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Abstract

Various approaches for discriminant analysis of longitudinal data are investigated,

with some focus on model-based approaches. The latter are typically based on the

modified Cholesky decomposition of the covariance matrix in a Gaussian mixture;

however, non-Gaussian mixtures are also considered. Where applicable, the Bayesian

information criterion is used to select the number of components per class. The

various approaches are demonstrated on real and simulated data.
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Chapter 1

Introduction

There are different types of learning in cluster analysis that include: unsupervised,

semi-supervised, and supervised. The amount of supervision refers to how many

labelled observations there are and how many are used. Unsupervised learning is when

no labels are given to classify the data, which is essentially referred to as clustering.

The other two types of learning have some labelled observations that are used to infer

labels for the unlabelled observations. Consider n observations. Semi-supervised

learning has k labeled and (n − k) unlabeled points, and the goal is to correctly

label the (n − k) unlabeled points using all n points. Supervised learning refers to

using the k labelled observations to build a rule that is used to label the remaining

(n− k) observations; this is also called discriminant analysis and the rule is called a

discriminant rule. The key distinction is semi-supervised learning uses all n points

whereas supervised learning uses only the k labelled points to infer labels for the

unlabelled points. Often, the k labelled points are referred to as the training set and

the n − k unlabeled points are referred to as the test set. An analogy is to think

of having two clusters on either side of a line of best fit, see Figure 1.1. Note that
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Figure 1.1: Example of discriminant analysis with cluster one in red and cluster two
in blue where the discriminant rule is the line of best fit.

a line of best fit is a straight line that accurately represents the data on a scatter

plot, i.e., a line is drawn through the center of a group of data points. The line of

best fit may pass through some of the points, all of the points, or none of the points.

Consider cluster one above the line of best fit and cluster two below the line of best

fit. The line of best fit is built using the training set observations, i.e., the red and

blue points in Figure 1.1. To classify the unlabelled points (black points), the line of

best fit plays an important role. In Figure 1.1, a black point above the line of best

fit will be classified as cluster one and an observation below the line of best fit will

be classified as cluster two. It is important to note that the line of best fit does not

change because it has already been trained by the labelled points.

The focus herein will be on supervised learning for longitudinal data. Longitudinal

data, sometimes referred to as panel data, tracks the same observation at different

points in time. For example, to assess the effectiveness of diets on rats, one may

observe their body weight every week (Crowder and Hand, 1990). Another example

is observing gene expressions over time—this is referred to as gene expression time

2
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course data (Arbeitman et al., 2002; Chu et al., 1998). There are also studies tracking

the weight loss of individuals in different weight loss programs. One study in Italy

tracks daily household power consumption. These two studies, along with simulated

data will be presented.

The concept of finite mixture models will be introduced, along with a special co-

variance decomposition to account for longitudinal data (McNicholas and Murphy,

2010a). The decomposition for the covariance matrix will be a modified Cholesky de-

composition. A family of mixture models arises from this covariance decomposition.

Discriminant analysis will be performed using a Gaussian mixture model with a mod-

ified Cholesky decomposition of the covariance matrix and a mixture of multivariate

t-distributions McNicholas and Subedi (2012). After estimating the parameters and

selecting the model, the classification performance will be assessed.

3



Chapter 2

Methodology

2.1 Modified Cholesky Decomposition

Let A represent any real positive definite matrix. The Cholesky decomposition

(Benôıt, 1924) of A is

A = LL′,

where L is a unique lower triangular matrix. This decomposition is commonly used in

numerical analysis applications due to fast computation times and simplicity because

the solution simplifies to a system of linear equations. Let Σ represent the covariance

matrix of a random variable. One can apply a modified Cholesky decomposition to

obtain the following:

TΣT′ = D⇔ (TΣT′)−1 = D−1 ⇔ T′−1Σ−1T−1 = D−1,

where T is a unique unit lower triangular matrix and D is a unique diagonal matrix

with strictly positive diagonal entries. Note that a unit lower triangular matrix is a

4
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lower triangular matrix with ones along the diagonal. Finally, taking the inverse of

both sides yields the covariance matrix:

Σ−1 = T′D−1T⇔ Σ = (T′D−1T)−1, (2.1)

due to matrix properties and the steps given above. The values of T and D can

be interpreted as generalized autoregressive parameters and innovation variances,

respectively (Pourahmadi, 1999). The linear least-squares predictor of Xt based on

Xt−1, . . . , X1, is given by

X̂t = µt +
t−1∑
s=1

(−ϕts)(Xs − µs) +
√
dtεt,

where ϕts is the sub-diagonal element of T in position (t, s), dt is the tth diagonal el-

ement of D, and εt ∼ N(0, 1). In the past, the modified Cholesky decomposition has

been used for joint modelling of both the mean and covariance in longitudinal studies

(Pan and Mackenzie, 2003). Similarly, an approach was developed for simultane-

ously modelling several covariance matrices via the modified Cholesky decomposition

(Pourahmadi et al., 2007).

