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Abstract

We study the formation of novel bicontinuous phases in binary mixtures of AB diblock

copolymers (DBCP) using the polymeric self-consistent field theory. We predict that

the bicontinuous double-diamond (DD) and plumber’s nightmare (P) phases, which

are metastable phases of neat diblock copolymers, could be stablized in gyroid-forming

A-minority DBCPs via the blending of specifically designed A-majority DBCPs. The

mechanisms of stabilizing different bicontinuous phases are revealed by analyzing the

spatial distribution of the different DBCPs. It is found that the A-majority DBCPs

residing mainly in the nodes of the structure, thus alleviating the packing frustration

of the A-blocks. Furthermore, a local segregation of the two DBCPs occurs at the AB

interface, thus regulating the local curvature of the interfaces. A synergetic interplay

of these two mechanisms results in a larger stable region of the DD and P phases

via the addition of tailored A-majority DBCPs. The theoretical study provides an

efficient route to obtain novel bicontinuous phases.
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Notation and abbreviations

We present below the definitions of all notation and abbreviations used in the main

body of the thesis.

DBCP diblock copolymer
DIS disordered
L lamellar
H hexagonally-packed cylindrical
S body-centered-packed spherical
G double gyroid
DD double diamond
P plumber’s nightmare
CMC constant mean curvature
SCFT self-consistent field theory
HL homopolymer-like
N (i) number of statistical segments constituting polymer

species i
bβ Kuhn length of monomer type β
ρ0,β inverse statistical segment volume of monomer type β
φβ(r) microscopic segment density of monomer type β
δ(·) Dirac delta function
ni number of polymer chains belonging to species i

N
(i)
A number of A-statistical segment constituting polymer

species i
s segment number
zi polymer activity of polymer species i
Z(V ) partition function in the grand canonical ensemble
V volume

v



Z(n1, n2) quantity that is proportional to the partition function
in the canonical ensemble

r(i)(s) space curve describing the configuration of a polymer
chain of species i

χAB Flory-Huggins parameter
kb Boltzmann constant
T temperature
P [ri(s)] statistical weight of a polymer chain of species β with a

configuration described by r(i)(s)
Ξ(r) pressure field
ωβ(r) chemical conjugate field associated with monomer type β
g Gibbs free energy density
Qi single-chain partition function
qi(r, N

(i)) forward chain propagator of polymer species i

q†i (r, N
(i)) backward chain propagator of polymer species i

φ̄ average volume fraction
λSM parameter controlling descent speed for simple mixing
M number of numerically calculated free energy densities
dmax deviation of free energy density
L unit cell edge or period
λL parameter controlling the relative accuracy of the

determined optimal period
α polymer chain length ratio, N (2)/N (1)

fA fraction of A-statistical segments, NA/N
d̄ normalized distance, z/Lz
H mean curvature
Rg radius of gyration
〈H〉 area-averaged mean curvature
σ area-averaged deviation from constant mean curvature
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Below, the notation and abbreviations used in the appendices of the thesis is defined.

Φ assumed fA

q wave vector, 2π/L
r (x, y, z)
g110, g111 symmetry functions
∆x interval spacing for numerical integration
dβ(r) deviation function associated with monomer type β
Λ paramter governing the relative contribution of input fields
A coefficients vector for Anderson mixing
U deviation matrix
D deviation vector
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Chapter 1

Introduction

Polymers are chain-like macromolecules composed of many repeating units called

monomers connected together via covalent bonds. When only one type of monomer

is used, the resulting polymer is termed a homopolymer. A block copolymer is ob-

tained by joining two or more chemically distinct homopolymers together via covalent

bonds. The most distinguishing feature of block copolymers is their ability to self-

assemble into a plethora of nanoscopically ordered structures due to the competition

between molecular connectivity and inter-monomer interactions. The repulsive inter-

action drives differents blocks to separate, but the connectivity at the molecular level

prevents macroscopic phase separation, leading to the formation of polymeric do-

mains [1, 2]. These nanoscopic domains further arrange to form ordered phases. The

simplest type of block copolymer is the linear AB-diblock copolymers (DBCP), which

is formed from two chemically distinct homopolymers, A and B, connected at their

ends. The self-assembly of DBCPs has received a significant amount of academic [3, 4]

and industrial interest [5, 6, 7, 8, 9] because the structure can be systemically varied

by tuning the relative lengths of the two chemically different blocks [10].
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The types of ordered equilibrium structures accessible to block copolymers is plen-

tiful. For monodisperse DBCP melts, where the length of every polymer chain is

identical, a large number of ordered phases have been identified. The group of mor-

phologies include some simple structures which are termed the classical phases. The

three classical phases are the striped lamellar (L), the hexagonally packed cylindri-

cal (H), and the body-centered packed spherical (S) phase (c.f. Fig. 1.1). Another

class of ordered structures of DBCPs that have attracted great theoretical [11, 12, 13,

14, 15, 14, 16], and experimental [17, 18] attention is the cubic bicontinuous phases,

which includes the double-gyroid (G), the double-diamond (DD), and the so-called

“plumber’s nightmare” (P) (c.f. Fig. 1.2). These bicontinuous phases could be de-

scribed as two intertwining networks composed of the minority monomers interwoven

in a matrix of the majority block. The bicontinuous structures has been attracting

tremendous attention not only due to their fascinating morphologies, but also be-

cause of their potential industrial applications. Potential applications of the ordered

bicontinuous phases of block copolymers include the production of high-conductivity

mediums [19], nano-porous materials [20], materials with low refractive index [21],

Figure 1.1: Schematics of the (a) lamellar (L) phase, (b) hexagonally-packed cylin-
derical (H) phase, and (c) body-centered packed spherical (S) phase.

2
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Figure 1.2: Schematics of the (a) double-gyroid (G) phase, (b) double-diamond (DD)
phase, and (c) plumber’s nightmare (P) phase.

ceramic membranes [22, 23], hybrid solar cells [24, 25], and 3D photonic crystals [26].

Generically, the bicontinuous phases could be regarded as structures composed

of two components: struts (tubes) and nodes (junctions) that are connected to form

two continuous networks [27]. The tendency to form a structure with constant mean

curvature (CMC) in order to minimize the interfacial surface energy will lead to

structures dominated by the struts [27]. At the same time, the nodes will be bulkier

than the struts. In other words, there will be points located in the nodes, such as

at the centers, that are farther away from the interface than any points within the

struts. Thus, in order to fill the volume occupied by the nodes, chains will have to

stretch excessively from the AB interface [11, 12], leading to an increase of the chain
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free energy due to packing frustration. Moreover, the degree of packing frustration

will grow with the disparity in bulkiness between the nodes and the struts. This

difference will also increase with the number of tubes per junction. It has been

proposed that the correlation between the packing frustration and the strut-to-node

ratio provides an understanding on why there is only one stable cubic bicontinuous

phase in monodisperse melts, namely the G morphology [27]. The G phase experiences

the lowest amount of packing frustration, because it has only 3 connectors per node,

whereas the DD, and P phases have 4 and 6, respectively.

The packing frustration of the bicontinuous phases could be relaxed by introduc-

ing additives into the melt. For example, it has been shown that the addition of

minority-selective solvent particles to the DBCP melt could lead to a larger stability

region of the G phase [17, 11]. Furthermore, it has been demonstrated that the addi-

tion of homopolymers to the DBCP melt could stabilize bicontinuous morphologies

other than the G phase. In particular, Matsen and Bates predicted the formation

of the DD phase in blends of G-forming DBCPs and shorter A-homopolymers [27].

Subsequently, Mart́ınez-Veracoechea et al. extensively examined the formation of var-

ious bicontinuous phases in homopolymer-DBCP mixtures [11, 12, 13, 14, 15, 14, 16].

In Ref. [12], direct evidence of packing frustration was detected in G-forming sys-

tems through dissipative particle dynamics and Monte Carlo simulations. Mart́ınez-

Veracoechea, and coworkers furthermore predicted the stabilization of the DD and P

phases via the addition of homopolymers using Monte Carlo simulations [13], molec-

ular dynamics simulations [14], and self-consistent field theory (SCFT) [14, 15]. More

recently, the spatial arrangement of individual polymer chains within the bicontinuous

phases was examined using thermal integration techniques [16], yielding information
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on the relative size of the struts and nodes. They found that as the nodes become

larger from G → DD → P, the struts shrink in both length and width. Despite the

considerable progress made by Mart́ınez-Veracoechea and coworkers, their efforts fo-

cused on the effects of homopolymer additives. It is an open question whether the

stabilization of the DD, and P phases could be achieved in binary blends of DBCPs

in which the additive is another DBCP.

