conversion factor "'= 2, 3. 
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as minimizing the following least-squares inverse filtering problem. 

where the two separate 4-parameter PAR models are integrated into one least-squares 

problem with weight c and e+ na:t.nely, 

+ Xex =-e__ e+=_e__ (3.10)
e+ +ex e+ +ex 

The two weights C and e+ are derived from squared error e+ and ex which are 

associated with corresponding PAR models in solving the least-squares problems in 

Eq. 3.2. They account for the fitting degree of the PAR models to pixels in the local 

window W. Term A is the Lagrange multiplier, and term A llx *h- yll: imposes a 

constraint on the solution space of the ill-posed problem. The operator * denotes 

the cascaded operations of low-pass filtering and down-sampling. It corresponds to 

the physical formation of observed low-resolution pixels y from the underlying high­

resolution pixels x in local window W. Term h accounts for the PSF effects of the 

digital imaging system that plays a role of low-pass filtering. The PSF function can 

be estimated from the imaging system[1]. In this thesis, it is assumed to be known 

as a 3 x 3 Gaussian kernel: 

0 1 0 

p(x, y) = 1 4 1 (3.11) 

0 1 0 
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3.5 Simulation Results and Discussion 

In this section, we evaluate the performance of our proposed super-resolution method 

in comparison with one recently published super-resolution counterpart[37] on natural 

video sequences, namely calendar, car and foreman. The testing video sequences 

include a variety of motion types such as translation, rotation and scaling etc. In 

calendar and foreman sequence, there exist multiple local motions in the scene. Image 

resolution of all the video frames is upconverted by a factor of two. The comparison 

in terms of visual quality is shown by Fig. 3.5, 3.6 and 3.7. Compared with the 

results by [37], high-resolution video frames reconstructed by our method have fewer 

jaggies on the edge features. Fig. 3.8 shows the comparison of our proposed method 

with the method in [37] in terms of PSNR measurement on foreman sequence. The 

testing video sequence is prefilterred by a low-pass filter as shown in Eq. 3.11 prior 

to uniform down-sampling. After that, image resolution of the down-sampled video 

frames is upconverted by a factor of two, using the proposed method and the method 

in [37] respectively. Based on the comparison in Fig. 3.8, we can conclude that the 

proposed method surpasses the method in [37] by 1-2dB over 65 of the 80 testing 

video frames. 

3.6 Conclusion 

In this chapter, a new model-learning scheme is proposed such that PAR models 

can be learned from observed data of multiple registered low-resolution video frames. 

The proposed scheme takes advantage of the temporal correlation of video frames. 

It integrates pixel samples from multiple registered low-resolution frames into a local 
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window. Therefore, it increases pixel density of the local window without violating 

the piecewise stationary nature of image signals. Then by performing model learning 

in the high-resolution local window, the new scheme improves the accuracy of PAR 

model parameters. Further, it reduces the possibility of PAR model mismatch be­

tween the observed low-resolution frame and the underly high-resolution frame. VSR 

reconstruction in this chapter is formulated as a model-based still image interpolation 

problem. By using the estimated PAR model parameters, missing pixels of the under­

lying high-resolution video frames are reconstructed by solving a linear least-squares 

problem. 

In addition, our proposed method utilizes the most common non-parametric Block­

Matching Algorithm for motion estimation. Compared with conventional counter­

parts that employ parametric motion models, our VSR method reduces the computing 

complexity of motion estimation. 
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(a) (b) 

Figure 3.5: Comparison on Calendar sequence: (a) result by [37]; (b) result by pro­
posed method. 
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(a) (b) 

(c) (d) 

Figure 3.6: Comparison on Car sequence: (a)(c) result by [37]; (b)(d) result by 
proposed method. 
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(a) (b) 

(c) (d) 

Figure 3.7: Comparison on Foreman sequence: (a)(c) results by [37]; (b)(d) results 
by proposed method. 
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Figure 3.8: Comparison of proposed method with the counterpart in [37] on foreman 
sequence. 

50 




Chapter 4 

PAR Model based Joint Motion 

Estimation and Video 

Super-Resolution 

In the preceding chapter, we dealt with the VSR problem in an approach of model­

based image interpolation. This approach does not reconstruct the high-resolution 

frames by solving the expensive inverse problem ofVSR that involves motion-registered 

multiple frames. The data redundancy afforded by motions is only used to estimate 

the parameters of the PAR model, and improve the accuracy and robustness of the 

PAR model. The resulting PAR model is used to interpolate the low-resolution frame 

in the spatial domain. This simplified interpolation-type VSR technique has the ad­

vantage of low computational complexity, but its performance is not as good as the 

classical linear algebraical approach as outlined in Section 2.2. 