2.2 Finite Mixture Models

A finite mixture model is a convex linear combination of a finite number of probability

distributions. Finite mixture models are used in cluster analysis, and commonly, a

cluster is taken to equal one component in the mixture (see McNicholas, 2016a,b).

Let X represent a random variable and let p represent the data dimensionality. The

5
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probability density function of a mixture model is:

f(x | ϑ) =
G∑
g=1

πgfg(x | θg),

where πg are the mixing proportions, with πg > 0 and
∑G

g=1 πg = 1, and fg(x |

θg) is the probability density function of the gth component with parameters ϑ =

(π1, . . . , πG,θ1, . . . ,θG). It should be noted that f(x | ϑ) is often referred to as a G-

component finite mixture density. Usually, for convenience the component densities

have the same distribution, e.g., fg(x | θg) are all Gaussian densities.

2.3 Mixtures of Multivariate Gaussian Distribu-

tions

The Gaussian mixture model is a very common choice in literature because of ease of

manipulation. The density of a Gaussian mixture model can be written as:

f(x | ϑ) =
G∑
g=1

πgφ(x | µg,Σg),

where

φ(x | µg,Σg) =
1√

(2π)p|Σg|
exp

{
−1

2
(x− µg)′Σ−1g (x− µg)

}
is the probability density function of a multivariate Gaussian distribution where µg

is the mean and Σg is the covariance matrix. Note that, in McNicholas and Murphy

6
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(2010a), the component precision matrices utilize the decomposition in (2.1), i.e.,

Σg = (T′gD
−1
g Tg)

−1,

where Dg and Tg are the diagonal matrix and unit lower triangular matrix, respec-

tively, that follow from the modified Cholesky decomposition.

A total of eight Gaussian mixture models arise depending on certain constraints,

see Table 2.1. One can allow Tg and/or Dg to be the same across all components

along with the isotropic constraint Dg = δgIp. Following McNicholas (2016a), this

family of eight will be referred to as the Cholesky-decomposed Gaussian mixture

models (CDGMMs). The CDGMMs fit longitudinal data very naturally. For example,

constraining Tg = T yields that the autoregressive relationship between time points

is the same across all components, i.e., the correlation structure of the longitudinally

recorded data values is the same for all classes. The constraint Dg = D yields that

the variability at each time point is the same for each of the components. Lastly,

the isotropic constraint Dg = δgIg yields that the variability is the same at each time

point within the component, i.e., the noise is the same at all time points.

7



M.Sc. Thesis - Kevin Matira McMaster - Statistics

Table 2.1: The different constraints on the covariance matrix along with the number
of free covariance parameters for each member of the CDGMM family.

Model Tg Dg Dg Free Covariance Parameters

EEA Equal Equal Anisotropic p(p− 1)/2 + p

VVA Variable Variable Anisotropic G[p(p− 1)/2] +Gp

VEA Variable Equal Anisotropic G[p(p− 1)/2] + p

EVA Equal Variable Anisotropic p(p− 1)/2 +Gp

VVI Variable Variable Isotropic G[p(p− 1)/2] +G

VEI Variable Equal Isotropic G[p(p− 1)/2] + 1

EVI Equal Variable Isotropic p(p− 1)/2 +G

EEI Equal Equal Isotropic p(p− 1)/2 + 1

2.4 Mixtures of Multivariate t-distributions

The computational convenience of mixtures of Gaussian distributions explained the

attention received both in literature and in applications. In practice, one may require

a less heavy tailed distribution. McLachan and Peel (1998) first look at the Gaussian

scale mixture model

(1− ε)φ(xi | µ,Σ) + εφ(xi | µ, cΣ), (2.2)

where c is large and ε is small. Alternatively, (2.2) can be written as

∫
φ(xi | µ,Σ/wig)dH(wig),

8
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where Wig represents a latent variable such that

Xi | wig, zig = 1 ∼ N(µg, (T
′
gD
−1
g Tg)

−1/wig)

and Wig | zig = 1 follows a gamma distribution with parameters (νg/2, νg/2), where

νg denotes the degrees of freedom of the gth component (McLachlan and Peel, 1998).

