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ABSTRACT 

This thesis contributes significantly towards the development of a robust 

algorithm for design sensitivity analysis and the optimization of microwave 

structures. Based on the frequency-domain finite-element method, the approach 

provides accurate sensitivity information using both 2-D and 3-D formulations. It 

also significantly accelerates the optimization process. 

The design sensitivity analysis method greatly influences the efficiency 

and accuracy of gradient-based optimization by providing the response gradient 

(response Jacobians) for the whole range of parameter values. However, common 

commercial electromagnetic simulators provide only specific engineering 

responses, such as Z- or S-parameters. No sensitivity information is made 

available for further exploration of the design-parameter space. It is common to 

compute the design sensitivities from the response themselves using finite

difference or higher-order approximations at the response level. Consequently, for 

each design parameter of interest, at least one additional full-wave analysis is 

performed. However, when the number of design parameters becomes large, the 

simulation time becomes prohibitive for electromagnetic design procedures. 
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ABSTRACT 

The self-adjoint sensitivity analysis (SASA) is so far the most efficient 

way to extract the sensitivity information for the network parameters with the 

finite-element method. As an improvement of the adjoint-variable method 

(AVM), it eliminates the additional (adjoint) system analyses. With one single 

full-wave analysis, the sensitivities with respect to all design parameters are 

computed. This significantly improves the efficiency of the sensitivity 

computations. Through our proposed method, the finite-difference frequency

domain self-adjoint sensitivity analysis (FDFD-SASA), the process is further 

improved by eliminating the need for exporting the system matrix, thus improving 

both compatibility and computation time. The only requirement for integrating the 

sensitivity solver with the commercial EM simulators is the ability to access the 

field solution at the user-defined grid points. The sensitivity information is 

obtained by simple manipulation of the field solution as a post-process and hence, 

it adds little or no overhead to the simulation time. 

We explore the feasibility of implementing our newly proposed method 

using field solutions from a frequency-domain commercial solver HFSS v 11. We 

confirm the accuracy of the FDFD-SASA for shape parameters of metallic 

structures. Both 2-D and 3-D examples are presented, where the reference results 

are provided through the traditional finite-difference approximations. Also, the 

efficiency of the FDFD-SASA is validated by a filter design example, exploiting 

gradient-based optimization algorithm. 
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CHAPTER! 

INTRODUCTION 

Since the inception of a variety of numerical techniques, design sensitivity 

analysis has begun playing an important role in electromagnetic (EM) system 

analysis due to its importance in improving system performance. The design 

sensitivity aims at the evaluation of the response derivatives with respect to the 

design parameters. In microwave design, these are typically shape and constitutive 

parameters. The sensitivities, together with the responses, greatly extend our 

knowledge of the system behavior in the design parameter space. The overall 

design process, including design optimization, yield and tolerance analysis, as 

well as statistical analysis, can greatly benefit from the knowledge of the 

sensitivity information [1]. Sensitivity analysis techniques are crucial, especially 

in numerical microwave problems where analytical sensitivity solutions are 

impossible. Moreover, when the problem is large, the numerical simulation may 

become time intensive to an extent, which often makes the design cycle 

prohibitively slow. To address this problem, we focus on the extraction of the 



Chapter 1 Introduction 

sensitivities from the field solution with as little computational overhead as 

possible. 

The adjoint-variable method (AVM) is the most efficient method for the 

sensitivity analysis of complex linear and nonlinear problems [1], [2]. The AVM 

has a history of applications in the area of control theory [1], as well as in finite

element analysis in structural [1], [3] and electrical [4], [5], [6], [7], [8], [9] 

engineering. The application of the A VM in the microwave area emerges in the 

early 1970's with the computation of the network sensitivities based on 

voltage/current state variables and responses [5], [6], [7], [8], [10]. Yet, the 

computation is based on Tellegen's theory of circuits, not field solutions. 

Recently, an adjoint-variable method has been proposed for the sensitivity 

computation in numerical electromagnetic (EM) problems both in the time 

domain (the transmission line method, TLM, [11], and the finite-difference time

domain (FDTD) method, [12]) as well as in the frequency domain (the frequency 

domain TLM [13], [14], the method of moments, MoM [15], and the finite

element method, FEM [16], [17], [18]). Its efficiency in terms of computer time is 

orders of magnitude better compared to derivative estimations using finite

difference or higher order approximations at the response level. All traditional 

A VM techniques require one additional full-wave analysis (the adjoint system 

analysis) in addition to the original system analysis. Moreover, the excitation in 

the adjoint system analysis depends on the response and its relation to the solution 
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of the original problem. This may cause potential difficulties in the formulation of 

the adjoint analysis, and especially its implementation in the framework of a 

commercial high-frequency CAD package. This limits applications to specially 

developed in-house numerical codes. Another major drawback of the traditional 

exact A VM is the need to compute the system matrix derivatives. The analytical 

computation of the system matrix derivatives, especially with existing commercial 

codes, is deemed unfeasible [15]. In frequency-domain applications, the finite

difference approximations of the system matrix derivatives were attained using 

either finite differences via parameter perturbations [15] or discrete step-wise 

changes [12], [19]. 

Recently a method to calculate the so-called adjoint solution directly from 

the original EM system solution (first discussed in Akel et al. [16], in the case of 

the FEM formulation based on the tetrahedral edge elements) was devised [20], 

[21]. This method, also called self-adjoint sensitivity analysis, reduces the time for 

the Jacobian computation by half and at the same time improves applicability by 

removing the need to perform an adjoint-problem simulation. With this approach, 

we eliminate the additional (adjoint) system analysis and further improve the 

efficiency of the sensitivity computation [20], [21]. The computational load is 

significantly reduced without sacrificing the accuracy. 

However, the first self-adjoint formulations [16], [18] pose difficulties in 

implementation since they need access to the system matrix built by the simulator. 
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Commercial EM simulators rarely allow such access. Where available, the matrix 

export is inefficient since large amount of data must be stored on the hard disk. 

Thus, the last major obstacle in the way of developing a practical EM sensitivity

analysis tool has been the dependence of the sensitivity solver on the 

discretization scheme and the grid used by the simulator. 

In this thesis, the application of a novel self-adjoint sensitivity algorithm 

based on the finite-difference frequency-domain (FDFD) method, named finite

difference frequency-domain self-adjoint sensitivity analysis (FDFD-SASA), is 

proposed for the sensitivity analysis of microwave network parameters, i.e., S

parameters, of metallic structures. With a commercial high-frequency FEM solver, 

this standalone algorithm runs independently of the underlying analysis algorithm. 

It generates its own uniform finite-difference grid. To obtain the adjoint solutions, 

it uses the self-adjoint constants given in [20]. The only information it needs is the 

field solution at specific grid points. Thus, it can be easily integrated into any 

kind of design automation process with a commercial solver. 

In this thesis, for the first time the possibility of using central-node 

formulation for metallic objects is proposed and investigated. The central-node 

formulation was first proposed in [22] for the case of dielectric objects and time

domain solutions. There, it was shown that a central-node grid yields more 

accurate sensitivities in comparison with a finite-difference grid based on the Y ee

cell. Later, it was applied to the case of dielectric objects and frequency domain 
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solutions [23]. In contrast, metallic objects are better fitted to the Yee-cell grid as 

the boundary conditions for the tangential E-field components are satisfied 

exactly. However, the staggered nature of the Yee-cell complicates the 

implementation in the three-dimensional (3-D) case. In comparison, the central

node grid assumes that all three E-field components are co-located, which makes 

the realization much simpler. Here, both the 2-D and 3-D central-node 

formulations with metallic objects are proposed and investigated. 

The most promising application of the SASA is in the area of gradient

based optimization [2], [3], [24]. Gradient-based optimization is widely used to 

solve nonlinear design and inverse-imaging problems [1], [2], [3]. The 

optimization process can be significantly accelerated with the Jacobian provided 

by the SASA, since the computation of the Jacobian and/or Hessian is the 

bottleneck of the optimization efficiency with full-wave EM solvers. 

In this thesis, the advantage of the FDFD-SASA is validated by its 

application in gradient-based optimization of metallic structures. A metallic 

bandpass filter has been optimized using FDFD-SASA and forward finite

difference (FFD) Jacobians. The time savings realized by employing FDFD

SASA is demonstrated. The improved accuracy of the Jacobian also leads to 

improved convergence of the optimization process. Since there is no need to 

calculate analytical system matrix derivatives and there is no need for an adjoint 

simulation, the computational load of the Jacobian calculation is practically zero. 

5 



Chapter 1 Introduction 

Chapter 2 introduces the basics of the adjoint-variable methodology. We 

review the basic sensitivity expression of the A VM and discuss its 

implementation in the sensitivity analysis of complex linear systems. The 

computational overhead of the traditional A VM is analyzed and compared with 

the overhead of the finite-difference approximation. It also introduces the SASA 

approach in the frequency domain and comments on its general advantages. 

Chapter 3 explores the FDFD-SASA method and its application to S

parameter sensitivity computation for microwave structures using both Y ee-cell 

and central-node approaches. A formulation for 3-D sensitivity analysis of 

metallic objects is provided for the first time. These algorithms are validated by a 

rectangular waveguide bandpass filter example. Comparisons with the traditional 

finite-difference approximation are provided. 

Chapter 4 integrates the SASA method with the framework of gradient

based optimization. The FDFD-SASA method is validated through an 

optimization example. The convergence of the optimization using this method is 

compared with that using the finite differences at the response level. 

An overall conclusion is made in Chapter 5 and suggestions for future 

developments are given. 

The contributions of this research can be summarized as follows: 

(1) Application of the Y ee-cell based sensitivity algorithm m the 

frequency domain with 2-D metallic structures. 
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(2) Development of an efficient central-node based sensitivity 

computation algorithm with the finite-element method that integrates 

sensitivity calculation for both dielectric and metallic structures in 2-D, 

i.e., FDFD-SASA [25], [26]. 

(3) Development of a central node based algorithm for 3-D sensitivity 

analysis and hence completing the true applicability of our FDFD

SASA method to all types of structures regardless of shape and 

material. 

(4) Implementation of the FDFD-SASA algorithm with the commercial 

finite-element solver HFSS® [25], [26], [27]. 

(5) Validation ofthe efficiency ofFDFD-SASA through numerical design 

example [25]. 

(6) Application of the sensitivity algorithm in gradient-based optimization 

[26]. 
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CHAPTER2 

METHODOLOGY OF THE 

ADJOINT VARIABLE METHOD 

AND SELF ADJOINT SENSITIVITY 

ANALYSIS 

2.1 INTRODUCTION 

The importance of the design sensitivity analysis of distributed systems 

stems from the need to improve their performance or to know their uncertainties. 

The design sensitivity comprises the response derivatives with respect to shape or 

material parameters. Manufacturing and yield tolerances, design of experiments 

and models, design optimization, etc., are aspects of the overall design, which can 

greatly benefit from the availability of the response sensitivity. 

