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Abstract

Emulsions and colloidal suspensions have various industrial applications but are

also used in laboratories as model systems for studying the different phases of matter.

They are versatile as their nature, size and inter-particle interactions are easily tune-

able. These systems are perfect for studying questions such as the phase transition. In

this thesis, we investigate the transition from an ordered crystal to a disordered glass.

Perfectly ordered crystals are modeled by clusters of highly monodisperse droplets.

We study the transition toward a glassy system by mixing two monodisperse popu-

lations of droplets in different proportions. The clusters are compressed between two

thin glass rods, one of which is a force transducer. The forces within the clusters are

directly measured and used as an indicator of the composition of the cluster. Upon

introduction of disorder, the number of peaks in the force measurement increases

drastically. We find that the way the energy is dissipated in the cluster is valuable

information to characterize the crystal-to-glass transition.

In addition to the experimental study of the crystal-to-glass transition, we have

developed an analytical model that is in full agreement with the experimental ob-

servations. A crystal is modeled as an assembly of Hookean springs that will store

elastic energy until it reaches a fracture point. We are able to predict the number of

peaks in the force measurements when defects are introduced using simple geometric

arguments. From this prediction, the way the work is dissipated in a given transition

can be predicted.
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Chapter 1

Introduction

Material in contact with another material is typically driven to minimize the inter-

facial area. For example, when making dressing for a salad, one mixes an aqueous

phase (vinegar) and oil. The interface between oil and water is characterized by an

interfacial energy γwo. By reducing the interfacial area, the mixture minimizes its to-

tal energy. The lowest energy state corresponds to two distinct phases. The vinegar

does not spontaneously form small droplets dispersed in oil and one has to provide

mechanical energy through mixing to reach a suspension. This suspension is not even

stable as it quickly reduces its interfacial energy by coalescing into larger domains.

In contrast, stable suspensions are fairly common in nature. For instance, milk is a

suspension of fat globules in water and blood is a suspension of red blood cells in a

liquid phase. In fact, many commercial products used in our everyday life are stable

suspensions: wall paint, toothpaste, shaving foam or mayonnaise. At first glance,

all of these products have little in common but they all correspond to the definition

of a suspension: microscopic particles of a substance suspended into a continuous

phase [1].

In addition of being ubiquitous in nature and commonly used in industry, sus-

pensions are also widely used in laboratories. They have been shown to be accurate

models for the different phases of matter such as crystals or glasses [2–4]. The parti-

cles can assemble and form structures analogous to atomic systems such as crystals or

glasses. In crystals, the atoms (or particles) are ordered on a lattice whereas glasses

do not show long range order. An interesting question arises from these definitions:

1
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how does a material, or a suspension, transition from a crystal to a glass?

In this thesis, we address this specific question by using oil droplets dispersed in

water as a model system. We directly characterize the mechanical behaviour of the

suspension under compression. We study the impact of disorder on the response of

the assembly of droplets to external forces. Chapter 1 addresses the physics required

to understand the results presented in this work. In particular, the most common

suspensions used in laboratories are reviewed and the interactions between particles

are presented in detail. Finally, important mechanical properties such as elasticity

and yield are presented. In chapter 2, examples of studies where suspensions have

been used to model phenomena such as glass transition or jamming are discussed.

An in-depth discussion about the crystal-to-glass transition is also presented. The

experimental details required to reproduce our measurements are outlined in chapter

3. Finally, in chapter 4, a manuscript of the research is included, which describes

the main conclusions we reached on the crystal-to-glass transition. The supplemental

information, which will accompany the manuscript, is also presented.

1.1 Suspensions

The most basic definition of a suspension is a mixture of small particles of a substance

a dispersed in a continuous phase b [1]. The typical size of the suspended particles

ranges from couple nanometers up to tens of microns. If a suspension is made of

particles that all have the same size, it is called monodisperse. Otherwise the dis-

persion is said to be polydisperse. One way to quantify the polydispersity is to use

the coefficient of variance CV, defined as the ratio between the standard deviation in

the particle radii and the mean value of the radius [5]. Even though all the examples

listed previously fall into the category of suspensions, it is clear to everyone that paint

is not the same product as shaving foam. This is due to the nature of the dispersed

phase. Paint is a suspension of solid pigments particle in a liquid whereas shaving

foam is a dispersion of air in a liquid. Specific names are given to each different

kind of suspension. This classification is summarized in Table 1.1. Here we focus

on suspensions in a liquid, in which one can disperse three types of substances. If

the particles are solid it is called a colloid. The word emulsion refers to a suspension

2



M.Sc. Thesis - J.-C. Ono-dit-Biot McMaster University - Physics and Astronomy

of droplets in a liquid. Finally, if the dispersed substance is a gas, they are named

foams.

Table 1.1: Classification of the different suspensions in a liquid continuous phase [1,6].

Continuous phase Liquid

Particles Solid Liquid Gas

Name Colloid Emulsion Foam

Example
Paint,

Toothpaste
Milk,

Mayonnaise
Shaving foam,

whipping cream

A common issue with suspension is their stability. For example a mixture of oil

droplets in water is unstable [7] and stabilizers must be added to the mix. This

phenomenon is due to their high interfacial surface area. Maintaining the interface

between the particle and the continuous phase has an energetic cost characterized by

the surface tension γ. The total energy cost is directly proportional to the surface A:

Esurf = γA. For example, the surface tension between water and air is 72 mN/m [7]

and the surface tension between water and oil (hydrocarbonated liquids) is γwo ∼
50 mN/m [8]. The total energy ends up being large because of the total interfacial

area. Let us consider a simple emulsion that everyone has already encountered:

mayonnaise. This emulsion is usually made of ∼ 20% of water in oil and the size of the

water droplets is ∼ 500 nm [9]. If we consider 1 kg of mayonnaise, there are ∼ 4 x 1014

droplets of water in oil. The total surface of all the droplets is approximately 1000

m2 which leads to an energy cost of approximately 50 J to maintain the interface

between oil and water. In comparison, if the water was forming a single droplet, its

radius would be 36 mm which leads to an interfacial surface area of ∼ 2.10−2 m2 and

an energetic cost of the order of 1 mJ. From this estimate, it is clear that the water

would rather be in the single droplet configuration. Of course, mayonnaise is not

only made of water and oil, otherwise it would be unstable. Suspensions stabilizers

are discussed in the following sections for the two suspensions relevant to this work:

emulsions and colloids.

3
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1.1.1 Colloids

Colloids are solid particles dispersed in a liquid. The solids can be made of organic

materials such as polymers. Common polymers used in colloidal suspensions are

poly(methylmethacrylate) - PMMA or polystyrene. Another class of colloidal parti-

cles is inorganic materials such as silica or carbon black. Many colloidal particles are

available commercially in different sizes and polydispersity indexes.

When two colloids come into contact they tend to stick irreversibly. By sticking

to another particle, a colloid reduces its surface of contact with the liquid which is

energetically favorable. This phenomenon is called aggregation [10]. Two strategies

can be used to prevent aggregation: steric stabilization and charge stabilization [10].

The steric stabilization consists in grafting long polymer chains onto the surface of the

particles to prevent them from coming too close to one another as shown in Fig. 1.1.

As the particles approach, the polymer chains interact which leads to a repulsive

force between them (see Fig. 1.1 (b)). For example, PMMA particles are commonly

stabilized using poly-(12 hydroxystearic acid) in many experiments that study phase

transitions [3, 4, 11].

(a)

(b)

Figure 1.1: Illustration of the steric stabilization. (a) two colloids with polymers
grafted on their surface. (b) As the particles come closer to each other, the polymer
chains start interacting which leads to a repulsive force between the particles

4
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The second strategy relies on electrostatic forces between the particles if their

surface is charged. This stabilization will be discussed in more details in section 1.2.3,

when the electrostatic interaction between particles is described.

1.1.2 Emulsions

Emulsions are made by dispersing liquid droplets into another continuous liquid phase.

The two liquids must be immiscible to form an emulsion otherwise they would simply

mix and form a single homogeneous liquid phase. Examples of milk and mayonnaise

were already mentioned but emulsions are not only used in the food industry. In

fact, emulsions in high-tech applications is a growing field. The demand for energy is

constantly growing but shrinking oil reserves mean extraction is becoming more diffi-

cult. Emulsions are used for enhanced oil recovery (EOR) to improve the extraction

of oil [12,13]. Another active field of research is the use of emulsions for drug delivery.

If the drug is not soluble in water but in oil (lipophilic) then droplets of oil can be

used to carry the drug in the human body [14]. Finally, individual droplets can be

used as micro-reactor or growing media for applications like DNA sequencing [15] or

growing organisms [16].

The commonly used liquids to produce emulsions are oil and water. If the dis-

persed phase (the droplets) are made of oil (O/W) it is a direct emulsion. The

emulsion is inverse if the droplets are made of water (W/O). Emulsions can be made

by mechanically shearing a mix of oil and water [7]. A more sophisticated technique

is the use of microfluidic devices, which allows for better control on the size of the

droplets [17–20]. These devices usually require flow in the continuous phase. In this

work, we use the snap-off instability [5]. There is no flow in the continuous phase

with this technique and it leads to highly monodisperse droplets with CV < 0.7%.

As discussed with the example of the mayonnaise, emulsions are not always stable.

Oil and water will phase separate to minimize the interfacial area. Stabilizing agents

must be added to lower the surface tension between oil and water γwo. Mayonnaise

is stabilized by the proteins contained in egg yolk [9]. In laboratories, molecules

called surfactants are used which absorb at the oil-water interface to lower the surface

tension. These molecules have a polar head that is hydrophilic (interacts preferably

with water) and a carbonated tail that is lipophilic (interacts preferably with oil). For

5
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the emulsion to be stable the surface tension must be lower than 5 mN/m compared

to its initial value of γwo ∼ 50 mN/m [7]. This can be achieved in laboratories by

using surfactants such as sodium dodecyl sulfate (SDS) [8].

1.2 Interactions

Interactions between particles are critical to the stability of the suspensions. If the

sum of the interactions is attractive, then particles will aggregate and the suspension

is not stable. If the sum of the interactions is repulsive then the suspension is stable.

Stability is not the only reason why interactions between particles are important.

Indeed, suspensions are used in laboratories as model systems and one may want

the particles to be attractive or repulsive. Suspensions are also often studied using

computer simulations. A particle is modeled by a sphere that evolves in time by

interacting with other particles. In these simulations, the potential energy between

two particles is set using a mathematical model. It is important for this potential to

be realistic and that the formula is coherent with what is observed experimentally.

In the following section, we describe four potentials encountered in suspensions.

1.2.1 Hard spheres

The particles can be considered as hard sphere that interact only upon contact: the

repulsion is infinite, ie. the spheres cannot interpenetrate. The potential between the

two droplets can be written as a function of the distance between two particles, r,

and the sum of the droplets radii, σ:

V (r) =




∞, if r ≤ σ

0, otherwise.

This interaction is a good approximation for sterically stabilized colloids such as

PMMA [6]. The hard sphere model is also widely used in simulations to study the

glass transition [21,22].

6
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1.2.2 Van der Waals

Van der Waals forces are attractive forces between any pair of atoms that originates

from quantum mechanics. Atoms do not need to have a permanent dipole to experi-

ence van der Waals forces [10]. The interaction depends on the distance between the

two atoms: U(r) ∝ 1/r6. Knowing the interaction between each atom pair, one can

calculate the interaction between two macroscopic bodies. The exact calculation for

the force between two spheres was carried out by Hamaker [23]. The potential can be

simplified if the spheres are close to one another and leads to an attractive force F :

F = − AR1R2

6r2(R1 +R2)
, (1.1)

where A is the Hamaker constant which depends on the material. The order of

magnitude for A is ∼ 10−19 J [10]. If the spheres have the same radius R1 = R2 = R,

Eq. 1.1 further simplifies to:

F = − AR

12r2
. (1.2)

If we consider two spheres with radius R ∼ 10 µm in contact r ∼ 0.2 nm, the force

required to separate them is F ∼ 2 µN. A force of the order of a micro-Newton is

small at the macroscopic scale but it is large in comparison to nano-Newton forces

usually measured in suspensions [24].