A significant number of studies, both experimentally [28, 29, 30, 31, 32]. In

Ref. [30] and theoretically [33, 34, 35, 36, 37], have been carried out on the phase be-

havior of binary mixtures of DBCPs. Binary systems often exhibit much richer behav-

ior than their single-component counterparts. Shi and Noolandi [33], as well as Matsen

and Bates [34], investigated the effects of blending and chemical composition on the

phase behaviour of binary blends composed of two AB DBCPs with equal lengths.

They concluded that when the chemical compositions are similar, the self-assembled

morphology closely matches with the equilibrium structure found in DBCP melts

having the same average A-monomer concentration. However, this one-component

approximation breaks down when the dissimilarity between the two DBCPs is too

large. For example, asymmetric H-forming DBCPs mixed with symmetric L-forming

DBCPs could form a spherical morphology [35]. These theoretical works are compli-

mented by extensive experiements conducted by Hashimoto and coworkers, examining

the effects of molecular weight ratio, temperature, chemical, and volume composition

in bidisperse melts of polystryene-block -polyisoprene [28, 29, 30, 31, 32]. In Ref. [30], a

stable cylindrical phase was observed in a mixture of two nearly symmetric, L-forming,

DBCPs. By blending an asymmetric species with a longer symmetric one, Hashimoto
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and colleagues also discovered a stable L phase [28] at average A-monomer concen-

trations where other ordered structures would instead exist in monodisperse melts.

These experiments, together with corresponding theoretical predictions [35, 36], sug-

gested that the equilibrium morphology in blends can be strikingly different from the

underlying phases formed individually by its two constituents. This conclusion from

previous studies could be exploited to design binary mixtures with the purpose of

realizing structures which are inaccessible in single-component melts. Taking advan-

tage of the inter- and intra-domain segregation between the two DBCPs, Liu et al.

showed the blending of two AB DBCPs with different chain length and composition

could lead to the formation of the Frank-Kasper phases [37]. Often encountered in

metallurgy, the Frank-Kasper phases are complex spherical-like structures possessing

multiple types of micelles of different sizes in a single unit cell. It follows from these

previous works that the vast parameter space of binary DBCP mixtures presents op-

portunities to procure exotic morphologies unavailable in monodisperse systems. One

unexplored possibility is tailoring binary blends of DBCPs with the goal of stabilizing

novel bicontinuous structures.

In this thesis, we investigate the formation of novel bicontinuous phases in binary

mixtures of DBCPs. Specifically, we examine the effects of relative chain lengths,

segregation strength, chemical, and blending composition on the phase behavior of

AB/AB DBCP blends using SCFT. In particular, the stabilization of the DD and

P phases is achieved in mixtures consisting of G-forming A-minority DBCPs and

tailored A-majority DBCPs. We find that the relative stability of the bicontinuous

morphologies is improved compared to the case of a homopolymer additive. We

subsequently examine mechanisms leading to the occurrence and enhanced stability

6
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of these novel phases.

The thesis is organized as follows. Section 2 introduces the theoretical framework

of SCFT in the context of binary blends of DBCPs. Section 3 details the numerical

procedures used in the current work. The results of the study is presented in Sec-

tion 4. Section 5 discusses the predicted phase behavior, and concluding remarks are

presented in Section 6.

7



Chapter 2

Theory

Various theoretical approaches have been developed to study the phase behavior

of block copolymers. These theoreies could be broadly divided into two, particle-

based and field-based, approaches. Within the particle-based approach, the degrees

of freedom of the system are the positions and momenta of the individual particles or

molecules. The equilibrium behavior of the system is obtained by integrating over the

positions and momenta, or trajectories, of the particles. Due to the intermolecular

interactions, the required calculations over the particle trajectories cannot be carried

out analytically in general. Instead, numerical methods are commonly employed for

this task, including molecular dynamics and Monte Carlo simulations. An alternative

is the field-based approach, in which the degrees of freedom of the system are the

various fluctuating fields such as the densities of the different molecules. For the

case of polymeric systems, a successful field-based approach is the self-consistent field

theory (SCFT). SCFT replaces the description of the polymer melt using the entire

ensemble of particles with a small number of scalar fields. Since its conception by

Edwards [38], the SCFT has been further developed by many authors [39, 40, 41, 42,

8
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43]. It has successfully been used to study the equilibrium behavior for a wide range of

polymeric systems [10, 44, 45, 46]. In principle the field-based approach is equivalent

to the particle-based approach. When fluctuations of the fields are included, the

SCFT is an exact theory. However, carrying out the integration over the fields is

a formidable task. Instead a mean-field approximation to the exact SCFT is often

made. Within the mean-field theory, density fluctuations are ignored, which could

become important near the order-disorder transition [1, 47]. On the other hand, it

has been shown by numerous authors that the mean-field SCFT provides accurate

descriptions of the phase behaviour of polymeric systems. In the current work, we

will apply the SCFT to binary mixtures of DBCPs to examine the relative stability

of various bicontinuous phases. We present below a derivation of the SCFT in the

specific context of binary DBCP blends.

The essential idea of SCFT is to describe a melt of polymer chains as a collection

of connected statistic segments interacting with a set of conjugate fields. In turn, the

conjugate fields represent the monomer-monomer interactions. Usually the melt is

assumed to be incompressible. Each statistical segment of length b, often referred to

as the Kuhn length, corresponds to a number of monomers. This number is chosen

such that on the the scale of a Kuhn length, the chain could be described as a

Gaussian chain obeying random-walk statistics. The number of statistical segments

for polymer species, i, is denoted N (i). Following the coarse-graining of the monomers,

the intermolecular interactions, which are assumed to be short-range on the scale of

b, is decoupled by introducing auxiliary fields. At the end of the particle-to-field

transformation, SCFT effectively reduces the many-body problem to a problem of a

single chain interacting with the mean fields.

9
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In the canonical ensemble, phase coexistences are determined via the common-

tangent construction [48]. However, obtaining tangents requires the relevant Helmholtz

free energies to be calculated to a relatively high degree of numerical accuracy. There-

fore, we will instead work in the grand canonical ensemble, where identifying coex-

istence regions can be accomplished through a simple comparison of the Gibbs free

energies. To describe a binary DBCP mixture within the framework of SCFT, we

first define the microscopic segment density,

φ̂A(r) = ρ−1
0

2∑
i=1

ni∑
j=1

∫ N
(i)
A

0

ds δ(r
(i)
j (s)−r), φ̂B(r) = ρ−1

0

2∑
i=1

ni∑
j=1

∫ N(i)

N
(i)
A

ds δ(r
(i)
j (s)−r).

(2.1)

Here, δ(·) is the Dirac delta function, ni and N
(i)
A is the number of polymers, and of

statistics segments, respectively, for the A-block of species i for i = 1, 2. The spatial

position of segment s belonging to the jth chain of species i is denoted r
(i)
j (s). For

simplicity, we assume that the Kuhn length and the inverse volume of the statistic

segments, ρ0, for the two types of blocks are the same, i.e. bA = bB = b, and

ρ0,A = ρ0,B = ρ0. It is also important to note that the total concentration of either

polymer species is not a parameter controlled directly in the grand canonical ensemble,

but adjusted through their associated polymer activity, zi [1]. Furthermore, the two

activities are not independent due to the incompressibility condition. We are free to

set z1 to a reference value, and vary solely z2 to tune the blending composition [34].

The partition function of DBCP blends in the grand canonical ensemble can be written

as [1]

Z(V ) =
∞∑

n1,n2=0

zn1
1 zn2

2

n1!n2!
Z(n1, n2, V ) (2.2)

where V is the volume of the system and Z(n1, n2, V ) is proportional to the canonical

10
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ensemble for a melt of ni chains of species i,

Z(n1, n2, V ) =

n1∏
j1=1

∫
Dr(1)

j1
(s)P [r

(1)
j1

(s)]

n2∏
j2=1

∫
Dr(2)

j2
(s)P [r

(2)
j2

(s)]

× exp

[
−ρ0

∫
V

dr χABφ̂A(r)φ̂B(r)

]
× δ(1− φ̂A(r)− φ̂B(r)).

