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Abstract

Temporal Psychovisual Modulation (TPVM) is a new paradigm of computational

display, which can concurrently exhibit many different views on a common display.

These views are decomposed into a set of atom frames, and the atom frames are

modulated by users’ liquid crystal (LC) light modulation glasses. Due to the limited

refresh rate of LC glasses, a practical TPVM multiview display system can only

support two to three atom frames. Such a small number of atom frames are not

sufficient to a multiview application with a high image quality. Therefore, the main

technical challenge before TPVM is how to support as many viewers as possible

while maintaining an acceptable perceptual quality, using only a small number of

atom frames. In this thesis, we develop two approaches to meet the challenge.

The first approach is to exploit the sparsity of multiview images to be displayed.

One example is the sequence of depth of field (DOF) images. Those images not only

provide a strong depth cue, but also have a sparsity structure. That structure allows

the DOF images to be reconstructed from a small number of atom frames. We prove

that property theoretically. Experimental results also agree well with the proof.

The second approach is to exploit the well-known property of rapidly decreasing

visual acuity from fovea to peripheral vision. The strategy is to exhibit different

concurrent views at highest quality in viewers’ focused regions, while allowing graceful
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image quality degradation in regions of peripheral vision. This is achieved by a

novel fovea weighting algorithm that optimizes for subjective quality. We find the

proposed algorithm improves viewers’ perceptual quality significantly, especially when

the TPVM multiview display system only has a small number of atom frames.
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Notation and abbreviations

AR augmented reality

CRT cathode ray tube

DOF depth of field

HMD head-mounted display

HVS human visual system

LC liquid crystal

LCD Liquid-crystal display

LED Light-emitting diode

MR mixed reality

NMF non-negative matrix factorization

OLED organic light-emitting diode

POCS projection to convex set

RMSE root mean square error
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ROI region of interests

SVD singular value decomposition

TPVM temporal psychovisual modulation

VR virtual reality
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Chapter 1

Introduction

Recent years have seen intensified research on and burgeoning commercial interests

in a new generation of computational displays, driven by a wide range of virtual,

augmented and mixed reality applications in diversified fields from man-machine in-

teractions, medicine, entertainment, to automobile, etc (Masia et al., 2013). Temporal

Psychovisual Modulation (TPVM) (Wu and Zhai, 2013) is a new paradigm of com-

putational display, which can concurrently exhibit many different views on a common

display surface. These views are decomposed into a set of atom frames to be displayed

at a high frame rate exceeding the critical flicker frequency of 60 Hz for human eyes.

Different users perceive their own views through liquid crystal (LC) light modulation

glasses. The LC glasses, synchronized with the high-speed display, can regulate how

much of the light energy of each atom frame to pass through and reach retina, name-

ly, perform amplitude modulation of atom frames, so that the human visual system

(HVS) can fuse these modulated atom frames into desired images.

Although the number of atom frames can be any positive integer theoretically,

its feasible range is severely limited by the relatively low speed of active LC light
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modulation glasses. The speed of the off-the-shelf LC glasses of grey levels is difficult

to exceed 180Hz. In other words, in the current state of the art, a practical TPVM

multiview display system can only support two to three atom frames. Such a small

number of atom frames are not sufficient to a multiview application with a high image

quality. Therefore, the main technical challenge before TPVM is how to support as

many viewers as possible while maintaining an acceptable perceptual quality, using

only a small number of atom frames. In this thesis, we develop two approaches to

meet the challenge.

The first approach is to exploit the sparsity of multiview images to be displayed.

One example is the sequence of depth of field (DOF) images, which pertaining to

continuously varying focal distance but with the position, angle and aperture of the

camera fixed. Those images not only provide a strong depth cue, but also have a

sparsity structure. That structure allows the DOF images to be reconstructed from

a small number of atom frames. We prove that property theoretically. Experimental

results also agree well with the proof.

