
UNIFORM SAMPLING METHODS FOR VARIOUS COMPACT SPACES 




UNIFORM SAMPLING METHODS FOR VARIOUS 


COMPACT SPACES 


By 


SEAN O'HAGAN, B.SC. 


SUBMITTED IN PARTIAL FULFILLMENT OF THE 


REQillREMENTS FOR THE DEGREE OF 


MASTER OF SCIENCE 


AT 


MCMASTER UNIVERSITY 


HAMILTON, ONTARIO 


APRIL 2007 


©Copyright by Sean O'Hagan, 2007 



MCMASTER UNIVERSITY 

DEGREE: Master of Science, 2007 


DEPARTMENT: Department of Mathematics and Statistics, 


Hamilton, Ontario 

UNIVERSITY: McMaster University 

TITLE: Uniform Sampling Methods for various 

Compact Spaces 

AUTHOR: Sean O'Hagan, B.Sc.(Laurentian University) 

SUPERVISOR: Dr. Maung Min-Oo 

PAGES: vii, 71 

ii 



Table of Contents 

Table of Contents iii 


Abstract vi 


Acknowledgements vii 


1 Introduction 1 


2 The Orthogonal Group 2 

2.1 Sampling Methods ............. . 3 


2.1.1 The Gram-Schmidt Method . . . . . 3 

2.1.2 The Householder Reflection Method . 6 

2.1.3 The Subgroup Method . . . . . . . 12 

2.1.4 The Random Reflection Method . . 14 

2.1.5 The Normalized Gaussian Method. 15 


2.2 Uniformity Tests . . . . . . . . . . 16 

2.2.1 Distribution of Eigenvalues .. 16 

2.2.2 Distribution of Traces . . . . 18 

2.2.3 Eigenvalue Phase Histograms 19 

2.2.4 Distribution of 0 11 20 


2.3 Speeds of Algorithms . . . . . . . . . 21 


3 The Unitary Group 22 

3.1 Sampling Methods ............. . 23 


3.1.1 The Gram-Schmidt Method . . . . . 23 

3.1.2 The Householder Reflection Method . 25 

3.1.3 The Subgroup Method . . . 28 


3.2 Uniformity Tests ......... . 29 

3.2.1 Distribution of Eigenvalues . 29 

3.2.2 Distribution of Traces . . . 29 


lll 



3.2.3 Eigenvalue Phase Histograms 30 

3.3 Speeds of Algorithms . . 31 

3.4 High Powers of U(n) .. 31 

3.5 Other Matrix Ensembles 33 


4 Spheres and Hyperspheres 36 

4.1 Sampling Methods . . . . 37 


4.1.1 The Rejection Method . . 37 

4.1.2 The Quaternionic Method 38 

4.1.3 The Gaussian Method .. 41 

4.1.4 Two Uniform Methods .. 43 

4.1.5 The Homogeneous Method . 46 


4.2 Uniformity Tests ......... . 47 

4.2.1 Distributions of Sample Coordinates 47 

4.2.2 Variances of Sample Coordinates 48 


4.3 Speeds of Algorithms . . . . . . . . . . . . . 49 


5 Real Projective Space 51 

5.1 Sampling Method . . . . . . . 51 


5.1.1 The Spherical Method 51 

5.2 Uniformity Tests . . . . . .. 52 


5.2.1 Distributions of Sample Coordinates 52 

5.2.2 Variances of Sample Coordinates 53 


5.3 Speed of Algorithm . . . . . . . . . . . . . . 53 


6 Complex Projective Space 54 

6.1 Sampling Methods . . . . . . . . . 54 


6.1.1 The Spherical Method . . . 54. 

6.1.2 The Homogeneous Method . 55 

6.2 Uniformity Tests . . . . . . . . . . 56 


6.2.1 Distributions of Sample Coordinates 56 

6.2.2 Variances of Sample Coordinates 57 


6.3 Speeds of Algorithms . . . . . . . . . . . . . 57 


7 Real Grassmannian Spaces 58 

7.1 Sampling Methods ........ . 58 


7.1.1 The Spherical Method .. . 58 

7.1.2 The Homogeneous Method . 59 


7.2 Note on the Stiefel manifold Vk(IRn) 60 

7.3 Uniformity Tests .. 60 

7.4 Speeds of Algorithms ... 61 


iv 



8 Complex Grassmannian Spaces 62 

8.1 Sampling Methods ....... 62 


8.1.1 The Spherical Method 62 

8.1.2 The Homogeneous Method . 63 


8.2 Note on the Stiefel manifold Vk (en) 64 

8.3 Speeds of Algorithms ........ 64 


9 Conclusion 65 


A Supplementary Lemmas and Theorems 66 


Bibliography 69 


v 



Abstract 

We look at methods to generate uniformly distributed points from the classical 

matrix groups, spheres, projective spaces, and Grassmannians. We motivate 

the discussion with a number of applications ranging from number theory to 

wireless communications. The uniformity of the samples and the efficiency of 

the algorithms are compared. 
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Chapter 1 

Introduction 

This project looks at sampling uniformly distributed random points from vari­

ous familiar compact spaces. We begin with two of the classical matrix groups: 

the orthogonal and unitary groups. On each of these, we look at a number 

of sampling methods. In particular, we discuss the Gram-Schmidt method, 

the Householder reflection method, the subgroup method, and the random 

reflection method. We compare the speeds of each method, and to test the 

uniformity of the resulting samples, we look at the distribution of eigenvalues 

on the unit circle, eigenvalue phase histograms, and the distribution of traces. 

We next look at spheres and consider the following methods: the rejec­

tion method, quaternionic method, Gaussian method, and two uniform meth­

ods. Noting that the sphere is a homogeneous space of the orthogonal group, 

we use its sampling methods to sample points from the sphere. We continue 

with projective spaces and Grassmannians, in each case comparing the various 

methods for speed and uniformity. 

In most cases, we begin a chapter with a description of an application 

of random sampling from the space in question. Applications include digitized 

speech encryption, applied optics, the grand tour, and wireless communica­

tions. Finally, we make a few observations regarding suggested methods for 

each space. 

1 




Chapter 2 

The Orthogonal Group 

A scheme for a speech encryption method attempted to use random orthogonal 

matrices to scramble digitized speech before transmission [21]. The sender 

rotates a block of Fourier-transformed, digitized speech (in the form of a vector 

in JR256 ) using a 256 x 256 orthogonal matrix, and the receiver applies its 

transpose to decrypt it. The method is slow (i.e. 0( n3 )) but extremely secure. 

In an attempt to speed up the process, products. of random reflections were 

looked at, one of the methods considered below. 

We begin with some required theory. First, what is the orthogonal 

group, and how can we hope to sample uniform orthogonal matrices from it? 

Definition 1. An orthogonal matrix is a square matrix 0 with real entries 

such that 

The set of all n x n orthogonal matrices is a compact topological group denoted 

O(n), and is called the orthogonal group. Elements of O(n) are either 

rotations or reflections. The orthogonal group is a compact Lie group, ze. a 

smooth manifold with a smooth group operation. 

Every compact Lie group has a unique invariant measure called Haar 

measure. On Lie groups, the measure is both left and right-invariant. Since the 

2 
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measure is invariant under group multiplication, it assigns the same "volume" 

to similar regions in O(n). Because of this, Haar measure normalized to 1 is a 

natural choice for a probability measure for O(n). 

Definition 2. Haar measure is a method of assigning an invariant "volume" 

to Borel subsets of locally compact topological groups. That is, if B is a Borel 

subset of the locally compact topological group G and the Haar measure of B 

is written df.-l(B), then 

df.-l(KB) = df.-l(BL) = df.-l(B) K,LEG 

2.1 Sampling Methods 

2.1.1 The Gram-Schmidt Method 

The first orthogonal group-sampling method employs the QR decomposition 

via the Gram-Schmidt algorithm [8] and makes use of the fact that the joint 

probability density function of the elements of a matrix from the real Ginibre 

ensemble, is invariant under orthogonal transformations [16]. This ensemble 

is named after Jean Ginibre who studied statistical ensembles of complex, 

quaternionic, and real matrices in the 1960s [12]. 

Definition 3. The real n x n Ginibre ensemble is the collection of all 

invertible matrices in GL(n, JR) where the matrix elements are independent 

identically distributed standard normal random variates. We will occasionally 

refer to this ensemble by G1 (n, n). 

Hence, the probability density function of a matrix element is simply 

p(xjk) = .;ke-x]k/2 
. Since the elements are independent, the joint probability 
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density function is 

P(X) 

We can write djja1 (X) or P(X)dX to refer to the measure of sets of the 

ensemble depending on the context. 

Lemma 1. The measure of the real Ginibre ensemble is invariant under or­

thogonal transformations. 

Proof. Let X E G1(n, n) and A E O(n). Since ATA= I, 

P(AX) 

Now consider the map 

X AXf---+ 

and let Y = AX. The Jacobian of the transformation is 

8(yn, Y12, · • ·, Ynn) I 
I8(xu, X12, • • ·, Xnn) 

2which is the determinant of an n x n2 orthogonal matrix (the matrix is com­

posed of n shuffled copies of A) and is hence equal to 1. Therefore the joint 

probability density function of the Yij is 

P(Y) = P(X) 71 a(Yij) I = P(X)
8(xij) 

Thus the probability density function and the measure are left-invariant under 

orthogonal transformations. Right-invariance is proven in a similar way. D 
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We can now describe the method. Let X be a random matrix from the 

real n x n Ginibre ensemble. Next, we orthonormalize X. The standard Gram­

Schmidt process is numerically unstable due to rounding errors which cause 

the vectors to be not quite orthogonal. The following modification introduces 

smaller errors in the Matlab algorithm. 