(2.3)

Here, D denotes functional integration, χAB is the Flory-Huggins parameter expressed

in units of thermal energy, kbT , kb is the Boltzmann constant, and T is the tempera-

ture. The Flory-Huggins parameter quantifies the strength of the repulsive (χAB > 0)

monomer-monomer interaction. Empirically, it is common to express the χAB param-

eter as

χAB =
C

T
+D, (2.4)

where C and D are fitting coefficients [49, 50]. In Eq. (2.4), the temperature-

dependent term is often called the ‘enthalpic part’ of χAB, while D is referred to

as the ‘entropic part’ [50]. The statistical weight of a polymer chain of species i with

a configuration described by r(i)(s) is denoted P [r(i)(s)]. Its analytic form will depend

on how the molecular details of the polymer chains is described. In the present work,

we assume the polymers are completely flexible, and therefore P [r(i)(s)] is given by

a Gaussian distribution [1],

P [r(i)(s)] = exp

[
− 3

2b2

∫ N(i)

0

ds

∣∣∣∣dr(i)(s)

ds

∣∣∣∣2
]
. (2.5)

Under this assumption, a polymer chain is represented by a continuum bead-spring

model. The chains are penalized for deviating from ideal random-walk statistics,

where the entropic cost of stretching a statistical segment of length ∆s by ∆r is

11
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(3/2b2) |∆r/∆s|2 (in units of kbT ) according to Eq. (2.5). Finally, the functional

Dirac delta function, δ(1 − φ̂A(r) − φ̂B(r)), ensures that only configurations that

everywhere obey the incompressibility condition, 1 = φ̂A(r) + φ̂B(r), is included in

the partition function.

The next step is to make use of the following alternative integral of the functional

Dirac delta function in order to introduce the conjugate and pressure fields,

δ(1− φ̂A(r)− φ̂B(r)) =

∫
DΞ(r) exp

{
−ρ0

∫
V

dr Ξ(r)[1− φ̂A(r)− φ̂B(r)]

}
, (2.6)

δ(φ̂β(r)− φβ(r)) =

∫
Dωβ(r) exp

{
−ρ0

∫
V

dr ωβ(r)[φ̂β(r)− φβ(r)]

}
, (2.7)

where Ξ(r) is the pressure field, ωβ(r) is the conjugate field associated with monomer

type β, and the bounds of the functional integration extend from −i∞ to +i∞. Using

Eqs. (2.6)–(2.7), the partition function [c.f. Eq. (2.2)] after rescaling lengths by b/
√

6

can be rewritten as

Z(V ) =

∫
DΞ(r)

∏
β=A,B

∫
Dφβ(r)

∫
Dωβ(r) exp (−ρ0V g) , (2.8)

where g = g[V, ωA(r), ωB(r), φA(r), φB(r),Ξ(r)] denotes the Gibbs free energy density

in units of kbT ,

g =
1

V

{∫
V

dr χABφA(r)φB(r)− ωA(r)φA(r)

− ωB(r)ωB(r)− Ξ(r)[1− φA(r)− φB(r)]

}
−

2∑
i=1

ziQi[V, ωA(r), ωB(r)],

(2.9)

where a constant factor of 1/ρ0 has been absorbed into the polymer activities, zi.

12
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Furthermore, Qi[V, ωA(r), ωB(r)] is the partition function of a single chain interacting

with the conjugate fields,

Qi[V, ωA(r), ωB(r)] =
1

V

∫
Dr(s) exp

[
− 3

2b2

∫ N(i)

0

ds

∣∣∣∣dr(s)

ds

∣∣∣∣2
−
∫ N

(i)
A

0

ds ωA(r(s))−
∫ N(i)

N
(i)
A

ds ωB(r(s))

]
=

1

V

∫
V

dr qi(r, N
(i)),

(2.10)

and qi(r, N
(i)) denotes the forward chain propagator, which satisfies a modified dif-

fusion equation [1],

∂qi(r, s)

∂s
= ∇2qi(r, s)− ωi(r, s)qi(r, s), qi(r, 0) = 1,

ωi(r, s) =

{
ωA(r) 0 ≤ s ≤ N

(i)
A

ωB(r) N
(i)
A ≤ s ≤ N (i)

.
(2.11)

The quantity qi(r, s) corresponds to the conditional probability that a chain, inter-

acting with the conjugate fields, has its sth segment at position r, given that its first

segment could be found anywhere in the volume of the system.

At this point, the transformation from a particle-based model to a field-based

theory is complete. It is important to note that no mathematical approximations have

been made so far, and evaluation of Z(V ) from either Eq. (2.2) or Eq. (2.8) remains

analytically intractable. In order to proceed, we will exploit the saddle-point or mean-

field approximation [1], which in essence, assumes that the only contributions to the

functional integrals in Eq. (2.8) comes from Ξ(r), φβ(r), and ωβ(r) that extremize the

argument of the exponent, g, in the integrand. Extremizing the free energy density

13
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given by Eq. (2.9) with respect to φβ(r), ωβ(r), and Ξ(r) leads to the following set

of self-consistent equations:

ωA(r) = χABφB(r) + Ξ(r), ωB(r) = χABφA(r) + Ξ(r), (2.12)

φA(r) =
2∑
i=1

zi

∫ N
(i)
A

0

ds qi(r, s)q
†
i (r, N

(i) − s),

φB(r) =
2∑
i=1

zi

∫ N(i)

N
(i)
A

ds qi(r, s)q
†
i (r, N

(i) − s),

(2.13)

φA(r) + φB(r) = 1, (2.14)

where q†i (r, s) is the backward chain propagator, satisfying a modified diffusion equa-

tion similar to Eq. (2.11),

∂q†i (r, s)

∂s
= ∇2q†i (r, s)− ω

†
i (r, s)q

†
i (r, s), q†i (r, 0) = 1,

ω†i (r, s) =

{
ωB(r) 0 ≤ s ≤ N (i) −N (i)

A

ωA(r) N (i) −N (i)
A ≤ s ≤ N (i)

.

(2.15)

Intuitively, we can think of q†i (r, s) as the conditional probability for finding a polymer

chain of species i with its sth segment, counting backwards starting from s = N (i),

at spatial position r. The condition is that the s = N (i) segment could be found

anywhere in the volume of the system.

For a given set of parameters, there are many solutions satisfying Eqs. (2.12)-

(2.14), corresponding to the multitude of possible metastable phases. Furthermore,

since obtaining these solutions is still analytically intractable, we must rely on nu-

merical methods, which are presented in the subsequent section. We therefore need

14
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to restrict our attention to a certain number of morphologies that are relevant to

the problem at hand due to the constraint of time and computational resources. The

candidate structures we will examine include the classic phases seen in Fig. 1.1, along-

side the bicontinuous phases of the G, DD, and P morphologies illustrated in Fig. 1.2.

Once all the solutions of the candidates are obtained, the equilibrium phase or phase

coexistence is determined through a comparison of their associated Gibbs free energy

density [c.f. Eq. (2.9)]. We may then relate the polymer activity, z2, to the average

volume fraction of either DBCP species, φ̄(i), via

φ̄(2) = z2N2Q2 = 1− φ̄(1) = 1−N1Q1, (2.16)

where the last inequality follows from setting z1 = 1 as reference and the incompress-

iblity condition, Eq. (2.14).
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Chapter 3

Methodology

3.1 Numerical SCFT

Obtaining analytic solutions that satisfy the set of self-consistent equations defined

by Eqs. (2.12)-(2.14) is impossible in general. Instead, numerical techniques are of-

ten used to obtain numerical solutions of the SCFT equations. The first attempt to

numerically compute the SCFT solutions for DBCP melts was made by Helfand and

coworkers for the lamellar phase under the narrow interface approximation [51]. Shull

subsequently carried out a similar numerical calculation without the restriction of a

narrow interface [52]. Soon after, Vavasour and Whitmor numerically constructed the

phase diagram for DBCPs within the unit cell approximation [53]. The first general

numerical procedure to solve the SCFT equations free of additional approximations

was developed by Matsen and Schick [54, 55]. Since then, a plethora of computational

algorithms designed to solve the SCFT equations have been developed. The exact

numerical recipes used by different authors will thus vary from work to work, but

they could be categorized into three types: real-space, spectral, and pseudo-spectral.
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In the real-space and spectral method, the modified diffusion equations, defined by

Eqs. (2.11) and (2.15), are solved in the real and reciprocal space, respectively. For

our purposes, we employ the pseudo-spectral method [56, 57, 58], described in Ap-

pendix B, in order to solve the modified diffusions equations. Readers are referred to

Refs. [59, 60, 61, 62, 63] for details on real-space algorithms and Refs. [54, 64] for the

spectral method.