The second approach is to exploit the well-known property of rapidly decreasing

visual acuity from fovea to peripheral vision. We propose a spatially weighted opti-

mization algorithm for TPVM based on viewers’ real time region of interests (ROI)

information. The strategy is to exhibit different concurrent views at highest quality

in viewers’ focused regions, while allowing graceful image quality degradation in re-

gions of peripheral vision. This is achieved by a novel fovea weighting algorithm that

optimizes for subjective quality. We find the proposed algorithm improves viewers’

perceptual quality significantly, especially when the TPVM multiview display system

only has a small number of atom frames.
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The remainder of this thesis is structured as follows. Chapter 2 outlines the prin-

ciple and architecture of TPVM and other state-of-the-art computational displays,

points out advantages of TPVM, and stresses the necessity of continuing development

of it. Chapter 3 presents our findings on the DOF image sequences and their sparse

property. Chapter 4 presents the fovea weighting algorithm for optimizing multiuser

perceptual quality, and Chapter 5 concludes.
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Chapter 2

TPVM and other computational

displays

The concept of display has a history that predates the modern flat-panel display by

several millennia. People have a strong need to present information, even if they

can only write in a stone. With the rapid development of display technologies, they

become more automated and further clearer. The mechanical display, like Split-flap

display and Flip-disc display are developed first. Then electronic display, like Cathode

ray tube (CRT), Light-emitting diode (LED) and Liquid-crystal display (LCD) are

developed not long after, and the modern flat-panel display is evolved from these

primitive electronic display.

Nowadays, the flat-panel display is stable and mature enough, but people also

have higher demands for their user experience. For example, people want more im-

mersive visual experience, more accessible information, more interaction with the

physical world, and more collaboration with other people. Satisfying these needs is
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an important task of modern computational displays. Computational display tech-

nology is one of the hottest topics in the graphics community today (Masia et al.,

2013). They can provide a magical visual experience by adding computational power

to optics. In this chapter, we outline the principle and architecture of TPVM and

other state-of-the-art computational displays, points out advantages of TPVM, and

stresses the necessity of continuing development of it.

2.1 TPVM

In the TPVM multiview display system (Wu and Zhai, 2013; Zhai and Wu, 2014), as

depicted in Figure 2.1, K concurrent views are decomposed by non-negative matrix

factorization into a set of atom frames, i.e., basis images. These atom frames are

displayed at a high frame rate exceeding the flicker frequency. K viewers watch the

screen through liquid crystal (LC) light modulation glasses that are synchronized

with the display and perform temporal amplitude modulation of the atom frames to

generate desired images for different viewers. The TPVM display system simplifies

the VR end user device from a head-mounted display to light, simple LC glasses.

As the LC glasses are see through, the VR participants can conduct face-to-face

communications or even body-to-body interactions. The co-presence of multiple users

in virtual environment is achieved via perceptual fusion of the perspective-correct

virtual world and the participants’ own physical proximity.

At the heart of the multiuser display system is a problem of non-negative matrix

factorization (NMF) (Lee and Seung, 1999). Let Y = (y1,y2, · · · ,yK) be the K

target images to be concurrently displayed to different viewers. The S × K matrix

Y , where S is the number of pixels in each target image, needs to be decomposed

5
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Figure 2.1: TPVM multiview display system

into Y = XW , with the S × M matrix X = (x1,x2, · · · ,xM) being the set of

atom frames and the M × K matrix W = (w1,w2, · · · ,wK) being the K modula-

tion coefficient vectors corresponding to the K target images. The resulting atom

frames x1,x2, . . . ,xM are displayed at high frame rate and then temporally modu-

lated by active LC glasses according to weights w1,w2, . . . ,wK . This optoelectronic

display-glass coupling and the temporal fusion mechanism of HVS jointly render the

K concurrent target images y1,y2, . . . ,yK as different linear combinations of the

x1,x2, . . . ,xM atom frames. By now one can appreciate that in the TPVM paradig-

m, all heavy computations involved in multiview generation are delegated to a central

server. End user devices become inexpensive, light LC glasses that are controlled by

a modulation vector that only consumes a negligible bandwidth.

In practice, the image decomposition underlying TPVM has to respect a condition

of non-negativity, because the light energy emitted by the display cannot be negative,

and active LC glasses can only implement modulation weights between 0 and 1.

Therefore, the introduced display system needs to solve the following problem of

6
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NMF (Lee and Seung, 2001)

min
X,W
‖Y −XW ‖2

F , subject to 0 ≤X,W ≤ 1 (2.1)

with Y ∈ <S×K , X ∈ <S×M ,W ∈ <M×K , and where ‖ · ‖F is the Frobenius norm;

≤ operates on each element of the matrices.

2.2 Virtual reality head-mounted display

Modern virtual reality head-mounted displays (HMD), like Oculus Rift (Oculus,

2016), PlayStation VR (Sony, 2016), HTC Vive (HTC, 2016) and Samsung Gear

VR (Samsung, 2015), have very similar structures. As sketched in Fig 2.2, they all

have a stereoscopic head-mounted display which provides separate images for each

eye, head motion tracking sensors and maybe eye tracking sensors.