Label the columns of X as X1, X 2, ... , Xn. Set 

Y1 x1 

12 X2 - projy
1 
X2 


yp) x3 - projyl x3 

y3 y;(I) - projy2y;(ll 


(and for 4::; k::; n) 


y~l) xk - projylxk 

y;(Zl y;(l) - proJ· y;(l)


k k y2 k 

y;(k-2) (k-3) . y;(k-3) 
k - y;k - prOJyk-2 k 


y;(k-2) . y;(k-2)
yk k - proJyk-1 k 

Normalize the Yi 
Yi 

Qi = IIYill 
and let Q = [QI Q2 Qn]· The claim is that Q is uniformly distributed on 

O(n). 

Theorem 1. Let X be a random matrix from the n x n real Ginibre ensemble, 

and let Q be the random matrix resulting from applying the Gram-Schmidt 

process to X. Then Q is distributed uniformly on 0 ( n) with respect to H aar 

measure. 

Proof Let B be a Borel set in O(n) and let 0 E O(n). Write Qx for Q to 
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specify the source matrix. Then 

dJ.LQ(B) 	 = P(Qx E B) 

= P(Qox E B) (from Lemma 1) 

= P(OQx E B) (linearity of Gram- Schmidt) 

= P(Qx E QTB) 

= dJ.LQ(OTB) 

Hence df.LQ is a left-invariant measure on O(n) and is therefore the unique Haar 

measure. So Q is uniformly distributed on O(n). [10] 

The Matlab code implementing the method is as follows (here, n refers 

to the orthogonal group O(n) and m is the number of samples): 

functiorr gramschmidt (n ,m) 

for 	p=1 :m 


X=randn(n,n); 


for j=1:n 


for 	k=1:(j-1) 

X(: ,j)=X(: ,j)-dot(X(: ,j) ,X(: ,k))*X(: ,k); 

end 

X(: ,j )=1/norm(X(:, j) )*X(:, j); 

end 


Q(:': ,p)=X; 


end 


The matrix Q contains the random samples. 

2.1.2 	 The Householder Reflection Method 

In this section, following [22] and [16] we take a look at the inside of a dif­

ferent algorithm used in the generation of random matrices from the classical 

matrix groups, namely the QR decomposition of a matrix into the product 

0 
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of an orthogonal matrix and an upper-right-triangular matrix. Matlab uses 

the following Householder technique to implement this decomposition, as the 

Gram-Schmidt process is not as numerically stable. 

Definition 4. The Householder matrix Hx associated with the vector x is 

defined as follows. Let r = !!xi! and u = x- re1 where e1 is the first standard 

basis vector of IR.n. Normalize u by setting v = ll~ll and set Hx = I- 2vvT. 

The matrix Hx has the property that it zeroes all but the first entry of 

x so that Hxx E span{ei} (see Lemma 11 in the Appendix). 

To perform the QR decomposition of X using Householder matrices, 

do the following. Let X = [XI X2 ... Xn] be an invertible matrix and 

let r = !lXIII· Further, let u = XI- re1 and v = ~ • Finally, define 11 11 
HI= I- 2vvT. This is the Householder matrix related to XI, in that 

r • . . . • 

0 

X' 

0 

HI knocks out all but the top entry (itself being set to the norm of XI) in 

the first column XI of X. (Note that HI is both symmetric and orthogonal. 

See Lemma 9 and 10 in the Appendix.) Repeat the above procedure with X', 

resulting in an (n- 1) x (n- 1) matrix H~. Now, H~ knocks out all but the 

top entry in the first column of X'. Set H2 equal to 

Continue this process until the matrices HI, H 2 , •.. , Hn-I are obtained. Then 

it's clear that 
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where R is upper-right-triangular. Since Hi-l = H[ =Hi 

Setting 

we obtain a QR decomposition of X, namely X= QR. 

With this procedure in hand, how does one go about generating random 

elements from O(n)? Since any invertible matrix X can be split into the 

product of an orthogonal matrix and an upper right-triangular matrix via the 

QR decomposition, perhaps we can generate random elements from GL(n, IR) 

and decompose them to produce orthogonal samples. However, since GL(n, IR) 

is non-compact, we cannot put a uniform measure on it, and hence cannot 

generate random matrices from it. As an example, on the real line, we can 

assign a constant probability density function to a closed interval, but we 

cannot to the whole real line, since the associated cumulative distribution 

function would diverge. So we return to the normal distribution, and slightly 

modify the QR decomposition. 

Theorem 2. Let X be ann x n matrix with each entry picked independently 

from the standard normal distribution (as in Lemma 1) and let X = QR be 

the QR+ decomposition of X (defined right after the proof). Then Q zs an 

orthogonal matrix distributed uniformly with respect to Haar measure. 

Proof. LetHE O(n). By Lemma 1, the matrix HX has the same distribution 

as X. Since X = Q R (where the QR+ decomposition is the unique decompo­

sition such that R has positive diagonal entries) it follows that HX = (HQ)R 

is the QR+ decomposition of HX. Now Q and HQ are two random matrices 

resulting from an identical algorithm (QR+) and whose source matrices X and 

HX are identically distributed. Hence Q and HQ are identically distributed. 

This means that the distribution of Q on 0(n) is left-invariant since H was 

arbitrary. Hence Q is uniformly distributed with respect to Haar measure. D 
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Figure 2.1: Eigenvalue plots from QR+, QR, and random points on a circle 

The QR+ decomposition involves an extra step to ensure that the de­

composition is unique. To see why this step is necessary, and to witness the 

non-uniformity of the samples from unmodified method, the following numer­

ical experiments were performed. First, matrices were generated from 0(100) 

using both the QR+ method and the QR method. The eigenvalues of these 

matrices come in pairs of complex conjugates along with ±1 with magnitudes 

of 1, and are distributed on the unit circle in the complex plane. The image 

on the left of Figure 2.1 is an eigenvalue plot of a Haar-distributed matrix. 

The eigenvalues appear relatively uniformly distributed. The image in the 

middle shows a superposition of ten matrices generated using the standard 

QR method. It is clear that the eigenvalues are not uniformly distributed. 

For comparison, 100 random points on a circle are displayed at right. In the 

second experiment, two sets of 50, 000 matrices were randomly generated from . 

0(40) using both QR methods. The phases of the eigenvalues (ie. the angles 

between -7r and 1r between the line joining the origin to the eigenvalue and the 

real axis) were collected and plotted on two histograms. Since ±1 are always 

eigenvalues for even orthogonal matrices, we omit them from our calculations. 

It is clear from Figure 2.2 that QR+ produces Haar-distributed orthogonal 

matrices. 

As mentioned, the QR decomposition is not unique. Let X E GL(n, JR.) 

and decompose X into QR, where Q E O(n) and R E R(n), the group of 
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Figure 2.2: Phase histograms from QR+ , QR and random points on a circle 

invertible upper-right-triangular matrices. If 

±1 0 

±1 
A= 

0 ±1 

then Q' = QA and R' = AR are still orthogonal and upper-right-triangular. 

Q'R'=QAAR=QR=X since A= A - 1 

so the decomposition represents a multi-valued map 

QR: GL(n, IR)----+ O(n) x R(n) 

The goal is to alter the mapping to make it single-valued and one-to-one. This 

last property will allow one to be confident that regardless of which algorithm 

is used to implement QR, we always obtain the same Q. 

Lemma 2. If X= QR = Q'R', then Q' = QA and R' = AR where A E A(n), 

the group of all orthogonal diagonal matrices. 

Proof. 

QR = Q' R' =} Q-1Q' = RR'- 1 

This group element lies in O(n) n R(n). If it is both orthogonal and upper­

right-triangular, then its inverse is its transpose as well as being upper-right­

triangular. So it must be diagonal. Hence 

A= Q-1Q' =} Q' = QA and A= RR'-1 
=} R' = AR 
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where A E A(n). D 

Instead ofthe multi-valued map QR, this lemma points to the following 

map 

QR+: GL(n,JR) -----* O(n) x R(n)jA(n) 

We need to define QR+ in such a way that 

X r-t ( Q, >-.T) ==> OX r-t ( OQ, >-.T) (*) 

for any 0 E O(n). This would imply that multiplication of X by an orthogonal 

matrix reduces to the left action of O(n) on itself, post decomposition. 

To construct Q R+, choose a class of representatives of R(n) j A ( n) by 

imposing that the main diagonal of R have only positive entries as previously 

mentioned. Using Lemma 2, we can uniquely factorize any X E GL(n, JR.) such 

that the main diagonal of R has this property. If X --:- QR, then 0 X = OQ R, 

0 E O(n). This decomposition of OX is unique within the specified class 

of representatives of R(n)/A(n). So, our map QR+ satisfies ( *). Recall that 

Lemma 1 states that dJ.lc(OX) = dJ.lc(X) for any 0 E O(n). Thus, the 

induced measure on the left factor 0(n) of QR+ is also invariant under left 

multiplication, and hence must be Haar. We summarize this in the following 

theorem. 

Theorem 3. If the map QR+ is such that 

X r-t (Q, >-.T) ==> OX r-t (OQ, >-.T) 

then QR+ decomposes the measure of the real Ginibre ensemble dJ.lc as 

dj.tc(X) = dJ.lHaar(Q) X dJ.lR(n)/A(n)()..T) 

Proof. The proof is a measure-theoretic one. 
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dJ.Lc(X) 	 = dJ.Lc(OX) (Lemma 1) 

= dJ.L( OQ, >-.T) (dj.L is measure on prod. sp.) 

= dJ.L( Q, >-.T) (from ( *)) 
= dJ.LHaar(Q) X dJ.LR(n)jA(n) (>-.T) (uniqueness of Haar measure) 

The Matlab code implementing the method is as follows (here, n refers 

to the orthogonal group O(n) and mis the number of samples): 

functionhouseholder(n,m) 

for 	p=1:m 


X(:, :,p)=randn(n,n); 


[Q(:,: ,p) ,R(:,: ,p)]=qr(X(:,: ,p)); 


J=eye(n); 


for j=1:n 


if (R(j ,j ,p)<O) 


J(j,j)=-1; 


end 


end 


Q(:': ,p)=Q(:': ,p)*J; 


end 

The matrix Qcontains the random samples. 