Our implementation to numerically solve the SCFT equations begins with ini-

tial monomer densities, φ
(0)
β (r), which is constructed based upon the symmetry of

the phase being considered. For completeness, the analytic form of φ
(0)
β (r) for each

candidate morphology studied in this work is given in Appendix. A. We then insert

φ
(0)
β (r) into Eq. (2.12) to obtain the corresponding conjugate fields, ω

(0,in)
β (r). Once

ω
(0,in)
β (r) is constructed, we proceed with the following steps to iteratively obtain a

solution:

1. Starting with the conjugate fields determined from the nth iteration, ω
(n,in)
β (r),

the forward, and backward chain propagators, q
(n)
i (r, s), and q

†(n)
i (r, s) are de-

termined via Eqs. (2.11) and (2.15), where we set ωβ(r) = ω
(n,in)
β (r). As men-

tioned above, solving the required partial differential equations can be done

using a real-space, spectral, or pseudo-spectral approach. For the present work,

a pseudo-spectral method is used (c.f. Appendix B). We denote the first itera-

tion as n = 0.

2. From q
(n)
i (r, s), and q

†(n)
i (r, s), we calculate φ

(n)
β (r) from Eq. (2.13), setting

q(r, s) = q
(n)
i (r, s), and q†i (r, s) = q

†(n)
i (r, s). We have adopted the Simpsons

Rule [c.f. Appendix C] to carry out numerical integrations.
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3. We now update the pressure field,

Ξ(n+1)(r) =
ω

(n,in)
A (r) + ω

(n,in)
B (r)− χAB

2
, (3.1)

which follows from the incompressibility condition, and Eq. (2.12).

4. The output chemical potential fields are then calculated from

ω
(n,out)
A,B (r) = χABφ

(n)
B,A(r) + Ξ(n+1)(r). (3.2)

5. In order to proceed with the next iteration, we require a procedure to generate a

new set of input fields, ω
(n+1,in)
β (r), based upon the input and output fields from

past trials. The two most common schemes are “simple” mixing and Anderson

mixing [65]. Below, we present the details of simple mixing, and refer readers

to Appendix D for the technical aspects of Anderson mixing.

Simple mixing is motivated by (functional) gradient descent [66], since the solu-

tions we seek are local extremums in the infinite-dimensional free energy land-

scape. In essence, the current set of inputs fields are simply “mixed” with the

output fields. Thus the new input conjugate chemical fields are given by

ω
(n+1,in)
A,B (r) = ω

(n,in)
A,B (r)− λSM

δg

δω
(n,in)
A,B

= ω
(n,in)
A,B (r)− λSM

[
ω

(n,in)
A,B (r)− χABφ

(n)
B,A(r)− Ξ(n+1)(r)

]
= (1− λSM)ω

(n,in)
A,B (r) + λSM ω

(n,out)
A,B (r),

(3.3)

where λSM is a dimensionless parameter controlling how rapid the descent is,

and the last equality follows from Eq. (3.2). For numerical stability, we typically
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choose λSM < 1.

6. With the new set of input fields in hand, we calculate the free energy density,

g(n), as well as the associated deviation from the free energies of the past Mg

iterations,

d(n)
max = max

1≤m≤Mg

∣∣∣∣2g(n) − g(n−m)

g(n) + g(n−m)

∣∣∣∣ . (3.4)

Steps 1. to 6. are repeated until the desired tolerance for d
(n)
max is reached, at which

point the solution is considered to be self-consistent. For reference, we calculate all

solutions to a numerical accuracy of at least 10−6 with Mg = 3 in the present work. It

is also worthwhile to note that the order of steps within a single iteration may differ

from one implementation to another. However, this will not affect the converged

solution, as it is largely dictated by the initial conjugate fields.

Finding one solution for a particular phase is insufficient for any given set of

parameters. We seek the solution that minimizes the free energy density with respect

to the period or the size of the unit cell, which is obtained via the optimization

method detailed in the following section.

3.2 Optimization of the Period

In this section, we discuss the procedure to determine the optimal period of a particu-

lar morphology. For all the candidate phases being considered in the current work, the

unit cell size in the x- and y-direction are proportional to the one in the z-direction,

with the proportional constant given by the symmetry of the morphology. In the case

of the three dimensional cubic phases (i.e. S, G, D, and P), the unit cell sizes are

simply related by Lx = Ly = Lz = L, while for the hexagonally packed cylinders, we

19



M.Sc. Thesis - Chi To Lai McMaster - Physics & Astronomy

have Ly =
√

3Lz. Therefore, the presented approach is a one-variable optimization

algorithm, inspired by the gradient descent [66].

Starting with an initial period, L(2), we calculate g(L(1)), g(L(2)), and g(L(3)),

where g(L) is the free energy density for given unit cell length, L, and L(1±1) =

(1± λL)L(1). The dimensionless parameter, λL, controls the relative accuracy of the

determined optimal period. Once this is done, there will be two possibilities1:

Case 1: (a) g(L(1)) ≤ g(L(2)) ≤ g(L(3)) or (b) g(L(3)) ≤ g(L(2)) ≤ g(L(1)), or

Case 2: g(L(2)) ≤ min[g(L(1)), g(L(3))].

We first discuss case 1 (a), for which the next step is to increase the unit cell edge

to L(4) = (1 + λL)L(3) = (1 + λL)2L(2), and compute g(L(4)). For the case 1 (b),

the length is decreased. This step is repeated, where we denote the period of the

nth iteration as L(n+3) = (1 + λL)nL(2), until a higher free energy density is obtained

upon incrementation. Let the total number of calculated free energies up to this

point be ML. The desired minima, L∗, is determined by fitting the three-point set,

{g(L(ML−2)), g(L(ML−1)), g(L(ML))} to the quadratic form,

gfit(L) = pL2 + qL+ r, (3.5)

where p, q, and r are fitting parameters (c.f. Appendix E), and proceeding to use the

1 Technically, the case where g(L(2)) ≥ max[g(L(1)), g(L(3))] is a rare possibility, which is com-
monly due to two separate causes. One is when the initial guess is centered between nL∗, and
(n + 1)L∗, where n ≥ 1 is an integer. Increasing or decreasing L(2) will correct this oddity. In the
second case, the free energy density as function of the period could be quite flat. As a result, the
energy differences between L(2) and its two adjacent points could be smaller than the allowed toler-

ance for d
(n)
max, which may lead to a false maximum. Decreasing the tolerated d

(n)
max (i.e. increasing

the precision) should remedy the situation.
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Figure 3.1: (a) Typical search for the optimal periodicity with the starting unit cell
length, L(2), shown in blue. (b) Quadratic fit of the three-point set, {g(L(ML−2)),
g(L(ML−1)), g(L(ML))}, from (a) with (L∗, gfit(L

∗)) shown in red.

following analytic expression,

L∗ =
−q
2p
. (3.6)

We note that in the case where g(L(2)) ≤ min
[
g(L(1)), g(L(3))

]
, we take ML = 3, and

follow the procedure outlined above.

The last step is to calculate f(L∗), which is then taken as the free energy density

of the considered phase. A typical example of the presented algorithm is shown in

Fig. 3.1 where λL = 0.01.

3.3 Construction of the Phase Diagram

Upon obtaining the free energy densities, g, for each of the candidate phases using the

numerical methods detailed in Sections 3.1 and 3.2, the phase behavior can be readily

detemined. The equilibrium behavior of polymeric systems is typically depicted in
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Figure 3.2: A plot of the (a) Gibbs free energy density, g, and (b) the average
concentration of the second polymer species, φ̄(2), as a function of z2 for N (2)/N (1) =

2.32, f
(1)
A = 0.34, f

(2)
A = 0.95, and χABN

(1) = 22.5. Each region of phase coexistence
is labelled with i, ii, and iii, corresponding to G+DD, DD+P, and P+G. The values
of φ̄(2) spanned by the arrows indicate the range of each phase coexistence.

the form of a phase diagram. We outline below the procedure to construct a phase

diagram using the SCFT solutions. For concreteness, we will work with a sample

binary DBCP blend specified by N (2)/N (1) = 2.32, f
(1)
A = 0.34, f

(2)
A = 0.95, and

χABN
(1) = 22.5. We plot in Fig. 3.2(a) the numerically obtained g from SCFT of

several candidate phases as a function of the polymer activity of the second polymer

species, z2. The equilibrium structure at any given z2 corresponds to the morphology

having the lowest g out of all the candidates. Since the phase behavior is often studied

in its relation to the average concentration of either polymer species, we map z2 to

φ̄(2) via Eq. (2.16). The conversion is done for the system under consideration in

Fig. 3.2(b). If we now take for instance, the initial point of z2 ≈ 0.0089, the G phase

is predicted to be the ground state for φ̄(2) ≈ 0.06.