Figure 2.2: Virtual reality head-mounted display
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Their technical specifications are also similar. Taking Oculus Rift as an example,

it uses an organic light-emitting diode (OLED) panel for each eye, each having a

resolution of 1080 ∗ 1200, a refresh rate of 90 Hz rate, and 110◦ field of view. It

also has full 6 degree of freedom rotational and positional tracking which is precise,

low-latency, and sub-millimeter accurate.

A head-mounted display can easily create an immersive environment for a user,

which is similar to the real world. However, it also isolates him/her from others.

HMD cannot give one the perception of corporal co-presence with others in the same

virtual environment. In many applications of multiuser collaborative VR, such as

surgical planning, training for manned space exploration, exercising for emergency in

hostile environment, etc., participants need to act together in real physical proximity

rather than connected in cyber space. TPVM multiview display system, by contrast,

is ideally suited for multiuser collaborative VR.

2.3 Augmented/mixed reality head-mounted dis-

play

Augmented reality (AR) and mixed reality (MR) head-mounted display, sometimes

known as ”Smartglasses”, are developing rapidly. AR is a view of a physical, real-

world environment whose elements are augmented by external data, while MR is the

merging of real and virtual worlds to produce new environments where physical and

digital objects co-exist and interact in real time. Google Glass (Google, 2014) is a typ-

ical instance of AR head-mounted display, and Microsoft HoloLens (Microsoft, 2016)

is a typical instance of MR head-mounted display. The goals of the two Smartglasses

8
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Figure 2.3: Augmented/mixed reality head-mounted display

are different, but they have similar structures as display systems. They all have the

capability of reflecting projected images to the user’s eyes while allowing them to see

through the glasses. As an example, the structure of HoloLens is shown in Fig 2.3.

Although augmented/mixed reality head-mounted display seems like a good scheme

of multiuser collaborative VR, they also have their drawbacks. They have low res-

olutions (360p for Google Glass and 720p for HoloLens), narrow fields of view (14◦

for Google Glass and 30◦ for HoloLens) and high prices ($1500 for Google Glass

and $3000 for HoloLens). Their drawbacks limit their commercial use in multiuser

collaborative VR.

9
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Figure 2.4: Image formation mechanism of tensor display

2.4 Tensor Displays

Tensor displays (Wetzstein et al., 2012) are a family of light field displays represented

by MIT Media Lab, with the potential of resolving the vergence-accommodation

conflict (Kramida, 2016). They share a degree of similarity with TPVM in optical

image formation mechanism and in computational aspect: both use LC glasses as

spatial light modulator to generate many concurrent views, and both decompose

images into a set of atom frames. Unlike TPVM that uses only one LC modulation

layer, the tensor display uses two or more LC modulation layers to gain multiview

capability. As sketched in Fig 2.4, the tensor display approximates the light field by

solving the following optimization problem:

min
F ,G,H

‖L−W ⊗ (
1

M

M∑
m=1

fm ◦ gm ◦ hm)‖, subject to 0 ≤ fm, gm,hm ≤ 1

(2.2)
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where L is the light field tensor, W is the physical restriction tensor, f , g and h are

transmittance vectors of three different LCD layers. In TPVM each user has his/her

own LC classes that perform light amplitude modulation independent of other users.

But the LC modulation layers of the tensor display are responsible for approximating

all views of the light field. This distinction in design leads to different computation

models: nonnegative matrix factorization for TPVM, as in Eq 2.1, but nonnegative

tensor factorization for the tensor display, as in Eq 2.2.

The tensor display can generate glasses-free 3D views, which is its main advantage

over TPVM. But because all concurrent views generated by the tensor display are

physically formed by layers of spatial light modulators, or mathematically the results

of a tensor decomposition, they are severely constrained. In general, the tensor display

cannot reproduce the 4D light field of an arbitrary 3D scene. In implementation, even

small errors in layer registration can cause severe crosstalk, destroying image clarity

and narrowing the effective field of view. Also, the use of multiple LC layers deprives

light efficiency, generating dim and low contrast images. In contrast, in the TPVM

display system, as each user uses an independent, single LC layer, layer registration

and crosstalk become nonissues, images should be brighter, sharper and cleaner than

those of tensor displays.