The gth multivariate Student’s t component density can then be defined as

ft(x | µg,Σg, νg) =
Γ(νg+p

2
)|Σk|−1/2

(νgπ)p/2Γ(νg
2

)

(
1 +

1

νg
δ(x,µg | Σg)

)− νg+p
2

,

where µg is the mean, Σg = (T′gD
−1
g Tg)

−1 is the scale matrix, νg is the degrees of free-

dom of component g, Γ is the gamma function, and δ(x,µg | Σg) is the Mahalanobis

distance, i.e.,

δ(x,µg | Σg) = (x− µg)′Σg(x− µg).

Compared to the Gaussian distribution, the multivariate t-distribution simply intro-

duces a new parameter known as the degrees of freedom. Note that a t-distribution is

equivalent to a Gaussian distribution for a high degrees of freedom (Student, 1908).

Following (McNicholas, 2016a), this family will be referred to as the CDtMM family.

2.5 Likelihood

Let zig denote an indicator variable such that zig = 1 if observation i belongs to com-

ponent g and zig = 0 otherwise. Let zi = (zi1, zi2, . . . , ziG) represent the component

membership of observation i. The mixture discriminant analysis likelihood for the

9
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labelled observations (x1, . . . ,xk) and their associated labels (z1, . . . , zk) is:

L(ϑ | x1, . . . ,xk) =
k∏
i=1

G∏
g=1

[πgfg(xi | θg)]zig , (2.3)

where πg are the mixing proportions, fg(x | θg) is the pdf of the gth component, and

θg is the vector of parameters. Taking the logarithm of both sides of (2.3) yields the

log-likelihood

l(ϑ | x1, . . . ,xk) =
k∑
i=1

G∑
g=1

zig[log πg + log fg(xi | θg)].

Setting the components to be Gaussian yields the likelihood

L(ϑ | x1, . . . ,xk) =
k∏
i=1

G∏
g=1

[πgφ(xi | µg, (T′gD−1g Tg)
−1)]zig ,

where the log-likelihood is

l(ϑ | x1, . . . ,xk) =
k∑
i=1

G∑
g=1

zig[log πg + log φ(xi | µg, (T′gD−1g Tg)
−1)].

Note that these likelihood functions assumes that each known class is modelled

by one component. Using the notation of McNicholas (2016a), this constraint can be

relaxed by replacing G with G, where G = G1+G2+ · · ·+GG. Essentially, model-based

clustering is being performed on each known class to obtain the number of components

per class (G1, . . . ,GG) via some criterion. That is, each known class is being modelled

by a mixture model itself. Then, a mixture model is fit with G components.

10
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2.6 Linear Combination for Group Means

A nice feature about using the CDGMM and CDtMM families is that the means µg

can be modelled using a linear combination (McNicholas and Subedi, 2012), i.e.,

µg = Qβg =

1 1 1 . . . 1

t1 t2 t3 . . . tp


′ ag
bg

 ,
where the slope is bg and the intercept is ag. Given this parameterization, the likeli-

hood can now be written as:

L(ϑ) =
k∏
i=1

G∏
g=1

[πgφ(xi | Qβg, (T′gD−1g Tg)
−1)]zig .

This method implies that the mean will be modelled using a line of best fit.

Similarly, one can model the mean using a quadratic, cubic, or other polynomial

combination. In general, allowing for a linear mean is often undesirable because the

data will not necessarily follow a linear trend. Examples of non-linear longitudinal

data include the study of physical growth of boys and girls (Tuddenham and Snyder,

1954) or studying gene expression profiles (Arbeitman et al., 2002; Chu et al., 1998).

Linear means will be included in one simulation and one real data set for completeness.

2.7 Parameter Estimation

The expectation-maximization (EM) algorithm (Dempster et al., 1977) is commonly

used in model parameter estimation. There are two steps to the algorithm. The

first step is to compute the expected value of the complete data log-likelihood and is

11
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known as the expectation step (E-step). To clarify, the complete-data in this context

consist of the training set observations that belong to group Gg. The second step

is called the maximization step (M-step) and yields parameter updates that give a

maximum of the log-likelihood from the E-step. This process iterates between the

two steps until convergence. The objective is to obtain labels for the training set that

are in class Gg. Once labels are obtained for G1,G2, . . . ,GG, a G-component mixture

model with these labels is fitted. Upon obtaining maximum likelihood estimates from

the log-likelihood function, the resulting parameter estimates are recorded. Note that

for G = 1, it is essentially a one-component mixture.