In this chapter, we reexamine the well-known VSR inverse problem derived from 
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the multi-frame observation model, and propose an improved PAR model based so­

lution. As ananlyzed in Chapter 2, observation model based VSR reconstruction is 

an ill-posed inverse problem whose solution heavily depends on the choice of a reg­

ularization term. Historically, most existing VSR algorithms in the literature use 

total variation (TV) for the regularization term[9]. As a matter of fact, TV-based 

image restoration methods can not effectively preserve subtle image details. As such 

VSR algorithms that use TV for VSR regularization are incapable of reproducing 

high-frequency components of image signals either. 

Motivated by the effectiveness of a PAR model based still image interpolation 

technique[44], we propose to apply the PAR model to replacing the most common 

regularization term of TV in regularizing solutions for the VSR problem. It makes the 

estimation of the missing HR pixel intensities as minimizing the following Lagrangian. 

(4.1) 


where vectors z and g denote the underlying HR pixel intensities and observed LR 

pixel intensities in lexicographical order respectively. Matrix F represents joint oper­

ations of geometry warping, blurring and down-sampling as discussed in Chapter 2. 

Term A IIAzll: imposes a constraint on the solution, suggesting the spatial coherence 

of pixel structures between the underlying HR image and observed LR images. Term 

A is the Lagrange multiplier that provides a balance between the fidelity to the under­

lying data (as expressed by llg- Fzll) and coherence of the solution with observed 

data (as expressed by A IIAzl[). Term Aserves as a linear PAR model parameter 

matrix. Each row of vector Az is a form of I:{akzi,k - Zi}, where ak is a PAR model 
k 
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parameter associated with one pixel zi,k in the neighborhood of pixel Zi· 

Compared with TV-based methods, the PAR model based regularization method 

has a distinctive advantage of adaptivity to local image statistics. It can, by spatially 

varying its parameters, adapt the reconstruction of high-resolution frames to local 

image waveforms. Furthermore, it can effectively preserve the spatial coherence of 

image structures by fitting the underlying high-resolution pixels to the PAR model 

that is learnt from the observed low-resolution image. However, as analyzed in Chap­

ter 3, inconsistent second-order statistics of low-resolution image and high-resolution 

image can lead to a pitfall of PAR model mismatch. The model mismatch potentially 

downgrades the performance of the PAR model in image resolution upconversion. 

Additionally, in this addressed VSR reconstruction problem, there are three groups 

of unknown variables namely, motion parameters, missing high-resolution pixel inten­

sities and the parameters of the PAR model. The reconstruction of high-resolution 

frames depends on the estimated PAR model parameters and motion parameters, and 

vice versa. It suggests that computing these unknowns is a problem with chicken­

and-egg flavor. In view of this, we propose a new VSR method that estimates the 

PAR model parameters, the motion parameters and the underlying high-resolution 

frames jointly. Our new method can improve the accuracy of PAR model parame­

ters by learning them from reconstructed HR frames iteratively. Furthermore, it can 

mitigate motion estimation errors that exist in computing subpixel precision motion 

parameters. Even though some previous papers[13, 14] proposed similar ideas in joint 

estimation, they coincidentally use TV methods for regularization and hence can not 

avoid the significant loss of fine image details. At the end of this chapter, simulation 

results show that our VSR method gains competitive performance in terms of visual 
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quality. 

The initial values of unknown variables are critical to the performance of an it­

erative VSR algorithm. In our method, we estimate the initial values of motion 

parameters and PAR model parameters from LR frames due to the absence of HR 

version. Furthermore, we propose to compute increments for all the unknowns and 

make them simultaneously approach the optimal solutions. Therefore, we can achieve 

best statistical consistency among the three groups of unknown variables. 

The rest of this paper is organized as follows. In Section 4.1, we formulate the VSR 

reconstruction problem. In Section 4.2 and 4.3, we derive two Jacobean matrices. In 

Section 4.4, we present an iterative solution for the nonlinear least-squares problem. 

In Section 4.5, we present simulation results on nature video sequences. 