Commercial high-frequency electromagnetic (EM) solvers usually do not 

compute sensitivity information, i.e., the Jacobian of the objective function, with 

respect to the design parameters. For design purposes, when sensitivity 
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information is required, a finite-difference approximation at the response level is 

usually performed as a simple although inefficient way to obtain the response 

derivatives. The finite-difference approximation is highly inefficient in numerical 

computations, since it requires at least N+ 1 additional full system analyses for a 

problem with N designable parameters [1]. With higher-order approximations, 

the number of analyses increases. The feasibility of this approach becomes 

questionable when the design-variable space is large. 

The adjoint-variable method (AVM) is proved to be the most efficient 

method for sensitivity analysis [2], [3], [4] as it requires only one additional 

system analysis to compute all sensitivities. The additional analysis is known as 

adjoint system analysis, with the adjoint system matrix being the transpose of the 

system matrix ofthe original problem [1], [3], [4]. Thus, the AVM improves the 

efficiency of the sensitivity computation by a factor of N in comparison with the 

forward or backward finite-difference approximations. The performance of the 

AVM has been validated in control theory [2], [3], structural engineering [3], [4], 

and in circuit and computational EM applications in electrical engineering [5]. 

Yet, feasible implementations remain a challenge. The reason lies mainly in the 

complexity of these techniques. 

A simpler and more versatile approach has been adopted in [6], [7], [8] for 

analyses in the frequency domain. The effort to formulate analytically the system 

matrix derivative - an essential component of the sensitivity formula - was 

12 
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abandoned as impractical for a general purpose sensitivity solver. Instead, 

approximations of the system-matrix derivatives are employed using finite 

differences [8] or step-wise parameter changes in conjunction with a 2nd-order 

sensitivity formula [6], [7]. Neither the accuracy nor the computational speed are 

sacrificed. 

All of the above approaches require the analysis of an adjoint problem 

whose excitation is response dependent. Not only does this mean one additional 

full-wave simulation but it also requires modification of the electromagnetic (EM) 

analysis engine due to the specifics of the adjoint-problem excitation. Notably, 

Akel et al. [9] have pointed out that in the case of the FEM with tetrahedral edge 

elements, the sensitivity of the S-matrix can be derived without an adjoint 

simulation. 

In this chapter, we give a brief introduction into the methodology of the 

A VM, especially its applications with frequency-domain numerical EM solvers. 

Most of the discussion in this chapter and in the rest of the thesis focuses on 

applications with the finite-element method (FEM). We also discuss a general 

self-adjoint approach to the sensitivity analysis of network parameters of the 

linear problem in the frequency domain, which is at the core of a number of 

commercial high-frequency simulators. These standalone algorithms can be 

incorporated in an automated design to perform optimization, modeling, or 

13 
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tolerance analysis of high-frequency structures with any commercial solver, which 

exports the system matrix and the solution vector. 

In Section 2.2, we present the concept of the frequency-domain A VM for 

linear systems followed by a general discussion on the sensitivity analysis of 

complex linear systems. Section 2.3 discusses the difficulties in the 

implementation of the A VM with commercial solvers. The efficiency and the 

required computational resources are discussed in Section 2.4 along with a 

comparison with the finite-difference approximation at the response level. The 

advantages and the drawbacks ofthe AVM are also discussed. In Section 2.5, we 

briefly introduce the formulation of the finite-element method. Then in Section 

2.6, we introduce the definition of a self-adjoint problem and show the self

adjoint formulas for network-parameter sensitivity calculations, particularly for 

the S-parameter sensitivities, based on the finite-element method. Section 2. 7 

outlines the features of the commercial FEM solvers, which enable independent 

network-parameter sensitivity analysis, and gives a general procedure for the 

implementation of the SASA with commercial software. 

14 
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2.2 FREQUENCY-DOMAIN ADJOINT-VARIABLE 

METHOD 

After proper discretization, a time-harmonic linear EM problem (by linear, 

we refer to the fact that the problem has linear material properties) can be written 

as a linear system of equations [ 6]: 

Ax=b. (2.1) 

Here, A is the Mby M system matrix, x is the 1 by M state variable vector, e.g., 

theE-field solution vector, and b is the 1 by M excitation vector, which can be 

derived from the electromagnetic sources and the inhomogeneous boundary 

conditions. The system matrix is a function of the vector of design (shape or 

material) parameters p , i.e., A(p) . Thus, the field solution x is an implicit 

function of p . 

For sensitivity analysis purposes, we need to determine the gradient of a 

user defined response function f(p,x(p)) with respect to p at the field solution 

x of (2.1): 

V p/(p,x(p)) subject to Ax=b. (2.2) 

Here, the gradient of the response function f(p,x(p)) is defined as a row vector 

[4], [6] 

(2.3) 

15 



Chapter 2 Methodology of the Adjoint-Variable method and Self-adjoint Sensitivity 

Note that the response function f(p,x(p)) is formulated so that it may have an 

explicit dependence on the design variables in addition to its implicit dependence 

on p through x . In some situations, both dependencies exist. 

We first constrain our problem as a real-number problem, i.e., both the 

system matrix A(p) and the response function f(p,x(p)) are real. The 

sensitivity analysis with complex numbers is discussed next. 

According to [10], an AVM sensitivity expression can be formulated as: 

(2.4) 

where x is the system solution. The 'bar' emphasizes that x is not subject to 

differentiation in the V p(AX) term. Here, we divide the gradient of the response 

function into two parts: 

(2.5) 

Vp/ stands for the explicit dependence of the response function f on the design 

variables p , and V xf · V pX reflects the implicit dependence on p through the 

field solution x . V pX is defined as: 

\7 X= p (2.6) 

16 
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The vector x is the adjoint solution, which is the solution of the adjoint system 

ofequations [4], [10]: 

(2.7) 

The adjoint system excitation is 

(2.8) 

Here, we need to compute the original system solution .X, the adjoint 

system solution x, and the derivative of the system matrix with respect to each 

design variable 8A/8pi> i=1, ... ,N. Thus, with only two full-wave simulations, 

namely, the original system simulation and the adjoint system simulation, we can 

compute the sensitivities. 

It is important to notice that we need to compute the system matrix 

derivative with respect to each design parameter 8A/8pi, i=1, ... ,N. In some rare 

cases, the matrix derivatives may be analytically available [12], [13]. Then, the 

sensitivities are exact. According to [12], the time needed for the analytical 

computation of one system matrix derivative is comparable with one system 

matrix fill. Thus, the sensitivity computation of a problem with N design 

parameters leads to an overhead of N matrix fills in addition to the original and 

adjoint system analyses. 

For most of the full-wave EM analysis methods, the system matrix 

derivatives are either not analytically available or too complicated to be 

17 
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analytically derived for general design software. In these cases, the system matrix 

derivatives are computed by the finite-difference approximation [14]: 

8A(p) A(p+D.p; ·e;)-A(p) 

8p; 
i = 1, ... ,N. (2.9) 

Here, e; is the unit vector whose ith element equals 1 and all others equal 0: 

0 

e; = 1 ith element (2.10) 

0 

and D.p; is the finite-difference perturbation of the ith design variable. This 

approximation also requires N additional matrix fills, similarly to the exact 

method. Our studies have shown that the accuracy for the sensitivity computation 

using this system-matrix-level finite-difference approximation is satisfactory, with 

a relative error well below 1%, compared with the exact sensitivity computation 

[1]. 

The derivations in the above section apply to real-number problems only. 

However, in electromagnetic frequency-domain sensitivity analysis, the system 

equations are complex, and, often, the responses are complex, too. It can be 

shown that the sensitivity formula in the complex case can be derived from the 

real-number sensitivity formula. 

A complex linear system of equations m the form of (2.1) can be 

reformulated in a real-valued form [14]: 
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[91A -3A][ffix] [91b] 
3A 9tA 3x - 3b · (2.11) 

Here, 91 and 3 stand for the real and the 1magmary parts of a matrix, 

respectively. We can re-write (2.11) as 

(2.12) 

where 

[91A -3A] [ffix] [91b] Ar = 3A 9tA ' Xr = 3x ' br = 3b . (2.13) 

The size of the real-valued system of equations is twice the size of the complex-

valued one. 

With this real-valued system of equations, the A VM sensitivity expression 

for a real-valued response f becomes: 

(2.14) 

Here, Xr is the solution of the corresponding adjoint system of equations 

(2.15) 

" The real-valued adjoint system excitation br is 

(2.16) 

The adjoint system of equations can be written in a complex form as 

(2.17) 

where V xf = V lflxf + j\7 3xf · 
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Note that here we use the Hermitian transpose of A, which is the complex 

conjugate transpose. For complex matrices, the Hermitian transpose has 

analogous properties as those of the direct transpose for real-number matrices. 

Thus, with equation (2.17), we can write the A VM sensitivity expression in its 

complex form [ 6]: 

(2.18) 

Usually, the response function is also complex, i.e. 

(2.19) 

Here, fR and .h represent the real and imaginary parts off In most of the cases, 

the response function is analytic, i.e., it satisfies the Cauchy-Riemann equations 

[15]: 

V' IJixfR = V' ':Jxh = 9{'\/ xf 

- V' ':JxfR = V' 1Jixh =3V' xf· 

In these cases, the AVM sensitivity formula becomes [6], [10]: 

(2.20) 

(2.21) 

Still, as in the real-number cases, we only require one additional adjoint system 

analysis to compute the full sensitivity information. 

In some rare cases, the response functions are complex but not analytic 

[6]. In this situation [8], we must perform two separate AVM sensitivity analyses 

for the real and the imaginary parts of the response function: 

20 
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V' p/R =Y'J,fR+iR{xRH[V pb-V' p(AX)]} 

Y' ph =Y'J,Jl +iR{xiH[V pb-V p(AX)]} 

where XR is the solution of the real-part adjoint problem, 

AHxR=VIfl.xf 

and x1 is the solution of the imaginary-part adjoint problem, 

AH X] =Y' 'Jxf. 

2.3 DIFFICULTIES IN THE A VM IMPLEMENTATION 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

As stated above, commercial EM solvers cannot compute sensitivities. 

The major difficulty that prevents the integration of the AVM in commercial full

wave EM solvers is the unavailability of the system matrix derivatives with 

respect to the design parameters 8AI 8pi , i = 1, ... , N. The computation of the 

system matrix derivatives involves complicated manipulation of the mesh 

structure even when using a finite-difference approximation. 

2.4 COMPUTER RESOURSES AND THE ADJOINT

VARIABLE METHOD 

The sensitivity analysis usmg response level finite-difference 

approximations is equivalent toN additional full-wave analyses. Each full-wave 

analysis consists of two stages of calculations. The first stage involves the matrix 
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fill, and the second one involves solving the system of equations (2.1 ). The latter 

often involves the LU decomposition of the system matrix and the forward and 

backward substitutions. Iterative linear-system solvers are preferred when the 

system matrix is very large. Each of these stages is repeated N times if forward (or 

backward) finite-difference approximations are used at the response level for the 

purpose of sensitivity analysis. 