2.8 Convergence Criterion

There are many different stopping criterion for the EM algorithm. One approach is

to halt an EM algorithm based on the lack of progress in the log-likelihood. More

explicitly, one can stop the algorithm when

l(k+1) − l(k) < ε, (2.4)

where ε is a small value and l(k) is the log-likelihood at the kth iteration. Clearly, this

may be a good stopping rule if the log-likelihood increases and comes to a plateau

at the maximum likelihood estimate. For an example of a plateau, one can refer to

Figure 2.1. The criterion in (2.4) is not always effective (McNicholas et al., 2010).

For example, consider log-likelihood values that look like a staircase with multiple

steps or have multiple local maximums.

12
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Figure 2.1: Plot of log-likelihood against EM algorithm iteration number for a real
data set.

Following McNicholas et al. (2010), the alternative convergence criteria will be

based on Aitken’s acceleration (Aitken, 1926). More explicitly, Aitken’s acceleration

at iteration k can be written as:

a(k) =
l(k+1) − l(k)

l(k) − l(k−1)
.

The asymptotic estimate of the log-likelihood at the k + 1 iteration is

l(k+1)
∞ = l(k) +

l(k+1) − l(k)

1− a(k)
.

The EM algorithm can be treated as converged when |l(k+1)
∞ −l(k)∞ | < ε (Böhning et al.,

1994), or when l
(k)
∞ − l(k) < ε (Lindsay, 1995), or when l

(k+1)
∞ − l(k) < ε, where the

difference is positive (McNicholas et al., 2010). The latter will be used to determine

convergence because it is at least a strict as (2.4) (McNicholas et al., 2010).

13
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2.9 Model Selection

After all members of a family are fitted for a range of values of groups, the Bayesian

information criterion (BIC; Schwartz, 1978) is used to select the best model and the

number of components per class. The BIC can be written as:

BIC = 2l(x, ϑ̂)− ρ log n,

where ϑ̂ is the MLE of ϑ, ρ is the number of free parameters, and n is the number

of observations. The BIC is used because under certain conditions, it is optimal for

choosing the number of components in a mixture model (Leroux et al., 1992). For

the CDGMM and CDtMM families, the BIC is also used to select the decomposition.

Keep in mind that while many model-based applications use the BIC, the best BIC

does not necessarily yield the best classification performance (Bouchard and Celeux,

2004).

2.10 Classification Performance Assessment

One may be interested in seeing how well the model performs on the test set. This

can be done by comparing the predicted test set labels to the true labels. Consider

Table 2.2 below (Steinley, 2004).

Table 2.2: Table of pairs for two partitions.

Same group Different groups

Same group A B

Different groups C D

14
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The Rand Index (RI) can be calculated using Table 2.2 (Rand, 1971). It is the

ratio of pairwise agreements to the total number of pairs, i.e.,

RI =
A+D

A+B + C +D
=
A+D

N
,

where N denotes the total number of pairs. Perfect class agreement results in RI = 1.

A problem that arises is that the RI value may be higher than the true value due

to agreement by chance. To compensate for this error, the adjusted Rand index

(ARI; Hubert and Arabie, 1985) is introduced. For simplicity, using the notation in

Table 2.2, the ARI can be written as:

ARI =
N(A+D)− [(A+B)(A+ C) + (C +D)(B +D)]

N2 − [(A+B)(A+ C) + (C +D)(B +D)]
.

The ARI has an expected value of 0 under random pairwise agreement and is equal

to 1 for perfect classification. One can see how this naturally arises by looking at the

general form, i.e.,

corrected index =
index− expected index

maximum index− expected index
.

Negative ARI values can also occur and this implies that the classification perfor-

mance is worse than would be expected by randomly classifying the observations.

Classification performance is determined by the ARI of the test set. The ARI of

the training set is omitted because the training set is labelled and used to build a

discriminant rule.

15
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2.11 Straightforward Discriminant Analysis

One can view straightforward discriminant analysis as follows: a data set is split into

a training/test sets with 70%—80% belonging to the training set and the remaining

(20%—30%) in the test set. The training/test split is usually stratified to ensure

that all classes are accounted for. This is particularly useful when there are very

few observations in one class. If there are G known classes in the training set, each

known class is fit to exactly one component, i.e., one component per class. This

implies that g ranges from 1 to G and the zi for i = 1, . . . , k are known in the

likelihood function. The maximum likelihood estimates are obtained via the log-

likelihood. After obtaining the parameter estimates, one can compute the probability

that an observation in the test set is part of one of the G classes. The ARI is

used to assess the classification performance of the test set. It will be seen that

straightforward discriminant analysis is often desirable. It is worth noting that there

are more involved versions of straightforward discriminant analysis, e.g., with πg

treated as a prior probability (McIver and Friedl, 2002); however, these more involved

versions will not be considered herein.