2.5 Magic Leap’s head-mounted display

A mysterious head-mounted display is being developed at Magic Leap, a US startup

company. They posted a series of videos of their product online in 2016. In one of the

most famous video, a whale appeared to breach the floor, leap high in the air and come

crashing down with water flying everywhere. These videos created a sensation in the

11
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Figure 2.5: Fiber Scanning Display

world, and led people to believe that Magic Leap already made a major breakthrough

in display technology. However, it turns out that all those videos are made by other

special effects companys, rather than shot directly by camera. Magic Leap has not

demonstrated a prototype till today.

There is widespread speculation that Fiber Scanning Display (Crossman-Bosworth

et al., 2006; Schowengerdt et al., 2010) is the key in their system, which could shine

a laser through a fiber optic cable that moves rapidly back and forth to draw images

out of light, as shown in Fig 2.5. They may be trying to use multiple Fiber Scanning

Displays to reconstruct arbitrary light field. Although the idea is simple and con-

vincing, the light field display is still in their infancy with very high hardware and

algorithm complexities, and will not be viable any time soon.

12



Chapter 3

Depth of Field Image Sequences

The most obvious way to improve image quality of TPVM without more atom frames

is to exploit the sparsity of multiview images to be displayed. One example is the

sequence of depth of field (DOF) images, which pertaining to continuously varying

focal distance but with the position, angle and aperture of the camera fixed. Those

images not only provide a strong depth cue, but also have a sparsity structure. It

is shown that all member images of the sequence can be approximated with good

precision as a linear combination of few basis images. By exploiting the above newly

discovered sparsity structure of DOF images, the TPVM multiview display system

can support unlimited number of viewers while maintaining an acceptable perceptual

quality for all of them, using only a small number of atom frames.

13
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Figure 3.1: An example of DOF image sequence.

3.1 The motivation and definition of DOF image

sequences

In 3D computer graphics and virtual reality (VR), a long lasting challenge is to du-

plicate the percepts of the 3D world on planar displays with maximum realism and

minimum visual discomfort. A number of depth cues, including binocular disparity,

motion parallax and defocus blur, are used to create the visual sensation of 3D ob-

jects on display surfaces. A deep-rooted mainstream technique for 3D perception is

stereoscopy that exploits binocular disparity; namely, the display exhibits two differ-

ent images meant for the left and right eye of a viewer, respectively, for the human

visual system (HVS) to interpret the 3D scene from the image differences (Kitamura

et al., 2001; Benzie et al., 2007; Love et al., 2009; Geng, 2013).

Meanwhile, another effective and efficient strategy of generating a realistic 3D vi-

sual sensation is to combine the depth cues of defocus blur and motion parallax. One

way of doing this is real-time gaze-induced depth of the field (DOF) video rendering,

with the support of an eye tracking device of sufficient accuracy and speed (Mauderer

et al., 2014; Duchowski et al., 2014; Vinnikov and Allison, 2014). Figure 3.1 is an ex-

ample of gaze-induced DOF sequence, demonstrating how the changes of perspective

and focal distance can convincingly convey the sense of depth.

14
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The gaze-induced DOF video is represented by a 4D data set I(x, y, t, d), where

(x, y) are pixel coordinates, t the time index, and d the focal distance. Frame t0 is

a sequence of N DOF images {I(x, y, t0, dn)}1≤n≤N , which we call a DOF sequence.

The sequence {I(x, y, t0, dn)}1≤n≤N consists of the N images taken by a light field

camera (real or synthetic) at a fixed position, view angle and time but with dif-

ferent focal distances. Although the data volume of a raw DOF image sequence

{I(x, y, t0, dn)}1≤n≤N is N times larger than that of an image or video frame, the

underlying 4D signal is highly sparse. Indeed, we will prove that all member images

in set {I(x, y, t0, dn)}1≤n≤N can be well approximated as a linear combination of three

to four basis images, making it possible to support unlimited number of viewers with

TPVM, using only a small number of atom frames.

3.2 Sparsity of DOF image sequences

In this section, we present the analyses to establish the sparsity of the DOF image

sequence {I(x, y, t0, dn)}1≤n≤N consisting of images of the same scene captured or

rendered with N different focal distance settings. Specifically, we show that three

to four basis images suffice to linearly approximate all member images in a DOF

image sequence accurately, regardless of the size of the sequence, N . For the sake of

simplicity, we omit pixel coordinates x, y and frame index t0 in I(x, y, t0, d) and use

I(d) to denote a DOF image in the following discussions.