For sensitivity analysis using the AVM, only one additional full-wave 

analysis is performed. For this additional adjoint system analysis, a matrix fill is 

not required, as the system matrix of the adjoint problem is the transpose of the 

original one. The computational time required to transpose a matrix is negligible. 

Thus, the overhead related to this additional analysis is only the time and memory 

required to solve (2.17). This overhead may actually be minimal if the original 

problem (2.1) has already been solved by LU decomposition and the L and U 

factors are re-used in the solution of (2.17) [ 1 0]. 

The remaining overhead of the A VM is to compute the sensitivity with 

respect to each design parameters using (2.21 ). This also involves two steps: 1) 

the computation of the system matrix derivatives using (2.9), which is equivalent 

to a matrix fill for each perturbed system of equations, i.e. A(p+ I!J.p; ·e;) , and 2) 

the calculation of the AVM sensitivity expression (2.21). 
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We compare the overhead of the sensitivity analysis using the traditional 

finite-difference (FD) approximation at the response level, and that of the AVM, 

for a problem with N design parameters in Table 2.1. 

TABLE2.1 
COMPUTATIONAL RESOURCE COMPARISON BETWEEN THE FD 

METHOD AND THE A VM 

Method 

FD 
AVM 

Matrix fills 

N 
N 

System solutions 

N 
1 

Sensitivity formula 
computation 

0 
N 

For problems with FEM formulation, the system matrix is often sparse due 

to the nature of the numerical method. Thus, the time required by a matrix fill is 

usually far less than the time required by a system solution, especially for an 

electrically large problem. Also, the time required for the calculation of the 

sensitivity formula (2.21) is negligible compared with the other two computations. 

Thus, the A VM is significantly more efficient than the traditional FD method. 

2.5 FINITE-ELEMENT METHOD FOR EM PROBLEMS 

The FEM is a numerical technique for obtaining approximate solutions to 

boundary-value problems of mathematical physics. The FEM was first introduced 

in the 1950's, mainly in the structural design area. Through more than 50 years of 

development, FEM has been widely applied in all kinds of areas such as 
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mechanical engineering, structural engineering, thermal dynamic engineering, as 

well as electrical engineering. The FEM has been recognized as a general method 

widely applicable to engineering and physics problems. 

The FEM was first used to solve electromagnetic problems in 1965, by 0. 

C. Zienkiewicz and Y. K. Cheung [16], by discretizing 2-D problems and using 

Poisson's equation. Since then, FEM has been developed as a major numerical 

method in computational electromagnetics and has been applied to a wide variety 

of problems for different frequency bands. 

The FEM implementation mainly consists of four stages [ 17]: 1) domain 

descretization, 2) selection of interpolation functions, 3) system equation 

formulation, and 4) system equation solution. 

In the first stage, the whole computational domain, denoted as Q , IS 

subdivided into a number of small domains, or the "elements", as 

ne, e=1,2, .. . ,K, where K is the number of the elements. A typical element can 

be a line segment in one-dimensional domains, a triangle or a rectangle in two

dimensinal domains, and a tetrahedron, a triangular prism or a rectangular brick in 

three-dimensional domains, as Figure 2.1 shows [17]. 

In the scalar FEM, the problem is formulated in terms of the unknown 

function ¢ computed at the nodes of each element, while in the vector FEM it is 

computed at the edge of each element. In electromagnetics, ¢ is the field solution. 

The complete description of an element node in the FEM includes the coordinates 

24 
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of the node, its local position in the element and its global position in the entire 

system (referred to as "local number" and "global number"). 

a) 

Figure 2.1 

b) 

c) 

Basic elements in the FEM mesh: a) one-dimensional, b) two
dimensional, c) three-dimensional. 

The second stage is to select an interpolation function, which provides an 

approximation of the solution at coordinates other than the element nodes (scalar 

FEM), or the element edges (vector FEM). The interpolation function can be a 

polynomial, which is linear, quadratic, or higher-order. Thus, the solution 

anywhere in an element can be expressed as: 

n 

¢Je=LN}¢J. (2.26) 
J=l 
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Here, n is the number of the nodes in one element, t/Jj is the value of tjJ at the jth 

node, and Nj is the interpolation coefficient for the jth node. The latter equals 1 

at the jth node and 0 at all other nodes of the element. 

After proper discretization and interpolation, we can formulate the system 

of equations using the Ritz method or the Galerkin method, both of which solve 

the boundary value problem 

£¢=[. (2.27) 

Here, J; is the integro-differential operator, and f is the function determined by 

the excitation or the boundary conditions. 

The Ritz method or the Galerkin method cast (2.27) in the general matrix 

form: 

KffJ=h. (2.28) 

Here, K is an M by M matrix where M is the number of the total nodes (or 

edges), ffJ is an M by 1 vector of the solution values at the nodes, b is an M by 1 

vector computed from the desired excitation/and the boundary conditions. 

For consistency of notations, in this thesis, the solution vector ffJ 1s 

expressed as the field solution vector x, and K is expressed as the system matrix 

A. Then, equation (2.28) has exactly the same form as equation (2.1). 
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2.6 SELF-ADJOINT SENSITIVITIES FORS-PARAMETERS 

IN THE FINITE-ELEMENT METHOD 

The A VM needs an additional adjoint system analysis for the sensitivity 

computation. It is well known that this adjoint system analysis is hard to set up 

and carry out in commercial EM software. This limits the practical applications 

oftheAVM. 

In this section, we give a detailed derivation of the self-adjoint sensitivity 

analysis (SASA) for the scattering matrix, i.e., the S-parameters. We show that 

SASA needs only the original system analysis to compute the sensitivity 

information [18]. We also comment on how to use SASA to compute other 

network parameter sensitivities. 

Recall the AVM sensitivity formula (2.4). For network parameter 

sensitivity, the gradients V pb and Vj,F in (2.4) vanish, and the formula 

becomes: 

V PF = -xT · V P (AX) . (2.29) 

In (2.29), .X is fixed, and only A is differentiated. 

To obtain the full scattering matrix of a K-port structure for a particular 

mode v, K solutions of the system of equations (2.1) are carried out with one of 

the ports being excited while the rest of the ports are matched. We assume that 

the jth port is excited and define the skj parameters as 
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(2.30) 

}-port 

Here, E)u)inc is the incident field of the v mode at the jth port, E)u) is the 

resulting E-field solution, an is the unit normal to the respective port surface, and 

e~u), ~ = j,k, are the orthonormal modal vectors representing the v-mode E-

field distribution across the respective ports. The vectors e~u) form an 

orthonormal basis: 

fJ ( e~u) · e~u')) ds~ = Ouu' (2.31) 
~-port 

where Ouu' = 1 if the modes v and v' are the same, and Ouu' = 0 otherwise. They 

are obtained either analytically or numerically [17], [19]. The analytical 

expressions for the modes e<v) of a rectangular waveguide can be found in [17]. 

We note that if the S-parameters in (2.30) are computed at planes different 

from their respective ports, de-embedding is applied. It is in the form of an 

additional exponential factor; e.g., for the reflection coefficient, it is e2YLd where 

r is the propagation constant and Ld is the distance between the port and the 

plane of de-embedding. This factor is parameter-independent and does not 

change the derivations which follow. It is omitted for the sake of simpler 

notations. 
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The formulation (2.30) uses the approach in [17] where the output power 

wave in the kth port is obtained by projecting the transverse components of the 

transmitted/reflected E-field onto the transverse components of the port modal 

vector e~v) . In the denominator, the input power wave in the jth port is obtained in 

the same manner. For a single-mode analysis, the typical incident field setup is 

Ejv)inc = E01ejv) where E01 is a user defined magnitude. Usually, E01 = 1. Note 

that an alternative formulation, see, e.g., [19], uses the orthonormal set (2.31) as 

well as its dual (H-field) vector set. Both S-parameter definitions lead to the same 

final sensitivity result. We choose to work with (2.30). 

Since we consider the S-parameter sensitivities of a single mode, for 

simpler notations, the superscript ( v) is omitted but implied in all formulas 

hereafter. Thus, with the jth port being excited, the respective right-hand side of 

(2.1) is denoted by b 1 , and its respective solution vector is x 1 . It represents the 

field solution E 1 . K such field solutions x 1 , j = 1, ... , K, are available from the S-

parameter analysis of the structure. 

In the FEM, within each surface element s at a port, the field E8 is 

approximated via the E-field components xf , i = 1, ... , ns , tangential to the ns 

edges ofthe element [17]: 

ns 

a~ X E8 = _LBfxt = (xs)T. {Bs} = {Bsf. xs. (2.32) 
i=! 
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Here, a~ is the unit normal to the surface element, xs = [ xt · · · x~s ] T, and Bf are 

the vector basis functions of the element. The column {Bs} has the Bf vectors as 

its elements, {Bs} = [Bf · · · B~s Y . Note that the vector of edge field components 

xs is a subset of the solution x of (2.1 ). 

If Ski is the response whose sensitivities we need, i.e., F =Ski, we must 

consider the solution of the adjoint problem: 

where the respective adjoint excitation becomes bkJ = [V xSkJ Y. Instead of 

dealing with the global adjoint excitation vector [V xSkJ Y we can consider its 

elemental subset [V xsSkJ Y. 

From (2.30), we see that Ski is a linear and, therefore, analytic function of 

the field solution E 1 , and, therefore, of x1, as implied by the linear relation (2.32). 

Then the analysis with (2.29) and (2.33) applies. We first write (2.30) in terms of 

the field of the surface elements of the kth port: 

(2.34) 

where 8kJ has been already defined in (2.30). Making use of (2.32), 
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(2.35) 

From (2.35), we find the derivatives of SkJ with respect to the edge field 

components of the Sk element at the kth port: 

(2.36) 

where nsk is the number of edges of the sk element. In gradient notation, (2.36) 

becomes 

Jf {Bsk} · (a~k x ek )dssk 

[V 'k S . y = ~Sk'--:·e:.:;le:.:::m=en:.:.t --.------

r kj Jf (an x E~;c) · (an x e J )ds J 
(2.37) 

j-port 

After the assembly of the FEM equations, each of the elements of [V xsk Ski Y 

becomes an element of the global adjoint excitation vector bkJ = [V xS~g·Y. 

We now compare the elements of the adjoint excitation (2.3 7) with the 

elements of the excitation for the sk element of the kth port in the original FEM 

problem [17]: 

bsk = ff {Bsk}. (UTe X a~k) dssk (2.38) 
sk-element 

where 

(2.39) 

31 



Chapter 2 Methodology of the Adjoint-Variable method and Self-adjoint Sensitivity 

for a single-mode incident field. Here, ek is the normalized modal vector, Eok is a 

user defined magnitude (usually set as 1), and Yk is the modal propagation 

constant of the port. The comparison reveals a simple linear relationship between 

" the original and adjoint excitation vectors, bk and bkJ: 

bkj= 1 
·hk. 