1.2.3 Electrostatic repulsion

Up to this point, we have only considered particles without charges. If the particles

have charges on their surface, the interaction between particles are modified [10]. In

vacuum or in air, two charged particles experience a net Coulomb repulsion. The

interaction is more complicated if the particles are suspended in water. The ions

dissolved in water interact with the charged particles and modify the electrostatic

repulsion [10]. If the surface of a particle is negatively charged, then the positive

counter-ions are attracted and the negative ions are repelled. Positive ions accumu-

late close to the particles forming an electrostatic double layer, as shown on Fig. 1.2(a).

These positive charges are screening the negatives charges on the particle [10].

7
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Figure 1.2: (a) Illustration of the screening effect. A negatively charged particle
in water is surrounded by counter-ions and co-ions. In the direct surrounding of the
particle, there is an excess of positively charged ions. The ions are only shown on
the right side of the particle for clarity. (b) Schematic curves of the concentration of
the different ions as a function of the distance d away from the charged particle. The
concentrations of both ions converge to the average concentration c∞ away from the
particle. The decay is characterized by the Debye screening length κ−1.

The distribution of charge and the potential ψ at a distance d of the particle

can be calculated [1]. In the limit of a small potential ψ, the Debye-Hückel approx-

imation, the potential decreases exponentially: ψ(d) = ψ0 exp(−κd) (see schematics

Fig. 1.2(b)). κ−1 is called the Debye screening length and characterizes the extent of

the double layer. If two particles approach one another, the two double layers start

overlapping. The positive ions are confined in a small region which is not favorable

entropically. The particles experience an entropic repulsive force that originates from

the interaction of their double layer [10]. The direct consequence of screening is that

the repulsive forces between particles depends on the concentration of counter-ions in

the solution. Screening effect gives a direct control on the strength and range of the

electrostatic repulsion.

Colloids can be stabilized using electrostatic double layer repulsive forces. For this

kind of stabilization, the screening length must be taken into account. If the charges

are screened over a short Debye length (high concentration in ions) then the colloids

can still aggregate and the suspension is not stable [10].

8
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1.2.4 Depletion forces

Depletion is an attractive interaction which occurs when smaller particles, called de-

pletants, are co-dispersed in the solution. These small particles cannot overlap with

the large particles. they are effectively excluded from the volume surrounding the

large particles [10]. When two large particles approach each other, their depletion

zones overlap, reducing the forbidden volume for the depletants (see Fig. 1.3 (b)). The

number of available configurations for the small particles increases as large particles

approach one another, which results in an increase in entropy. The large particles are

attracted to one another by the depletion forces. This potential has a purely entropic

origin.

(a) (b)

Figure 1.3: (a) Two large droplets are surrounded by small depletant (black disks).
When the particles are far away, the depletant particles cannot enter depletion zone
around both particles (shown by the dashed circles) (b) When the particles come
closer to each other, the forbidden regions overlap leading to more space available
to the depletant. This configuration is more favorable because of the increase in the
entropy of the depletant. The large particles feel an attractive force and they stick
together.

Typical depletant particles used in laboratories are glycerol or surfactant mi-

celles. When the concentration in surfactant exceeds a certain value called critical

micelle concentration (CMC) the surfactant particles aggregate into spheres called

micelles [7]. Depletion forces are particularly important in our work as we use them

in chapter 4 to ensure that the droplets are sticking together to form clusters.
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1.3 Mechanical properties

In order to study the crystal-to-glass transition, we probe the mechanical properties

of the clusters of droplets. A theoretical model is developed to model the response

of a crystal (assembly of monodisperse droplets) to compression. A single droplet is

modeled by an Hookean spring and the cluster is considered as an equivalent spring.

In this section, we derive the relationship between the equivalent spring constant and

the spring constants of the individual springs. The derivation for the assembly of two

springs in series in also used in section 3.2.3 when dealing with the calibration of the

force sensing pipettes. Finally, important quantities such as the Young’s modulus

and the yield stress of a material are defined.

1.3.1 Assembly of springs

When dealing with elasticity, the first intuitive example is that of a Hookean spring.

The applied force, F , is directly proportional to the elongation, x, of the spring via

the spring constant, k: F = kx.

Series

BA

F{k1; x1} {k2; x2}

Figure 1.4: Schematics of two springs assembled in series. The force F is applied at
point B. Once the system is stretched, point A is at equilibrium. To ensure that no
net force is applied on A, the force from spring 1 , F1, must be the same as the force
from spring 2 , F2.

Springs can be assembled in series as shown in Fig. 1.4. The springs are lined up

and the force is exerted at the end of the second spring (point B). Let us consider

two springs of constant k1 and k2. We call the elongation of the springs x1 and

x2 respectively, which leads to: F1 = −k1x1 and F2 = −k2x2. For point A to be

at equilibrium, the force exerted by spring 1 must be the same as the force from

10
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spring 2 : F1 = F2 = F . The consequence is that the elongation of spring 2 , x2, is

proportional to x1.

x2 = x1
k1
k2
. (1.3)

The force F can also be written in terms of the equivalent spring constant, keq, from

the assembly: F = keq(x1 + x2).

F = keq(x1 + x1
k1
k2

) = k1x1, (1.4)

keq(
k1 + k2
k2

) = k1, (1.5)

1

keq
=

1

k1
+

1

k2
. (1.6)

Eq. 1.6 can be generalized to n springs in series:

1

keq
=

n∑

j=1

1

kj
. (1.7)

If every spring has the same spring constant kj = k, the equivalent spring constant

is keq = k/n.

Parallel

F

{k1; x}

{k2; x}
Figure 1.5: Schematics of two springs assembled in parallel. The elongation of both
springs must be the same. The force F is the sum of the forces resulting from the
elongation of spring 1 , F1, and spring 2 , F2.

Two springs can also be assembled in parallel (Fig. 1.5). The resulting force F

applied on both springs is the sum of the force from spring 1 and spring 2 . The
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elongation x of both spring is the same in this case.

F = F1 + F2 = −(k1 + k2)x (1.8)

By comparing the force from the equivalent spring F = −keqx to Eq. 1.8, the equiva-

lent spring constant is found to be keq = k1 +k2. This relation can also be generalized

to n springs:

keq =
n∑

j=1

kj (1.9)

If every spring has the same spring constant, the equivalent spring constant is keq = nk

1.3.2 Young’s modulus

For many materials, the stress (force divided by the cross section S: σ = F/S) is

proportional to the strain (ε = ∆l/l) in the elastic regime: σ = Eε. This constant

is called the Young’s modulus, E and characterizes the stiffness of a material. For

example, metals have a Young’s modulus of ∼ 100 GPa when the Young’s modulus

of polystyrene is ∼ 1 GPa. To deform a piece of metal and a piece of plastic with

the same length l and cross section S, the applied force must be one hundred time

larger. This relationship is analogous to Hooke’s law, F = −kx, for a 3D continuous

material. The strain-stress relationship can be explained using the assembly of springs

discussed above.

Let us consider a piece of material of cross section S and length l. We can model

it by springs of length l0 and constant k assembled together. If we assume that a

spring has a section s0 then we can assemble np = S/s0 in parallel to model the cross

section of the piece. The number of springs in series is ns = l/l0. According to Eq. 1.7

and 1.9, the equivalent spring constant is:

keq =
knp

ns

=
kSl0
s0l

. (1.10)

The force required to deform the piece by x is:

F = keqx =
kl0
s0

x

l
S. (1.11)
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Eq. 1.11 can be rearranged in order to express the stress σ = F/S as a function of

the strain ε = x/l:

σ =
kl0
s0
ε = Eε. (1.12)

Identifying both sides of the equation, we find that the Young’s modulus is equal to

E = kl0/s0. If l0 is small, many small springs are assembled in series. We know that

the more springs in series the smaller the equivalent constant is so the less stiff the

material should be. If s0 is small, many springs are assembled in parallel leading to a

stiff material. This derivation shows that the simple model of assembling springs in

different ways can explain macroscopic properties of a material.

Experimentally, the Young’s modulus is measured by measuring the stress-strain

relationship. A force is applied on a piece of known cross section S and length l and

the deformation is measured. Stress is plotted as a function of strain as shown in the

schematic Fig.1.6. The elastic regime corresponds to the linear part of the curve. The

stress is directly proportional to the strain and the slope corresponds to the young’s

modulus. The Young’s modulus of material 1 is smaller than material 2 .

1.3.3 Yield stress and rupture

The following discussion mainly follows the textbook from F. P. Beer et al: Mechanics

of materials [25]. Deformation is reversible in the elastic regime: if the external load is

removed, the material comes back to its original shape. A material will remain elastic

up to a certain amount of deformation. Once the material is deformed beyond that

threshold, the material cannot fully recover its shape. The non-reversible deformation

is called plastic deformation. This regime is characterized by internal rearrangements

between atoms and the creations of defects. The relationship between stress and

strain becomes non linear. The transition between elastic and plastic behaviours is

called yielding and it is defined by the yield stress σy. The transition form the elastic

to plastic regimes depends strongly on the nature of the material. Elastomers, for

example, can be deformed by ∼ 200% and still be in the elastic regime, where metals

quickly transition to the plastic regime.

During plastic deformation, internal rearrangements occur and defects are created.

If the material is further deformed, cracks propagate and the material fails. This
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Brittle

Ductile

E1

�y1

�y2

E2

Figure 1.6: Illustration of the stress-strain curves for two different materials. Ma-
terial 1 (red) has a smaller Young’s modulus and a smaller yield stress σy. Its
elongation at failure is much larger than material 2 (blue) and deforms plastically
over a large range of strain: it is a ductile material. The elongation at failure is
much smaller for material 2 which deforms plastically over a short range of strain:
material 2 is brittle.

event is called rupture. Again, each material behaves differently with regard to crack

propagation. Some materials resist the propagation of cracks over a large range of

deformation. This category of materials, called ductile materials, is characterized by

an extended plastic regime as drawn in Fig. 1.6 for material 1 (red curve). Resistance

to crack propagation is called ductility. For other materials the stress at which they

break is almost the same as the yield stress: they are brittle materials. The stress-

strain curve for such a material is shown in Fig. 1.6 with material 2 . The yield stress

and the stress at rupture characterizes the plastic behaviour of a material where the

Young’s modulus describes its elastic behaviour.
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Chapter 2

Suspensions as model systems

Suspensions are used as model systems to study the different phases of matter [6].

The main advantage of emulsions or colloids compared to atomic matter is the size

of the particles which typically ranges from tens of nanometers to tens of microns.

Due to their larger size, the particles can be directly imaged using techniques such as

confocal microscopy [11]. One can directly access information at the single particle

scale. As particle size is comparable to the wavelength of light, particles can be

studied using light. Light scattering experiments give access to average properties of

the particles rather than the individual particle information. Some examples include

size and dynamical properties such as mean square displacement [26]. Another benefit

of the larger size is that quantum effects can be neglected [6]. Depending on the focus

of the study, thermal motion can be tuned by changing the size of the particles, and

temperature.

The richness of suspensions explains why they have been widely used to investigate

fundamental physics such as phase transitions. In this chapter, we review recent

studies of colloidal systems and emulsions. We particularly focus on questions that

are linked to the work presented in chapter 4 dealing with the transition from ordered

to disordered aggregates.
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2.1 Glass transition and jamming

The glass transition is a phenomenon where a viscous liquid becomes an amorphous

solid due to a decrease in temperature [27]. When temperature decreases towards the

glass transition temperature, Tg, the viscosity increases dramatically. This transition

is observed in many materials, including metals or polymers, but is not yet fully

understood. Interestingly, a similar phenomenon happens with colloidal systems.