4.1 Problem Formulation 

Since there are three groups of unknown variables in the addressed VSR problem, 

the Lagrangian in Eq. 4.1 can be rewritten into the following nonlinear least-squares 

(LS) form. 

min {(g- F(v) · z)T(g- F(v) · z) + >.(A(o:,/3) · z)T(A(a, /3) · z)} (4.2)
{a,f3},v,z 

where vector v represents motion parameters as described in Section 2.1. Matrix 

A is derived from recomposing the autoregressive model expression of Eq. 3.1 into 

a matrix-vector form. Therefore, it is composed of PAR model parameters o: and 

/3. For the simplicity of notation, hereafter we have vector a= (aT,.BT)T, and thus 
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A(a) = A(a, {3). Let us define a cost function: 

(4.3) 


where term 0 is a zero vector. Then the nonlinear LS problem in Eq.4.2 can be 

reformulated as 

min TTT (4.4) 
a,v,z 

In what follows, we will derive an iterative scheme that simplifies the minimization 

of the nonlinear LS as iterative minimization of a linear LS. First of all, let us take 

into account increments 6a, l::,v and 6z with respect to the corresponding vector 

a, v and z. Then cost function r is updated as r(a + 6a, v + 6v, z + 6z). Based 

on Eq. 4.3, we can get a linear form of Eq. 4.5 and 4.6 by expanding r(a + 6a, v + 

6v, z + 6z) via Taylor's expansion and ignoring the second and higher order terms. 

g- F(v + 6v) · (z + 6z) (4.5) 

- g- F(v + 6v) · z- F(v + 6v) · 6z 

~ g- F(v) · z- Jv · 6v- F(v) · 6z 

A(a+ 6a) · (z + 6z) (4.6) 

= A(a+6a)·z+A(a+6a)·6z 

~ A(a) · z + Ja · 6a + A(a) · 6z 

where J "' J a are the Jacobian matrix of F(v)z and A(a)z respectively. 
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Therefore, cost function r with minor change with respect to a, v and z becomes 

a linear function of 6a, 6v and 6z namely, 

r(a+ 6a,v + 6v,z + 6z) (4.7) 

6a 
0 F(v) )

r(a,v,z)- ( 
v(\Ja 0 v(\A(a) 

6z 

Then computing increments 6a, 6v and 6z is formulated as minimizing £ 2 norm 

of cost function r(a + 6a, v + 6v, z +6z) given r(a, v, z). In the proceeding two 

sections, we will derive Jacobian matrix J v and J a such that these increments can 

be computed by solving a linear LS problem. 

4.2 Derivation of Jacobean Matrix of F(v)z 

In this chapter, we focus on a special case where the block-based reconstruction is 

employed and geometry warping is pure translational motion. Specifically, motion pa­

rameters are identical within each block. Define (x0 , y 0 ), (xk, Yk) as pixel coordinates 

of the current frame and k-th reference frame in lexicographical order respectively, 

where k = 1, 2, · · · , N. Then the displacement between the two blocks of pixels is 

vk = (dxk, dyk), where 

(4.8) 
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Accordingly, we can easily get 

Jv = 8(F(v)z) = 8(F(v)z) = (8(F(v)z) 8(F(v)z)) (4.9) 
8v 8([dx, dy]) 8(dx) ' 8(dy) 

In the case of image resolution upconversion by a factor of two, we use an area-based 

interpolation technique based on the assumption of box PSF[37]. As shown in Fig. 4.1, 

the LR pixel represented by a dashed rectangle is registered onto an HR grid where 

the underlying HR pixels are denoted by smaller solid rectangles. Intensity value of 

the LR pixel is predicted by a linear combination of the underlying HR pixel P with 

coefficient C. C is a vector and each of its elements is proportional to the area of 

overlap with the associated HR pixel P, where 

C =((1- dx)(1- dy), 1- dx, (1- dy)dy, 

1- dy, 1, dy, dx(1- dy), dx, dxdy) (4.10) 

Hence, each element of vector F(v)z, corresponding to one observed LR pixel, equals 

d ~ 
dr1_ 

__ 1'2:1lor r---Ir-­
I I 

: : 
/4 Is:/3 : 

I I 
I I 
I

16 !_ '----1,- --4-1I 

Figure 4.1: Illustration of a LR pixel projected onto an HR grid. 


the inner product of C and P which is denoted as< C, P >. Most importantly, it is 
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easy to find that F(v)z is linear and differentiable with respect to motion parameter 

v. 