2ykEok fJ (an xE7c)·(an xe1)ds1 
(2.40) 

}-port 

" Both bk and bkJ are obtained from their respective elemental excitations, bsk and 

[V xsk SkJ Y, through identical system-assembly procedures. 

" Next, we turn to the adjoint solutions XkJ resulting from bkJ 

(k,j = 1, ... ,K). We note that the FEM system matrix A is symmetric (see, e.g., 

[17]), 

(2.41) 

From (2.40) and (2.41 ), we conclude that all adjoint solutions XkJ needed for the 

S-parameter sensitivities can be calculated from the K original solution vectors 

xk, k = 1, ... , K , by a simple multiplication with a known complex constant: 

(2.42) 

}-port 

They are then substituted in (2.29) where F can be any of the elements of the S-

matrix. 
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The self-adjoint nature of the solution derived above shows that the 

information necessary to compute the S-parameter sensitivities is already 

contained in the full-wave solution provided by the FEM simulator. The 

sensitivity analysis is thus reduced to a relatively simple and entirely independent 

post-process, which does not require additional full-wave solutions. 

As a conclusion, we state the sensitivity formula for the self-adjoint S

parameter problem: 

(2.43) 

Here, K kJ is a constant, which depends on the power of the waves incident upon 

the jth and kth ports. 

We also notice that the S-parameters relate to all other types of network 

parameters through known analytical formulas. Thus, the S-parameter sensitivities 

can be converted to any other type of network-parameter sensitivities using chain 

differentiation. 

2.7 GENERAL PROCEDURES AND SOFTWARE 

REQUIREMENTS FOR SASA 

Assume that the basic steps in the EM structure analysis have already been 

carried out. These include: 1) a geometrical model of the structure has been built 

through the graphic user interface of the simulator, 2) a mesh has been generated, 
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3) the system matrix A has been assembled, 4) the system equations have been 

solved for all K port excitations, and the original solution vectors xk, k = 1, ... , K , 

of the nominal structure have been found with sufficient accuracy. The self-

adjoint sensitivity analysis is then carried out with the following steps: 

(1) Parameterization: Identify design parameters Pi, i = 1, ... ,N. 

(2) Generation of Matrix Derivatives: For each Pi, perturb the structure 

slightly (with about 1 % of the nominal Pi value) while keeping the other 

parameters at their nominal values. Re-generate the system matrix 

Ai = A(p +!!.pi · ui) , where ui is a N x 1 vector whose elements are all zero 

except the ith one, ui = 1 . Compute the N derivatives of the system matrix via 

finite differences: 

8A M A·-A 
-~-= I ,i=1, ... ,N. 
api /¥Ji /¥Ji 

(2.44) 

Note that (2.44) is applicable only if A and A; are of the same size, i.e., the two 

respective meshes contain the same number of nodes and elements. Moreover, 

the numbering of these nodes and elements must correspond to the same locations 

(within the prescribed perturbation) in the original and perturbed structures. 

(3) Sensitivity Computations: Use (2.43) with the proper constant K. 

The above steps show that the EM simulator must have certain features, 

which enable the self-adjoint sensitivity analysis. First, it must be able to export 

the system matrix so that the user can compute the system matrix derivatives with 
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(2.44). Second, it must allow the control over the mesh generation so that (2.44) 

is physically meaningful. Third, it must export the field/current solution vector x 

so that we can compute the sensitivities with (2.43). The second and third 

features are available with practically all commercial EM simulators. The first 

feature deserves more attention. The system matrix is typically very large. 

Fortunately, in the FEM it is usually sparse and can be compressed and further 

stored in the computer RAM or in a disk file without excessive time delay. Only a 

few of the commercial simulators give access to the generated system matrices. 

Hence, the necessity for a self-adjoint formulation without requiring elaborate 

manipulation of system matrix is greatly felt. 
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CHAPTER3 

FINITE-DIFFERENCE FREQUCY

DOMAIN SELF- ADJOINT 

SENSITIVITY ANALYSIS FOR 

METALLIC STRUCTURES 

3.1 INTRODUCTION 

The goal of the design of a multi-port electromagnetic structure is 

obtaining the optimal values of optimizable parameters such that responses satisfy 

the specifications over the desired frequency range. The adjoint-variable method 

(AVM) is known to be the most efficient approach to design sensitivity analysis 

for problems of high complexity where the number of state variables is much 

greater than the number of the required response derivatives [1], [2], [3]. Yet, 

feasible implementations remain a challenge. The reason lies mainly in the 

complexity of these techniques. They require the analysis of an adjoint problem 

whose excitation is response dependent. Not only does this mean one additional 
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full-wave simulation but it also requires modification ofthe electromagnetic (EM) 

analysis engine due to the specifics of the adjoint-problem excitation. Techniques 

complementary to the finite-element method (FEM) have been developed in 

electrical engineering [4], [5]. A simpler and more versatile approach has been 

adopted [6], [7], [8], [9] for analyses in the frequency domain, which is described 

in Chapter 2. Instead of analytical formulations, approximations of the system

matrix derivatives are employed using finite differences or the iterative Broyden 

update [9]. 

When the design requirements involve the S-parameters, the traditional 

EM sensitivity analysis often determines the N derivatives for the N design 

parameters by approximations at the response level. The structure is perturbed for 

each designable parameter and a system analysis is performed. With central finite 

differences, such an approach would require 2N+ 1 system analyses to compute the 

objective function and its gradient. If N is large, this approach may easily become 

impractical. Generally, the AVM requires two simulations, the original and the 

adjoint simulations, to compute the derivatives. It is hard to set up and carry out 

the adjoint simulation in commercial EM softwares. On the other hand, the self

adjoint sensitivity analysis (SASA) [8] needs only one simulation to obtain all 

derivatives regardless of their number together with the response itself. 

In general, both the conventional adjoint-variable method and the self

adjoint method require access to the system matrix built by the simulator. 
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Commercial simulators, however, rarely allow such access due to copyright 

protection. Where available, the matrix export is inefficient since large amount of 

space is required to store the data on the hard disk and this is quite time

consuming. 

In this chapter, a self-adjoint approach to the 2-D and 3-D sensitivity 

analysis of network parameters using structured grids with finite-element EM 

solvers is formulated and validated in the case of metallic objects. The S

parameter derivatives are computed as an independent post-process, which has 

negligible computational requirements compared to a full-wave system analysis. It 

requires neither an adjoint problem nor system matrix derivatives. We focus on 

the linear problem in the frequency domain, which is at the core of a number of 

commercial high-frequency simulators. Thus, for the first time, we suggest 

practical and fast sensitivity solutions realized entirely outside the framework of 

the EM solver. These standalone algorithms can be incorporated in an automated 

design to perform optimization, modeling, or tolerance analysis of high-frequency 

structures with any commercial solver, which exports the field solution. 

In our work, we investigate self-adjoint problems solved using Ansoft's 

high-frequency structure simulator (HFSS) [10] for waveguide structures with 

metallic boundaries. Both Yee-cell and central-node techniques are tested and 

compared for accuracy. An H-plane waveguide filter is used to validate the 

proposed methods. 
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In Section 3 .2, we introduce the formulation of the finite-difference 

frequency-domain sensitivity analysis method for network-parameter sensitivity 

calculations, particularly for the S-parameter sensitivities. Then in Section 3.3, we 

ouline the two approaches for metallic objects. Section 3.4 provides a validation 

example and compares the Yee-cell and central-node approaches applied with 

different design parameters. Section 3.5 discusses the 3-D sensitivity analysis with 

regard to metallic objects. Section 3.6 provides verification of our proposed 3-D 

method with an example. 

3.2 OVERVIEW OF FINITE-DIFFERENCE FREQUENCY

DOMAIN SELF -ADJOINT SENSITIVITIES FOR S

PARAMETERS 

In this section, we provide an overview of self-adjoint sensitivity analysis 

based on the finite-difference frequency-domain technique. A description of 

SASA developed for the FEM is provided in Chapter 2. The proposed finite

difference frequency-domain SASA enhances this application by replacing the 

need for system matrix export with the introduction of a solver-independent finite

difference grid. This approach not only improves the time required by the overall 

sensitivity analysis but also ensures better software portability for a variety of 

frequency-domain simulators. 
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An EM problem in a linear medium can be described by the vector wave 

equation for the E field 

I 82E BE 8J 
V'xj.[V'xE+p&& -+pu-=-p-

r 0 0 r 8t2 0 at 0 at (3.1) 

where &0 , flo are the permittivity and permeability of vacuum, while & 7 , flr , u 

are the medium relative permittivity, permeability, and conductivity, respectively. 

In general, &
7

, Jl
7 

, u are tensors. Here, we assume an isotropic medium for 

simplicity. In the frequency domain, (3.1) can be written as 

(3.2) 

One of the conditions for the problem described by (3.2) to be self-adjoint is that 

these tensors are symmetric or Hermitian. The finite-difference discretization of 

(3 .2) leads to 

(3.3) 

where 

(3.4) 

Here, k0 = OJ~ Jlo&o and l!..h is the discretization step. The finite-difference 

operator D 2 has three vector components. It corresponds to the double-curl 

operator in (3.2) (with a minus sign). For example, in a magnetically isotropic 

medium, and on a Yee-cell grid, the x-component is [11]: 
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where 

and 

DJ.l E = Ex(xo,yo+!:J.y,zo) + Ex(xo,yo-!:J.y,z0 ) 
Y.Y x(xo,Yo,zo) 

Jlr (xo,Yo+!:J.y/2,zo) Jlr (xo,Yo-!:J.y/2,zo) 

[---
1
--+ 

1 
]·Ex(xo,yo,zo) 

Jlr (xo,Yo+!:J.y/2,zo) Jlr (xo,yo-!:J.yl2,zo) 

Ey(xo+!:J.xl2,yo+!:J.y/2,zo)- Ey(xo-!:J.xl2,yo+!:J.y/2,zo) 

Jlr(xo,yo+!:J.y/2,zo) 

Ey(x0+!:J.xl2,yo-!:J.y/2,zo)-Ey(xo-!:J.xl2,yo-!:J.y/2,zo) 

Jlr(xo,yo-!:J.y/2,zo) 

(3.6) 

(3.7) 

(3.8) 

The EM response in the frequency-domain sensitivity analysis IS a 

functional of the field solution which can be written as 

F(E,p) = IffJ(E,p)dQ. (3.9) 
n 

Here, n is the computational volume and p = [p1 ••• p N f contains the design 

variables, which relate to the shape and the materials of the structure. 