When the density of colloidal particles is increased, the viscosity diverges. The control

parameter is no longer the temperature but the density of particles φ. This transition

is called the colloidal glass transition or jamming [6]. The similarity is not just

qualitative but also quantitative. When studying the glass transition, despite the

lack of a consistent theory to explain the transition, an empirical law has been shown

to capture the divergence of the viscosity for molecular glasses [27]:

η(T ) = η0 exp

(
TA

T − Tv

)
, (2.1)

where η0, TA and TV are constants which depends on the material under consideration.

Eq. (2.1) is known as the Vogel-Fulcher law. The way the viscosity increases for

colloidal systems as a function of φ can be written as [28]:

η(φ)

η0
= C exp

(
Dφ

φm − φ

)
, (2.2)

where η0, C and D and φm are fitting parameters. Eq. (2.1) and (2.2) are clearly

equivalent, the only difference being the parameter that triggers the transition. Foams

and droplets can also experience a transition from liquid to amorphous solid when

sheared [29]. The change in viscosity can be fit by a Vogel-Fulcher type behaviour

replacing temperature by shear rate [29]. Increase in viscosity is not the only feature

of the glass transition. For example, dynamical heterogeneities have been observed

in simulations for supercooled liquids [30,31], also referred to as cooperative motion.

Dynamical heterogeneities have also been observed in colloids [32–34]. Force networks

(more details in section 2.2) between particles have also been observed in molecular

glasses (simulation), emulsions and granular materials. These similarities between

colloids, emulsions, foams and granular materials have motivated the development of
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an unified description of the glass transition. Lui et al. [35] proposed a phase diagram

with three axes: temperature, density and shear rate to describe the “jamming” of

the suspensions mentioned above. This phase diagram was further generalized by

Trappe et al. [36] who added the impact of attraction between particles. In their

work, they also give experimental proof for the phase diagram.

The implications of this unified phase diagram are far reaching. Findings on a

specific system, for example colloidal suspension, could be generalized to others such

as molecular glasses. Finally, this generalized phase diagram further supports the use

of colloids and emulsions as model systems as they are easier to study.

2.2 Forces between particles

A typical example of experiments made possible by the use of model systems is the

study of force networks. When an external load is applied on a suspension, the forces

between particles are not homogeneously distributed. Some particle pairs experience

no force while others experience large forces. These large forces tend to line up into

“chains”; this phenomenon is called force chains or force networks.

While the inter-particle forces can be studied experimentally with larger particles,

it is more challenging with molecules. Force chains in molecular glasses have been

studied using molecular dynamics [37] but to the best of our knowledge have not

been directly measured experimentally. Emulsions or bubbles are good candidates

for the study of force chains as the particles are deformable. Forces acting on the

individual particles can be inferred from the shape of the droplets [24, 38]. When

two soft droplets are pushed against one another, they deform resulting in a change

in their surface area which leads to inter-particle forces. The force depends on the

change in radius of curvature and the contact patch that forms due to compression.

Another closely linked system is a granular material [35]. They are made of solid

beads of ∼ 1 mm diameter packed together; the typical example being a sand pile.

Interestingly, disordered granular material also show properties similar to colloidal

suspensions or emulsions. For example, they develop force chains when they are

compressed. A way to study the inter-particle forces between grains is the use of

photo-elastic disks. These disks are made of a material that is birefringent upon
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application of a force. The light going through the material experiences two different

refractive indices along the two principal stress directions. Placing these particles

between two crossed polarizers, one can see dark and light bands on the particles.

The stress distribution among the grains can be deduced from the fringe pattern [39].

Finally, it has recently been shown in an computational study that disordered

porous materials also develop force chains [40]. A porous material can be thought

of as the “negative” of a granular material. It is a continuous solid material with

multiple holes while a granular material is made of grains packed in a gas. Laubie

et al. [40] have shown that the response to external loading for an ordered porous

material (holes forming a square lattice) is homogenous. As disorder is increased, the

holes are randomly moved from their original position and force networks are formed.

2.3 The crystal-to-glass transition

Many studies have investigated the transition from a liquid to a solid state as described

in section 2.1. The solid state can be either a crystal, characterized by long range

order, or a disordered glass. Polydispersity has been shown to prevent crystallization

and aggregates form glasses instead [41]. The crystal-to-glass transition has been far

less studied and many questions remain unanswered. A recent study by Goodrich et

al. [42] addressed one of these questions using simulation. They compared three model

packings: a crystal, a disordered glass and a packing with a small number of defects.

They used both microscopic properties (average number of contacts between particles)

and macroscopic properties (ratio between bulk and shear modulus) to differentiate

glassy and crystalline behavior. Surprisingly, the intermediate state behaved like the

glassy system even though its structure was closer to the crystal. The main conclusion

from this study is that a lightly disturbed crystal is best described by the physics of

a jammed system. Glassy behavior in highly ordered (but not perfectly crystalline)

structures has also been observed in other numerical studies [43, 44].

On the experimental side, few studies have looked at the crystal-to-glass transition.

One strategy is to look at the microscopic arrangement of particles [45,46]. Different

mathematical functions can be used to quantify the order in the arrangement of

particles. For example, the bond orientational order parameter ψ6 describes the
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arrangement of the six closest neighbours to a given particle [45]. If the packing is

hexagonal (crystalline packing) then |ψ6| ∼ 1. Another function that is especially

important to differentiate crystals and glasses, is the correlation function g6(r =

|rj − ri| ) =< ψ6(ri)ψ
∗
6(rj) > where r is the distance between two particles. Crystals

are characterized by long ranged order; the correlation function peaks at regular

spacings showing correlation between two particles that are far away from each other.

For a glass, the peaks disappear quickly as correlation is lost. The study of these

functions as disorder is systematically added in the systems gives insight into the

transition from a crystal to a glass. The conclusion of these studies is consistent with

a rapid transition toward glassy material as disorder is added.

Another strategy involves studying the response of a material under external load-

ing. Blair et al. [47] experimentally measured the normal forces between millimeter-

sized particles. They compressed both amorphous and crystalline packings and char-

acterized the distribution of forces on individual particles at the boundaries of the

packings. They showed that there was little change between the amorphous and crys-

talline packings. The distribution of forces on particles away from the edges of the

packing was investigated by Hanifpour et al. [48] combining 3D x-ray tomography

and numerical simulations. The force is not directly measured but inferred from the

position of the particles and their neighbours. They reported changes in the force

distribution as crystalline order grows. Despite this finding, the work shows that even

a packing of lightly polydisperse particles has a random mechanical response. Finally,

a study by Keim and coworkers [49] probed the rheological behavior of soft jammed

solids. They compared the response to a known shear stress for monodisperse (model

for crystal) and bidisperse aggregates (model for a glass). Once again, even though

the model aggregates for a crystal and a glass are different in their structure, their

response to shear is similar.

The real challenge when studying the transition from order to disordered structure

experimentally is to generate “perfect crystals”. To differentiate the transition from

glassy to crystalline, one has to first characterize both limiting cases behaviours.

As discussed above, even weakly polydisperse packing leads to glass-like properties.

Defining the crystalline behaviour requires the use of monodisperse particles. The

direct mechanical characterization of the packing is also a difficult task as typical
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forces for micron size particles are of the order of nN [24]. This explains why the

forces are usually inferred from other information and not directly measured (see

section 2.2)

In chapter 4, we take advantage of our ability to produce highly monodisperse

droplets [5] using the snap-off instability to model perfectly ordered crystals. We

study the crystal-to-glass transition by mixing two monodisperse populations of droplets

in different proportions. We couple the mechanical characterization of the clusters

under compression to the internal microscopic rearrangements of the droplets. The

forces acting on the cluster of droplets are directly measured with a resolution of∼ 100

pN. The force measured during compression is used as a signature of crystalline or

amorphous behavior.
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Chapter 3

Experimental Details

The experimental details needed to understand the results presented in the manuscript

are clearly outlined in Chapter 4. Here we give additional details that would be useful

to someone attempting similar experiments. We particularly focus on what is not

discussed in the paper.

In this experiment, quasi-2D emulsions of oil in water are compressed between two

parallel boundaries. The sample cell is made of two glass slides separated by a gap of

3 mm. The chamber is filled with an aqueous solution with sodium dodecyl sulfate

(SDS), a surfactant, and NaCl. Droplets of oil are produced in situ and gather at the

top of the chamber because of buoyancy. The droplets are sticky and are assembled

into 2D clusters that are compressed between two thin glass pipettes, of which one

is a force sensor. The system is imaged, from below, using optical microscopy. From

these images, we extracted two types of information: the internal rearrangement of

the droplets under compression and the forces applied on the cluster as it rearranges.

The following chapter details the chamber, the pipettes and their different roles, and

the image analysis.

3.1 Sample cell

3.1.1 Solution

The aqueous solution is made of SDS at 3% and NaCl at 1.5% in mass. SDS is added

to stabilize the emulsion. As discussed in 1.1.2, the oil droplets would coalesce and
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(a) (b)

(ii)

(i)

(iii)

Figure 3.1: Schematics of the sample cell. (a) Top view - the area shaded in
blue corresponds to the part that is filled with the aqueous solution. (i) “the droplet
pipette”; (ii) “the pushing pipette”; and (iii) “the force sensing pipette”. The chamber
is closed on the sides by 3D-printed walls to prevent evaporation. Small slits are
designed for the pipettes to be inserted. (b) Side view - the droplets are buoyant and
rise to the top of the chamber forming a 2D aggregate under the top coverslip. The
chamber is imaged using an inverted optical microscope.

the solution would eventually phase separate without the addition of a surfactant.

SDS is added in large quantity to ensure that there is enough to stabilize the droplets

and generate micelles in the solution. The concentration in SDS corresponds to 0.1

mol/L which is two orders of magnitude higher than the critical micelle concentration

(CMC) of SDS: 8 mmol/L [50]. As explained in 1.2.4, these micelles are responsible

for depletion forces between the droplets. Because of these forces, we expected the

droplets to stick to one another. With SDS only, the interaction turned out to be weak

and the clusters were almost impossible to assemble. SDS is an anionic surfactant

which means that its polar head is negatively charged. When it adsorbs onto the

surface of the droplets, the tail goes into the oil phase and the charged head stays

in the continuous phase (water). The droplets can be seen has a sphere covered

in negative charges leading to electrostatic repulsion between them. It results in a

competition between attractive depletion forces and repulsive electrostatic forces. We

introduced NaCl in the solution to screen the repulsive interaction. Upon addition

of 0.5% in mass of NaCl, the strength of the attractive interaction was significantly

improved. The screening hypothesis is supported by the fact that the strength of the

interaction is not increased by adding more NaCl (within the tested range: 0.5% to

2%). When enough salt is added then the repulsive forces are screened and adding

more salt does not improve the interaction between the droplets. We chose to use

1.5% for the concentration of salt.
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3.1.2 Addition of a surrounding wall

The chamber was originally designed without the surrounding wall. Two glass slides

were separated by a small spacer made of rubber. This design was convenient for the

introduction of the pipettes as well as filling the chamber. The main drawback was

the evaporation of water from the sides. Because of evaporation, the concentrations

of both SDS and NaCl were changing and the depletion forces were becoming larger.

A typical experiment is conducted over 30 minutes and evaporation was not negligible

over the course of a single experiment.

To reduce the impact of evaporation we first increased the total volume of the

chamber. For the same evaporated volume, the change in concentration is smaller.