2.1.3 	 The Subgroup Method 

The Householder method is a particular instance of a more general method 

useful for sampling from groups or compact topological groups. This is the 

subgroup method, introduced by Diaconis and Shahshahani in [9]. We first 

look at the finite version. 

0 
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Let G be a finite group and let 

be a nested chain of subgroups. Let Ci denote coset representatives of Gi+1 in 

Gi, 0 ~ i < n. We can then represent Gas 

G ~ Co X c1 X ... X Cn-1 X Gn 

where each 9 E G has a unique representation as 9o91 ... 9n where 9i E Ci 

and 9n E Gn. If the 9i are chosen uniformly from the factors and multiplied 

together, then the product will be uniformly distributed on G. 

This algorithm can be similarly used to produce random samples from 

any compact topological group. Here we apply it to the orthogonal group. 

O(n) has the following nested chain of subgroups 

O(n) ~ O(n- 1) ~ · · · ~ 0(2) 

with O(k- 1) the subgroup of O(k) fixing e1 E O(k). 

We can also simply consider the much shorter chain O(n- 1) C O(n). 

If we knew how to generate a random matrix from O(n- 1) as well as coset 

representatives of O(n- 1) in O(n) at random, we would have a much more 

efficient way of generating elements of O(n). Since the coset space O(n)/O(n­

1) is equivalent to §n-1 we can pick a point at random from the sphere and 

use it to generate a coset representative by specifying where e1 goes. For any 

p E §n-I, the Householder reflection (I - 2xTx) where 

takes e1 top. This leads to the following. 

Lemma 3. Let p be a random point on §n-1 and let On_1 be a random matrix 
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in O(n- 1). Then 

1 0 0 

0 

0 

is uniformly distributed on O(n) where x is as above. 

Using induction on n, this becomes Householder's method. 

2.1.4 The Random Reflection Method 

Matrices from O(n) can be approximated by the product of random reflections 

(see Theorem 8 in the Appendix). If a point pis sampled uniformly from §n-l 

then the reflection in the plane orthogonal to p is 

Form the product of a number of such R. It is natural to ask how many 

factors are required so that the resulting orthogonal matrix is close to being 

distributed with Haar measure. To answer the question it was necessary to 

look at the distribution of the trace of the matrices, and their powers [6]. If 

Q E O(n) is Haar-distributed then Tr(Q) is the sum of a collection of small 

numbers, whose sum has finite variance, so the central limit theorem should 

apply. 

The method of moments (see Theorem 9 in the Appendix) can be used 

to show the following: 

Lemma 4. Let Q be a Haar-distributed matrix in O(n). For 0:::; k:::; 2n + 1, 
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The right hand side of this equation is the kth moment of the standard 

normal distribution. This suggests that the measure of the trace function on 

O(n) converges to a limiting standard normal distribution. 

Comparing the distribution of the traces of the products to that of 

the random orthogonal matrices Diaconis and Shahshahani [9] concluded that 

~nlogn +en random reflections were required. However, multiplying these 

matrices together results in an algorithm with running time O(n3logn) since 

multiplying a matrix by a reflection is an n2 process. Further, if all that is 

required is the image of a vector under this product of reflections, then the 

cost of the algorithm is reduced to O(n2logn). 

The Matlab code implementing the method is as follows (here, n refers 

to the orthogonal group O(n), mis the number of samples, c is the constant 

from above, and sphere () is one of the sphere-sampling methods): 

functionrandomrefl(n,m,c) 

numref=ceil((n*log(n))/2+c*n); 

for j=1:m 

X=sphere(n-1,numref); 


Q ( : , : , j ) =eye (n) ; 


for k=1:n 


Q(:,:,j)=(eye(n)-2*X(k,:)'*X(k, :))*Q(:,:,j); 


end 


end 


The matrix Qcontains the random samples. 

2.1.5 The Normalized Gaussian Method 

Another method to approximate random orthogonal matrices which Diaconis 

alludes to in [9] is to consider matrices from the Ginibre ensemble but whose 

elements have variance 1/n. A random matrix X thus defined (although not 
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orthogonal) has most pairs of rows or columns roughly orthogonal. As well, the 

first 2n moments of Tr(X) equal those of Tr(0) where 0 is a Haar-distributed 

random orthogonal matrix. However, eigenvalue plots of these matrices show 

quite uniformly scattered eigenvalues throughout the 1-disc. 

2.2 Uniformity Tests 

2.2.1 Distribution of Eigenvalues 

The joint probability density function of the eigenvalues of a Haar-distributed 

random matrix in O(n) were given by Weylin [24]. As an example, consider 

the odd orthogonal 0(2k + 1) case. We will split this into its proper part o+ 
(also know as S0(2k + 1)) and its coset o-. The density function on o+ is 

proportional to ~+~+ where 

~+=IT s(¢j/2) IT(c(¢j)- c(¢k)) 
j j<k 

while the density function on o- is proportional to ~-~- where 

~-=IT c(¢j/2) IT(c(¢j)- c(¢k)) 
j j<k 

and where 

Not much can be gleaned from these formulae, aside from noticing that the 

eigenvalues will tend to repel each other. (Functions for the even orthogonal 

case are similar, but their inclusion here would not be illuminating.) That is, 

as ej and ek approach each other, the ~'s go to zero. We should expect then, 

that since the eigenvalues of an orthogonal matrix lie on the unit circle, the 

eigenvalues of a "typical" element of O(n) for n large, should be quite regularly­

spaced. This provides us with a quick visual test to determine whether a given 

matrix is random. Figures 2.3 to 2.6 show eigenvalue plots of a random 
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Figure 2.3: Eigenvalues from 0(100) using G-S; 100 points on § 1 
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Figure 2.4: Eigenvalues froin 0(100) using Householder 

element generated from 0(100) using the various sampling methods compared 

to 100 randomly plotted points on a circle. It also shows a close-up of a 

random element from 0(1000) compared to that of a thousand random points 

on a circle. We see noticeable gaps in the random points, and although there 

are some larger gaps in the eigenvalue plots, they are much smaller. 

Thus, a random orthogonal matrix produces near-regularly spaced eigen­

values on the unit circle. What family of matrices (if any) produces randomly­

spaced eigenvalues? We will touch briefly on this point further on in our 

discussion of the unitary group. 
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Figure 2.6: Zoom of eigenvalues from 0(1000) using G-S 

2.2.2 Distribution of Traces 

Diaconis and Mallows [7] proved the following: 


Theorem 4. If M is chosen uniformly from O(n), then, as n tends to oo, 


l
x e-t2 /2 

P(trM ~ x) - rrc dt ---+ 0 
-00 y27r 

uniformly in x. 

Figure 2.7 shows histograms of traces of 1000 random orthogonal ma­

trices generated from 0(100), using various methods. 
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Figure 2. 7: Trace plots using G-S , random reflections, and Householder 

2.2.3 Eigenvalue Phase Histograms 

As we saw in our alteration of the Q R-decomposition, the histogram of eigen­

value phases is extremely close to uniform for a random orthogonal matrix. 

In this section, we compare histograms for the various methods. To create 

the histograms (see Figure 2.8, we sampled 1000 matrices from 0(50). As ex­

pected for the Gram-Schmidt and Householder methods, the eigenvalue phase 

histograms show uniformity in the eigenvalue angles. However, there are large 

spikes in eigenvalues close to ±1 for the random reflection method. This 

method seems to generate matrices some of whose eigenvalue phases are very 

close to 0 and n. The algorithm in fact factors out eigenvalues whose phases 

are equal to 0 and n , but does not help in the case where the eigenvalues 

are very close to ±1. It appears that as n increases, the spikes become less 

prominent, and in fact invert mildly for 0(100). 
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Figure 2.8: Phase histograms for G-S , Householder , and random reflections 

2.2.4 Distribution of 0 11 

Another method to test the uniformity of the samples from 0( n) is to use a 

theorem of Borel's [1]. 

Theorem 5. If 0 E O(n) is a Haar-distributed random matrix, then 

P( v'nOu :::; x ) --+ 1~ e-t
2
12dt 

where 0 11 is the (1, 1) elem ent of 0. 

Figure 2.9 shows the distribution of this term for each of the orthogonal 

sampling methods. 
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2.3 Speeds of Algorithms 

O(n) 0(2) 0(3) 0(5) 0(10) 0(20) 0(50) 0(100) 

Method Average time to sample 1000 points 

Gram-Schmidt .064s .14s .38s 2.30s 11.11s 1m12s 4m15s 

Householder .097s .14s .45s 3.54s 17.93s 2m5.9s 7m26s 

Reflection .30s .44s .80s 2.91s 11.47s lm45s 18m19s 



Chapter 3 

The Unitary Group 

Random unitary matrices make an unexpected entrance in the study of the 

Riemann zeta function [4], [7], [14]. This function is defined as 

00 1 ( 1) -l( ( s) = ~ - = II Ell" 1 - ­
~ ns P ps 
n=l 

for s E C where re (s) > 1. The domain of definition of the zeta function can be 

extended to the entire complex place (with a simple pole at s = 1). The zeros 

of ((s) are important in that they can provide insight into the distribution of 

prime numbers. All of the zeros of interest lie in the critical strip 0 < re (s) :::; 1. 

The density of the zeros in this strip increases as im(s) increases. Assuming 

the Riemann hypothesis, all of these zeros lie on the critical line re(s) = ~­

The unitary group is brought into play by looking at the density of zeros at 

any given point high up on the imaginary axis. The local density d of the zeros 

is calculated, and numerous groups of d successive zeros are tabulated. After 

some normalization, the groups of zeros are wrapped around the unit sphere. 