As z2, or equivalently, φ̄(2) is increased in our example, the free energy of the
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DD structure will eventually become lower than that of the G phase, signifying a

transition from the G to the DD. We find that the change in morphology is naturally

accompanied by an intersection of the free energy curves of the G and DD phase. This

marks the appearance of a phase coexistence between two phases. The boundary of

the coexistence region is determined from the two values of φ̄(2) associated with the

point where the crossing in g occurs. In our example, there are three windows of phase

coexistence predicted, which we have labelled i, ii, and iii, corresponding to G+DD

(discussed presently), DD+P, and P+G, respectively in Fig. 3.2(b). The range of φ̄(2)

spanned by the coexistence regions is furthermore indicated by the arrows.

At last, we present the predicted equilibrium behavior in a more transparent

fashion through a phase diagram, which for our example is shown in Fig. 3.3. Here,

the segregation strength, χABN
(1), is chosen as the second parameter to be varied.

Several other data points, representing the phase boundaries, have been included

for illustration purposes. We again include arrows, and labels at χABN
(1) = 22.5,

which indicate the same series of stable morphologies, and phase coexistences shown

in Fig. 3.2(b) as φ̄(2) is increased.
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Figure 3.3: A sample phase diagram as a function of the segregration strength,
χABN

(1), and the average concentration of the second polymer species, φ̄(2), for
N (2)/N (1) = 2.32, f

(1)
A = 0.34, and f

(2)
A = 0.95. The arrows alongside their asso-

ciated labels indicate the same series of transitions depicted in Fig. 3.2(b).

24



Chapter 4

Results

The number of parameters governing the equilibrium structure for binary DBCP

mixtures is too big for a brute-force numerical approach. In other words, we cannot

simply consider every combination of α = N (2)/N (1), f
(1)
A , f

(2)
A , and χABN

(i) with the

available computational resources. Instead, we start with the homopolymer/DBCP

blends where the formation of the DD and P phases has been examined [13, 14, 15].

These binary systems are modified by replacing the homopolymers with DBCPs which

are homopolymer-like (HL) in that their B-blocks are short, for example, with f
(2)
A =

fHL
A = 0.95. The resultant phase behavior is subsequently studied using SCFT.

We first examine a binary mixture of G-forming DBCPs with f
(1)
A = fDBC

A =

0.33, and the HL DBCPs in the relatively strong segregation regime, χABN
(1) =

χABN
DBC = 25, to study the effects of the relative chain lengths on the equilibrium

phase. In Fig. 4.1, we plot the phase diagram as a function of α = NHL/NDBC

and the average volume fraction of the HL DBCPs, φ̄HL. The single-phase regions

are denoted accordingly, while the two-phase coexistences are left unlabelled unless

necessary hereinafter. Furthermore, the additive-rich disordered phase is denoted as
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Figure 4.1: Phase diagram of a binary DBCP mixture as a function of α =
NHL/NDBC, and φ̄HL with fDBC

A = 0.33, fHL
A = 0.95, and χABN

DBC = 25. The
circular points represent the numerically computed data, while the lines serve as
guide for the eyes. Unlabeled areas on the phase diagram denote regions of phase
coexistence between the two bordering phases. The stabilization of DD phase occurs
between α ≈ 1.4 to α ≈ 1.67.

DIS. We find that by adjusting the blending composition from ∼ 16% to ∼ 20%,

the DD phase can be stabilized for α & 1.4. Whereas Mart́ınez-Veracoechea et al.

predicted the occurrence of the DD morphology when the additive species is shorter

than the DBCPs [13, 14, 15], the opposite trend is found in the current blends. We

also observe that the further increase of φ̄HL leads to the DD phase reverting to a

G morphology for all values of α examined in Fig. 4.1. This is again different from

the case of a homopolymer additive, where adding homopolymers to a stable DD

structure will induce one of two following transitions. The first possibility is that the

system macro-phase separates to a homopolymer-rich DIS phase and a DD phase. The

second alternative is the equilibrium morphology briefly evolves to a P phase, which

is then closely followed by a similar macro-phase separated state, P+DIS [14, 15].

Based on this difference in phase behavior, it could be concluded that the change of
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Figure 4.2: Phase diagram of a binary blend composed of an A-homopolymer and
a G-forming DBCP as a function of α = Nhomo/NDBC and average homopolymer
concentration, φ̄homo. The parameters used were fDBC

A = 0.33 and χABN
DBC =

25. With the addition of ∼ 15% homopolymers in volume, the system macro-phase
separates into the homopolymer-rich DIS phase, and either the G or H morphology.

A-homopolymers additives to HL DBCPs delays the onset of macro-phase separation.

To test our hypothesis, we repeat the SCFT calculation with the HL DBCPs

replaced by A-homopolymers. The segregation strength remains unchanged for con-

sistency, and a larger range of α is explored. The resulting phase diagram is depicted

in Fig. 4.2. We find that the DD phase is not only absent, but the blend macro-phase

separates at a relatively low concentration of homopolymers, φ̄homo ≈ 0.15. The pre-

dicted behavior supports our postulate that macro-phase separation is circumvented

by introducing B monomers to the additive. Consequently, since our binary system

permits a higher volume fraction of additives, the predicted stable G phase before

the G+DIS coexistence possesses an average A-monomer concentration ranging from

45% to 60%. This result is quite remarkable, considering the fact that the G phase
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Figure 4.3: Phase diagram of a binary DBCP mixture as a function of α and φ̄HL with
fDBC

A = 0.34, fHL
A = 0.95, and χABN

DBC = 25. The stability region of the DD phase
has widen considerably both in α and φ̄HL from the case of fDBC

A = 0.33. The region
for φ̄HL ≥ 0.45 is not included due to dimensions of the unit cells for the bicontinuous
phases growing too large for our present computational capabilities.

in monodisperse melts is stable only for a narrow range of volume compositions,

φ̄A ≈ 0.31 to 0.35, and φ̄A ≈ 0.65 to 0.69 [10]. Before proceeding, we note that the

series of stable bicontinuous phases from relatively smaller to larger nodes (i.e. G →

DD) found upon the initial blending of additives is similar to what is predicted in

Refs. [13, 14, 15].

As an effort to obtain the optimal conditions for stabilizing the DD or P mor-

phology, we examine the phase behavior of a binary DBCP system that is nearly

identical to the one considered previously but with fDBC
A = 0.34. We choose to in-

crease the chemical composition of the G-forming DBCPs since the formation of the

P phase is predicted for this particular value of fDBC
A in the case of homopolymer ad-

ditives [15]. In Fig. 4.3, we present the calculated phase diagram, again as a function

of α and φ̄HL. It is clear that large differences in the phase behavior are induced by
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Figure 4.4: Phase diagram of a binary DBCP mixture as a function of α and φ̄HL

with fDBC
A = 0.35, fHL

A = 0.95, and χABN
DBC = 25. The DD phase is no longer stable

here, but has been replaced by a lamellar phase.

the small adjustment to the molecular architecture. The most prominent change is

that the DD phase now occupies a larger region of the phase diagram; not only is it

stable for an extended range of α, but its stability region now spans ∼ 10% in φ̄HL

at α = 2.32. In contrast, the predicted windows of stability for the DD morphology

in homopolymer-DBCP blends so far spans up to a maximum of ∼ 6% in the addi-

tive concentration [14, 15]. We also find the formation of the DD phase occurs at

larger values of α when fDBC
A = 0.34 compared to fDBC

A = 0.33. Furthermore, while

the stability region of the DD structure narrows with increasing α for fDBC
A = 0.33,

it instead expands here for fDBC
A = 0.34. We note that prior to encountering the

expected macro-phase separated state, G+DIS, the dimensions of the unit cells for

the bicontinuous phases grows large enough where numerical accuracy is a concern.