We also added 3D-printed walls to minimize the surface between air and water and

thus reduce the evaporation. As we still needed to introduce the pipettes in the

chamber, small slits of ∼ 1 cm were designed on three sides of the chamber. The

wall was glued onto the bottom glass slide to prevent any leakage. Evaporation still

occurred through the slits but is significantly reduced. The strength of the interaction

was found to be constant within experimental error for at least 3 hours. A 3D render

of the setup is shown in Fig. 3.2.

Glass slides

Chamber holders

Chamber wall

Figure 3.2: 3D render of the experimental setup. The chamber wall is glued onto the
bottom glass slide. In order for the pipettes to be inserted, small slits are designed
on three side of the chamber. The top glass slide is simply placed atop of the wall.
The holders on the side prevent the top glass slide from moving with respect to the
bottom one.
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The standard process for preparing the chamber is the following: (i) the pipettes

are inserted in the chamber when empty and not covered (Fig. 3.3(b)); (ii) the top

glass slide is placed on top of the wall, making sure the pipette are not touching

the top (Fig. 3.3(c)); (iii) the chamber is filled with the solution through one of the

pipette slit using a 10 mL syringe; (iv) the droplets are produced and finally the

droplet pipette is removed.

(a) (c)(b)

Figure 3.3: (a) The wall is glued onto the bottom glass slide and the bottom glass
slide is inserted into holders (gray pieces). (b) Pipettes are inserted in the chamber
(c) A glass slide is placed atop of the wall.

3.2 Micropipettes

As shown in Fig. 3.1, three micropipettes are used in this experiment. They were

made by pulling glass capillary tubes (outer diameter: 1 mm; inner diameter: 0.58

mm - World Precision Instruments, USA) using a PN-31 pipette puller (Narishige,

Japan). The pipette is passed through a thin platinum ribbon bent into an annulus

shape and both ends of the pipette are attached to electromagnets. The filament is

heated by passing courrent through it. Provided that the pipette and the annulus

are well aligned, the pipette is homogeneously melted over a small region (∼ 1 mm).

Both ends are then pulled apart by a fixed amount using the electromagnets. The

pipette is usually pulled over ∼ 3 cm with a constant diameter of ∼ 10 µm. The force

applied on the magnets and the temperature of the filament can be tuned in order

to change the characteristics of the pipette. For the purpose of this experiment, the

settings were adjusted to give the thinnest diameter. These settings strongly depend

on the platinum filament used and need to be adjusted every time the filament is

changed or moved.
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Once the pipettes are pulled, we shape them differently depending their applica-

tion. To shape them, we use a 0.5 mm platinum-iridium filament (Alfa Aesar, USA).

Current is passed through until it turns faint red. The wire must be hot enough to

melt the glass locally, but if it is too hot the micropipette tends to stick to the filament

and break. The micropipette is brought into contact with the wire and we apply a

force to bend it. Any angle between 0◦ and 180◦ can be achieved. This procedure

can be repeated several times to give the pipette a complex shape.

We used micropipettes for three purposes. One is to produce the oil droplets with

the droplet pipette (described in 3.2.1). The other use for the pipette was to manip-

ulate the droplet clusters and to compress them (see details in 3.2.2). Micropipettes

are also used as cantilevers springs that deflect under an external force [51–54]. The

deflection is proportional to the applied force: F = kp∆d, where kp is the spring con-

stant of the pipette and ∆d its deflection. The spring constant depends on two main

parameters: 1) the length of the pipette perpendicular to the force; the longer this

part is, the smaller the spring constant. 2) the diameter of the pipette; the smaller

the diameter, the smaller the spring constant.

3.2.1 Droplet pipette

The droplet pipette is used to produce oil droplets in an aqueous solution using the

snap-off instability [5, 55]. No bending is required to make this pipette. The pipette

is pulled and the tip is broken off using tweezers. This makes the end of the pipette

irregular which facilitates the production of the droplets. This irregularity allows the

continuous phase to enter the pipette more easily and thus for the snap-off instability

to occur. The tip of the pipette is pre-wetted with the continuous aqueous phase and

then mineral oil is pushed through with a syringe. The pre-wetting step is critical as

the continuous phase must enter the pipette in order for the instability to occur. This

way of producing droplets leads to remarkably monodisperse droplets (CV < 0.7%).

As the radius of the droplets depend on the radius of the pipette, the droplet size

can be changed by using a different droplet pipette. This is especially important

for the experiments presented in chapter 4 where bidisperse clusters are studied. The

droplets were produced with two different pipettes leading to two highly monodisperse

populations with different sizes mixed together.
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3.2.2 Pushing pipette

The pushing pipette is used to compress the cluster against the third pipette. It is

important that the pushing pipette does not deflect doing so. If it did deflect, the

two pipette would no longer be parallel and the different parts of the cluster would be

compressed in different ways. The parallelism of the pipettes is already challenging

as the force sensing pipettes must deflect in order to measure internal forces. Making

the pushing pipette stiff in comparison to the force sensing pipette minimizes the

angles between the two pipettes during compression.

The pushing pipette is made from two bends (see Fig. 3.4). First, a 90◦ in plane

bend to form the part in contact with the cluster (where the force is applied). This

part must be short to make the pipette stiffer. The typical length is ∼ 3 mm. The

second bend is ∼ 45◦ out of plane so the pushing part is not in the same plane as

most of the pipette. The end of the pipette must be in a different plane for practical

reasons. The droplets gather at the top of the chamber under the top glass slide. The

pushing pipette comes in contact with the droplets in their equatorial plane as shown

in Fig. 3.1. The distance between the top glass slide and the pipette is a few tens of

microns. For the experiment to be accurate, the glass pipette cannot touch the glass

slide. If the out of plane bend was not there, it would mean perfectly aligning the

whole pipette with the glass slide within ∼ 20 µm which is not realistic. Because of

the 45◦ bend, the alignment only needs to be performed over three millimeters only.

1 mm

3 mm

(a)

(b) (c)

Figure 3.4: (a) Picture of the pushing pipette. The perpendicular short end is the
part used to compress the cluster. (b) Schematics of top view of the pipette. (c)
Schematics of the side view of the pipette. This view corresponds to the eye shown
in frame (b)
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3.2.3 Force sensing pipette

The force sensing pipette is used to simultaneously compress the clusters and act as

a force sensor. The order of magnitude of the force measurements ranges from 1 to

15 nN. To measure such small forces, the spring constant must be of the order of 1

nN/µm. To make compliant pipettes, the total length perpendicular to the force must

be on the order of a few centimeters and the radius should be ∼ 10 µm. Pipettes that

have this kind of spring constant have been previously used to study living-cells [53]

or micro-swimmers [54]. This centimeter-long pipette cannot fit inside the chamber.

It must be bent into a zig-zag shape so that the total length perpendicular to the

force stays the same but the pipette is more compact. The bent force sensing pipette

is equivalent to a straight pipette which has the same size in terms of force sensing.

1 cm

1 mm

3 mm

(a)

(b) (c)

Figure 3.5: (a) Picture of the force sensing pipette. The part in contact with the
droplets is the flat end of the pipette. (b) schematics of top view of the pipette. (c)
schematics of the side view of the pipette. The view corresponds to the eye shown on
(b)

The force sensing pipette is bent with the same technique as the pushing pipettes

but is made of many bends. The first step is to make several in plane 180◦ bends

of approximately one centimeter. The pipette is bent all the way to the conical part

where the diameter increases, as shown on Fig. 3.5(b). This typically corresponds

to four bends at 180◦. The closest bend to the end of the pulled part of the pipette

(furthest left on Fig. 3.5(b)) is only 90◦, so that all of the bends previously made

are now at 90◦ with respect to the main part of the pipette. Finally, the first bend
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(furthest right on Fig. 3.5(b)) is bent out of plane at ∼ 45◦ and the tip flattened

out (see Fig. 3.5(c)). The out of plane bend is made for the same reason as for the

pushing pipette. The total length is ∼ 3− 4 cm, and the diameter is constant over at

least 3 cm. The pipette becomes thicker closer the conical part. With these pipettes,

we can measure forces as small as hundreds of pico-Newton.

Calibration

The quantity measured is the deflection of the force sensing pipette during the com-

pression of the cluster. The deflection can be linked to the force applied on the

pipette via the spring constant of the pipette, kp. The calibration of a pipette is

usually done by measuring the deflection of the pipette resulting from the weight of

a water droplet [54]. Water is injected in the pipette until a droplet forms at the

end. As more water is injected the droplets grows, and the deflection of the pipette

due to gravity as a function of the volume of the droplet is measured. Because of the

complex shape of the force sensing pipette, this method cannot directly be applied.

We first calibrate an intermediate pipette, called reference pipette, using the droplet

technique. An example of such a calibration is shown on Fig. 3.6. We calibrated three

different reference pipettes.
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Figure 3.6: Calibration of the reference pipette with the droplet of water. The
applied force corresponds to the weight of the droplet. The deflection is measured
using cross correlation (see 3.3.1). The spring constant of the pipette is obtained by
fitting a straight line to the experimental data.
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We then push the reference pipette of known spring constant, kref, against the force

sensing pipette. This experiment is equivalent to pushing two springs against each

other in series. In section 1.3.1, we have shown that the force in both springs has to

be the same, leading to:

kref∆x1 = kp∆x2, (3.1)

with ∆x1 and ∆x2 the deflection of the reference pipette and the force sensing pipette

respectively. The spring constant kp is obtained by measuring the deflection of both

pipettes when pushed against each other.
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Figure 3.7: (a) displacement of thereference pipette as a function of time. When
contact is made, the reference pipette deflects and the slope decreases. The deflection
corresponds to the difference between the actual (in blue) and the extrapolated (in
black) displacement. (b) Force calculated from ∆x1 as a function of the deflection
of the accordion pipette. ∆x1 and ∆x2 are in opposite direction. ∆x2 is counted as
positive which leads to a negative force.

Experimentally, both pipettes start away from each other so they are not in con-

tact. The reference pipette is affixed to a translation stage moving at a constant

speed. We record microscopy pictures of the pipette moving toward the force sensing

pipette. When contact happens, both pipettes start deflecting. The deflection of the

force sensing pipette ∆x2 can be directly measured with cross correlation between

the current picture and the reference (initial position). For the reference pipette,
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we see a change in the speed of the pipette (slope on Fig. 3.7(a)) when contact hap-

pens. Taking the difference between the extrapolated and the measured displacement,

we calculate the deflection of the reference pipette ∆x1. Finally, we plot the force

F = kref∆x1 versus the deflection of the force sensing pipette (Fig. 3.7(b)). The slope

corresponds to the spring constant of the force sensing pipette according to Eq. 3.1.

We repeated that measurement several times for each of the three reference pipettes.

All the data presented in Chapter 4 have been obtained using the same force sensing

pipette with spring constant equal to kp = 1.3± 0.1 nN/µm.

3.3 Image Analysis

The droplet cluster is imaged using optical microscopy as it is compressed. We use

the images of the cluster to study both the rearrangement of the individual droplets

in the cluster and measure the forces applied on the cluster. In this section, we discuss

how the images are analyzed to access this information.

3.3.1 Force measurement and cross correlation

Cross correlation is used to measure both the pushing and the force sensing pipette

displacements during compression. The difference in their position is the spacing

between the pipette, δ. The displacement of the force sensing pipette is also converted

into a force. The deflections observed during our experiments range from less than 1 to

∼ 10 pixels. The measurement of such a small displacement requires a high-resolution

technique. Cross-correlation is used here as it offers sub-pixel resolution [56].