The distribution of the zeros in each group seems to be the same as that of 

the eigenvalues of U(d), the d-th unitary group. More generally, it may be 

that random matrix theory can be applied to general families of £-functions. 

It has also been suggested that the characteristic polynomial of a given matrix 

22 
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U E U(n), 
n 

Z(U, B) =IT(1- ei0r0
) 

j=l 

can be used as a model for the zeta function. Moments of the zeta function 

along re(s) =~match moments of Z(U, B) over U(n), allowing for very strong 

predictions about the behaviour of the Riemann zeta function. 

Definition 5. A unitary matrix is a square matrix U with complex entries 

such that 

U*U = UU* =I 

The set (in fact, group) of all n x n unitary matrices is denoted U(n), and is 

called the unitary group. The unitary group is a compact Lie group. 

Again, Haar measure normalized to 1 is a natural choice for a proba­

bility measure for U (n). 

3.1 Sampling Methods 

3.1.1 The Gram-Schmidt Method 

This method decomposes random complex matrices from the complex Gini- . 

bre ensemble into a unitary matrix and upper right-triangular matrix. The 

resulting unitary matrix is a Haar-distributed matrix. 

Definition 6. The complex n x n Ginibre ensemble is the collection of all 

invertible matrices in GL(n, C) where the matrix elements are independent 

identically distributed standard complex normal random variates. We will oc­

casionally refer to this ensemble by G2 ( n, n). 

Hence, the probability density function of a matrix element is simply 

p(zjk) = ~e-[zjk[ 2 . Since the elements are independent, the joint probability 
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density function is 

n,n 

P(Z) =7[!2 TI exp(-lzjkl 2 
) 

1 

~ ~::~ (- ~ lzjkl
2

) 
7[ j,k=l 

= ~exp (-TrZ*Z) 

. We can write dJ-Lc2 ( Z) or P(Z)dZ to refer to the measure of sets in the ensemble 

depending on the context. 

Lemma 5. The measure of the complex Ginibre ensemble is invariant under 

unitary transformations. 

Proof. Let Z E G2 (n, n) and V E U(n). Since V*V =I, 

P(VZ) = ~exp(-Tr(Z*V*VZ)) 

= ~exp (-Tr(Z*Z)) 

=P(Z) 

Now consider the map 

z 1---+ vz 

and let W = V Z. The Jacobian of the transformation is again equal to 

one, being the determinant of an n 2 x n2 unitary matrix. Therefore the joint 

probability density function of the Wij is the same as that of the Zij. Thus the 

probability density function and the measure are left-invariant under unitary 

transformations. Right-invariance is proven in a similar fashion. 0 

We now describe the method. Let Z be a random matrix from the 

complex n x n Ginibre ensemble. Next, we orthonormalize Z using the mod­

ified Gram-Schmidt process as described above such that the resulting Q us 

uniformly distributed on U(n). 

The Matlab code implementing the method is as follows (here, n refers 

to the unitary group U(n) and mis the number of samples): 
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funct i on grams chmidt (n, m) 

for p=1 :m 

X=1/sqrt(2)*randn(n,n); 

Y=1/sqrt(2)*randn(n,n); 

Z=X+i*Y; 

for j=1:n 

for k=1: (j-1) 

pr=pr+dot(U(:,k),Z(:,j))/dot(U(:,k),U(:,k))*U(:,k); 

end 

U(:,j)=Z(:,j)-pr; 

E(:,j)=1/norm(U(:,j))*U(:,j); 

end 

Q(:,: ,p)=E; 

end 

The matrix Q contains the random samples. 

3.1.2 The Householder Reflection Method 

The Householder method works similarly for unitary matrices [16]. There is a 

slight change in definition however. 

Definition 7. The Householder matrix Hz associated with the complex vec­

tor z is defined as follows. Let r = -ei arg(z1)llzll and u = z- re1 . Normalize 

u by setting v = ll~ll and set Hz= I- 2vv*. 

The complex method involves a new definition for r and the conjugate 

transpose. Given a complex matrix Z, this method decomposes Z into a 

unitary matrix Q and an upper-right-triangular matrix R. 

It is again true that the QR decomposition of a complex matrix is not 
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unique. If Z E G L( n, C) with decomposition Z = QR and 

0 

= diag(eifh, .. . , eiOn)A= 

0 

then Q' = QA and R' =A*Rare still unitary and upper-right-triangular and 

Z = QR = Q'R' 

We again obtain a multi-valued map 

QRc: GL(n, C)---+ U(n) x R(n) 

which we will make single-valued and one-to-one by specifying the exact de­

composition algorithm. Again, we obtain the following Lemma: 

Lemma 6. If Z = QR = Q'R', then Q' = QA and R' = A*R where A E A(n), 

the group of all unitary diagonal matr.ices. 

Consider the following map 

QRJIH: GL(n,C)---+ U(n) x R(n)/A(n) 

We want to define QRJR+ in such a way that 

Z r-t ( Q, >.T) :=;. U Z r-t ( UQ, >.T) (*) 

for any U E U (n). This implies that multiplying Z by a unitary matrix pushes 

forward to a left self-action of U(n), after decomposition. 

For the unitary case, the construction of QRJR+ involves choosing a class 

of representatives from R(n) /A (n) by imposing that the main diagonal of R 

have only real positive entries. (We could also correct QR by randomly per­

turbing the phases via Q=Q*diag(exp(i*2*pi*rand(n,1)).) Using Lemma 
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6, we can uniquely factorize any Z E G L( n, CC) such that the main diagonal 

of R has this property. If Z = QR, then UZ = UQR, U E U(n). This 

decomposition of U Z is unique within the specified class of representatives of 

R(n)/A(n). So, our map QRIR!.+ satisfies(*). Recall that Lemma 5 states that 

dJ.Lca(UZ) = dJ.Lca(Z) for any U E U(n). Thus, the induced measure on the 

left factor U(n) of QRIR.+ is also invariant under left multiplication, and hence 

must be Haar. 

Theorem 6. If the map Q RJR.+ is such that 

Z t---7 (Q, >-.T) =? UZ t---7 (UQ, >-.T) 

then QRIR.+ decomposes the measure of the complex Ginibre ensemble dJ.Lca as 

dJ.Lca(Z) = df.LHaar( Q) X df.LR(n)/A(n) (>-.T) 

The Matlab code implementing the method is as follows (here, n refers 

to the unitary group U(n) and m is the number of samples): 

functionhouseholder(n,m) 

for p=1 :m 

Z(:, :,p)=1/sqrt(2)*randn(n,n)+1/sqrt(2)*i*randn(n,n); 

[Q(:,: ,p) ,R(:,: ,p)]=qr(Z(:,: ,p)); 

J=eye(n); 

for j=1:n 

J(j,j)=R(j,j,p)/norm(R(j,j,p)); 

end 

Q(:': ,p)=Q(:': ,p)*J; 

end 

The matrix Qcontains the random samples. 
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3.1.3 The Subgroup Method 

We again apply the subgroup method as introduced in [9], this time to the 

unitary group. U(n) has the following nested chain of subgroups 

U(n) :=J U(n- I) :=J • • • :=J U(2) 

with U(k- 1) the subgroup of U(k) fixing e1 E U(k). So, a matrix Uk- 1 E 

U(k- 1) can be written 

1 0 0 

0 
with Uk_ 1Uk-1 = Ik-1,k-1 

0 

Again, considering the shorter chain U (n - 1) c U (n), we can choose coset 

representatives of U(n - 1) in U(n) by specifying where e1 goes. This is 

equivalent to choosing an element at random from 

Sn = { z E en : zz* = 1} 

For any z E Sn with z1 = jz1jei0 
, 0 ~ () < 21r, the map 

where 

is unitary and sends e1 to z. We can now mimic Lemma 3 with 

Lemma 7. Let z be a random point in Sn and let Un_1 be a random matrix 

in U(n- 1). Then 

1 0 0 

0 

0 

is uniformly distributed on U(n) where u is defined as above. 
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As with the orthogonal group, this becomes Householder's method pro­

ceeding inductively on n. 

Another method to generate samples from U(n) would be to consider 

the short tower U(n) :::) O(n). If a method to obtain random coset represen­

tatives of the factor group was known, this element could be multiplied by a 

random element of O(n), producing a Haar-distributed element in U(n). 

3.2 Uniformity Tests 

3.2.1 Distribution of Eigenvalues 

The joint probability density function of the eigenvalues of a Haar-distributed 

random matrix in U(n) is the Weyl denominator formula [7] 

() ) - 1 II I iOj - i(}k 12f 2 (()1, ... , n - (27r)nn!. e e 
;<k 

As with the orthogonal group, not much can be inferred from this formula 

regarding the eigenvalue distribution, aside from noticing that the eigenvalues 

will tend to repel each other. That is, as ()j and ()k approach each other, h goes 

to zero. We should expect then, that since the eigenvalues of a unitary matrix 

lie on the unit circle, the eigenvalues of a ''typical" element of U (n) for n large, 

should be quite regularly-spaced. This provides us with a quick visual test to 

determine whether a given matrix is random. Figure 3.1 show eigenvalue plots 

of a random element generated from U(100) using the Gram-Schmidt method 

and the Householder method. 

3.2.2 Distribution of Traces 

Diaconis and Mallows [7] proved the following: 

Theorem 7. If M is chosen uniformly from U(n) and B is any ball in C, 
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Figure 3.1: Eigenvalues from U(100) using G-S and Householder 

then, as n tends to oo, 

uniformly in Borel sets B. 

It has been shown that for given n, the error term is super-exponential 

[13]. That is 

P(Tr(M) E B)- { .!_e-lzl2 dzl ::::; _c_
j B 7r nanI

for universal constants c, 0' > 0. This is far from the typical order of n for 

the error term of n random points on the unit circle using the classical central 

limit theorem. 