Therefore, given our current computational capabilities, we have only presented the

phase behavior for φ̄HL ≤ 0.45 in Fig. 4.3.

Noting the success that came when fDBC
A was increased to 0.34, the calculation
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Figure 4.5: Phase diagram of a binary DBCP blend as a function of the segregation
strength, χABN

DBC and φ̄HL with fDBC
A = 0.34, fHL

A = 0.95, and α = 2.32. Alongside
the stable DD phase, the P phase can be also stabilized for lower segregation strengths,
χABN

DBC . 23.

is repeated once more for the case of fDBC
A = 0.35. We depict the computed phase

diagram as a function of α and φ̄HL in Fig. 4.4. The changes to the phase behavior

accompanying this increase of fDBC
A is as drastic as its first adjustment from 0.33

to 0.34. We find that the DD morphology is no longer stable for a similar range

of α studied in Fig. 4.3, being replaced by the lamellar phase. From the extremely

sensitive transformations seen in the stability region of the DD phase as one tunes

fDBC
A from 0.33 → 0.34 → 0.35, we conclude that its formation is sensitive to the

molecular architecture of the G-forming DBCPs. This is similar to the findings of

Ref. [15]. It is also worth pointing out that the P phase has always been found to be

metastable in all three blends considered so far.

Up to this point, we have probed how the blending composition, φ̄HL, the chemical

composition, fDBC
A , and the relative chain length, α, changes the relative stability of

the bicontinuous phases. The effect of the segregation strength remains unexplored.
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In our attempt to understand the role played by the segregation strength in realizing

the novel bicontinuous phases, we choose to focus on a blend of G-forming DBCPs,

fDBC
A = 0.34, and the HL DBCPs with fixed α = 2.32. The selected chain length

asymmetry is based upon the stability of the DD phase being the greatest when α =

2.32 (c.f. Fig. 4.3). We plot in Fig. 4.5 the phase diagram as a function of χABN
DBC,

and φ̄HL. There are a number of observations to be made here. Alongside the expected

DD morphology, the phase diagram now features the P phase for segregation strengths

up to χABN
DBC ≈ 23. In the vicinity of χABN

DBC ≈ 23, an elaborate sequence of

bicontinuous phases is observed, G → DD → P → DD → G, as φ̄HL increases. We

can lastly further enhance the relative stability of the DD morphology by slightly

decreasing the segregation strength from χABN
DBC = 25. By the same token, the

stability region of the DD structure progressively narrows as the segregation strength

increases. Having now predicted the stabilization of both the novel DD and P phases,

we will now examine some of the mechanisms leading to their occurrence and improved

stability in the subsequent section.
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Chapter 5

Discussions

The spatial segregation of the two polymer species in homopolymer-DBCP blends can

be considered as a primary factor to stabilizing the DD, and P phase. The homopoly-

mers are confined predominately in the junctions, resulting in a reduction of the

packing frustration of the DBCPs. Following an approach by Mart́ınez-Veracoechea

et al., we examine the spatial distribution of the HL DBCPs in the vicinity of a node,

thus probing the segregation behavior of the DBCPs. In Fig. 5.1, we plot the φHL(r)

as function of the distance, d̄, rescaled by the unit cell edge from a nodal center of a

P phase in the [111] direction. One finds that φHL(r) remains near unity for d̄� 0.25

(i.e. close to the center of a node), and rapidly decreases as the AB interface is ap-

proached. As customary, we define the AB interface to be where φA(r) = 0.5. The

observed behavior is consistent with the idea that the HL chains are segregated to

the junctions, thus alleviating packing frustration. While the current and following

analyses are conducted only using the P morphology for convenience, the behavior is

expected to be the same across the G and DD phases.
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Figure 5.1: A plot of the concentration of the HL chains, φHL(r), as a function of
rescaled distance, d̄, away from the center of a node for α = 1.4 (red) and 1.67 (green).
The plots were constructed using metastable P phases in the [111] direction (diagonal
of the unit cell) for fDBC

A = 0.33 and φ̄HL ' 0.4. The behavior of the φHL(r) suggests
that the HL chains are primarily confined in the nodes.

Based on arguments of packing frustration alone, we cannot explain the im-

proved stability of the novel bicontinuous phases obtained by blending a second

DBCP over a homopolymer. It is not expected that the degree to which the pack-

ing frustration is relieved will be the vastly different whether the additive is a ho-

mopolymer or a homopolymer-like DBCP since it is the G-forming DBCPs that are

entropically frustrated. Instead we examine the effect of the additives on interfa-

cial curvature. In Fig. 5.2, the mean curvature multiplied by the radius of gyra-

tion, HRg = H(NDBCb/
√

6), is shown for the AB interface of a P structure where

φ̄homo ' 0.16 in (a), and φ̄HL ' 0.16 in (b). We briefly remind readers that in

monodisperse systems, the local incompressibility together with the maximization

of the conformational entropy will drive the AB interface to bend towards the mi-

nority domain. Consequently, the regions of lowest curvature for the bicontinuous
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Figure 5.2: A plot depicting the product of mean curvature and radius of gyration,
HRg, on the AB interface (φA(r) = 0.5) for (a) φ̄homo ' 0.16 and (b) φ̄HL ' 0.16
with χABN

DBC = 25 and α = 2.32. In (c), we show the volume fraction of the HL
DBCPs, φHL(r), on the same interfacial surface shown in (b). The low-curvature
areas coincide with the regions of high φHL(r), suggesting the local segregation of the
HL chains modifies the interfacial mean curvature.

phases, circled in Fig. 5.2 for the P morphology, is entropically unfavorable for G-

forming chains, being curved instead towards the majority B domain. It follows from

HHL
min < Hhomo

min that these areas are flatter in the case of φ̄HL ' 0.16. We would sug-

gest that the flattening of the interface is what leads to the enhanced stability of the

various bicontinuous phases. The flattened regions will have curvature that is closer

to what is preferred by the G-forming DBCPs as dictated by local incompressibility

and entropy maximization. As a result, the G-forming chains, found at these loca-

tions, is able to better maximize, or increase, their conformational entropy compared

to without the flattening effect.

The difference in interfacial curvature discussed above can be linked to the local

segregation of the two DBCPs on the AB interface itself. In Fig. 5.2(c), we plot φHL(r)
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Figure 5.3: A plot of the volume fraction of HL chains, φHL(r), as a function of
rescaled distance, d̄, away from the center of a node, depicted by the solid lines,
and radially outwards from a strut, indicated by the dashed lines. The different
colors are used to differentiate between φ̄HL = 0.2 (red), 0.3 (green), and 0.4 (blue).
The plot was constructed using a set of P phases with fDBC

A = 0.34, fHL
A = 0.95,

χABN
DBC = 22.5, and α = 2.32. After the P phase is stabilized at φ̄HL = 0.2, the

further addition of the HL DBCPs will rapidly increase the additive concentration in
the struts, suggesting the nodes are saturated.

wherever φA(r) = 0.5 for the same P phase depicted in (b). There is a clear gradient

in the concentration on the interface, consistent with the notion that the G-forming

and HL chains are locally segregated. Furthermore, the areas where the additive

concentration is the greatest coincides with the regions of lowered mean curvature.

We conclude from this correlation that the HL DBCPs perform two functions as

an additive. First of all, similar to homopolymer, the HL DBCPs act as a “space

filler” relieving the packing frustration at the nodes. Secondly, the HL DBCPs would

be localized at the AB interfaces acting as co-surfactants to modify the interfacial

property. In particular, the larger A-blocks results in a flatter AB interface.

The formation of the DD and P phases from the G morphology could be attributed

to the saturation of HL DBCPs in the nodes. In Fig. 5.3, the additive concentration
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is depicted as a function of two quantities. The first is the distance, d̄, away from the

center of a node, represented by the solid lines. The second is d̄ radially outwards

from the center of a strut, corresponding to the dashed lines. After stabilizing the

P phase at φ̄HL = 0.2, increasing the average additive concentration leaves the nodal

volume fraction relatively unchanged, whereas the amount of additives in the struts

rapidly grows. The observed trend supports the idea that the nodes can be saturated

with additives, and any additional HL DBCPs is forced to the struts. Since the nodes

are bulkier than the struts, chains found in the strut regions experiences a larger

degree of confinement than those in the nodes. The asymmetry in confinement should

subsequently lead to a decrease in the conformational entropy of the HL chains. We

deduce that the equilibrium phase evolves to bicontinuous structures with relatively

larger nodes as a means of circumventing the entropy loss. The proposed evolution

will allow a greater fraction of HL DBCPs to be accommodated in the nodes than in

the struts.