The cross-correlation measures how similar a vector, its lagged copies, and a ref-

erence vector are. Let us consider a simple example with a vector X = [1 2 3] and we

want to measure how similar it is to itself. The lagged copies are Xi {[3 2 1]; [2 3 1];

[1 2 3]; [3 1 2]; [2 3 1]}. For each of these vectors we calculate C(i) the elements of

the correlation vector:

C(i) =
3∑

j=1

X(j) ∗ Xi(j). (3.2)

For the analysis of the experimental data, we use the MATLAB function xcov which

calculate the cross-covariance. Using the previous example, the covariance vector is
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given by:

C ′(i) =
3∑

j=1

(X(j)− X) ∗ (Xi(j)− X). (3.3)
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Figure 3.8: (a) Microscopy picture of the force sensing pipette in its original position
when no force is applied. (b) The force sensing pipette deflects under the force applied
by the cluster. (c) The blue line corresponds to the auto-covariance performed on
(a). The position of the maximum gives the initial position of the pipette. The red
line corresponds to the cross-covariance between images (a) and (b). Measuring the
distance between the maxima of the blue and the red line gives the deflection of the
pipette. Inset - Zoom on the peaks. A Gaussian profile is fitted to the data points to
measure the position of the maximum with sub-pixel resolution.

The same idea is used to measure the pipette deflection. We measure the intensity

profile along the same line throughout the compression. The line must be perpen-

dicular to the pipette of which we study the displacement. It is important that the

line never crosses another pipette or a droplet on any images. We first measure the

auto-correlation of the first image (red curve in Fig. 3.8(c)) to find the initial position

of the pipette (when no force is applied). The vectors from the other images are then

tested against the intensity profile from the first image (blue curve in Fig. 3.8(c),

for example). We measure the lag required so the profiles match (maximum in the

cross-correlation function). The position of the peak is measured by fitting a Gaus-
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sian curve to the data points (black curve in the inset Fig. 3.8(c)), which enables a

resolution of ∼ 0.2 pixel. The difference in the position of the peaks corresponds to

the displacement of the pipette.

3.3.2 Droplet and bond detection

The images analyzed for the force measurement also contain information about the

rearrangement of the cluster. We use the built-in Matlab function imfindcircles

to detect the droplets and track their positions during the experiment. To reorganize

the bond must break and form bonds. As will be described in chapter 4, the fracture

events in the cluster are correlated to peaks in the force measurement. Therefore it

is important to know if two droplets are linked by a bond or not to detect fracture

events. The first idea is to measure the distance between the centers of the droplets

and compare it to the sum of the two droplet radii. This method is sensitive to the

detection of the droplets, however it is not accurate enough in many cases. We sim-

ply use it as a prerequisite for the next step of the detection described below. If the

distance between two droplets is larger than twice the sum of their radii, we do not

proceed to step two.
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Figure 3.9: (a) Microscopy picture of a droplet surrounded by its 6 neighbours. (b)
Example of the lines along which the profiles are studied for the bond detection. (c)
Five different profiles drawn for the bond with droplet 2. We see only one extremum:
there is a bond with droplet 2. (d) Five different profiles drawn for the bond with
droplet 3. The profiles show three extrema so there is no bond with droplet 3
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The second step of the bond detection is closer to the way our eyes tell if there

is a bond or not (see Fig. 3.9(a)). If the droplets are not touching then we can see a

lighter patch between the black edges of the droplets. We study the intensity profile

along the center-to-center line (Fig. 3.9(b)) and count the number of extrema. Such

profiles are shown on Fig. 3.9(c) for two droplets touching and (d) for two droplets

not touching. We study the profile along five lines and if any of them only shows one

extremum then there is a bond. This has been implemented after seeing disagreements

between what we could say by eye and what the software decided when only one line

was studied. We found a better agreement by scanning the profile along several lines.
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Chapter 4

Crystal-to-glass transition

Jean-Christophe Ono-dit-Biot, Pierre Soulard, Solomon Barkley, Eric R. Weeks, Thomas Salez,

Elie Raphaël, Kari Dalnoki-Veress.

This chapter presents a manuscript, along with its supplemental material, intended

for a peer-reviewed publication. In this work, we study the mechanical response of

2D clusters of droplets under compression as a function of its composition. The force

required to break the clusters is directly measured using a micropipette. The force

curves are a signature of the composition of the cluster. By gradually introducing

disorder, we study the transition from a perfectly ordered crystal to a disordered

glass. A model which fully support experimental results has also been developed.

Initial versions of this experiment were designed by Solomon Barkley and Kari Dalnoki-

Veress. Solomon wrote the first Matlab analysis scripts as well as per formed pre-

liminary experiments. My contribution was to improve the experimental set-up and

write additional scripts for data analysis. I conducted all experiments presented in

this manuscript in consultation with Kari Dalnoki-Veress. The theoretical model was

developed by Pierre Soulard, Thomas Salez and Elie Raphaël in collaboration with

Kari Dalnoki-Veress and myself. I prepared the figures and wrote the first draft of

the manuscript. This first draft of the manuscript has benefitted tremendously from

discussions with Eric R. Weeks and all authors.
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Oil droplets of two distinct sizes are used to prepare model 2D aggregates in an aqueous envi-
ronment. We investigate the transition from perfectly ordered monodisperse crystals to disordered
bidisperse glasses. These aggregates rearrange under compression between two parallel boundaries,
one of which acts as a force sensor. The internal forces measured during the compression are a
signature of the composition of the cluster and provide insight into the crystal-to-glass transition.
We find that the mechanical properties of the 2D aggregates are strongly impacted by even a small
amount of disorder: crystals dissipate all the energy into a single fracture event wheras the glassy
aggregates break step-by-step.

Glassy materials are amorphous solids and cannot sim-
ply be described as crystals with defects [1]. The intrin-
sic disorder – for example resulting from molecules that
do not neatly pack, or polydisperse colloidal spheres –
prevents glassy systems from crystallizing [2, 3]. An in-
teresting question arises: how much disorder is needed
before a crystal transitions to a glass? Numerical stud-
ies [4–7] have shown that adding a small amount of dis-
order to crystalline packing results in microscopic and
macroscopic properties that are much closer to amor-
phous structures. Experimental evidence of such a rapid
transition has also been demonstrated [8, 9] for systems
of thousands of particles.

Several strategies can be used to study the di↵erences
between crystals and glasses. The long ranged order of a
crystal is distinct from the disorder of a glass. Thus, mi-
croscopic properties can provide information about the
packing configurations [10–12]. Alternatively, bulk prop-
erties also di↵erentiate between glassy and crystalline
solids, for example, the bulk and shear modulus [4, 13].

Colloids and emulsions have proven to be model sys-
tems for the study of glassy systems and jamming [14–
18], force chains [19, 20], and phase transition in crys-
tals [21]. The advantage of these systems is that individ-
ual particles can be imaged thus obtaining both struc-
tural and dynamical infromation [14, 22, 23]. Here we
use an emulsion of oil in water (soft spheres, no fric-
tion, with an attractive potential) confined to form a 2D
aggregate. This system is used to model the transition
from perfectly ordered monodisperse crystals [24] to dis-
ordered bidisperse glasses [25–27]. The amount of dis-
order is tuned by changing the ratio between large and
small droplets in small clusters, which consist of tens of
droplets (Ntot = 3 to 50 droplets). We investigate the
transition from a monodisperse crystal to a bidisperse

glass by measuring the force required to deform and frac-
ture the 2D aggregates. By systematically adding defects
in the crystalline structure, we see a rapid increase in the
number of fracture events in the cluster. Surprisingly, the
total work required to break a cluster is approximately
the same for a crystal and a glass, however, the main
di↵erence lies in the way the total work is dissipated. An
analytical model has been developed which fully supports
the experimental observations.

The experimental setup, shown in Fig.1(a), is a cham-
ber (55 x 30 mm) made of two glass slides separated by
a gap of 2.5 mm. The chamber is filled with an aqueous
solution of sodium dodecyl sulfate (SDS) at 3% and NaCl
at 1.5%. This concentration in SDS leads to the forma-
tion of micelles acting as a depletant and results in weak
adhesion between the droplets [28]. The concentration
of SDS and salt is kept constant by adding walls around
the chamber to prevent evaporation. Small slits in the
walls enable the insertion of three micro-pipettes. The
pipettes were made by pulling glass capillaries (World
Precision Instruments, USA) with a pipette puller (Nar-
ishige, Japan). The micro-pipettes have a diameter of
⇡ 10 µm over several centimeters. The “droplet pipette”
produces nearly monodisperse droplets using the snap-
o↵ instability [29]. The droplets are buoyant and form a
quasi-2D aggregate under the top glass slide (Fig. 1(b)).
Clusters are assembled droplet-by-droplet and thus can
be prepared into any arbitrary shape (see movie M1 in
SI). We use p to refer to the number of rows of droplets
in the cluster and q to the number of droplets per row.
Changing the tip radius of the droplet pipette changes
the size of the droplets to prepare bi-disperse aggre-
gates [29]. To increase the disorder in a cluster the
large droplets were substituted by small droplets. As
each droplet is placed individually, the position of the
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defects is also controlled. The “pushing pipette” is short
and sti↵ and is used to compress the cluster. The push-
ing pipette was a�xed to a translational stage and its
speed set to 0.3 µm/s for all experiments. The “force
sensing pipette” is a long compliant pipette and the de-
flection of the pipette is used to measure forces applied
to the cluster [30]. To be sensitive to forces as small as
⇡ 100 pN, the pipette needs to be long (⇡ 3 cm) and
thin (⇡ 10 µm). The straight pipette is locally heated to
soften the glass such that it can be shaped to fit within
the chamber. The chamber is placed atop an inverted op-
tical microscope for imaging while the clusters are com-
pressed.

(a)

(b) (c)

q

p

(i)

(ii)
(iii)

FIG. 1. (a) Schematics of the top view of the experimental
chamber. The typical dimensions of the wall are 55 x 30 x 2.5
mm. (i) the “droplet pipette”; (ii) the “pushing pipette”; and
(iii) “force sensing pipette” (b) Schematics of the side view.
The droplets form a quasi 2D aggregate. The pushing pipette
and the force sensing pipette must be in the equatorial plane
of the droplets so forces are only applied horizontally. (c) -
Optical microscopy picture of a typical crystal - scale bar =
50 µm. Red dashed lines show how a crystal breaks when
compressed.

The clusters are compressed between the pushing
pipette and the force sensing pipette. The distance
between both pipettes, �, is measured using cross-
correlation analysis between consecutive images. Addi-
tionally, correlation analysis provides the deflection of the
force sensing pipette which is converted to a force using
the spring constant of the pipette (kp = 1.3±0.1 nN/µm)
obtained by calibration [30]. The cluster rearranges un-
der compression by breaking bonds between the droplets.
These events can be directly observed on the optical mi-
croscopy images and coupled to the force measurement.
Each fracture event corresponds to a local maximum in
the force curve.

In Fig. 2(a) is shown the force measurements as a func-
tion of the compression for seven di↵erent clusters. The

geometry of the cluster is fixed and defined by the num-
ber of rows p = 4 and the number of droplets per row
q = 5. Each site can be occupied by either a large or
a small droplet, the ratio between the number of large
and small droplets is varied from cluster to cluster. The
top trace corresponds to a crystal (monodisperse cluster)
made of large droplets with radius R = 25.1 µm and the
bottom curve to a crystal of small droplets with radius
r = 20.3µm (see Fig. 2(b)). These two force measure-
ments show three peaks corresponding to three fracture
events: the transition from p = 4 to p = 3, which we des-
ignate as 4 ! 3, 3 ! 2, and finally 2 ! 1 (see movie M2
in SI). For a crystal, all the bonds are broken in a coor-
dinated manner, consistent with other studies of crystals
under compression [31, 32]. We find that the fracture
forms equilateral triangles with (p�1) droplets on the tri-
angle’s side, which corresponds to the geometry requiring
the smallest number of broken bonds between droplets.
After fracture, the triangles slide past each other and re-
assemble into a new crystal with (p�1) rows of droplets.
By design, the force sensor does not register a friction
force during sliding, nor are we sensitive to viscous drag
during compression, because slow compression ensures
that dissipative forces are negligible.