This first result allows us to test the uniformity of our data as we did 

with the orthogonal group. Figure 3.2 shows histograms of traces of 1000 

random unitary matrices generated from U (100) using the above methods. 

3.2.3 Eigenvalue Phase Histograms 

In this section, we compare histograms of eigenvalue phases for the above 

methods. To create the histograms (see Figure 3.3, we sampled 1000 matrices 

from U(50). As expected, given the regular spacing of eigenvalues on the unit 

circle, we see a uniform distribution of the phases. 
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Figure 3.3: Phase histograms for G-8 , Householder 

3.3 Speeds of Algorithms 

U(n) U(2) U(3) U(5) U(lO) U(20) U(50) U(lOO) 

Method Average time to sample 1000 points 

Gram-Schmidt .15s .29s .85s 4.3s 18.6s 2m 4s 8m 33s 

Householder .19s .28s l.Os 5.8s 26.3s 2m 49s 11m 34s 

3.4 High Powers of U(n) 

Rains in [20] has studied the distribution of the eigenvalues and trace of pow­

ers of a random matrix U E U ( n) , and has noted an interesting shift from 

regularity to randomness. In fact , it appears that for powers nand higher, the 
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eigenvalues of un are distributed as n points uniformly distributed on the unit 

circle. We asked the question earlier: what kind of matrix results in eigen­

values which resemble random points on a circle. One answer is high powers 

of random unitary matrices. Taking high powers of unitary matrices seems to 

produce matrices which are quite far from "typical" Haar-distributed unitary 

matrices. 

Figure 3.4 shows an eigenvalue plot for a random matrix from 0(100), 

for the 100-th power of a random matrix from 0(100), and 100 uniformly 

distributed points on the circle . 
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3.5 Other Matrix Ensembles 

Following Edelman and Rao [11] we introduce some further matrix ensembles. 

For completeness we also include their joint eigenvalue probability density 

functions. Note that the following ensembles are non-compact ensembles, and 

thus cannot be assigned an invariant measure as with the compact Lie groups. 

As we have seen, the real Ginibre ensemble G1(n, n) is an nxn matrix of 

independent and identically distributed standard real random normals. More 

generally, we write Gf3(n, n) where j3 = 2 refers to complex normals and j3 = 4 

refers to quaternion normals. Matlab can generate an element from G4 (n, n) 

via 

X=1/sqrt(4)*randn(n,n)+1/sqrt(4)*i*randn(n,n); 

Y=1/sqrt(4)*randn(n,n)+1/sqrt(4)*i*randn(n,n); 

G=[X Y; -conj(Y) conj(X)] 

The following classical random matrix ensembles are derived from the 

Gaussian random matrices, and hence are invariant to orthogonal transforma­

tions: 

Gaussian orthogonal ensemble (GOE): This ensemble is composed of 

symmetric n x n matrices (A+ AT)/2 where A E G1(n,n). The diagonal 

elements are i.i.d. N(O, 1) and the remaining elements are i.i.d. N(O, 1/2) 

subject to the symmetry. 

Gaussian unitary ensemble (GUE): This ensemble is composed of Her­

mitian n x n matrices (A+A*)/2 where A E G2 (n,n). The diagonal elements 

are i.i.d. N(O, 1) and the remaining elements are i.i.d. N2 (0, 1/2) subject to 

being Hermitian. 

Gaussian symplectic ensemble (GSE): This ensemble is composed of 

self-dual n x n matrices (A+ AD)/2 where A E G4(n, n) and D is the dual­

transpose of a quaternion matrix. The diagonal elements are i.i.d. N(O, 1) and 

the remaining elements are i.i.d. N4 (0, 1/2) subject to being self-dual. 
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The Gaussian ensembles have the following joint eigenvalue probability 

density functions: 

where {3 = 1 refers to the GOE, {3 = 2 refers to the GUE, and {3 = 4 refers to 

the GSE, and where 

c{ = (27rtn/2 fi f(1 +!~ 
j=l f(1 + 7j]) 

The following ensembles are not part of the classical ensembles but are 

important in their own right: 

Wishart ensemble (W,B(m, n), m 2: n): symmetric/Hermitian/self-dual 

n x n matrix A'A, where A E Gf3(m, n) and A' denotes AT, A* or AD, as A is 

real, complex, or quaternionic, respectively. 

The Wishart ensemble is named after John Wishart who studied these 

matrices as sample covariance matrices, as they relate to statistics applications. 

This ensemble has joint eigenvalue probability density function 

gf3(>.) = c{,a nj>.i- >.jjf3 ij >.~-pexp (-t >.i/2) 
t<J t t=l 

where a= ~m and p = 1 + ~(n- 1), and {3 is as above, and where 

cJ!,a = 2-na fi f(1 + ~) 
L j=l f(1 + ~j)f(a- ~(n- j)) 

MANOVA ensemble (Jf3(m1, m2 , n), m 1, m 2 2: n): symmetric/Hermitian/ 

self-dual n x n matrix which can be obtained as A/(A +B), where A and B 

are Wf3(m 1, n) and Wf3(m2 , n), respectively. 

The MANOVA ensembles arise in statistics in the multivariate analysis 

of variance, and are also known as the Jacobi ensembles. Their joint eigenvalue 

probability density function is 
n 

h(3(A) = ~,a1,a2 II j)..i _ Ajjf3 II )..~I-P(1 _ Ai)a2-P 
i<j j=l 
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where a1 = ~m1 , a2 = ~m2 , and p = 1 + ~(n- 1), and j3 = 1, 2, and where 



Chapter 4 

Spheres and Hyperspheres 

The uniform sampling from spheres is required in numerous applications (molec­

ular simulations, optics modeling, earthquake source modeling, etc.) In op­

tics, an integrating sphere reflectometer is a component with small input and 

output holes, and whose interior surface is engineered to create a high pro­

portion of diffuse reflections (ie. scattering) relative to specular reflections (ie. 

mirror-type). To model a ray of light travelling within an integrating sphere, a 

sequence of diffuse reflection points is required. Due to the physical properties 

of an integrating sphere reflectometer, it is sufficient to sample uniform points 

from the surface of a sphere [19]. 

In this section we present a number of ways to sample random points 

from spheres. The relative speeds of the methods are analyzed, as well as the 

uniformity of the generated points. 

36 
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4.1 Sampling Methods 

4.1.1 The Rejection Method 

This method involves generating uniform points inside an (n + 1 )-cube ( cn+I) 

of side length 2 centred at the origin, discarding points lying outside of the n­

sphere, and projecting the remaining points onto its surface. Let XI, x2, ••• , Xn+I 

be independent uniform random variates on ( -1, 1) and set x =(xi, x2 , ... , Xn+I). 

Reject samples if /lxll > 1. Project x onto §n to the point 

XI X2 Xn+l) 
y= ( ~,~,···,~ 

which will be uniformly distributed on the sphere. The robability that x is 

on or within §n is the ratio of the volume of the sphe e to that of the cube 

which is 
7r(n+l)/2 

(V(§n) r(~ + 1) 
v (en+ I) 2n+l 

where r is the gamma function defined as 

r(~ + 1) = (~)! when vis even, and 
v!!

r(v + 1) - l7f when vis oddY 112 - 2(v+l)/2 

Hyperspherical volume attains a maximum of approximately 5.26 when n = 5 

causing the ratio of volumes to tend to zero very quickly as n grows large. 

Hence, the probability that points will be discarded is high. For § 2 , the volume 

ratio is (~1r) /23 = 7r/6, so an average of 6/7r points are required to generate 

one point in § 2, or equivalently 18/7r ~ 5.73 uniform variates. For § 3 , an 

average number of 13 uniform variates are required to generate a point in its 

interior, and for § 4 , an average of 30 are required. Hence this method should 

not be used as a general method for sampling from §n. Figure 4.1 shows 5000 

points on § 2 using this method. 

The Matlab code implementing the method is as follows (here, mis the 

number of samples and n is the dimension of the sphere): 
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Figure 4.1: 5000 points on § 2 using the rejection method 

functionrejection(n,m) 

j=O; 

while j<m 

x=2*rand(n+1,1)-1; 


l=norm(x); 


if (1<=1) 


j=j+1; 


y(j,: )=1/l*x; 


end 


end 


The matrix y contains the random samples. 

4.1.2 The Quaternionic Method 

The quaternionic method is also a rejection method, but rather than sim­

ply projecting points to the surface of the sphere, points are transformed by 
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rational formulae obtained using quaternions [2]. We first look at § 2 . 

Generate x 1,x2 ,x3 ,x4 uniformly from [-1, 1] until 

and consider the quaternion 

This q is uniformly distributed on the set Iql < 1. Since a non-zero quaternion 

effects a rotation in JR3 via conjugation, we can rotate the north pole k by 

qkq-1
. (Note that every rotation can be represented by a quaternion. The 

map z = cos(a/2)+sin(a/2)v is a counter-clockwise rotation through an angle 

a about the axis defined by the unit vector v.) 

The claim is that the distribution of qkq-1 on § 2 is uniform. The 

uniform distribution is the unique rotation-invariant distribution on the surface 

of the sphere. Let p be a non-zero quaternion and form: 

p(qkq-1)p-1 = *tp(qkq-1)p-1 

= c~~q) k (~q)-1 
Multiplying q by a quaternion of unit norm is a rotation of quaternion space 

and therefore the distribution of q is preserved. Hence the distribution of 

qkq-1 is unchanged by rotations, and is thus the uniform distribution. 