2.12 Mixture Discriminant Analysis

In mixture discriminant analysis, a data set is also split into a training test split that

is usually stratified. Following a similar approach as in straightforward discriminant

analysis, 70%—80% belong to the training set and the remaining 20%—30% are in the

test set. Suppose there are G known classes in the training set. Each known class is fit

to a mixture model and the labels are recorded via the EM algorithm. The number of

16



M.Sc. Thesis - Kevin Matira McMaster - Statistics

components for each class is obtained through the BIC and recorded (G1,G2, . . . ,GG).

The total number of components, G, is computed by G = G1 + G2 + · · · + GG. A

mixture model is then fit with G components along with the recorded labels to obtain

parameter estimates. Parameter estimates are obtained via the maximum likelihood

estimates of the log-likelihood function. The parameter estimates are used to compute

the probability that an observation in the test set belongs to one of the G classes.

Classification performance is determined by looking at the ARI value of the test

set. Clearly, straightforward discriminant analysis is simply a special case of mixture

discriminant analysis (Gg = 1) and is often a desirable result.

2.13 Discriminant Rule

Let zjg represent the probability that the jth observation in the test set belongs to

the gth component. Using Bayes’ theorem, this probability can be written as:

ẑjg =
π̂gfg(xj | θ̂g)∑G
h=1 π̂hfg(xj | θ̂h)

, (2.5)

where fg(xj | θ̂g) is the density of gth component. Note that all the predicted

classifications are soft because they are all probabilities. For example, consider the

scenario where G = 3. The corresponding zj for j = 7 could be z7 = (0.3, 0.2, 0.5).

This means that observation seven has a 30% chance of belonging to component

one, a 20% chance of belonging to component two, and a 50% chance of belonging

to component three. These soft classifications are considered to be a nice feature

with mixture models because they allow one to evaluate borderline observations.

This is particularly helpful when comparing borderline observations across different
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supervised learning methods. For example, z7 = (0.32, 0.31, 0.37) has very different

connotations to z7 = (0.05, 0.15, 0.8). In the first scenario, it is unclear whether or

not observation seven truly belongs in class three, whereas it is more evident that

observation seven belongs in class three in the second scenario. In general, one may

wish to harden these probabilities for comparison in practical applications. A common

method is using the maximum a posteriori (MAP) classifications, i.e., MAP{ẑjg},

where

MAP{ẑjg} =


1 if g = arg maxh{ẑjh},

0 otherwise.
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Chapter 3

Simulation Study

3.1 Introduction

One method to simulate data is to make a representative time course for one or more

classes (McNicholas, 2016a). In Figure 3.1, both graphs clearly have distinct time

courses. The graph on the left has five time points whereas the graph on the right

has 10 time points. Following Section 8.4 in McNicholas (2016a), to simulate more

points, random values between (−u, u) are added to the expression (y-value) at each

time point. Increasing the value of u makes the clusters less distinguishable from

one another whereas a small value for u keeps them fairly distinct. Repeating this

process 99 times for each component and setting u = 4.0 yields the two graphs in

Figure 3.2. This implies that there are now a total of 100 observations belonging

to each time course. Treating this as a real problem, a training test split is applied

to the simulated data. A 75/25 split is used, where 75% of the data will be part of

the training set and 25% will be part of the test set. It should be noted that the

results did not change whether stratification was used or not because each class is
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represented by at least 100 observations.
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Figure 3.1: Four representative time courses on the left and three representative time
courses on the right.
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Figure 3.2: Simulated longitudinal data coloured by classes with u = 4.0 and n = 100
for each representative time course.
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3.2 Mixture Discriminant Analysis

3.2.1 First Simulation

Each known class in the training set in Figure 3.2a is fit using the CDGMM family.