The position of the peaks in Fig. 2(a) correspond to
fracture transitions. Indeed, for a transition p ! (p� 1),
a crystal made of large droplets will fracture at a larger
spacing between the pipettes � = �p

max, compared to a
crystal of smaller droplets � = �p

min. Introducing defects
in the structure prevents coordinated fracture from oc-
curring as the cluster is not compressed homogeneously.
Thus, additional fracture events occur and and extra
peaks appear in the force data [see force traces inter-
mediate to the two crystal examples in Fig. 2(a), and
typical images Fig. 2(c)-(d)]. When a single defect is
introduced (second and sixth traces), extra peaks are ob-
served but peaks corresponding to the fracture of the
crystalline portion of the cluster can still be identified
(large peaks at the same values of �). Defects are sys-
tematically introduced up to the fourth curve, which cor-
responds to the most disordered system that we use to
model a glass (equal fraction of large and small droplets).
The force curves are strongly impacted by increasing dis-
order: 1) the number of fracture peaks increases; 2) the
peaks corresponding to the crystalline structure dimin-
ish; and 3) the magnitude of the force peaks decreases
with increasing defects. A consequence of having several
peaks instead of one is that the transition p to (p�1) can
no longer be easily defined. To know which transition a
peak belongs to we use the boundaries defined previously:
�p
min and �p

max. If a peak is found for � 2 [�p
min : �p

max]
then it is part of the transition p to (p � 1).

Fig. 2 shows that the fracture properties are strongly
dependent on the cluster composition. In order to investi-
gate this dependence we first turn to understanding the
compression of monodisperse clusters prior to fracture.
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FIG. 2. (a) Force measurements for seven clusters sharing the
same lattice but with di↵erent compositions. Curves (1) to
(7) corresponds respectively to {0; 1; 6; 10; 14; 19; 20} large
droplets in 20 droplets. The blue dashed lines correspond to
the position of the peaks for the crystal made of large droplets
�p

max and the black dashed line to the peaks for the crystal
made of small droplets �p

min. (b) - (e) Microscopy pictures
of the clusters, before compression, corresponding to traces
(1) to (4). Blue squares correspond to large droplets and red
circles to small ones - scale bar = 50 µm

Previous studies have investigated the deformation of a
droplet under external forces [19, 33]. A single oil droplet
can be modelled as a spring [34] with a spring constant,
k1, which is directly proportional to the interfacial ten-
sion between the liquids (see derivation in SI). Along a
row of droplets, q springs are assembled in parallel, while
the p rows can be modelled as equivalent springs in se-
ries. A cluster can then be represented by an equivalent
spring with an e↵ective spring constant keq(p) = k1q/p.

To test the equivalent spring model, we compressed an
initial crystal with p = q = 7. Upon compression, there
are six p ! (p � 1) transition peaks in the force curve.
We define the compression as �x = � � �p

ini with �p
ini

the spacing between the pipettes when the cluster is first
compressed. Fig. 3(a) shows the force as a function of the
compression for the six peaks. The force is linear with
the compression and the slope keq(p) can be extracted for
each curve and plotted as a function of the ratio q/p as
shown on Fig. 3(b). The equivalent spring constant keq

scales linearly with q/p as predicted by the equivalent
spring model for the monodisperse crystals.

Having validated the equivalent spring model, the elas-
tic energy stored in the cluster during the compression is
given by Es = 1/2F�x. The stored elastic energy builds

during compression and the cluster fractures when this
stored energy overcomes the adhesion energy. The to-
tal adhesion energy can be expressed as E1b, where E1

is the energy per bond and b is the number of broken
bonds. Using simple geometrical arguments, the number
of bond to break for a crystal to rearrange is found to
be b = 2q. When the cluster breaks, the adhesion energy
and the stored energy are equal and Fc�xc/2 = 2qE1,
where Fc and �xc correspond to the critical force and
compression at failure. This expression can be rewritten
as �c = Fc/q =

p
4k1E1/p (see SI), and represents the

2D equivalent of a yield stress for a crystal. The yield
stress can be accessed experimentally by recording Fc for
di↵erent values of p. This experiment has been performed
with clusters of di↵erent geometries and di↵erent sizes of
droplets. For each size, at least five di↵erent clusters were
studied to obtain an average value of the critical force for
the same p. In Fig. 3(c) we plot a normalized yield stress
�c/(4k1E1) as a function of p. The data points fall on the
master curve �c = p�1/2 validating the fracture model for
crystals.

Having established a simple model which captures the
fracture of monodisperse systems we turn to the bidis-
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FIG. 3. (a) Increasing portion of the six force peaks mea-
sured during the compression of a 7 x 7 crystal. Compression
is defined as the distance between the pipettes relative to the
distance at the beginning of the peak. The slope of these
straight lines corresponds to keq. (b) Evolution of keq as a
function of the transitions. The linear relationship between
keq and the ratio q/p validates the spring model. (c) Normal-
ized yield stress as a function of p for fives di↵erent droplet
sizes. Several experiments are performed for each size. Data
points are the average for a given size and cluster geometry,
error bars correspond to the standard deviation
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perse case. The most striking feature when defects are
introduced is the rapid increase in the number of peaks
in the force measurement as shown in Fig. 2. The num-
ber of fracture events can be studied systematically by
adding defects in a cluster with a well defined geometry.
We have performed such an experiment for two di↵erent
cluster geometries with pini = 4, and qini = 5 as well as
pini = 3, with rows made of 8 - 7 - 8 droplets respec-
tively. The number of defects, Ndefect, in the system is
defined as the number of droplets in the minority phase
of the bidisperse droplet system. Thus, the defects can
be large or small droplets and the number fraction of de-
fects is given by � = Ndefect/Ntot, where Ntot is the total
number of droplets. The impact of the position of the de-
fects was not investigated in this study. The defects are
distributed throughout the structure to avoid clumps of
defects. In Fig. 4(a) we plot the number of peaks, which
corresponds to the number of fractures in the system, as
a function of the defect fraction.
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FIG. 4. (a) Total number of peaks for a compression from p to
a single row of droplets. ( ) initial number of rows pini = 4;
( ) initial number of rows pini = 3. (b) Normalized total
number of peaks for a compression from pini to a single row
of droplets. The black dashed line corresponds to Eq. 4. (c) -
(f) Probability of finding a column of reduced height, h, in an
infinitely large cluster with p = 4 for the numbers fractions
of defect � = {0; 0.1; 0.3; 0.5} respectively. h = 1 correspond
to a crystal made of large droplets. The smallest value of h
correspond to a crystal made of small droplets.

We now turn to a model which captures the number
of fracture events as a function of the defect concentra-

tion. One can think of the cluster as being q columns of
droplets stacked next to each other (where the number
of columns q is the same as the number of droplets per
row). The cluster is assembled from these building blocks
and each column needs to be the smallest unit that can
be compressed. A minimal unit representing a compress-
ible column is that of alternating triads of droplets. This
can be modeled by stacking alternating rectangles (made
of two droplets side by side) and circles (single droplet).
The circles can have two di↵erent heights {2R, 2r} with
probability {�, (1 � �)}. The rectangles can have three

sizes { eR, er, ( eR + er)/2} with probability {�2,(1 � �)2,

2�(1 � �)}. The heights er and eR are linked to r and R
via a geometrical factor ↵.

For a given number of rows p, the columns can be built
as a random walk with p/2 circles and p/2 rectangles. Us-
ing the random walk statistics for a finite value of p, one
can calculate the resulting heights of the column along
with the probability, Pi. This is shown in Fig. 4 (c) - (f)
for � 2 [0, 0.1, 0.3, 0.5], the black bars show the di↵erent
reduced height h that can be found and their probabil-
ity Pi. The height h is defined to be equal to one for
a column made of large droplets. From these distribu-
tions, the number of peaks observed in the cluster can be
predicted (see SI). As the number fraction of defects is
increased, the number of di↵erent heights, and thus the
number of peaks, is increased.

The shape of the distributions shown in Fig. 4 for large
values of � suggests a gaussian distribution. Indeed, in
the limit of a large number of rows p, the probability
distribution becomes gaussian for any � 6= 0. The aver-
age value of the height, µ, and the variance, �, can be
calculated analytically with this approach. For the con-
tinuous case, all the heights are possible but only the ones
included in [µ� �, µ + �] are likely. This approach, even
for a number of steps as small as p = 2, leads to a pre-
diction for the number of peaks as a function of � close
to the discrete calculation (see SI). Thus, the number of
peaks is proportional to the width of the gaussian dis-
tribution. To first order, the theoretical average number
of peaks < Np(�) > for the transition from p to (p � 1)
rows of droplets is

< Np(�) >= [< Np(� = 0.5) > �1]
�(�)

�(� = 0.5)
+ 1. (1)

The standard deviation � is linked the the number frac-
tion of defects � by

�(�) /
p

�(1 � �)(R � r)2, (2)

which leads to

< Np(�) >= [< Np(� = 0.5) > �1]2
p

�(1 � �)+1. (3)

In order to compare the experimental data, Eq 3 must
be summed over all the transitions because the measured
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quantity is the total number of peaks from pini to p = 1:

Npini!1 � (pini � 1)

Npini!1
max � (pini � 1)

= 2
p

(1 � �)�. (4)

Npini!1
max corresponds to the maximum number of peaks

observed at � = 0.5. All the statistics above are done
for an infinite number of columns q which is not realistic
experimentally. For example, the number of peaks for a
given transition cannot be greater than the number of
column q in the cluster. The other assumption is that
the columns are independent. To compare experimental
and theoretical results, we use the maximum number of
peaks observed for the largest � studied experimentally
as Npini!1

max . Fig. 4(b) shows that the model captures the
rapid increase of the number of peaks when defects are
added.

The compression experiments can also be used to char-
acterize the yield behavior of the material as a function
of fraction of defects. The work done on the cluster in or-
der to break bonds between the droplets can be obtained
by integrating the force curve, such as the one shown in
Fig. 2, for a given transition from p to (p�1). The result
of the integration is shown in Fig. 5 As explained pre-
viously, a transition is defined by �p

min and �p
max, so the

integration is performed over this interval. We only con-
sider the increasing part of the peak (elastic deformation
of the cluster) as the decay of the force corresponds to
the relaxation of the pipette and drag forces. Within res-
olution of the experiment, the the total work is constant
for the di↵erent experiments W exp

tot = 2.2 ± 0.7 nN.µm
and is not correlated to the composition of the cluster
(See SI)

An important distinction between the glass-like and
crystal systems is how the work is dissipated during fail-
ure of the cluster and how this depends on �. With
this analysis, we characterize the energy landscape for
the failure of the structure. We directly measure the en-
ergy barrier to overcome in order to have the material
flowing. For the crystals, all the bonds are broken at
the same time which is equivalent to all the energy dissi-
pated at once. The crystal made of large droplets breaks
at � = �p=4

max as shown in Fig. 5 with the normalized work
going from zero to one in a single step. The crystal made
of small droplets behaves the same way except that the
fracture event happens at � = �p=4

min. As soon as defects
are introduced, several steps are observed and the aver-
age height of the steps decreases. For a single defect, a
major step (corresponding to the crystalline structure)
is still observed but rapidly fades away as more defects
are added. The curves with six defects and the glass
both show many small energy barriers making the disor-
dered systems easier to break. The compression experi-
ment elucidates the di↵erence between glasses and crys-
tals. The transition from order to disordered impacts the

way that energy is dissipated as a function of the amount
of disorder.
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FIG. 5. Breakdown of the total work performed on clusters
of di↵erent compostions for the transition p = 4 to p = 3.
Top - Experimental results corresponding to the force curves
shown in Fig. 2(a). The integral runs from the blue dashed
line (�p=4

max) to the black dashed line (�p=4
min). Bottom - Corre-

sponding breakdown of the energy according to the theoretical
model. The peaks are modeled by Dirac functions which leads
to Heaviside steps for the work.