So where does this rotation send the north pole? Set 

qkq-1 = xi+ yj + zk 

and equate the coefficients if i,j, and k. 	The computations are trivial and we 
1spare the reader the details but one; q- = q* /lql 2

• The coordinates of the 
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Figure 4.2: 5000 points on § 2 using the quaternionic method 

uniformly distributed point on § 2 are 

y 

z 

Although the method extends to higher dimensions (and to spaces with an 

action by a compact group of transformations) the formulae are apparently 

quite complicated and involve Clifford Algebras [3]. 

This method, although mathematically interesting, is comparatively 

inefficient. Since we reject points outside the interior of § 3 
, on average, 30 

uniform variates are required to produce an acceptable starting point. Figure 

4.2 shows 5000 points on § 2 using this method. 
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The Matlab code implementing the method is as follows (here, m is the 

number of samples): 

function quaternionic(m) 

j=O; 

while j<m 

x=2*rand(4,1)-1; 


l=norm(x); 


if (1<1) 


j=j+1; 

y(j,1)=2*(x(2)*x(4)+x(1)*x(3))/1A2; 

y(j,2)=2*(x(3)*x(4)-x(1)*x(2))/1A2; 

y(j,3)=(x(1)A2+x(4)A2-x(2)A2-x(3)A2)/1A2; 

end 


end 


The matrix y contains the random samples. 

4.1.3 The Gaussian Method 

This sphere-sampling method utilizes the following Lemma. 

Lemma 8. Ifx = (xi, X2, •.. 'Xn+I) is such that Xi N(O, 1), then x/JJxJJ isrv 

uniformly distributed on sn. 

Proof. If Q E O(n + 1), then ~~~~ has the same distribution as ~~~:II. Since 

the Xi are identically distributed normal random variates, x is radially sym­
. d Qx h h d. ·b · x Th f x · metnc an SO I!Qxl! as t e same IStn UtlOn as w· ere ore w IS 

also radially symmetric and II ll:ll II = 1 with probability 1. Hence ll:ll is 

uniformly distributed on sn. [5] 0 

We now use Lemma 8 to generate random points on the n-sphere. 

Let x = (x 1, x2 , ••. , Xn+I) where the Xi are i.i.d. standard normal random 
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::-Figure 4.3: 5000 points on § 2 using the Gaussian method 

variates. Project x onto §n to the point 

1 
Y = (yl, · · ·, Yn+l) = w(x1, X2, ... , Xn+I) 

Due to Lemma 8, the Yi are uniformly distributed on the sphere [18]. Figure 

4.3 shows 5000 points on § 2 using this method. 

The Matlab code implementing the method is as follows (here, mis the 

number of samples and n is the dimension of the sphere): 

functiongaussian(n,m) 

x=randn(m,n+1); 

for i=1:m 

y(i,:)=1/norm(x(i,:))*x(i, :); 

end 

The matrix y contains the random samples. 
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4.1.4 Two Uniform Methods 

In his paper on choosing points from spheres, Marsaglia [15] presents methods 

for § 2 and § 3 which use the uniform distribution on ( -1, 1). The first method 

is for § 2 • Let x 1, x2 be independent uniform random variates on ( -1, 1) and 

reject samples if r =xi+ x~ ~ 1. Form the point 

x = (2xnlf-=r:, 2xnl'"f"=""r, 1- 2r) 

The probability that x1 , x2 are accepted is the ratio of the area of the unit 

circle to that of the square of side length 2, which is 7f /4. Hence, on average, 

4/7f points are required to generate a point in § 2, or equivalently 8/7f ~ 2.55 

uniform variates. 

To prove that the method works, we follow Marsaglia [15] and combine 

the following two facts: 

A. If (z1 , z2 , z3 ) is uniform on the surface of the unit 2-sphere, then each zi is 

uniform on (-1, 1), (the area of a spherical cap is a multiple of its height), 

and (z1 , z2), for given z3 , is uniform on the circumference of the circle of radius 

J1- z§. 

B. If (x1 , x 2 ) is uniform over the interior of the unit circle, then r =xi+ x~ is 

uniform on (0, 1) and independent of the point (xtfy'F,x2 jJ'i} 

Combining A and B we conclude that if z3 is uniform on (-1, 1) and 

independent of (xd y'F, x2/ y'F) then 

(~J1 z§, ~J1 - z§, z3 ) 

is uniform on the surface of the 2-sphere. But 1 - 2r is uniform on ( -1, 1) 

and independent of (xdJr, x2 / y'F). Substituting 1- 2r for z3 then yields the 

sample point x. 

Figure 4.4 shows 5000 points on § 2 using the method for the 2-sphere. 

The Matlab code implementing the method is as follows (here, m is the 

number of samples): 
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Figure 4.4: 5000 points on § 2 using the Gaussian method 

functionuniform2(m) 

j=O; 

while j<m 

x=2*rand(2,1)-1; 


1=x(1)A2+x(2)A2; 


if (1<1) 


j=j+1; 


f=2*sqrt (1-S); 


y(j,:)=[x(1)*f x(2)*f 1-2*1]; 


end 


end 


The matrix y contains the random samples. 

For § 3 , let x1 , x2 be independent uniform random variates on ( -1, 1) 

and reject samples if r 1 = xr + x~ 2: 1. Let x3 , X4 be independent uniform 

random variates on ( -1, 1) and reject samples if r2 = x~ + x~ 2: 1. Then the 
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point 

is uniformly distributed on § 3 . The probability that x1 , x2 , x 3 , x4 are all ac­

cepted is half that of the method above. That is, approximately 5.09 uniform 

variates are required to generate one point on § 3 . Compared to the general 

rejection method, this is a more than 2-fold increase in efficiency in this di­

mension. 

The Matlab code implementing the method is as follows (here m is the 

number of samples): 

function uniform3 (m) 

j=O; 

while j<m 

x1=2*rand(2,1)-1; 


11=x1(1)A2+x1(2)A2; 


if (11<1) 


x2=2*rand(2,1)-1; 


12=x2(1)A2+x2(2)A2; 


if (12<1) 


j=j+1; 


f=sqrt((1-11)/12); 


y(j,:)=[x1(1) x1(2) x2(1)*f x2(2)*f]; 


end 


end 


end 


The matrix y contains the random samples. 

Marsaglia does not discuss why the method for § 3 works and hints 

at similar methods for higher-dimensional spheres, but does not elaborate on 

either. 
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4.1.5 The Homogeneous Method 

We have already sampled random points from a few homogeneous spaces, 

without exploiting their homogeneity. §n, cpn, and the real and complex 

Grassmannian spaces are all homogeneous spaces. We now define a homo­

geneous space and then introduce methods to sample uniformly distributed 

random points from them. 

Definition 8. A homogeneous space is a topological space X on which there 

is a transitive group action by a Lie group G. Since the action is transitive, 

there is only one group orbit, which implies that all of the isotropy groups are 

conjugate. Therefore, X is isomorphic to G / Gx where Gx is the isotropy group 

of the point x. 

The Lie group O(n + 1) acts on §n by rotating or reflecting a point of 

§n about or through an axis. The action is transitive since for any distinct 

p, q E §n there exists an element of O(n + 1) taking p to q. (In fact, there 

are numerous such elements. For example, the two rotations defined by the 

great circle joining p and q, or the reflection defined by p, q and one of their 

midpoints on this same circle.) Therefore, §n is homogeneous and the group 

action possesses only one orbit. Elements of the isotropy group of (1, 0, ... , Of 
are matrices of the form 

1 0 . . . 0 

0 

0 

where On E 0(n). The group of all such elements is clearly isomorphic to 

O(n). In fact, since there is only one group orbit, all of the isotropy groups 

are isomorphic to 0 ( n), and thus 

§n rv O(n + 1)/0(n) 
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We have considered a number of methods to sample uniformly from orthogonal 

groups. Choose one of these methods, and generate a matrix 0 from O(n+ 1). 

Since O(n) has measure zero in O(n + 1), the probability of generating an 

element from one of the augmented isotropy groups is almost zero. Apply 0 to 

the point p = (0, ... , 0, 1f. Continue sampling new matrices from 0(n+1) and 

applying them to the previously obtained point. Since the action is transitive, 

we can follow the point through its orbit, resulting in uniformly distributed 

points on §n. 

The Matlab code implementing the method is as follows (here, m is the 

number of samples and n is the dimension of the sphere): 

functionhomogeneous(n,m) 

Q=orthogonal(n+1,m); 

x(:,1)=Q(:,:,1)*eye(n+1,1); 

for j=2:m 

x ( : , j ) =Q ( : , : , j ) *X ( : , i -1) ; 

end 

The matrix x contains the random samples. 

4.2 Uniformity Tests 

4.2.1 Distributions of Sample Coordinates 

Pick a coordinate Xi from the sample points. It can be shown [17] that its 
1distribution is proportional to (1- x2 )nf2- . Plots of these funCtions are shown 

in Figure 4.5 for various n. Figures 4.6 to 4.9 show how the distribution of 

the first coordinate of the hypersphere matches up to the plotted functions for 

various n for each of the sphere-sampling methods. 
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+1 -0 .8 -0.6 -D.4 -0.2 0 02 0.4 0.6 0.8 

Figure 4.5: Plots of (1- x2)n/2- 1 for n = 2, 3, 4, 5, 6, 10 ( n = 2 is the horizontal 
line and n increases as the midpoint of the graph increases) 

Figure 4.6: Gaussian method with m = 5000, n = 2, 3, 5, 10 

4.2.2 Variances of Sample Coordinates 

The above distribution has variance n~l as shown in [17]. Therefore we can 

test our sample data for each method for various n. We do so by taking the 

average of the sample variances from 5 sample populations of m = 1000 points 

each. 

Sample variances were not calculated for the rejection method for high n, as 

even after 5 minutes not one point had been accepted. 
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Figure 4.7: Rejection method with m = 5000, n = 2, 3, 5, 10 

Figure 4.8: Homogeneous method with m = 5000, n = 2, 3, 5, 10 

Sphere §2 §3 §4 §5 §10 §20 §40 

0"2 .333 .250 .200 .167 .091 .048 .024 

Method Sample variances S2 

Rejection .333 .246 .197 .171 .089 ? ? 