Using an approach similar to that in the time domain [ 11] and bearing in 

mind that the S-parameters are functions of the field solution at the ports, the 

discrete sensitivity formula for N shape parameters is obtained from (3.9) as 
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asjk ~ -K· fffCE- ·) . dnR(Ek) dr.. k 1 N. 
a ;k ; n A .:!:..:!: ' j, = '·· ., p· 
lfJn Q D.Pn 

(3.1 0) 

Here, NP denotes the total number of ports. The optimizable shape parameter 

p n ( n = 1,. · ·, N) can assume only discrete values snapped to the finite-difference 

grid of the sensitivity solver whose step is dh . Thus, !J..pn = ±dh . We emphasize 

that the grid of the sensitivity solver is independent of that of the simulator and 

dh is usually chosen to be equal or less than the length of the smallest edge of the 

perturbed shape (but not smaller than the shortest grid edge of the simulation grid 

at the object). Ek denotes the field solution resulting from the simulation of the 

original structure with port k being excited. A distinct feature of the discrete 

formula is that the adjoint field solution, CE jk )n = Kjk (E j )n, corresponds to the 

nth perturbed state of the structure, i.e., the structure in which Pn is perturbed by 

dpn while all other parameters are kept at their nominal values. (E j )n is obtained 

from E j through a simple field-mapping procedure. The expressions for the self-

adjoint constants Kjk for S-parameters computed by an FEM solver can be found 

in [8]. Further, the term dnR(E) is computed as 

(3.11) 

where dnD 2 and dna are the changes of the frequency-domain finite-difference 

(FDFD) system coefficients arising from the changes in the material/shape 
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parameters of grid cells affected by the perturbation f¥Jn = ±11h . The FDFD 

source term G may also be affected by shape perturbations, which is reflected by 

The S-parameter sensitivity formula for material parameters is exact in the 

sense that the system coefficient derivatives are analytical and the material 

parameters such as permittivity and conductivity belong to a continuous (not 

discrete) space : 

8Sjk = -K,·k ffJE-,. 8R(Ek) dr..' :!.~ j,k=1, ... ,Np 
8pn n apn 

(3.12) 

where 

(3.13) 

~ 

Note that the exact formula reqmres that the adjoint field E jk 

corresponds to the structure's nominal (unperturbed) state. Field mapping is not 

needed. 

The shape sensitivity formula (3 .1 0) can be discretized as: 

(3.14) 

where 

(3.15) 
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In the FEM, the self-adjoint constant Kjk is derived as [8] : 

1 
(3.16) Kjk = ---~---------

2yjEOj Jf (anxEftc)·(anxek)dsk. 
k-port 

Here, yj is the modal propagation constant of the jth port, Eoj is a user defined 

magnitude at the jth port, Efc is the incident field at the kth port, an is the unit 

normal to the respective port surface, and ek is the orthonormal modal vector. We 

apply our theory to sensitivity analysis with field solutions obtained with Ansoft's 

HFSS [10]. In HFSS, when the kth port is excited by a wave port, absorbing 

boundary conditions are applied at all other ports. 

To summarize, we state the sensitivity formula for the self-adjoint S-

parameter problem: 

(3.17) 

The only points needed for shape sensitivity analysis are those near the 

boundary of perturbed structures [11]. With shape parameters, we need to apply 

our mapping technique [11] in order to obtain the field solution in the n-th 

perturbed state from the field solution in the nominal (unperturbed) state. The 

implementation of the field mappings in 2-D and 3-D analyses are explained in 

detail in the next sections. 
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3.3 SELF -ADJOINT SENSITIVITIES FOR S

PARAMETERS OF METALLIC STRUCTURES 

(THE 2-D CASE) 

3.3.1 Y ee-Cell Based Approach 

Y ee-cell FD grid was originally used for the time-domain sensitivity 

analysis of both dielectric and metallic objects [ 11]. Here, we apply it for the first 

time to the frequency-domain sensitivity analysis of metallic structures. Due to the 

structured nature of the grid, the implementation is rather straightforward and, at 

the same time, computationally efficient since it eliminates the calculation of the 

system matrix derivatives. 

For a 2-D TMY problem in a magnetically homogeneous medium, (3.2) 

reduces to 

(3.18) 

Here, c is the speed of light in vacuum. Applying central finite differences to 

(3.18), we obtain [11] 

(3.19) 

where 

(3.20) 

(3.21) 
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h =11h h =11h 
X Ax' Z /1z• (3.22) 

The difference operators in (3.21) are as follows: 

(3.23) 

(3.24) 

To recapitulate, we state the sensitivity formula for the self-adjoint S-

parameter problem for 2-D TMY case in a discretized form: 

(3.25) 

For the computation of shape sensitivities, only the field points around the 

perturbed object boundary are needed. The adjoint field values are approximated 

by shifting the original-field coordinates in space in the direction of the assumed 

nth parameter perturbation [11]. Figure 3.1 illustrates how the mapping technique 

works in a 2-D problem. There, the dark area represents the original structure. In 

order to compute the adjoint field En for a perturbation in the parameter Pn, we 

imagine a perturbation of the structure one cell further along the Pn direction (the 

light-gray area). The points where the adjoint field of the perturbed problem is 

needed are the square points. They are approximated by the adjoint field of the 

unperturbed problem at the circle points. Following this methodology, all N 

perturbed adjoint field solutions for the computation of the N parameter 

sensitivities can be obtained from only one unperturbed system simulation. The 
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total number of system analyses for the response and its sensitivities is one, 

compared with 2N+ 1 system analyses if central ftnite differences at the response 

level are used. 

Pn -------·---------

------0 ---
f:,p=tu . ? 

X ________ T ___ _ 
····~· 

---r--
L___ .... z 

Figure 3.1 Field mapping technique. 

When the design parameters relate to the shape, the derivatives of the 

system coefficients 0 2
, a , and G cannot be mathematically deftned [11]. In this 

case, we resort to finding the differences of the system coefficients in two system 

states: the nominal (unperturbed) state and the nth perturbed state. In the nth 

perturbed state, the parameter Pn changes to Pn + llp
11 

while all other parameters 
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are kept at their nominal values. The change 11pn is usually chosen to be one cell, 

which is the smallest possible on-grid change. As a consequence, the system 

coefficients in (3.19) at the perturbation grid point change. 

The perturbation grid points are the points where either the original or the 

adjoint field values are needed for the sensitivity computation. For example, for 

the computation of the shape sensitivities of a perfect metallic object, the 

perturbation grid points are those being metallized or de-metallized during the 

perturbation as well as their neighbors. 

In the case of metallization, of the three system coefficients, only the 

double curl operator D 2 is affected. This is because the tangential electric field 

components become zero at the edges of all metallized grid cells. 

Correspondingly, the components of D 2 multiplying these electric field 

components become zero. 

If the object is de-metallized, the only contribution to the 11nR(Ek) term is 

due to 11n(/JJn) in (3.15). The implicit current term G, which in the unperturbed 

structure is not zero on the metallic surface, now becomes zero [ 11]. 

Figure 3.2 shows the locations of points where fields are recorded for a 

perturbation in the ±x direction. At the points marked with squares in Figure 3 .2, 

- A 

both the term 11nR(Ey) and the adjoint field (Ey)n are not zero. These points 
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ak) 
- >' 

• r- (ik),r, 
'+' '+' 

---
-- --

VII Perturbati 
direction 

th 

Figure 3.2 

'-- r- '--h 
'-- " '--I' 

(a) Metallization 
case 

'-' h '-- h 

'-- I' '-- I' 

(b) De-metallization 
case 

Locations where the field is needed for the computation of the 
derivatives with respect to the length of the object in: (a) 
metallization and (b) de-metallization case. The original and 
adjoint field values are needed at the points marked with circles 
and squares, respectively. The arrows denote the field mapping 
used to obtain the adjoint field of the perturbed problem from the 
adjoint field of the unperturbed problem (recorded at points 
indicated by crosses). Since both adjoint and original field values 
are obtained from the original problem simulation only, the actual 
locations where the field is recorded are: (a) at crosses; (b) at 
circles. 

surround the grid cells, which are 'metallized' as a result of a perturbation 

M =+&-.At point (i, k) in Figure 3.2 (a), the AnR(Ey) term is calculated as [11]: 

(3.26) 

To calculate all "metallization" contributions to the sensitivity formula (3.25), we 

need the adjoint field at the points marked by a square. These are obtained by the 

field mapping, i.e., assuming that the field at crosses is same as the field at 
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squares upon perturbation. The fields at points marked by circles are used to 

Non-zero contribution to the sensitivity formulation is also generated in 

the 'de-metallized' region. At the point (i, k) in Figure 3.2 (b), which illustrates 

the demetallization case, ~nR(Ey) is [11]: 

(3.27) 

3.3.2 Central-node Based Approach 

In the time-domain sensitivity algorithm [11], [12], the Yee-cell is 

adopted. This is the grid traditionally employed by the finite-difference time-

domain (FDTD) method. There, the field components are staggered by half a step 

in space. We apply and verify this same approach with metallic objects using 

solutions provided by the frequency-domain FEM. Figure 3.3 shows with crosses 

some of the points where the vertical E-field component is recorded on a Yee-cell 

grid. 

Recently, we have shown [14] that a central-node finite-difference grid, 

where all three field components are co-located, improves the accuracy of the 

derivative calculations significantly in the case of structures involving high-

contrast dielectric interfaces. Later, this approach was applied to the case of 

dielectric objects and frequency-domain solutions [15]. In contrast, metallic 

objects are better fitted to the Yee-cell grid as the boundary conditions for the 
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tangential E-field components are satisfied exactly. Here, for the 151 time, we 

present results in implementing the central-node approach for derivative 

calculations with respect to the shapes of metallic objects. 

Figure 3.3 A 2-D cut of the discretization grid used by the frnite-element 
simulator superimposed with the FD grid used by the sensitivity 
solver for metallic septum. The vertical field component is 
recorded at grid points indicated by: (i) crosses - in the Y ee cell 
grid; (ii) dots - in the central-node grid. 

The central-node FD cell is characterized by a single node where all three 

E-field components are calculated. The central-node grid cannot impose vanishing 

tangential E-field exactly at the surface of a metallic object. Instead, it assumes 

that all three field components vanish in the object's interior [16]. Like the Yee 

cell, its faces coincide with material interfaces and its edges follow the edges of 

objects. The points at which vertical E-field is recorded in the central-node grid 

for 2-D case are illustrated in Figure 3.3 by black dots. Mapping techniques 
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similar to those of the Y ee-cell approach are used to determine the field values in 

the perturbed state. The method of the derivative computations and the changes in 

the system coefficients remain the same. 

3.4 EXAMPLE 

We compute the network-parameter sensitivities with our self-adjoint 

formula based on finite-difference frequency-domain technique and compare the 

results with those obtained by a central finite-difference approximation applied 

directly at the level of the S-parameter response. This second approach requires 

an additional full-wave simulation for each designable parameter. 