The same work analysis can be performed using the
theoretical model developed to predict the number of
peaks. Assuming the peaks to be Dirac functions, the
work is an Heaviside step of height Ei, the energy re-
quired to break the column. We make the assumption
than the energy Ei does not depend on the composi-
tion of the column as W exp

tot is approximately constant.
The work required at a given � can be expressed as
W (�) =

P
i Ei✓[� � (1 � hi)]. We can finally express

the average value of the ratio between the work done at
� and the total work:

<
W (�)

Wtot
>=

X

i

Pi✓[� � (1 � hi)]. (5)

The breakdown of the work calculated according to this
model is shown in the bottom panel of Fig. 5. It shows
a behavior very consistent with the experimental data.
Once again, the theoretical framework that has been de-
veloped fully supports the experimental data.

In this study we have shown that the model 2D crystals
and glasses are markedly di↵erent under compression.
Crystals deform elastically until a catastrophic fracture
event occurs, whereas glasses rearrange locally with many
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small fracture events. The deviation from the well estab-
lished elasticity of a crystal has also been observed in a
recent analytical study [35]. Another recent numerical
study has shown that materials go from brittle to ductile
when transitioning from crystal to glass [7]. These theo-
retical results are consistent with what has been seen in
the model 2D system explored here.

In summary, by systematically adding disorder in crys-
tals we have studied the crystal-to-glass transition. The
mechanical properties of the aggregates rapidly transi-
tion from crystalline to glassy in both a qualitative and
a quantitative way. The number of peaks, corresponding
to fracture events, increases rapidly even for small frac-
tion of defects. The energy required to break the system
as a function of the disorder has been mapped out. For
the 2D crystal, a high energy barrier must be overcome
while glasses fracture through failure in many small steps.
Lastly, an analytical model has been developed which
predicts the number of peaks in the force-compression
curve, or the energy landscape, which is consistent with
the experimental observations.
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LARGE CRYSTAL COMPRESSION

Geometry

In the main text, we describe the compression of a large crystal made of p = 7 rows of droplets and q = 7 droplets
per row. The total number of droplets is Ntot = pq. Upon compression, the crystal will rearrange in order to
accommodate the available space between the pipettes. When the crystal fractures, equilateral triangles with (p� 1)
droplets on their side are formed. This is shown in the sequence of images in Fig. S1 for the transitions p = 7 to 6
and p = 6 to 5.

(a) (b) (c) (d) (e)

77 56

FIG. S1. Microscopy pictures of a crystal as it is being compressed from p = 7 rows to p = 6 [(a)-(c)] and from p = 6 to p = 5
[(c)-(e)]. The bonds break simultaneously forming equilateral triangles - scale bar corresponds to 50 µm

To find the critical yield stress for which the crystal breaks, we claimed that the number of bond broken per
transition is b = 2q. This equation is based on simple geometrical arguments. Three quantities are defined to describe
the breaking events: the number of droplets per triangle d, the number of triangles per transition t and the number
of bonds broken b.

d =

p�1X

i=1

i =
p(p � 1)

2
. (S1)

Therefore, the number of triangles t for a transition (excluding edge e↵ects) is:

t =
Ntot

d
=

2q

p � 1
. (S2)

The bonds are broken along the edge of the triangles only, leading to (p�1) bonds broken per triangle. Only one side
of the triangle is considered to avoid double counting. The total number of bonds b broken during a transition is:

b = t(p � 1) = 2q =
2Ntot

p
. (S3)

Eq. S3 justifies the use of b = 2q as the number of bonds broken during a transition for a crystal.
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EQUIVALENT SPRING MODEL

The force measurement corresponding to the compression of the 7 x 7 crystal is shown in Fig. S2. As the cluster
goes through six transitions, six peaks are observed. Only the increasing part of the peaks, corresponding to the
compression of the cluster (black part of the peaks in Fig. S2), is considered. The decaying part of the peak is due
to the relaxation of the sensing pipette and drag on the droplets themselves (red). The start point of the peak is
taken as the first point for which the slope becomes positive. The end point of the peak is found using the microscopy
pictures; we disregard the data points after the first bond is broken in the system. Indeed, if a bond is broken, the
droplet is no longer part of the equivalent spring so the model does not apply anymore. For the first peaks, the end
point usually corresponds to the maximum of the peak. As the crystal becomes thinner, smaller number of rows p,
the number of droplets per row q becomes larger. Because the cluster is now wider, the cluster becomes more sensitive
to parallelism between the pipettes and parts of the cluster break slightly before others. Thus, the peak value does
not correspond to the theoretical maximum of the force.
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FIG. S2. Force curve for the compression of a 7 x 7 crystal. The six peaks correspond to the six transitions observed during
the compression. As time goes on the pipettes are brought closer to each other and delta decreases. The increasing part that
corresponds to elastic compression of the peak is the right side.

Deformation of a droplet

The energy cost of deforming a droplet has been calculated by Pontani et al. [1] to be Ed = 1/2�⇡R2
0✓

4, where R0

is the undeformed radius of the droplet and ✓ is defined in Fig. S3. In the main text, we use the analogy between a
droplet and a spring. The elastic energy stored in a spring of constant k1 is Es = 1/2k1x

2. Comparing Ed to Es, the
relationship between the spring constant and the surface tension between oil and the SDS solution can be found. The
deformation energy Ed must be expressed as a function of the compression a the droplet x. Let us first express x as
a function of the patch radius Rp and the radius R:

R2 = R2
p + (R � x)2, (S4)

which is equivalent to

R2
p � 2xR + x2 = 0. (S5)

We solve for x,

x± = R0 ±
q

R2 � R2
p. (S6)
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Eq. S6 can be written as:

x± = R ± R

r
1 � R2

p

R2
. (S7)

The deformation x must be positive so the only physical solution is x�.The size of the patch is small compared to the
radius of the droplet so Eq. S7 is Taylor expanded :

x� ⇡ R � R(1 � R2
p

2R2
) ⇡ R2

p/R. (S8)

The angle ✓ defined in Fig. S3 can also be expressed as a function of Rp and R: ✓ = Rp/R. Finally, to first order,
R ⇡ R0. Using these intermediate steps, the deformation energy Ed becomes:

Ed =
1

2
�⇡

R4
p

R2
0

=
1

2
�⇡x2. (S9)

This analysis justifies the spring model for a single droplet and also shows that k1 only depends on the surface tension
between oil and the SDS solution, k1 = ⇡�, and is independent of droplet size.

x

Rp

R

f
✓

f

FIG. S3. Schematics of two droplets being compressed against each other with a force f . The compression of the droplet is
characterized by x. A patch of radius Rp is formed between the droplets.

Yield stress

As explain in the main text, the cluster stores elastic energy when it is compressed. When the stored energy exceeds
the adhesion energy Ea = bE1, the crystal breaks. The breaking criteria can be found by balancing these two energies
as explained in Eq. 1. Multiplying both sides of the equation by keq leads to

Fckeq�xc

2
= 2qkeqE1. (S10)

The force Fc is simply equal to keq�xc and using keq = k1q/p we find

F 2
c

q2
=

4k1E1

p
. (S11)

We define the 2D yield stress by the force F divided by the number of droplets in a row q: �c = Fc/q,

�c =

s
4k1E1

p
. (S12)

HEIGHT OF A COLUMN AND PROBABILITY

In this section, the theoretical model used to predict the number of peaks in the force measurement as a function
of � is derived. In this calculation, each transition from p rows of droplets to (p � 1) rows is studied individually. In
the following, p and q are constant values.
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Discrete model

The theoretical model developed for this study is based on geometrical arguments. An assembly of droplet is
compressed if its lateral unstrained extent is larger than the spacing between the pipettes. The cluster is modeled
by independent columns of height Hi stacked next to each other. The total height of a column only depends on its
composition. For a crystal, all the columns are the same so they break at the same time resulting in a single peak
in the force measurement. When defects are introduced, large droplets are substituted by small ones (or vice versa)
which changes the height of the column. Columns constituting the cluster now have di↵erent sizes and break for
di↵erent values of �: several peaks are observed in the force measurement. A column is made of alternating layers of
two droplets (modeled by a rectangle) and a single droplet (a circle) as shown on Fig. S4.

{2r ; }

{2R ; (1- )}

{R ; (1- )2}
~

{r ; 2}
~

{(R+r)/2 ; 2(1- ) }
~ ~

FIG. S4. Schematics of the columns considered in the theoretical model. The left part shows how rectangles and circles are
assembled to build a column. The right part shows the di↵erent choices for circles and rectangles along with their probability
to appear

The random walk statistic can be applied in this model. In fact, building such a column is equivalent to two random
walks of p/2 steps: one with the circles and one with the rectangles. To simplify, we only consider p being even. The
results for p being odd would be similar. The relationship between R and R̃ is a geometrical factor ↵ that cancels
later in the calculation. Simply using the random walk statistical background [2], we can express the probabilities
Pcirc(H1, p, �) of finding a height H1 by stacking p/2 circles of two di↵erent sizes for a given �, and Prect(H2, p, �),
the probability of finding a height H2 by stacking p/2 rectangles of three di↵erent heights:

8
>><
>>:

Pcirc(H1, p, �) = 1
2⇡

R ⇡

�⇡
(�ei✓r + (1 � �)ei✓R)

p
2 e�i✓H1d✓

Prect(H2, p, �) = 1
2⇡

R ⇡

�⇡
(�2ei✓r̃ + (1 � �)2ei✓R̃ + 2�(1 � �)ei✓ R̃+r̃

2

| {z }
(�ei✓ r̃

2 +1��)ei✓ R̃
2 )2

)
p
2 e�i✓H2d✓ (S13)

8
><
>:

Pcirc(H1, p, �) =
P p

2

k=0

� p
2
k

�
�k(1 � �)

p
2�k�(kr + (p

2 � k)R � H1)

Prect(H2, p, �) =
Pp

l=0

�
p
l

�
�l(1 � �)p�l�(l r̃

2 + (p � l) R̃
2 � H2).

(S14)
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It turns out that the random walk of p/2 steps with three di↵erent step sizes is equivalent to p steps of two di↵erent
sizes. The Dirac � function is a geometrical constraint on the total height. Only the combinations of droplets that
leads to the right total heights H1 or H2 are considered. The distribution of probability of the total height H is the
convolution product of Pcirc(H1, p, �) and Prect(H2, p, �).

P (H, p, �) =

Z 1

0

Pcirc(H � H2, p, �)Prect(H2, p, �)dH2, (S15)

Using S14 :

P (H, p, �) =

p
2X

k=0

pX

l=0

✓p
2

k

◆✓
p

l

◆
�k+l(1 � �)

3p
2 �k�l�

✓
l
r̃

2
+ (p � l)

R̃

2
+ kr + (

p

2
� k)R � H

◆
. (S16)

Eq. S16 is used to calculate the discrete distribution presented in the main text (Fig. 4(c)-(e)). The height H is
renormalized in order for the height of a cluster made of large droplets to be one. Eq. S16 is the most rigorous
calculation of the distribution of probability but it is a numerical calculation and not analytical.

Continuous model

The other option is to consider large values of p so the distribution can be described by a Gaussian curve with µ,
the average value, and �, the standard deviation:

P (H, p, �) =
1p

2⇡�2
exp


� (H � µ(�, p))2

2�2(�, p)

�
, (S17)

with µ = p↵+2
2 [(1��)R+r�] and �2 = p(2+↵2)�(1��)(R�r)2. The advantage of this approach is that the variance

and the average value can be calculated analytically.