Quaternionic .344 N/A N/A N/A N/A N/A N/A 
Gaussian .341 .251 .206 .167 .091 .047 .025 

Homogeneous .338 .253 .200 .162 .092 .045 .025 

Uniform .336 .251 N/A N/A N/A N/A N/A 

4.3 Speeds of Algorithms 

In this section we look at the running-times of each of the above algorithms. 

For each method, we sample 1000 points. 
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Figure 4.9: Various methods for m = 5000 (Quaternionic n = 2, Uniform 
n = 2, 3) 

Sphere §2 §3 §5 §10 §20 §50 § 100 

Method Average time to sample 1000 points 

Rejection .Olls .017s .053s 3.58s <oo <oo <oo 

Quaternionic .015s N/A N/A N/A N/A N/A N/A 
Gaussian .0063s .0076s .Olls .019s .080s .24s .78s 

Uniform .0077s .013s N/A N/A N/A N/A N/A 
Homogeneous .15s .25s .64s 2.66s 10.57s lm 7.53s 4m 33s 



Chapter 5 

Real Projective Space 

In this section, we look at a method for generating random points from real 

projective space using the sphere methods described in the previous section. 

5.1 Sampling Method 

Definition 9. Real projective space (or JRpn) is the projective space of 

lines in JRn+l. More precisely, it is obtained by forming the quotient ofJRn+l \ {0} 

under the equivalence relation x "' AX for all nonzero A E JR. 

5.1.1 The Spherical Method 

JRpn can also be constructed by identifying antipodal points of §n. Hence, we 

can use any of our sphere-sampling methods to sample random points from 

JRpn by applying an antipodal reflection to points from the lower hemisphere, 

as well as to points lying on any of the lower-dimensional spheres in standard 

position within that hemisphere. 

The Matlab code implementing this method is as follows (here, m is 

the number of samples, n is the dimension of the sphere, and sphere() is a 

sphere-sam piing function): 

51 
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function spherical (n,m) 

x=sphere(n,m); 

for j=1 :m 

if (x(j,n+1)<0) 

x(j, :)=x(j, :)*(-1); 


end 


for k=1:n 


p=n+2-k; 


if (x(j,p)~=O) break 


elseif (x(j,p-1)<0) 


x(j,: )=x(j,: )*(-1); 


end 


end 


end 


The matrix x contains the random samples. 

5.2 Uniformity Tests 

To test the uniformity of points generated in JRpn, we can use the same tests 

as we used for spheres. We expect the same distributions, aside from those 

involving the last coordinate, as we only choose points in the upper hemisphere. 

5.2.1 Distributions of Sample Coordinates 

The plots of the coordinate distributions are identical to those of the sphere. 

However, we show the distributions of the last coordinate in Figure 5.1, which 

as expected, show the positive half of the spherical distributions. 
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\ 

Figure 5.1: Antipodal method with m = 5000, n = 2, 3, 5, 10 

5.2.2 Variances of Sample Coordinates 

Here, the theoretical and sample variances are calculated for the first coordi­

nate. 

3 4 5 10 20 40 

(J2 .333 .250 .200 .167 .091 .048 .024 

f;2 .325 .258 .201 .167 .090 .049 .024 

5.3 Speed of Algorithm 

The following table shows running times for 1000 points sampled from some 

real projective spaces. The sphere-sampling method used is the Gaussian 

sphere-sampling method, the fastest of the general methods. 

Average time to sample 1000 points 

JRp2 JRp3 JRp5 JRplO JRp20 JRp50 JRplOO 

.0065s .0081s .010s .020s .058s .26s .77s 



Chapter 6 

Complex Projective Space 

In this section, we look at methods for generating random points from complex 

projective space using the spherical and homogeneous methods. 

Definition 10. Complex projective space (or rr,pn) is the projective space 

of complex lines in rr,n+l. More precisely, it is obtained by forming the quotient 

of rr,n+l \ {0} under the equivalence relation z "' >.z for all nonzero >. E C 

6.1 Sampling Methods 

6.1.1 The Spherical Method 

We can also think of c_pn as the quotient of § 2n+l C c_n+l by the action of 

U (1). So generating points in § 2n+l will suffice. Since U (1) is of measure 

zero in c_n+l, the likelihood of generating two points WI, w 2 in e,pn such that 

WI = >.w2 for some >. E C is almost zero. Once we have our points in § 2n+l 

of the form 

we can set zk = x2k-l + ix2k for 1 ::; k ::; n + 1 to get the following point in 
c_n+l 

54 
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The probability that x2n+l = x2n+2 = 0 is again almost zero, so we can 

normalize the last coordinate of z to obtain 

A ( Z1 Z2 Zn )
Z= --,--, ... ,-­

Zn+l Zn+l Zn+l 

to express the point in homogeneous coordinates. 

The Matlab code implementing this method is as follows (here, m is 

the number of samples, n refers to e,pn, and sphere() is a sphere-sampling 

function): 

function spherical(n,m) 

p=sphere(2*n+1,m); 

x=p(: ,1: (n+1)); 

y=p(:,(n+2):(2*n+2)); 

z=1./z(:,n+1)*ones(1,n+1).*z; 

The matrix z contains the random samples. 

6.1.2 The Homogeneous Method 

The Lie group U(n + 1) acts transitively on e,pn and so complex projective 

space is a homogeneous space. In fact, 

e,pn rv U(n + 1)/U(n) X U(1) 

Choose one of the methods to sample from the unitary group, and generate a 

matrix U from U (n + 1). Since the dimension of U (n + 1) is n2 + 2n + 1 and 

that of U(n) x U(1) is n2 + 1, the measure of the latter is zero in the former, 

and thus the probability of generating an element from an isotropy group is 

almost zero. Apply U to the point p = (0, ... , 0, 1f. Continue sampling 

new matrices from U(n + 1) and applying them to the previously obtained 

point. Since the action is transitive, we can follow this point through its orbit, 

resulting in uniformly distributed points on e,pn. 
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The Matlab code implementing this method is as follows (here, m is the 

number of samples and n refers to CPn): 

functionhomogeneous(n,m) 

q=unitary(n+1,m); 

z( : ,1, :)=q(:,: ,1)*eye(n+1,1); 

for j=2:m 

Z (: , j , :) =q (: , : , j) *Z (: , j -1, :) ; 

end 

The matrix z contains the random samples. 

6.2 Uniformity Tests 

To test the uniformity of points generated in e,pn, we can use the same tests 

as we used for spheres. 

6.2.1 Distributions of Sample Coordinates 

Here we plot the distributions of the real part of the first coordinate Re(z1 ) 

along with the associated theoretical distribution functions for n = 2, 3, 4, 5. 

Figure 6.1: Spherical method with m = 5000, n = 2, 3, 5, 10 
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6.2.2 Variances of Sample Coordinates 

Here, the theoretical and sample variances are calculated for the real part of 

the first coordinate Re(z1 ). 

II 2 I 3 4 5 10 20 40 

(J2 .167 .125 .100 .083 .046 .024 .012 

Method Sample variances S2 

Spherical .165 .124 .101 .082 .045 .024 .013 

Homogeneous .161 .126 .098 .085 .046 .023 .013 

6.3 Speeds of Algorithms 

The following table shows running times for 1000 points sampled from some 

complex projective spaces. The sphere-sampling method used is the Gaussian 

sphere-sampling method, the fastest of the general methods. 

Average time to sample 1000 points 

Method CP2 cp3 cp5 cpw cp2o cp5o cplOO 

Spherical .010s .014s .021s .056s .19s .73s 1.88s 

Homogeneous .31s .50s 1.26s 5.31s 20.59s 2m 8.7s 8m 24.7s 



Chapter 7 

Real Grassmannian Spaces 

The grand tour is a method of viewing multivariate statistical data (say, n­

dimensional data) on a computer screen by projecting this data orthogonally 

onto a sequence of two-dimensional subspaces. To implement the grand tour, 

a sequence of pairs of orthonormal vectors spanning a plane in JR.n are required. 

It is desirable that the sequence of planes be uniformly distributed. This is an 

example of sampling from the Grassmannian Gr(n, 2, JR.). 

Definition 11. The real Grassmannian space Gr(n, k, JR.) is the space of 

all k-dimensional subspaces ofY~.n (0 < k < n). 

Grassmannians are generalizations of projective spaces (in fact, JR.pn is 

equivalent to Gr(n + 1, 1, JR.)). 

7.1 Sampling Methods 

7 .1.1 The Spherical Method 

We can easily sample points from Gr(n, k, JR.) by using our JR.pn-1-sampling 

method. Generate k points in JR.pn-l. Since the probability of generating two 

identical points is almost zero, the k points will span a k-dimensional subspace 

of JR.n. If need be, the vectors can be orthogonalized. 

58 
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The Matlab code implementing this method is as follows (here, m is the 

number of samples, n is the dimension of the ambient space, k is the dimension 

of the subspaces, and realproj () is the IRPn-l_sampling function): 

functionprojective(n,k,m) 

for j=1:m 

x(:,:,j)=realproj(n-1,k); 

end 

The matrix x contains the random samples. 

7.1.2 The Homogeneous Method 

The Lie group 0(n) acts transitively on Gr( n, k) and so real Grassmannians 

are homogeneous spaces. In fact, 

Gr(n, k) "'O(n)/O(n- k) x O(k) 

Choose one of the methods to sample from the orthogonal group, and generate 

a matrix 0 from O(n). Since the dimension of O(n) is n(n- 1)/2 and that 

of O(n- k) x O(k) is smaller, the measure of the latter in the former is zero, 

and thus the probability of generating an element from an isotropy group is 

almost zero. Apply 0 to the n x k identity matrix. Continue sampling new 

matrices from O(n) and applying them to the previously obtained point. Since 

the action is transitive, we can follow this point through its orbit, resulting in 

uniformly distributed points on Gr(n, k). 