Since the observed LR pixels are independent from each other, we can formulate 

Jacobian matrix J v as 

Jx,O 0 Jy,O 0 

Jv = (4.11) 

0 Jx,N-l 0 Jy,N-l 

where Jx,s and Jy,s are the Jacobian matrix of F(s, v 8 )z, s = 0, 1, · · ·, N -1. N is 

the number of observed LR frames. J x,s and J y,s are derived as follows. 

8(< C,P >)
J x,s = (dx) = (1- dy)(h- 1o) + dy(1s- 12) + h- h

8
(4.12)

8(< C,P >) 
Jy,s = (dy) = (1- dx)(h- 1o) + dx(1s- 12) + 17-11

8

Note that vector P is determined by the underlying HR pixels, and therefore its 

vector value differs in pixels of the HR grid. 

4.3 Derivation of Jacobean Matrix of A(a)z 

The Jacobian matrix of A(a)z, is 

J = 8(A(a)z) = (B(AJ;)z) 
(4.13)8(A~[3)z))
a 8([a, ,8]) 0 8[3 
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Figure 4.2: Illustration of vector Az in a local window of size L x L: (a) diago­
nal mode, (b) axial mode. Each pixel within the dashed rectangles in (a) and (b) 
corresponds to an element in vector A(a)z and A(f3)z respectively. 
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where A(a) = [AT(a), AT(.B)]T. Each element of vector A(a)z and A(j3)z equals 

L:: {ak<k- zi} and L:: {,Bkztk- zi} respectively. Fig. 4.2 illustrates vector A(a)z 
O~k~3 	 O~k~3 

and A(j3)z in a local window of size L x L. A(a )z is linear and differentiable with 

respect to PAR model parameter a and ,8. Accordingly, Jacobian matrix Ja can be 

represented in the form of the underlying high-resolution pixel intensity z namely, 

o(A(a)z) 
oa 

o(A(j3)z) 
a,a 

zo 

(4.14) 

zl 	 ZL+2 Z2L+l ZL 

z2 	 Z£+3 Z2L+2 ZL+l 
(4.15) 

Z£2-2L-2 Z£2-L-1 Z£2-2 Z£2-L-3 

4.4 	 Iterative Solution for the Nonlinear Total Least-

Square Problem 

Given the derivation of Jacobian matrix J a and J v above as well as initial estimates 

of vectors a, v and z, the increments !:::.a, f:::.v and !:::.z can be obtained by solving 
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the following linear LS problem. 

2 

0 Jv F(v) 
!:,.a 

v'>.Ja 0 v'>.A(a)(r(a,;,z))
min (4.16)l::,.v

D.a,D.v,D.z 
R1 0 0 

f::,.z 
0 R2 0 

2 

where R1 = )..11 and R 2 = )..21 are two regularization matrices that stabilize the 

linear LS problem in Eq. 4.16. Term )..1 , )..2 are regularization constants, and I is an 

identity matrix whose size is adjusted in accordance with vectors a and v. 

In the end, we summarize our block-based iterative method for joint estimation of 

the increments 6a, l::,.v and 6.z in the following Algorithm 1. It should be pointed 

out that the initial values of PAR model parameter a are estimated from LR frames 

by solving the linear LS problem as shown in Eq. 3.2. Subpixel level motion pa­

rameters are initialized by performing block-matching algorithm (BMA) between two 

neighboring low-resolution video frames. The algorithms. converges when the average 

of pixel intensity increment l::.z is bounded within one pixel. 

4.5 Simulation Results and Discussion 

The results of our proposed super-resolution method are illustrated in Fig. 4.3-4.5 in 

comparison with one recently published counterpart[37] on natural video sequences. 

The VSR method in [37] employs the same observation image model as our proposed 

method. But, in contrast, it uses bicubic interpolated HR results as constraints to 

regularize the VSR solution[37]. Moreover, it employs the conventional two-step VSR 
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Algorithm 1 Proposed Iterative Algorithm 

1: 	 For each block of a frame, initially estimate vector v(o), a(o) from LR frames using 
above-mentioned methods, and then compute the underlying HR pixel intensities 
z(o) by Eq. 4.1, as well as the cost function r(o) in Eq. 4.3. 

2: 	 Compute Jacobian matrix Jv and Ja by Eq. 4.11 and 4.13 prior to computing 
increments l::,a(i), l::,v(i) and f::,z(i) by Eq. 4.16. 