NUMBER OF PEAKS

The column model gives access to the probability pi of finding the height Hi in a cluster for any fraction of defects
�. Correlation between two adjacent columns are neglected. Experimentally, a small fraction of the peaks in the
force measurement is due to the correlation between columns but most of the peaks are indeed due to compression
of independent columns. The number of peaks in the force measurement is calculated from the height distribution.
Observing a single peak in the force measurement means that all the columns share the same height. Measuring
two peaks means that there are two and only two di↵erent < Np(�) > the average number of force peaks during a
compression of a cluster of p rows to a cluster of (p � 1) rows.

Discrete model

The cluster is built by choosing q columns from a pool of m types of columns with probability pi, where m is the
number of di↵erent possible heights found in the height distribution. To predict the number of peaks we calculates
the probability An of finding strictly n columns in a cluster made of q columns.

An =
1

n!

X

{ijk...}n

(P{ijk...}n
)q � 1

n!

n�1X

↵=1

✓
n

↵

◆
↵!

n�1Y

�=↵

(m � �)A↵, (S18)

where {i, j, k...}n is the n-tuple with each number between one and m and P{ijk...}n
=

P
↵2{i,j,k...}n

p↵ is the sum of

the probability of finding each number in the n-tuple. The average number of peaks < Np(�) > is calculated from
this distribution:

< Np(�) >=

mX

n=1

nAn. (S19)
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The meaning of this distribution An can be easily understood for both extreme values of �. If � = 0, there is only one
possible height for the column meaning that An = �1n. On the other hand, if � = 0.5, it is unlikely to find only one
height so A1 ⇡ 0. It is more likely to find all the di↵erent heights in the cluster leading to Am ⇡ 1. This is illustrated
in Fig. S5(a) which shows the probability, An, as a function of �. Fig. S5(b) shows the number of peaks as a function
of phi for p = 2. The maximum number of peaks m is six for the transition 2 ! 1.
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FIG. S5. (a) Probability distribution An as a function of � for a cluster made of p = 2 rows and q = 50 droplets per row. (b)
Prediction of the average number of peaks in the force measurement as a function of � based on the distribution An

Finite size e↵ect

For the theoretical model, we always considered the system to have a large number of column q (in Fig. S5, q = 50)
but for the experimental clusters, q varies from 3 to 15. Especially for p = 3 or p = 4, the number of column is
usually ⇠ 5. Even if the number of di↵erent possible heights m is large, we cannot find more di↵erent heights than
the number of column q. Fig. S6 shows the impact of the number of columns on the number of peaks for p = 2.
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1
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FIG. S6. Impact of the size of the cluster on the number of peaks in the force measurement for p = 2 and di↵erent values of q
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Continuous model

The continuous approach consists in approximating the discrete distribution by a gaussian distribution. With this
approximation, all heights are possible but only some of them are likely to be found. This likelihood is given by the
variance of the gaussian: if the width of the gaussian is large, then many di↵erent heights can be found. We know
the maximum number of peaks is found for � = 0.5 and we only see a single peak if � = 0. To first order, we can
express the number of peaks:

< Np(�) >= (< Np(� = 0.5) > �1)
�(�)

�(� = 0.5)
+ 1, (S20)

which can be written as

< Np(�) >= (< Np(� = 0.5) > �1)2
p

�(1 � �) + 1. (S21)

These two equations satisfy the constrains mentioned above.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.5

1

FIG. S7. Comparison between the number of peaks predicted by the discrete calculation (for di↵erent values of q) and the
continuous approximation for p = 2. The continuous model does not take into account the number of droplets per row q in the
cluster.

The continuous approach can be tested against the discrete one by comparing the number of peaks predicted by
each model with p = 2. Eq. S21 can be rewritten as

< Np(�) > �1

< Np(� = 0.5) > �1
= 2

p
�(1 � �). (S22)

The left term can be calculated for the discrete model and compared to the analytical expression 2
p

�(1 � �) as
shown in Fig. S7. The continuous and the discrete model are in good agreement for the prediction of the number of
peaks. The continuous approximation is more accurate for infinite size systems (large value of q). Fig. S7 justifies the
use of the continuous approximation in the main text even for small values of p.

FROM A SINGLE TRANSITION TO THE TOTAL NUMBER OF PEAKS

In the main text, we compare the experimental results and the total number of peaks from pini to p = 1. Eq. 3 is
obtained by summing Eq. S22 over the di↵erent transitions:

Npini!1 =

piniX

p=2

Npini!p�1 = 2
p

(1 � �)�

piniX

p=2

(Npini!p�1
max � 1) +

piniX

p=2

1, (S23)
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Npini!1 = 2
p

(1 � �)�(Npini!1
max � (pini � 1)) + (pini � 1), (S24)

Npini!1 � (pini � 1)

Npini!1
max � (pini � 1)

= 2
p

(1 � �)�. (S25)

The maximum number of peaks depends on the system size as it has been shown in the previous section. Experimen-
tally, we simply use the maximum number of peaks observed for � ⇡ 0.5.

WORK ANALYSIS

In the main text, we study how the work is dissipated as a function of the composition of the cluster. This analysis
relies on the assumption that the total work for a given transition does not depend on �. We found that within the
uncertainty of the experiment, the total work for the transition from p to (p � 1) is constant and is not correlated to
the fraction of defects �. Table S1 summarizes the total work, Wtot, exerted to go from four to three rows Wtot for
the di↵erent clusters.

Composition � Wtot (nN.µm)

20/0 0 1.2

19/1 0.05 2.8

14/6 0.3 2.8

10/10 0.5 2.1

6/14 0.3 3.1

1/19 0.05 1.5

0/20 0 2.0

TABLE S1. Total work needed to transition from p = 4 to p = 3 for di↵erent compositions

⇤ dalnoki@mcmaster.ca
[1] L.-L. Pontani, I. Jorjadze, V. Viasno↵, and J. Brujic, Proceedings of the National Academy of Sciences 109, 9839 (2012).
[2] I. M. Sokolov and J. Klafter, First Steps in Random Walks: From Tools to Applications., edited by Oxford (2011).
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Chapter 5

Conclusions

In the work presented in this thesis, we have investigated the crystal-to-glass tran-

sition. Perfectly ordered crystals are modeled by clusters of highly monodisperse

droplets. The transition to glasses is studied by mixing two monodisperse populations

of droplets in different proportions. As the clusters are compressed, we characterize

the internal microscopic rearrangements of and the mechanical response of the aggre-

gates. Forces within the 2D clusters of droplets are directly measured and the force

curves are characteristic of the composition of the cluster. In particular the number

of peaks rapidly increases with the number of defects. Introducing disorder in the

structure also changed the way the energy is dissipated during the compression. The

experimental results are supported by a geometrical model based on the random-walk

statistics. Our work shows that a small amount of disorder considerably changes the

mechanical behaviour of the cluster. This observation is consistent with the work

published by Goodrich and co-workers [42].

The experimental setup used in this work can be used in many ways to investigate

other questions. For example, here we did not investigate the correlation between two

defects in the cluster. As we have full control over the position of the defects, the

relative position of two defects can be changed. The size ratio between large and

small droplets can also be tuned. It would be interesting to know how much a droplet

needs to be different from the other before acting as a defect. Another direction is

to investigate the transition from a system with few droplets toward a larger cluster

(∼ 100 droplets). These questions will form the basis of further studies.
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Makse. 3d bulk measurements of the force distribution in a compressed emulsion

system. Faraday discussions, 123:207–220, 2003.

[39] R. P. Behringer, D. Bi, B. Chakraborty, A. Clark, J. Dijksman, J. Ren, and

J. Zhang. Statistical properties of granular materials near jamming. Journal of

Statistical Mechanics: Theory and Experiment, 2014(6):P06004, 2014.

[40] H. Laubie, F. Radjai, R. Pellenq, and F.-J. Ulm. Stress transmission and failure

in disordered porous media. Physical Review Letters, 119(7):075501, 2017.

56



M.Sc. Thesis - J.-C. Ono-dit-Biot McMaster University - Physics and Astronomy

[41] P. N. Pusey. The effect of polydispersity on the crystallization of hard spherical

colloids. Journal de physique, 48(5):709–712, 1987.

[42] C. P. Goodrich, A. J. Liu, and S. R. Nagel. Solids between the mechanical

extremes of order and disorder. Nature Physics, 10(8):578, 2014.

[43] R. Mari, F. Krzakala, and J. Kurchan. Jamming versus glass transitions. Physical

Review Letters, 103(2):025701, 2009.

[44] H. Tong, P. Tan, and N. Xu. From crystals to disordered crystals: A hidden

order-disorder transition. Scientific reports, 5, 2015.

[45] P. Yunker, Z. Zhang, and A. G. Yodh. Observation of the disorder-induced

crystal-to-glass transition. Physical Review Letters, 104(1):015701, 2010.

[46] R. Higler, J. Appel, and J. Sprakel. Substitutional impurity-induced vitrification

in microgel crystals. Soft Matter, 9(22):5372–5379, 2013.

[47] D. L. Blair, N. W. Mueggenburg, A. H. Marshall, H. M. Jaeger, and S. R. Nagel.

Force distributions in three-dimensional granular assemblies: Effects of packing

order and interparticle friction. Physical Review E, 63(4):041304, 2001.

[48] M. Hanifpour, N. Francois, S. M. Vaez Allaei, T. Senden, and M. Saadatfar.

Mechanical characterization of partially crystallized sphere packings. Physical

Review Letters, 113(14):148001, 2014.

[49] N. C. Keim and P. E. Arratia. Role of disorder in finite-amplitude shear of a 2d

jammed material. Soft Matter, 11(8):1539–1546, 2015.

[50] J. Bibette, D. Roux, and B. Pouligny. Creaming of emulsions: the role of deple-

tion forces induced by surfactant. Journal de Physique II, 2(3):401–424, 1992.

[51] G. W. Francis, L. R. Fisher, R. A. Gamble, and D. Gingell. Direct measurement

of cell detachment force on single cells using a new electromechanical method.

Journal of Cell Science, 87(4):519–523, 1987.

[52] A. K. C. Yeung and R. Pelton. Micromechanics: a new approach to studying

the strength and breakup of flocs. Journal of Colloid and Interface Science,

184(2):579–585, 1996.

57



M.Sc. Thesis - J.-C. Ono-dit-Biot McMaster University - Physics and Astronomy

[53] M.-J. Colbert, A. N. Raegen, C. Fradin, and K. Dalnoki-Veress. Adhesion and

membrane tension of single vesicles and living cells using a micropipette-based

technique. The European Physical Journal E, 30(2):117, 2009.

[54] M. Backholm, W. S. Ryu, and K. Dalnoki-Veress. Viscoelastic properties of the

nematode caenorhabditis elegans, a self-similar, shear-thinning worm. Proceed-

ings of the National Academy of Sciences, 110(12):4528–4533, 2013.

[55] S. Barkley, S. J. Scarfe, E. R. Weeks, and K. Dalnoki-Veress. Predicting the

size of droplets produced through laplace pressure induced snap-off. Soft matter,

12(35):7398–7404, 2016.

[56] M.-J. Colbert, F. Brochard-Wyart, C. Fradin, and K. Dalnoki-Veress. Squeezing

and detachment of living cells. Biophysical journal, 99(11):3555–3562, 2010.

58


	Abstract
	Acknowledgements
	Introduction
	Suspensions
	Colloids
	Emulsions

	Interactions
	Hard spheres
	Van der Waals
	Electrostatic repulsion
	Depletion forces

	Mechanical properties
	Assembly of springs
	Young's modulus
	Yield stress and rupture


	Suspensions as model systems
	Glass transition and jamming
	Forces between particles
	The crystal-to-glass transition

	Experimental Details
	Sample cell
	Solution
	Addition of a surrounding wall

	Micropipettes
	Droplet pipette
	Pushing pipette
	Force sensing pipette

	Image Analysis
	Force measurement and cross correlation
	Droplet and bond detection


	Crystal-to-glass transition
	Conclusions