It was noted previously that deviations from a constant mean curvature (CMC)

structure results in excess interfacial surface area, which is enthalpically unfavorable.

In Fig. 5.4, we plot the product, HRg, on the AB interface for each of the three consid-

ered bicontinuous phases. For each interface, we have also calculated the associated

area-averaged deviation from CMC,

σ =

√
1

A

∫
dAH2 − 〈H〉2 =

√
1

A

∫
dAH2 −

(
1

A

∫
dAH

)2

. (5.1)

Here, A is the surface area of the interface. As the bulkiness of the nodes (relative

to the struts) grows from G → DD → P, we observe that the deviation, σ, becomes

increasingly larger, corresponding to progessively more excess surface area. It follows
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Figure 5.4: A plot depicting the product of mean curvature and radius of gyration,
HRg, of the AB interface (φA(r) = 0.5) for (a) the G phase, (b) the DD phase, and
(c) P phase with φ̄HL ' 0.2, χABN

DBC = 22.5, and α = 2.32. The deviation from
constant mean curvature increases as one moves from G → DD → P phase.

that there is a correlation between the relative size of the nodes and the deviation

from a CMC structure, which in turn gives rise to a competition between two op-

posing factors in the bicontinuous phases. One is the minimization of the interfacial

surface area, and the other, discussed earlier, is the attempt to maximize the accepted

concentration of HL DBCPs in the nodes.

The progression of bicontinuous structures from relatively more compact nodes to

less compact ones, and the subsequent regression to morphologies with smaller junc-

tions predicted in our blends (c.f. Figs. 4.1, 4.3, and 4.5) could be now understood by

the following considerations. Upon first introducing the HL chains to the melt, satu-

ration in the nodes triggers the equilibrium structure to evolve to bicontinuous phases

with bulkier junctions. The progression ceases when the enthalpic cost for increasing

the excess interfacial surface area, which grows with each transition, outweighs the
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resulting conformational entropy gain. Continuing to increase φ̄HL now causes the

fraction of HL DBCPs to grow more rapidly in the struts than in the nodes. Once

the additive concentration between the two regions are the same, the confinement

asymmetry is reduced in order to maximize the total conformational entropy. Thus,

the equilibrium state reverts to bicontinuous structures with smaller differences in

bulkiness between the junctions and the struts (i.e. smaller nodes). This also de-

creases the enthalpic contribution to the free energy due to lower deviations from a

CMC structure.

Lastly, from the discussions presented above, it follows that bicontinuous phases

with relatively larger nodes could be stabilized by reducing the enthalpic cost for

excess surface area. Conversely, doing the oppposite should decrease the relative

stability of such structures, and favor the formation of morphologies with less ex-

cess interfacial surface area. This line of argument is consistent with the phase be-

haviour observed in Fig. 4.5. Here, the segregation strength can be seen as a means

of controlling the effectiveness of the tradeoff between interfacial enthalpy and nodal

conformational entropy. Accordingly, we find the P phase, stable for lower values of

χABN
DBC, is replaced by a narrowing region of the DD morphology upon increasing

the segregation strength.
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Chapter 6

Conclusion

We have studied the formation of various bicontinuous phases in binary mixtures of

DBCPs. The stabilization of the DD and P phases is achieved in G-forming DBCPs,

fHL
A = 0.33 to 0.34, blended with a homopolymer-like DBCP possessing a relatively

short B block, fHL
A = 0.95. Despite the slight difference in additives, the occurrence of

these novel bicontinuous phases is not observed in homopolymer-DBCP systems for

a similar set of parameters. The homopolymer blends instead macro-phase separates

into a homopolymer-rich disordered phase, and a G or H morphology. We argued

from this behavior that the B monomers of the HL DBCPs hinders the onset of

macro-phase separation, allowing the DD and P phases to be stabilized despite the

significant chain length asymmetry (α ≈ 1.67 to 2.32).

The stability region of the DD morphology is moreover larger than that found so

far in the case of a homopolymer additive. We attribute this enhanced stability to

the local segregation of the two DBCPs on the AB interface. The mean curvature

where the HL chains are localized is modified such that the conformational entropy

of the G-forming DBCPs is increased. In addition, indirect evidence indicates the
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alleviation of packing frustration. We lastly postulate the appearance of the DD and

P phases is due to the entropy gain associated with bulkier nodes as one moves from

G → DD → P outweighing the enthalpic penalty corresponding to larger deviations

from a constant mean curvature structure.

In the current thesis, we have considered the effects of segregation strength, chain

length ratio, blending, and chemical composition of the G-forming DBCPs on the

relative stability of the novel bicontinuous phases. The possibility of optimizing the

molecular architecture of the HL DBCPs remains unexplored, which could perhaps

give rise to more complex bicontinuous structures, such as the Neovius morphol-

ogy [67], or further increase the relative stability of the DD or P phases. We have

also restricted our attention to binary blends. One possible future work is to therefore

consider continuous polydispersity. Polydispersed systems drawing its chain lengths

from distributions, such as the Schulz [68], or the Poisson distribution, will be more

reflective of the melts procured in experimental settings via typical polymerization

processes. Under these realistic assumptions, any predictions made on the formation

of the novel bicontinuous phases will be more experimentally accessible for verifica-

tion.

40



Appendix A

Initial Ansatz for Pseudo-spectral

Method

In this appendix, the initial concentration, φ
(0)
A (r), is listed for each of the candidate

phases considered in the present work.

For a lamellar phase with its surface normal in the z-direction, we have

φ
(0)
A (r) = Φ + (1− Φ) cos(qz), (A.1)

where q = 2π/L, Φ is the expected average A-monomer volume fraction, and L is the

assumed periodicity.

The initial ansatz for the hexagonally-packed cylindrical phase reads

φ
(0)
A (r) = cos

(
q

2y√
3

)
+ cos

[
q

(
z +

y√
3

)]
+ cos

[
q

(
z − y√

3

)]
, (A.2)

where it is assumed that Ly =
√

3Lz =
√

3L and its axis lies in the x-direction.
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For body-centered packed spherical phase belonging to the space group, (Im3̄m),

the initial guess is given by

φ
(0)
A (r) =

1

2
+

1

2

2∑
i=0

cos
[
q
(
xi − xi+1

)]
, (A.3)

where r = (x, y, z) = (x0, x1, x2) and the line above the subscripts denotes the modulo

operation with modulus 3, i = i (mod 3).

For the double-gyroid phase, we construct the initial ansatz from its space group,

(Ia3̄d), as

φ
(0)
A (r) =

1

6
+

1

10

{
2∑
i=0

cos
[
q
(
2xi + xi+1 + xi+2

)]
− cos

[
q
(
−2xi + xi+1 + xi+2

)]
− cos

[
q
(
2xi + xi+1 − xi+2

)]
+ cos

[
q
(
2xi − xi+1 + xi+2

)]}
,

(A.4)

while the starting guess for the double-diamond morphology based its space group,

(Pn3̄m), reads

φ
(0)
A (r) =

3

4
+

1

24

2∑
i=0

g110(xi, xi+1) +
1

2
g111(xi, xi+1, xi+2), (A.5)

where

g110(x0, x1) = cos [q(x0 + x1)] + cos [q(x0 − x1)] ,

g111(x0, x1, x2) = sin [q (x0 + x1 + x2)]− sin [q (−x0 + x1 + x2)]

− sin [q (x0 − x1 + x2)]− sin [q (x0 + x1 − x2)] .

(A.6)

Lastly, we have the “plumber’s nightmare” phase belonging to the same space
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group as the S morphology, (Im3̄m), for which the initial ansatz is

φ
(0)
A (r) =

8

10
+

1

30

2∑
i=0

cos (2qxi) +
1

2
g110(xi, xi+1). (A.7)
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Appendix B

Pseudo-Spectral Method

The pseudo-spectral method [1] allows one to approximately solve the modified dif-

fusion equation,

∂q(r, s)

∂s
= ∇2q(r, s)− ω(r)q(r, s), q(r, 0) = 1, (B.8)

where q(r, s) is the desired propagator, and ω(r) is an arbitrary potential. Below, we

present the algorithm for the pseudo-spectral method used in the current work.