Suppose I(d) is an image of a single flat object placed at distance CD from the

camera; and the focal distance, focal length and aperture size of the camera are

d, CF , CA, respectively. If f is a focused image of the object, i.e., f = I(CD), then the

defocus blur effect due to large aperture can be simulated using image convolution as

15
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follows,

I(d) = f ∗ g(d) (3.1)

where g(d) is a blur kernel. The exact shape of the blur kernel is camera specific, but

by the basic optical properties of camera lens, the support size of kernel g(d) can be

calculated as,

s =

∣∣∣∣CA
CF (d− CD)

CD(d− CF )

∣∣∣∣ , (3.2)

which is the size of the confusion circle.

Now the question is that, given a DOF image sequence {I(dn)}1≤n≤N , if there

exists a small number of basis Φ = {φ1, φ2, . . . , φM} that can reconstruct the se-

quence with sufficient accuracy. This problem can be formulated as an unconstrained

optimization problem, minimizing the reconstruction error of basis variable Φ and

coefficient vector variable w(dn) for each DOF image I(dn),

min
Φ,w

1

NL

N∑
n=1

‖I(dn)− Φw(dn)‖2
2, (3.3)

where L is the number of pixels in each DOF image. As both Φ and w are vari-

ables, the problem in Eq. (3.3) is non-convex in this form. However, since there

is no constraint on either Φ or w, this problem is equivalent to finding a low-rank

16
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approximation of matrix I = {I(dn)} where each column vector is a DOF image,

min
Ĩ
‖I − Ĩ‖F

s.t. rank(H̃) ≤M. (3.4)

This problem is tractable using singular value decomposition (SVD). Suppose the

SVD of H is UΣV ᵀ, and diagonal matrix Σ′ preserves only the first M singular values

in Σ. Then Φ = UΣ′ and w = V ᵀ is an optimal solution of the original problem.

The optimal solution of Eq. (3.3) is the minimum error of reconstructed sequence

using a small number of basis images. If the optimal solution is bounded for any

DOF image sequence, then there exists a good basis with low reconstruction error

for each DOF image sequence. However, the optimal solution is difficult to estimate

directly, as it depends on not only the characteristics of the camera, i.e., blur kernel

g(dn), but also the appearance of object, i.e., the focused image f . These two factors,

however, can be separated easily in frequency domain by convolution theorem. Let F

be the Fourier transform matrix. Since matrix F is unitary, the original optimization

problem is equivalent to

min
Φ,w

1

NL

N∑
n=1

‖F‖2
2 · ‖I(dn)− Φw(dn)‖2

2

= min
Φ,w

1

NL

N∑
n=1

‖FI(dn)−FΦw(dn)‖2
2

= min
Φ,w

1

NL

N∑
n=1

‖F ◦G(dn)−FΦw(dn)‖2
2, (3.5)

where vectors F and G(dn) are the Fourier transform of f and g(dn), respectively,

17
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and vector F ◦ G(dn) represents the piecewise product of F and G(dn). For some

optimal solution Φ, w, these must exist G̃(dn), such that,

F ◦ Ĝ(dn) = Φ̂w(dn), (3.6)

where the i-th row of basis matrix Φ̂ is

Φ̂i =


0 if Fi = 0

[FΦ]i if Fi 6= 0.

(3.7)

The idea is that, by setting row Φ̂i to be zero, the reconstruction error of the i-th

element of F ◦G(dn) is always zero without affecting the optimality of the other rows.

Thus, if solution Φ, w is optimal, F−1Φ̂, w must also be optimal for the problem in

Eq. (3.5). Therefore, this problem is equivalent to

min
Ĝ,Φ̂,w

1

NL

N∑
n=1

‖F ◦G(dn)− F ◦ Ĝ(dn)‖2
2,

s.t. F ◦ Ĝ(dn) = Φ̂w(dn). (3.8)

Since a low-rank approximation of matrix G, say G̃, might be not optimal as a

solution of variable Ĝ in Eq. (3.8), the optimal solution of the problem must be less

18
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than or equal to,

1

NL

N∑
n=1

‖F ◦ [G(dn)− G̃(dn)]‖2
2

=
1

NL

L∑
i=1

F 2
i · ‖Gi − G̃i‖2

2

≤ 1

NL

(
L∑
i=1

F 2
i

)
·
(

L
max
i=1
‖Gi − G̃i‖2

2

)
=

(
1

L
‖f‖2

2

)
·
(

1

N

L
max
i=1
‖Gi − G̃i‖2

2

)
, (3.9)

where and Gi, G̃i are the i-th row of G, G̃, respectively. Suppose blur kernel g(d) is