The BIC selected G1 = G2 = 1 and G3 = 2, see Figure 3.3. This results in the

total number of components being G = G1 + G2 + G3 = 4 and the recorded labels

ranging from one to four. Note that labels three and four correspond to belonging

to class three. A four-component CDGMM with the corresponding labels are fit to

get parameter estimates for µg and Σg. These parameter estimates are used in (2.5)

to compute the soft classifications for the test set. The MAP classifications for 10

different test sets are given in Table 3.1. This corresponds to an average ARI value

of 0.9037 over the course of 10 runs. The overall classification performance is very

good, i.e., only 42 observations out of 1000 were misclassified.
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Figure 3.3: Plot of one training set using a CDGMM for the simulated data set with
four distinct time courses and n = 400.
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Table 3.1: Cross-tabulation of the MAP classifications associated with the 10 test
sets using the CDGMM (A-C) against true classes for the first simulation.

A B C

1 232 16 2

2 16 234 0

3 4 4 492

Similarly, each known class in the training set is also fit to the CDtMM family. The

BIC selected G1 = G2 = 1 and G3 = 2. This can be seen in Figure 3.4. This implies

that the total number of components is G = G1 +G2 +G3 = 4 and the recorded labels

ranging from one to four. Note that labels three and four correspond to belonging

to class three. A four-component CDtMM with the aforementioned labels are fit to

obtain parameter estimates for µg,Σg, and νg. To compute soft classifications for the

test set, these parameter estimates will used in the discriminant rule in (2.5). The

MAP classifications of 10 distinct test sets are in Table 3.2. The average ARI value

is approximately 0.9001. The good classification results may be attributed to the

high degrees of freedom for each component (νg ≥ 100). This implies that the fit is

essentially a CDGMM.
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Figure 3.4: Plot of one training set using a CDtMM for the simulated data set with
four distinct time courses and n = 400.

Table 3.2: Cross-tabulation of the MAP classifications associated with the 10 test
sets using the CDtMM (A-C) against true classes for the first simulation.

A B C

1 237 13 0

2 16 233 1

3 5 7 488

3.2.2 Second Simulation

The CDGMM family is fit for each known class in the training set in Figure 3.2b.

This data set appears to be a more difficult problem. The BIC selected G1 = G2 =

G3 = 1, see Figure 3.5. This yields that the total number of components is G =

G1 + G2 + G3 = 3 and the recorded labels ranging from one to three. To obtain

parameter estimates, a three-component CDGMM is fit with the corresponding labels.

Parameter estimates are then used to compute soft classifications for 10 distinct test
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sets and the MAP classifications are given in Table 3.3. The average ARI value over

10 runs is 0.8443. This is a relatively high ARI value with minimal classifications,

i.e., only 40 observations out of 750 were misclassified.

2 4 6 8 10

−2
0

2
4

6
8

10
Components

Time

Va
lu

es

Figure 3.5: Plot of one training set using a CDGMM for the simulated data set with
three distinct time courses and n = 300.

Table 3.3: Cross-tabulation of the MAP classifications associated with the 10 test
sets using the CDGMM (A-C) against true classes for the second simulation.

A B C

1 246 3 11

2 2 233 6

3 15 3 231

Allowing for linear means in the CDGMM family returns lower ARI values and

poor classification results. The ARI values were approximately 0.1382 over 10 different

runs for the CDGMM family. The hardened classifications of 10 different test sets

are given in Table 3.4. This implies that the mean is better modelled by a weighted

average than a line of best fit. One can see how this is true by looking at Figure 3.6.
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It does not look natural to model the means by lines of best fit given the different

patterns.

2 4 6 8 10

−2
0

2
4

6
8

10

Components

Time

Va
lu

es

Figure 3.6: Plot of one training set using a CDGMM with linear means for the
simulated data set with three distinct time courses and n = 300.

Table 3.4: Cross-tabulation of the MAP classifications associated with the 10 test
sets using the CDGMM (A-C) with linear means against true classes for the second
simulation.

A B C

1 57 92 101

2 43 176 29

3 57 37 158

Next, the CDtMM family is also fit for each class in the training set in Figure 3.2b.

The BIC selected G1 = G2 = G3 = 1. This implies that the total number of components

is G = G1 +G2 +G3 = 3 and the recorded labels ranging from one to three. Parameter

estimates are obtained by fitting a three-component CDtMM with the aforementioned

labels. After obtaining parameter estimates, the soft classifications for the test set can
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be calculated. The classification results for 10 different test sets is given in Table 3.5.

The average ARI over the 10 runs is approximately 0.8327. It is important to note

that the degrees of freedom was very high for all components, i.e., ν = (ν1, ν2, ν3) =

(200, 200, 200), which is the maximum in the software. This indicates that this model

is essentially a CDGMM.
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Figure 3.7: Plot of one training set using a CDtMM for the simulated data set with
three distinct time courses and n = 300.