3.4.1 Six-Section H-Plane Waveguide Filter 

A six-septum metallic H-plane filter is used to test the accuracy of both the 

Yee-cell and the central-node approaches as compared to the response-level finite

difference approach. The sensitivities of this structure have already been 

investigated for an energy-type response with the TLM method [12] and time

domain FDTD method [11], [12]. 

Figure 3.4 shows the geometry and the nominal design parameter values of 

the H-plane filter. We consider the derivatives of the S-parameters with respect to 

L4 and S1. The computational domain of the structure has the dimensions 

(56 x 26 x 700)!1h. Because of the symmetry of the dominant mode, only half the 
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~ Lt s1 s2 sJ 
9M !OM !OM 26M 26M 27M 

Figure 3.4 H-plane waveguide filter [17]. 

Table 3.1 The nominal design parameter values. (All dimensions in mm) 

a 17.4244 

b 15.7988 

8 0.62230 

L1 4.35610 

L2 5.60070 

L3 6.22300 

L4 6.22300 

s1 16.1798 

s2 16.1798 

s3 16.8021 
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computational domain in the x-direction is simulated by using a magnetic 

boundary. The analysis is performed at fo = 7 GHz where only the dominant TE10 

mode propagates. The maximum mesh convergence error for the S-parameters is 

set as 0.009. We set the step size ofthe sensitivity grid as !.':.h = t5 = 0.6223 mm. 

The port symmetry of the filter can be used in both HFSS simulation and 

the post-processing. We do not need to export field values when port 2 is excited 

because it is fully symmetric to the one when port 1 is excited where the plane of 

symmetry is mid-way along the filter. However, due to the minor effect of extra 

field exporting on the overall simulation time for sensitivity analysis, this 

symmetry was not used in the present implementation. In the case of the 

parameter L4, we compute the sensitivities for both the metallization (the forward 

perturbation and the de-metallization case (the backward perturbation). The fields 

Figure 3.5 

X 

,. 
"' '- ,/ L 

' ./ z 

.. 

'-- "\ '-- "\ 

111--+--1 
Waveguide wall 

Locations for recording Ey for the derivatives with respect to L4 

(regardless of whether we assume metallization or de
metallization). Grid cell size of the sensitivity grid is set as 
l.':.x = !.':.z = t5 . 
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we need to record are the ones adjacent to the perturbed boundary, see Figure 3.5. 

The field Ey is recorded at points indicated by circles. Note that these locations are 

in accordance with the illustration in Figure 3.2. 

For the derivatives with respect to S1 , the perturbation grid points are 

shown in Figure 3.6. A perturbation of S1 by &' involves simultaneously the 

metallization of cells on one side of the septum and the de-metallization of cells 

on other side of the septum. Here, we assume a shift of the structure to the left, so 

that the cells on the left are metallized while the right-hand cells are de-

metallized. In Figure 3 .6, the points with a cross are the actual points where we 

record the fields; the points with a square are the adjoint field points and those 

with a circle are the original field points. 

Figure 3.6 
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direction 

The recorded field locations for the derivatives with respect to S1• 

The points, at which the field is recorded, are marked with a cross. 
The original field and the adjoint field values are needed at the 
points marked with circles and squares, respectively. The arrows 
denote the field mapping we use to obtain the adjoint field of the 
perturbed problem. 
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The S-parameter derivatives are computed with our FDFD-based self

adjoint sensitivity analysis technique and are compared with the derivatives 

obtained via response-level central finite differences (CFD). In all plots, our 

results are marked with FDFD-SASA (for finite-difference frequency-domain 

self-adjoint sensitivity analysis), while the results obtained through direct finite 

differencing are marked with CFD. Both the field solution and the S-parameters 

are obtained with a commercial FEM solver [10]. 

First, we plot the S-parameters in Figure 3.7. Figures 3.8 to 3.12 show the 

derivatives of ReS11 , ImS1p IS11 1, LS11 , ReS2p ImS2p IS21 1 and LS21 with 

respect to the septum length L4 for a sweep of L4 from 6~h = 3.7338 mm to 

15~h = 9.3345 mm for forward perturbation. The Yee-cell approach is employed 

in all cases. The rest of the variables are kept at their nominal values (see Table 

3.1). 

We note that FDFD-SASA yields identical derivatives for assumed 

forward (metallization) and backward (de-metallization) perturbations. Hence, we 

can employ either of the formulations to compute the S-parameter Jacobians. 

Figure 3.13 shows a comparison of the two cases. In contrast, forward finite

difference (FFD) and backward finite-difference (BFD) derivative estimates 

consistently display some differences, which sometimes are very significant. 
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The derivatives of the reflection and insertion losses with respect to the 

resonator length S1 are shown in Figure 3.14 and Figure 3.15 for a sweep of S1 

from 21~h = 13.0683 mm to 30~h = 18.669 mm. 

The agreement between the CFD and the FDFD-SASA curves is generally 

very good. Also, it is evident that the FDFD-SASA derivatives suffer less from 

the numerical noise of the EM simulation than the CFD derivatives and are more 

reliable. 

We next employ the central-node approach and confirm its validity by 

comparing with the CFD approach. Figures 3.16 to 3.20 provide comparison of 

the derivatives of S-parameters with respect to the septum length L4• Figure 3.21 

shows the comparison of forward and backward perturbation. Likewise, Figure 

3.22 and Figure 3.23 compare the derivatives with respect to the resonator length 

SJ. 
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Figure 3.8 
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Figure 3.9 
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Figure 3.11 
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Figure 3.13 

Figure 3.14 
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Figure 3.15 

Figure 3.16 
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Figure 3.17 

Figure 3.18 
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Figure 3.19 

Figure 3.20 
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Figure 3.23 

Figure 3.24 
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Finally, Figure 3.24 compares all three approaches to sensitivity analysis, 

i.e., finite-difference, Yee-cell and central-node for the derivative of ReS11 with 

respect to the resonator length S1• Good agreement is observed among all three 

curves. The central-node approach provides the smoothest curve, i.e., the least 

numerical noise. We find that the central-node grid is suitable for sensitivity 

analysis of metallic objects-there is no loss of accuracy compared to the Y ee-cell 

grid [18]. 

3.5 SELF -ADJOINT SENSITIVITIES FOR S-P ARAMETERS 

OF METALLIC STRUCTURES (THE 3-D CASE) 

The theoretical formulation and the software implementation of a 3-D 

sensitivity algorithm are complicated on a Y ee-cell grid because of the staggered 

locations of the three E-field components. Due to the abundance of shapes 

encountered in microwave structures, a simpler method for 3-D sensitivity 

analysis is very much needed. We have already verified the central-node grid in 

the sensitivity analysis of2-D problems. This approach can also be applied on a 3-

D grid where all E-field components are co-located at the center of each 3-D cell 

cuboid. This assumption drastically reduces the number of locations to be taken 

into account, hence simplifYing the 3-D sensitivity analysis to a great extent. The 

central-node grid provides a convenient method for sensitivity analysis of 3-D 
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metallic objects while bringing together the algorithms for both metallic and 

dielectric microwave structures. 

3.5.1 Metallization 

Recall that the sensitivity formula for the S-parameters is: 

(3.28) 

The residual operator ~nR(Ek) is now calculated in 3-D space. When the 

assumed perturbation involves the metallization of cells, the difference residual 

operator is: 

~nR(Ek) = ~nO 2 Ek . 

~Pn ~Pn 
(3.29) 

The operator D 2 involves finite-difference expressions m 3-D space 

corresponding to the double-curl operator with a minus sign. 

A sample procedure for obtaining the finite-difference expressions for the 

2nd order derivatives with respect to two different spatial variables is described in 

below. Figure 3.25 indicates the relative locations of the points required for the 

calculation of 2nd order mixed derivative ri Ez I axaz and the respective difference 

operator DxzEz at (0, 0, 0). This derivative is obtained as: 

a2E 1 __ z ::::::: -[fO,O,I) _ /(0,0,-1) J 
axaz (0,0,0) 2~ 

(3.30) 
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where 

J (O,Q,l) :::::: _ l _ [E(I.O,I)- E (-I,Q,I) J 
2.1x z z 

(3.31) 

/
(o.o.-1) :::::: _ l _ [E(I.o.- 1) _ E (- 1.o.-1) ] 

2.1x z z 
(3.32) 

Therefore, 

(3.33) 

(-1,0, - 1) (-1,0,0) (-1, 0, 1) 

(0, 0,0) (0,0, I) 
(0,0,-1) 

z .... 
X 

(1,0, -1) (1,0,0) (1,0, I) 

Figure 3.25 Numerical calculation of D=xE= 

For calculating 2nd order derivatives with respect to a single variable, the 

procedure is straightforward. Figure 3.26 shows the locations of the nodes used in 

the computation. 
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y ____ .,.. 

(o,-t,o) ( o,-k,o) (o,o,o) ( o,k,o) (o,t,o) 
o----~><--~o~--~><--~o 

Figure 3.26 Node locations for the numerical calculation of DYYE~ (q = x, z) 

The central-difference expression is derived as 

(3.34) 

where 

(3.35) 

(3.36) 

Therefore, 

(3.37) 

Following similar procedures, we can compute each of the 2"d -order 

derivative terms in the expressions for the double-curl operator D 2 The general 

expressions for the three components of D 2 are: 
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(3 .38) 

(3.39) 

(3.40) 

Note that ~nO 2 operates on the original problem solution, which always 

corresponds to the nominal state. 

z 

y 

?C 

t-

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 • 0 0 0 0 0 0 0 0 0 0 • 0 0 

0 0 e : o 
I 0 0 0 0 0 0 0 0 

I 

o : • 0 0 .... ---- --- -------- --- ---- --- ---· ---- - -

0 0 • 'LJ h • • • • • • • • 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Figure 3.27 Locations at which the double curl operator 0 2 is affected by 
change of fields due to metallization in the x direction. 

Figure 3.27 shows the required field sampling points in the case of a 

perturbation in the x direction for a rectangular 3-D object. The double-curl 
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operator D 2 is affected at all locations marked with dark circles by the 

perturbation indicated by the dash line. 