The Matlab code implementing this method is as follows (here, m is the 

number of samples, n is the dimension of the ambient space, k is the dimension 

of the subspaces, and orthogonal 0 is an O(n)-sampling function): 

functiongrassmannian(n,k,m) 

Q=orthogonal(n,m); 

x(:,:,1)=Q(:,:,1)*eye(n,k); 
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for j=2:m 


X ( : ' : ' j ) =Q ( : ' : ' j ) *X ( : ' : ' i -1) ; 


end 


The matrix x contains the random samples. 

7.2 Note on the Stiefel manifold Vk(IRn) 

If the results of the previous sampling methods are orthogonal sets of vec­

tors, then they can be interpreted as random k-frames from the Stiefel mani­

fold V'k (I~n). Real Stiefel manifolds are homogeneous spaces of the orthogonal 

group: 

Since O(n-k) has measure zero in O(n), the probability of generating a matrix 

which fixes a particular k-frame is zero. So even though the Stiefel manifold 

Vk(JR.n) and the Grassmannian Gr(n, k, JR.) are of different dimensions, these 

sampling methods will generate random points from both spaces. 

7.3 Uniformity Tests 

To test the uniformity of points generated in Gr(n, k, JR.), we project the first 

k standard basis vectors of JR.n onto an orthogonalized set of the k vectors (gij) 

generated by the algorithm. 

< e1, 9il > 9il + · · · + < ekl 9ik > 9ik 

We then look at the distribution of elements in the resulting n x k matrix. 

We plot the distributions of the (1, 1), (2, 2) elements and of the (L 2), (2, 1) 

elements in Figures 7.1 and 7.2 for Gr(6, 2, JR.) using the two methods. We see 

similar distributions for the two methods. Although not definitive evidence 

of the uniformity of the samples, it suggests that the samples have the same 
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Figure 7.1: Histograms for Gr(6, 2, IR) (projective method) 

Figure 7.2: Histograms for Gr(6 , 2, IR) (homogeneous method) 

distribution. The homogeneous method is much too slow to be useful for this 

space, but if it indeed generates uniform samples, then it serves to demonstrate 

the uniformity of the other method. 

7.4 Speeds of Algorithms 

The following table shows running times for 1000 points sampled from some 

real Grassmannian spaces. 

Gr(n, k, IR) (3 ,1) (5 ,2) (10,4) (20,8) (50,20) (100,40) 

Method Average time to sample 1000 points 

Spherical .056s .082s .19s 1.27s 14.18s 59.38s 

Homogeneous .34s .40s 2.41s 14.0s 1m52.3s 6m8.1s 



Chapter 8 

Complex Grassmannian Spaces 

In the theory of wireless communications, with multiple inputs and multiple 

outputs (MIMO), packings of real and complex Grassmannian spaces are often 

required. There are a number of methods used to generate these packings. One 

method uses the homogeneous method to sample complex k-planes from en 
as an initial guess [23]. 

Definition 12. The complex Grassmannian space Gr(n, k, C) is the space 

of all k-dimensional complex subspaces of en (0 < k < n). 

8.1 Sampling Methods 

8.1.1 The Spherical Method 

We can easily sample points from Gr(n, k, C) by using our cpn_sampling 

technique. Generate k points from cpn-1 . Since the probability of generating 

two points z1 , z2 such that z1 = >.z2 (>. E C) is almost zero, the k points will 

span a k-dimensional subspace in en. 
The Matlab code implementing this method is as follows (here, mis the 

number of samples, n is the dimension of the ambient space, k is the dimension 

of the subspaces, and compproj () is one of the cpn-sampling functions): 
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functionprojective(n,k,m) 

for j=l:m 

x(:,:,j)=compproj(n-l,k); 

end 

The matrix x contains the random samples. 

8.1.2 The Homogeneous Method 

The Lie group U(n) acts transitively on Gr(n, k, C) and so complex Grass­

mannians are homogeneous spaces. In fact, 

Gr(n, k, <C) U(n)jU(n- k) x U(k)rv 

Choose one of the methods to sample from the unitary group, and gener­

ate a matrix U from U(n). Since the dimension of U(n) is n 2 and that of 

U(n- k) x U(k) is smaller, the measure of the latter in the former is zero, 

and thus the probability of generating an element from an isotropy group is 

almost zero. Apply U to then x k identity matrix. Continue sampling new 

matrices from U(n) and applying them to the previously obtained point. Since 

the action is transitive, we can follow this point through its orbit, resulting in 

uniformly distributed points on Gr(n, k, <C). 

The Matlab code implementing this method is as follows (here, mis the 

number of samples, n is the dimension of the ambient space, k is the dimension 

of the subspaces, and unitary() is a U(n)-sampling function): 

function cgrassmannian(n,k,m) 

Q=unitary(n,m); 

x(:,: ,l)=Q(:,: ,l)*eye(n,k); 

for j=2:m 

X ( : ' : ' j ) =Q ( : ' : ' j ) *X ( : ' : ' i -1) ; 

end 

The matrix x contains the random samples. 
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8.2 Note on the Stiefel manifold Vk(Cn) 

If the results of the previous sampling methods are orthogonal sets of vectors, 

then they can be interpreted as random k-frames from the Stiefel manifold 

Vk(Cn). Complex Stiefel manifolds are homogeneous spaces of the unitary 

group: 

Since U(n - k) has measure zero in U(n), the probability of generating a 

matrix which fixes a particular complex k-frame is almost zero. So even though 

the Stiefel manifold Vk(Cn) and the complex Grassmannian Gr(n, k, C) are of 

different dimensions, these sampling methods will generate random points in 

both spaces. 

8.3 Speeds of Algorithms 

The following table shows running times for 1000 points sampled from some 

complex Grassmannian spaces. The unitary() function used for the homo­

geneous test is the faster Gram-Schmidt method. 

Gr(n, k, C) (3,1) (5,2) (10,4) (20,8) (50,20) (100,40) 

Method Average time to sample 1000 points 

Spherical .047s .14s .53s 3.30s 22.4s 1m30s 

Homogeneous .31s 1.13s 6.24s 29.5s 2m56s llm41s 
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Chapter 9 

Conclusion 

This study surveyed a number of the current methods used to sample random 

points from various compact spaces. The Gram-Schmidt and Householder re­

flection methods were very similar in their speeds and uniformity. However, 

the numerical instability of even the modified Gram-Schmidt method, suggests 

that the latter method is in fact a better choice. For the remainder of the spaces 

considered (the symmetric spaces: spheres, projective spaces and Grassmanni­

ans,) the Gaussian method is by far the best option. As the dimension of the 

space increases, it remains very fast compared to the other methods. As some 

of these spaces are homogeneous spaces of the matrix groups, a homogeneous 

method of generating random points was looked at. Although extremely in­

efficient, it produced uniform samples, and may possibly be better applied to 

other homogeneous spaces which do not have a faster method available, such 

as the Gaussian method. 
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Appendix A 

Supplementary Lemmas and 

Theorems 

Lemma 9. A Householder matrix (i.e. H = I- 2vvT) is a symmetric matrix. 

Proof. 
HT 	 = (I - 2vvTf 

=I- 2(vvTf 

= I - 2vvT since vvT is symmetric 

=H 

Lemma 10. A Householder matrix (i.e. H = I- 2vvT) is an orthogonal 

matrix. 

66 


0 



MSc Project-S. O'Hagan, McMaster- Mathematics and Statistics 67 

Proof 

H HT 	 = (I- 2vvT)(I- 2vvT)T 

=(I- 2vvT)(I- 2(vvT)T) 

=I- 2vvT- 2(vvTf + 4vvT(vvT)T 

= I - 4vvT + 4v (vT v )vT since vvT is symmetric 

= I- 4vvT + 4vvT since vT v = jjvjj2 = 1 (by definition) 

=I 

D 

Lemma 11. If x E JR.n then Hxx (where Hx is the Householder matrix asso­

ciated with x) has the same direction as e1 . 

Proof 	We will write Hx in its non-normalized format 

and determine v such that Hxx E span{e 1 }. Assuming the latter, we write 

vvT) · v(vTx) vTx 
Hxx = I- 2-- x = x- 2 = x - 2--v( vTv vTv vTv 

Looking at the far left and right sides of this equation, we see that v E 

span{x, e1 }. Let v = x + pe1 so that 

and 

Now rewrite Hxx as 



68 MSc Project-S. O'Hagan, McMaster- Mathematics and Statistics 

To have Hxx point in the direction of e1 we want the first term to vanish. So 

let 
T 

1 - 2 X X + P'T/1 = 0 
2xTx + 2prJ1+ p

XT X + 2prJ1 + p 2 
- 2XTX - 2PrJ1 = 0 

XTX = p2 ~ llxll = ±p 

Therefore p = ±llxll and so v = x ± llxlle1 ll· Finally 

Theorem 8. (Cartan-Dieudonne Theorem) Let (V, b) be an n-dimensional, 

non-degenerate symmetric bilinear space over a field with characteristia not 

equal to 2. Then, every element of the orthogonal group O(V, b) is a composi­

tion of at most n reflections. 

Definition 13. The kth moment of a probability measure p, (defined on the 

Borel sets of JR) is defined as 

Theorem 9. Let Mn be a sequence of probability measures with moments of 

all orders. Suppose that for each k, Mn(xk) converges to a number Mk· Then, 

there is a measure p, with p,(xk) = Mk· If p, is determinate, i.e., is uniquely 

determined by its moments, then for every bounded continuous function 

(where the convergence is weak star). {6] 

0 
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