Gaussian, which is commonly used in DOF rendering,

g(d) =

√
π

s
e−

π2k2

s2 , (3.10)

then its frequency domain image G(d) is also Gaussian,

G(d) = e−s
2x2

. (3.11)

As plotted in Figure 3.2, numerical results show that, if focal distance dn changes

from 10CF to 1000CF in a DOF image sequence of N = 1000 images, then the

maximum root mean square error (RMSE) of row vectors of G− G̃, i.e.,

L
max
i=1

√
1

N
‖Gi − G̃i‖2

2, (3.12)

is less than 0.15 when M = 3 basis images are used, and less than 0.09 when M = 4

basis images are used. By the error bound inequality in Eq. (3.9), the RMSE of
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(a) M = 3 basis images are used.
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(b) M = 4 basis images are used.

Figure 3.2: The maximum root mean square error of row vectors of G − G̃ if focal
distance dn changes from 10CF to 1000CF in a DOF image sequence of N = 1000
images.
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the reconstructed DOF image sequence by using Eq. 3.3 is less than 0.09 · ‖f‖2/
√
L

for M = 4, implying that the relative error of the reconstructed images is less than

9% roughly. The case when M = 3 is similar. This error bound only covers the

reconstruction error of Eq. (3.3) in the worst case scenario; for the majority cases we

tested, the reconstruction error is far below the bound.

So far, we have already proved that any DOF image sequence can be well ap-

proximated as a linear combination of three to four basis images. However, there is

one caveat. The image decomposition underlying TPVM has to respect a condition

of non-negativity, because the light energy emitted by the display cannot be nega-

tive, and active LC glasses can only implement modulation weights between 0 and 1.

Therefore, the proof cannot completely apply to the TPVM multiview display system.

But the good news is that the non-negativity constraints have almost no impact on

the reconstruction error in our simulation. We are confident that most of DOF image

sequences can be reconstructed well in TPVM, using only a small number of atom

frames.

3.3 Experimental results

In this section we report our experimental results. We use the projection to convex set

(POCS) method (Bauschke and Borwein, 1996) to solve the NMF problem of (2.1).

In the POCS approach, the nonnegativity constraints when alternatingly solving (2.1)

for W and X are relaxed; but after each iteration, the resulting matrices W and X

are clipped back to the value range [0, 1]. This allows the NMF problem to be solved

very efficiently as a series of least-squares problems.

The test DOF image sequences are generated by Blender (Blender, 2017), an open
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source 3D creation suite. Listed in Figures 3.3, 3.4, 3.5 and 3.6 are the rendered DOF

results of two 3D demo models, “Class Room” and “Barcelona Pavilions”, which are

available on the Blender website. For a fixed camera position we rendered a series

of DOF images with varying focal distances from the nearest to the farthest objects

and use them as reference DOF images (ground truth).

We also test our new method with DOF sequence captured by Lytro Illum camera,

a real light field camera which can capture a DOF sequence in only one exposure.

The results are shown in Figures 3.7. We find that both synthetic and real DOF

image sequences can be reconstructed well in TPVM, using only a small number of

atom frames.
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(a) Original DOF image (b) Pinhole camera (c) Depth map

(d) Our method with 2 bases
(30.91 dB)

(e) Our method with 3 bases
(35.27 dB)

(f) Our method with 4 bases
(40.70 dB)

Figure 3.3: TPVM outputs of DOF sequence in classroom scene with far focus.

(a) Original DOF image (b) Pinhole camera (c) Depth map

(d) Our method with 2 bases
(31.88 dB)

(e) Our method with 3 bases
(36.56 dB)

(f) Our method with 4 bases
(39.37 dB)

Figure 3.4: TPVM outputs of DOF sequence in classroom scene with near focus.
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(a) Original DOF image (b) Pinhole camera (c) Depth map

(d) Our method with 2 bases
(38.02 dB)

(e) Our method with 3 bases
(42.16 dB)

(f) Our method with 4 bases
(46.41 dB)

Figure 3.5: TPVM outputs of DOF sequence in the pavilion scene with far focus.