Consider as an example the point (i, j, k) in Figure 3.27. This point is at an 

edge of the metallic structure which runs along z. The x component of the 

0 2 • operator ts : 

(3.41) 

where 
D E = E(i,J+1,k) E(i,J-1,k) _ 2 . E(i,J,k) 

Y.Y X X + X X 
(3.42) 

D E = E(i,J,k+1) + E(i,J,k-1) _ 2 . E(i,J,k) 
ZZ X X X X 

(3.43) 

D E = E(i+l,J+1,k) E(i-1,J-1,k) _ E(i-1,J+1,k) _ E(i+1,J-1,k) 
xy y y + y y y (3.44) 

D E 
= E(i+I,J,k+1) E(i-I,J,k-1) _ E(i-I,J,k+I) _ E(i+l,J,k-1) 

zx z z + z z z • (3.45) 

They component of D 2 E is: 

(3.46) 

where 
D E = E(i+1,J,k) E(i-1,J,k) _ 2 . E(i,J,k) 

XX y y + y X (3.47) 

D E = E(i,J,k+1) E(i,J,k-1) _ 2 . E(i,J,k) 
zzy y +y y (3.48) 

D E = E(i+l,J+1,k) + E(i-I,j-1,k)- E(i-I,j+I,k)- E(i+1,j-I,k) 
xy X X X X X 

(3.49) 

D E = E(i,J+1,k+1) E(i,J-1,k-1) _ E(i,J-1,k+1) _ E(i,J+1,k-1) 
yz z z + z z z • (3.50) 
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Finally, the z component is: 

(3.51) 

where 
D E = E(i+1,J,k) E(i-1,J,k) _ 2 . E(i,J,k) 

XX Z Z + Z Z (3.52) 

D E = E(i,J+1,k) E(i,J-1,k) _ 2 . E(i,J,k) 
Y.Y z z + z z (3.53) 

D E = E(i+1,J,k+1) + E(i-1,J,k-1) _ E(i-1,J,k+1) _ E(i+1,J,k-1) 
ZX X X X X X (3.54) 

D E 
= E(i,J+1,k+l) E(i,J-I,k-1) _ E(i,J-I,k+l) _ E(i,J+I,k-1) 

)'Z y y + y y y . (3.55) 

The field components calculated at positions affected by the perturbation are 

underlined. These terms result in the change of 0 2 
• The difference can therefore 

be calculated from 0 2 in the nominal and the n-th perturbed states. ~nO 2 can be 

calculated for other points in a similar manner. Then-the perturbed state is used to 

obtain the n-th adjoint field solution (.EJ)n which multiplies the ~nR(Ek) term. 

3.5.2 De-metallization 

In the demetallization case, a similar procedure is employed. The residual 

operator in this case is: 

(3.56) 
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As follows from the discretized Helmholtz equation (3.3) at points where 

the E- field component vanishes, the induced current density is: 

(3.57) 

Therefore, 

~nR(E) =-~E. 
l¥Jn l¥Jn 

(3.58) 

3.5.3 Algorithm for software implementation 

The central-node grid in 3-D sensitivity analysis not only provides a 

unified approach for complex metallic-dielectric designs but also paves the way 

for easy error-free software implementation. Using the field mapping technique 

already illustrated in the 2-D case, we can determine the field solution for the 

nominal and all perturbed states in 3-D problems as well. General procedures for 

software implementation of both metallization and de-metallization cases are 

outlined below. 

Step 1: Generate 3-D matrices for the local Ex, EY and Ez solutions around the 

perturbed area at the object of interest. 

Step 2: a) Metallization: Generate mapped 3-D solution matrices for the n-th 

shape parameter (Ex)n,(Ey)n, and (EJn by incrementing respective 

coordinate (x, y, z) by respective step (±Lix,±~y or ± &) . 
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b) Demetallization: go to Step 4. 

Step 3: For metallization case, generate auxiliary field matrices 

(E?)~, (; = x,y,z) according to the rule: 

unperturbed cells: if [(E?)(i,j,k) =F- 0. and .(E?)~,j,k) =F- 0] 

then 

(E? )~(i,j,k) = 0 

metallized cells: if [(E? )(i,j,k) =F- 0. and .(E? )~,j,k) = 0] 

then 

(E? )~(i,j,k) = -(E; p,j,k) 

Step 4: a) Metallization: calculate 0 ~CE~) everywhere m the perturbation 

domain and assign to ~nO ~(E). This is the ~nR(Ek) term. 

b) De-metallization: calculate 0 ~(E) at perturbed points, i.e., where 

(E? )~ is not zero, and multiply by -1. This is the ~nR(Ek) term for 

demetallization. 

Step 5: Multiply ~nR(Ek) by respective component of (E;)n and add to 

sensitivity summation (see (3.28)). 
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3.6 EXAMPLE 

3.6.1 Six-Section H-Plane Waveguide Filter 

A six-section H-plane waveguide filter similar to that of Figure 3.4 is used 

for verifYing our 3-D approach. The only difference is in the width of the middle 

septum. The width of this septum is set to 4· .1.h instead of M to test the 3-D 

nature of our algorithm. The analysis is performed at fo = 7 GHz where only the 

dominant TEw mode propagates. We set the step size of the sensitivity grid as .1.h 

= 8 = 0.6223 mm in the x and z directions and to 0.631952 mm in they direction. 

Figures 3.28 to 3.32 show the derivatives of ReS1p ImS1 ~' /S11 /, LS1 ~' ReS2~' 

Im S21 , /S21 / and LS21 with respect to the septum length L4 for a sweep of L4 from 

6.1.h = 3.7338 mm to I5.1.h = 9.3345 mm for both assumed forward and backward 

perturbations. The rest of the variables are at their nominal values (see Table 3.1). 

As before, in all plots, our results are marked with FDFD-SASA, while the results 

obtained through direct finite differencing are marked with CFD. 
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Figure 3.30 
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Finally, Figure 3.33 provides a companson of the derivatives for 

metallization and de-metallization cases with our 3-D self-adjoint sensitivity 

analyses for the parameter L4• We note that our 3-D FDFD-SASA approach yields 

identical derivatives for assumed forward (metallization) and backward (de

metallization) perturbations. Our FDFD-SASA approach is inherently 2nd -order 

accurate and is thus superior to forward finite-difference (FFD) and backward 

finite-difference (BFD) derivative estimates both in terms of accuracy and 

computational efficiency. 
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CHAPTER4 

GRADIENT BASED 

OPTIMIZATION WITH 

SELF -ADJOINT SENSITIVITY 

ANALYSIS USING FDFD METHOD 

4.1 INTRODUCTION 

The optimization algorithms used in computer-aided design can be divided 

into two categories: those which require only objective function values during the 

optimization process and those which require the objective function and its 

derivatives with respect to the optimizable parameters. Examples of the former 

are the traditional pattern search [1], genetic and particle swarm algorithms [1], 

[2], as well as some neural-network based algorithms [3]. Some of these, such as 

the genetic and particle swarm algorithms, are preferable when there is little or no 

information about an initial design. Their drawback is that they require a large 
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number of system analyses. With 3-D full wave electromagnetic (EM) solvers, 

which require extensive simulation time, such approaches are often impractical. 

The second category includes gradient-based algorithms based on quasi-Newton, 

sequential quadratic programming (SQP) and trust-region methods. They need 

the objective function Jacobian and/or Hessian in addition to the objective 

function itself. These optimization methods search for a local optimal point. A 

gradient-based algorithm is expected to converge much faster, i.e., with fewer 

system analyses, than an algorithm in the first category. Its drawback is that a 

global minimum is not guaranteed, and a failure to converge is a possibility. 

Naturally, the solution provided by a gradient-based local optimization algorithm 

depends on the quality of the initial design. For a realistic 3-D EM-based design 

problem with an acceptable starting point, gradient-based optimization is usually 

preferred. 

The efficiency of a successful gradient-based optimization process 

depends mainly on two factors: (i) the number of iterations required to achieve 

convergence, and (ii) the number of simulation calls per iteration. The first factor 

depends largely on the nature of the algorithm, on the proper formulation of the 

objective or cost function, and on the accuracy of the response Jacobians and/or 

Hessian. The second factor depends mostly on the method used to compute the 

Jacobians and/or Hessian, which are necessary to determine the search direction 

and the step in the design parameter space. The sensitivity analysis, which 
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provides Jacobians, is very time consuming when finite differences or higher

order approximations are used at the response level. At least N+ 1 full wave 

simulations are needed to obtain a Jacobian for N design parameters. This is 

unacceptable when N is large. 

In Chapter 2, we discussed a frequency-domain self-adjoint sensitivity 

analysis (SASA) method for the efficient computation of network parameter 

sensitivities in the frequency domain. This method was later used in conjunction 

with optimization algorithms to investigate its efficiency [4]. In Chapter 3, we 

introduced a new frequency-domain sensitivity analysis technique to overcome 

the shortcomings of previous frequency-domain sensitivity analysis methods. We 

refer to this method as frequency-domain finite-difference SASA (FDFD-SASA) 

since it uses finite-difference grid and the self-adjoint constants and the field 

solutions are in the frequency-domain. The SASA produces the response and its 

Jacobian with a single full-wave analysis when the objective function depends on 

the network parameters, e.g., the S-parameters. 

In this chapter, we investigate the advantages of using our FDFD-SASA 

method to provide the Jacobian during optimization processes [5]. With it, the 

sensitivity analysis has practically no computational overhead which leads to 

overall acceleration of the optimization process. 

We validate and compare our method using a minimax optimization with a 

gradient-based trust-region search algorithm. It requires the Jacobian. For 
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comparison purposes, two separate optimization procedures are carried out: in the 

1st one the S-parameter Jacobian is computed with FDFD-SASA while in the 2nd 

one the Jacobian is supplied by FD response-level approximations. 

In Section 4.2, we discuss the FDFD-SASA implementation in gradient-

based optimization. Section 4.3 gives a numerical example. We compare the 

performance of the optimization processes in Section 4.4. 

4.2 OPTIMIZATION WITH 2-D FDFD SELF-ADJOINT 

SENSITIVITIES 

The design problem is defined as 

p* =argminF(R(p)) 
p 

(4.1) 

where R is the vector of M responses, p is the vector of design parameters, and 

p* is the optimal solution which minimizes the objective function F . In our 

examples, the M responses are the S-parameter magnitudes evaluated at select 

frequencies where design goals specify lower (L) or upper (U) bounds for the 

responses. F is defined as F = max{e1, • •• ,eM}, where the error em, m = 1, . .. ,M 

(M = M L + M u ), is em = Lm - Rm , m = 1, ... , M L , in the case of a lower bound, 

and em = Rm - U m , m = ML + 1, ... , M, for an upper bound. 

The inaccuracy for finite-difference response-level approximations tends 

to be significant when the increment of the design parameters is very small, e.g., 
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near a local minimum, as catastrophic cancellation occurs. The FDFD-SASA 

algorithm is free of such problems. It is simple to implement and guarantees very 

good accuracy regardless of the values of the increments in the design-parameter 

space. 

4.3 EXAMPLE 

We validate our algorithm with a finite-element method (FEM) solver 

HFSS [6] by a numerical example: an H-plane waveguide filter. In this example, 

we perform gradient-based optimization using the response Jacobian provided by: 

(1) the proposed FDFD-SASA approach and (2) the forward finite-difference 

approximation at the response level denoted by FFD. 