3: 	 Update terms: 

v(i+l) = v(i) + l::,v(i), 

a(i+l) = a(i) + l::,a(i)' 

z(i+l) = z(i) + f::,z(i) 

and r(a(i+l), v(i+l), z(i+l)) according to Eq. 4.3, 4.5 and 4.6. 
4: 	 Go to Step 2 repeatedly until l::,a(i), l::,v(i) f::,z(i) and r(a(i), v(i), z(i)) satisfy the 

converging requirement, or it reaches a maximum number of iterations. 
5: 	 Achieve an optimal solution for underlying HR pixel z in one block. 
6: 	 Go to Step 1 until the whole HR frame is reconstructed. 

scheme (as mentioned in Section 2.2), and uses a 6-parameter affine motion model. 

The testing video frames shown in the figures are part of the original frames which are 

upconverted by a factor of two. In Car sequence, there exist significant translation 

motions and slight zooming motions. In Foreman sequence, the wall in the first half of 

the sequence and the tile in the rear part of the sequence, have significant translation 

motions as well as slight rotation motions. Based on the simulation results, we can 

conclude that our proposed method gains superior performance in preserving high­

frequency components of images. 
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4.6 Conclusion 

In this chapter, a joint super-resolution method based on a piecewise autoregressive 

image model has been proposed for video super-resolution reconstruction. The con­

tribution of the proposed method lies in two aspects. First, the autoregressive image 

model is introduced as a regularization term to replace the commonly used total vari­

ation method for super-resolution reconstruction. The proposed regularization term, 

by spatially adapting to local image waveforms, effectively preserves the pixel struc­

ture of image signals. Secondly, an iterative scheme for joint estimation of motion 

parameters, autoregressive model parameters and missing high-resolution pixels are 

proposed. The joint method significantly mitigates estimation errors and the possibil­

ity of model mismatch. The effectiveness of the proposed method in super-resolution 

has been demonstrated by simulation results on natural video sequences. 
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(a) 

(b) 

Figure 4.3: Comparison on Car sequence: (a) result by [37]; (b) result by proposed 
method. 64 
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(a) 

(b) 

Figure 4.4: Comparison on Foreman sequence: (a) result by [37]; (b) result by pro­
posed method. 
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(a) 

(b) 

Figure 4.5: Comparison on Foreman sequence: (a) result by [37]; (b) result by pro­
posed method. 
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Chapter 5 

Conclusions and Future Work 

5.1 Conclusions 

In this thesis, we investigated the classical problem of video super-resolution and 

proposed two new methods which were able to effectively improve visual quality of 

reconstructed video frames. Both the two proposed methods take the advantage of a 

piecewise 2D autoregressive image model, but address the super-resolution problem in 

distinct manners. In the first method, we propose a new model-learning scheme that 

learns the model parameters from pixel samples of multiple registered low-resolution 

video frames. This scheme not only reduces the possibility of model mismatch be­

tween the low-resolution frame and high-resolution frame, but also increases the ac­

curacy of estimated model parameters, which hence improves the performance of the 

autoregressive model in high-resolution pixel reconstruction. In the second method, 

we formulate super-resolution reconstruction problem via an observation model, and 

incorporate the autoregressive model to regularize solutions for the ill-posed inverse 

problem. This method can preserve the spatial coherence of pixel structures in the 
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reconstructed high-resolution video frames. Furthermore, both the proposed meth­

ods are adept at preserving image details by adaptively varying the reconstruction 

of high-resolution pixels to local image waveforms. Simulations have been conducted 

and the results convincingly demonstrate the competitive performance of the pro­

posed methods in comparison with its counterparts. 

5.2 Future Work 

Even though our methods achieved competitive results in video super-resolution, there 

are still one issue remaining to be addressed in the future. As discussed in (44], the 

estimation of autoregressive model parameters is a challenging task. In this thesis, our 

methods improve the estimation accuracy of model parameters by registering pixels 

of multiple low-resolution video frames onto a high-resolution grid to increase the 

pixel density. However, there is a possibility that some of the pixel sites on the high­

resolution grid can be not filled. It results in inconsistent pixel distances in various 

directions of the autoregressive model. At present, we circumvent this problem by 

ignoring its negative effects. But, a more valid method should provide a unified 

framework in estimating the autoregressive model parameters. In the future, any 

progress in this regards would further strengthen the effectiveness of the autoregressive 

model. 
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