(a) Original DOF image (b) Pinhole camera (c) Depth map

(d) Our method with 2 bases
(37.49 dB)

(e) Our method with 3 bases
(42.73 dB)

(f) Our method with 4 bases
(46.53 dB)

Figure 3.6: TPVM outputs of DOF sequence in the pavilion scene with near focus.
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(a) Lytro DOF image for the umbrella
scene

(b) Our method with 4 bases for the
umbrella scene

(c) Lytro DOF image for the kettle
scene

(d) Our method with 4 bases for the
kettle scene

Figure 3.7: TPVM outputs of DOF sequence captured by Lytro Illum camera.
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Chapter 4

Fovea Weighting of TPVM

In many applications of multiview displays, different users often have their own regions

of interest at any given time. This allows us to exploit the well-known property of

rapidly decreasing visual acuity from fovea to peripheral vision (Weymouth, 1958),

and propose a spatially weighted optimization algorithm for multiview computational

display. The proposed algorithm chooses the basis images and their fusion scheme

in such a way that different concurrent views are exhibited at highest quality in

viewers focused regions, while allowing graceful image quality degradation in regions

of peripheral vision. In this chapter, we discuss how to apply fovea weighting in

the framework of TPVM; namely, formulate a weighted objective function and devise

efficient algorithms to minimize it. We find that viewers’ perceptual quality improved

significantly in this way, especially when the TPVM multiview display system only

has a small number of atom frames.
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4.1 Fovea weighting

Assuming that the users of the TPVM multiview display system are all equipped

with eye tracking devices of sufficiently high accuracy and response speed (Duchowski,

2007; Holmqvist et al., 2011; Mauderer et al., 2014), thus the region of interests (ROI)

for each viewer is known. For viewer k, the approximation error image yk −Xwk is

spatially weighted by a 2D Gaussian function that is aligned with the ROI of viewer

k.

Let C be the K corresponding regions of interest of K target images. The N ×K

non-negative matrix C, which has the same size as Y , can be used as a weight matrix

inside the Frobenius norm. Now we need to solve the following optimization problem

with ROI information:

min
X,W
‖C ◦ (Y −XW )‖2

F , subject to 0 ≤X,W ≤ 1 (4.1)

where ◦ is the Hadamard product. First, we suppose W is the only optimization

variable in our problem, and the objective is to minimize

S(W ) =
∑
i

‖ci ◦ (yi −Xwi)‖2

=
∑
i

(ci ◦ (yi −Xwi))
T (ci ◦ (yi −Xwi)) (4.2)

where wi refers to the ith column of W . Let diagonal matrix Di = diag(ci), and the
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objective is to minimize

S(W ) =
∑
i

(yT
i Di −wT

i X
TDi)(Diyi −DiXwi)

=
∑
i

(yT
i D

2
iyi −wT

i X
TD2

iyi − yT
i D

2
iXwi + wT

i X
TD2

iXwi) (4.3)

Note that: (wT
i X

TD2
iyi)

T = yT
i D

2
iXwi is a scalar and equal to its own transpose,

hence wT
i X

TD2
iyi = yT

i D
2
iXwi and the quantity to minimize becomes

S(W ) =
∑
i

(yT
i D

2
iyi − 2wT

i X
TD2

iyi + wT
i X

TD2
iXwi) (4.4)

Differentiating this with respect to wi and equating to zero to satisfy the first-order

conditions gives

∂S

∂wi

=− 2XTD2
iyi + 2(XTD2

iX)wi

=− 2XTdiag2(ci)yi + 2(XTdiag2(ci)X)wi

=0 (4.5)

Suppose XTD2
iX is positive definite, then we can get solution for wi

wi =(XTD2
iX)−1XTD2

iyi

=(XTdiag2(ci)X)−1XTdiag2(ci)yi (4.6)

Suppose X is the only optimization variable in our problem, we can get the partial
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derivatives and the solution for xT
i in a similar way.

∂S

∂xT
i

= −2yT
i diag

2(cTi )W T + 2xT
i (W diag2(cTi )W T ) (4.7)

xT
i = yT

i diag
2(cTi )W T (W diag2(cTi )W T )−1 (4.8)

where xT
i refers to the ith row of X.

It is worth noting that diag(ci) has a huge size in our problem. To accelerate

the computation of W , we can replace the usage of diagonal matrix with Hadamard

product and tiling of copies of ci. For example, compute (ci, ci, · · · , ci) ◦X in the

program instead of diag(ci)X.

We suggest to use the projected gradient descent method (Lin, 2007) to solve the

weighted NMF problem, i.e., perform usual gradient update and then project back

onto the convex feasible set. The computation of the gradient needed in this method

is provided in (4.5) and (4.7). The projected gradient descent method can obtain a

better convergence if a good starting value is chosen. So in practice, we can use the

result of POCS method (Bauschke and Borwein, 1996) as the starting value of the

projected gradient descent method.