4.3.1 Six-Section H-Plane Waveguide Filter 

The six-section H-plane filter is shown in Figure 4.1 [7]. The rectangular 

waveguide is of width 3.485 em and height 1.58 em. The cutofffrequency ofthe 

TE10 mode is 4.3 GHz. The 6 resonators are separated by 7 septa of finite 

thickness 8 =0.625 mm. The design parameters are the septa widths L 1, L2 L3, 

and L4 and the resonator lengths St, S2, and S3. A minimax objective function is 

used with the design specifications 

1 S11 1?: o.85 
I S11 I~ 0.16 
I Sill?: 0.5 

f~5.2 GHz, 
5.4 ~~ ~9 GHz, 

f?:9.5 GHz. 
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We perform two optimizations with two and four variables, respectively. We 

choose 22 frequency points distributed in the frequency range from 5 GHz to 10.0 

GHz. 

In the two-variable optimization problem, the initial design is given by 

p<0) =[~ L4Y =[9~h l3~hY =[5.6007 8.0899r (all inmm). We use Madsen's 

minimax optimization algorithm [8], which employs a trust region and requires 

response Jacobians. We refer to Madsen's algorithm as TR-minimax. We provide 

the Jacobians with our FDFD-SASA solver. Its uniform central-node grid is set as 

~h = 0.6223 mm, which is roughly equal to the shortest edge length of the FEM 

mesh generated by the FEM solver [6]. The initial trust-region radius is set to 

ro =0.05·llp<0)ll· Generally, the choice of the initial trust region radius depends on 

the nonlinearity of the objective function at the initial point. Many algorithms use 

an ad hoc value and the user is expected to provide an initial guess. This is the 

case with this particular optimization code. The value above was chosen so that it 

is sufficiently smaller than o.qp<0)ll-a value recommended for a weakly 

nonlinear problem-since from previous experience we know that the H-plane 

filter design problem is strongly nonlinear [9]. 

For comparison, we perform a separate optimization process where we do 

not use our sensitivity solver thereby enforcing response-level calculation of the 

Jacobian via forward finite differences (FFD). This optimization process is an 
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example of current practices in EM design optimization. When computing the 

FFD Jacobians, one has to carefully choose the amounts of perturbation 1:1pn, 

n = 1, ... ,N. Otherwise, the FFD Jacobians are inaccurate and may result in 

trapping the optimization in a local minimum. After some trials, with the initial 

vector pC0) given above, we found that a perturbation for each design parameter 

of 1% of its nominal value leads to an acceptable solution. 

Figure 4.2 shows the ISHI of the initial design and the optimal design using 

both forward finite-difference (FFD) and FDFD-SASA method. The response 

Jacobian is calculated at all 22 frequency points of interest. Note that each of 

these Jacobians is a continuous function in the design-parameter space although 

the Jacobian of the minimax objective function is not. The minimax optimization 

algorithms operate with the complete set of Jacobians. Figure 4.3 and Figure 4.4 

show the parameter step size and the objective function versus the iterations when 

using TR-minimax with both sensitivity-analysis techniques. FDFD-SASA 

method converges withF = -0.0009564, while FFD method converges with 

F=-0.001. 

In the four-variable optimization, the initial design is [ ~ L2 ~ 

L4Y = [51:1h 111:1h 9M 13MY = (3.115 6.8453 5.6007 8.0899r (all in mm). 

Here, the FDFD-SASA method converges with F = -0.01569 and the FFD 

method converges with F = -0.01381. Figure 4.5 to 4.7 illustrate the ISH I of the 
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initial design and the optimal design, the parameter step size and the objective 

function versus the iterations. 

In both optimization cases, we use the same termination criteria: !J.~) = 

II p <k+l ) - p <k) II Ill p <k) II~ o.oo1 and/or = I p (k+l) - p (k) I ~ & ' where 

c = 0.009 is the convergence error of the mesh refinement in HFSS. 

~ L. s1 s2 s3 
9M IOM 10M 26M 26M 27M 

Figure 4.1 Six-section H-plane filter. 
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Figure 4.6 

Figure 4.7 
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4.4 COMPARISON AND CONCLUSION 

We compare the efficiency of the algorithms in terms of CPU time and 

iteration numbers in this section. 

In Table 4.1, the optimal designs achieved by the TR-minimax using 

FDFD-SASA and FFD approaches for two variables are compared. Table 4.2 

provides the design values obtained from the optimization processes for four 

variables. Table 4.3 shows the number of iterations and the time cost of the two 

optimization processes for two variables. We notice in Table 4.3 that FFD takes 

longer than FDFD-SASA. This is due to the fact that FFD calls for a system 

analysis several times per iteration to compute the system matrix in order to 

determine the next step in the parameter space. FDFD-SASA needs only one 

system analysis per iteration. As Table 4.3 shows, TR-minimax with FFD 

sensitivities takes 6 iterations to converge. The time required by FDFD-SASA to 

compute the Jacobian is about 0.031 s. One FEM simulation (full frequency 

sweep) of the structure takes about 537 s. One system analysis (full frequency 

sweep) involves obtaining the S11 parameter and its 2 derivatives with respect to 

the design parameters. To accomplish this, 3 FEM simulations are necessary 

using the FFD sensitivity analysis (approximately 537*3=1611 s per system 

analysis). These times vary slightly from iteration to iteration and the above 

values are average. The simulation time (7x1611 = 11277 s) accounts for almost 

all the time for of the optimization process. This derivative-estimation overhead is 
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Table 4.1 

Table 4.2 

OPTIMAL DESIGNS USING DIFFERENT SENSITIVITY 
ANALYSIS METHODS WITH TR-MINIMAX (2 VARIABLES) 

(all in rnm) 

FFD 
FDFD-SASA 

5.8362 
5.8503 

6.1957 
6.2037 

OPTIMAL DESIGNS USING DIFFERENT SENSITIVITY 
ANALYSIS METHODS WITH TR-MINIMAX (4 VARIABLES) 

(all in rnm) 

FFD 
FDFD-SASA 

4.3732 
4.4680 

5.3892 
5.3042 

5.8185 
5.9099 

5.9821 
5.9024 

Table 4.3 

Table 4.4 

NUMBER OF ITERATIONS AND TIME COMPARISON 
BETWEEN DIFFERENT SENISITIVITY ANALYSIS 
METHODS (2 VARIABLES) 

Optimization iterations 
Calls for EM simulation 
Response computation (s) 
Jacobian estimation (s) 
Total optimization time (s) 

FFD 

7 
21 

3759 
9666 
16423 

FDFD-SASA 

12 
12 

6444 
668 

7380 

NUMBER OF ITERATIONS AND TIME COMPARISON 
BETWEEN DIFFERENT SENSITIVITY ANALYSIS 
METHODS ( 4 VARIABLES) 

Optimization iterations 
Calls for EM simulation 
Response computation ( s) 
Jacobian estimation (s) 
Total optimization time (s) 

FFD 

10 
50 

5370 
21480 
32063 
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FDFD-SASA 

10 
10 

5370 
1536 
7216 



Chapter 4 Gradient Based Optimization With SASA Using FDFD Method 

reduced to 668 s in FDFD-SASA. However, a significant portion of this time 

(666s) is spent in exporting field information from HFSS and then reading back 

the files. Similar trends can be noticed in the optimization with 4 parameters. 

Our method offers more than 10 times reduction of the time required by 

the Jacobian calculation. The reduction of the overhead of the sensitivity 

calculation as well as the overall time of the optimization process becomes 

increasingly pronounced as the number of optimizable parameters increase. 

We conclude from this example that the time cost reduction offered by the 

FDFD-SASA method is significant when compared with the optimization 

exploiting response-level sensitivities, where finite differences are used to 

compute the system matrix derivatives. At the same time, the optimization results 

are nearly the same as those obtained by the optimization algorithms based on the 

finite-difference response level approximation. The time savings depend on the 

optimization algorithms, as well as the numerical size of the problem. The 

computational gain increases as the number of optimizable parameters increases 

and the size of the FEM system matrix increases. For electrically large 3-D 

problems with many design parameters, the time savings are very significant. 
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CHAPTERS 

CONCLUSIONS 

In this thesis, we propose a general approach to the sensitivity analysis of 

the network parameters based on full-wave electromagnetic solvers. The 

approach is referred to as the finite-difference frequency-domain self-adjoint 

sensitivity analysis (FDFD-SASA). Compared with the traditional finite

difference (FD) approximation, the traditional exact adjoint-variable method 

(A VM), and our previous frequency-domain SASA formulations described in 

Chapter 2, our method is significantly more efficient. It requires only one full

wave simulation to compute the responses and their sensitivities with respect to 

all design parameters. There is no need for system matrix derivatives or any other 

manipulation of the system matrix. The FDFD-SASA computational overhead is 

negligible in comparison with a full-wave simulation. We also investigate 

applications of the FDFD-SASA method with gradient-based optimization. 

In Chapter 2, we review the theory of the traditional A VM, both with real 

and complex linear systems. We compare the required computational resources of 

the AVM and the response-level FD method. Also, we point out the difficulties in 



Chapter 5 Conclusions 

the implementation of the classical A VM with commercial electromagnetic 

simulators. We then discuss the self-adjoint sensitivity method in the frequency 

domain and delineate its advantages over the A VM. 

We introduce the FDFD-SASA method in Chapter 3. We mention the 

problems with previous SASA method and also discuss how FDFD-SASA 

overcomes them. We validate the FDFD-SASA method using numerical examples 

and compare its computational efficiency with that of the CFD method. In this 

implementation, our FDFD-SASA algorithm uses finite-difference grid and field 

solutions in the frequency domain. The results indicate that the FDFD-SASA is at 

least 10 times faster than the CFD method, depending on the size of the problem. 

We investigate both Yee-cell and central-node implementations for our user 

defined grids and test their accuracy. We also conclude from the error estimation 

that both approaches have comparable accuracy. We notice that as opposed to FD 

estimates, our approaches yield identical results regardless of the direction of 

perturbation. We also develop a new 3-D sensitivity analysis method for metallic 

objects based on our central-node implementations. This implementation 

completes our investigation of sensitivity analysis of metallic structures. We 

discuss both metallization and de-metallization cases for 3-D analysis. We then 

provide an outline for software algorithm to implement these cases with high

level programming languages. 
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In Chapter 4, we investigate the application of the FDFD-SASA in 

gradient-based optimization processes where it provides the Jacobian. We test the 

method with both response-level FD and FDFD-SASA as Jacobian providers. 

The numerical results suggest significant time saving when using FDFD-SASA 

and in comparison with the response-level finite differences. 

Further research should focus on complex metallic structures and 

structures with both metallic and dielectric elements in them. 

Also, further investigation regarding the implementation of the FDFD

SASA with various optimization engines should be conducted to further 

strengthen its contribution to time savings. 

Future studies can also examine the implementation of FDFD-SASA with 

other PDE based frequency-domain solvers besides HFSS. 

Finally, a full-fledged CAD framework incorporating our newly proposed 

sensitivity method should be developed. Such a framework will bring about a 

breakthrough in microwave CAD automation. 
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