Table 3.5: Cross-tabulation of the MAP classifications associated with the 10 test
sets using the CDtMM (A-C) against true classes for the second simulation.

A B C

1 233 0 17

2 0 244 6

3 9 12 229
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Chapter 4

Real Data Analyses

4.1 Introduction

In real data analyses, one may want to perform discriminant analysis on gene ex-

pression time course data to find groups of genes with similar expression patterns.

Expression patterns are often referred to as expression profiles. Co-expressed genes

are genes that have similar expression profiles. Practical applications include being

interested in finding groups of genes that have similar activation patterns over time.

For example, a study was conducted to look at the behaviour of yeast genes during

sporulation (Chu et al., 1998). A problem in this study was that only 40 genes of

over 5000 genes have known labels. Labels are biological functions in this case.

4.2 Weight Loss Data Set

The first real data set used for illustration is the weight loss data set (Dominici, 2005).

There are a total of 100 observations and three different weight loss programs. More
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explicitly, there are 34 individuals in program one, 28 participants in program two,

and the remaining 38 individuals are in program three. There are five time points

evenly spread over 12 months. A plot of the data is given below in Figure 4.1. The

three classes appear to have distinct paths. Again, the training set will consist of 75%

of the data and the remaining 25% will be in the test set. Simply put, 75 observations

will be in the training set and 25 observations will be a part of the test set. The data

were stratified to ensure a suitable number of points from each class were allocated

to the test set.
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Figure 4.1: Plot of weight loss data set coloured by the three programs.

4.2.1 Mixture Discriminant Analysis

The CDGMM family is fit to each known class in the training set for the weight

loss data set. The BIC selected G1 = G2 = G3 = 1. This yields that the total

number of components is G = G1 + G2 + G3 = 3 and recorded labels ranging from one

to three. Parameter estimates are obtained by fitting a three-component CDGMM

with the aforementioned labels. The selected CDGMM was an EEI model which has

equal autoregressive structure and equal, isotropic noise across groups. Parameter
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estimates are then used to compute soft classifications for each test set. The MAP

classifications for 10 different test sets are given in Table 4.1. The average ARI value

for the 10 test sets is approximately 0.8982. One may argue that these are very good

results. It is interesting to note how the only misclassifications occurred when a test

set observation was predicted to be in program three but was in program one or vice

versa. This makes sense when looking at Figure 4.1 because programs one and three

are more difficult to differentiate between than programs two and three or programs

one and two.
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Figure 4.2: Plot of one training set using a CDGMM for the weight loss data.

Table 4.1: Cross-tabulation of the MAP classifications associated with the 10 test
sets using the CDGMM (A-C) against true classes for the weight loss data.

A B C

1 78 0 3

2 0 74 0

3 5 0 90

Allowing for linear means in the CDGMM yielded an EEI model. The EEI model
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has equal autoregressive structure and equal, isotropic noise across groups. This

yielded an ARI of approximately 0.8329 over the course of ten runs. The hardened

classifications of 10 different test sets are given below in Table 4.2. While these

results are still good, the mean is better modelled by a weighted average than a linear

combination. This makes sense when comparing the patterns in Figures 4.3 and 4.2

because the paths are not strictly linear.
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Figure 4.3: Plot of one training set using a CDGMM with linear means for the weight
loss data.

Table 4.2: Cross-tabulation of the MAP classifications associated with the 10 test
sets using the CDGMM with linear means (A-C) against true classes for the weight
loss data.

A B C

1 74 0 8

2 0 67 0

3 4 1 90

Next, each class in the training set is fit to a CDtMM for the weight loss data. The

BIC selected G1 = G2 = G3 = 1. This implies that the total number of components
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is G = G1 + G2 + G3 = 3 and the recorded labels ranging from one to three. Then,

a three-component CDtMM is fit along with the corresponding labels. This is done

to obtain parameter estimates that are used to compute soft classifications for the

test set. The MAP classifications over 10 distinct test sets is given in Table 4.3. The

average ARI value of these runs is approximately 0.8129. The degrees of freedom were

all well over 50 for each component and this indicates that this model was essentially

a CDGMM. This makes sense as both Tables 4.1 and 4.3 have very similar results.
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Figure 4.4: Plot of one training set using a CDtMM for the weight loss data.

Table 4.3: Cross-tabulation of the MAP classifications associated with the 10 test
sets using the CDtMM (A-C) against true classes for the weight loss data.