4.2 Experimental results

In the experimental setup, we try to accommodate the hardware limitation of the

TPVM multiview display system in practice. Although the number of basis images,

can be any positive integer theoretically, its feasible range is severely limited by the
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relatively low speed of active LC light modulation glasses. The speed of the off-the-

shelf LC glasses of grey levels is difficult to exceed 180Hz. In other words, at the

current state of the art, a practical TPVM multiview display system can only run

two to three basis images. As such, as said in the very beginning of the thesis, the

main technical challenge facing TPVM is how to support as many viewers as possible

while maintaining an acceptable perceptual quality for all of them, using only a small

number of basis images. In the experiment reported below, we demonstrate that fovea

weighting can achieve high perceptual quality for four different concurrent views with

only two or three basis images, which is impossible with naive temporal multiplexing

as in the main stream stereoscopic displays.

The test images in our experiment are generated by Blender (Blender, 2017), an

open source 3D creation suite. Listed images in Figure 4.1 and 4.2 are the rendered

images of two 3D demo models, “Class Room” and “Barcelona Pavilions”, which are

available on the Blender website. In the experiment, four users are watching the

classroom with four different perspectives and regions of interest. The red circles in

Figure 4.1 and 4.2 indicate the centers of regions of interest of different users. Fovea

weighted PSNRs are also reported in figures.
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(a) Original image of user 1
(ground truth)

(b) User 1 with 2 bases (24.82
dB)

(c) User 1 with 3 bases (30.02
dB)

(d) Original image of user 2
(ground truth)

(e) User 2 with 2 bases (24.70
dB)

(f) User 2 with 3 bases (28.29
dB)

(g) Original image of user 3
(ground truth)

(h) User 3 with 2 bases (25.01
dB)

(i) User 3 with 3 bases (27.21
dB)

(j) Original image of user 4
(ground truth)

(k) User 4 with 2 bases (25.88
dB)

(l) User 4 with 3 bases (35.76
dB)

Figure 4.1: Results of fovea weighting of TPVM in classroom scene. The red circles
indicate the centers of regions of interest of different users. The PSNRs reported are
fovea weighted PSNR.
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(a) Original image of user 1
(ground truth)

(b) User 1 with 2 bases (30.80
dB)

(c) User 1 with 3 bases (30.70
dB)

(d) Original image of user 2
(ground truth)

(e) User 2 with 2 bases (30.87
dB)

(f) User 2 with 3 bases (31.46
dB)

(g) Original image of user 3
(ground truth)

(h) User 3 with 2 bases (30.51
dB)

(i) User 3 with 3 bases (33.91
dB)

(j) Original image of user 4
(ground truth)

(k) User 4 with 2 bases (31.75
dB)

(l) User 4 with 3 bases (31.29
dB)

Figure 4.2: Results of fovea weighting of TPVM in the pavilion scene. The red circles
indicate the centers of regions of interest of different users. The PSNRs reported are
fovea weighted PSNR.
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Chapter 5

Conclusions

Compared with other computational displays, TPVM is more feasible, more suitable

for multiview applications, and has a brighter, sharper and cleaner image. Without

a quicker alternative to current liquid crystal glasses, our study has great realistic

significance for us to build a practical TPVM multiview display system. In this

study, we develop two approaches to achieve an acceptable perceptual quality for all

of viewers, with the off-the-shelf but still relatively slow LC glasses.

The first approach is to exploit the sparsity of multiview images to be displayed.

One example is the sequence of depth of field (DOF) images, which pertaining to

continuously varying focal distance but with the position, angle and aperture of the

camera fixed. Those images not only provide a strong depth cue, but also have a

sparsity structure. That structure allows the DOF images to be reconstructed from a

small number of atom frames. We prove that property theoretically and experimental

results agree well with the proof.

The second approach is to exploit the well-known property of rapidly decreasing
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visual acuity from fovea to peripheral vision. We propose a spatially weighted opti-

mization algorithm for TPVM based on viewers’ real time region of interests (ROI)

information. The strategy is to exhibit different concurrent views at highest quality

in viewers’ focused regions, while allowing graceful image quality degradation in re-

gions of peripheral vision. This is achieved by a novel fovea weighting algorithm that

optimizes for subjective quality. We find the proposed algorithm improves viewers’

perceptual quality significantly, especially when the TPVM multiview display system

only has a small number of atom frames.

The effectiveness of both methods is validated by simulation results, and both

ways can reach the same goal of improving perceptual quality for TPVM, using only

a small number of atom frames.
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