We begin by discretizing space into Mx ×My ×Mz points such that the spatial

step size in the γ-direction, for γ ∈ {x, y, z}, is given by ∆γ = Lγ/Mγ, where Lγ is

the length in the same direction. Furthermore, we discretize the number of statistical

segments or contour length, N as defined in the main text, into Ms+1 points, so that

the contour step size is ∆s = N/Ms. The extra point is required for s0 = 0∆s = 0.

Under the given discretization scheme, the propagator at contour step sn = n∆s for
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n ∈ {0 ≤ n ≤Ms|n ∈ N} is now represented by an Mx ×My ×Mz array, qn, with

(qn)uvw = q(ruvw, sn), (B.9)

where ruvw = (u∆x, v∆y, w∆z), u ∈ {0 ≤ u < Mx|u ∈ N}, v ∈ {0 ≤ v < My|v ∈ N},

and w ∈ {0 ≤ w < Mz|w ∈ N}.

Suppose now we have qn in hand. It is always possible to start with n = 0, where

(q0)uvw = 1∀u, v, w. The algorithm below can then be followed to determine qn+1:

1. We first apply the potential contribution, ω(r), to qn, yielding

(
qn1

3

)
uvw

= exp

(
−ω(ruvw)

∆s

2

)
(qn)uvw . (B.10)

2. Next, the Fourier cofficients of
(
qn1

3

)
are required. Thus, we apply a fast Fourier

transform (FFT) to qn1
3

, which amounts to

(
pn1

3

)
uvw

=
1

MxMyMz

Mx−1∑
l=0

My−1∑
m=0

Mz−1∑
n=0

(
qn1

3

)
lmn

exp

[
−2πi

(
ul

Mx

+
vm

My

+
wn

Mz

)]
.

(B.11)

3. The diffusion contribution, ∇2, is now accounted for via

(
pn2

3

)
uvw

= exp

[
−4π2∆s

(
Kx(u)2

M2
x

+
Ky(v)2

M2
y

+
Kz(w)2

M2
z

)](
pn1

3

)
uvw

, (B.12)

where

Kγ(t) =

{
t 0 ≤ t < Mγ

2
+ 1

Mγ − t Mγ

2
≤ t < Mγ

. (B.13)
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The purpose of Kγ(t) is to conform with the FFT-standand form used by com-

mon FFT packages, such as FFTW3 [69].

4. We apply an inverse FFT to
(
pn2

3

)
, which reads

(
qn2

3

)
uvw

=
Mx−1∑
l=0

My−1∑
m=0

Mz−1∑
n=0

(
pn2

3

)
lmn

exp

[
+2πi

(
ul

Mx

+
vm

My

+
wn

Mz

)]
. (B.14)

5. At last, we obtain qn+1 by applying the potential contribution once more as in

Step 1., (
qn+1

)
uvw

= exp

(
−ω(ruvw)

∆s

2

)(
qn2

3

)
uvw

. (B.15)

In applying the potential and diffusion contributions separately as opposed to jointly,

we have succeeded in solving q(r, s) to second order accuracy in s, i.e. the associated

corrections to q(r, s) are of order O(∆s3) [1].
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Appendix C

Simpsons Rule

The numerical integration method used in the current work is the Simpsons Rule

for both even and odd number of intervals [70]. Given M + 1 > 6 data points,

{(xi, yi)}Mi=0, equally spaced in x, the integration rule reads

∫ xM

x0

dx y(x) ≈ ∆x

(
9

24
y0 +

28

24
y1 +

23

24
y1 +

M−3∑
i=3

yi +
23

24
yM−2 +

28

24
yM−1 +

9

24
yM

)
,

(C.16)

where ∆x = xi−xi−1. One small computational advantage offered by Eq. (C.16) over

the even Simpsons Rule is that the integration weights are all equal to 1, except for

the first and last three points. Moreover, periodic boundaries are frequently assumed

and thus, only M needed data points are at hand. Under this assumption, Eq. (C.16)

can be rewritten as

∫ xM

x0

dx y(x) ≈ ∆x

(
18

24
y0 +

28

24
y1 +

23

24
y1 +

M−2∑
i=3

yi +
23

24
yM−2 +

28

24
yM−1

)
, (C.17)

where we have made use of the periodicity, yM = y(xM) = y(x0) = y0.
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Appendix D

Anderson Mixing

In this appendix, we detail our implementation of Anderson mixing in the context of

SCFT. This numerical technique was pioneered by Anderson [71]. Anderson mixing

was first applied to SCFT by Schmid in their study of liqid monolayers [72], and was

further developed for polymeric systems by Thompson [65]. One advantage over the

simple mixing scheme presented in Section 3 that is offered by Anderson mixing is a

faster rate of convergence towards the desired solutions in most cases.

On one hand, simple mixing uses solely the current iteration’s input and output

fields, ω
(n,in)
β (r) and ω

(n,out)
β (r), to construct the next set, ω

(n+1,in)
β (r). On the other,

Anderson mixing determines ω
(n+1,in)
β (r) using an optimal combination of input and

output fields spanning a number of previous trials. Thus, when the history of in-

put fields show steady signs of convergence, then the convergence process is readily

expendited through Anderson mixing. Conversely, when the deviations of the fields

from one iteration in the past from the next is large, then Anderson mixing per-

forms rather poorly, frequently yielding new inputs that are farther away from the

desired solutions than before. For these reasons, simple mixing is often first used to
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ensure a history of well-behaved input fields for numerical stability, before switching

to Anderson mixing for a faster rate of convergence.

Suppose we are at the nth iteration of the procedure outlined in Section. 3. We

define the deviation functions associated with the monomer species, β, as

d
(n)
β = d

(n)
β (r) = ω

(n,out)
β − ω(n,in)

β , (D.18)

where ω
(n,in)
β = ω

(n,in)
β (r) and ω

(n,out)
β = ω

(n,out)
β (r). The next set of input fields are

given by

ω
(n+1,in)
β =Λlω

(n,in)
β + (1− Λl)ω

(n,out)
β

−
l∑

j=1

Aj

[
Λl
(
ω

(n,in)
β − ω(n−j,in)

β

)
+ (1− Λl)

(
ω

(n,out)
β − ω(n−j,out)

β

)]
=

(
1−

l∑
j=1

Aj

)(
ω

(n,in)
β + (1− Λl)d

(n)
β

)
+

l∑
j=1

(
ω

(n−j,in)
β + (1− Λl)d

(n−j)
β

)
(D.19)

where l = min (MAM, n) and MAM is the current and maximum number, respectively,

of previous iterations to consider, Λ governs the relative contribution of input fields

to ω
(n+1,in)
β , while Aj are the coefficients belonging to the vector A satisfying

UA = D. (D.20)

Here, U is l × l symmetric matrix,

(U)jk =
∑
β=A,B

∫
dr
(
d

(n)
β − d

(n−j)
β

)(
d

(n)
β − d

(n−k)
β

)
(D.21)
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and D is a vector of length l,

(D)j =
∑
β=A,B

∫
dr d

(n)
β

(
d

(n)
β − d

(n−j)
β

)
. (D.22)

In our implementation of Anderson mixing, we set Λ = 0.9 and MAM = 30.

Furthermore, A is obtained via LU factorization [73]. Note that U may not be

invertible when the history of input and output fields are poorly behaved (i.e. an

optimal combination cannot be found). We see from Eq. (3.3) that ω
(n,in)
β and ω

(n,out)
β

contributes to ω
(n+1,in)
β in the same manner for every step using simple mixing. For

Anderson mixing however, the contributions of the input and output fields from

one particular past trial to ω
(n+1,in)
β can differ from one iteration to another, being

governed by the magnitude of Aj. Thus, Anderson mixing is able to correct for the

occasional misbehaved or “bad” step [65], whereas simple mixing cannot.
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Appendix E

Quadratic Fitting

Given a set of three points, {(xi, yi)}2
i=0, the corresponding fitting coefficients of the

quadratic form, y(x) = px2 + qx+ r, reads

p =
1

d

2∑
i=0

xi(yi+2 − yi+1), d =
2∏
i=0

(xi − xi+1),

q =
2∑
i=0

x2
i (yi+1 − yi+2), r =

2∑
i=0

xixi+1(xi − xi+1)yi+2,

(E.23)

where again the line above the subscripts denotes the modulo operation with modulus

3, i = i (mod 3).
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