A B C

1 76 0 4

2 0 70 0

3 8 0 82
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4.3 Italy Power Demand

The second data set that will be looked at is the Italy power demand data set (Keogh

et al., 2006). There are a total of 1096 observations and two classes. Class one

corresponds to winter months (October to March) and class two relates to summer

months (April to September). There are 547 days (observations) in the winter months

and 549 days (observations) in the summer months. There are 24 time points over

the course of one year. The classification task is to distinguish days from winter and

summer months. A subset of the data is given in Figure 4.5. The two classes have

fairly different paths. The training set will contain 70% of the data and the remaining

30% will remain as the test set. This implies that 767 observations will belong to the

training set and the remaining 329 observations will be in the test set. It should be

noted that the results did not change whether stratification was used or not because

each class is represented by over 500 observations.
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Figure 4.5: Plot of a subset of the Italy power demand data set coloured by winter
versus summer months.
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4.3.1 Mixture Discriminant Analysis

The classes in the training set for the Italy power demand data are fit using a

CDGMM. The BIC selected G1 = G2 = 1. This implies that the total number of

components is G = G1 + G2 = 2 and the recorded labels ranging from one to two. A

two-component CDGMM is fit with the aforementioned labels to obtain parameter

estimates. The resulting CDGMM was an EEI model which has equal autoregressive

structure and equal, isotropic noise across groups. The parameter estimates are used

to compute soft classifications for each test set. The MAP classifications of 10 dif-

ferent test sets are given below in Table 4.4. The average ARI value for all the test

sets is approximately 0.8887, which indicates good classification performance. Over-

all, the CDGMM provides excellent results with minimal classifications, i.e., only 94

observations out of 3290 were misclassified.
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Figure 4.6: Plot of one training set using a CDGMM for the Italy power demand
data.
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Table 4.4: Cross-tabulation of the MAP classifications associated with the 10 test
sets using the CDGMM (A-B) against true classes for the Italy power demand data
set.

A B

1 1626 58

2 36 1570

Next, a CDtMM is fit to the classes in the training set for the Italy power de-

mand data. The BIC yielded G1 = G2 = 1. This implies that the total number

of components is G = G1 + G2 = 2 and the recorded labels ranging from one to

two. A two-component CDtMM is fit along with the aforementioned labels. The

selected CDtMM was an EEI model which has equal autoregressive structure and

equal, isotropic noise across groups. Once the parameter estimates are obtained, the

soft classifications for the test set can be calculated. For 10 different test sets, the

MAP classifications are given in Table 4.5. The average ARI value over the 10 runs

is approximately 0.8831. The average degrees of freedom for component one (ν1) was

3.3149 and was 2.3755 for component two (ν2).
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Figure 4.7: Plot of one training set using a CDtMM for the Italy power demand data.

Table 4.5: Cross-tabulation of the MAP classifications associated with the 10 test
sets using the CDtMM (A-B) against true classes for the Italy power demand data
set.

A B

1 1548 71

2 28 1643
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Chapter 5

Discussion

Discriminant analysis yielded good results for both simulated data sets. In most

cases, each known class was modelled by exactly one component and the average ARI

values were fairly high for both simulated data sets. As expected, allowing for a linear

mean in the CDGMM yielded worse results.

Applying discriminant analysis to the weight loss data set proved to be very suc-

cessful. Each weight loss program was modelled by strictly one component. The

classification table gave good results for both mixture models with near perfect clas-

sification. It is interesting to note how allowing for a linear combination for each

group mean in the CDGMM performed slightly worse. One may argue that this is

because the data set follows a slight linear path downwards.

Similarly, discriminant analysis was applied to the Italy power demand data set.

For the Italy power demand data set, each class was modelled by exactly one compo-

nent as well. The classification table yielded high overall ARI values for both mixture

models and separated the two classes very well despite the two classes having slightly

similar paths. Unlike the weight loss data set, the Italy power demand data set does
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not follow a linear trend. Thus, modelling the mean by a line of best fit would perform

much worse.

In future work, it would also be useful to those in the health care industry when

looking at healthy versus ill individuals over time. It would be interesting to look

at a cost function, e.g., incorrectly labelling a sick individual as healthy is much

worse than incorrectly labelling a healthy individual as sick. A healthy individual

labelled as sick is getting care that is not needed whereas the sick individual labelled

as healthy is not getting treatment that is needed. Moving forward, one may also

be interested in applying other distributions, e.g., mixtures of power exponential

distributions (Dang et al., 2015), where mixtures of power exponential distributions

are alternative heavy-tailed or less heavy-tailed distributions. One would have to be

careful with the covariance decomposition (modified Cholesky).
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